Reformulation: Nonsmooth, Piecewise Smooth,
Semismooth and Smoothing Methods, pp. 45—63
Edited by M. Fukushima and L. Qi

©1998 Kluwer Academic Publishers

A Non-Interior Predictor-Corrector
Path-Following Method for LCP

James V. Burke®*and Song Xu*

Abstract In a previous work the authors introduced a non—interior predictor-
corrector path following algorithm for the monotone linear complementarity
problem. The method uses Chen-Harker-Kanzow-Smale smoothing techniques
to track the central path and employs a refined notion for the neighborhood of
the central path to obtain the boundedness of the iterates under the assump-
tion of monotonicity and the existence of a feasible interior point. With these
assumptions, the method is shown to be both globally linearly convergent and
locally quadratically convergent. In this paper it is shown that this basic ap-
proach is still valid without-the monotonicity assumption and regardless of the
choice of norm in the definition of the neighborhood of the central path. Fur-
thermore, it is shown that the method can be modified so that only one system
of linear equations needs to be solved at each iteration without sacrificing either
the global or local convergence behavior of the method. The local behavior of
the method is further illuminated by showing that the solution set always lies
in the interior of the neighborhood of the central path relative to the affine
constraint. In this regard, the method is fundamentally different from interior
point strategies where the solution set necessarily lies on the boundary of the
neighborhood of the central path relative to the affine constraint. Finally, we.
show that the algorithm is globally convergent under a relatively mild condition.

Key Words linear complementarity, smoothing methods, path-following
methods

1 INTRODUCTION

Consider the linear complementarity problem:
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LCP(q,M): Find (z,y) € R" x R" satisfying

Mz—y+g=0, (1.1
£>0,y>0,z7y =0,

where M € IR™™™ and ¢ .E Rr".

In this paper, we study extensions, refinements, and properties of a non-interior .
predictor—corrector path following algorithm for this problem which was re-
cently proposed by Burke and Xu {3]. Here the path to be followed is the
central path ‘ :

C={(z,y) : 0<p, 0<z, 0<y, Mz—y+¢=0, and Xy = p’e} - (1.3)

where, following standard usage in the interior-point literature [16], we denote
by e € JR™ the vector each of whose components is 1 and by X the diagonal
matrix whose diagonal entries are given by the vector z € IR". The algorithm
is based on Chen-Harker-Kanzow-Smale smoothing techniques [6, 14, 19] and
as such relies on the function ‘

dabm)=a+b—/ @07 + 42 . (14)

This function is a member of the Chen-Mangasarian class of smoothing func-
tions for the problem LCP(g, M) [8]. 1t is easily verified that for p > 0

#(a,b, 1) = 0 if and only if 0 < a, 0 < b, and ab = p°. (1.5)

Another function having this property is the smoothed Fischer-Burmeister func-

tion : ,
Y(a,b,p) =a+b—+/a? +b% + 2%, (1.6)

which is first studied by Kanzow [14]. For simplicity, in this paper, we will
focus on the function ¢. However, the same analysis can be easily carried out
if the function ¢ is replaced by . |

Based on the functions ¢, and other smoothmg functions, a number of non—
interior path following algorithms have recently been proposed that are globally
convergent or globally linearly convergent and possess rapid local convergence
properties [2, 3, 5, 4, 6, 7, 9, 10, 12, 13, 14,17, 18, 20, 21, 22]. Interested readers
are referred to {3 ] for more references. I.n [3] Burke and Xu propose the first
non-interior predictor—corrector algorithm for monotone LCP. The central idea
is to apply Newton’s method to equations of the form F(z,y, i) = v for various
choices of the right hand side v where the function F' : IR™ X R"x R, —
R" x R" x IRy is given by :

Mz —-y+q
F(z,y,p}:= | &(z,y,p)} |, (1.7)
- | p
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with
) ¢($11 ylnu’) )
S@ym=| . | (18)
¢($myrlnru')
Note that ' :
F(z,y,u) =0 : - (19

if and only if (z,y) solves LCP(g, M), and

Io -
Flz,y,p)=| .0 | with B#0 (1.10)

i

if and only if (z,y) is on the central path C with corresponding smoothing pa-
rameter . Burke and Xu [3] show that their algorithm is both globally linearly
convergent and locally quadratically convergent under standard hypotheses and
requires one or two matrix factorizations in each step. In this paper, we study
this algorithm further and show that it has a number of very nice properties. (1)
We observe that our convergence results are valid for any norm, in particular,
they are valid for the co-norm, which is preferred in practical implementations.
(2) We show that the solution set of the LCP is contained in the interior of every
slice of the neighborhood relative to the affine constraints. Thus, this neighbor-
hood is fundamentally different from those used in the interior-point literature,
where the solution set necessarily lies oo the boundary of the neighborhood
relative to the affine constraints. This property explains why the non-interior
method can be initiated from any point in the space and why the predictor
steps are so efficient. (3) We show that the algorithm can be modified so that
only one matrix factorization is needed in each iteration. (4) We show that es-
sentially the same convergence theory can be obtained if the monotonicity and
strict feasibility hypotheses are replaced by the hypotheses that the matrix M
is both a Py and an Ry matrix. (5) Finally, we establish the global convergence
for the algorithm under relatively mild conditions. '
The plan of the paper is as follows. In Section 2, we study some structural
properties of the neighborhood of the central path. In Section 3, we state
our predictor—corrector algorithm and show that it is we]l—-deﬁned Section 4

. contains the convergence analysis.

A few words about our notation are in order. All vectors are column vectors
with the superscript T denoting transpose. The notation R" is used for Teal n—
dimensional space and IR™*™ is used to denote the set of all n x n real matrices.
We denote the non-negative orthant in JR™ by t and its interior by RY
Given 1,y € IR", we write z < y to indicate that y —z € R} . The notation
|-l is used to denote a norm. Most of the results in this paper are established
for an arbitrary norm. However, certain norms do play a special role. Given
x € IR™, we denote by ||z, liz|l,, and }|z||,, the l-norm, 2-norm, and oo~
norm of z, respectively. A matrix M € IR™*" is said to be a P matrix if all
of its principal minors are non—negative. The matrix M is said to be an Ry
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matrix if the problem LCP{0, M) has the unique solution (z,y) = (0,0). If the
matrix M is positive semi—definite, then the problem LCP(q, M) is said to be
a monotone linear complemeutanty problem. .

2 A NEIGHBORHOOD OF THE CENTRAL PATH

Let ||-|| be a given norm on IR". By the equivalence of norms on R", therc
exist-positive constants n; and n, such that

nflzll, < lzlf < nwlz]l,, forall ze R™. (2.1)

For example, when |l-I| is the co-norm, n; = n,, = 1, and when ||.|| is the 2-norm,
ny=1and n, = \/7_1 We take the set

y+q=0, ®(z,y,u) <0,
2.2
NB) = {(z’y)|||<I*z'yp|[<ﬁpforsomeu>0 ( )
as our neighborhood of the central path, where 8 > 0 is given. This neighbor-
hood can be viewed as the union of the slices - .

- NG ) ={(z,9) : Mz—y+q=0, ¥(z,y,4) <O, {|®(z,y,p)ll < Bu} (2.3)

for p > 0. When the norm is chosen to be the 2-norm, the neighborhood is
reduced to the one studied by Burke and Xu {3].

The neighborhood (2.2) refines the neighborhood concept introduced in [2]
by requiring that all points in the neighborhood satisfy the additional inequal-
ity ®(z,y,u1) < 0. It will be shown that if the algorithm is initiated in this
neighborhood, then the inequality ®(z,y, x) < 0 is automatically satisfied at
" subsequent iterates. Hence the additior of this inequality does not complicate |
the structure of the algorithm. In the monotone case, this inequality is key to
establishing the boundedness of the iterates. However, the boundedness of the
iterates can be assured in a number of ways. For example, the assumption that
the matrix M is an Hy matrix also suffices. Thus, in order to keep the discussion
at a general level, we introduce the following boundedness hypothesis.

Hypothesis (A): For any § > 0 and g > 0, the set

U V6w

0<pspo

is bounded
Lemma 2.1 {2, Proposition 2.4] If M is an Ry matriz, then for every 8 > 0
and pg > 0 the set

U {@w: Mz —y+q=0, |8 (z, v, )|} < Bu}
TR '
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is bounded.

Remark. Clearly, the boundedness of the set given in Lemma 2.1 implies the
boundedness of the set given in Hypothesis (A).

Lemma 2.2 Assume that the problem LCP(q, M ) is monotone and has a fea-
sible interior point. Then for any > 0 and po > 0, the set

U ~NG.w

0<uspo

is bounded. Indeed, for any (,¥) € Upcp<uo N(B,u), we have fori =1,2,...,n

2 2 -
27g+ 22 (|iall, + llgly) + n max{uf, T4}

B o« s -
. ] 2.2
- 275 + 322 (lall, + lglly) + n max{ud, T2}
— < y,"' < v :
2 T N T o

where (T,7) is any feasible interior point, that is, a point satisfying
Mz—§+¢=0, Z>0,§>0.

Proof. Let 8> 0,0 < u < u, and (z,y) € N(B, p) be given, and let (Z,7)

be a feasible interior point for LCP (g, M). First observe that if —4 < #(a, b, ),

then —§/2 < min{a,b}. To e this, note that the condition —¢ < ¢(a,b, i)
implies that

0<+/l@a+6/2)— (b+38/2) +4p* < (a+8/2) + (b+6/2). (2.4)

Squaring both sides and cleaning up yields 0 < p? < (a +8/2)(b+6/2). Thus,
since at least one of (¢ + 4 /2) and (b + &/2) must be positive by (2.4), both
must be positive yielding —§/2 < min{a, b}. It follows from (2.1) that

1 Bu
i} < —||® < —_.
1®(z,y, bl oo < . 12(z, y, )| < .

This observation implies that

B Bie Bu Btio . |
P> — > dy; > ——>--—"— fori=1,2,...,n. ]
T; > o 2 " omp” and y; > ol > T 2ng ori=1,2,...,n | (2.5)

Next, note that if 0 < a and 0 < b, then the inequality ¢(a,b, p) < 0 implies
that 0 < a+ b < 1/(a — b)? + 4p?. Again, by squaring and cleaning up, we see
that this gives ab < p?. This observation implies that ' '

ziy; < po foreachi € {1,...,n} with 0 <=, 0 <y - (2.6)



alb REFORMULATION

We conclude the proof by noting that monotomnicity yields 0 < (z—z)T(§—y),
or equivalently Ty + 77z < 27§ + zTy. This inequality plus those in (2.5)
and (2.6) yield the bound

DB+ ) Gmi < TPt y—[zzzyﬁsz}

¥ >0 z; >0 yi <0 ;<0

Buo
g+ z y+——(||$||1+llyl| )

g+ Z ZiYi + Z TiY; + _2n—¢(”i“1 + all,)
e vi<o

IA

IA

T 132#2 ﬁ#o
< 7§+ nmax{uf, 4n2°}+ ([lwII1+IIyII ) -
{

it follows that if y; > 0, then

- 2,2
75 + 882 (||, + §gll,) + nmax{pud, 540}

Yi S ; ] l 7

and, if z; > 0, then

2T + SR (lizlly + liglly) + nmﬂ{uo, mz‘*}
Ui

T; <
| |

An important property of the neighborhood N (f) that distinguishes it from
its counter part in the interior point literature is that the solution set

S={(:c,y):M:c—y-l—q:(),:sZO,y,ZO,J:Ty=O}, (2.7)
is contained in the interior of the slice A'(8, ) relative to the affine set
A={(z,y): Mz —y+q =0}, (2.8)

for all 2 > 0 and 8 > 2n,. This property partially explains why the non-interior
path-following method can be initiated from any point in the space and why
locally the Newton predictor steps are so efficient.

Theorem 2.1 For any u > 0 and B > 2n,, the solution set S is contained in
the interior of the slice N'(B, i) relative to the affine set A.

Proof. Let

Noo(B, 1) ={(z,y) : Mz —y+q =0, 8(z,y,1) <0, | &z, 9, 8)lo < nﬂuﬂ} :
(2.9)
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It follows from (2.1) that

Noo(B, 12) € N(B, )-

Thus, it suffices to prove that S is contained in the interior of the set Noo (8, &)
relative to the affine set A. '
First note that if z;y; < p?, then

Sy i) = Tityi—V(zi—y)? + 42
= zi+yi — V(@ +3:)? + 402 — zay)
< 0

Also, if z; > 0,y; > 0 and z;y; = 0, then etther z; =0ory; =0. f z; =0 and
y; > 0, then :

¢z, yi, ) = z; + i — V(T — yi)? +4p?

yi — /¥ +4p?

yi — (vi + 2p)

-2 __ﬁ .
B> u,u

AV |

Similarly, if y; = 0 and z; > 0, then again ¢(z;,yi, ) > ——f:u- Now if
(z*,4*) € S, then by the continuity of function ¢, there is a § > 0 such that
for all (z,y) in

O@) ={@,9):lle = 2"l <6 lly—9"llo < 6}

we have ¢(z;,yi, 1) > —n—ip and z;y; < p? for all s = 1,...,n. Therefore for

any (z,y) € O(d), we have

B

and so (z*,y*) is in the interior of the set NV (8, i) relative to the affine set A.

To illustrate this property, consider the problem LCP(g, M) given in 8,

Example 5.1], where
1 2 -1
w=la 3] =[5

The unique solution of this problem is (z1,z2) = (1,0) and (y1,¥2) = (0,1).
For > 0, let

N8, 1) := {(z1,22) : Jy such that Mz —y+¢=0, ‘I>(ﬁ:,y,,u) <0, '

I12(z,y, )|l o < Bu}
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Figure 1.1  The nested slices of N (B, ) with B =4 and p = 15,10, 5.

101

be the projection of the slice N(B, 1) onto the z-coordinate. In figure 1, several
slices of Ny (B, ) are drawn with 8 = 4 and p = 15,10, 5 respectively. Note
that the solution (z1,Tz) = (1,0) is in the interior of these slices.

We conclude this section by cataloging a few technical properties of the
function ¢{a,b, p) for later use.

Lemma 2.3 The function ¢ defined in (1.4) has the following properties:
(i) [14] The function ¢(a, b, ) is continuously differentiable on R? x Ryy.
(ii) [3, Lemma 2.2] The function ¢(a,b, 1) is concave on R* x Ry,

(iii) /17, Lemma 2] For any (a,b, ) € R* X Ry, we have

<

2 4 2
“V ¢’((11 b1 P’)Hz < \/(?— b)2 -}-4!_;,2 .u

3 A PREDICTOR-CORRECTOR ALGORITHM
The Algorithm: [3]

Step 0: (Initialization)
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Choose 70 € IR™, set y° = Mz + ¢, and let g > O be such that
&(z°, 40, po) < 0. Choose 8 > 2n, so that ||®(z°,y°, po)|| < Bro. We
now have (z°,v%) € N(8, no). Choose &, a;, and as from (0, 1).

Step 1: (The Predictor Step)
Let (Az*, Ay*, Apy) solve the equation

| A:L.kr :
F(z®,y*, m) + VF(E, o5, m)T | Av® | =0. (3.1)
' Apg

I || ®(zF + Azk, g + Ay*,0)|| =0, STOP, (z* + AzF,y* + Ay*) solves
LCP(gq, M) ; else if

@@= + Az, y* + Ay¥, ) || > Bi,

set

gF=axb, 9 :=oF, =g, and mp =1, (3.2)

else let 7 = of where s is the positive integer such that
[|8(* + Agk v + Ayt ab )| S akBu, (33)
fort =0,1,...,s, and
||<I’(:c’° + Az* y* + Ayk,af"'luk)” > adt By (3.4)

Set

28 = F + Ak, §% =% + Ay®, B o= e (3.5)

Step 2: (The Corrector Step)
Let (Az*, A§*, Afi,) solve the equation

: AzF 0
F(&*, 9% ) + V@R, %, 007 | Ag* | = 0 (3-6)
- Af, (1 - &)

and let Az be the maximum of the value 1,as2,02,. .., such that
| ”@(i" + XeAZE, 5% + X AgE, (1 — 65\k)ﬁk)H < (-8l (3.7)
Set |

Bt = gk AR,y = g AR, e = (1 ) (38)

and return to Step 1.
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Remarks.

In [3], the algorithm is stated using the 2-norm. It will be shown that
the algorithm and its convergence analysis remain valid regardless of the
choice of norm.

Note that if the null step (3.2) is taken in Step 1, then the Newton
equations (3.1) and (3.6) have the same- coefficient matrix. Therefore
only one matrix factorization is needed to implement both Steps 1 and 2
in this case. Otherwise, two matrix factorizations are needed.

The algorithm can be modified so that only one matrix factorization is
needed with the modified algorithm preserving the same nice convergence
properties. The modification goes as follows. If s = 0 in the predictor
step, then use the update

sk .k opk .k &
T =,y =y, e = Pk

instead of (3.5). On the other hand, if s > 1, use the update (3.5) and
skip the corrector step. In other words, use the update

ottt = 20,90 = g8 e =
in the corrector step instead of (3.8).

In the initialization step, setting

0,0

> max T Y

Ho i€{l....n} i¥i
D<=?. D(y?

‘guarantees that the inequality ®(z°,y?, po) < 0 is satisfied. For example,

one can choose (z°,4%) = (0,¢) in which case po can be taken to be any
positive number. '

The condition that 8 > 2n, is only employed in the proof of local
quadratic convergence. It is not required to verify the global linear con-
vergence of the method. Theorem 2.1 motivates why this condition on
is required. Recall that when § is chosen in this way, the solution set is
contained in the interior of the slices A'(3, u) relative to the affine set A.
Thus, eventually the Newton iterate associated with the predictor step
remains in the interior of the current slice of the central path relative to
the affine set A. Hence a full Newton step can be taken yielding the local
quadratic convergence of the method.

Observe that the function F' has nonsingular Jacobian at a given point

if and only if V(;,)F is nonsingular at that point. In [i4, Theorem
3.5], it is shown that if g > 0 and the matrix M is a Fy matrix, then
V(z.5)F(Z, 7, i) is nonsingular for all (z,§) € IR®™. Therefore, since the
matrix M is assumed to be positive semi-definite and the algorithm is
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initiated with po > 0, the Jacobians VF{(z*,y*, ux) and VEF(E*, 5%, i)
are always nonsingular. Hence the Newton equations (3.1) and (3.6) yield
unique solutions whenever (z¥,y*, ux) and (3%, §*, fix) are well-defined.

'Tn addition, since y* = Mz®+q, we have y* = Mz* +qand §*¥ = Mz*+¢
for all well--defined iterates.

In analyzing the algorithm, it is helpful to take a closer look at the Newton
equations (3.1) and (3.6). In (3.1) we have Ay, = —pu; and so (3.1) reduces to
the system

MAzF —Ay* =0
v (I)( Y 1#k)A$ +V @("T :'y ﬂ:k)Ay (3‘9)
= —&(zk,y* ;uk)+uk\7 B(zk, v, pg).

Similarly, in (3.6), A, = —&fk reducigg (3.6) to the system

MAzZF — Agr =0 )
V. (2", §* ,uk)A-'c +V,8(z*,§ ,uk)Ay" (3.10)
= —&(&*, * uk)+crm=V ®(2*, 7, i )-

Theorem 3.1 Consider the algorithm described above and suppose that the
matriz M is a Py matriz. If (z*,4%) € N(ﬁ,,u.k) with p, > 0, then either (z* +
Az*; y* +Ay*) solves LCP(q, M) or both (2%, 4%, fix) and (a:H'I v*tL, per1) are
well-defined with the backtracking routines in Steps 1 and 2 finitely terminating.
In the latter case, we have (&%, 5%) € N'(B, fix) and (z*+1, y*+1) € N(8, pr41)
with 0 < pry1 < fix < pi- Sinee (z°,y°) € N(B, no) with po > 0, this shows
that the algorithm is well-defined. '

Proof. Let (z*,y*) € N(8, p) with P > 0. By the last remark given above,
(Az®, Ay*, Ap,) exists and is unique. Since y* + Ay* = M(z* + Ark) +-¢q,
we have :
' | ®(* + Azk,y* + Ay*,0)|| =0 |
if and only if (z* + Az*,y* + Ay*) solves LCP(gq, M). Therefore, if (z* +
Az*, y* 4+ Ay*) does not solve LCP(q, M), then by continuity, there exist ¢ > 0
and Z > 0 such that “@(a; + Az®,y*F + Ayt ,u)” > eforall p € [0,p. In
this case, the backtracking routme described in (3.3) and (3.4) of Step 1 is
finitely terminating. Hence (2%, §*, i) is welldefined, with 0 < fiz < ji, and
(Az*, Ag®, Afi,) is uniquely determined by (3.6). To see that the backtracking
routine in Step 2 is finitely terminating, define 8(z,y, ) = |[®(z,y, u)||. This
is a convex composite function [1]. By (3.6)

0' (2%, 9%, in); (AZ®, AG®, Afyy))

i A"
= inf X7 [ 8(2%) + AVE(EF)T | AgE ||| - 2GR
A>0 ' Aj

'k
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Az*
< ek +veEh)T | agt || - 2G|
Ay,
=~
< 0,
where 3% = (&%, 9, ). Therefore, (3.7) can be viewed as an instance of a
standard backtracking line search routine and as such is finitely terminating

with 0 < pra1 < fig < g (indeed, one can replace the value of & on the right
hand side of (3.7) by any number in the open interval (0,1)).

Since (z*,%*) € N(B, k), the argument given above implies that either
(z* +Azk, y* + Ay*) solves LCP(g, M) or i* = M#*+q with ll@(:ﬁk,;&’?,ﬁk)" <
Bjy and g+l = Mz*! 4 g with ||@(z*,y* pe)l| < Burir. Thus,
if (zF + AzF,y* + Ay*) does not solve LCP(g, M ), we need only show that
&(z5, 5%, fix) < O and ®(zF+, v, ppq1) < 0 in order to have (z*,5%) €
N(B, i) and (z*t1,y*+1) € N(B, pk+1) . First note that the component-
wise concavity of ® implies that for any (z,y, 1) € R*™! with ¢ > 0, and
(Az, Ay, Ap) € R*™* one has

Az
®(z + Az,y + Ay, p+ Ap) < &(z,y,p) +VE(z,y,p)" [ Ay ] :
Ap

Hence, in the case of the predictor step, either'(3.2)‘holds or
(3", 9", i) |
= &(cF + Ak, y* + Ay® mep)

. Azk
< Byt ) + VO Y )T Ayt
(me — L)pk
[ AzF
= Q(mk: 'yk!.lu‘k) + vq)(xkryk:.lu‘k)'r Ayk +7}'kﬁkvu@(1’kayka Il'k)
—Hk
= mepkVu®(", " m) <0
In either case, ®(&*, 5%, fix) < 0. For the corrector step, we have

@($k+1}yk+1“uk+l)
= B(EF + XeAZ*, G + A AGE, B + AeARy)
. INL
< ®(z*, % o) + M VREE G5 )T | A
—OHE
= (- )®ER, 5, k) <0,
since we have already shown that ®(z*,9*, i) < 0. This completes the proof.
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4 CONVERGENCE

In this section, we require the following hypothesis in order to establish the
global linear convergence of the method.

Hypothesis (B): Given 8 > 0 and g > 0, there exists a C' > 0 such that

IVewnF@5m7, <C, (4.1)
for all 0 < p < pg and (z,7) € N (B, u).

In [2, Proposition 4.3], we show that a bound of this type exits under the
assumption of a non—degeneracy condition due to Fukushima, Luo, and Pang
(11, Assumption (A2)]. Similar resuits of this type have since been obtained
by Chen and Xiu (7, Section 6], Tseng [20, Corollary 2], and Qi and Sun [17,
Proposition 2].

In private discussions, Kanzow [15] points out that the Fukushima, Luo,
and Pang non-degeneracy condition implies the uniqueness of the solution
to LCP(g, M). Kanzow’s proof easily extends to show that any condition
which implies Assumption (B) also implies the uniqueness of the solution to
LCP(g, M).

Proposition 4.1 /3, Proposition {.1] If Assumptw'n.s (A) end (B) hold, then
LCP(q, M} has a 'u.mque solution.

Theorem 4.1 { Global Linear C’anvergence} Suppose that M is a Py matriz
and hypotheses (A) and (B) hold. Let {(z*,y® s )} be the sequence generated
by the algorithm. If the algorithm does not terminate finitely at the Unique
solution to LCP(q, M ), then for k=0,1,..

(=%, 9*) € N (B, ps) (4.2)
(1~ 55\k_—1)ﬂk—1 . (L-Glo)mope = e, (4.3)
i o
3 > X == min {1, co2(l-0)8 - } . (44
_ nu(202(ﬁ- +26)%+5%) +6(1-5)8 :

where C' is the constant defined in ({.1). Therefore u; converges to 0 at a
global linear rate. In addition, the sequence {(z¥,y*)} converges to the unique
solution of LCP(q, M ).

Proof. The inclusion (4.2) has already been established in Theorem 3.1 and
the relation (4.3) follows by construction.

For the sake of sunphclty, set.(z,y, 1) = (¢, Gr, fx) and (Az, Ay) = (A:f;.}“,
Then fori € {1,...,n} and A € [0,1], Lemma 2.3 and (3.6) imply that

[9(zi + MDAz, y; + AAy;, (1 — 5A) )|

AGF).
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/\2
2

d

AIZ@

(1= Nlo(zf, ui, )] +

A2 _
5 V26 (z; + 0:MAzs, i + 0:XAy;, (1 — 8:50)p) |,

(1= Niglee v )| + 7

<

A

[@(z + AAz,y + My, (1 —a\)p)|

A Y
1—-a\p .t“ '

L T ey

(1 - ’\) ”@("B:yv”)“ + (

— GA)p
for some 8; € [0,1]. Set ¢; := ||(Azi, Ayi, —Er,uk)||§ fori=1,...,

(1= |2z, y, )l +

(1—2)Bp +

A2
1-—’,\

(}5(117,;, Y4, P') + AVQ’)(SU.“ Yi, p‘)T (

(202(

Azi
Ay; +

2

- \(Azs, Ayi, —a )3

Bl

‘A)u( ”( )

4

L}

+25)" + 62) g,

where the last inequality follows from (3.9) and the bound

(&)L

1V @y P @y )., (1842, ¥, )l oo
B
C(E; + 25 )p.

It is easily verified that

(1-

whenever

/\2

A)Bu +7

aA

- (-8

T
Ay; ) V2(zi + i AAzs, ys + 00 Ay;, (1 — 0,5\ ) ) (

(

- nu(202(f—! +25)2

+62)+a(1—)8

2

A.’E,‘,
Ay;
._5-#' 2

+ 2 ,uz)

(202( ﬂ; +25)% + 62) r < (1—a\)pu,

n, then

Aﬂ:i
Ay;

(4.5)

(4.6)



A NON-INTERIOR METHOD FOR. LCP 59

Therefore

)A\k Zmin{l (1 -5)p }
(202( - +20)2 +0%) +a(1— a8

To conclude, note that the sequence {{z*,y*)} is bounded by hypotheses (A)
and Theorem 3.1. In addition, just as in (4.6), the relations (3.9) and (3.10)
yield the bounds

Az* Ji} Az* B8
< — < Kl
(80 )], <o v mma (556 )] =0 +2m

since 0 < & < 1 and 0 < m < 1 for all k. Therefore, (4.3) and (4.4) iinp-ly that

(o)Ll .

< c(ﬁ +2)m¢<20(—+2 (1-50)Fp

[+, ) — (2, 8)]|

IA

Hence, {(z®,y*)} is a Cauchy sequence and so must converge to the unique
solution of LCP(g, M). .

Theorem 4.2 (Local Quadratic Convergence) Suppose M is a Py matriz, as-
sumption (B) holds and that the sequence {(z*,y*, 1)} generated by the al-
gorithm converges to {(z*,y*,0)} where {(z*,y*)} is the unigue solution to
LCP(q,M). If it is further assumed that the strict complementary slackness
condition 0 < == + y™ is salisfied, then

pe+1 = O(ut), | (47

 that is, py, converges quadratically to zero.

Proof. First observe that due to the strict complementarity of {(z*,y*)},
Part (iii) of Lemma 2.3 indicates that there exist constants ¢ > 0 and L > 0
such that

|V2¢(z,y, )|, < L, whenever ||(z,y,p)—(c"y"0)| <e.  (48)

Hence, for all k sufficient large and 5 € (0, 1], we have for each i € {1,...,n}
that ‘ '

|p(zf + AzE,yF + AyF mpg))

Az
= |p(a¥,y¥, pr) + VT (F, uF, 1) Ayk ) +
' (n— Ve
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1 A:]!:i-c T Amf’
S|l A GOl
(n— L)ps (7 — )ik

— ok, uF, p) + VT o(zk, v, k) ( Ayt ) + npeV o (F, yF, )| +
T )

1 Azk T Az
) Ayf VE(25) AyF
(n— Dok (n— L)p

L
< numlVad(e®,y )l + 5 | (Azf, Ayf, (7 — V)|
L |
= agm+ 5 (||(Ast, Ay + 1 -n)t)

where zF = (zf + 6,Azf, i+ 8;Ay%, (1+6;(n—1))px)- Now using an argument

similar to that used to obtain (4.5), we have
18 (z* + Az*,y* + Ay, )|
ny | 8(c* + Az, y* + Ay, )],
I |
T (mm + = (202(E +2)% + 1) ui)
2 ny -
B

L

IA

iA

IA

1
2ny, ik + Ny L (02( +2)* + E) 3. (4.9)

Hence, éince 8 > 2n,, the inequality (3.3) in Step 1 of the algorithm holds with
+ — 0 for all k sufficiently large. It is easy to verify that

g

| |
2nu Ntk + Nul (Gz(n_, +2)° + 5) 14 < 1Bk, (4.10)

whenever

nuL (C2(£ +2)° + L)
> .
7= ﬂ - 2”1.5
Hence, by (3.4), we have
nyL (02(% +2)% + %) Ik
8 —2ny ©

a1k <
and so _ ‘
nuL (02(% +2)% + %) 7
| oy (8 — 2ny)
for all k sufficient large. Therefore, by (3.5),

e < (4.11)

pir1 = O(13)-
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We now show that under relatively mild c0nd1t10n the algorithm is globally
convergent

Theorem 4.3 Suppose that M is o Py matriz and hypothesis (A) holds. Let
{z*,y*, ux} be a sequence generated by the Algorithm. Then

(i) the sequence {ux} is monotonically decreasing and convergent to 0 as k =
- oor,

(ii) the sequence {(z*,y*)} is bounded and every accumulation point of {(z*,
y*)} 4s @ solution to LCP(q, M).

Proof. Since M is a Fy matrix, the algorithm is well defined. By the construc-
tion of the algorithm, we can see that g1 < gy for (£ =0,1,...). Hence the
sequence {ux} is monotonically decreasing Since px > 0 (k =0,1,...), there
is a i > 0 such that uz — fi- Since (zF,y*) € N(B, ui), the sequence (z*,y*) is
bounded, by taking a subsequence if necessard , we may assume that {(z*, y*}}
converges to some point (Z,7). If i = 0, it follows from {(z*,4*)} € N(8, ux)
‘that (Z,7) is a solution of the LCP and we obtain the desired results. Suppose
that & > 0. Since V(; 1 F(Z,7, i) is nonsingular, there exist € > 0, L > 0 and
C > 0 such that ,

VenF@y,n™|, <0 (4.12)
V2 ¢(:, 95 )|, < L, (4.13)

for all (z,y,4) € Ogm = (@ v,1) ¢ |(.y,1) — (& 5.5 < ). Similar to
the proof of the global linear convergence result, we can show that there exists

a X such that A\ > X for sufficient large k. Therefore, for sufficient large k,
tret+1 < cpy for some constant ¢ € (0,1), which yields a contradiction. n
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