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1 INTRODUCTION

In [4], we introduced the variable metric proximal point algorithm (VMPPA)
for general monotone operators. The VMPPA builds on the classical proxi-
mal point algorithm and can be viewed as a Newton-like method for solving
inclusions of the form

0€eT(z)

where T' is a maximal monotone operator on IR". In [4], we establish condi-
tions under which the VMPPA is globally linearly convergent. In [3], we focus
on the finite dimensional setting and more closely examine the local behavior
of the algorithm under the assumption that the iterates converge linearly. In
particular, we considered two matrix secant updating strategies for generating
the Newton-like iterates: the BFGS and Broyden updates. The BFGS up-
date is employed when it is known that the derivative (see Definition 3.1) of
the operator T at the origin is symmetric. This symmetric case occurs in
applications to convex programming where the operator T' is taken to be the

* subdifferential of a convex function. We show that if the sequence generated by

the VMPPA is known to be linearly convergent, then it is also super-linearly
convergent when the appropriate matrix secant update is employed: BFGS in
the symmetric case and Broyden in the general case. In {3, Section 4], these
results are applied to establish the local super-linear convergence of a variation
on the Chen-Fukushima variable metric proximal point algorithm for convex
programming. :

In this paper, we show that the local theory developed in [3] can also be
applied to the more general algorithm described in [4] and thereby obtain con-
ditions under which the BFGS and Broyden updates can accelerate the con-
vergence of the VMPPA applied to general monotone operators. This yields
the first super-linear convergence result for the VMPPA applicable beyond the
context of finite—valued convex programming. However, this extension comes
at the cost of a more complicated statement of the algorithm. In particular, as
given, the algorithm can only be implemented when further knowledge about
the operator T is known, e.g. if the operator is strongly monotone and a lower
bound on the modulus of strong monotonicity is known (see Part (a) of Lemma
3.1). The additional complexities of the algorithm can be traced back to the
absence of an underlying objective function to which a line-search can be ap-
plied. On the other hand, the foundations laid in {4] and [3] clear the way
for a very straightforward and relatively elementary proof of the superlinear
convergence of the method.

In the case of finite—valued, finite dimensional convex programming, the
VMPPA has recently received considerable attention [1, 6, 7, 9, 10, 11, 12, 17,
18]. In convex programming, the goal is to derive a variable metric method for
minimizing the Moreau-Yosida regularization of a convex function f : IR" —
R U {+oo}:

A@) = @+ glu-al} (11)
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(in the finite-valued case, f cannot take the value +co). It is well known
that the set of points z yielding the minimum value of f and f) coincide, and
that the function fy is continuously differentiable with Lipschitz continuous
derivative even if the function f is neither differentiable nor finite—valued. The
challenge is to derive a super-linearly convergent method that does not require
precise values for either f) or its derivative, and does not require excessively
strong smoothness hypotheses on the function f. Detailed comparisons of the
various contributions in this direction can be found in the introductions to the
papers [4] and [3]. Here we only note that the references [3, 12] and the present
contribution are the only papers containing local super-linear convergence re-
sults for the VMPPA when applied with only approximate values for f) and
its derivative. The only such results for the case of general monotone operators
are found in {3].

In Section 2, we review the VMPPA. The algorithm is motivated by consider-
ing the application to convex programming. Convergence results are presented
in Section 3. In Section 4 we present the three applications of the VMPPA to
convex programming, with numerical results. |

2 THE VARIABLE METRIC PROXIMAL POINT ALGORITHM

An operator T : RY = R" (here the double arrows =3 are used to signify
the fact that 7" is multi-valued) is said to be a monotone operator if {z —2', w—
w') > 0 whenever w € T(z),w’ € T(z'). It is said to be maximal monotone if,
in addition, its graph gph(T) := {(z,w) € IRY x RIN|w € T'(z)} is not properly
contained in the graph of any other monotone operator. Monotone operators
arise naturally in number of applications [20, 21]. Perhaps the most well-known
of these is the subdifferential mapping of a closed proper convex function (see
Minty [14] and Moreau [15]).

In most applications involving monotone operators, the central issue is the
determination of those points z satisfying the inclusion 0 € T'(z), where T :
RY = RY. The proximal point algorithm is designed to solve inclusions
of precisely this type. It does so by generating sequences {z*} satisfying the
approximation rule l

22~ (I + ckT)_l(zk)

for a given sequence of positive scalars {c;}.
In the case of convex programming, the proximal point iteration has the
form

k+1

22Tl =28 4wk where w* = —Vf, (2%)

and f., is the Moreau-Yosida resolvent for f associated with the proximation
parameter A = c;. That is, it is the method of steepest descent with unit step
size applied to the function f., with ¢ varying between iterations.

Using the fact that

Vie =1 - +aT)™,
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one can formally derive the algorithm for a general maximal moriotone operator
T by replacing 8f with T and —V fe, with the operator

Di ={I+cT) " =11 _ (2.1)

The operator Dy, will play a central role in the analysis to follow.
With these definitions, the proximal point algorithm takes the form

AL ok Lk where wF s Dy(2).

A Newton-like variation on this iteration yields the VMPPA.

The Variable Metric Proximal Point Algorithm:
Let 2° € RN and ¢y > 1 be given. Having z*, set

2K .= 2F 4 Hyw* where w® = Di(2")
and choose ¢g+1 > 1-

 The matrices Hy should be thought of as approximations to the inverse of
the derivative of Dy at a solution to equation D (z) = 0, or equivalently, at a
solution to the inclusion 0 € T(z). The condition ¢ > 1 is required to obtain
the global convergence as in {4]. .

Explicit conditions on the accuracy of the approximation w* = Dy (z*) are
key to the convergence analysis. As in [4] and {3], we employ the following
approximation criteria:

©) Iw* - Dl < e with y_ex <o
k=0

and

oo
(L) Jwk - Dp(z")] < eJw®| with > Gk <o
k=0
Criteria (G) is used to establish global convergence while criteria (£) is used to
obtain local rates of convergence. |

3 SUPER-LINEAR CONVERGENCE

3.1 Differentiability Hypotheses

In [4, Theorem 19], the global and linear convergence of the VMPPA is es-
tablished by assuming that the operator T-1 has a certain smoothness at the
origin. This smoothness property allows us to use matrix secant techniques
to approximate VDj at a unique solution to the inclusion 0 € T'(z). These
hypotheses are reminiscent of those used in Newton’s method for establishing
rapid local convergence. '
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Definition 3.1 We say that an operator ¥ : RY = RY is differentiable at
a point W if ¥(w) consists of a single element Z and there is @ matriz J € RN*N
such that for some § >0,

04T (w)—%—J(w-w) Co(|lw—-w|)IB whenever lw—w| <4§. (3.1)

We then write J = VU (). We say that the operator ¥ satisfies the quadratic
growth condition at a point w € IR" if ¥ is differentiable at W and there are
constants C' > 0 and € > 0 such that

U(w) — ¥ (@) — V(@) (w—w) C Clw—a|2B  whenever jw—] <e. (3.2)

Remarks.

1) This notion of differentiability corresponds to the usual notion of differen-
tiability when ¥ is single—valued.

2) In [4, Example 7], we show that it is possible to choose a convex function
f so that 8f ! is differentiable at the origin, but does not satisfy the
quadratic growth condition there.

3) In the context of convex programming, the strong second-order sufficiency
condition implies that @f~! satisfies the quadratic growth condition at
the origin where f is the essential objective function ([19, Proposition 2]
and [4, Theorem 8]).

4) Further discussion of these notions of differentiability as they relate to
monotone operators can be found in [16] and ([4], Corollaries 12 and 13).

3.2 Conditions for Global Linear Convergence

We assume that the operator T—! is differentiable at the origin. This implies the
differentiability of the operators D at the unique global solution z = T~1(0),
with

VDu(z) =~ + -V (3.3)

[4, Proposition 9]. The matrices Hy appearing in the VMPPA are chosen to
approximate the matrix (—VDy(2))"* = [1 + Elk-V[T‘l](O)]. The accuracy of
the approximation

Hy w [+ - VIT~)0)

determines both the global and local rates of convergence.

Observe that the smaller the value of ¢k, the less the matrix [14 EEV[T‘I](O)]
looks like the identity, and therefore, the less the method looks like the clas-
sical proximal point algorithm. In the context of convex programming, this
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deviation from the direction of steepest descent is easily compensated for by
appropriately damping the search direction with a line-search routine. This as-
sures the global convergence of the method. However, in the operator setting,
there is no objective function to which a line-search can be applied. For this
reason, the global convergence analysis developed in [4] requires that the ma-
trices H}, do not deviate from the identity too much. This allows us to extend
the global linear convergence result for the classical proximal point algorithm
to the variable metric setting. Specifically, we require that the matrices {H}
satisfy the condition

|(Hi — DD (2*)| < %iDi(2*)] for all &, (34)

where .
I |/*Cy! B
22*% — 2| + 3| Di(2*)]
Of course, it is essential to know whether or not this condition can reasonably

be achieved without requiring knowledge of z and [Dx(2*)| or that Hy = I on
all iterations. In this regard, we recall the following facts from [4].

Lemma 3.1 [{, Lemma 1 and 15] Suppose T—(0) is nonempty.

(a) If the operator T is strongly monotone with modulus «, then T-Y0) = {z},

_ 1
l2* — 2] < (1 4+ —=)|Dx (") ,
KCl

and v, > 5"';3_& > 5+12/n for all k.

(b) If T~ is differentiable at the origin with derivative J, then there is a
1 : o k
d > 0 such that v, > ;F-;_";%[ for all k satisfying |Dr(2°)] < 6.

(c) Let &, 4,0, € By be such that
0<£<1, 6 <min{l, ||H,ﬂ|1—1}§(1 )%, and 4 <1/3. (35)

If 2wk € RN satisfy

|(T — He)w*] < €4lw®] and fw® — Dr(z*)] < delw"], (3.6)

then |(I — Hg)Dy(2*)| < 4| Dr(2*)|. Therefore, if criterion (L) is satis-
fied, and if ¢ and the sequence {(Yx,6r)} C IR? satisfy (3.5), with A < Y&
for all k, then hypothesis (3.4) is satisfied.

Part (a) of the lemma says that the x’s are bounded below by a global
positive constant if T is strongly monotone. Part (b) says that the +;’s are
locally bounded below by a positive constant under a differentiability hypothesis
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on T~!. Part (c) says that condition (3.4) can be achieved by requiring a similar
condition involving the computed quantities w*. |
Observe that the condition (3.4) is easily satisfied by taking Hy = I. In ad-
dition, from relation (3.3), we have (VDg(z))~! — —1I as ¢; 1T 0o. These obser-
vations motivate the choice of updating strategy given in the formal statement

“of the algorithm below. However, our practical experience indicates that the

condition (3.4) can be significantly relaxed. We return to this issue in Section
4.2 where we discuss our numerical results.

3.3 The Algorithms and Their Convergence

We now give explicit statements of the algorithms. The somewhat unconven-

 tional form in which these algorithms are stated is a result of our desire to meld

the global convergence theory in [4] with the local theory in [3].

BFGS Updating: Choose 0 < & < 1 and 4o as an estimate of . Choose
Ho = Hy=I. For k > 0, set d¥ = w* — wFt1 5% = z#t1 — 2% and

(s® — ﬁkdk)s’“T + s (sk — Hpd®)T G Hd*, d’“)s"s’“T
(dk, s%) . (dF, sk)?

ﬂk+1 = I:Ik -+

if. d"" sk > 0; otherwise, set I:I;H_l = Hi. Set Hyyy = ﬁk+1- Compute an
estimate Fxy1 of Yg41 satisfying 0 < Fx41 < Ye+41, and choose 0.95 < Ep+1 < 1.
If ||(I — Hk+1)w’°+1|| > Ek+1;?k+1 ||w"+1 Il, then reset Hk+1 = I.

Remark. Note that the inverse Hessian approximations H,, are never restarted,
even when they are not being used. This unusual updating strategy is required
for our proof of super-linear convergence.

Broyden Updating: Choose 0 < & < 1 and % as an estimate of 9. Choose

Hy = Hy = I. For k > 0, set d* = wF—wh*1, s = 21— 25 If (s*, Hyd*) # 0,
set :
(s* — Hed®)st Hy

(s*, Hid¥) ’

Hip = He +

otherwise, set H k+1 = 1. Set Hgpq = H p+1. Compute an estimate Jx11 of Y41
satisfying 0 < 741 < Vi1, and choose 0.95 < &1 < 1. IF |(I—Hyyr )t >
Epr1¥kr1 Jwrtt], then reset Hyyy = 1.

We require the following hypotheses in our convergence analysis:

(H1) The operator T~ satisfies the quadratic growth condition at the origin
with J := VT ~1(0) and T7(0) = {z}.

(H2) The approximation criteria (G) and (£) are satisfied.
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(H3) The parameters dy, &, and 7 satisfy 6 < min{1, |Hx| ™'} (1 —&)%
for all k£ such that Hy # I.

(H4) There exists k; > 0 such that ¢y = A > 6]J] and 1/6 < &% for all
k> k.

| ‘ Remarks.

Ll 1. The global linear convergence of the iterates is insured by hypotheses (H3)
1 and (H4) (See remarks below). Linear convergence in conjunction with
hypotheses (H1), (H2), and (H4) allow us to apply [3, Theorem 3 and 4]
to establish the local super-linear convergence of the iterates.. '

! 2. Hypotheses (H3) and (H4) concern the updating procedure for both ¢
[ | and 7;. The parameters are related via Lemma 3.1, and the inequality

I Hwb] < &l (3.7

 which must be satisfied or else Hy is reset to the identity. First observe
that Lemma 3.1 indicates that v, > K/(5K+3) whenever z* is sufficiently
close to Z and ¢x = A > K|J|. Thus, for K > 6, % = (1/6)(.95)7" is an
acceptable lower bound for -y and hypothesis (H4) is satisfied. Therefore,
we need only make ¢; = A sufficiently large.

i ‘ 3. As is typical in the selection of penalization parameters, establishing
" whether ¢ is large enough is not an easy matter in general. Indeed, we
do not know of a general technique for this purpose. Therefore, we do
not provide an explicit rule for updating the cy’s. However, there are
some crude rules for recognizing when ¢ is too small. For example, if
inequality (3.7) fails to be satisfied, then c¢; is probably too small and
should be increased. In order to derive an effective strategy for updating
the c's, more information on the structure of the operator T' is required.
For example, if it is known that T is strongly monotone with modulus &,
then |J] < x~*. In this case, Part (a) of Lemma 3.1 indicates that we
can set ¢ = 65~ and Y = ﬁslT—T for all k.

Theorem 3.1 Let {2*} be any sequence generated by the variable metric proa-
imal point algorithm using the BFGS updating scheme and suppose that hy-
potheses (H1)-(H{) are all satisfied. If J is symmetric, then there is a positive
integer ko such that

(i) d*Ts* > 0 for all k > ko,
(ii) the sequences {|He|}and {|H |} are bounded,
(iii) Hy, = Hy, for all k > ko, and

() the sequence {z*} converges to Z at a super—linear rate.

4
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Proof. Hypothesis (H1)-(H4), Lemma 3.1, and [4, Theorem 19] guarantee
that all hypotheses in [3, Theorem 3] are satisfied. We now show that Hy = H L
for all k large. Under hypotheses (H1)-(H4), [3, Lemma 8], and [3, Theorem 9]
imply that {|Hy|} and {|H| '} are bounded and

I(H = I+ 5078k
"]

-0,

or equivalently, i
[ - (I + 3N H s
[s¥]

Hence, the boundedness of {H} implies that

— 0.

|His® — s* + SH A | [ HIU =~ (3 + 3 E s

—0.
Is*1 - |s*]

Therefore, there is a sequence {; — 0 such that
|as* — o + 5 BT H M1 < Gelis*
which in turn implies that
I~ Bk < GUERTAT ] + Gl

= G+ GOls* < gls*] < Gonls®] @9

for all k sufficiently large since A > 6|.J|. Now Hj # Hy implies that s¥ = w*
and A '
[T = Hi)s*| > Eerels™] -

By (3.8) this cannot occur for & sufficiently large, therefore eventually Hy = H,.
The super-linear convergence of the iterates now follows from [3, Theorem
3].

Theorem 3.2 Let {z*} be any sequence generated by the variable metric proz-
imal point algorithm using the Broyden’s updating scheme and suppose that the
hypotheses (H1)-(Hj) are all satisfied. If in addition, X > 16]J|, then

(1) there is a positive integer k such that s** H*d" # 0 and Hy is updated
using Broyden’s formula for oll k > K,

(ii) the sequences {|Hy|} and {|H;'|} are bounded, and

(iii) the sequence {z*} converges to Z at a super—linear rate.
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Proof. Hypothesis (H1)-(H4), Lemma 3.1, and [4, Theorem 19] guarantee

that all hypotheses in [3, Theorem 4] are sa.tlsﬁed We now show that the
condition

|7 — Hi)w®| < &lw®| (3-9)
is satisfied for all k large.
‘Set Ax = H_'. By [3, Lemma 11], for any matrix G we have
= Iy - G4
tAk+1 — G| <[40 — G| + Z T (3.10)
§=0
Set G = (I + +J)7'. Then, by the Banach Lemma,
S IR |
II-G| < Z(-XHJ[I) <1 (3.11)
i=1 '
By [3, Lemma 8], there is a kg such that
Iy —Gs’| 1
<(Gz-21-Gf)- (3.12)
Z T =G A

We need to show that there exists a & > ko such that (3.9) is satisfied for all
k > k. If we cannot take k = ko, then there is a £ > ko such that H; = A; = 1.
Now for all k > k

|Ax—I| < |I-G|+ |4 -Gl

k . .
Iy’ —Gs7| _ 1
< 2QI-G|+ —_— < =
-G+ 2 T <

i=k
by (3.10), (3.12), and (3.11). Therefore,
1/7 1
— 1 _J| < AL _ =2 < £.7
V=)= 45 = 11 < 1A~ 11 < 2 = 5 < 6

for all k > k. Therefore (3.9) is satisfied for all k > k.

The super—hnear convergence of the iterates now follows from [3, Theorem
4].

4 APPLICATION TO CONVEX PROGRAMMING

In this section we study the realizations of the VMPPA in optimization prob-

lems.
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Let C be a nonempty closed convex subset of R", and for i = 0,1,...,m
let f; : C' = IR be a lower semi-continuous convex function. We consider the
convex programming problem

- minimize{fo(z)|z € C, fi(z) <0,i=1,2,... ,m} (P)

under the assumption that (P) is solvable.

In [19], Rockafellar presented theoretical results on the convergence of three
approaches to solve (P). All three of these approaches are realizations of the
general proximal point algorithm for maximal monotone operators. Each al-
gorithm replaces (P) by a sequence of approximating minimization problems.
Here we consider variable metric versions of these three approaches.

The first algorithm is the primal application, which we call the variable met-
ric prozimal minimization algorithm (VPA) for (P). The second algorithm is
the dual application, which-we-call the variable metric prozimal duel clgorithm
(VDA ) for the dual problem associated with (P):

max{go(y)ly € R} where go(y) := inf {fo(e)+y1fi(@)+ - +ymfm(2)}. (D)

The third method, the variable metric prozimal method of multipliers (VPM),
applies the general variable metric proximal point algorithm to the mini-max
problem associated with (P):

min max{l(z,y) := fo(@) + 91 f1(2) + - +ymfm(@)le € Cy € BT} . (L)

For all three applications, detailed discussions of the approximation criteria in
solving the subproblems can be found in [19].

4.1 Three Algorithms

Applying the variable metri¢ version to the first algorithm in [19] using the
BFGS update yields the VPA Algorithm: ‘

The VPA Algorithm: Given z° feasible, for k = 0,1,..., choose ¢, > 1,
then: :

1°. Set

ko, i 4(P)
w & arg min, ¢p (w) (4.1)

where qbgcp) is the closed convez function on IR™ defined by

k 1T i : |
3P (w)) = { fo(z® +w) + z-ww  if z is feasible (4.2)

Tl 4o otherwise.

The subproblem ({.1) is solved iteratively, with the feasible starting point
w0 =0 and w*© = gF1 — gk L wF- for k> 1.

2°. Fork =0, set H, = I; For k > 1, use the BFGS updating procedure
introduced in Section 3.3 to obtain Hy € R™™", then set

bt = zF 4+ Hiw® . (4.3)
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Remark. A detailed discussion of the approximation criferia in solving the
subproblem (4.1) for w* can be found in {19, Section 3].

In order to apply the VMPPA to the dual problem, we cite the definition of
the augmented Lagrangian as given in [19]:

_ | fole) + 2235, ¥(filz),yi,0) ifzeC
L(:L',y,c) T { 400 lf:E g C o (44)
for all y € IR™ and ¢ > 0, where
v wfi+EfE defiz -y
w(fu y‘iac)"_ { _%yf 2 if sz' S —¥; - (45)

- We now introduce the VDA Algorithm:

The VDA Algorithm: Given ° € R, for k=0,1,..., we choose ¢y > 1,
then

1°. Set
. E+1 ., - k
2" & arg min Liz,y",ct) . (4.6)
2°. Set u* be such that
~uf i= max{—yf, e fi(z*H)}. (4.7)

3°. Fork=0, set H, = I; For k > 1, using d* 1 = u*~1 —uk gnd s¥1 =
z* — %1, apply the non-symmetric updating procedure to determine

Hk e Rmxm

and set
y*t = o* + Hyu® . (4.8)

Remarks.

1) A detailed discussion of the approximation criteria in solving the subprob-
lem (4.6) for z¥*! can be found in [19, Section 4].

2) Although the y*'s are not necessary non-negative, the sequence {y* 4 u*}
is in RT and has the same converges behavior as {y*}.

We now apply the variable metric proximal point algorithm to the minimax
problem and introduce the VPM Algorithm:
0
The VPM Algorithm Given ( ZO ) with y° € RT, for k= 0,1,..., we

choose cg > 1, then:
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1°. Set

1
k. : k k 1T
v Nargurél%lnL(m +v,¥%, ¢c) + 5V Y- (4.9)

2°. Set u* be such that

uf = max{—yF, cx fi(z® +v*)}. (4.10)

3°. Fork=0, set H, =1; For k > 1, using
k-1 k k_ k-1
_ vt —w _ T —zx
dk1=(uk—1_uk) and 5k1=(yk_yk—1),

apply the non-symmetric updating procedure to determine

H, € R(n+m)x(n+m)

o )= (o )+ ()

= + H . 4.11
(o )= (5 )+ (o (4.11)
Remark. A detailed discussion of the approximation criteria in solving the
subproblem (4.9) for v* can be found in [19, Section 5].

and set

4.2 Numerical Resuits

We test the three algorithms on nine test problems. All problems are convex
programs. The first four of the test problems are from [8] (#43, #49, #50,
and #100). The fifth problem is from [13] and the last four problems are from
[5] (section 3.3). We test each of the three types of the problems from [5} with
four variables, and combine the three problems to form the last test problem
with twelve variables. Of these problems, only Problem # 49 [8] does not
satisfy the second-order sufficiency condition. Therefore, in all but Problem #
49 [8], the inverse of the monotone operator for the primal, dual, and minimax
formulations satisfies the second—order growth condition (3.2) at the origin.

The three algorithms are applied to these test problems to be compared with
the three corresponding algorithms suggested in [19], namely the proximal min-
imization algorithm (PPA), the method of multipliers (MM), and the proximal
method of multipliers (PMM). Since problems #49 and #50[8] only involve
equality constrains, they are used for the primal version only. The problem
from [13] only has one constraint, hence it is omitted for the dual version. The
MATLAB routine “constr” is employed for solving the constrained subprob-
Iems in the primal cases, and the MATLAB routine “fminu” is employed for
solving the unconstrained subproblems in the dual and mini-max cases. Both
routines are in the MATLAB Optimization Toolbox [2].
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Selection of Parameters:
There are four control parameters in the each of the algorithms described in

Section 4.1: 6, dg, ¢k, and €%k (here we take & = &4 as a single parameter
choice). '

The Global Stopping Criteria §:

Primal Problems, The VPA Algorithm: |z¥+! — z*] <4 =1077,

Dual Problems, The VDA Algorithm: |y*+! —y*| <6 = 1075.

Minimax Problems, The VPM Algorithm: |(z*+!,y%+1) — (z*,y%)| <
6 =105,

The Subproblem Stopping Criteria d;:

MATLAB subroutine stopping tolerance are set to 8, = max{0.205_1, 6}
for k > 1 with 6 = 0.1.

" The Proximation Parameters cg:

Since we focus on local analysis, this parameter is set to be a constant,
cg = Aforall k =0,1,2,.... The specific choice of A depends on the

problem to be solved.

The Matrix Secant Updating Criteria £gJx:

The product & employed in the matrix updating conditions is set to
the constant value £ = 0.5 for all problems.

When the pairs of the algorithms (classic vs. variable metric) are applied to
each problem, all parameters are identical. The only difference is in the matrix
secant updating formula. The classic algorithms use the identity matrices,
while the variable metric algorithms use the matrices updated by the Broyden
and BFGS formulas. The numerical results are shown in the following three
tables. The second column lists the dimensions of the problem (n denotes the
number of variables and m denotes the number of constraints) and the value of
parameter . For each problem, we list the number of iterations required, the
norm of |z* — z*| at termination where z* is the known optimal solution, and
the numbers of both the function and the gradient evaluations.

n, m . PPA VDA

Problem & iter =% — =" f eval g eval iter J=® —a*|l f eval g eval
#43[8} 4.3, 8 17 4-10"8 108 72 13 5.10" 7 83 55
#40(8] 5.2, 5 10 2-10-° 73 a7 9 7.10—7 67 61
#50(8] 53,6 20 2.10—7 98 75 18 7.10—8 1) 66
%#100(8] 7.4, 10 25 7-10—7 420 140 20 7.10—7 287 98
[13] 2,1, 0.5 19 4.10~79 137 103 14 g-10""7 91 65
[5]type I 4,6, 0.5 11 3.10—10 62 52 9 10— "? 41 a5
[6] type II 48,5 10 4.10"% 32 3z a 2,10~ 18 12 12
[5] type III 4,6,10 10 7-10"F 40 40 9 6.10—18 29 20
" [5] comb. 12,18, 4 15 3-10—7 69 69 9 3.10"7 33 33
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n, m . MM VDA

Problem & A iter [=® —a*) f eval g eval iter [=® — «*{ { eval g eval
#43[8) 4,3,10 10 7107 169 54 6 4.10"7 124 39
#£100[8] 7.4, 6 i1 8-10"8 333 108 7 8.-10"% 319 102
[5] tvpe 1 4,6, 12 14 10°7 B9 23 6 |. 7-10—%Y 34 12
{5] type 1I 1.6, 12 8 10—5 52 19 4 0 35 12
[5) type IIL 4,6, 20 14 4.10°7 273 90 11 5.10F 228 74
[5] comb. 12,18,2.5 10 3.10—7 166 55 [ B-10—7 136 45

n, m PMM VPM

Problem &z iter == — =*] f eval g eval iter % — =* f eval g evel
#43[8] 4,3, 8 9 3-10"°F 192 51 7 2.10— 8 133 41
#100[8] 7,4, 6 11 7-10"9 158 49 7 10— % 138 43
[13] 2,1, 0.5 13 2-10-° 149 49 8 4-10"7 103 34
[5] type I 4,6, 3 11 6-10—7 116 20 8 4.10— 6 93 31
[5] type IT 4.6, 3 10 2.10”° 05 35 7 3.10— 12 49 a3
{5] type IIT 4,6, 20 12 2.10-% 213 69 10 6-10—° 152 6O
[5] comb. 12,18, 2 16 3.10~7 260 B5 12 G- 107 207 68

Clearly, the choice of the parameters A = ¢ and £ = £;#; has a direct
impact on how often the matrix secant updates are employed. In turn, this
impacts the performance of the algorithm. Our experience indicates that for
this set of test problems the parameters should be chosen to encourage the use
of the matrix secant updates. The results of two numerical experiments are
included to illustrate the relationship between the choice of these parameters
and the performance of the VPA algorithm.

In the first experiment, we compare performance of the PPA and VPA al-
gorithms for different values of the proximation parameter A. We do this by
applying the algorithms to the last problem for A varying between 2.5 and 28.
The results are shown in the following table. The entries in this table give
the number of function evaluations plus the dimension (which in this case is
12) times the number of gradient evaluations before termination. The last row
shows the difference of the combined evaluations between the two methods.

A 2.5 3 4 5 & ] 8 10 12 14 17 20 23 28
PPA 1444 1262 897 689 637 598 533 494 416 390 442 429 ar7
VPA 1444 718 429 390 429 481 416 429 377 364 403 403 377
Diff. [1] 544 468 299 208 117 117 65 39 26 39 26 [4]

Observe that for both small and large values of A the PPA and VPA algo-
rithms are comparable. Real gains in performance only occur in the middle
range near A = 5. This behavior is typical of all the test problems: poor per-
formance for extreme values of A with improved performance in some middle
range of values. To gain insight into this behavior, recall the relation

He ~ (-YDW(2)™ = + V[T 1))

from Section 3.2. This relationship indicates that if ¢ is too small, then
(—VDg(2))~" is most likely very difficult to approximate in which case the
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variable metric update is probably rejected. This observation is borne out by
our experiments. On the other hand, if ¢ is large, then Hy =~ I so there is
little difference between the PPA and VPA iterates.

In the second experiment, we varied the value of ¢ for A = 3, 5, and 7.
Again the VPA was applied to the last problem. For each value of A, we

discovered what appeared to be a break—point value for £. For all values below

the break-point the matrix secant updates were almost never employed and the
number of combined function and gradient evaluations remained constant. On
the other hand, for all values above the break—point the matrix secant updates
were almost always employed, and again the number of combined function and
gradient evaluations remained constant, but at a significantly reduced level.
The results are shown in the following table.

Fun. and Grad. Eval.
1262 for £ < 0.5 | 507 for £ > 0.5
689 for £ < 0.3 | 390 for £ > 0.3
598 for £ < 0.25 | 468 for £ > 0.25

~J| O o >

These experiments indicate that the variable metric proximal point algo-
rithm can be used successfully to improve the performance of the classical
proximal point algorithm. However, a number of practical issues remain open.
The foremost of these are implementable strategies for updating the proxi-
mation parameters c; and the acceptance criteria &% for the matrix secant
updates. Our simple experiments indicate that the choice of proximation pa-
rameters has a much more dramatic effect on the performance of the method
than does the choice of &9 for 1 > &4 > 0.5. This corresponds to practical
experience with the classical PPA where the choice of proximation parameters
is known to critically impact performance.
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