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We develop a convergence theory for convex and linearly constrained trust region methods  which 
only requires that the step between iterates produce a sufficient reduction in the trust region 
subproblem. Global convergence is established for general convex constraints while the local 
analysis is for linearly constrained problems. The main local result establishes that if the sequence 
converges to a nondegenerate  stationary point then the active constraints at the solution are 
identified in a finite number  of  iterations. As a consequence of  the identification properties, we 
develop rate of  convergence results by assuming that the step is a truncated Newton method.  Our 
development is mainly geometrical; this approach allows the development of  a convergence theory 
without any linear independence assumptions.  
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I. Introduction 

Each iteration of a trust region method for a linearly constrained problem requires 
the solution of a subproblem of the form 

min{~0k(w): xk + w c a ,  [[ w[[ <~ Ak}, (1.1) 

where Ok is a quadratic model of the reduction in the function, S2 is the feasible 
set, the constraint xk + w c S2 guarantees that the iterates remain feasible, and the 
constraint [[ wl[ <~ Ak is the trust region. Convergence results for unconstrained trust 
region methods only require that the approximate solution sk of subproblem (1.1) 
produce a sufficient reduction in the model Ok, and thus it is natural to search for 
an extension of the sufficient reduction concept to the constrained case. A sufficient 
reduction is certainly obtained if sk is the global solution of subproblem (1.1), but 
this choice of sk is not computationally realistic for a general quadratic Ok. The 
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global solution of (1.1) can be obtained if we force ~0k to be strictly convex, but 
this is contrary to the basic philosophy of trust region methods which requires 4tk 
to be a model of the reduction in the function. 

We ~,~velop a convergence theory for trust region methods which avoids convexity 
assumptions on the model and the need to obtain the global solution of the 
subproblem. Our development is mainly geometrical; this approach allows the 
development of  a convergence theory without any linear independence assumptions. 
We show that global convergence can be established for the general minimization 
problem 

rain{f (x): x ~ S2}, (1.2) 

where f :  Rn~  ~ is a continuously differentiable mapping on the closed convex set 
~2. Local convergence results are mainly concerned with the polyhedral case where 
s2 is defined by general linear constraints. 

The aim of a global convergence analysis is to show that if {Xk} is the sequence 
generated by the trust region method, then every limit point of the sequence is a 
stationary point for problem (1.2). In this paper we follow Mor6 (1988) by developing 
the global convergence properties of the trust region method in terms of the projected 
gradient. This approach leads to stronger results. 

The development of  the identification properties of trust region methods is the 
crucial ingredient in the local convergence analysis. This requires proving that under 
the appropriate assumptions, if the sequence {Xk} converges to some x* then there 
is an integer/Co such that the active constraints at Xk agree with the active constraints 
at x* for all k ~> k0. 

Our development of  global and local convergence results follows the outline that 
we have described. The development starts in Section 2 with some background 
material on projected gradients. This section presents the background material 
needed to establish the identification properties of trust region methods. Most of 
the results in this section can be found in the papers of Calamai and Mor6 (1987) 
and Burke and Mor6 (1988). 

The trust region method for problem (1.2) is presented in Section 3. The develop- 
ment of this algorithm can be traced back to the work of Fletcher (1972) and Gay 
(1984) on general linearly constrained problems, the work of Corm, Gould and 
Toint (1988a, 1988b) on problem (1.2) when S2 is defined by bound constraints, 
and the work of Toint (1988) on problems with a general closed convex /2. This 
algorithm is also related to the projected Newton method of Bertsekas (1982) for 
bound constrained problems, and to the two-metric projection algorithm of Gafni 
and Bertsekas (1984) for general linearly constrained problems. These projection 
algorithms, however, need convexity assumptions and anti-zigzagging strategies that 
are not needed by the trust region method. 

The trust region method presented in Section 3 is based on the algorithm proposed 
by Toint (1988) with the modifications of the step suggested by Mor6 (1988). The 
main requirement is that the step produces a sufficient decrease in the model. There 
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is no need to obtain the global solution of an indefinite quadratic programming 
problem. Moreover, the requirements on the step can be satisfied by solving positive 
definite quadratic programming problems. 

Section 4 considers the basic global convergence theory for the trust region method 
on a general closed convex set 12. The main result of this section is Theorem 4.4. 
This result extends the global convergence result of Powell (1984) for the uncon- 
strained version of problem (1.2) where 12 is R". Theorem 4.4 also improves on the 
work of Toint (1988) for closed convex 12 and on the work of Fletcher (1972, 1987) 
for linearly constrained problems because Toint assumes that Vf  is Lipschitz con- 
tinuous and that the feasible set 12 is bounded, while Fletcher requires that the step 
be a global solution of subproblem (1.1). 

The assumptions made by Theorem 4.4 on the model I/t k a r e  satisfied, for example, 
if ~bk is the quadratic 

Ok(w) = (Vf(wk), w)+½(w, Bkw), (1.3) 

and the matrices Bk satisfy the growth condition 

IIBk]] <~ ~/k, k>~ko, (1.4) 

for some constant y and index ko. If the model ~b k satisfies these assumptions, and 
if the gradient Vf  is uniformly continuous on the level set 

~(Xo) = {x c 12: f (x )  ~f(x0) t ,  

then Theorem 4.4 implies that the trust region method of Section 3 generates a 
sequence {Xk} such that either {f(xg)} is unbounded below or that 

l i m  i n f [ [ x k  -- P(Xk  --• f (Xk))II  = 0 ,  ( 1 . 5 )  
k ~ o o  

where P :N"  ~ 12 is the projection into 12. If the sequence {Xk} is bounded then (1.5) 
implies that {Xk} has a limit point which is a stationary point of problem (1.2). 

The case where { f ( X k )  } is unbounded below can be avoided by assuming that 
{Xk} has a limit point or that f is bounded below on the level set Zg(x0). These two 
assumptions are certainly satisfied if 12 is bounded. 

Section 5 considers convergence results in terms of the projected gradient V a f  
These results are motivated by the work of Calamai and Mot6 (1987) and Burke 
and Mor6 (1988), which show that the behavior of the sequence of projected gradients 
is closely related to the identification properties of the algorithm. Under the same 
assumptions as in Theorem 4.4 we show that for each iterate Xk it is possible to 
define a Cauchy point x c such that 

lim infl]V~f(x~" ) 1[ = 0. (1.6) 
k o o o  

If the sequence {xk} is bounded then (1.6) also implies that {xk} has a limit point 
which is a stationary point of problem (1.2). Also note that (1.6) applies, for example, 
to the hypereube method of Fletcher (1972) where 4Jk is the quadratic (1.3) and the 
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matrices Bk are generated by a quasi-Newton update which satisfies the growth 
condition (1.4). 

In Section 5 we also develop stronger results which imply that every limit point 
of the sequence {xk} is stationary. These results require additional assumptions on 
the model which are satisfied, for example, if q'k is the quadratic (1.3) and the 
sequence {Bk} is bounded. Under these assumptions on the model, Theorem 5.4 
shows that i f f : R  n ~ R  is continuously differentiable on S2 and x* is a limit point 
of {Xk}, than there is a subsequence {Xk,} which converges to x* with 

lim II vaf (x~) l[  = o. 

Moreover, {xkCi} also converges to x*, and thus x* is a stationary point for problem 
(1.2). 

Sections 6 and 7 contain the local convergence analysis of  the trust region method; 
Section 6 is concerned with conditions which guarantee convergence of the iterates, 
while Section 7 develops the identification properties of the trust region method. 

Most of the results in Sections 6 and 7 are concerned with the behavior of a trust 
region method in a neighborhood of a nondegenerate stationary point x*, that is, 

- V f ( x * )  • r i (N(x*)) ,  

where N ( x * )  is the normal cone at x* and r i( . )  denotes the relative interior of a 
convex set. This definition of nondegeneracy is due to Dunn (1987). An advantage 
of this definition is that it does not make any linear independence assumptions on 
the constraints. We also note that if S2 is polyhedral then x* is nondegenerate if 
there is a set of positive Lagrange multipliers. This definition of nondegeneracy can 
thus be viewed as a generalization of the standard strict comlementary condition. 

In addition to nondegeneracy, results in Sections 6 and 7 usually assume that s2 
is polyhedral so that problem (1.2) is then a general linearly constrained problem, 
and that the approximate solution sk of subproblem (1.1) is such that 

~¢(x c) c M(xk + Sk), (1.7) 

where M(x) is the set of active constraints at any x ~ S2. This assumption on sk can 
be satisfied, for example, by setting Sk = X~k " -  Xk. 

Corollary 6.7 is typical of the convergence results of Sections 6. This result is 
concerned with variations on Newton's method, that is, methods whose model 4rk 
is the quadratic (1.3) with B k =V2f(xk). We assume that f : • "  ~ R  is twice con- 
tinuously differentiable on a polyhedral S2, that V2f is bounded on the level set 
~(x0),  and that Sk satisfies (1.7). Corollary 6.7 shows that if {Xk} has a limit point 
x* which is nondegenerate and satisfies 

w e N ( x * )  ± , w ¢ O  ~ (w, V2f(x*)w)>O,  (1.8) 

then {x~} converges to x*. Note that if x* is nondegenerate then condition (1.8) is 
equivalent to the standard second order sufficiency condition. Results similar to 
Corollary 6.7 have been obtained by Conn, Gould and Toint (1988a) under the 



J. V. Burke et aL / Convergence of  trust region methods 309 

assumption that ~2 is defined by bound constraints, and by Fletcher (1987) under 
the assumption that Sk is a global solution of subproblem (1.1) and that the active 
constraint normals are linearly independent. 

The identification results of  Section 7 can also be illustrated by considering 
variations on Newton's  method. We again assume that f :  Nn __> R is twice continuously 

differentiable on a polyhedral  ~2, that V2f is bounded on the level set ~(x0),  and 
that Sk satisfies (1.7). Theorem 7.2 shows that if {xk} converges to a nondegenerate 
point x* then there is an index k0> 0 such that 

~Q/(Xk) = J (X*) ,  Sk C N(x*)=, k >~ ko. 

This result shows that the error x k - x *  and the step sk eventually belong to the 
subspace N ( x * )  ±. In particular, all the iterates xk and the trial iterates Xk+Sk 

eventually belong to an affine subspace, and thus once this subspace is identified, 
the algorithm is essentially unconstrained. Note that in Theorem 7.2 there is no 
need to assume condition (1.8); instead we assume that the sequence {xk} converges 

to x*. 

Section 7 also develops rate of convergence results as a consequence of the 

identification properties. Rate of convergence results require further assumptions 
on sk. Note that a superlinear rate of convergence is not a consequence of Theorem 
7.2 because sk is only required to produce a sufficient reduction in the sense of  
Section 3 and to satisfy (1.7). We develop rate of  convergence results by assuming 
that sk is a truncated Newton method. 

We conclude by noting that our results on the identification properties of  trust 
region methods compare favorably with previous results. Fletcher (1987) assumes 
linear independence of the active constraints and that sk is a global minimizer of  
the subproblem (1.1). The status of  the identification results obtained by Conn, 

Gould and Toint (1988a) for X2 defined by bound constraints was uncertain because 
there was a gap in the proof  of  their Theorem 14. Conn, Gould and Toint have now 
filled this gap and a paper  with the correction has been submitted for publication. 

2. Projected gradients 

A worthwhile feature of  an optimization algorithm is the ability to identify the 
optimal active constraints at a stationary point. In this section we introduce those 
results that are needed to establish this identification property for trust region 
methods. Our approach is based in the notion of a projected gradient. 

Let f :  R n -~ ~ be differentiable on a closed convex set ~ ,  and let 7 f b e  the gradient 

of  f with respect to an inner product  ( . ,  • ). Recall that a direction v is feasible at 
x e ~ if x + -cv belongs to ~2 for all z > 0 sufficiently small, and that the tangent cone 

T(x)  is the closure of the cone of all feasible directions. The projected gradient V a f  

of f is defined by 

V ~ f ( x )  --- arg min{]]v+Vf(x)]]: v ~ T(x)}, 
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where the norm I1" II is generated by the inner product ( . , .  ). Since T(x)  is a nonempty 
closed convex set, V~ff(x) is uniquely defined. 

A point x* ~/2 is a stationary point of  problem (1.2) if and only if Vof(x*)  = 0. 
An equivalent characterization of a stationary point is to require that 

(Vf(x*), x - x*) ~> 0, x • 12. 

This is the standard first order condition for a minimizer o f f  
In a linearly constrained problem 12 is a polyhedral set. There is no loss of  

generality in assuming that in a linearly constrained problem /2 is defined by the 
set of linear constraints 

n = {x c ~ ' :  (cj, x)~> aj,j  = 1 , . . . ,  m}, (2.1) 

for some vectors ej ~ R" and scalar 6 i. In the linearly constrained case x*~ 12 is a 
stationary point if and only if x* is a Kuhn-Tucker  point. Thus, 

Vf ( x* ) =  E A*cj, A*~>O, (2.2) 
j~,N(x*) 

where the set of active constraints is defined by 

d ( x )  --= {j: (% x) ~- 6j}. 

The tangent cone and the projected gradient can be expressed in terms of the active 
set. A computation shows that 

T ( x ) =  { v e ~ " :  (cj, v)>~O, j e ~l(x)}. 

Moreover, Calamai and Mor6 (1987) prove that the Moreau decomposition of - V f  
(see, for example, Zarantonello, 1971, Lemma 2.2) leads to the representation 

V a f ( x )  = - V f ( x )  + Y~ Ajcj, 
je.4(x) 

where Aj for j • 5 / (x)  solves the bound constrained linear least squares problem 

min{ V f ( x ) -  ~ Ajcj :Aj~>O}. 
je.~¢(x) 

Note, in particular, that this representation of  the projected gradient yields a unique 
value even if the active constraints cj with j c ~¢(x) are linearly dependent. 

Let us now return to the case where 12 is a general convex set. The following 
result of Calamai and Mor6 (1987) gives some of the basic properties of  the projected 
gradient. 

Lemma 2.1. Let f :J~n--> ~ be differentiable on the convex set 12. 
(a) The point x c ~2 is a stationary point o f  problem (1.2) if  and only if Vaf (x )  = O. 

(b) min{(Vf(x), v): v c T(x) ,  IIv/I < 1} = - ] [ % f ( x ) l l .  
(c) I f  f : ~ n ~  ~ is continuously differentiable on 12 then the mapping Ilx7.f(.)ll is 

lower semicontinuous on 12. [] 
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The term projected gradient is not entirely appropriate because at an interior 
point x of J2 the projected gradient reduces to -Vf (x ) .  Part (b) of Lemma 2.1 shows 
that it might be more appropriate to call Vnf (x )  the projected steepest descent 
direction. As noted by Calamai and Mot6 (1987), parts (a) and (c) of Lemma 2.1 
imply, in particular, that if {Xk} is a sequence in J2 which converges to x*, and if 
{Vaf(xk)} converges to zero, then x* is a stationary point of problem (1.2). 

We now consider the identification property at nondegenerate stationary points. 
The definition of nondegeneracy is expressed in terms of the dual or normal cone 
N ( x )  of the tangent cone T(x)  where the dual of a cone K is the set of vectors v 
such that (v, w) ~< 0 for all w c K. Stationary points can be defined in terms of the 
normal cone because x* is a stationary point of problem (1.2) if and only if - V f ( x * )  
belongs to N(x*) .  Also note that if ~2 is the polyhedral set defined by (2.1) then 
the Farkas lemma implies that N ( x )  is the cone generated by the active constraints 
normal -c i ,  that is, 

N ( x ) = { v ~ ' : v = -  ~ Ajcj, Aj~>0}. (2.3) 
jc,~(x) 

In the following definition r i ( . )  denotes the relative interior of a convex set, that 
is, the interior relative to the affine hull of the set. 

Definition. The stationary point x* is nondegenerate if - V f ( x * ) c  r i (N(x*)) .  

If J2 is the polyhedral convex set defined by (2.1) then Burke and Mor6 (1988) 
show that x* is a nondegenerate stationary point if and only if there is a set A* > 0 
which satisfies (2.2). For this reason, the nondegeneracy assumption is sometimes 
called a strict complementarity condition. Note that we have not made any linear 
independence assumptions on the active constraints. If the active constraints are 
linearly dependent then there is an infinite number of multiplier sets {A*} which 
satisfy (2.2); nondegeneracy only requires the existence of one set of positive 
multipliers. The following result relates the projected gradient to the identification 
property. 

Theorem 2.2. Let f :~ n ~ R  be continuously differentiable on a polyhedral ~2, and let 
{Xk} be an arbitrary sequence in g~ which converges to x*. I f  {Vaf(Xk)} converges to 
zero, and x* is nondegenerate, then M ( Xk ) = sg ( x* ) for all k ~ 0 sufficiently large. [] 

Calamai and Mor6 (1987) established Theorem 2.2 under the assumption that the 
active constraint normals were linearly independent. Burke and Mor6 (1988) were 
able to drop this assumption and to extend this result to certain non-polyhedral 
sets S2. 

Identification properties can be studied in terms of the faces of the polyhedron 
S2. If the polyhedron J2 is defined by (2.1) and ~/ is  a set of constraints, then a face 
S2~ is defined by 

S2v = {x c S2: (% x) = ~j,j ~ ~}.  (2.4) 
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A short computat ion shows that the relative interior of  the face S2F is given by 

ri(S2F) = {x c •": (c~, x )=  t~j,j G .;~, (Cj, X) > 6j,j  ~ •}. (2.5) 

The relative interior of  the faces of  S2 form a partition of S2 because any x e S2 
belongs to the relative interior of  precisely one face. The relative interior of  a face 
can also be identified with an active set by noting that x c ri(S2F) if and only if (2.5) 

holds with ~ = ~ ( x ) .  
The explicit representation (2.5) of  the relative interior of  a face shows that the 

set of  active constraints ~ ' (x )  is independent of  x c ri(S2v). As a consequence, the 
normal cone N ( x )  is independent of  x c ri(S2F). We define the normal cone N(S2v) 

as the normal cone for any x c ri(S2F). The following special case of  a result of  
Burke and Mor6 (1988) provides an important  property of faces in polyhedral sets. 

Theorem 2.3. I f  S2v is a face of  a polyhedral S2 then J2F+ N(S2v) has an interior and 
thus 

int{S2F+ N(S2F)} = r i{~F+ N(S2F)} = ri(S2v) + r i (N(~v) ) .  [] 

Burke and Mor6 (1988) showed that Theorem 2.3 plays a key role in the iden- 
tification properties of  gradient projection and sequential quadratic programming 
algorithms. In particular, they derived Theorem 2.2 as a consequence of this result. 
We shall show that Theorem 2.3 is also applicable to trust region methods. 

Our development of  the convergence properties for trust region methods requires 

knowledge of a few basic properties of  projection operators. One of the properties 
of  projection operators that we need is that P(x)  can be characterized in terms of  
the inner product  by requiring that 

( P ( x ) - x , P ( x ) - z ) < ~ O ,  zcS2. (2.6) 

In terms of  normal cones, this characterization just requires that x -  P(x)  belongs 
to the normal cone N[P(x ) ] .  Another relationship between projections and normal 
cones is obtained by noting that (2.6) implies that 

N ( x )  = {v c •": P (x  + v) = x} (2.7) 

for x e J2. Our analysis also requires the following monotonicity properties. 

Lemma 2.4. l f  P is the projection into S2 then the function ¢1 defined by 

¢ , ( a ) = ] ] P ( x + a d ) - x H ,  a > 0 ,  

is isotone (nondecreasing) for all x ~ ~" and d 6 ~", and the function c52 defined by 

¢ 2 ( a ) = ] ] P ( x + a d ) - x ] ] / ~ ,  c~>O, 

is antitone ( nonincreasing) for all x ~ ~" and d c R". [] 
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A proof  of  the isonicity of  qS~ can be found in Toint (1988). The antitonicity of  
~b2 is due to Gafni and Bertsekas (1984); an alternate proof  of  this result can be 
found in Calamai and Mor6 (1987). A useful corollary of Lemma 2.4 is that for any 

y > 0 ,  

I lP(x+c~2d)-xL]>~min{%l}l lP(x+oqd)-xl] ,  Od2 ~ "yO/1 > O. (2.8) 

This follows from Lemma 2.4 because if ~ = rain{y, 1} then 

(]~1(~'2) ~ (]~1(~/0/1) : ~O~l(D2(~O/1)~ ~0/1 (]~2(0~1) ~--- ~ ) 1 ( 0 / 1 ) .  

We conclude this section by noting a relationship between the projected gradient 
and the directional derivative of  the mapping a ~ - > P ( x - a V f ( x ) )  at a = O. 

Lemma 2.5. I f  P is the projection into S2 and x ~ S2 then 

P (x  - a V f ( x ) )  - x 
lira = V~f(x) .  [] 

a~O + Ol 

This result is a consequence of Lemma 4.6 in Zarantonello (1971). Also see 
Proposition 2 in McCormick and Tapia (1972). 

3. Trust region methods 

In this section we present a trust region method for the solution of problem (1.2) 
with a closed convex set fZ This algorithm was proposed by Mor6 (1988) as a 
modification of the algorithm of Toint (1988). The development in this section 
follows Mor6 (1988). 

At each iteration of a trust region method there is an approximation xk c ~2 to 
the solution, a bound Ak, and a model ~Pk : R" --> ~ of the possible reduct ionf(xk + w) - 

f (xk)  for II wll ak. w e  assume that Ok is defined if xk + w c g2 and that 

qJk(O) =0,  V~k(O) = Vf(xD. 

We follow Toint (1988) in allowing a general q~k. An interesting choice of  4'k is the 
nonlinear model defined by 

~k(w) = f (xk  + w) - f ( x k ) .  (3.1) 

In many situations the model 0k is a quadratic, and thus 

~G(w) = (V/(xk), w)+½(w, Bkw), (3.2) 

for some symmetric matrix Bk. Of course, it is possible to choose Bk = 0, and then 
the model is linear. 
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The iterate xk and the bound Ak are updated according to rules that are standard 
in trust region methods for unconstrained minimization. See, for example, Mor6 

(1983). Given a step Sk such that Xk +sk C ~ and O~(Sk)< 0, these rules depend on 
the ratio 

f ( X k  + Sk) - - f ( x k )  
P~ - 4 ' k ( s ~ )  

of  the actual reduction in the function to the predicted reduction in the model. 
Since the step sk is chosen so that 0k(sk)< 0, a step with Pk > 0 yields a reduction 

in the function. Given 71 > 0, the iterate xk is updated as follows: 

I f  Pk > 71 then Xk+~ = Xk + Sk. 

I f  Pk <~ 71 then xk+l = Xk. 

The iterates with Pk > 71 play an important role in the convergence analysis and 
thus we define 

oW={k: pk>  71} 

as the sequence of success ful  iterations. The updating rules for Ak depend on a 

constant 72 such that 

0 <  71 < 72 < 1, 

while the rate at which Ak is either increased or decreased depend on constants 0-,, 

o-2 and o'3 such that 

0 ~  0" 1 < 0"2< 1 < 0" 3 . 

The trust region bound Ak is updated as follows: 

I f  Pk <~ 71 then zlk+l e [o-lAk, o-2Ak]. 

I f  Pk C (71, 72) then Ak+~ • [0"1Ak, 0"3Zlk]. 
I f  Pk ~> 72 then Ak+l • [gk, o'3Ak] - 

Variations on this updating scheme have been used, for example, by Mor6 (1983), 
Conn, Gould and Toint (1988a), Toint (1988) and Mor~ (1988). However, these 
authors assume that gk+~ <~ Ak if Pk • (rh,  72). In some situations this is an undesir- 
able restriction. Another variation is to allow 

Ak+ 1 • [o'lllSk [[, o-I Ak] 

whenever Pk ~< 72. As we shall see, our analysis also applies to this variation. 
We follow the suggestion of Toint (1988) and choose a step sk that gives as much 

reduction in the model 4'k as one step of the gradient projection method applied 
to the subproblem 

min{0k(w): xk + w • S2, I]w[I ~< Ak}. (3.3) 

The step generated by the gradient projection algorithm is of  the form sk(c~k) where 

the function Sk(" ) is defined by 

s k ( a )  = P ( x k  -- c~Vf(xk)) -- xk (3.4) 
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and c~k satisfies the following two requirements. Given constants/x0,/xl and/~2 such 

that 

O</xo<½, O</xl </x2, 

the first requirement is that 

ffJk(Sk(Olk))~l~o(Vf(Xk), Sk(Olk)) and IlSk(ak)ll <~ ~2Ak, (3.5) 

while the second requirement is that there are positive constants Yl and "/2 such that 

ak/>"/1 or ak ~"/2~k, (3.6) 

where 6k > 0 satisfies 

qJk(Sk(6k)) >- (1--/XO)(VZ(xk), Sk(6k)) or Ilsk(  )ll/> Jl~lAk • (3.7) 

The first requirement on 0k guarantees that the step Sk(ak) produces a sufficient 
reduction, while the second requirement guarantees that the step is not too small. 
These requirements are illustrated in Fig. 1 for a quadratic Ok and a polyhedral  g2. 
Since g~ is polyhedral,  ( V f ( X k ) ,  Sk(" )) is a piecewise linear function and ~Jk(Sk(" )) 
is a piecewise quadratic function. Moreover,  both functions are constant after the 

last breakpoint;  in this case c~ = 1.5 is the last breakpoint.  In Fig. 1 the set of  ol k 
which satisfy the sufficient decrease condition 

~0k(Sk(ak)) <~/Xo(Vf(xk), Sk(ak)) 

consists of  two disjoint intervals; approximately [0, 0.8] and [1.3, oe). The set of  6k 
which satisfy the condition 

Ok(Sk(6k)) >I (1 -/Xo)(Vf(xk), Sk(6k)} 

0.0 

-0.5 

- I .0 

- I .5 

-2.0 

-2 .5  
0.0 

I I I I 

- -  \xk ~ . . . . .  /~°<vf  (Xk)' Sk(a)) - -  

I I I I • - - - -  ( I - / X o / ( V  f(xk~ , sk(a) ) 

0.5 1.0 1.5 2,0 

Fig. 1. Acceptance criteria for (~k. 
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is approximately the interval [0.6, oo). Thus, for example, the set of  Ok which satisfy 

both conditions with Ok/> 3'2~k and 3'2 = ~ is roughly the union of the intervals [0.2, 
0.8] and [1.3, ~) .  This set of  acceptable steps may be further restricted by the trust 
region constraint, but this restriction is not considered in Fig. 1. 

Mor6 (1988) proved that (3.5) and (3.6) can be satisfied with a finite number  of  

evaluations of  Sk(" ). In practice we expect that only one or two evaluations of  Sk(" ) 
will be needed to obtain an appropriate Ok. We also note that for special constraint 
sets 12, the projection can be evaluated efficiently. This is the case, for example, if 
12 is a simplex, or if J2 is defined by bound constraints. For a general polyhedral 

12, the evaluation of Sk( ' )  requires the solution of a least distance problem. 
Motivation for requirements (3.5) and (3.6) on Ok can be found in the work of 

Calamai and Mor6 (1987) on convergence properties of the gradient projection 
method. Indeed, Toint (1988) pointed out that if the model is defined by (3.1) and 
if the step is not restricted by the trust region bound,  then (3.5) and (3.6) are the 
requirements imposed on ok by Calamai and Mor~ (1987). 

The step sk is required to satisfy a requirement similar to (3.5). We follow Toint 
(1988) in assuming that the step sk satisfies 

4'k(Sk)<~O~'k(Sk(~k)), Ilskll~2ak, Xk+SkC12. (3.8) 

In particular, this allows the choice of sk = sk(~k). It is possible to weaken (3.8) 
further because in Section 4 we show that our convergence results hold if (3.8) is 
replaced by the requirement that there is a constant/z3 > 0 with 

__~bk(Sk)~>/~0~ 3 [/Sk k)ll rain A k , - -  
L Ok J [3k k ok J J '  

where ~k = min{c~k, 3'3} for any constant 3'3 > 0. 
When 4'k is a quadratic and J2 is E", it is standard to choose ok as a global 

minimizer of  4'k(Sk(a)) subject to the condition that IlSk(a)[[ ~< ~2ak. For this choice 
(3.5) and (3.6) hold with dk = Ok. Also note that in this case (3.8) and (3.9) reduce 
to standard conditions for unconstrained problems. See, for example,  Mor6 (1983) 
and Schultz, Schnabel and Byrd (1985). 

When ~bk is a quadratic and J2 is defined by bound constraints, Conn, Gould and 
Toint (1988a) choose Ok as the first local minimizer of ~bk(Sk(a)) subject to the 

condition that Ilsk(a)ll <~ tzZAk • This choice does not necessarily satisfy conditions 
(3.5) and (3.6), and is therefore not covered by our theory. Also note that this choice 
of  Ok may not be defined for a non-polyhedral  12 because the function 6k(Sk(a))  
can be strictly decreasing for all a > 0. 

We assume that if xk is a stationary point for problem (1.2) then the trust region 

method terminates at xk. I f  xk is not a stationary point then (2.6) implies that 
(Vf(xk), sk ( a ) ) <  0 for any a > 0, and thus ~'k (sk)< 0 for any step Sk which satisfies 

(3.5) and (3.8). In particular, it is possible to compute Xk+l. 
We can introduce a scaling matrix Dk in the trust region method by replacing 

the norm ]].]] by a scaled norm HDk(.)H in the requirements on ok and Sk. I f  the 
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matrices Dk are nonsingular with Dk and D{ ~ uniformly bounded,  then the unscaled 
requirements are satisfied with different values of  tz~ and /z=. A similar argument 

based on the equivalence of norms in ~" shows that there is no need to require that 
I1" II be an inner product norm in the requirements on ak and sk. 

4. Basic convergence theory 

The first step in the convergence analysis of  the trust region method of Section 3 

is to obtain an estimate on the predicted decrease by the gradient projection step. 
This estimate is expressed in terms of the function ~ok : ~" -> ~ defined by 

,ok(s) - 0k(s)  - ~,k(0) - ( v  0k(0), s> 
IIsl? 

The convergence properties of the trust region method depend on the properties of 
~ok(. ) for s # 0. Note that it is not unreasonable to assume that ~Ok(" ) is uniformly 
bounded.  This happens,  for example, if ~bk is the quadratic (3.2) and the matrices 
{Bk} are uniformly bounded,  or if ~bk is defined by (3.1) and Vf  is Lipschitz 
continuous. However,  in this section we are interested in the case where ~ok ( ' )  may 
fail to be uniformly bounded. 

Theorem 4.1. Define the bound 

/3k = 1 + sup{itok(s)l: O< IIs[I ~/z2Ak}, 

and for any constant 3,3>0 let 

&k = min{ak, "~3}" 

I f  ce k satisfies (3.5) and (3.6) then there is a constant tz3 > 0 such that 

k)ll min Ak, . [ ]  

L OZk ~-£'k L ozk ..IJ 

Theorem 4.1 was obtained by Mor~ (1988) as an improvement  on the estimate 
of  Toint (1988). An immediate consequence of Theorem 4.1 and assumptions (3.5) 
and (3.8) is that 

= [llsk(a,<)ll] { ~['lSk(/'k)lll] > 
--I]lk(Sk) ~ jlZotl~ 3 ~- min Ak, • (4.1) 

a k  a k  d J  

In this section we prove that our convergence results hold if the requirement (3.8) 
on 0k(sk) is replaced by (4.1). This bound on the predicted decrease of  ~bk shows 
that since Pk > ~1 for successful iterations, 

r 1 { f (xk)_f (xk+,)>_lz4  Ilsk k)ll min Ak, , (4.2) 
k ak d -~kk ak 

2 where /z4 = ~l/zO/Z3. These two estimates will be used in our convergence analysis. 
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The convergence properties of the trust region method depend on the behavior 
of  the sequence {ilk}. The following convergence result was obtained by Mor6 (1988) 
under the assumption that f is bounded below on £2. However, inspection of the 
proof  shows that the result holds under the assumption that {f(xk)} is bounded below. 

Theorem 4.2. Let f :  gO" --) g¢ be continuously differentiable on 12 and assume that {f(xk)} 
is bounded below. I f  {ilk} is uniformly bounded then 

lim inf Ilsk(~k)[I - 0 .  [] 
k ~  t~ k 

The assumption that {ilk} is uniformly bounded holds for several important choices 
of  the model 0k, but it does not apply, for example, to the hypercube method of 
Fletcher (1972) where Ok is the quadratic (3.2) and the matrices {Bk} are generated 
by a quasi-Newton update. The following result is patterned after a similar result 
in Powell (1984) and Toint (1988). Note, however, that our argument seems to be 
more direct. 

Lemma 4.3. Let  f :  R" ~ ~ be continuously differentiable on 12, and assume that {f(Xk)} 
is bounded below and that V f is uniformly continuous on O. I f  

IIs~(~k)ll/~k ~ • (4.3) 

f o r  some • > 0 and all k >! O, then there is an eo > 0 such that 

fikAk/> •0, k~>0, (4.4) 

where 

/3k = max{flj : O<~j~ < k}. 

Proof. We first show that there is an e, > 0 such that if Pk < r/2 then 

~kllskll/> •, (4.5) 

for all k sufficiently large. Assume, on the contrary, that there is an infinite sub- 
sequence 2{ such that pk < r/2 and {ilk I[sk II} converges to zero for k e  5t[. Since fik >i 1, 

this implies that {llskll} converges to zero for keY[, and since Vf  is uniformly 
continuous, there is a sequence {sk} converging to zero such that 

If(xk + sk) -- f ( x k )  -- (Vf(xk), Sk)[ <~ ek II sk If. 

Now note that since Ok(O)--0 and VOk(O)= Vf(xk ) ,  

I f ( x k  + sk) - f ( x k )  - Ok(sk)l  

<~ [f(xk + sk) - f ( x k )  - (Vf(xk), sk)[ + I Ok (sk) - ~Ok (0) -(Ok(O), sk)l, 

and thus the definition of  flk implies that 

I f(xk + sk) - f ( x k )  - Ok (sk)] ~ ek II Sk I[ + flk Jl Sk [[2. 



J.V. Burke et al./ Convergence of trust region methods 319 

Another estimate is needed in order to obtain a contradiction. Note that {flkllskll} 
converges to zero, and thus IlSk[I <~ I.tzAk, and the bound (4.1) imply that 

for all k~  Y{. The last two estimates yield that {IPk -1]} converges to zero for k c  Yr. 
This contradiction establishes that (4.5) holds for all k sufficiently large if Pk ~ 172. 

I f  necessary, restrict el further so that (4.5) holds for all k ~> 0 with Pk ( 712. We now 
use an induction argument to prove that (4.4) holds for to = ohel and all k >I 0. I f  
(4.4) holds for some k > 0 and Pk/> ~72 then (4.4) holds for k + 1 because/3g+~ >//3k 
and /Ig+l ~> Ak. I f  Pk < '12 then the updating rules for Ak and (4.5) imply that 

and thus (4.4) holds for k + l  because flk+l~>flk. [] 

We now present the main convergence result of this section. We weaken the 
assumptions of  Theorem 4.2 by assuming that the series 

~-- (4.6) 
k = l  ~ k  

is divergent. On the other hand, we now need to assume that Vf  is uniformly 
continuous. 

Theorem 4.4. Let  f : R ~ - ~  be continuously differentiable on 12, and assume that 

{ f (Xk)}  is bounded below and that V f is uniformly continuous on g2. I f  the series (4.6) 
is divergent then 

lim inf II Sk ((~k ) I] = O. 
k~c~ OL k 

Proof. We prove this result by showing that if (4.3) holds then (4.6) is convergent. 

The proof  of  this result can be split in two parts. For either part  it is necessary to 
consider the set 

= {k: q(k )  ~ k /p } ,  

where q(k )  is the number  of  successful iterations whose index does not exceed k, 
and p > 1 is chosen such that o-3o -p-~ < 1. In the first part we prove that 

1 
2 -~- (4.7) 

k~P  ]~k 

is convergent, while in the second part  we show that 

1 
E ~ (4.8) 

kE~P [3k 
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is convergent. The convergence of (4.7) and (4.8) imply the convergence of (4.6), 
which is the desired contradiction. 

The proof of the first part uses an induction argument to show that 

A . ~ q ( k )  k _ q ( k )  A 
k ~ t l3  v 2  ~aO 

for any k/> O, and thus 

,ak ~ [~3o'~-l]k/"A0 

for k~ ~. Since Lemma 4.3 shows that eo//3k ~< Ak, and since cr3o "p-1 < 1, the conver- 
gence of (4.7) is established. 

For the proof of the second part we first need to consider the sequence {ki} of 
successful iterations and prove that 

~. ~--1 ( 4 . 9 )  
i= 1 ~ k  i 

is convergent. This is established by noting that estimate (4.2) implies that 

f ( x k )  - f ( x k + l )  ~>/~4e min{Ak, e/  flk} 

for all successful iterations, and thus Lemma 4.3 shows that there is an e~ > 0 such 
that 

f(xk) -f(x~+O >1 E~/~ 

for all successful iterations. This estimate shows that (4.9) is convergent. Hence, 
(4.8) is convergent if we prove that 

1 ~ 1 
k}~ ~-kk ~<p i~,/3k--~" (4.10) 

We claim that if ~ i = ~ c ~ [ i p ,  ( i + l ) p - 1 ]  then /3k ~>/3k, for k c ~ .  This holds if 
k~ <~ ip because {/3k} is nondecreasing. If  k~ > ip and ip <~ k < k~ then q( k ) < i <- k /p ,  
and thus k ~ ~. Since /3k ~>/3k, for k c ~ ,  

~] l < p  

and thus it is clear that (4.10) holds. Since we have already shown the convergence 
of (4.9), this implies the convergence of (4.8), and thus completes the proof of the 
second part. [] 

The argument used in the proof of Theorem 4.4 is similar to the argument used 
by Powell (1984) and Toint (1988); the main difference occurs in the proof of 
inequality (4.10). Also note that the assumptions of Theorem 4.4 are weaker than 
those in the comparable result of Toint (1988) which assumes that Vf is Lipschitz 
continuous on S2 and that O is bounded. Moreover, Toint (1988) proves that 

lim infl] Sk (1)[I = O. 
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This result  follows f rom T h e o r e m  4.4 because  L e m m a  2.4 and  (2.8) imply  that  

l] Sk(ak)I~. ~> [ISk(3'3)l] _~ min{3"3, 1} [[sg(1) ii. 
OZk 3'3 3'3 

As we shall see in the next  section, the s t ronger  result  o f  Theo rem 4.4 is o f  impor tance .  

Theorem 4.5. Let f :~n_+~ be continuously differentiable on g~, and assume that 
{f(xk)} is bounded below and that V f is uniformly continuous on g2. I f  the series (4.6) 
is divergent then the sequence 5 e of  successful iterations is infinite. 

Proof.  I f  all i terates k ~  > ko are unsuccessful  then s k ( a ) =  Sko(a) for  all a > 0 and 

k >/ko. Since &k <~ 3'3, L e m m a  2.4 implies  that  

dk 3'3 3'3 

for  k>~ko. Theo rem 4.4 shows that  Sko(Y3) = 0 ,  and thus (2.7) yields that  Xko is a 
s ta t ionary po in t  for  p rob l em (1.2). This contradicts  our  a s sumpt ion  that  no iterate 
is a s ta t ionary point.  []  

5. Cauchy points 

An impor tan t  aspect  o f  the convergence  analysis is the re la t ionship be tween  the 

trust region me thod  and the projected gradient.  The main  result of  this section 
shows that  we can define a related sequence  {x~'} such that  if  x* is a limit point  of  
{Xk} then there is a subsequence  {xk,} which converges  to x* with 

l i f nJV , , f ( x~ )  l] = O. 

X C Moreover ,  { k,} also converges  to x*. An impor tan t  consequence  of  this result is 
that  every limit point  o f  {xk} is a s ta t ionary point .  

The Cauchy point x c is defined in te rms of  the gradient  project ion method .  For  

any constant  3'3 > 0, set &k = min{c~k, 3'3} as in T h e o r e m  4.1, and  define 

c P (Xk_&kVf (xk ) )=Xk+Sk(3 l k ) .  Xk ~- 

Note  that  x c belongs to S2 and that  ]Ix c - xk ]] <~/*2ak. The  fol lowing technical  result  
relates the pro jec ted  grad ien t  at the C a u c h y  point  to the results of  Section 4. 

Lemma 5.1. I f  f :  ~n -+ ~ is differentiable on ~2 and Xk ~ g~ then 

]IV s~f(x c) [[ <~ IlVf(x c) - Vf(xk)II + II x2 - xk II/ak. 

Proof. The basic  inequal i ty  (2.6) implies  that  

&k(Vf(xk), x c -- zk) <~ --(x~' -- xk, x c -- zk) ~< I]x c -- xk II II xc  -- Zk [I 
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for  all Zk e 12. Hence,  if  Vk is a feasible descent  direct ion at x c with I]Vkll ~< 1, then 
C x ~ +  ~kVk belongs to 12 for  some ~'k > 0, and  thus setting Zk = Xk + ~kVk yields 

- - (Vf (xk) ,  Vk) <~ I]X c -- Xk II/ak. 
Hence  

- ( V  f ( x ~ ) ,  Vk) <~ II V f ( x c )  - V f(Xk)[[ + [[ X~ -- Xk H/C~k" 

Part (c) o f  L e m m a  2.1 yields the desired result. []  

A consequence  of  L e m m a  5.1 is that  the sequence  {llVaf(x(~')[[} is not b o u n d e d  
away  f rom zero. The p r o o f  of  this result fol lows f rom T h e o r e m  4.4 by noting that  

since {c~k} is b o u n d e d  above,  {X~--Xk} converges  to zero. This establishes the 

fol lowing result. 

Theorem 5.2. Let  f :  R" ~ be continuously differentiable on 12, and assume that 

{f(Xk)} is bounded below and that V f  is uniformly continuous on 12. I f  the series (4.6) 
is divergent then 

l im in f l lV~, f (x  c) I] = O. [] 
k ~ c o  

Stronger  results than  T h e o r e m  5.2 need fur ther  assumpt ions  on the sequence {ilk}. 
Toint  (1988) assumes that  the series (4.6) is divergent  and that  

l im ~ k [ f ( x k )  --f(Xk÷l)]  = 0. (5.1) 
k ~ o o  

An unsat is fac tory  aspect  o f  this assumpt ion  is that  it cannot  be verified a priori; we 

prefer  to assume that  the sequence  {ilk) is bounded .  However ,  note that  our  results 
hold  if we assume (5.1) and that  (4.6) is divergent.  

A weakness  o f  Theo rem 5.2 is that  it does not  p rov ide  in format ion  on the behav ior  
of  [[V~,f(xC)ll when k is a successful i teration. The fol lowing result assumes that  

the sequence  o f  models  {~k} is chosen so that  convergence  of  
co 

2 I[skl[ (5.2) 
k = l  

implies  that  

lira f (Xk  + Sx) - - f ( xk )  -- (Pk(Sk) = 0. (5.3) 

I f  ¢'k is the quadra t ic  (3.2) then this a s sumpt ion  is certainly satisfied if Bk = V2f(Xk). 
More  generally,  if  (Pk is the quadrat ic  (3.2) a n d f  is twice cont inuous ly  differentiable,  
then the cont inui ty  of  V2f  implies that 

f (Xk  + Xk) - - f (Xk)  - (Vf(Xk), Sk) = l(sk, V2f(xk + ~'kSk)Sk) 

for  some ~'k c [0, 1], and thus (5.3) is equivalent  to 

(sk, [ Bk - V2f(xk)]Sk) 
l im = 0, 
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whenever {Xk} converges and {sk} converges to zero. As a final example, note that 
(5.3) holds automatically for the nonlinear model tPk(W) =-f(xg + W) --f(xg).  

We also assume that the sequence {fig} is bounded;  for the quadratic model (3.2) 
this is equivalent to assuming that the sequence { B k }  is bounded. 

Theorem 5.3. Let f :  R n ~ ~ be continuously differentiable on ~ and assume that { f (  Xk ) } 
is bounded below. I f  {ilk} is bounded and if  (5.3) holds whenever (5.2) is convergent, 
then 

lim infJlV ~ f ( x  Ck ") II = O. 
kc~ 

Proof. Lemma 5.1 shows that we only need to prove that 

lim inf []Sk(~k) [[ _ 0. 
k ~ ,~ ~g k 

We first outline the proof  and then present the details. The proof  is by contradiction. 
We assume that there is an e > 0 such that 

I Isk(G)l l /G ~> E, k ~ .  (5.4) 

The main part of the proof  consists of showing that assumption (5.4) implies that 

lim inf Il Sk ( ~k ) ll ~ - O, (5.5) 
k~SY A k 

lim IlSk(C~k)l[ 0, (5.6) 
k¢55t' t~ k 

lim [ISk(dk)l[ O. (5.7) 

We now show how these three results lead to a contradiction. 
Consider an infinite sequence Y{ such that 5 ~ ca Y{ is empty, and such that k c Y{ 

implies that k+  1 belongs to 5~. Since all iterations in 3'{ are unsuccessful, sk+~(a)= 
sk(a) for all a > 0 .  Thus, if dg+~>~dk for infinitely many keY{ ,  then Lemma 2.4 
and (5.4) imply that 

IIs +,(&+l)ll IIs + (G)ll_ IIs (G)ll keY{ .  
dk+l dk d k ' 

In view of (5.6), this cannot happen infinitely often. We have thus shown that 
~k+~ <~ kk for all k c Yf sufficiently large, and hence Lemma 2.4 shows that 

[[Sk+l(dk+l)ll ~ IISk+l(dk)l[ = IlSk(dk)l[, k c  ffff. (5.8) 

Since the updating rules for Zig imply that ~rl[ISk[ I <~ Zik+| for any index k, the limit 
(5.7) and inequality (5.8) show that 

IlSk+,(dlk+l) [[ 
lim sup ~< 0. 

kcY(" Zik+l 
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This contradicts (5.5) and establishes the result. We complete the proof  by showing 
that assumption (5.4) implies that (5.5), (5.6) and (5.7) hold. 

As a preliminary step, we show that assumption (5.4) implies that the series (5.2) 
is convergent. Note that the bound (4.2) on the actual reduction for a successful 
iteration yields 

f ( X g )  - f (xg+l)  ~>/-*4e min{dg, e/fig}, k • 3 ~. 

Since {f(Xg)} is bounded below and {fig} is bounded, {Ag} converges to zero for 
k e 5e. In particular, this implies that dk <~ e/fig, and hence 

f ( xg)  - f (xg+l )  >i ~4e,ag, k c ~f. 

Thus, since {f(xg)} is bounded below, 

Z Ag 
k e . ~  

is a convergent series. A careful analysis of the updating rules for A k show that 
convergence over the successful iterates implies that the full series 

co 

E ag 
k - l  

is convergent. Hence, (5.2) is convergent, and by assumption, (5.3) holds. 
We now show that assumption (5.4) implies that (5.5) holds. Since Ilsg(~g)ll ~< ~2ag 

and {Ak} converges to zero, assumption (5.4) implies that {&k} converges to zero 
for k ~ 5< Hence, we eventually have ~g = ag ~> 72~g where 5k satisfies (3.7). Assume 
that 5g satisfies the first condition in (3.7). The characterization (2.6) of the projection 
implies that 

-(VZ(xg), Sk(Ce)}>~ I[Sg(~)ll:/~ 

for all ce > 0, and thus 

(Vf(xk), Sk (Sk)) >~ P'o 
fig > o,g(Sg(~k))> - ~ 0  [l~k(~k)[I 2 -- a--i" 

Since {fig} is bounded and C~g ~> min{'/25k, T3}, this shows that {&k} is bounded away 
from zero. This contradicts our earlier conclusion that {&k} converges to zero for 
k e &a. Hence, eventually all k ¢ ~ satisfy the second condition in (3.7). Inequality 
(2.8) now implies that 

nSg(3k)n = nSk(ak)]] ~> min{y2, 1}JlSk(t~k)l j >~ min{72, 1}~IAk, 

and this show that (5.5) holds. 
We now show that assumption (5.4) implies (5.6). Assume, on the contrary, that 

there is an infinite subset ~'f of  unsuccessful iterations and an el > 0 such that 

Ilsg(ag)ll/ak ~> e,,  kc~f .  
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The bound (4.1) and the assumption that the sequence (ilk} is bounded  imply that 
there is an e2> 0 such that 

--Ok(Sk) >t E2Ak, k c ~.  

Since {Xk} converges and {sk} converges to zero, the continuity of  V f  shows that 
there is a sequence {ek} converging to zero such that 

I f (xk  + sk) - f ( x k  ) - Ok (Sk)1 <~ ek II Sk II + flk 11Sk I12. 

The last two estimates show that {Ipk- l l}  converges to zero for k c  Yg. Hence, all 
iterations k 6 Y{ are eventually successful. This contradiction establishes that (5.6) 

holds. 
The proof  that assumption (5.4) implies (5.7) is similar. Assume, on the contrary, 

that there is an infinite subset Y{ of unsuccessful iterations and an el > 0 such that 

Ilsk(  k)ll/llskll k ~ ~C. 

The bound (4.1), the assumption that the sequence {ilk} is bounded,  and the 

inequality [[Skll ~< ~2ak imply that there is an e2 > 0 such that 

- 4'k(sk)  2LLsk LI 2. 

Since (5.3) holds, {IPk - ll} converges to zero for k ~ 2(. Hence, all iterations k c ~ 
are eventually successful. This contradiction establishes that (5.7) holds. [] 

Theorems 5.2 and 5.3 need to be developed further in order to obtain the main 
results of  this section. The following result is the desired extension of  Theorem 5.2. 

Theorem 5.4. Let f :  ~n_~ ~ be continuously differentiable on ,(2 and assume that {ilk} 

is bounded. I f  x* is a limit point o f  {Xk} then there is a subsequence {xk,} which 

converges to x* with 

~imllV~/(xkC,)ll = 0 .  

Moreover, { X k c} also converges to x*, and thus x* is a stationary point for  problem (1.2). 

Proof. Let {x4} be any subsequence which converges to x*. I f  

lira II st, (~,)1~ = O, 
i~oo  ~1  i 

then Lemma 5.1 yields the result because S k ( ~ k )  -~- X C - -  X k. Assume that there is an 

eo > 0 such that 

Theorem 4.2 guarantees that for any e in (0, Co) there is a sequence {mi} such that 

Ilsk(dk)ll/d~ ~> e, 4 ~ k < m , ,  IISm,(~m,)ll/~m,<~.. 



326 J. V. Burke et al. / Convergence o f  trust region methods 

Hence, the bound (4.2) on the actual decrease implies that if l~ <~ k < mi then 

f ( x k )  - f(xk+O/> /~4e min{Ak, e/f ik} 

for all successful iterations. Since {ilk} is bounded and {f(xk)} converges, {Ak} 
converges to zero for all successful iterations k such that Ii <~ k < m~ ; in particular, 

Ak < e//~k. Moreover, since [ISk [[ ~< tZ=Ak, there is an e, > 0 such that 

f (Xk )  -- f (xk+,)  >I El IlXk+l -- Xk II 

for all successful iterations k with l~ ~< k < m~. This inequality also holds if iteration 
k is not successful because xk+l = xk for unsuccessful iterations. Hence 

f(x,~) - f ( x , ~  ) >~ e I ]1 xl~ - xm, 1[, 

and thus {x,,,} converges to x*. In particular, we have shown that for any e in (0, co) 

there is an infinite sequence Y{ such that 

This shows that there is a sequence {ki} such that {xk,} converges to x* and 

lim [Isk'(c~k~)[I O. 
i~oO ~ k  i 

Since sk (dk) = x c - xk, the application of Lemma 5.1 shows that {Vnf(x~', )} converges 
X C X * .  to zero. Moreover,  since {C~k} is bounded above, { k,} converges to Since Lemma 

2.1 guarantees that the mapping ][v~/( .) l l  is lower semicontinuous, V n / ( x * ) = 0  
and hence x* is stationary. 

Note that Theorem 5.4 does not claim that the sequence {ki} consists of  successful 
iterations. A result along these lines can be obtained under the assumptions of  
Theorem 5.3 with a slight modification of  the proof  of  Theorem 5.4. We shall see 

in Section 7 that this result is crucial to the development of  the identification 
properties. 

Theorem 5.5. Let  f :  R" ~ R be continuously differentiable on J2, and assume that {ilk} 
is bounded and that (5.3) holds whenever (5.2) is convergent. I f  x* is a limit point o f  

{Xk} then there is a subsequence {xk,} o f  successful iterations which converges to x* with 

l i m l l V . f ( x ~ ) l l  = o. 

Moreover, {XkC} also converges to x*. 

Proof. The proof  follows that of  Theorem 5.4 with only minor deviations. The only 

difference is that the proof  starts with a sequence {li} of  successful iterations such 
that {x/,} converges to x*, and that Theorem 5.3 is used to guarantee that the sequence 

{mi} can be chosen from the successful iterations. [] 
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6. Convergence 

A preliminary step in a local analysis of  a trust region method is the development 
of  conditions which guarantee that the iterates {xk} converge. The results of  this 

section show, in various contexts, that convergence is achieved if {xk} has an isolated 

limit point x*, that is, there is a neighborhood S(x*)  such that x* is the only limit 
point in S(x*)  c~ [2. 

We can guarantee that the sequence {xk} generated by the trust region method 
of Section 3 has an isolated limit point x* if we assume that x* is a strict minimizer 

of f ,  that is, there is a neighborhood S(x*)  of x* such that f ( x* )  < f ( x )  for all x ~ x* 
in S(x*)  c~ [2. 

Theorem 6.1. Let f :~" ~ be continuous on [2 and let {xk} be an arbitrary sequence 

in [2 such that f(xk+l)<~f(xk) for k >10. I f  {xk} has a limit point x* which is a strict 
minimizer o f f  in [2 then x* is an isolated limit point o f  {xk}. 

Proof. Choose e >  0 such t h a t f ( y ) > f ( x * )  whenever y c [2 and 0 <  [ [y -x ' I ]  ~< e. I f  
y* is a limit point of  {xk} with [[y* - x *  ]] <~ • then the convergence of {f(Xk)} implies 

that f ( y * ) = f ( x * )  and thus y * =  x*. This proves that x* is an isolated limit point 
of  {x~}. [] 

The assumption that x* is a strict minimizer can be guaranteed by imposing 

second order conditions on f The following result uses a version of the second 
order sufficiency conditions that is appropriate  for the general problem (1.2). 

Theorem 6.2. Let f :  R n ~ ~ be continuously differentiable on [2 and twice differentiable 

at a point x* in [2. I f  x* is a stationary point o f  problem (1.2) and 

( V f ( x * ) , w ) = O ,  w e T ( x * ) ,  w ¢ O  ~ (w, VZf(x*)w)>O,  (6.1) 

then x* is a strict minimizer of f .  [] 

Theorem 6.2 is a special case of  a result of  Robinson (1982, Theorem 2.4). In 

fact, Robinson shows that x* is isolated in the sense that x* is the only stationary 
point of  problem (1.2) near x*. Theorem 6.2 can also be derived as a special case 
of the results of  Burke (1987). 

For a polyhedral [2 condition (6.1) coincides with the standard second order 
sufficiency conditions. For a general convex [2 condition (6.1) has an advantage 
over the standard second order sufficiency conditions because it is independent  of  
the representation of [2. On the other hand, the following example shows that 
condition (6.1) does not take into account the curvature of  [2, and thus differs from 

the standard second order sufficiency conditions. 

Example. Define f :~2  +~ by f (~ l ,  ~2) = ~:2, and let 

[2 = {(~1, ~2): ~2~> ~}. 
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It is not difficult to verify that x* = (0, 0) satisfies the standard second order condi- 
tions but that (6.1) fails when w = (1, 0). 

It x* is a nondegenerate stationary point then (6.1) can be expressed in terms of 
N ( x * )  ~ where for any set S the orthogonal complement S ± of  S is the subspace of 
vectors v such that (v, w)= 0 for all w c S. The subspace N ( x * )  ~ is also known as 
the lineality of  T(x* )  because it is the largest subspace in T(x*) .  Thus, 

N ( x * )  l = r ( x * )  • [ -  r ( x * ) ] .  

These notions are familiar when ,(2 is the polyhedral set defined by (2.1) because 
then (2.3) shows that 

N ( x * )  ± = {v C R": (cj, v) = 0 , j  C s¢(x*)}. 

Theorem 6.3. Let  f :  ~" ~ ~ be continuously differentiable on f2 and twice differentiable 
at a point x* in f2. l f  x* is a nondegenerate stationary point o f  problem (1.2) and 

w e N ( x * ) ' - ,  w ¢ O  ~ (w, V 2 f ( x * ) w ) > O ,  (6.2) 

then x* is a strict minimizer o f f  

Proof. The result follows from Theorem 6.2 if we prove that 

N(x*)  ±= {w: (V f ( x * ) ,  w )=  O, w ~ T(x*)}. 

A short computation shows that 

N ( x * )  ± c {w: (V f ( x * ) ,  w) = O, w c T(x*)}, 

whenever x* is a stationary point. The reverse inclusion holds if x* is nondegenerate. 
We prove this by noting that since - V f ( x * ) c  r i (N(x*))  then 

(1 - h ) ( - V f ( x * ) )  + hv c N ( x * )  

for any v ~ N ( x * )  and ]A[ sufficiently small. Hence, if (Vf(x*), w) = 0 and w ~ T(x*)  

then A(v, w)~<0 for [A] sufficiently small. Since A can be of either sign, this implies 
that (v, w) = 0, and thus w c N ( x * )  ~ as desired. [] 

Conditions (6.1) and (6.2) guarantee that x* is a strict minimizer o f f  Hence, 
under the assumptions of  Theorem 6.1, these conditions show that x* is an isolated 
limit point of {xk}. The following result of Mor6 and Sorensen (1983) spells out the 
technical consequences of  the assumption that x* is an isolated limit point of {xk}; 
the proof  is included for completeness. 

Lemma 6.4. Let  {xk} be an arbitrary sequence in f2 and assume that x* is an isolated 

limit point o f  {xk}. Either {x~} converges to x*, or there is a sequence {li} such that 

{xt,} converges to x* and an e >  0 such that 

]]xt,+, - x/i [[ ~> E, i~>O. 
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Proof. Assume that {Xk} does not converge to x* and choose • > 0 such that if y* 
is a limit point of {xk} and Ily*-x*[[<~• then y * = x * .  I f  IlXk--X*[I<~• for all k 
sufficiently large then {xk} is bounded and any limit point y* of {xk} satisfies 
[[y*-x*[l<~•. Hence y * = x * ,  and thus {xk} converges to x*. This contradiction 

shows that there is an infinite sequence of indices with Ilxk-x*[I > •. Thus there is 
a sequence {/~} such that 

•, IIx,,+,-x*[I > •. 

The sequence {xl,} is bounded. Moreover,  if y* is a limit point of  {x,,} then 
[[y*-x*[[<~•. Hence y * = x * ,  and thus the sequence {x,~} converges to x*. In 

particular, IIx, -x*l14½• for i large enough, and therefore 

IIx,,+,- x,,ll Ilx, ,+,-x'i[-  
This completes the proof.  [] 

Up to this point our analysis applies to a fairly general model q~k, but our 

convergence results assume that the model Ok is the quadratic 

0k(w) = (Vf(xk), w)+½(w, Bkw). (6.3) 

We assume that the sequence {Bk} is bounded;  for a quadratic model this is equivalent 
to assuming that the sequence {ilk} is bounded.  We also assume that if (x*, B*) is 
a limit point of the sequence {(xk, Bk)} then 

(Vf (x*) ,w)=O,  w e T ( x * ) ,  w ¢ O  ~ (w,B*w)>O. (6.4) 

These assumptions on the model Ok are satisfied, for example, if Bk = vZf(xk) and 

the limit point x* satisfies (6.1). They are also satisfied if {Bk} is a sequence of 
positive definite matrices with eigenvalues in some fixed interval which does not 
contain the origin. 

We also need an assumption on the step sk. This assumption is motivated by the 

result that (Vf(xk), sk (~k)) is negative. It is thus reasonable to assume that in addition 
to the conditions of  Section 3, the step sk is chosen so that 

(Vf(Xk), Sk) <~ O. (6.5) 

Any step sk that satisfies this restriction is usually called a feasible descent direction. 

Theorem 6.5. Let f :  R ~ -~ ~ be continuously differentiable on ~. Assume that the model 
~k is the quadratic (6.3), that the sequence {Bk} is bounded, that any limit point of 
the sequence {(Xk, Bk)} satisfies (6.4), and that the step sk satisfies (6.5). I f  x* is an 
isolated limit point of {xk} then {Xk} converges to x*. 

Proof. I f  {xk} does not converge to x* then Lemma 6.4 shows that there is an infinite 

sequence Y~" such that {xk} converges to x* for k c Yf and an e > 0 such that [I Sk [[ t> • 
for k c Y~'. We now prove that if we define a sequence {Wk} by setting 

Wk=Sk/llSkll, kc:7[, (6.6) 
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then any limit point w belongs to T(x*)  and (Vf(x*),  w ) - 0 .  Note that IlSkll >1 e 

implies that xk + zWk belongs to 12 for z in [0, e], and hence x * +  zw also belongs 
to 12. This shows that w is a feasible direction at x* and thus w e T(x*) .  Since the 

first order conditions guarantee t h a t -  V f ( x* ) e N ( x* ) , we obtain that (V f ( x * ) , w) >~ O. 

On the other hand, (6.5) implies that (Vf(x*), w)~< 0. 

We have shown that w c T (x* )  and that (Vf(x*),  w) = 0. Hence, our assumptions 
on {Bk} imply that there is a limit point B* of {Bk} with k c  Y{ such that (w, B ' w )  

is positive. However, Ok(Sk)<~ 0 implies that 

llls ll(w , Bkwk)<~ - (Vf(xk) ,  wk), 

and since w is a limit point of  {wk}, we obtain that e(w, B 'w)<~ O. This contradiction 

establishes the result. E3 

Assumption (6.5) can be relaxed to allow positive values of  (Vf(xk), sk). For 
example, Theorem 6.5 also holds if we assume that 

(Vf(xk), sk) • vl(V f(xk), 

for some constant u > 0. This claim can be established by noting that assumption 

(6.5) is only used to guarantee that if w is a limit point of  the sequence {wk} defined 

by (6.6), then (Vf(x*),  w)~< 0. 
Theorem 6.5 is of interest because 12 is allowed to be a general convex set. In 

the remainder of  this section we assume a polyhedral 12 and replace (6.5) by the 
assumption that the step sk is chosen so that 

A ( x  c) c A(Xk + sg). (6.7) 

Motivation for this restriction is based on the identification properties of  the gradient 
projection method which suggest that the Cauchy point x~" is a predictor of the 
optimal active constraints in a neighborhood of a nondegenerate stationary point. 

Theorem 6.6. Let  f :  •" ~ ~ be continuously differentiable on a polyhedral 12. Assume  
that the model ~ is the quadratic (6.3), that the sequence {Bk} is bounded, that any 

limit point o f  the sequence {(xk, B~)} satisfies (6.4), and that the step sk satisfies (6.7). 
I f  x* is an isolated limit point o f  {xk} and x* is nondegenerate then {xk} converges 

to x * .  

Proof. The p roof  is similar to that of Theorem 6.5. We only need to show that if 
there is an infinite sequence Y{ such that {xk} converges to x* for k ~ Y{ and an e > 0 
such that [[sk[I I> e for k e Y{, then any limit point w of  the sequence {wk} defined 

by (6.6) satisfies (Vf(x*),  w)~< 0. 
We prove that (Vf(x*),  w)~<0 by establishing that - w e  T(x*) .  Note that the 

iterations in Y{ are successful, and thus the bound (4.2) implies that 
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for all k c  Yf. Since /z=Ak/> IlSkll /> e, and since {ilk} is bounded,  this shows that 

lim [[x~" - xk I~ = 0, 
k c [][ ~ k 

and hence Lemma 5.1 implies that 

lim IIV~f(xC)l] = O. 
k~Yf 

Since {x~'} also converges to x*, Theorem 2.2 implies that 

A ( x * )  = A ( x  c) c A(xk  + Sk), k ~ ~{. 

This implies that - s k  ~ T (x* ) ,  and hence - w  c T (x* )  as desired. [] 

The assumptions of Theorem 6.6 can be satisfied in a number  of  ways. The 
following result illustrates the relationship between the assumptions in Theorem 6.6 
and will be useful in Section 7. 

Corollary 6.7. Let f :  R n ~ ~ be twice continuously differentiable on a polyhedral ~ ,  

and let Vzf be bounded on the level set 

~(Xo) = {x c 12 : f ( x )  ~<f(x0)}. (6.8) 

A s s u m e  that the model Ok is the quadratic 

tOk(W) = (Vf(Xk) ,  W)+½(W, V2f(Xk)W), 

and that the step sk satisfies (6.7). I f  {xk} has a limit point x* which is nondegenerate 

and satisfies (6.2), then {xk} converges to x*. 

Proof. Theorem 5.4 guarantees that any limit point of {Xk} is a stationary point of  
problem (1.2), and thus Theorems 6.1 and 6.3 show that x* is an isolated limit point 
of  {Xg}. The result now follows from Theorem 6.6. [] 

Note that Theorem 6.5 shows that we can drop the assumption that x* is 
nondegenerate and establish a similar result for a general convex set 12 if we assume 
that the step sk satisfies (6.5) instead of (6.7). 

7. Identification of constraints and rates of convergence 

We have shown that the trust region method of Section 3 converges under  reasonable 

conditions. The main result of  this section shows that if the trust region iterates {xk} 
converge to a nondegenerate stationary point x*, then the active set at x* is identified 

in a finite number  of iterations. 
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We begin the development with a technical result which will be used to show 
that if an iterate is close to x* and in the same face as x*, then the Cauchy step 
remains in this face. Recall that a face I2F such that x * c  ri(S2F) is defined by (2:4) 
with s¢ = ~ ( x * ) ,  and that the relative interior of  this face has the explicit representa- 

tion (2.5). 

Lemma 7.1. Let f :  ~ ~ R be continuously differentiable on a polyhedral ~ ,  and assume 
that x* is a nondegenerate stationary point. I f  ~2 F is the face of  J2 such that x* e ri(~2v) 
then for any constant T3 > 0 there is a neighborhood S(x*)  such that for c~ e (0, Y3], 

x 6 ri(~F) n S(x*)  ~ P ( x -  ceVf(x)) e ri(g2v). 

Proof. Theorem 2.3 shows that 

X* -- "y3Vf(x *)  C r i (aF)  + ri(N(S2F)) = int{S2F + N(S2F)}, 

and thus we can choose S(x*)  such that for x c S(x*) ,  

x - y3Vf(x) ~ int{S2v+ r i (N(aF) )}  = ri{S2F+ N(S2F)}. (7.1) 

A standard result in convex analysis (see, for example,  Rockafellar, 1970, Theorem 

6.1) guarantees that the relative interior of  a line segment belongs to the relative 
interior of  a convex set F if one endpoint belongs to F and the other endpoint 
belongs to the relative interior of  F. Hence, (7.1) implies that for a e (0, Y3], 

1 -  X+~-~- (X- -y3V f (x ) )=X- -~Vf (x )~r i {~F+N(g2F)} .  (7.2) 
Y3 

Note that (2.7) shows that P ( x  + v) = x if v c N ( x )  and thus 

P[r i{D~+ N(DF)}] = P[ r i (~v)  + r i ( g ( ~ F ) ) ]  c ri(~v). 

In view of (7.2), this completes the proof. [] 

The identification properties require an additional assumption on the step because 
if we only require (3.8) then (1 - • ) s k  also satisfies (3.8) for • > 0 sufficiently small. 

We now show that an appropriate  assumption is that the step Sk satisfies (6.7). 

Theorem 7.2. Assume that f :  ~"-~ ~ is continuously differentiable on a polyhedral [2, 

that {ilk} is bounded, that (5.3) holds whenever (5.2) is convergent, and that the step 

Sk satisfies (6.7). I f  {Xk} converges to a nondegenerate point x* then 

lim JlVe, f(xk)[I = O. 

Moreover, there is an index ko> 0 such that 

~ ( x k ) = ~ ( x * ) ,  s k e N ( x * )  ~, k>~ko. (7.3) 



J. V. Burke et al. / Convergence of  trust region methods 333 

Proof.  First note that the definition o f  the active set ` i ( x )  shows that ` i ( x )  c ` i (x* )  

whenever  x ~ g~ is sufficiently close to x*. Moreover ,  if  S2F is the face o f  g2 such 

that x* c ri(~2F) then ` i ( x )  = ` i (x*)  if and only if  x 6 ri(X2F). 

Theorem 5.5 shows that  there is a sequence Y{ of  successful iterates such that  

{Vaf(x~')} converges to zero for k~  5r[, and thus Theorem 2.2 guarantees that  

`i(Xk c) = ` i (X*) for all k c Y[ sufficiently large. N o w  note that assumpt ion (6.7) on 

the step yields that 

` i ( x*)  = ` i ( x ~ )  ~ `i(x~ + s~) = ` i ( x ~ + 0  ~ ` i (x*) ,  

and hence, xk+~ e ri(g2F) for  all k e Y[ sufficiently large. We have shown that for any 

• > 0 there is an index ko > 0 such that x~, e ri(S2F) and [[xk - x*ll -< • for k > ko. We 

now prove that xk e ri(~2r) for all k >~ ko. 
L e m m a  7.1 guarantees that  • can be chosen so that if Xk e ri(g2F) then x c c ri(DF). 

Note  that ` i ( x  c) = ` i ( x* )  for  any such index k. We claim that xk+~ ~ ri(g2F). There 

is noth ing  to prove if Xk+l = xk. Otherwise assumpt ion  (6.7) on the step implies that  

` i ( x * )  = ` i ( x ~ )  ~ ` i ( x ~ + , )  ~ ` i ( x * ) .  

Hence,  xk+~ e ri(DF) as claimed. This shows that  Xg c ri(g~F) for all k/> k0, and thus 
` i (xk)  = ` i (x*) .  Moreover ,  Lemma 7.1 implies that ` i ( x  c) = M(x*). Hence  

` i ( xO  = ` i (x*)  = ` i (x~)  ~ `i(x~ + sO, 

and this yields that ske  N ( x * )  ~ for k >  k0. Finally, {V,~f(Xk)} converges to zero 

because Xk and x* lie in ri(g2r) and V a f ( ' )  is cont inuous  on ri(S2F). []  

Theorem 7.2 shows that  eventually all the iterates lie in the relative interior o f  
the face S2~ such that  x* e ri(~2v). Moreover ,  since Sk e N ( X * )  ±, all the trial steps 

Xk+Sk belong to g2F. This result suggests that  we can now apply results f rom 

uncons t ra ined  minimizat ion and obtain, for  example,  rate o f  convergence results. 

However ,  our  choice o f  ak is more general than the usual  choice in uncons t ra ined  

minimization,  and this prevents the immediate  appl icat ion of  the uncons t ra ined  

minimizat ion results. This difficulty is resolved by proving that  the b o u n d  (4.1) on 
the predicted decrease can be expressed in terms of  the project ion of  the gradient.  

Lemma 7.3. Let f :  R n -* ~ be continuously differentiable on a polyhedral S2, and assume 

that x* is a nondegenerate stationary point. I f  g~F is the face  o f  ~ such that x* ~ ri(~2F) 

and P ,  is the projection into N ( x * )  ±, then for  any constant Y3 > 0 there is a neighbor- 

hood S ( x * )  such that for  a ~ (0, Y3] and x ~ ri(g~F) c~ S(x* ) ,  

P ( x  - ct Vf(x) )  - x 
- - P . [ V f ( x ) ]  = V¢~f(x). 

Og 

Proof.  I f  S(x* )  is as in Lemma 7.1 and x c ri(//F) ~ S(x*),  then 

N [ P ( x  - a V f ( x ) ) ]  c N ( ~ F )  
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for c~ c (0, 73]. Since the characterization (2.6) of  the projection implies that z - P(z)  
belongs to N[P(z ) ]  for any z ~ ~ ' ,  we obtain that 

(x - a rT (x ) )  - P (x  - a V f ( x ) )  c N(g2v). 

This expression can be written in the form 

P(x  - c~Vf(x)) - x  
- V f ( x )  = k v, 

O~ 

where v e N(x*) .  Moreover, Lemma 7.1 implies that P ( x - a V f ( x ) )  belongs to 
ri(S2F) and therefore, P ( x -  a V f ( x ) ) - x  lies in N (x* )  I. Since P . ( v ) =  0 we obtain 

P(x  - a Vf(x))  - x 
- P , [ V f ( x ) ]  - 

This relationship holds for a e (0, y3], and thus an application of  Lemma 2.5 
completes the proof. [] 

An immediate consequence of Theorem 7.2 and Lemma 7.3 is that if the sequence 
{xk} converges to a nondegenerate point x* then 

IIP,[Vf(xD]ll = Ilsk(ak)ll/ak, 
and thus the hound (4.1) on the predicted decrease implies that 

--4'k(Sk)>~tx:lXsllP,[Vf(xk)]ll m i n { A k , ~  llP,[Vf(xk)]l[}. 

This is the appropriate bound on the predicted decrease when the iterates lie in 
ri(J2v). Thus, we can now apply unconstrained minimization results (see, for 
example, Mor6, 1983; Schultz, Schnabel and Byrd, 1985) to the trust region method 
of  Section 3. The following result is obtained by combining the above observations 
with Corollary 6.7, Theorem 7.2 and Theorem 4.19 of  Mor6 (1983). 

Theorem 7.4. Let f :  ~ ~ N be twice continuously differentiable on a polyhedral £2, and 
let V2f be bounded on the level set (6.8). Assume that the model Ok is the quadratic 

t~k(W ) = (V f (Xk )  , w ) +  l(w,  V 2 f ( x k ) w ) ,  (7.4) 

and that the step Sk satisfies (6.7). I f  {x~} has a limit point x* which is nondegenerate 
and satisfies (6.2), then {xk} converges to x* and (7.3) holds for some index ko>0. 
Moreover, all iterations are eventually successful and {Ak} is bounded away from 
zero. [] 

Rate of convergence results can be obtained under the assumptions of Theorem 
7.4 by applying standard unconstrained results. We motivate our choice of step by 
first noting that if Ok is the quadratic (7.4) and Pk is the orthogonal projection into 
N(xk)  ~, then 

Ok(Pkw) = (gk, W)+ ½(W, Bkw), 
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where 

Bk = PkV2f(xk)Pk, gg = PkVf(Xk). 

A truncated Newton method restricted to N(xk)  ± satisfies 

IIgk+BkSkll<~¢kllgkll, sck6(0, 1). (7.5) 

A truncated Newton method can be obtained by either iterative or direct methods. 
See, for example, the discussion in Mor6 (1983). There is no guarantee that if sk 
satisfies (7.5) then xk + sk belongs to the feasible set 12, and thus we only require 
that (7.5) hold on selected iterations. However, note that under the assumptions of  

Theorem 7.4 any step which satisfies (7.5) converges to zero, and since M(xk)---- 
~/(x*),  the trial step Xk + Sk is eventually feasible. 

Theorem 7.5. Let f :  ~n ~ ~ be twice continuously differentiable on a polyhedral 12, and 
let V2f be bounded on the level set (6.8). Assume that the model q'k is the quadratic 
(7.4) and that the step sk satisfies (6.7). Moreover, assume that there is a constant 

I~, > 0 such that if II sk II <~ ~ , ~  and ~ (xk )  = ~ (xk  + sk), then Sk satisfies (7.5). I f  {xk} 
has a limit point x* which is nondegenerate and satisfies (6.2), then {Xk} converges 
Q-linearly to x* provided ~* < 1 where 

g* = lim sup ~k- 
k~co 

I f  ~*= 0 then {Xk} converges Q-superlinearly to x*. 

Proof. Theorem 7.4 guarantees that {Ak} is bounded away from zero and that {Sk} 
converges to zero. Hence, we can assume that if ko is as in Theorem 7.4, then 

Ilskl] <~/X,Ak for k ~  > ko. In particular, Sk satisfies (7.5) for k ~  > ko. The result is now 
fairly easy to obtain. I f  P ,  is the projection into N(x*)  ~ then Pk = P ,  for k>~ ko 
and thus (7.5) implies that 

IIP, Vf(xk+O 11 
lim sup <~ lira sup ~k = ~*- 

Since P,  VZf(x*)P,  is positive definite on N(x*)  ~, this proves that {Xk} converges 
Q-linearly if ~* < 1 and that {xk} converges Q-superlinearly if s c* = 0. [] 

I f  V2f is Lipschitz continuous near x* and if we choose ~k = 0 in (7.5), then {Xk} 
converges Q-quadratically to x* because the iteration eventually reduces to Newton's  
method on N(x*)  I. The Newton step sk can be obtained by determining a basis Zk 
for N(xk)  1, solving the null-space equations 

(zTv2f(Xk)Z~)s~ = -Z~Vf (Xk)  

for s~  and setting sk = Zks~.  Note that although s~  is dependent  on the choice of  
Zk, the step sk is independent  of the choice of  basis. 
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