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Abstract. In their seminal papers Eremin [Soviet Mathematics Doklady, 8 (1966), pp. 459-462]
and Zangwill [Management Science, 13 (1967), pp. 344-358] introduce a notion of exact penalization
for use in the development of algorithms for constrained optimization. Since that time, exact penalty
functions have continued to play a key role in the theory of mathematical programming. In the
present paper, this theory is unified by showing how the Eremin-Zangwill exact penalty functions
can be used to develop the foundations of the theory of constrained optimization for finite dimensions
in an elementary and straightforward way. Regularity conditions, multiplier rules, second-order
optimality conditions, and convex programming are all given interpretations relative to the Eremin-
Zangwill exact penalty functions. In conclusion, a historical review of those results associated with
the existence of an exact penalty parameter is provided.
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1. Introduction. In their seminal papers Eremin [23] and Zangwill [75] intro-
duced a notion of exact penalization for use in the development of algorithms for
nonlinear constrained optimization. This notion of exact penalization is the natural
extension of the so-called big-M method of linear programming (see Charnes, Cooper,
and Henderson [14, 4] for the earliest reference known to us) to nonlinear program-
ming. Since that time, exact penalty functions have continued to play a key role in
the theory of mathematical programming. Within the algorithmic sphere, the history
of these functions is quite rich, even though their use has been, and still is, a topic
of controversy. The root of this controversy is the nondifferentiable nature of these
functions. From an algorithmic viewpoint, this nondifferentiability can induce the so-
called Maratos effect (a phenomenon that prevents rapid local convergence). A great
deal of effort has been devoted to overcoming this difficulty, leading to the develop-
ment of the so-called watchdog technique [12] and second-order correction techniques
[19], [28], [26], [29], and others. Other authors, in an effort to avoid the problems
associated with nondifferentiability, have introduced entirely different classes of exact
penalty functions that are differentiable [5], [30], [34], [60], and [69]. The research in
this area continues at a rapid pace and the controversies over the use of nondiffer-
entiable exact penalty functions in algorithms are far from nearing resolution. This
paper can, in many ways, be viewed as a contribution to this discussion. However, our
approach is from a rather different perspective. We do not discuss algorithms at all,
rather we demonstrate how the Eremin-Zangwill exact penalty functions can be used
to develop the foundations of the theory of constrained optimization in an elementary
and straightforward way. In doing so, we show how all of the fundamental notions
and results in constrained optimization can be derived from the Eremin-Zangwill ex-
act penalty functions, from regularity conditions such as calmness [15], [66], to the

*Received by the editors September 16, 1986; accepted for publication (in revised form) June
1, 1990.

l Mathematics Department, GN-50, University of Washington, Seattle, Washington 98195. The
work of the author was supported in part by National Science Foundation grant DMS-8803206 and
by Air Force Office of Scientific Research grant AFOSR-860080.

968

D
ow

nl
oa

de
d 

06
/0

2/
16

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 969

existence of Lagrange multipliers, to second-order necessary and sufficient conditions
for optimality. The derivation of these results by means of the Eremin-Zangwill exact
penalty functions is by no means strained or artificial, quite the contrary, the proofs
are often simplified at the expense of obtaining a more powerful result. Thus, our goal
in this endeavor is not to demonstrate the viability of these penalty functions for use
in algorithmic development, but rather to demonstrate their role vis-a-vis the founda-
tions of the theory and to provide an interpretation for many of the familiar objects
in this theory in terms of the corresponding objects associated with these penalty
functions. Hopefully, one consequence of these investigations is that the practical
significance of these penalty functions can be more accurately assessed.

We begin 2 by reviewing some of the fundamental results and concepts associated
with constrained optimization. We discuss calmness, regularity, constraint qualifica-
tions, and their relationships vis--vis exact penalization. This section contains all of
the first-order-results related to the existence of Kuhn-Tucker [43] multipliers. In 3
we show how exact penalization techniques can be used to derive a multiplier theorem
in the absence of a constraint qualification. This multiplier rule is reminiscent of the
one given by John [42]. Second-order results are obtained in 4. The case of convex
programming is studied in 5, and in 6 we provide a historical review of the literature
on the existence of a finite exact penalty parameter. The approach to the theory of
constrained optimization from the viewpoint of exact penalization is also the theme of
Fletcher [29, 14.3], Garcia-Palomares [31], and Rockafellar [64]. A very nice survey of
exact penalization techniques in general is given by Fletcher [27]. The present paper
is based on Burke [9], wherein several further results and generalizations are obtained.

The notation that we employ is for the most part standard; however, a partial
list is provided for the reader’s convenience. Let X be a real normal linear space and
let X* be its topological dual. The spaces X and X* are paired in duality by the
continuous bilinear form

(x*,x) := *(x)
defined on X* X. Given xl,x2 E X the line segment joining them is denoted by

.= + e [0,

Let C be a subset of X. Then cl(C) is the closure of C, int(C) is the interior of C,
and ri(C) is the interior of C relative to its affine hull, i.e., the smallest closed affine
set containing C. The core of C, denoted core(C), is the set of all point z E C such
that every line through z contains a line segment [zl,z2] with z [z,z2] C C and
z : z = z2. In finite dimensions, we have core(C) int(C). The polar of C is given
by

C := {x* e Z*: (x*,x) _< 1 for all x C}
and the positive conjugate of C is C* -C. The recession cone of C is

rec(C) "= {y e X" C + y c cl(C)}

and the cone generated by C is

cone(C) := U,x_>oAC,

where for any two subsets S and $2 of X and any two scalars a,/ E we haveD
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970 JAMES V. BURKE

The support and indicator functions for C are given, respectively, as

*(x*[C) sup{(x*, y> y e C}

and

.= 0, ifxEC
otherwise.

The barrier cone of C is

bar(C) := {x*

and the relation
rec(C) [bar(C)]

holds if X is reflexive.
A multifunction T mapping X into Y where Y is another real normal linear

space, written T XY, is a mapping of X whose values are subsets of Y. The
domain of T is the set dom(T) := {x e Z T(x) - } and the graph of T is
graph (T):= {(x, Y)IY e T(x)}. T is said to be upper semicontinuous if graph (T)
is closed in X x Y under the product topology. The space .(X, Y) is the space of
continuous linear maps from X to Y. Given T f(X, Y) we write

ran(T) "= {y e Y" 3x e X with y Tx}

and
ker(T) "= {x e X" Tx 0}.

If X and Y are finite-dimensional, then, with respect to fixed bases for X and Y,
one can identify f(X, Y) with Imxn the set of m x n matrices, where dim(X) n
and dim(Y) m. The adjoint of A E(X, Y) is the uniquely defined mapping
A* e/:(Y*, X*) for which

<A’y*, x> <y*, Ax>
for all (y*, x) Y* x X. In finite dimensions we have A* AT.

Let f" X ---, 1 where 1 I t2 {+oc}, we write

dom(f) "= {x e X’f(x) <
levi(x := {y X’f(y) <_ f(x)}, and

epi(f) := {(#,x)’f(x) < #}.

We say that f is lower semicontinuous if epi(f) is a closed set. If f is Lipschitz near
a point x X, then the Clarke generalized directional derivative,

f(x; d):= limsup
t$o

f(u + tv)

exists at x for every d X.
The norm on X is denoted I1" and its unit ball is I := {x: ]lxll _< 1}. The dual

norm is given by IIx*ll0 := *(x*lg and its unit ball is go. The distance function for
a set C C X is given by

dist(ylC) := inf{[ly- x[l x e C}.
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 971

For C C X*, the dual distance function is denoted

dist0(ylC) := inf{lly- xllo x e C}.

In finite dimensions the Euclidean norm plays a special role and is denoted by I1" 112 with
corresponding distance function dist2(.IC). The distance function for a set C c X is
Lipschitz with Lipschitz constant 1, and so its Clarke generalized directional derivative
exists at every point in all directions. Based on this observation we define the tangent
cone to a point x E C by

T(xlC := {d e X’dist(.IC)(x;d) 0}

with the normal cone defined via polarity

N(x[C) := T(xlC).

For convex sets, these objects reduce to the usual notions of tangent and normal cone.
In finite dimensions one can also define the limiting proximal normal cone at a point
x e C by N(xlC "= {Alimvi/llvill" , >_ 0, vi 2- C at xi x, vi 0}, where one
writes v 2_ C at y to mean that y cl(C) and v yl _y with Ily -YlI2 dist2(ylC)
One has that N(xlC is the closed convex hull of N(xlC).

Given f" X the generalized subdifferential of f at x dom(f) is given by

Of(x) {x* e X* (-1, x*) e N((f(x),x)lepi(f)) },

the asymptotic subdifferential is

Of(x) :- {x* e X* (O,x*) e N((f(x),x)lepi(f))},

the limiting proximal subdifferential is

Of(x) "= {x* e X* (-1,x*) e N((f(x),x)lepi(f)) },

and the asymptotic limiting proximal subdifferential is

Of(x) "= {x* e X" (O,x*) e N((f(x),x)lepi(f)) }.

Clearly, Of(x) rec(Of(x)) whenever Of(x) 7 . The generalized directional deriva-
tive of f is then defined to be

fO(x; v) ":

with f(x; v) := -oc if Of(x) O. This notation is consistent with that of the Clarke
subdifferential for locally Lipschitz functions.

The function f is said to be subdifferentially regular at a point x E dom(f) if

liminf f(x + tu) f(x) f0(x; v)
t

t$o

for all v X, in which case

f(x; v) f’(x; v)’= lim
f(x + tv) f(x)

to t
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972 JAMES V. BURKE

A function F" X --, Y has Frechet derivative F’(x) E (X, Y) at x E X if

F(y) F(x) + F’(x)(y x) + o(lly xll),

where limy__,xo(lly- xll)/lly- xll 0. The mapping F is strictly differentiable at
x X if there exists F(x) C (X, Y) such that

lim
F(x’ + tv) F(x’) F(x)v

,I t
t$o

for all v in X. If f X --* R is strictly differentiable at a point x dom(f), then
Of(x)- {/(x)}.

If both X and Y are finite-dimensional and F X --* Y is locally Lipschitz,
then F is almost everywhere differentiable in the sense of Lebesgue measure. The
generalized Jacobian of F at a point x X, denoted OF(x), is the convex hull of all
operators in (X, Y) obtained as the limit of sequences of the form {F’(xi)} where
xi --, x and F(x) exists at each x. Again, if F is strictly differentiable at x, then
OF(x) {F(x)}.

Let f" X - and C C X. We write

arg min{f(x) x e C} := {x e C" f(x) min{f(x) x e C}}

and define arg max{f x C} similarly. A local minimum of radius for the problem
min{f(x):x C} is any point x C such that f(x) <_ f(y) for all y e C f (x + sI).

For more information about the objects defined above see [15]-[17], [54], and

2. The fundamentals: calmness, regularity, and exact penalization. Let
X and Y be normal linear spaces and consider the problem

minimize f(x)
subject to g(x) C,

where f X 1 := 1 U {+oc}, g X Y, and C is a closed subset of Y. We
begin with a discussion of regularity conditions that allow the development of general
multiplier rules for P. One of the weakest such conditions was proposed by Rockafellar
and is known as calmness.

DEFINITION 2.1. Let f, g, X, Y, and C be as in the statement of P and consider
the perturbed problems

(T’u) minimize f(x)
subject to g(x) C + u.

Let 3 X and Y be such that g(3) E C + and 3 dom(f):= {x X’f(x) <
+c}. The problem P is said to be calm at 3 if there are constants _> 0 and > 0
such that for every pair (x, u) e X x Y with IIx- 311 <_ and g(x) e C + u we have

(2.1) f (x) -t- >_ f (3).

The constants and are called the modulus and radius of calmness for P at 3,
respectively.
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 973

(2.2)

where

The family of perturbed problems P is said to be calm at if

liminf
V(u) >

V(u) min{f(x) g(x) e C +
if {x g(x) e C + u} 0
otherwise

is the value function for the family P.
Remarks. (1) This definition for P to be calm at -2 varies from the definition

that is usually given (eg., see Clarke [15, Def. 6.4.1]); however, in Burke [8, 2], it is
shown that they are equivalent when g is continuous at -2.

(2) Observe that if P is calm at -2, then -2 is necessarily a local solution to
and if P is calm at , then for any solution -2 to P,P is calm at -2.

(3) The notion of calmness is closely related to the notion of a (I)l-subdifferential
introduced in Dolecki and Rolewicz [20].

The calmness hypothesis is quite weak and in many situations is easily verified.
In finite dimensions, calmness holds on a dense subset of the perturbations.

PROPOSITION 2.1. (l) (Clarke [15, Prop. 6.4.5]) Suppose that Y := m,C :=
]_, and f := fo + (’IS) with S C X nonempty and closed, and fo X -- and
g" X I" locally Lipschitzian. If V(u) is finite for all u near 0, then for almost all
u in a neighborhood of the origin the problem Pu is calm.

(2) (Burke [8, Prop. 3.1]) Suppose that Y is finite-dimensional, f is lower semicontinuous,
and g is continuous. If E Y and "y > 0 are such that V is bounded on + /], then
7) is calm on a dense subset of +

From (2.2) it is clear that calmness is a weak variational property of the value
function V. A condition of this type is always required for establishing the existence
of multipliers. It is remarkable that the notion of calmness at a solution to P is
equivalent to the existence of a finite exact penalty parameter.

THEOREM 2.1 (Burke [8, Thm. 1.1]). Let -2 X and Y be such that

g(-2) C + g and -2 e dom(f).

Then 7) is calm at -2 with modulus - > 0 and radius e > 0 if and only if-2 is a local
minimum of radius e for

P,(x) f(x) + a dist(g(x)[C + )

for all >_ -5, that is,
<

for all x -2 + and a >_ -5.
Remark. The fact that calmness implies the existence of an exact penalty param-

eter is also established in Clarke [15] and Dolecki and Rolewicz [20]. However, the
reverse implication and the precision of this correspondence is first established in [8].

Thus, at this early juncture we see that the Eremin-Zangwill exact penalty func-
tions play a fundamental role in the theory. Under the calmness hypothesis we can
obtain multiplier rules for P by first invoking Theorem 2.1 and then applying the per-
tinent calculus rules of an appropriate subdifferential (e.g., the Clarke subdifferential
[15]-[17], the Michel-Penot subdifferential [53], the limiting proximal subdifferential

[65]-[66], etc.)
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974 JAMES V. BURKE

We present two sample results based on the subdifferential calculus developed in
Clarke [15] and Rockafellar [66], [68].

THEOREM 2.2. (1) Suppose is calm at J E X, g is strictly differentiable at J
with strict derivative g’s(J), and Of(J) . Then there is a y N(g(J)lC such that

0 Of(J) + gs(J)*Y.

(2) If X and Y are finite-dimensional, 7) is calm at J X, f is lower semicontinuous
near J, and g is Lipschitzian near J, then there exists y e N(g(J)IC such that

o e

Proof. (1) By Theorem 2.1, J is a local minimum for Pa(x) f(x)+a dist(g(x)lC)
for all a sufficiently large. Hence 0 OPa(J) for all a >_ for some >_ 0. By [68,
Cor. 2],

OPt(J) C Of(J)+ sO [dist(g(.)lC)](J).

From [15, Prop. 2.4.2],

N(g(J)IC cl[U>oAO [dist(.IC)](g(J))].

Consequently, by the chain rule [15, Thin. 2.3.10],

0 e Of(J)

from which the result follows.
(2) This is an immediate consequence of Rockafellar [66, Cor.

inclusion (2.3).
5.2.3] and

Remarks. (1) To incorporate an abstract constraint of the form x S C X we
simply replace f by f +
(2) We do not claim that the results in Theorem 2.2 are original. Results similar to
these can be found elsewhere in the literature, e.g., [1], [3], [15]-[17], [39]-[41], [45],
[54], [63]-[66]. However, the proofs that we provide are different from those that are
usually provided, due to the explicit dependence on Theorem 2.1.

Various conditions can be found in the literature that ensure that the calmness
hypothesis is satisfied. All of these conditions are related to the regularity of the
constraint systems of the form

(2.4) g(x) C and x S c X.

DEFINITION 2.2. System (2.4) is said to be regular at a solution x0 if there exist
constants a > 0 and e > 0 such that

dist(x[t(u)) <_ a dist(g(x)lC + u)

for all x (xo + eI) N S and u E e where

.= {x e x a(x) e c + x e

The constant a is called the modulus of regularity for (2.4) at xo.
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 975

Remark. This and more general notions of regularity for (2.4) are studied by
several authors, e.g., [1], [4], [7], [15], [20], [48], [49], [51], [52], [61], [62], [66]-[68], [73].

Calmness and regularity are related via Clarke’s elementary exact penalization
theorem.

THEOREM 2.3 (Clarke [15, Prop. 2.4.3]). Let f" X 1 be Lipschitz of rank
on a set T C X. Let 5 belong to a set C T and suppose that f attains a minimum
over at 5. Then for any >_ , the function (x) "= f(x) + dist(xlgt attains a
minimum over T at 5. If > and t is closed, then any other point minimizing
over T must also lie in .

We have the following elementary corollaries to Theorem 2.3.
COROLLARY 2.3.1. Consider the problem 7) with g continuous and f := fo +

(.IS) for some fo X - and some S c X closed and nonempty. Suppose that
5 E S is a local solution to P at which the system (2.4) is regular with modulus 1
and near which fo is Lipschitz of rank a2, then 5 is a local minimum of Pa(x) :=
f(x) + a dist(g(x)lC for all c >_ t2. If a > t2, then there is a neighborhood of
5 such that any other local minimum of Pa(x) within this neighborhood is such that
f(5) f() and g() e C.

Proof. Let e > 0 be such that f0 is Lipschitz of rank a2 on 5 / e, the defining
inequality for regularity holds for all x (5 + e) N S and u e e, and f(5)

_
f(x)

for all x {z" g(z) C} (5 + e]). Set gt := (0) N (5 + el) and note that since
g is continuous, the set gt is closed. By Theorem 2.3, rT(x) attains a minimum over
5+e at 5 for >_ a2, and if > a2, then any other minimum of over 5 +e must
also lie in . Then, for every 5 E (0, 3 and y e 5 + 1/2e, there is a z e (0) such
that IlY zll -< dist(ylgt(0)) + 5 _< 32-. Hence IIz 511 _< IlY z]l + I]Y 1[ <- e so
that dist(yl2 <_ dist(ylgt(0))+ 5. Letting 5 $ 0 we find that dist(ylgt dist(ylgt(0))

e] The result now follows from the definition of regularity with thefor ally5+
neighborhood of 5 being 5 + 5e. El

COROLLARY 2.3.2. Consider the problem P and let f, g, and 5 be as in Corollary
2.3.1. Then P is calm at 5.

Proof. This is an immediate consequence of Corollary 2.3.1 and Theorem 2.1.

Remark. Dolecki and Rolewicz [20] obtain a result similar to Corollary 2.3.1 in
a more general setting by using somewhat different techniques. Their result is based
upon the notion of an upper Hausdorff semicontinuous multifunction.

Conditions yielding the regularity of the constraint system (2.4) have been stud-
ied by many authors [1], [4], [7], [15], [20], [48], [49], [51], [52], [61], [62], [66]-[68],
[73]. The first and most famous of these results is the Lyusternik theorem [48]. An
excellent discussion of a variety of these regularity results is given in Borwein [7]. In
the mathematical programming literature such conditions are often called constraint
qualifications, e.g., the Mangasarian-Fromovitz constraint qualification [51], [52]. In
his thesis, Maguregui [49, Chap. 2], introduced the constraint qualification

(2.5) 0 core(g(x0) / g’(xo)(S- xo) C).

THEOREM 2.4 (Maguregui [49, Chap. 2]). Suppose that X and Y are Banach
spaces, the sets S C X and C C Y are nonempty, closed, and convex, and g X -- Yis strictly diflferentiable at 5 e S. If g(5) e C and (2.5) is satisfied, then system (2.4)
is regular at 5.

Remarks. (1) Using the constraint qualification

(2.6) g(xo)T(xolS) T(g(xo)lC) Y,
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976 JAMES V. BURKE

Borwein [7, Thm. 4.3] show that the convexity assumption on the sets C and S can
be removed if we instead assume that the sets S and C are epi-Lipschitzian (in the
sense of Rockafellar [68]) at x0 and g(xo), respectively.

(2) If X and Y are finite-dimensional or if C and S are convex, then the conditions
(2.5), (2.6), and

ker([g(xo)T,I]) [N(g(xo)lC) N(xolS)] (0}

are all equivalent. Moreover, if S ]n, and C := 18 {0}R,-8, all of the conditions
(2.5)-(2.7) are equivalent to the Mangasarian-Fromovitz constraint qualification.

(3) In the finite-dimensional case, Borwein [7, Thin. 3.2] has shown that we can
generalize (2.7) to

ker([Og(xo)T, I]) [N(g(xo)[C) x N(xolS)] {0},

where
ker([Og(xo)T,I]) {(y, z) e ]m n 0 e Og(xo)Ty + Z},

and still guarantee the regularity of system (2.4).
COROLLARY 2.4.1. Let the hypotheses of Theorem 2.4 hold and consider the prob-

lern 79 with g continuous and f fo + (’1S), where fo X Lipschitz near .2.
Then P is calm at .2, or equivalently, .2 is a local minimum for Pa for all a sujficiently
large. Moreover, there is a threshold value of a, say-, and a neighborhood U of.2 such
that if a > -, then any other local minimum of P, E U, must satisfy f(.2) f()
and g() C.

Proof. This is an immediate consequence of Theorem 2.1, Corollary 2.3.1, and
Theorem 2.4.

Remarks. (1) Corollary 2.4.1 extends Han and Mangasarian [33, Thm. 4.4] where
it is assumed that X I’, Y Im, S In, and Y := I8_ {0},-8 f0 and g are
continuously differentiable and Y is a strict local solution to P.

(2) Dolecki and Rolewicz [20, Thm. 2.1] obtain a result similar to Corollary 2.4.1
in a somewhat more general setting. Their result is based upon the notion of locally
controllable image nearly inner approximations (inia).

In finite dimensions it is possible to strengthen the result in Corollary 2.4.1 by
dropping the requirement that S be convex. Clarke establishes this in [15, Cor. 5,
p. 244]. It can also be established by methods that place exact penalty techniques
within a broader context of convex composite optimization. In convex composite
optimization one studies the problem

(Q) minimize q(x)

with q := f + h o g where f X ] and g X ---, Y are as in the statement of P,
and h Y I is convex. If C is convex, then P(x) "= f(x) + a dist(g(x)lC is
an example of a convex composite function. The following result concerning Q is a
modest extension of a result originally due to Burke and Poliquin [11, Thin. 3.1].

THEOREM 2.5. Consider the problem Q where f ]n 1 is lower semicontinuous,
g. ln ]m is locally Lipschitz, and h m is lower semicontinuous and convex.

Let 2 dora(q) and suppose that

0 e Of(.2)+
y e N(g()]dom(h)) y O.
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 977

Define

qa(x) "= f(x) + ha(g(x))

with

(2.11) ha(y) "= inf{h(z) +

If- E dom(q) is a local solution to Q, then there is an - > 0 such that is a local
minimizer for qa(x) for all a >_ -.

Remarks. (1) The proof of Theorem 2.5 is rather technical, and so is relegated to
Appendix A.

(2) The operation employed in (2.11) is known as the infimal convolution of h
and cll. II, and is written h cll. II. In general, we have

epi[hloh2] epi(hl)+ epi(h2)

for any two convex functions h and h2. Consequently, h oh2 is always convex.
(3) Note that dom(ha) m even if dom(h) II". Hence dom(qa) dom(f).
If the set C in problem P is convex, then P can be seen as an instance of Q by

taking h := (.IC). In this case we have

ha(y)’= inf{(zlC) +
a dist(ylC),

and so
q(x) P(x) :- f(x) + dist(g(x)lC).

Thus Theorem 2.5 can be used to provide conditions under which a finite exact penalty
parameter c exists. Condition (2.9) is just another constraint qualification. In partic-
ular, if f f0 + (’IS) with f0 locally Lipschitz and S closed, then (2.8) and (2.9)
are equivalent and we recover Clarke’s result [15, Cor. 5, p. 244] as a special case.
Constraint qualifications of the type (2.9) were originally formulated by Rockafellar
in [66] and [68]. These comments yield the following corollary to Theorem 2.5.

COROLLARY 2.5.1. Let f" N" I, g" Nn ---, Nm, and N" be as in the
statement of Theorem 2.5 and consider problem . If (2.9) holds with h :=
where is C nonempty closed and convex, then is calm at 5, or equivalently, - is a
local minimum for Pa for all c sufficiently large. Moreover, there is a threshold value
of a, say-, and a neighborhood U of such that if a.> -, then any minimum of
Pa on U must satisfy f (-) f() and g() C.

Proof. In light of the comments preceding the statement of the result, we need
only prove the last part of the result. To this end let be any value of a for which g is
a local minimum of Pa, and let U be any neighborhood of g such that P(g) _< P-(x)
for all x U. If G > , then P() <_ P(x) for all x U. If is any other minimum
of P^ on U, then

P()-- f(N) _< f()++
2

dist(g()lC).

Consequently, dist(g()lC -0 and f()= f(). [::]
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978 JAMES V. BURKE

Remark. For the case in which C := L x {0}R,-8 and both f and g are con-
tinuously differentiable, this result was first obtained by Han and Mangasarian in [33,
Thm. 4.4]. Rosenberg [71, Prop. 1] later generalized Han and Mangasarian’s result
to the case in which C := L x {0}R.-8, f fo + (’1S), where fo and g are locally
Lipschitz and S is nonempty and closed.

In this section we have obtained multiplier rules for T’ via the exact penalty
function P and the calmness hypothesis. We call these multipliers Kuhn-Tucker
multipliers. Given x e Ft "= {x dom(f)’g(x) C}, we denote these multipliers by

(2.12) K-T(x) "= {y e N(g(x)lC 0 e Of(x) + Og(x)*y},

where Og(x) is always taken to be g’(x) in the infinite-dimensional setting. This set
is always closed and may be empty. It should be noted that this is an extension
of the usual theory of Kuhn-Tucker multipliers; that is, if f and g are continuously
differential and C L x {0}n--8, then K-T (x) consists precisely of the usual
guhn-Tucker multipliers for :P at x [43], [51], [70].

PROPOSITION 2.6. Suppose X and Y are normed linear spaces, C is a closed
subset of Y, f" X --, R, and g Z --, Y. Let 5 e dom(P) be such that g(5) e C.
(1) If g is strictly dierentiable at 5 and 0 e OPa(5) for some c > O, then K-T

#
(2) If X and Y are finite-dimensional, g is Lipschitz near 5, and 0 OPa(x) for

some a >_ O, then K-T (5) O.
(3) If f is subdifferentially regular at 5, g is strictly differentiable at 5, C is convez,
and K-T(5) O, thenO 0P(5) for alla > dist0(01K-T(5)) (ora >_ dist0(01K-T(5))
if Y* is separable).

Proof. (1) This follows directly from [68, Thms. 2 and 3] and inclusion (2.3).
(2) This follows from [66, Cor. 5.2.3].
(3) The proof is by [68, Thms. 2 and 3],

aOPa(5) Of(5) + ag(5)*O [dist(.[C)](g(5)).

Let y K T(5) be such that I]Yll0 < a. If Y* is separable we can choose
[21], [74]. Then 0 0P(5) since, by (3.5),

0 [dist(.IC)](g(5))= 10 V N(g(5)IC).

Remark. Proposition 2.6 extends similar results found in Garcia-Palomares [31,
4], Han and Mangasarian [33, 4], Lasserre [44], Polak, gayne, and Wardi [59, 3],
and Rosenberg [71]. All of these results apply to the finite-dimensional case with C
1 {0} They obtain results for other norms by appealing to the equivalence
of norms in finite-dimensions.

It is well known that K-T (5) may be empty even if 5 is local solution to P.
Nevertheless, more general multiplier rules can be established in this case. The such
result is attributed to John [42]. In the next section, we generalize this result to P.

3. A John type multiplier rule for P. In this section we consider the problem
P with f := f0 + (’1S), f0 1’ - 1 and g ]n m locally Lipschitz, S
nonempty and closed, and C C lm nonempty, closed, and convex, and derive
multiplier rule that does not depend on calmness. For this purpose let 5 be a local
solution of radius to P, and for each 5 _> 0, consider the function
given by

(3.1) O(x) := dist[(f0(x), g(x))lC, + (.IS N (5 + )),
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 979

where

(3.2) c, .= (jo(Z)- 5 + -) x c c x -.
It is assumed that the norm chosen for x ’ is such that I1(, 0)11 I1. Observe
that for each 5 > 0 we have

(3.3) 0() < 5 + infO(x)

and if 5 > 0, then

(3.4) 0 < inf0(x) <

Thus, in particular, is a global minimum for 0. The function 0 is a kind of exact
penalty function for P. It is similar to the Eremin-Zangwill penalty functions except
that no a priori assumptions are required for to be a global minimum for 00. Exact
penalty functions of this type were considered by Morrison [55] in the case where
C {0}, S n, and where ]m is given the Euclidean norm. In this setting,
Morrison showed how we can apply the methods of nonlinear least squares to solve P.
Further discussion of these penalty functions is given in Fletcher [27].

By applying the appropriate rules of the subdifferential calculus to 00, we can
obtain a multiplier rule for P. Unfortunately, such a direct application yields a rather
uninteresting multiplier rule because of the nature of the subdifferential of the distance
function dist[.ICs, ].

PROPOSITION 3.1. Let F be a nonempty, closed, convex subset of a normed linear
space X. Then dist(ylF is a convex function whose subdifferential is

(3.5) 0 dist(ylF "=
N(ylF), if y e F

(bdry 0)r N(ylF + dist(ylF)), otherwise.

If F is not assumed to be convex, then

(3.6) N(ylF) cl[U>0A0 dist(ylF)].

Proof. In the convex case with y E r, the formula 0 dist(ylF ]o N N(ylF) is
elementary and well known. When F is convex and y t F, the formula is derived in
Burke [9, 2]. The final formula (3.6) is due to Clarke [15, Prop. 2.4.2]. E3

Thus a direct application of the chain rule [15, Thm. 2.3.10] to 0o would yield,
according to Proposition 3.1, the trivial inclusion

0 e +Ofo() + Og()*N(g(2)lC)+ N(IS).

This is the reason for including the perturbation 5 in definition (3.1). Due to inequality
(3.3) we can apply Ekeland’s variational principle [22] to obtain, for each 5 > 0, the
existence of an x ( +) N S satisfying

Oe(x) + vllx xell > Oe(xe)
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980 JAMES V. BURKE

for all x :/: xh. Hence is a strict global minimum of the function

Now, by (3.4), we have O(x) > 0 and so (fo(x), g(xh)) C,. Thus, when we apply
the appropriate rules of the subdifferential calculus (Rockafellar [66, Cor. 5.2.3]) to
the inclusion 0 E O0(x), we obtain the existence of an x k 0 and

ye e N(g(xe)]C + dist(g(xh)]C))

with ]I(Ah, Yh)l]0 1 such that

0 e AOfo(x) + Og(x)*y + N(xIS) +v
for all 5 with
must satisfy

Consequently, any cluster point (A,) of {(As, y)} as 5 i 0

(3.7) II(, )1[o 1,

(3.8) > 0, e N(()IC),

and

(3.9) o e Ofo()+ o(), +

We have just proved the following theorem.
THEOREM 3.1. Let f, g, s, C, and-2 be as given at the beginning of this section.

Then there exist multipliers >_ 0 and N(g()lC) such that (3.7)-(3.9) hold.
With a bit of work this result can be obtained from Clarke [15, Thm. 6.1.1].

Moreover, the proof that we provide has a certain similarity to Clarke’s proof. We
included this proof since it is simpler and more direct. Furthermore, it illustrates
the intimate relationship between the multipliers and the subgradient of the distance
function at (fo(), g()).

Note that if the multiplier in (3.7) is nonzero, then -1 K-T(), i.e.,

(3.1o) K-T() {-1. (, ) satisfy (3.7)-(3.9) with - 0}.

Moreover, if f and g satisfy the conditions of part (2) of Proposition 2.6, then

o e oP- ().

Thus the magnitude of A is inversely related to the magnitude of an exact penalty
parameter for 7). The multipliers (A, ), for which A 0, are of great significance in
the analysis of 7) We call these multipliers Fritz John multipliers and denote them
by

FJ(x)’= {#’# >_ 0, (0, y) satisfies (3.7)--(3.9)
ker([Og(x)T,I])N (N(g(x)lC) x g(xlS))
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 981

where
ker([Og(x)T, I])"= {(y, z) e m x ] 0 e Og(x)Ty + Z}.

Observe that FJ(x) is a nonempty, closed, and convex cone for every x E S with
g(x) C. Moreover, if K-T (x) - O, and g is strictly differentiable at x, then FJ(x)
rec(K-T(x)). Clarke [15] refers to the Kuhn-Tucker and Fritz John multipliers as the
normal and abnormal multipliers, respectively.

According to Theorem 3.1, one is guaranteed of the existence of Kuhn-Tucker
multipliers at a local solution .2 to P if FJ(.2) {0}, or equivalently, if

ker[Og(.2)T,I] C (N(g(x)lC) x N(x(S)) {0}.

This condition is precisely the constraint qualification (2.8) and (2.9) of the previ-
ous section. Thus we see that condition (2.8) is truly a fundamental property for
constrained optimization. It is a natural condition under which we obtain both con-
straint regularity and the the existence of Kuhn-Tucker multipliers. For this reason,
we will refer to (2.8) as the basic constraint qualification throughout the remainder of
the paper.

PROPOSITION 3.2. Let f, g, and C be as given in the beginning of this section
and let x S be such that g(x) C and K-T (x) O.
(1) If the basic constraint qualification (2.8) is satisfied at x, then K-T (x) is compact.
(2) If g is strictly differentiable at x, then K-T (x) is convex and rec(K-T(x))

FJ(x), in which case K-T (x) is compact if and only if the basic constraint qual-
ification (2.8) is satisfied at x.

(3) If-2 is a local solution to P at which the basic constraint qualification (2.8) is
satisfied, then K-T (.2) is nonempty.

Proof. (1) If K-T (x) is not compact, then it contains an unbounded sequence
{y} c N(g(x)lC). For each 1,2,..., there exists vectors v Ofo(x) and zi

N(xlS and a matrix J Og(x) such that

0 vi / Jy + z.

With no loss in generality, we can assume that (y,z)(llyll + IIzll) -1 -- (,) and
J J with I1[I + [111 1, e N(g(x)[C), e N(x[S), and J e Og(x). But then

0 T+ SO that Fg(x) : {0}, a contradiction. Hence K-T (x) is compact.
(2) The convexity of K-T (x) and the equivalence rec(K-T(x)) FJ(x) follow

directly from the definitions. Thus the equivalence of (2.8) with the compactness of
K-T (x) follows immediately from [70, Tam. 8.4].

(3) This follows from the preceding discussion.
Remark. Proposition 3.2 extends a well-known result of Gnuvin [32]. Another

generalization of Gauvin’s result is obtained in Nguyen, Strodiot, and Mifflin [56],
where it is assumed that C := x {0}- and that the s components of g are
Lipschitz.

4. Second-order optimality conditions for P. The second-order results of
this section are based on the second-order theory for convex composite optimization
developed in Burke [10] and Burke and Poliquin [11]. If f := f0 + (’IS) with fo
]n 1 and the sets S c ]’ and C c ]m are taken to be nonempty, closed and
convex, then the exact penalty functions P and 00 defined in 2 and 3, respectively,
are convex composite functions. Thus we can apply the results of [10 ], [11] directly
to these functions. The theorems obtained in this way are very much in the spirit of
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982 JAMES V. BURKE

those established in Levitin, Miljutin, and Osinolovski [45], Ioffe [39]-[41], Ben-Isreal,
Ben-Tal, and Zlobec [4], and Rockafellar [63]-[64]. These results are distinguished
by their use of the entire set of multipliers rather than a single vector of multipliers
as is the case in the classical theory of second-order optimality conditions (e.g., see
Hestenes [35]-[36], Pennisi [57], and Fiacco and McCormick [25]). Let us begin by
reviewing the pertinent results in [66] and [11].

THEOREM 4.1 (Rockafellar [66, Cor. 5.2.3]). Suppose f ]n ] is lower
semicontinuous, g n n is locally Lipschitz, and 5 E dom(q), where q(x) :=
f(x) + h(g(x)), is such that (2.9) holds. If5 is a local minimum of q, then the set of
multipliers

MQ(5) := {y e Oh(.)(g(5)) 0 e Of(5)+

is nonempty.
THEOREM 4.2 (Burke and Poliquin [11, Thm. 4.2]). Let 5 S c n be such that

fo ]n
__

and g" ]n _.., m are twice continuously differentiable near 5. Moreover,
let h" n be lower semicontinuous and convex with g(5) e dom(h), and suppose
that S is closed and convex. Set q := f0 + (’1S) + h o g.
(1) If 5 is a local minimum .for q at which the basic constraint qualification (2.7) is

satisfied, then MO.(5 and

(4.2) max{dT(V2fo(5) + V2x((y,g(5)l))d" y e M(5)} :> 0

for all d
(4.3)
K(x) :-- {d In" [ > 0 such that h(g(x) + tg’(x)d) <_ h(g(x))Vt (0, [) }.

(2) IfM(5) 0 and

(4.4) sup{dT(V2fo(5) + V2x((y,g(5)>))d y e MQ(5)} > 0

for all d e D. (5) \{0} where

(4.5) D(x) "= {d e n q’(x;d) <_ 0},

then there is a "y > 0 such that

q(x) >_ + zllx

for all x near 5.
PROPOSITION 4.3. Let 5 S C ]n be such that fo n and g" ]n m

are continuously differentiable near 5. Moreover, let h n ._, be lower semi-
continuous and convex with g(5) dom(h), suppose that S is closed, and set q
fo + (’IS) + h o g. If

(4.6) ]ran I Nri[T(g(5)[levh(g(x))) x T(51S)] 0

and

(4.7) cone(Oh(.)(g(5))) N(g(5)llevh(g(5))),
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 983

then De.(J) K.()f3 T(IS). Moreover, if 0 q 0h(.)(g()), then (4.7) is satisfied,
and if the basic constraint qualification (2.8) holds, then (4.6) is satisfied.

Proof. All but the very last statement is established in [11, Prop. 5.1]. For the
last statement, we take polars in (2.7) to obtain

ran I + (T(g()llevh(g())) T(IS)) ]m.

Now, for any subspace W and closed convex cone K the condition W + K
implies that W N ri(K) by a simple separation argument. This establishes the
result.

We now apply these results to P. The result is a sufficiency theorem which does
not require a constraint qualification. The result is obtained by applying Theorem 4.2
to the function 0o.

THEOREM 4.4. Let S and C be nonempty closed convex subsets of ]n and m,
respectively, and let E S be such that fo n ___, ] and g n __., ]m are twice
continuously differentiable near and g() e C. Set f := f0 + (’1S) and consider
the problem 79 If the set of multipliers

(4.8) M,() {(/, y) e x m" (3.7)-(3.9) are satisfied}

is nonempty and

(4.9) max{dT(AV2fo() + V2x((y, g())))d" (A, y) e Mp()} > 0

for every d Dp() where

(4.10) Dp() := {d e T(IS) Vfo()Td <_ O, g’()d e T(g()IC)},

then there is a / > 0 such that

(4.11) y0(x) > yo() + llx 11

o vr x e := {x e s: () e v} r.
Proof. Consider part (2) of Theorem 4.2 as it applies to the function 0o defined

in (3.1). We begin by defining the functions fo, g, and h and the set S that appear
in Theorem 4.2. For the sake of clarity, we denote these functions and set as
g4.), h.), and S.., respectively. For the remainder of the proof the functions fo
and g, and the set S, will refer to those that are given in the statement of Theorem
4.4. With this notation we define fo.) 0, g.) := (f0, g), h4. := dist[.IC,0], and
S. :- S N (5 + ]). The set Me(J is given by

and (3.8)-(3.9) hold for f0(4.) and g(4.)} D M(),

and the set D() is given by

{d *(dlN([S)) + *(dl[0 1]Vfo(x) + g’(x)T(I N(g(x)lC)) G 0}

={d e T(IS AVfo()Td + yTg’()d G 0 VA e [0, 1], y e o N(g()IC) }
={d e T(IS) Vfo()Td <_ O,g’()d e T(g()lC)}
=D,(),
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984 JAMES V. BURKE

where the line follows by choosing the norm on 1 ]m to be I1 + IlYll0 for every
(, y) E 1 1m. Since inequality (4.9) implies inequality (4.4), we have the existence
of " > 0 such that

(4.12) 0o() >_ 0o() + zllx 11

for all x near .2, where by the theorem is proved.
Remarks. (1) The theorem actually establishes inequality (4.12), which is stronger

than inequality (4.11).
(2) We could just as well have used the multiplier set MQ(.2) in (4.9), but, since

the maximum is positive, both of these multiplier sets yield the same value in (4.9).
Unfortunately, without a constraint qualification, the same trick cannot be ap-

plied to obtain a second-order necessary condition for P The problem is that M, (.2)C
MQ(.2) with (0, 0) E M(.2). Consequently (4.2) is valid for all d ]n and it does
not imply (4.9) with the weak inequality. On the other hand, if the sets C and S
are polyhedral convex, then such a result can be established (e.g., see [35] and [36] or

[]).
If one is willing to assume the basic constraint qualification (2.7), then, by ap-

plying Theorem 4.2 to P both second-order necessary and sufficient conditions for
can be obtained. To establish this result, we require the following lemma.

LEMMA 4.5. Let X and Y be normed linear spaces and let C be a nonempty closed
convex subset of Y. Moreover, let .2 X, f X -- , and g X Y be such that
Of(.2) O, f is subdifferentially regular at 2, g(.2) C, and g is strictly differentiable
at .2. If the set K-T (.2) is nonempty, then

{d X’P(.2;d) <_ 0} {d E X’f(.2;d) 0, gs(.2)d

for all c > disto(01K-T(.2)).
Proof. The hypotheses and Rockafellar [68, Thms. 2 and 3] imply that

OP() Of() / g,(),(0 n N(g()IC)).

Thus, if a > dist0(01K-T(.2)) then clearly

D, (.2) C {d e X" po (.2; d) _< 0}.

On the other hand, let d {d" Pa(.2;d) _< 0}. Then for each y K-T (.2) with
][Yllo < a there is a z e Of(.2) such that 0 z + g(.2)*y. Hence,

o _> P2(; d)

_> (z + ’(), I111o
(1 )(z, d),

,d)

and so fo(.2; d) >_ (z, d) >_ 0. But 0 e N(g()IC) o so that fo(.2; d) <_ 0. Conse-
quently, fo(.2; d) 0 and g(.2)d e T(g(.2)l). [

Remark. The set Dp(.2) given above is the obvious generalization of the set de-
fined in (4.10) to which it reduces under the hypotheses of Theorem 4.4.
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 985

THEOREM 4.6. Let S and C be nonempty closed convex subsets of ]n and ]m,
respectively, and let -2 E S be such that fo n

__
] and g Rn

_
]m are twice

continuously differentiable near 2, g(-2) C, and the basic constraint qualification
(2.7) holds. Set f := f0 + (’1S) and consider the problem P.

(1) If-2 is a local solution to P, then

(4.13) V((y,g(-2))))d’y e K-T(-2)} >_ 0max{dT(V2 fo(-2) + 2

for all d D,(-2).
(2) If K-T (-2) 0 and

(4.14) max{dT(V2fo(x) + V2x((y, g(-2)))))d y e K-T(-2)} > 0

for all d e D, (-2)\ {0}, then for each

(4.15)

there are scalars > 0 and / > 0 such that

P (x) > +  llx

for all x -2 + , and
fo( ) > + zllx

for all x n (-2 + ) where

{x e e c}.

Proof. In Q take h a dist(.IC ). Then, by Proposition 4.3 and Lemma 4.5,

(4.16) D(-2) cl(K(-2))n T(-21S D7(-2)

as long as a > Ilyllo for some y e K-T(-2). Moreover, by part (1) of Proposition 3.2,
the set K-T (-2) is compact. Hence if K-T (-2) : O, then is finite and for any a >_
one has

(4.17)

(1) By Corollary 2.5.1, there is an a > 0 such that is a local minimum for Pa.
Taking h := a dist(.IC in Q, we get M(-2) C K-T(-2), where a is chosen so that
a > dist0(01K-T(-2)). The result then follows from (4.16) and part (1) of Theorem
4.2.

(2) By taking a > 0 to satisfy (4.15) and by observing (4.16) and (4.17), the
result is an immediate consequence of part (2) of Theorem 4.2 with h := a dist(.IC).

Remark. For the case in which C and S are polyhedral convex, Theorem 4.6 is
also obtained by Ioffe [39]-[41], Ben-Israel, Ben-Tal, and Zlobec [4], and Rockafellar
[63]-[64].

In Theorem 4.6 we obtain second-order necessary and sufficient conditions for P
from the corresponding second-order conditions for P. This approach is the reverse
of that which is usually taken in the literature. In particular, Charalambous [13,
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986 JAMES V. BURKE

Thm. 2], Han and Mangasarian [33, Thm. 4.61, and Lasserre [44, Thm. 2] essentially
show that if K-T (-2) } and the second-order sufficiency condition of Pennisi [57,
Thm. 3.3] holds for some y E K-T(-2), then -2 is a strict local minimum for Pa for
all a > IlYll0. These results do not require the imposition of the basic constraint
qualification (2.7). On the other hand, they do require the application of a stronger
second-order sufficiency condition. In the next result, we obtain a result, paralleling
those of Charalambous, Han and Mangasarian, and Lasserre.

THEOREM 4.7. Let S, C, -2, f0, and g be as in the statement of Theorem 4.6,
except that the basic constraint qualification may fail to hold at2. If there exists

K- T("2) such that

dT(V2fo("2) + V2xx((y, g("2))))d > 0

for every d e Dp(-2)\{0}, then for each a > IlYll0 there are scalars e > 0 and / > 0
such that

P(x) >_ P("2) +  llx 11
for all x -2 + 1 and

fo(x) > fo( ) +  llx
for all x N (-2 + ]).

Proof. For this choice of a (4.16) holds and by part (3) of Proposition 2.6, 0
OPa("2) with y E M(-2) where h := a dist(.IC). Hence, the result again follows
directly from part (2) of Theorem 4.2.

Before leaving this section we obtain yet another sufficiency result for :P. It is a
first-order sufficiency result and is a direct consequence of Lemma 4.5. The result is
similar to results by Howe [37], Rosenberg [71, Thm. 3], and Bazaraa and Goode [3,
Thms. 2.1, 2.2, 3.1, and 4.1].

THEOREM 4.8. Let X, Y, "2, f, and g be as in the statement of Lemma 4.5 where
it is further assumed that X is finite-dimensional. If the set K-T (-2) is nonempty and
Dp("2) {0}, then there are scalars > 0 and > 0 such that

> +

for all x e (-2 + ) and a > dist0(01K-T("2)) and

f(x) _> f (-2) -l-- "/llx II
for all x e {x: g(x) e C} (-2 + ).

Proof. From Lemma 4.5, Pc("2; d) > 0 for all d # 0. By Rockafellar [68, Thms.
2 and 3], Pc("2; d) P("2; d). The result now easily follows with inf{P("2; d):

5. Convex programming. Eremin and Zangwill originated the study of exact
penalization in the context of convex programming. In this section, we extend this
theory to the problem P. The step in this process is to establish an equivalence
between the problem P and a problem P to which the classical theory of convex
programming applies [35], [36], [38], [43], [46], [48], [51], [70], [72]. To this end, let X
be a real normed linear space, Y a real reflexive Banach space, C C X and S C X be
nonempty, closed, and convex, and set

c .= > e c},
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 987

where the closure is taken with respect to the product topology on N Y.
Given g" X Y we define G" X - Y by

G(x) (-1,-g(x))

for all x E X. Consider the constrained optimization problem

(P) minimize f(x)
subject to G(x) <_ 0,

where f "= f0 + (.[S) with f0 X --. a convex function and where "_<" denotes the
partial order induced on N Y by C, i.e., _< y2 if and only if y2 -yl E C. Observe
that x X solves P if and only if x solves P. We now develop a purely convex theory
for P based upon that which already exists for P.

LEMMA 5.1. Let G X -- ] x Y and C c Y be as given above. Then the
following conditions are equivalent.
(1) G is convex with respect to C; i.e., G(Ax + (1 A)y) _< AG(x) + (1 A)G(y) for

every x,y X and A 6 [0, 1].
(2) g is concave with respect to rec(C); i.e., g(Ax + (1 A)y)- lAg(x) + (1 A)g(y)] e

rec(C) for every x, y e X and A e [0, 1].
(3) For each y e bar(C) the mapping gy X , given by gy(.) "= (y,g(.)), is

COtVeX.

Moreover, each of the above conditions imply that the distance function dist(g(.)lC
is convex.

Proof. (1) ,== (2)" Let xl,x2 X and choose A [0, 1]. Then G is convex with
respect to C if and only if

A(-1,-g(xl)) -[- (1 A)(-1,-g(x2))- (-1,-g(xl + (1 A)x2)) e C,

or equivalently

g(AXl + (1 A)x2)- lAg(x1)+ (1 A)g(x2)] e rec(C)

since rec(C) {y" (0, y) C}. This is equivalent to saying that g is concave with
respect to rec(C).

(2) :=, (3)’ The mapping g is concave with respect to rec(C) if and only if for
every xl,x2 X and A [0, 1]

g(Axl + (1 A)x2)- lAg(x1)+ (1 A)g(x2)] e (bar(C))

since [bar(C)] 0 rec(C). This is equivalent to saying that

(y,g(Axl -F (i- A)x2)> < <y, Ag(xl)-F (I A)g(x2)>

for every xl,x2 e X, A e [0,1], and y e bar(C); i.e., <y,g(.)> is convex for every
y bar(C).

Finally, if any one of (1)-(3) hold, then clearly (3) is valid. Hence, for every
y e bar(C) dom(*(.[C)) the function

(u, *(ulc)
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988 JAMES V. BURKE

is convex. Therefore,

dist(g(.)lC sup{(y, g(.)) *(ylC)’y e 10}

is convex since it is the supremum of a collection of convex functions. [::]

Remark. If C is bounded, then g is concave with respect to the rec(C) if and only
if g is affine, and if C 1 {0},-8, then g is concave with respect to rec(C) if
and only if g is convex for 1,..., s and g is affine for s + 1,..., m.

LEMMA 5.2. Let L" S C* - ] be the standard Lagrangian for P where C*
-C, i.e.,

L(x, z)’= f(x) + (z, G(x)),

and define L" S Y* ] by

L(x, y) := f(x) + (y, g(x)) *(ylC).

Suppose that f := fo + (’1S) with fo X --+ convex and g: X - Y is concave

with respect to rec(C) so that both L and L are convex-concave saddle functions by
the previous lemma. Then (xo, (o,-yo)) E S C* is a saddle point for L if and only
if (xo, yo) is a saddle point for n in which case o *(yolC), yo e N(g(xo)lC), and
g(o) c.

Proof. By direct computation we verify that

C* := {(,-Y)I(, Y)e epi(*(.IC)) }.

If (xo, (o,-yo)) is a saddle point for L, then, in particular, xo S and

((,-y), (-1,-g(xo))) <_ ((0,-Y0), (-1,-g(xo))}

for every (, y) e epi(*(.IC)), or equivalently,

(5.1) <, (xo)> <_ <o, (xo)> o
for every (, y) G epi(*(.IC)). But this can occur if and only if

o *(olC), (o) e c, <o, (xo)> *(olC),

and
L(xo, y) <_ L(xo, yo)

for every y e bar(C). To see this, set y yo in (5.1) to get o *(yolC), next set
y yo + z in (5.1) to get <z,g(xo)> <_ *(zlC for all z e bar(C), and so g(xo) e C.
Finally, having g(xo) C we obtain from (5.1) that

o < <o, 9(o)>- *(olC) < o.

The reverse implication is obvious.
By employing the fact that o *(yolC), g(xo) e C, and *(yolC) <yo, g(xo)),

we obtain from the other half of the saddle point inequalities for L that

L(xo, yo) L(xo, (o,-yo)) <_ f(x)+ <yo, g(x)>- *(yolC)
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 989

for every x E S, or equivalently,

L(xo, yo) <_ L(x, yo)

for all x E S whereby the lemma is established.
Having obtained the equivalence of the saddle point conditions for L and L, we

can now simply translate the saddle point results for :P into similar results for P. In
this way, we obtain the following two results from [46, Cor. 1, p. 219] and [46, Thm. 2,
p. 221], respectively.

THEOREM 5.3. Let X be a real normed linear space and Y a real reflexive Banach
space, let S C X and C c Y be nonempty, closed, and convex, and suppose that
f := f0 + (’1S) with fo" X - ] convex, and g" X Y is concave with respect to
rec(C), and there is an x e S such that g(x) e int(C). If3 solves P, then there is a- N(g(3)lC such that (3, y) is a saddle point for L(x, y).

Remark. If X and Y are finite-dimensional, then we need only assume that there
is an x e S such that g(x) e ri(C).

THEOREM 5.4. Let X, Y, S, C, g, and f be as in the statement of Theorem 5.3. If
there exists an 3 S and bar(C) such that (3, ) is a saddle point for L(x, y),
then 3 solves 7).

Further results of this type can also be obtained. Theorems 5.3 and 5.4 are
presented only to give the flavor of what can be said in the convex case. In this
setting, the most natural notion of a Kuhn-Tucker multiplier is derived from that of
a saddle point of L. Thus, for the convex case, we extend the definition of K-T (x) as
follows;

K-W(x) "= {y e bar(C)" (x, y)is a saddle point for L}.

Our primary result on exact penalization in the convex case now follows.
THEOREM 5.5. Let X, Y, S, C, f, and g be as in the statement of Theorem 5.3, let

3 S, and consider the following two conditions:
(A) f is continuous near 3 and g is strictly differentiable at
(B) X and Y are finite-dimensional and g is Lipschitz near

The following statements are equivalent:
(1) 7) is calm at 3.

(2) 3 is a global minimum of Pa for all a suJficiently large.
Moreover, if either (A) or (B) holds, then (1) and (2) are equivalent to

(3) K-T (3) O.
Furthermore, given K-T(3), then 3 is a global minimum for Pa for all

I111o and if c > dist0(01g-T(3)), then

arg min{Pa(x) x e X) arg min{f(x) g(x) e C}.

Proof. By Lemma 5.1, Pa is a convex function for all a _> 0; consequently, any
local minimum of Pa is a global minimum of Pa. Therefore, the equivalence of (1)
and (2) is a consequence of Theorem 2.1.

The proof that (3) is equivalent to (1) and (2) is essentially identical under the two
hypotheses (A) and (B), except that we use [66, Cor. 5.2.3] in the finite-dimensional
case and [68, Thms. 2 and 3] in the infinite-dimensional case. Hence, we provide the
proof only when (A) is assumed.
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990 JAMES V. BURKE

We begin by assuming (2) and showing that (3) holds. From (2) there is a E
0 dist(.IC)(g()) with 0 e Of(J)+ ags()*, or equivalently, there is a N(g()lC
such that

0 OL(, ),

since 0 dist(.IC)(y(Z))- ]0 N N(g(Z)lC by Proposition 3.1. Consequently,

L(Z, ) _< L(x, )

for all x X, since L(x, ) is convex in x by Lemma 5.1. Finally, since

sup{(y, *(yICD’y e Y),

we have that
L(, y) _< L(, y)

for all y Y.
Next we assume that (3) holds and establish (2). Since L(Z, y) _< L(Z, ) for all

y E Y we know that

Next, let x S and choose a _> IIll0, then

P() L(, y)_
L(x, )_
sup{L(x,y)’y
f(x)+ asup{(y, g(x))- *(y]C)ly e 0}
Pa(x).

Hence is a global minimum for Pa(x) for all a >_
To prove the last statement of the theorem choose K-T() such that

Setting I1110, we know that 0 E OPt(2) and 0 OPa() so that is a global
minimum for both P and Pc. Thus, in particular, arg min{Pa(x)’x X} . Let
e arg min{Pa(x)’x e X}, we need to show that e arg min{f(x)’g(x) e C}.

For this, it is sufficient to show that f(5) _< f() and g() C. Due to the nature of
and 5 we have

f(5) + a dist(g(5)lC _< f()+ a dist(g()lC

and
f(g) + dist (g (g) C)

_
f()+ dist(g()lC).

By adding these inequalities we find that

(a- )dist(g(5)[C)<_ (a- )dist(g(g)lC).

Hence g() e C and f()
Remark. The form of Theorem 5.5 is based on Rosenberg [71, Thm. 2]. This

result extends similar results appearing in Eremin [23], Zangwill [75], Pietrzykowski
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 991

[58], Luenberger [47], Charalambous [13], Han and Mangasarian [33], Lasserre [44],
Garcia-Palomares [31], Rosenberg [71], and Bertsekas [6].

6. Historical review. In this section we attempt to provide a chronology of
those results that establish the existence of an exact penalty parameter. We apologize
for any omission or oversight.

It seems apparent that the big-M method for linear programming is the precursor
of exact penalization techniques for nonlinear programming, especially since the initial
results were obtained for the convex programming case. However, we are uncertain
that this was indeed the motivation. Our earliest reference for the big-M method
is Charnes, Cooper, and Anderson [14, 4]. The precise origins of the method are
unknown to us. Our earliest reference for exact penalization in nonlinear programming
is Eremin [23]. In this paper, Eremin considers the case of convex programming with
C I x {0}.-8 and S Rn. In [23, Whm. 2], he shows that if e K-T(3), then
3 is a global minimum for Pa whenever a > IIY]10 when m is endowed with the
norm. At essentially the same time, Zangwill [75] published his well-known paper.
Zangwill considered the case of convex programming with C _m and S n
and showed that if 3 solved :P and g(xo) E int(C), then 3 minimized Pa for all
a > (f(xo) f(3) + 1)(maxEgi(x0)" 1,..., m]) -1. This result can be used to show
that K-T (3) = ), and so is somewhat deeper than Eremin’s result.

Pietrzykowski [58] provides the result for the nonconvex case. He considers the
instance of :P where C ]t{ x {0},-8 and S n. The analysis that Pietrzykowski
gives a reminiscent of Zangwill’s. He shows that if 3 is a strict local minimum for
near which f and g are differentiable and at which g (3) is surjective, then 3 is a strict
local minimum for Pa for all a sufficiently large. Pietrzykowski’s result can be used
to show that K-T (3) 0 under these hypotheses.

Luenberger [47] considers exact penalization in the setting of optimal control.
We interpret his result as it applies to P. In this context, Luenberger has C
and S ]1n and assumes that 3 is a local minimum for P at which there exists a

N(g(3)lC such that 3 is a local minimum for L(x, ). Under these circumstances
Luenberger shows that 3 is a local minimum for Pa for all a _> ]]1]0 where Im is
endowed with the 11 norm. Luenberger’s proof is the same as that provided by Eremin.
Clearly, Luenberger’s result applies in the convex case subject to the appropriate
constraint qualification, but it can also be applied to cases in which the second-order
sufficiency condition of Pennisi [57] holds. Luenberger himself only states that this
result applies "under standard regularity conditions."

Evans, Gould, and Tolle [24] consider the case where C R_’2, S 1n, and f and
g are continuously differentiable. In this context, their nondifferentiable exact penalty
functions are quite different from the Eremin-Zangwill exact penalty functions. For
these new functions they provide some exactness results that are similar in spirit to
those of Eremin, Zangwill, and Pietrzykowski.

Howe [37] considers the case in which C ItS__ x {0}e.-, S ]ln, and f and g
are continuously differentiable. His result is the appearance of the type of sufficiency
result given in Theorem 4.8. He shows that if D,(3) {0}, then 3 is a local minimum
for P for all a sufficiently large.

Bandler and Charalambous [2] consider the same case as Evans, Gould, and Tolle
[24] and derive yet another type of nondifferentiable exact penalty function. For this
exact penalty function they provide an exactness result that is similar in spirit to
those of Eremin, Zangwill, and Pietrzykowski.

Bertsekas [6] investigates the case of convex programming with C RT and
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992 JAMES V. BURKE

X ’, and establishes necessary and sufficient conditions for a function of the form

m

r(x) f(x) + pi(gi(x))
i--1

to be exact for P. If (5, y) is a saddle point for L(x, y) he shows that

pi(t)
lim _>y(i) i=l,
t-,O+ t

with
arg min{-(x)} arg min{f(x)’g(x) e C},

pi(t)
lira > ().
t-0+ t

We obtain Eremin’s result as a special case. Bertsekas also applies his result to the
exact penalty functions of Evans, Gould, and Tolle.

Charalambous [13] is the first to consider more general norms in the construction
of P. Specifically, Charalambous considers the case C T, S where f
and g are continuously differentiable. He then utilizes the /p-norms to form P.
Charalambous establishes two key results. In the result, he considers the convex
programming case and shows that if (5, ) is a saddle point for L(x, y), then is a
global minimum for Pa for all a > I1110. The proof is similar to those of Eremin
and Luenberger. Charalambous’ second result is the instance of an exact penalization
theorem employing Pennisi’s [57] second-order sufficiency conditions. He shows that
if the second-order sufficiency condition of Theorem 4.7 is satisfied, then is a local
minimum for Pc for all a > II IIo.

Dolecki and Rolewicz [20] present the deepest first-order results for exact penal-
ization currently available in the literature. They consider a model problem that is
somewhat more general than the problem 7) and obtain exact penalty results based
on a more general notion of subdifferential. In this context, they obtain one of the
implications in Theorem 2.1 and a version of Corollary 2.3.1. The Dolecki-Rolewicz
paper represents the attempt to extend exact penalization techniques to the nondif-
ferentiable case in infinite-dimensions.

Perhaps the most widely referenced paper on exact penalization is by Han and
Mangasarian [33]. Their paper is the most comprehensive and comprehensible study
of the subject available in the literature. Han and Mangasarian consider the case in
which C lts__ x {0},-, S Nn, and f and g are continuously differentiable. One
of the most significant contributions of their paper is the relaxation of the first-order
conditions under which an exact penalty parameter for :P exists. Specifically, they
show that if the Mangasarian-Fromovitz constraint qualification is satisfied at a strict
local solution g to P, then there exists an _> 0 such that is a local solution to P
for all a _> . They establish this result for an arbitrary norm by appealing to the
equivalence of norms in finite dimensions. This result is an instance of Corollary 2.4.1
(however, Corollary 2.4.1 does not require that g be a strict local solution). They
also provide a second-order result that is similar to that of Charalambous. Moreover,
they establish the equivalence of stationarity conditions for 7:’ and the minimization
of Pa, as is done in Proposition 6.2. They conclude by again establishing Eremin’s
result for the case of convex programming. The penalty functions they consider are
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 993

a generalization of the Eremin-Zangwill penalty functions and are based on the work
of Bertsekas.

The work of Lasserre [44] appears soon after that of Han and Mangasarian. He
considers the case in which C := s__ {0}R,-s, S ]n, f and g are continuously
differentiable, and m is endowed with a weighted 11 norm. In this case, he establishes
a second-order result similar to that of Charalambous. Moreover, he shows that if the
active constraint gradients are linearly independent at a local solution to P, then an
exact penalty parameter exists for P. This result is different from the corresponding
result of Han and Mangasarian, and Pietrzykowski since Lasserre does not assume
that the solution is a strict local minimum. Nonetheless, it appears that both of these
results are subsumed in the work of Dolecki and Rolewicz. Lasserre also recaptures
and extends the result of Luenberger by recognizing the relationship between saddle
points of the Lagrangian and local minimum of the exact penalty function.

Fletcher [29, 14.3] considers the same situation as Lasserre. Under the hypothesis
that the active constraint gradients are linearly independent, Fletcher [29] is the to
recognize the actual equivalence of the first- and second-order optimality conditions
for P and the exact penalty function Pa. Consequently, Fletcher’s work is a direct
precursor of the results presented in this paper.

Bazaraa and Goode [3] consider the case where C _m, S is closed, and f0 and g
are continuously differentiable. They establish some extensions to Howe’s result using
some of the modern techniques of nonsmooth analysis. Moreover, by assuming that
S is compact, they obtain global versions of Howe’s theorem and give estimates for
the value of an exact penalty parameter that are reminiscent of those established by
Zangwill.

In [15] Clarke establishes his elementary exact penalization result for the case in
which the inclusion constraint g(x) E C is absent. This result is one of the corner
stones of 2 and appears as Theorem 2.3. Clarke’s proof should be reviewed by every
student of this subject. It is very elementary, requiring only seven short sentences.
Clarke also shows that calmness implies the existence of an exact penalty parameter
for P when C := ls__ x {0}R

In [59], Polak, Mayne, and Wardi consider the case where C Rs__ x {0},-s,
S Rn, f and gi, 1,..., s are locally Lipschitz, and gi, s + 1,..., rn are contin-
uously differentiable. In this setting, they establish the equivalence of the stationarity
conditions for P and the minimization of P for all a sufficiently large. This result is
generalized in Proposition 2.6.

Rosenberg [71] considers the case in which C ps__ x {0},-, S n, and f and
g are locally Lipschitz functions. He begins by providing local and strict local versions
of Clarke’s result that calmness implies the existence of an exact penalty parameter.
He then reviews the convex programming case and establishes the version of Theorem
4.8, upon which our treatment is based. Rosenberg concludes his study by extending
Howe’s result to the Lipschitzian case where he provides results that are substantially
more general than those of Bazaraa and Goode. For problems of this type he also
provides a sharp lower bound for the value of an exact penalty parameter.

aarcia-Palomares [31] examines the case in which C ] x {0},- S ]n,
f and g are continuously differentiable, and m is endowed with the l norm. The
perspective in this paper is quite similar to the one we have taken. His goal is to
establish the equivalence between the first- and second-order optimality conditions for
P and Pa. In this regard, he provides versions of some of the results presented in the
latter half of 2 and 3. His approach allows a great deal of further insight in the case
of the t-norm.
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994 JAMES V. BURKE

In [50] Mangasarian considers the convex programming case with C s__, S
n, and f and g continuously differentiable. He extends the analysis of Zangwill
to provide lower bounds for the value of an exact penalty function under weaker
hypotheses.

Recently Conn and Gould [18, 1987] have generalized the tl exact penalty function
to obtain an exact penalty function for a class of semi-infinite programming problems.
They consider both the convex and nonconvex cases, and their results are not covered
by those presented in this paper. These new exact penalty functions for semi-infinite
programming are quite interesting and deserve much further study.

In [64] Rockafellar studies the case in which C c ]m is the product of intervals,
X C n is polyhedral convex, and fo(x):= max{f0j (x): j 1,..., s} where foj,j
1,..., s and g are all continuously differentiable. As in our study, Rockafellar derives
the equivalence of first- and second-order optimality conditions for 79 and Pa via
similar results for convex composite optimization. However, Rockafellar’s results rely
on the piecewise linear-quadratic case, the theory that he develops in [63].

We conclude by offering our apologies to the many authors we have not men-
tioned, especially to those who have made significant contributions in the domain of
algorithmic development.

A. Appendix. We proceed to establish Theorem 2.5. For this purpose we will
need the following lemmas from Burke and Poliquin [11].

LEMMA A1. Let q" n __, ] be as given in Theorem 2.5. If E dom(q) is such
that (2.9) holds, then there is a neighborhood U of2 such that (2.9) is satisfied at every
point of dom(q) fq U.

Proof. This is a direct consequence of the upper semicontinuity of Of, Of, Og,
and N(.Idom(h)).

LEMMA A2. Let h" m be as in Theorem 2.5 and let {(yi, zi)} C graph (Oh)
be such that yi y e dom(h) and Ilzill T x. Then every cluster point of the sequence
{zi/llzill } is an element of the normal cone to dom(h) at y.

LEMMA A3. Let h" ]m ] and ha" m __, be as in Theorem 2.5. If ha(Y)
h() + 11- 11, where dom(h), then u Oha(y) if and only if u Oh(H) N (aD)
and (- ) N(ulc).

The proof of Theorem 2.5 now follows.
Proof. Let e, 5 > 0 be such that f(x) > f() for allx E +l and (2.9) is

satisfied on dom(q) N (5 + 51). Set

:= i + max{llg(x g()ll’x E +
and define

ha(y) "= inf{h(z) + (zlg( + ]) + clly zll" z e ]’}.

Consider the function

q%(x) := a(x) + (x) + (xl +

where ’ f + a o g and q(x) dist(xl + 6]). Observe that arg min’a
is nonempty as ’a is lower semicontinuous and / is compact. Hence, there is a
sequence a for which there is a corresponding sequence {x} C +] converging
to some element of + such that

x arg min’
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 995

for each 1, 2,.... Also, from the lower semicontinuity of h and the compactness of
g() + , there exists for each 1, 2,... a yi in dom(h)N (g() +) such that

has (xi) h(yi) +

Clearly,

(A.1) q() >_ a (xi) >_ (xi).

Therefore, as ai c we have ]IYi- g(xi)ll 0 so that yi g(), and thus eventually
yi e int(g() + ), which implies that a (xi) q (xi). From (A.1) we also obtain
that g() e dom(h) N (g() + B), e + , and

q() >_ q()+ () >_ q().

But since E + eI, the hypotheses imply that q() q() and E + 61.
We now show that eventually g(x) dom(h). Since x arg min’ and xi

+ 5I, we know that eventually

0 e +

Hence, by Rockafellar [66, Cor. 5.2.3] and Lemma A.3, eventually there exist vi

Of(xi) and wi e Oh(g(xi)) with

w Oh(yi) and (g(xi) y) e N(wilai])

(since N(yi[g() + ) {0} as eventually yi e int(F() + ])) such that

(A.2) 0 Vi + Og(xi)Twi -]"

If the sequence {(vi, w)} possesses a divergent subsequence {(v,wi)}j, then, by
Lemma t.2, the sequence {(vi, w)/I](v, wi)]l}j possesses a cluster point (,) with

Of(), " N(g()ldom(h)) and I1(,)11 1. But for such a cluster point
(,) we obtain from (3.5) that 0 Of()+Og()Tw which contradicts the choice of
5. Thus the sequence {(vi, wi)} is bounded. Hence for sufficiently large {wi} C I
so that N(wlaiI0) {0} for all such that ai > -5. But then yi g(x) so that
g(x) dom(h) whenever a > -5. Therefore, for all ai > -5,

q() >_ (xi) >_ (xi) q (xi)= q(xi) >_ q(’2),

so that 5 arg min’a. Consequently, 5 is also a local minimizer of qa for all ai > -5.

Remark. The method of proof also shows that if is a strict local minimizer of
q, then it is also a strict local minimizer of qa.
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