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In convex composite NDO one studies the problem of minimizing functions of the form F : -  h of 
where h : R" ~ ~ is a finite valued convex function and f:[~" --, R'" is continuously dilterentiabte. 
This problem model has a wide range of application in mathematical programming since many 
important problem classes can be cast within its framework, e.g. convex inclusions, minimax 
problems, and penalty methods for constrained optimization. In the present work we extend the 
second order theory developed by A.D. loffe in [11, 12, 13] for the case in which h is sublinear, 
to arbitrary finite valued convex functions h. Moreover, a discussion of the second order regularity 
conditions is given that illuminates their essentially geometric nature. 
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I. Introduction 

The p rob lem model that one studies in convex composite nondifferent iable  

opt imiza t ion  can be succinctly stated as 

P: minimize  F ( x )  

subject to x ~ R" 

where F :-- h o f with h : ~ "  ~ R convex and f :  R" ~ R"  cont inuous ly  differentiable. 

This problem has recently received a great deal of  a t tent ion in the li terature [1, 2, 

5, 9-17, 20-23],  and just if iably so since many  classes of problems in opt imizat ion 

theory can be cast within this framework e.g. convex inclusions,  min imax problems,  

and  penal ty  methods for non l inea r  programming.  Moreover,  convex composite 

N D O  provides a unified framework in which to study the convergence behavior  of 

many  of the algori thmic approaches  to cons t ra ined and uncons t ra ined  opt imizat ion 

[2, 5, 9, 10, 14-17, 20-23].  There have been many contr ibutors  to the study of P 

and its impl icat ions  for numerica l  opt imizat ion,  the most  notable  of whom are 

Osborne  [1, 15], Fletcher [9, 10] and Powell [16, 17]. There is however one author  

who has made  several truly p ro found  and  inspir ing contr ibut ions  to the subject 

whose work seems to have been overlooked by many  of the researchers in the area. 

We are speaking of the work of A.D. Ioffe in [11, 12, 13], wherein much of the 

theoretical founda t ion  for convex composi te  N D O  can be found, especially for the 

case in which the funct ion h is further assumed to be sublinear.  In fact, it is Iotte's 
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2. A review of the first order theory for convex composite NDO 

Most of  the first order theory for convex composite functions is easily derived 

from the observation that 

F(y)  = h ( f ( y )  ) = h ( f ( x )  + f ' ( x ) ( y -  x) ) + o ( l l y -  x[I). (2.1) 

Indeed, this local representation for F is only a consequence of h being locally 

Lipschitz on ~" so that 

Ih (f(y)) - h ( f ( x )  + f ' ( x ) ( y  - x))l 

K~lly-xll f IIf'(x+ t ( y - x ) ) - f ' ( x ) l l  dt 
J ~  ) 

for some K ~ > 0  when y is sufficiently close to x. Equation (2.1) can be written 

equivalently as 

F ( x + d ) =  h ( f ( x ) ) + A F ( x ;  d) +o(lld]l) (2.2) 

where AF(x;  d) = h ( f ( x )  + f ' ( x ) d )  - h ( f ( x ) )  (see [14]). From (2.2) one immediately 
observes that F is everywhere directionally differentiable, in fact 

F'(x; d) = h ' ( f ( x ) ; f ' ( x ) d )  = 4J*(f '(x)d lab(. ) ( f (x) ) )  

= 4,*(d I f ' (x)r~h(  �9 ) ( f (x))) .  (2.3) 

The last expression (2.3) indicates the following natural extension of the subditteren- 
tial calculus of  convex functions to convex composite functions; the subdifferential 

of the convex composite function F = h o f  is the set 

OF(x) := f ' ( x )  T Oh ( f (x ) )  (2.4) 

for each x c N". It is well-known that this subdifferential coincides with the Clark 
subdifferential [8] and so possesses all of the properties of  the Clark subdifferential. 
Equation (2.3) moreover shows that convex composite functions are subdifferentially 

regular [8], since F'(x; d ) =  tp*(dlOF(x)). 
Representation (2.2) has been strongly exploited by several authors in the develop- 

ment of  algorithms for P [2, 5, 9, 10, 14, 16, 17, 20-23]. One should observe that 
(2.2) closely resembles the usual first order expansion of F but with AF(x;  d) 
replacing F'(x; d). The relationship between AF(x;  d) and F'(x; d) is quite subtle 
and is of  great significance in the algorithms for solving P. Moreover, as we shall 
see, this relationship is also of fundamental importance in our treatment of  second 
order optimality conditions for P. Note in particular that since h is convex, the 
quotient A-IAF(x;  Ad) is an increasing function of A for A ~>0. Consequently, 

F'(x;  d) = h ' ( f ( x ) ; f ' ( x ) d )  = inf A 'AF(x;  Ad). (2.5) 
A > O  

Employing this relationship one can easily show that F'(x; d) and aF(x;  d) are in 
a sense interchangeable with respect to the first order necessary conditions for P. 
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Theorem 2.6. Let the functions F, h, arld f be as given in P. I f  z c R" is a local solution 
to P then 0 ~ OF(z). Moreover, the following conditions are equivalent: 

(1) O~OF(z); 
(2) O~ F'(z; d) for all d ~N"; 
(3) O~ zlF(z; d) for all d ~ R ~. 

Proof.  The equivalence of (2) and (3) is obvious from (2.5) and the equivalence of 
(1) and (2) is a direct consequence of the geometric form of the Hahn-Banach 
theorem since F'(z; d) = tp*(dlOF(z)) where OF(z) = f ' ( z )  T Oh(f (z)) is a non-empty 
compact  convex set. Finally, since F is everywhere directionally differentiable, 

statement (2) is a well-known consequence of the local optimality of  z for P. [] 

In Sections 4 and 5 we will continue the discussion of the relationship between 

F'(x; d) and AF(x; d). 

3. A Lagrangian for P and a local dualization result 

In this section we develop a local duality theory for P that parallels that which 

is given by Ioffe [13]. However our approach is based upon the somewhat different 

Lagrangian 

L(x, y*):= ( y * , f ( x ) ) -  h*(y*) 

where h* is the Fenchel conjugate of h. The only difference between this Lagrangian 
and the one studied by both Ioffe [13] and Fletcher [9] is the use of  the Fenchel 
conjugate h*. It is this simple innovation though that allows us to establish the 

fundamental  local dualization theorem for P. One can heuristically justify this 
definition of L by noting that the minimization of F is equivalent to a mini-max 

problem involving L(x, y*) as follows: 

inf F(x)  = inf h( f (x ) )  = inf { sup { ( y * , f ( x ) ) -  h*(y*)}} 

= inf sup L(x,y*).  

By analogy with constrained optimization theory we define the set of optimal 
Lagrange multipliers for P at a point z e N n to be 

M(z) = { 9  e o h ( .  )(f(z))lV~L(z, y*)  = 0}, 

and observe that M ( z ) r  0 if and only if 0e  OF(z), that is z satisfies the first order 
optimality conditions for P. As in Iolte [13] we also define the following local 

approximations to M(z) ;  let r/ and e be positive scalars and set 

M,~_(z) := {y* e O~h(. ) ( f (z) ) :  ]lV,L(z, y*)[[ <~ r/}, 
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where 0~ is the usual e-subdifferential operator  of  convex analysis. Observe that 

M,~(z) = M ( z )  if ~ = e = 0 ,  and moreover  

~-~ M,,~(z)= M(z )  

e > o  

with M,~(z) being a closed compact  convex set for every 7/> 0 and e > O. To each 

of  the sets M,~(z) we associate the function 

O,~(x) := max(L(x,  y*):  y* c M,~ (z)} 

where the maximum is always attained due to the compactness  of  the sets M ~ ( z )  
whenever M , ~ ( z ) r  O. The functions 0,~. should be considered as local approxima-  

tions to F at the point z when M(z)  # ~. In particular, if M(z )  ~ 0 then O,7~.(z ) = F(z)  
for all ~ > 0  and e > O. In order  to see this simply note that 

On~(z)<~ sup L(z ,y*)  = h**(f (z))  = h ( f ( z ) )  
y*~5~  m 

whereas if 1 , ' 6  M( z )  then ),*6 M , , ( z )  and y * e  Oh(. ) ( f (z ) ) ,  so that 

h( f ( z ) )  = L(z, y*) ~ max{L(z, y*):  y* 6 m,~(z)} = O,~(z). 

We now establish the local dualization theorem for P. This result is a finite 

dimensional  extension of  Proposit ion 1 in section 2 of  Iotte [13]. 

Theorem 3.1. Let F, h, and f be as given in P. Then the following conditions are 
equivalent: 

(a) F attains a local minimum at z; 
(b) M ( z ) r  and 0~ attains a local minimum at z for any ~7>0 and e > 0 ;  

(c) M ( z )  ~ 0 and 0~ attains a local minimum at z for some ~7 > 0 and e > O. 

Proof. By Proposit ion 1 in [12] we have that the mapping  

where 

p~(x, d):= h~(f(x) + f ' ( z ) d )  

h~(y) := max{(y*, y) - h*(y*):  y* 6 O,,h(-)(f(z))} 

is a so called LMO-approx imat ion  for f at z. Thus, by Proposit ion 5 in [12], the 

result will be established if we can show that 

O,~(x) = -min{p*(x ,  d*)[ [[ d*ll <~ r/} 

where 

p~:(x, d*) = sup{(d*, d)-p~.(x, d):  d c JR"}. 

To this end recall that if g : N "  ~ N is convex, A ~ Nm• a 6 R", and we define 

/~(y) := g ( a y  + a) 
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for  all y e N", then 

~*(y*)  = in f /g*(x*)  - ( a ,  x*): AVx * = y*}, 

(e.g., see Rockafe l la r  [19, Theorem 12.3 and Theorem 16.3]). 

Consequent ly ,  

p*(x, d*) = i n f{h* (y* )+  ~b(y*]it~.h(. ) ( f ( z ) ) ) -  (y*, f ( x ) ) I  d* = f ' ( z )Ty  *} 

since 

h *(y*) = h *( y*) + ,k(y* l oFh( . ) ( f (  z ) ) ). 

Therefore ,  by s t ra ightforward computa t ion ,  we have that 

- m i n { p * ( x ,  d*)] lid*I] <~ 7/} 

= max { - in f{h*(v*)  + O(y*Ja~h(" ) ( l ( z ) ) )  - (v* , / (x ) )  [ d* =f'(z)Vy *} 

- O ( d * l w e ) }  

= max {(v*, f (x))  - h*(y*) - ~p(y* [ a~.h ( �9 ) ( f ( z ) ) )  - 0(  ["(z)Vv* [ r/B)} y * E ~ m  . . . .  

= max{L(x,  y* ) [y*  c O,h(. ) ( f (z)) , / IV,L(z ,  y*)[[ <~ r/} = O,~(x). [~ 
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4. Second order necessary and sufficient conditions for P 

Before stating the theorem we again return to a br ief  discussion of  the terms 
AF(x; d) and F'(x; d). Due to the inequali ty 

F'(x; d) <~ AF(x; d) 

for all x and  d in W', we know that i fAF(x ;  d) <~ 0 then d is a direction of  non-ascent  
for  F. Employ ing  this observat ion  we define two sets of  directions of  non-ascent  
for F as follows; 

K ( x ) : = { d ~ W ' :  AF(x; td)<~O for some t > 0 }  

and 

D ( x ) = { d E N n :  F'(x; d)~O}. 

Clear ly  K ( x ) c  D(x) and they are both  convex cones, but, whereas  D(x) is always 
closed, it is possible  that K (x) is not. For  example  if 

h ( 0 ' , ,  Y2) r) = Y~ + Y~ 

and 

then 

f ( ( x , ,  x~) T) = (x , ,  x2 + 1) T 

K(0 ,  0) = {(dr, d2)T: d 2 < 0 } w  {(0, 0)T}. 
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However, note that in this example K(0, 0 )=  D(0,0).  In [13], Ioffe refers to the 

cone K ( x )  as the critical cone for F at x. These two cones of directions play a 

central role in our development. An understanding of the exact nature of their 

relationship to one another is essential for an appreciation of what may be called 

the second order regularity of  P. Specifically, we will say that F is regular at z c ~" 

if 

K(z)  = D(z).  

In the next section our efforts will be devoted to obtaining an understanding of this 

condition. We now state our main result. 

Theorem 4.1. Let z e R" be such that f is twice continuously differentiable in a neighbor- 

hood of z. 
(I) I f  F attains a local minimum at z, then 

max {d TV],.L(z, y*)d:  y* e M(z)} ~> 0 (4.2) 

whenever d ~ K(z) .  
(2) I f  z e R "  is such that M ( z ) # O  and 

T ) max{d 7]~L(z ,y*)d:  y*c  M(z)} > 0 

for all d c D(z), then z is an isolated local minimum for F. 

Proof. (1) Note that it is sufficient to establish the result for d e  K(z )  since the 
mapping 

d~--~max{dT~z~.,.L(z, y*)d:  v* c M(z)} (4.3) 

is continuous due to the compactness of M(z) .  Also observe that by Theorem 3.1 

and its preceeding discussion we know that M(z)  ~ gO and O,~.(x) >~ O,~(z) = F(z)  in 

a neighborhood of z for any r / > 0  and e > 0 .  Let d e  K(z )  be given. If d =0,  the 

result holds trivially, thus suppose that d r 0. Since M,,~(z)c a~h(. ) ( f ( z ) )  is com- 
pact, we have 

F(z)  <~ O~(z + td) = max{(y*,f(z + t d ) ) -  h*(y*)ly* ~ M,7~(z)} 

<~max ( y* , f ( z )+  ' �9 2 tf  ( z ld )+-~d  7 , xL ( z , y* )d  

)1 y* c M,,, (z) } + o( r ~) (4.4) /1 

Now since d e  K(z)  there is a to>0 such that 

AF(z;  tod)~O 

and so for each t c [0, to] we have from (2.5) that 

AF(z;  td)<~O. 
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Hence,  for all t c [0, to], 

(y* , f ( z )  + f ' ( z )  td) - h*(y*) ~ h ( f ( z )+  t f ' (z)d)  <<- h(f(z)) .  (4.5) 

Combin ing  (4.5) with (4.4) we obtain 

0 <~ max{dVV~L(z, y*)d ]y* �9 M~.(z)} 

for every e > 0 and rt > 0. The result is now verified by again observing that 

M(z)  = (-'] Mn~.(z) r 0 
~7 >0 
e > O  

where all o f  these sets are compact .  

(2) If  D(z)  ={0} we are done  since then 

O<F' ( z ;d )  for  all d ~ 0, 

so that z is an isolated local minimum of  F. Thus we shall assume that D(z) # {0}. 

Define 

S, := D(z)c~bdry(B) 

and set 

y := inf{max{dTV].xL(z, y*)d :  y* c M(z)} ld  ~ S,}. 

Clearly y > 0, since S~ is compact  and the mapping  (4.3) is continuous.  Moreover,  

again by the continuity o f  the mapping  (4.3), there is an e > 0 such that 

max{dVV~xL(z, y*)dJy* c M(z)}  I> ~,/2 

for all d c S ~ + e B  and O~S~+eB. Set 

/ ) ( z )  := cone{bdry B c~ (Sl + eB)}. 

Clearly /~(z) is a closed convex cone (since 0r + eB) with 

D (  z) c int(/)(z)). 
We now claim that there is a u > 0  such that 

u < F'(z; d) (4.6) 

for all d ~ $2 := (bdry(B) ~ (R" \ / ) ( z ) ) ) .  I f  $2 = 9) our  claim holds vacuously.  On the 
other  hand  if $1 # ~ and the claim were not true, there would be a d ~ $2 for which 

F ' ( x ;  d)  = 0 and so d is also in bdry(B)  ~ D(z) which is contained in the interior 

o f / ) ( z ) .  But by construct ion in t ( / ) (z) )  c~ $2 = (3, a contradiction. Thus a u satisfying 

(4.6) exists. Consequent ly ,  there is a ne ighborhood  U, o f  z such that 

h( f (y ) )  > h( f ( z ) )  

for all y c U, ~ (z + cone(S.,)) with y # z. 
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Since R " = / 5 ( z )  u cone(S2),  the proof would be complete if we could establish 
the existence of  another neighborhood of  z, U2, such that 

h ( f ( y ) )  > h ( f ( z ) )  

for all y c  lT_12n(z+s with y C z .  Let us suppose to the contrary that such a 
neighborhood does not exist. Then there are sequences {ti} c ~+ and {di} c bdry B c~ 
/ ) ( z )  with t~,~0 such that 

h ( f ( z  + t,d~))<~ h ( f ( z ) ) .  (4.7) 

However, for d c bdry B c~/5(z), 

h(f(  z + td)) = s u p { ( y * , f ( z  + td)) - h*(y*) [ y* c Nn} 

~> max{(y*, f ( z  + td)) - h*(y*) [ y* ~ m(z)} 

t 2 
= max{(y*, f (z )  + t f ' ( z ) d ) + - ~ d T V ~ x L ( z ,  y* )d  

- I , * ( y * ) ] d e M ( z ) } + o ( t  2) 

= h ( f ( z ) ) +  t2 max{drV2, ,L(z ,  y*) d lY* e M(z)} + o(t 2) 
2 

12 
>t h ( f ( z ) ) + 4  Y+o( t2 ) ,  

where the second equality follows from the fact that 

h ( f ( z ) ) = ( y * , f ( z ) ) -  h*(y*) and 0 = f ' ( z ) r y  * 

for every y*c  M ( z ) .  Hence, by (4.7), 

0>1 y + 4t~2o( t~) 

for all i=  1,2, 3 , . . . .  Letting i+oo we obtain the contradiction 0 ~  > y >  0. Thus the 
neighborhood U2 exists and the proof is complete. [] 

For the sake of  comparison,  we conclude this section by briefly discussing 
Fletcher's results on second order optimality conditions for convex composite N D O  
[9, Theorems 14.2.2 and 14.2.3]. Fletcher's result is as follows: 

Theorem 4.8. Let z ~ R" be such that f is twice continuously differentiable in a neighbor- 

hood of  z. 
( l )  l f  F attains a local minimum at z and there is a y* 6 M (z) such that 

D ( z )  = Tx-(z) (4.9) 

where 

X := {x: F ( x )  = F ( z ) + ( y * , f ( x ) - f ( z ) ) }  
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and Tx(z )  is the contingent cone X at z, 

Tx(z)  := (~ U [ A - ' ( X - z ) + e B ] ,  
e ~ -0  O< A~AI)  

then 
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dTV~L(z ,  y*)d  >I 0 

.for all d c D(z) .  
(2) I f  there exists y* c M ( z )  such that 

T 2 ~.. d V ~ L ( z , y ' ) d > O  

,for all d c D(z) ,  then z is an isolated local minimum for F. 

Observe that part 2 of  Theorem 4.8 is implied by part 2 of  Theorem 4.1. The 

relationship between part l o f  these two theorems is not so obvious. They key to 

unders tanding  how Fletcher 's  theorem allows one to employ only a single optimal 
dual variable in the statement of  the second order  necessary condit ions lies in the 

regularity condi t ion (4.9). However,  an unders tanding of  this condit ion is obscured 
by the complex nature o f  the set X and its contingent  cone at z. Fletcher [9, Lemma 

14.2.6] has shown that it is always the case that Tx (z) c D(z)  whenever y * c  M(z ) .  

In order  to shed further light on this issue, observe that 

X := {x: h ( f ( x ) ) =  h( . f (z ) )+ ( y * , f ( x ) - f ( z ) } }  

= {x:  h ( . f ( x ) )  = h ( f ( z ) )  - [ ( y * , . f ( z ) )  - h * ( y * ) ]  + { ( y * , f ( x ) )  - h * ( y * ) ] }  

= {.x-: h ( . f ( x ) )  = ( y * , . f ( x ) ) -  h * ( y * ) }  

= {x:  .v* ~ ~Jh(. ) ( f ( x ) ) } ,  

where the third equality follows from the fact that y * c  M ( z ) ~  ah ( . ) ( f ( z ) ) .  

Note  that if h is affine then it is always the case that 

D(z)  = T x ( z ) = ~ " .  

Using this fact, one can proceed to establish certain facts about  equality (4.9) when 
h is the pointwise maximum of  a finite collection o f  affine functions. In fact, this 

exactly the course taken by Fletcher [9]. However,  for more genera] functions h the 

situation becomes much less clear. For example, if h is C ~, then 

X := {x:  h ' ( f ( x ) )  = h ' ( f ( z ) ) } .  

Even in this case, condit ions ensuring equality (4.9), when h is not affine, are 

nontrivial. Employing Fletcher 's  analysis, it is easy to show that one can relax the 
definition o f  the set X a little and replace it with the set 

:-- {x: F (x )  = F(z)  § (y*, f ( x )  - . f(z)> + o([[x - z I1~-)} 

in Theorem 4.8. Even so, equality (4.9), with either X or X, seems to impose a 

severe restriction on the local structure o f  h at xo. One would hope that a less severe 

hypothesis  can be found. In this connect ion,  it is possible that the techniques 
employed  in Rockafel lar  [18] would be helpful. 



298 J.V. Burke / Second order conditions 

5. The regularity condition K ( z )  = D ( z )  

In order  to "close the gap"  between the necessary and sufficient second order  

condit ions in Theorem 4.1 one needs to assume that K ( z ) =  D(z). In this section 

we intend to show that this condit ion is in fact quite mild and can be seen to arise 

naturally from the structure of  the sets K (x) and D(x).  To begin with observe that 

K (x )  = {d: h ( f ( x )  + t.f '(x)d) <- h ( f ( x ) )  for some t > 0} 

= {d: f ( x )  + t f ' (x )d  c levt,(.f(x))} 

= {d: d ~ ( f ' (x ) ) -1[ t - l ( lev l , ( f (x) )  - f ( x ) ) ]  for some t > 0} 

= ( f ' ( x ) ) - '  [._) t - ' ( l e v , , ( f ( x ) ) - f ( x ) )  
t > 0  

where ( f ' ( x ) )  ~ denotes the multivalued inverse of  f ' (x),  i.e. 

( . f ' ( x ) ) - ' ( y )  = {d c ~" :  y = f ' ( x ) d } .  

Thus, by Rockafellar  [19, Corol lary 16.3.2], 

K (x) ~ = f ' ( x ) r  N ( f ( x ) [ l e vh ( f ( x )  ) ). 

On the other hand, 

D(x)  = {d: F'(x; d) <~ 0} = {d: O*(d ]f '(x) w Oh(. ) ( f (x ) ) )  ~< 0} 

= { d :  (d, z*)<~0 for all z* c . f ' (x)r  Oh( ' ) ( f ( x ) )}  

= {d: (d, z*) ~< 0 for all z* ~ f ' ( x )  v cone(0h( .  ) ( f (x)))}  

= [ f ' ( x )  v cone(0h( .  ) ( f (x ) ) ) ]  ~ 

so that 

D(x)  ~ = f ' ( x )  r cone(0h ( . ) ( f ( x ) ) ) .  

Therefore an equivalent way of  stating the regularity condit ion K ( x ) =  D(x)  is to 
specify that 

f ' ( x )  s cone(0h(-  ) ( f (x ) ) )  = f ' (x )V  N( f ( x ) l l e vh ( f ( x ) ) ) .  

This condit ion is quite natural from a geometric point  o f  view. In particular, note 

that by Rockafellar  [19, Theorem 23.7], one in fact has that 

cone(0h( .  ) ( f (x ) ) )  = N(.f(x)l levh ( f (x ) ) )  

at every point x ~ R" for which Or Oh(. ) ( f (x ) ) .  We now catalogue these observations 

in the following proposit ion.  

Proposition 5.1. Let F, h, and f be as given in P, and let x ~ ~", then the following 
conditions are equivalent: 

(1) K ( x ) =  D(x) ;  

(2) f ' ( x ) r N ( f ( x ) l l e v t , ( f ( x ) ) )  =J"(x) v cone{0h(.  ) (f(x))}.  
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Moreover, if O~ Oh(. )(f(x)) then it is necessarily the case that K,(x)= D(x). 
In [13] ]offe introduces the following regularity condition in order to obtain his 

second order results: 

5.2. There exists an a > 0 such that 

dist(dlK(x)) <~ c~AF(x; d) for all d ~ ~". 

We now proceed to show that if M ( x ) #  0 then the condition 5.2 is equivalent to 

the statement 

f ' (x)TN(f(x)) l levt , ( f (x))  = f ' ( x )  t cone(/)h(. )(f(x))). (5.3) 

To this end let us first observe that condition 5.2 is equivalent to saying that 

dist(d I K (x)) <~ aF'(x; d) (5.4) 

for all d c R". Indeed, if (5.4) holds then (5.2) holds trivially since by (2.5) it is 

always the case that 

F'(x; d)<~AF(x; d) 

On the other hand, we know from [4, Theorem 3.1] that 

dist(dJK(x)) = 0*(d  I B~ K(x) ~ (5.5) 

since K(x) is a convex cone. Thus, in particular, d i s t ( - ]K(x) )  is a positively 

homogeneous  function and so if 5.2 holds then 

dist(d [ K(x)) <~ at-~ AF(x; td) 

for all t > 0. Therefore, again by (2.5), we find that 

dist(d I K(x))<~ c~F'(x; d). 

Now combining (2.3), (5.4) and (5.5) we have that 

O*(dlB"f3 K (x)") ~< O*(dlo~f'(x) r ~h(. ) ( f (x) ) )  (5.6) 

for all d 6 0~0. Therefore 

B~ K (x)~ = af'(x)T{~h( " )(f(x)) (5.7) 

and so 

where 

K(x)~  f ' (x )  t cone(0h( '  )(f(x))) 

K (x) ~ =f ' (x)rN(f(x) l levt ,  (f(x))). 

Consequently,  (5.3) holds since it is always the case that 

cone(Oh(. ) ( f (x ) ) )  c N(f(x)l levl ,( f(x))  ). 

In order to show that (5.3) implies (5.2) we employ the assumption that M(x) # 0 
along with the following technical lemma. 
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Lemma 5.8. Let C be a closed convex subset o f  R'" with 0 ~ (7.. Then there is an a > 0 

such that 

B c~ cone (C)  c a C  

i f  and  on O, i f  cone ( C ) is closed. 

Proof. ( 3 )  Since C is closed we know that a C  is also closed. Hence 

B c~ cone (C)  c aC. 

Let {zi}c cone (C)  be such that zi-~ z. Without  loss o f  generality, we assume that 

there is a y c B such that zi/]] zill-~ Y- Observe that 

y c  B ~ cone (C) ,  

so that y c o~C. Hence 

-1  c~ z ,=~- ' l l z i l l ( z , / l l z ,  ll)--, ~ 'llzlly 

where c~ ' l l z l l y c c o n e ( C ) .  But 
I Z i ~ O~ I Z, 

so that z = l[ z Ily ~ cone(C) .  
(~=) Since cone (C)  is closed, the domain  of  the gauge function for C, 3'( '  [C) ,  

is c o n e ( C ) .  Moreover,  3"(.[C) is a closed proper convex function since C is a 
non-empty  closed convex set. Hence 3'(-[ C)  is cont inuous on its domain.  Therefore 

3'(.[ C) attains a finite maximum value on the compact  set B ~ c o n e ( C ) ,  call this 

value a. Then 

B ~ c o n e ( C ) c  {y: y(y[  C)~< a } =  ~ C  

s i n c e O c C .  []  

Now if we assume that (5.3) holds then f ' ( x ) S c o n e ( a h ( . ) ( f ( x ) ) )  is closed. 

Moreover,  if M ( x ) #  ~ then 0 ~ f ' ( x )  r Oh(. ) (J(x)) .  Therefore Lemma 5.8 can be 

applied to yield the existence of  an a > 0 such that (5.7) holds. But then, via (5.6), 

we have that (5.4) is also valid. Thus we have established the equivalence of  (5.2) 

and (5.3) since we have already demonstra ted the equivalence of  (5.2) with (5.4). 

We record this result in the fol lowing proposition. 

Proposition 5.9. Let  F, h, and f b e  as in P, and  let x ~ R n. Then condition (5.2) always 

implies condition (5.3), and  i f  M ( x ) r 9), then condition (5.3) implies condition (5.2). 

We conclude by observing that at least in the finite dimensional  setting, the 

regularity condit ion that we propose  is slightly weaker than the one employed by 

Iotte since his condit ion (5.2) not only implies that K ( x )  = D ( x )  but moreover  that 

the cone f ' ( x )  T cone(0h( .  ) ( f (x ) ) )  is closed. This discrepancy,  al though minor, can 
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be of  significance in some cases. For example if we take h :~"-~R to be h(x) :=  
[[xl[2+(u, x) where u is any unit vector, and set f (x)=x,  then 

Oh (0) = B + u, 

so that 

f ' ( 0 )  T cone(Sh( .  )(f(O)) = {x*: (u, x*) > 0} u {0}, 

which is not closed, whereas 

K(O) = D ( O ) =  { -Au:  h I>0}. 

An example illustrating the possibility that K ( x ) =  D(x) but with K(x) not closed 
is given in Section 4. To find an example in which neither of  the regularity conditions 
hold one need only take h(x)=x 2 and f (x )=  x. 
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