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This paper gives several characterizations of the solution set of convex programs. No differentiability of the functions involved in the 
problem definition is assumed. The result is a generalization of the results given in [4]. Furthermore, the subgradients attaining the 
minimum principle are exphcitly characterized, and this characterization is shown to be independent of any solution. 

solution sets * convex programs * nonsmooth optimization 

I. Introduction 

The purpose of  this note is to extend the results given in [4] concerning the solution set of  the 
opt imizat ion problem 

minimize f ( x ) 

subject to x ~  S, 

where f : V ~ R .'= R U { - oo, + oo } is an extended real valued function which is assumed to be proper  
and convex and S is a convex subset of  V, a real, locally convex topological vector space (e.g. R") .  We 
shall assume throughout  that the solution set, which we denote by S .'= arg min x ~ s f ( x ) ,  is nonempty .  

In  [4], Mangasar ian  provides a characterizat ion of  the solution set of  a convex p rog ramming  problem 
with differentiable data. The result is significant for m a n y  reasons. In particular, an unders tanding  of  the 
nature  of  the solution set to convex programs is fundamenta l  to a deeper unders tanding  of  several 
impor tan t  opt imizat ion problem models, e.g. minimax problems, semi-infinite programming,  goal pro- 
gramming,  bi-level programming,  and multiple objective programming.  It is also essential for unders tand-  
ing the behavior  of  solution techniques in the presence of  multiple optima. In  this note  we extend 
Mangasar ian ' s  characterization to the general convex p rogramming  problem wherein the objective func- 
tion may  be nondifferentiable and extended real valued. Such an extension should have wide applicabili ty 
since many  of  the problem models stated above make use of  nondifferentiable,  and in some cases, 
extended real valued objective and constraint  functions. In  our own work [1] we have used the result to 
analyze the behavior  of  sharp minima in convex programming.  

The  characterization of  the solution set of  a convex program that we provide in this paper  follows. 
Suppose that Y ~ S and A is a convex set satisfying S c A c S. We prove that 

S =  { x ~ S l O f ( x )  n - N ( x l S )  = O f ( Y )  n - N ( ~ I S ) }  

= { x ~ A l O f ( x ) n  - N ( x l h ) = O f ( ~ ) n  - N ( ~ I A ) } .  
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These two results follow easily from the key lemma that the sets Of(x) n - N (x  I S)  and Of(x) n - N ( x  I A)  
are independent of which x ~ S is chosen as a representer. 

The following notation will be used. If  C is a convex set, then N ( x I C  ) is the normal cone to C at 
x ~ C defined by 

N ( x  I C ) : =  ( z l ( z ,  c - x )  <~ 0 for all y ~  C } .  

The convex subdifferential of f at x, Of(x), is given by 

Of(x) .'-- {x* I f (z )  >_.f(x) + (x*, z - x ) } .  

The relative interior of a convex set C is denoted by ri C and the effective domain of an extended real 
valued function f is defined as 

d o m f : = { x ~ V l f ( x  ) <  + o o } .  

2. Results 

The following characterization of the solution set of a convex program is well-known. It  is often 
referred to as the minimum principle. 

I 

Lemma 1. Suppose f :  V ~ R is a proper convex function and S =~ ~J is a convex subset of V. I f  either 
(a) V is finite dimensional and ri dom f n ri S ~ fJ, or 
(b) Y is a point of continuity for f ,  then ~ ~ S if  and only if  0 ~ Of(Y) + N(Y  I S). 

A proof of this result under assumption (a) is given in [5, Theorem 27.4] and under assumption (b) in [2, 
Proposition 5.6]. The result can be rewritten in the following manner, which will be more convenient for 
this note 

In [4], an elegant characterization of the solution set of a differentiable convex program was given, and 
the fact that V f ( x )  is a constant on the solution set was also established. Both of these results were 
extended to the nonsmooth case, but the corresponding results are not nearly as elegant and useful since 
they involve some (unspecified) subgradient and the relative interior of the solution set. Since the 
differentiable results are useful as a theoretical too [1,3], we would like to characterize the subgradients 
which identify the solution set and remove the relative interiority assumption. In this note we prove that 
this can be done and show that the differentiable results have exact analogues in the nonsmooth case. First 
of all, we show that the subgradients which achieve the minimum principle are a constant of the problem. 
Using this result, we establish a generalization of the differentiable results of [4]. 

In the following lemma we show that Of(x) n - N ( x  IS)  is constant on the solution set of a convex 
program. This result has not been given before to the best knowledge of the authors. Note  that if f is 
differentiable, the constancy of the gradient on the solution set follows immediately f rom part  (a) of the 
lemma. 

Lemma 2. 
(b) Let 

Proof. (a) 

v ~ af(y) 

(a) Of(x) n - N ( x I S  ) is independent of x ~ S. 
A c_ S be a convex set with S n A  ~fJ. Then Of(x)  n - N ( x l A  ) is independent o f x  ~ S n A .  

Let Y ~ S and take v ~ 0f(Y) n - N ( Y l S  ). - v  ~ N ( Y l S  ) gives 

(v ,  x - Y ) > / 0  for a l l x ~ S ;  

implies that 

(v ,  x -  Y )  <~f(x) - f ( Y )  for all x. 

(1) 

(2) 
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Let  Y ~ S. It  follows f rom (1) that  ~v, 27 - Y) >/0 and f rom (2) that  ~v, 27 - Y) ~< 0, so that  

(v ,  27 - 2 )  = 0. (3) 

Substi tut ing (3) in (1) we find (v ,  x - Y) >/0, for  all x ~ S, so - v  ~ N ( Y I S ) .  Using (3) in (2) and 27 ~ 
gives Co, x - y )  <~f(x) - f ( y ) ,  for  all x, implying v ~ 0f(27). Hence  v E Of(Y) n - N ( Y I S  ). The  result 
now follows since 27 and 2 are a rb i t ra ry  in S. 

(b) Consider  

minimize  f ( x )  

subject to x ~ A .  

Apply ing  par t  (a) to this p rob lem gives the required result. [] 

We  remark  that  a l though the sets described above are constant  on the solution set in general  they are 
not  the same set. The  following example  exhibits this fact. 

Example  3. Let  f ( x ,  y )  = Ix  I and  let S = {(x, y )  Ix  >~ 0}. Then  S = {(0, y )  ] y ~ R } and  so for z = (0, y) ,  

Of(z )  n - N ( z I S )  = [0, 1] × (0} 

and 

Of(z )  n - N ( z [ S )  = [ - 1 ,  1] x (0} 

which are clearly different.  

The  following l e m m a  enables us to relate the above  results to those given in [4]. No te  that  in the 
remainder  of  the pape r  we assume that  V-= R n 

L e m m a  4. I f  ~ ~ ri S then Of(~) c_ - N ( ~  I S) .  

Proof .  Let x * ~  0 f ( 2 ) ,  so that  0 >~ ( x * ,  z -  2 ) ,  Vz ~ S. It  follows f rom [5, Theo rem 6.4] and Y ~ ri 
that  for  each y ~ S there is some e > 0 with .~ - e(y  - 2)  ~ S. Hence  0 >~ ( x * ,  2 - e(y - 2 )  - 2 ) ,  which 
implies that  0 > / (  - x * ,  y - 2 )  as required. [] 

In [4, L e m m a  la],  Mangasar ian  showed that  the subdifferential  is constant  on the relative interior of  the 
solution set of  a convex program.  This  follows f rom the above  result, since L e m m a  4 shows that  
Of(z)  = Of(z)  N -- N ( z  I S )  on the relative interior  of  the solution set and L e m m a  2(a) shows the lat ter  set 
to be  a cons tant  of  the problem.  However ,  this set is not  the set where the m i n i m u m  principle is achieved 
as the example  shows, that  is, ihere are some subgradients  in this set which do not  achieve the m i n i m u m  
principle,  and  this is precisely the reason that  the subgradient  is not  specified expficitly in [4, T h e o r e m  la].  

In the following theorem we give another  character izat ion of the solution set. In contras t  to [4, Theo rem 
la]  we describe precisely the subgradients  which are used to fo rm our  character izat ion.  

T he o re m 5. Suppose 2 ~ S. Let 

f f : - - - - { x ~ S l 3 f ( x )  N - - N ( x l S  ) = 3 f ( 2 ) n - N ( 2 1 S ) }  

and let A be a convex set with S c A c S and 

SA '=  ( x  ~ A I O f ( x )  N - N ( x I  A) = 0 f ( 2 )  n - N ( 2 1 A ) } .  

Then S = S = SA- 
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Proof.  S c S: Let z ~ S. Then z ~ S and by Lemma 2(a) it follows that z ~ S. 
S c  SA: Let z ~ S. Since Y ~ S, 0 f ( 2 )  N -- N ( Y l S  ) ~ ,  so 3v ~ Of ( z )  n - N ( z l S  ). Therefore z ~ 

since 0 ~ Of(z )  + N ( z  I S )  and so from Lemma 2(b), 

O f ( z )  n - N ( z  I A)  = 0 f ( Z )  n - N ( Y I A  ) 

which implies that z ~ SA- 
SAC S: Let z ~ SA- Then z ~ S and note that Of(Y)  n - N ( Y I S  ) --/=fJ, since Y ~ S which implies that 

Of(Y)  n - N ( Z I A  ) 4: fl, since A _c S. Hence So ~ Of ( z )  n - N ( z  I A). But v ~ O f ( z )  implies f ( y )  > f ( z )  
+ (v,  y - z ) ,  for all y and - v  ~ N ( z l A )  implies (v,  y - z )  ~< 0, for all y ~ A .  Therefore,  

[ f ( z ) + ( v ,  y - z )  for a l l y ,  

f ( Y )  >~ ~ f ( z )  for all y ~ A .  

Thus  z ~ S since z is feasible and has objective value at least as good as the opt imal  value, since S__c_ A. 
[] 

The differentiable result now follows immediately,  since by Theorem 5, S = SA with A = S, and so if 
x ~ S then 0 f ( x )  _ (vf(Y)} and - v f ( Z )  ~ N ( x I S ) .  

Corollary 6 ([4, Theorem 1]). Let f be a differentiable convex function and Y ~ S. Then 

S =  {x ~ S I ( v f ( Y ) ,  x - Y )  ~ O, v f ( x )  = v f ( x ) } .  

Using Theorem 5, this corollary has the following generalization. 

Corollary 7. Let A c S be such that A n S ~ ~J. Choose Z ~ S n A and set 

SA := ( x ~ A l O f ( x  ) n - N ( x l a )  = O f ( Z )  N -- N ( Y I A ) ) .  

Then g O A = SA = arg minx ~ A f ( x ) -  
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