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A GAUSS-NEWTON APPROACH TO SOLVING
GENERALIZED INEQUALITIES*^

JIM BURKE* AND S.-P. HAN«

CJieneralized inequalities are systems of the form g(x) ^^ 0, where g maps between normed
linear spaces and " ̂ ^ " denotes the partial order induced by the closed convex cone K (e.g.
K - R+> X {0}n»2). In this paper a Gauss-Newton type algorithm is presented for
ing the distance function

p(x) » dkt(g(x),- K) .= inf{l|g(x) + k\\: kBK}.

The technique globalizes the well-known Newton methods for solving generalized inequalities,
and overcomes the difficulties associated with subgradient methods for the global minimization
of p.

1. IntroductHMi. Generalized inequaUties are systems of the form

gix) <K 0 (1)

where g is a mapping between normed linear spaces X and Y and " ̂ ^ " denotes the
partial order induced by a closed convex cone K contained in Y (e.g. /sT == R+' x
{0}H».2). InequaUties of this type are significant as they provide a unifying theoretical
framework for invest^ating the structural characteristics of a wide variety of problems
in appUed mathematics (e.g. approximation, optimization, complementarity, varia-
tional inequaUties). Moreover, these systems play a central role in the model formula-
tion, design, and analysis of the numerical tecluiiques employed in solving problems
arising in mathematical programming, complementarity, and variational inequaUties.

Most iterative methoc^ for solving (1) depend upon the solvabiUty of the linearized
subproblems

g(x) + g'(x)(x - x) <^ 0. (2)

However, since in general (2) may be inconsistent, more robust methods for solving (1)
are required. Garda-Palomares [6], and Garcia-Palomares and Restuccia [7, 8] develop
a mini-max approach to this problem where K--=R"^X {0}|,-2. In fact their approach
has provid»i a gocxl deal of motivation for our viewpoint. In conjimction with this
work niiany of the recendy developed techniques for composite noncUfferentiable
optimization [19] also apply. But as in [6, 7, 8] these contributions depend upon the
polyhedraUty of both the cone and the norm employed. In the present paper we pursue
a more geometric approach, thereby eUminating the dependency on polyh«iraUty and
finite cUmensionaUty.
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We begin in §2 by presenting the algorithm. In §3 the geometric underpinnings of
the method are established, and in §4 certain stationarity criteria are developed. §5
considers regularity conditions designed to assure the existence and boundedness of
our search directions, and finaUy, in §6, the convergence results are presented.

The notation that we employ is for the most part the same as that in RockafeUar
[16]. A partial Ust is providai below for the reader's convenience.

- g ' ( x , d ) = hm^,Q{(g(x + X d ) - g(x))/X},
—8'(x) is the Fr6chet derivative of g at x,
—The space X* is the space of continuous linear functionals on the normed linear

space X, normed with the operator norm.
—Let C be a nonempty set in a normed linear space X, then
—d C is the closure of C,
—CO C is the convex huU of C,
—4>*(x*\C) ~ sup{<x*, x); X e C} is the support functional of C,
—y(x|C) == inf{y: x G yC) is the gauge functional of C, and C° == {x* e X*:

( x * , x > < l f o r a l l x G C ) .
If C is a convex cone in X, then C* ~ (-C)°.
-argmin{/(x): x G S} = {x: f(x) = min{/(x): x G S)].

2. Hie algcNritlini. Iterative schemes that employ inequaUty (2) to generate updates
for solving (1) are called Newton methods [4,14,15] as they are the natural generaliza-
tion of Newton's method for solving equations. Such methods are locaUy quadraticaUy
convergent imder the appropriate hypothesis and so constitute a powerful class of
techniques for solving (1). But on a global scale these methods may not be weU defined
due to the possible infeasibiUty of (2), or for that matter, the infeasibiUty of (1). One
way to overcome this diflBculty is to develop methods for the global minimization of
the functional

p(x) == dist(g(x),- K) == inf{||g(x) + A:||: k^K).

In this connection two procedures immediately come to mind: (a) subgradient methods
[12,13], and (b) Gauss-Newton methods. The subgradient approach is not altogether
satisfactory since in graeral convergence to stationary points of p cannot be guaran-
teed even if exact Une searches are performed (e.g. see [5]). (One hope in this direction
though is e-subgradients [1,11], and in fact this is the basis for the success of [6,7,8]
since a mitural and practical definition for the e-subgradient of maximum functions
has beffltt provided in [5]. But, for now, a workable definition for more general
non-C(Mivex functions does not exist.) On the other hand, we wiU show that the
Gauss-Newton approach provides a natural vehicle for overcoming the difficulti^ of
the subgradient approadi. Hiat is, there is a way to choose steplengths that is not
encumbered by the discontinuities of the directional derivative p'(x; d). The algorithm
is as fdlows:

Step (0). Choose c G (0,1), y G (0,1), M > 0, and XQ G X Set A: = 0.
Step (1). If 0 - A(Xi) ••= p*(xt) - p(Xk), where

« inf{dist(g(xt) + g'{x,,)d,- K): de X},stop.

Otherwise go to (2).
Sttp (2). Choose 4 ^ ^i^k) '= argmin{dist(g(xjfc) + g'(Xk)d,- ^ ) " d e X} so

that y^\\« dist(O, D(x^)) + M.
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Step (3). Set

Xk + ^k^k where

X^ ~ max y ' subject to .y = 0 , 1 , 2 , . . . , P^x^ + y'd^) - p (x t ) < cy'L{x^).

Step (4). Set A: «= ik -h i and goto (1).
Clearly, the only difference between this ai^oritiim and a more conventional one is

the replacement of p'(x; d) by A(x) in the Armijo type stepsize procedure, but, as we
will see, this simple innovation is enough to guarantee global convergence properties
under suitable hypothesis. (For the case when (2) is solvable, and so p*(x) = 0, this
stepsize strat^y was first introduced by Pshenichnyi [14].) That the algorithm is well
defined or that the stopping criteria makes sense is for the moment imdear. But as the
analysis unfolds we will show that p'(x; d) < A(x) < 0 for all x in Jif and d in D(x),
whenever D(x) # 0. Moreover, suffident conditions for the nonemptiness of the sets
D(x) will also be derived. Finally, one should note that whenever p*(x) = 0 and
Z>(x) ^ 0, the linearized inequality (2) is solvable.

3. The geometry.

(3.1) THEOREM. Let K be a closed convex cone contained in the real normed linear
space Y. Define the fimctiomd 4> mcqfping Yinto R by the relation ^(y) » dist(^,- K)
» inf{11^ + k\\: keK}. Tlien 4> satisfies the equation

il>iy) = dist(^,- K) = yiy\B - K) = «/'*(y|5° n K*)

where B.^{y:\\y\\<l).

PROOF. The equality of y(y\B - K) and \l'*(y\B° nK*) follows from the stan-
dard results conconing the gauge functionals of convex sets that contain the origin
(e.g. see [10,16]) and the fact that (J! - K)° = B^nK*. The result now follows from
the following derivation:

-Jk||: keK} =inf{y: z&B,yzGy + K}

The above theorem di^Iays the very rich geonwtric structure of the functional 4>-
Moreova, since tbe functicmal p is amply the compoatioa of ^ and g, the stn»:ture of
^ provides us with the necessary tools for analyzing p.

(3.2) TteOREif. Let g be a continuously Frechet differentiable map between the
normed linear spaces X cmd Y, and let K be a closed convex cone contained in Y. Set

(a) If Y is a reflexive Banach space md the set Ran(g'(«)) + K is closed, then D(x)
is a nonengtty closed comxx set.

(b) If in additum to the hyp<ahesis of (at) X is also asswned to be a reflexive Banach
space, then D(x) amtmns an element of least mmn.

FROOT. If D(x) is nonenqjty then its ccmvexity fdlows from the convexity of the
norm and the linearity of g'(x\ and its dosedness follows from the coBtinmty of the
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distance function to convex sets (see Theorem (5.2) of §5). Hence by Vlasov [18,
Proposition 2.3], (b) is valid. In order to obtain the nonemptiness of D(x) we observe
that

inf{dist(g(x) + g'{x)d,- K):deX}

= inf{||g(x) + g'{x)d + k\\: k&K,d&X)

= inf{||g(x) + z\\: z G Ran(g'(x)) ^ K]

= dist(g(x),-[Ran(g'(x))
and again apply Vlasov [18, Proposition 2.3]. •

If the set [Raui[g'(x)] -I- Â ] is not dosed it is possible, even in finite dimensions, that
the set D{x) is empty.

ExAMPii. Define g: R -* R H y the relation g(x) — (0, - 1, - x), and define K to
be the "ice cream cone" K ~ {(x, ;', z): 2xz > ; '^ x > 0, z > 0}. Then it is a simple
matter to show that D(0) = 0 and Ran[g'(O)] + JS: is not closed.

4. StatMHiary critma for p. The foUowing lemma provides the basis for the results
of this section.

(4.1) LEMMA. Let g be a continuously Frechet dijferentiable map between the normed
linear spaces X and Y, and suppose that the functional f on Y is positively homogeneous
and sublinear, i.e. / ( X x ) = X / ( x ) for all X > 0 and x e X, and
fix + >') < / ( x ) + f(y) for all x arid y in X. If we define ji:^ f° g, then /i'(x; d)
exists and satisfies the inequality

for every x and d in X.

PRCX)F. Since / is positively homogeneous and sublinear, it is convex. Hence by
Clarke [3] fi'(x; d) exists for all x and d in X. The result is thus a consequence of the
foUowing derivation:

lim
AiO

Repladng / by the functional ^y) ~ ddst(y,- K) of Theorem (3.1), we obtain,
from the lemma, the rdaticm

f/ix; d) < A(x) < 0 (4.1)

for all X e Jf a i^ d £ D{x), where A and D are defined in St^s 1 and 2 of die
a^mthm, ze^)ectivdy. Hence the Gauss-Newton directions, D{x), are in fact descoit
diiecticns Us p. The key result of this section is now proved via inequality (4.1) and
TheoRan(3.1).

(4^) taxmssUL Let the assumptims of Theorem (3.2) concerning the spaces X and Y,
thecmwK, trndOwfimcHmghold, letp, p*. A, andDbeasdefinedinthedgorithmof
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§2, arui let 4> be as defined in Theorem (3.1). Then the following conditions are equivalent:
(i) 0 ^ dp(x) ••= d4>(g(x))'>g'(x) = {z* °g'(x): z* e di>(g(x))) where 84, de-

notes the usual subgradient of a convex functional.
(u) 0 < pr(x; d) for all d in X.
(iii) 0 < p'(jc; d) for some or did e^ D(x).
(iv) ^(x) = 0.
(v) 0 e D(x).

PROOF. We first note that the set dp(x) is in fact the Clarke subcUfferendal of p at
jc. The equivalaice dp(x) = 3<^(g(x))o g'(x) which we have presaited as a definition
for the sake of simpUdty can be easily doived via Clarke [3, Proposition 13]. With this
observation in mind the equivalence of (i) and (ii) can be found in Clarke [3].
Furthermore, the impUcation, (ii) =» (iii), and the equivalence of (iv) and (v) are trivial.
Also, the impUcadon (iii) =» (iv), is a simple consequence of Lemma (2.4). Thus it only
remains to show that (iv) =» (i).

By Theorem (3.1) and a standard result concerning the subgradient of a support
functional (see e.g. Moreau [10]) we obtain the relation

Also, since A(x) = 0, we have, as in Theorem (3.2), that

dist(g(x),- K) = inf{dist(g(x) + g'{x)d,-

= dist(g(x),-[Ran(g'(O))+

Hence, again by Theorem (3.1),

r{g{x)\B'' n K*) = ./'*(g(x)|J« n JiT* n

But then

argmax{<>'*, g(x)>: / • e 5° O if*}

D aigmax{<>'*, g(x)>: /* € B° n ^ *

both of which are nonempty. Therefore, there i&a yS ^ Ran(g'(jc))^ such that

0̂* e argmax{<>'*,g(x)>: y^^B'^nK*).

Haice 0 = / * o g'(x) e dp(x). •
Strc»iger r^ults ccHicexniî  tte stationarity of p can be obtained by assuming that

d» ncmn pos^sses certain smoothi^ss prcq>erto (see [2]). In p^ticular, d Y ^
assumed to be a WSoext ^>ace than sin ^ a a t gmaalizatkHi of du nosoral equaticms
tosy^emsctf equaticHiscanbe<krived(see[2D. If y is a Hilbat !?«u» and we let Pg'
denote the metric projection onto K* cY, th«i

) if and only if ^'(x)''i»ir.[g(x)] - 0.
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5. R^idiHity. The primary purpose of the regularity conditions required by the
Newton methods for solving (1) is to guarantee the local solvabiUty of the Unearized
problems (2). A rather fortuitous consequence of the imposition of such conditions is
the local unifonn boundedness of the Newton directions (i.e. argmin{ ||</||: g(x) +
g'(x)^ <jf 0)). For our purposes the imposition of a condition that guarantees the
solvabiUty of (2) would be self-defeating as the possible insolvabiUty of (2) is the
primary motivation for our method. Yet we stiU require a condition that gtiarantees
the boundedness of our seardi directions (i.e. the directions {d: \\d\\ < dist(O, D(x)) +
M,d& D(x)}). Hie question then arises as to whether the local uniform boundedness
of our search directions forces the local solvabiUty of (2). The foUowing example
answers this question in the negative.

EXAMPLE. Let g: R -^ R^ be defined by

and set K~R\-= {(x, y): x>O,y> 0). Then

|: d G D{X)}

where R^ is equq>ped with the EucUdean norm. Hence D(x) is everywhere locaUy
bounded and yet (2) is not solvable for any x G R.

Hius we are led to the following definition for regularity.

(5.1) DEFINITION. Let g be a continuously Fr&het differentiable m ^ between the
real normed linear spaces X and Y, and let K hea closed convex cone contained in Y.
We say that g is A-regular at x^ G .ST if there is a neighborhood N(Xg) of x^ such that

sup{dist(O, D{x)): x G ^ ( X ^ ) } < oo

where D(x) '= argmin{dist(g(x) + g'(x)d,- K): d e X). (Here we use the conven-
tion dist(O,0) = + 00.) The map g is said to be AT-regular on set S c Â  if it is
AT-regular at every point of S, and is said to be uniformly A-regular on S if
sup{dist(O,i)(x)): x G S} < -t-oo.

Although j^-r^jularity is weaker than any of the weU-known regularity conditions
for geno^lized inequaUties, and is the weakest condition under which our seardi
directions can be guaranteed to be locaUy imiformly bounded, it niiay still fail to hold
in what appeax to he very wdl-bdiaved situations, as is Olustrated by the next example.

Let g: R ^ R^ be defined by the relation

and let iST '= R^.. Hien x = 0 is a global tpinimum for p and yet g is not A-regular at

The above example is indicative of what can go wrong in the finite-dimensional
setting. The foUowing theoron darifi^ tiiis point and provides suffident conditions for
^ ia fiaite dimoisiom.

(5.2) TmoREM. Let g: R ' - ^ R " be continuously Frechet differentiable, let K be a
closed convex cone contained in R'" and let p, p*, and D be as defined in the algorithm of
§2. IfeiOier

(1) Raa(g'(if)) n iat A: # 0, or
(2) (a) g' is o/ hciUfy amstant rank at x, and

<b) RimCrC*)) n bdry j : = {0},
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PROOF. (1) Since g is continuously Fr&het differentiable, there exists a ndghbor-
hood N(x) of X on which Ran(g'(x)) n int iT =9* 0 for aU x e N(x). Let x e N(x)
and chcx>se / e Ran(g'(x)) n int K. Then there exists e > 0 such that y + tB c: int K,
where B is the unit ball in R". Hence X(y + cB) c int iST for aU \ > 0. Therefore
XcB = -Xy + X(y + eB) c Ran(g'(x)) + int A: for aU X > 0, and so Ran(g'(jc)) +
iniK= R", for every x e N(x). Now since p(x) = dist(g(x),-[Ran(g'(x)) + K])
and Ran(g'(x)) + intjS:= R", there exists d ^ D(x) such that g(x) + g'(Jc)<7e
— int(if). Hence there is a ndghboihood of 3c, sajr Ni(x), such that g(x) + g'(x)d&
— int(K) for aU X € Ni(x), since both g and g' are continuous, and so g is A-r^ular
at 3c.

(2) We begin by showing that if (a) and (b) hold, then there is a neighborhcxxi N(x)
of X on which Riui(g'(x)) + liT is dosed, and so by Theorem (3J2), D(x) is nonempty
on this neighborhood.

Since (a) holds we know that the projector, P ,̂ onto Ran(g'(x)) is a continuous
function of x on some neighborhcx)d, say N(x), of x. Hence on .̂ (3c), Ran(g'(x)) n
hdryK = {0}, since otherwise there would exist sequences ( x j and {hj} with hj €
Rani(«'(-«,)) (^ bdryK and p , | | = 1, for all i. A, ^ h*, and x, -• 3c. But dien A, =
P^hj-* P^h* = h*, a contradiction, since ||A*|| = 1, A* e bdryA", and A* e
IUn(g'(x)).

We now proceed to show that if Ran(g'(x)) n bdryiT = {0}, them Ran(g'(x)) + K
is dceed, yielding the first stq> of our proof.

Suppose to the contrary that Raii(g'(x)) + JT is not closed, then there are sequences
{ z j c Ran(g'(x)), and {it,} c K such diat z, + it, -» A € Ran(g'(x)) + K. Qearly,
die sequences { z j and {kj) must be unbounded since both Ran(g'(x)) and K are
closed sets. Thus with no loss of generaUty, we wiU suppose that A:J/||A:,|| -* k*, with
||A:*|| = 1, and si

0,

we can also assume that z^|ikji -• k*. Hoice k* e Ran(g'(x)) n K. Now if Jt* e
int K, then evmituaUy so is ^j/||i:j}|, so that eveatually (A — z,)/||it,|| is in int Ĵ . Hence
A € Rsa(g'(x)) -I- mt JT, a ccmtradicticHi, and so Ar* e hdryK. But then A:* = 0, also
a cxmtradiction. Hence Ran(g'(x)) + K is closed. _

We now have that D(x) =)t 0 on N(x). Define P^ to be the projected: onto
Nul(g'(x)) -*-, and note that SHU» g' is of lcx^lly ccmstant rank, we can ̂ u m e that P^
is a continuous function of x on N(x). Now ii d & D(x), then so is P^d and so for
every x e N(x% there is a rf, G D(x) n NuKgX*)) "̂  sucii that

dist(0, D{x) n

The proof is now concluded by assuming tbat g is not K-regaUa at x and
ccmtradiction.

Knee g is not ^-x^ilar at 3c, ibae exist sequeiuxs {xJ and (dj) with

\\dj\\ " dist(O, D(x,) n Nul(g'(x,))-'). \\dM -* 00,

and Xj -» X Also, ance p(x) is upper-sramccHitisuous, we know that p(x) is locally
bouncted at x, haux p(x,)^|rfj -»0. By the pc»itive hcaaog^sigity of ^ (see Thieorem
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(3.1), we find that

M ( ) + g'ixj)dj\ - K)

- K),

and so -g'(x)d* e Ran(g'(3«)) n K. Now if g'(x)<i* e int(-A^), tiien eventually so
is (g(Xj) + g*(Xj)dj)A\di\\. Hence, eventually, g(x,) + g'(x,)< is in mt(-K). But
then for each such / there is a X e [0,1) for which g(x,) + g'(x,XX dj) e int{-K),
contradicting the choice of the dj's. Hence -g'(x)d* e bdry(ir), and so by (b),
g'(x)d* = 0, yielding d* ^ Nul(g'(x)). But

and so <f • e Nul(g'(x)) ^ • Therefore d* = O,and \\d*\\ = 1, a contradiction. Hence g
is iST-regular on N(x), and in particular at x. •

We now have the following continuity results for p, p*, and D:

(5.3) THEOREM. Let g be a continuously Frechet differentiable map between the real
normed linear spaces X cmd Y, let K be a closed convex cone contained in Y, and let p,
p*, and D be as defined in the algorithm of §2. Then

(i) p is continuous on X,
(ii) p* is upper semicontinuous on X,
(iii) ifgis K-regular at x^, then p* is continuous at XQ, and
(iv) if Y is a reflexive Banach space and (Ran(g'(x)) + K) is closed for all x e X,

then the mtdti-valued map D(x) is upper semicontinuous (i.e. if Xj -* x*, and d,^ d*
with dj e D(Xj), then d* G D(X*)).

PROOF, (i) This is a wdl-known and easily established result; for its proof, see for
q { ]

(ii) Let X and z be denMsnts of X and let c > 0. Choose d e Z so that

clist(g(x) + g*(x)d,- k) < p*(x) -(- c.

TTien

) 8{)) { ) + g'{x)d)\\ + dist(g(x) + g'(x)d,- K)

- g{x)\\ + \\g'{z) - g'{x)\\ \\d\\ + p*(x) + c. (5.1)

limsupp»(z)<« + p*(x),
z-*x

kSss^ tfie tapes' scmlcontiniiity of p*.
(iii) By iT-wgularity there is a neighborhood iV(x J of x, and a constant M>0
k that dis^O, D(x)) < M for aU x e N(x^). Note, in particular, that this imphes
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that D(x) ¥= 0 for aU X e N(xJ. Let e > 0 be given, choose x^ and Xj in N(xJ, and
select di G D(X, ) such that ||J,|| < dist(O, i>(x,)) -I- e, / = 1,2. Then employing a
derivation siniiilar to that of inequality (5.1) and using symmetry we get that

X||[max{dist(O, Z)(xi)),dist(O, /^(xj))} + e]

Therefore, p* is continuous at XQ.
(iv) Theorem (32) teUs us that D(x) =!t 0 for aU x G X Let x, -» x* and J, -* </*

with di G D(x,) for aU / = 1,2, We need to show that d* e D(x*). First note
that since the function L(x, d) ••= g(x) -I- gXx)d is continuous in both its variables x
and d, we obtain via part (i) that the function o(x, d) ••- dist(L(x, d)\ - K) is
continuous on Jif X X Combining this fact with the upper semicontinuity of p* we get
that

dist(g(x*) + g'(x*) J * , - K) = 0(x*, d*)

= lim a(x,, </,)
i-»oo

= Um p*(x,)
l-»00

= limsup p*(x*)

1-»00

< P*(X*)

and SO </* G 2)(x*).

6. Coiiv«geiK«. We begin this section by showing that the algorithm of §2 is
indeed weU defined. In Step (1), the dgorithm is terminated if x^ is a stationary point
of p, since, by Thec»en (4.2), the condition ^(x^) = 0 is equivalent to 0 G dp(x^). In
Step (2) a search direction d^ is chosen from the set of Gauss-Newton directions
D(x^) satisfybttg Wd^W < dist(O, D{x^.)) + M.It M>0 then the existence of such a d,,
is guaranteed by assuming dther that y is a Banach space and the set Ran(g'(Xjfc)) + K
is closed (Tlieoran (3.2)), or that g is A-regular at x^ (Definition (5.1)). If M = 0 then
it must be further a^umed that X is a Banach space (TliTOrem (3.2)). Stqp (3) of the
algorithm produces a stq>-length via an Armijo type stq>lei:î th procedure where
P'(jc*; dt) is replaced by A(xt). By Lemma (4.1) we know that p'(xt; d,,) < A(Xi) < 0,
hence, since A(xt) # 0, the Annijo procedure is finitely terminating. TherefcHC the
algorithm is weU defined so long as D{x^) *Otot every iterate Xyj..

(6.1) THEOREM. Let g be a continuously Frechet differentiable map between the
normed linear spaces X and Y. (if the pewameter M in the algorithm is zero, X must be
taken to be a Banach space.) Suppose that Kisa elided convex cone contmned in Y, and
that p, f^, D and ^ are as defined in the algorithm of §2. Let x^^X and set
S « d(co{x: 0 < p(x) < p(xj}). / /

(a) g' is bounded on an open set cmtmmng S,
(b) g' is uniformfy cimtinuous on S, and
(c) g M uniformfy K-regular on S,

Oien if {x,} is ihe sequence gaterated by the algtmthm of §2 with initial point x«, then
A(x,) -*0, and {Xi}c S.
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PROOF. Let us suppose that A(x,) •** 0, then the sequence {x,} is infinite and there
exist a subsequence {x^j) and a /8 < 0 such that A(.X;y) < /3 < 0 for aU y = 1,2,... .
Since {p(jc,)} is a stricdy decreasing sequence that is bounded below, we know that
(p(-<,+i) - P(Jc,)) ^ 0 and so A,A(ac,) -» 0. But dien A,̂  -» 0, since A(jĉ y) < ;S < 0
for ail y = 1,2,... . With no loss of generality we further assume that A,̂  < 1 for aU
; = 1,2,.... The Annijo inequality of Stqj (3) of the algorithm, and the Lebourg mean
value theorem [9], now teU us that

for some ẑ  on the open Une segment joining x,̂  to jc,̂  + y^^Xijd,j. Dividing this
inequality through by y~^A,̂ , we obtain the inequality cA(x,^) < (/{Zj-, d,j). By
Lemma (4.1) we can replace the right-hand side of this inequality by

) + g'{zj)d,j,- K) - p{zj)

to obtain

cA(x,.,) < dist(g(z,) + g'{zj)d,j,- K) - p{Zj)

< 2||g(z,.) - g{x,j)\\ + \\g'{zj) - g'{x,j)

But Xfjdfj -* 0 as J -* CO, since A,̂  -> 0 and g is uniformly ^-regtilar on S. Hence

0 < (1 - c)limsupA(x,y),
J

where —II{XQ) < limsup^A(x,y) < ;8 < 0, a contradiction.
If y is taken to be a HUbert space then a stronger result can be obtained.

(6.2) THEOREM. Let the hypothesis of Theorem (6.1) hold. If {x,} is the sequence
generated by the algorithm with initial point XQ, then either p{x,) -^ 0 or dist(O, dp{x,j))
-» 0 for every subsequence {x,y} of the x/s for which {p(x,y)} is botmded away from
zero.

(F(M- the proof of this theorem, see [2].)

The above theorems only provide information concerning the limiting properties of
certain stationarity criterion for p, making no claims about convergence of the a;,'s. In
such a general setting this is of course the best one could hope for without placing
furtte- restrictions upon 5, g, g', and p (see [2]). But such a discussion lies far beyond
the scope and purpose of this pq>er.

In finite dimensions the existence of cluster points of the sequence can be guaranteed
by suitable hyp(Mhesis eith^ on 5 or g. In this case Theorem (6.1) guarantees these
poinb to be stationary points for p. Fmthermore, if p*{Xk) = 0 and Af = 0, then our
seaidi directions are identical to those found in Robinson's Newton method [15]. In
fact if the sequoice has a duster pdnt x that satisfies Robinson's PL I condition [15],
then it is possible to show, using techniques similar to those found in Robinson [15] or
Garcia^Palomar^ and Restiuxaa [7], ^ t the entire sequence converges to 3c at a
quadratic rate. This result is not pre^nted here as it requires a great deal of exti-a
effort, Ijot it may be fmmd in [2]. We condude this section with a coroUary describing
the ccMivergHK» bdutvior tor finite dimensions «4ien it is assiuned that the sequoice

bcmulal.



642 nM BURKE & S. P. HAN

(6.3) COROLLARY. Let g: R" -^ R " be continuously Frechet differentiable on R".
Suppose that K is a closed convex cone contained in R"", and that p, p*, D, and A are as
defined iri the algorithm of §2. Let XQ G R". / / the sequence {x,} generated by the
algorithm with initial point Xg is bounded, then either

(i) A(x,) - • 0 and every cluster point x of the sequence {x,} satisfies 0 G dp(x), or
(ii) there is a cluster point x of { x,} such that g is not K-regular at x.

PROOF. We wiU assume that (ii) does not hold and prove that (i) does hold.
First note that if indeed A(x,) -» 0 and x is a duster point of {x,}, then g is by

assumption .K-regular at x and so by Theorem (5.3), A(x) ~ p*(x) - p(x) is continu-
ous at X. Hence A(x) = 0 and 0 G dp(x) by Theorem (4.2). Thus we would be done if
we knew that A(x,) -» 0. Let us assume to the contrary that A(x,) -^ 0 and derive a
contradiction. The proof proceeds in much the same way as that of Theorem (6.1).

Since A(x,) -^ 0, the sequence {x,} is infinite and there are a subsequence {x^^} and
a jS < 0 such that Hxtj) < i8 < 0 for aU y' = 1,2,... . Since (p(x,)} is a stiictly
decreasing sequence that is bounded below, we know that (p(x,+i) - plxj) -» 0 and
so X,A(x,) -• 0. But then X^j -^ 0, since A(x,^) < ^ < 0 for aU y" = 1,2, With no
loss of generality we further assume that X̂ ^ < 1 for aU y' = 1,2,... and x,̂  -» x e R".
Moreover, since by assumption g is A-regular at x, we shaU assume that {x^y} c N(x)
where .^(x) is some compact neighborhcxxl of x on which g is uniformly i:-regular.
Now, exactly as in Theorem (6.1), we can employ the Armijo inequaUty and the
Lebourg mean value theorem to obtain the inequality

0 < (1 - c)A(x,,) + 2||g(zy) - g(x,,)| | + \\g'(zj) - g'(x

where Zj is some point on the line s^ment joining x,y to x,y + y'^X^jdij. Now taking
limits and remembering that by X-regularity, A is cx)ntiauous at x and the (/,y's are
bounded, we get that 0 < (1 - c)A(x) < (1 - c)/3 < 0, a contradiction, thereby
establishing the result. •
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