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A GAUSS-Ni-IWTON APPROACH TO SOLVING
GENERALIZED INEQUALITIES*

JIM BURKE?* aAND S.-P. HANS

Generalized inequalities are systems of the form g(x) €5 0, where g maps between normed
linear spaces and “ €y > denotes the partial order induced by the closed convex cone K (e.g.
K = R7" X {0} gm). In this paper a Gauss-Newton type algorithm is presented for minimiz-
ing the distance function

p(x) = dist(g(x),~ K) = inf{lig(x) + ki: ke K }.

The technique globalizes the well-known Newton methods for solving generalized inequalities,
and overcomes the difficulties associated with subgradient methods for the global minimization
of p.

1. Introduction. Generalized inequalities are systems of the form
g(x) <x 0 ()

where g is a mapping between normed linear spaces X and Y and “ 5 ” denotes the
partial order induced by a closed convex cone K contained in Y (e.g. K= R X
{0} gm2). Inequalities of this type are significant as they provide a unifying theoretical
framework for investigating the structural characteristics of a wide variety of problems
in applied mathematics (e.g. approximation, optimization, complementarity, varia-
tional inequalities). Moreover, these systems play a central role in the model formula-
tion, design, and analysis of the numerical techniques employed in solving problems
arising in mathematical programming, complementarity, and variational inequalities.

Most iterative methods for solving (1) depend upon the solvability of the linearized
subproblems

g(%) + g'(¥)(x = X) <¢ 0. @

However, since in general (2) may be inconsistent, more robust methods for solving (1)
are required. Garcia-Palomares [6], and Garcia-Palomares and Restuccia [7, 8] develop
a mini-max approach to this problem where K := R X {0} g=,. In fact their approach
has provided a good deal of motivation for our viewpoint. In conjunction with this
work many of the recently developed techniques for composite nondifferentiable
optimization [19] also apply. But as in [6, 7, 8] these contributions depend upon the
polyhedrality of both the cone and the norm employed. In the present paper we pursu¢
a more geometric approach, thereby eliminating the dependency on polyhedrality and
finite dimensionality.
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We begin in §2 by presenting the algorithm. In §3 the geometric underpinnings of
the method are established, and in §4 certain stationarity criteria are developed. §5
considers regularity conditions designed to assure the existence and boundedness of
our search directions, and finally, in §6, the convergence results are presented.

The notation that we employ is for the most part the same as that in Rockafellar
[16). A partial list is provided below for the reader’s convenience.

—g'(x; d) = lim, ,o{(8(x + A d) = g(x))/A),

—g’(x) is the Fréchet derivative of g at x,

—The space X'* is the space of continuous linear functionals on the normed linear
space X, normed with the operator norm.

—Let C be a nonempty set in a normed linear space X, then

—cl C is the closure of C,

—co C is the convex hull of C,

—y*(x*|C) = sup{(x*, x); x € C} is the support functional of C,

—y(x|C) = inf{y: x € yC} is the gauge functional of C, and C°:= {x* € X*:
(x*,x) < 1forall x € C}.

If C is a convex cone in X, then C* := (- C)°.

—argmin{ f(x): x € S} = {X: f(X) = min{ f(x): x € §}].

2. The algorithm. Iterative schemes that employ inequality (2) to generate updates
for solving (1) are called Newton methods [4, 14, 15] as they are the natural generaliza-
tion of Newton’s method for solving equations. Such methods are locally quadratically
convergent under the appropriate hypothesis and so constitute a powerful class of
techniques for solving (1). But on a global scale these methods may not be well defined
due to the possible infeasibility of (2), or for that matter, the infeasibility of (1). One
way to overcome this difficulty is to develop methods for the global minimization of
the functional

p(x) = dist(g(x),— K) = inf{||g(x) + k||: k € K}.

In this connection two procedures immediately come to mind: (a) subgradient methods
[12,13], and (b) Gauss-Newton methods. The subgradient approach is not altogether
satisfactory since in general convergence to stationary points of p cannot be guaran-
teed even if exact line searches are performed (e.g. see [5]). (One hope in this direction
though is e-subgradients [1,11], and in fact this is the basis for the success of [6,7, 8]
since a natural and practical definition for the e-subgradient of maximum functions
has been provided in [S]. But, for now, a workable definition for more general
non-convex functions does not exist.) On the other hand, we will show that the
Gauss-Newton approach provides a natural vehicle for overcoming the difficulties of
the subgradient approach. That is, there is a way to choose steplengths that is not
encumbered by the discontinuities of the directional derivative p'(x; d). The algorithm
is as follows:

Step (0). Choose ¢ € (0,1), Yy € (0,1), M > 0, and x, € X. Set k = 0.

Step (1). If 0 = A(x,) = p*(x;) — p(x,), where

p*(x,) = dist(g(x,),~ (K + Ran[g'(x,)])),
= inf{dist(g(x,) + g'(x,)d,— K): d € X}, stop.
Otherwise go to (2).

Step (2). Choose d, € D(x,) = argmin{dist(g(x,) + g'(x)d,~ K): d € X} so
that {|d,|| < dist(0, D(x,)) + M.
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Step (3). Set
Xg4q =X, + N d, where
A= maxy® subjectto s=0,1,2,..., p(x,+vd,)— p(x;) <cyA(x,).

Step (4). Set k = k + 1 and goto (1).

Clearly, the only difference between this algorithm and a more conventional one is
the replacement of p’(x; d) by A(x) in the Armijo type stepsize procedure, but, as we
will see, this simple innovation is enough to guarantee global convergence properties
under suitable hypothesis. (For the case when (2) is solvable, and so p*(x) = 0, this
stepsize strategy was first introduced by Pshenichnyi [14).) That the algorithm is well
defined or that the stopping criteria makes sense is for the moment unclear. But as the
analysis unfolds we will show that p'(x; d) < A(x) < 0 for all x in X and d in D(x),
whenever D(x) # 0. Moreover, sufficient conditions for the nonemptiness of the sets
D(x) will also be derived. Finally, one should note that whenever p*(x) = 0 and
D(x) # §, the linearized inequality (2) is solvable.

3. The geometry.

(3.1) THEOREM. Let K be a closed convex cone contained in the real normed linear
space Y. Define the functional ¢ mapping Y into R by the relation ¢(y) = dist( y,— K)
= inf{||y + k||: kK € K}. Then ¢ satisfies the equation

¢(y) = dist(y,— K) = y(y|B — K) = ¢*(y|B°n K*)

where B == { y: ||y|| < 1}.

ProoOF. The equality of y(y|B — K) and ¢*(y|B° N K*) follows from the stan-
dard results concerning the gauge functionals of convex sets that contain the origin
(e.g. see [10,16]) and the fact that (B — K)° = B® N K *. The result now follows from
the following derivation:

inf{lly +kl: k€eK} =inf{y: z€B,yz€y+ K}
=inf{y: y€yB - K}
=inf{y: yey(B-K)} =v(y|B-K). =

The above theorem displays the very rich geometric structure of the functional ¢.
Moreover, since the functional p is simply the composition of ¢ and g, the structure of
¢ provides us with the necessary tools for analyzing p.

(3.2) THEOREM. Let g be a continuously Fréchet differentiable map between the
normed linear spaces X and Y, and let K be a closed convex cone contained in Y. Set

D(x) = argmin{dist(g(x) + g'(x)d,— K): de X}.

(a) If Y is a reflexive Banach space and the set Ran(g’(x)) + K is closed, then D(x)
is a nonempty closed convex set.

(b) If in addition to the hypothesis of (8) X is also assumed to be a reflexive Banach
space, then D(x) contains an element of least norm.

PrOOF. If D(x) is nonempty then its convexity follows from the convexity of the
norm and the linearity of g’(x), and its closedness follows from the continuity of the
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distance function to convex sets (see Theorem (5.2) of §5). Hence by Vlasov [18,
Proposition 2.3}, (b) is valid. In order to obtain the nonemptiness of D(x) we observe
that

inf{dist(g(x) + g’(x)d,— K): d € X}

= inf{jlg(x) + g'(x)d+ k|: ke K,d € X}
= inf{l|g(x) + z||: z € Ran(g’(x)) + K }
= dist(g(x),~ [Ran(g’(x)) + K])

and again apply Vlasov [18, Proposition 2.3]. =

If the set [Ran{g’(x)] + K] is not closed it is possible, even in finite dimensions, that
the set D(x) is empty.

ExampLE. Define g: R — R? by the relation g(x) = (0,— 1,~ x), and define X to
be the “ice cream cone” K = {(x, y,z): 2xz2 > y%, x> 0,z > 0}. Then it is a simple
matter to show that D(0) = ¢ and Ran[g’(0)] + X is not closed.

4. Stationary criteria for p. The following lemma provides the basis for the results
of this section.

(4.1) LEMMA. Let g be a continuously Fréchet differentiable map between the normed
linear spaces X and Y, and suppose that the functional f on Y is positively homogeneous
and sublinear, i.e. f(Ax) = Af(x) for al A >0 and x € X, and

f(x+yY< f(x)+ f(y) for all x and y in X. If we define p: = feog, then p'(x; d)
exists and satisfies the inequality

w(x;d) < f(g(x) + g'(x)d) - f(g(x))
for every x and d in X.

PrOOF. Since f is positively homogeneous and sublinear, it is convex. Hence by
Clarke [3] p'(x; d) exists for all x and d in X. The result is thus a consequence of the

following derivation:
“:(x; d) = ;‘li!(l)f(g(x + Xdk)) -—f(g(x))

- m £(8() + Ag'(x)d; o(A)) - f(g(x))

AL0
< f(g(x) + g'(x)d) — f(g(x)) + )l‘if(‘)f(?_(}\k_)')' .

Replacing f by the functional ¢(y) = dist(y,— K) of Theorem (3.1), we obtain,
from the lemma, the relation

p(x;d) <A(x) <0 (41)

for all x € X and d € D(x), where A and D are defined in Steps 1 and 2 of the
algorithm, respectively. Hence the Gauss-Newton directions, D(x), are in fact descent
directions for p. The key result of this section is now proved via inequality (4.1) and
Theorem (3.1).

(4.2) TuEOREM. Let the Mtiom of Theorem (3.2) concerning the spaces X and Y,
the cone K, and the function g hold, let p, p*, A, and D be as defined in the algorithm of
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§2, and let ¢ be as defined in Theorem (3.1). Then the following conditions are equivalent:

() 0 € dp(x) = dp(g(x))°g'(x) = {z*g'(x): z* € IPp(g(x))} where d¢ de-
notes the usual subgradient of a convex functional.

(ii) 0 < p/(x; d) for all d in X.

(iii) 0 < p/(x; d) for some or all d € D(x).

@iv) A(x) = 0. .

v) 0 € D(x). )

PrROOF. We first note that the set dp(x) is in fact the Clarke subdifferential of p at
x. The equivalence dp(x) = d¢p(g(x))° g’(x) which we have presented as a definition
for the sake of simplicity can be easily derived via Clarke [3, Proposition 13]. With this
observation in mind the equivalence of (i) and (ii) can be found in Clarke [3].
Furthermore, the implication, (ii) = (iii), and the equivalence of (iv) and (v) are trivial.
Also, the implication (iii) = (iv), is a simple consequence of Lemma (2.4). Thus it only
remains to show that (iv) = (i).

By Theorem (3.1) and a standard result concerning the subgradient of a support
functional (see e.g. Moreau [10]) we obtain the relation

dp(x) = ay*(g(x)|B° N K*)g'(x)
= [argmax{(y*, g(x)): y* € BN K*}] o g'(x).
Also, since A(x) = 0, we have, as in Theorem (3.2), that
dist( g(x),— K) = inf{dist(g(x) + g’(x)d,— K): d € X}
= dist(g(x),~ [Ran(g'(0)) + K]).
Hence, again by Theorem (3.1),
v*(g(x)IB° N K*) = ¢*(g(x)|B° N K* N Ran[g"(x)]*).
But then
argmax{(y*, g(x)): y* € B°N K*}
> argmax{(y*, g(x)): y* € BN K* N Ran[g'(x)]*},
both of which are nonempty. Therefore, there is a y& € Ran(g’(x))* such that
y¢ € argmax{(y*, g(x)): y* € B°n K*}.
Hence 0 = y*o g/(x) € dp(x). =
Stronger results concerning the stationarity of p can be obtained by assuming that
the norm possesses certain smoothness properties (see [2]). In particular, if Y 15
assumed to be a Hilbert space then an elegant generalization of the normal equations

for systems of equations can be derived (see {2]). If Y is a Hilbert space and we let Px-
denote the metric projection onto K* C Y, then

0€dp(x) ifandonlyif g'(x)"Pealg(x)] =0.
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5. Regularity. The primary purpose of the regularity conditions required by the
Newton methods for solving (1) is to guarantee the local solvability of the linearized
problems (2). A rather fortuitous consequence of the imposition of such conditions is
the local uniform boundedness of the Newton directions (i.e. argmin(||d|: g(x) +
g’'(x)d €x 0}). For our purposes the imposition of a condition that guarantees the
solvability of (2) would be seclf-defeating as the possible insolvability of (2) is the
primary motivation for our method. Yet we still require a condition that guarantees
the boundedness of our search directions (i.e. the directions {d: ||d|| < dist(0, D(x)) +
M, d € D(x)}). The question then arises as to whether the local uniform boundedness
of our search directions forces the local solvability of (2). The following example
answers this question in the negative.

ExaMPLE. Let g: R — R? be defined by

5(x) = (*3*")
and set K == R? = {(x, y): x > 0, y > 0}. Then

al'gmm{lld“ de D(x)} = {(ex+1 — 2% X)(l + er)—l}

where R? is equipped with the Euclidean norm. Hence D(x) is everywhere locally
bounded and yet (2) is not solvable for any x € R.
Thus we are led to the following definition for regularity.

(5.1) DEFINITION. Let g be a continuously Fréchet differentiable map between the
real normed linear spaces X and Y, and let X be a closed convex cone contained in Y.
We say that g is K-regular at x, € X if there is a neighborhood N(x,) of x, such that

sup{dist(0, D(x)): x € N(x,)} < 0

where D(x) = argmin{dist(g(x) + g’(x)d,— K): d € X}. (Here we use the conven-
tion dist(0,) = +c0.) The map g is said to be K-regular on set S C X if it is
K-regular at every point of S, and is said to be uniformly K-regular on § if
sup{dist(0, D(x)): x € §} < + 0.

Although K-regularity is weaker than any of the well-known regularity conditions
for generalized inequalities, and is the weakest condition under which our search
directions can be guaranteed to be locally uniformly bounded, it may still fail to hold
in what appear to be very well-behaved situations, as is illustrated by the next example.

ExampLe. Let g: R —» R? be defined by the relation

g(x) = ("2; 1),

and let X := R2, Then x = 0 is a global minimum for p and yet g is not K-regular at
x=0,

The above example is indicative of what can go wrong in the finite-dimensional
setting. The following theorem clarifies this point and provides sufficient conditions for
K-regularity in finite dimensions.

(5.2) THEOREM. Let g: R™ — R™ be continuously Fréchet differentiable, let K be a
closed convex cone contained in R™ and let p, p*, and D be as defined in the algorithm of
82. If either

(1) Ran(g’ (X)) Nint K + §, or

(2) (a) g’ is of locally constant rank at X, and

{(b) Ran(g’(x)) N bdry K = {0},
then g is K-regular at %.
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Proor. (1) Since g is continuously Fréchet differentiable, there exists a neighbor-
hood N(X) of X on which Ran(g’(x)) Nint K # @ for all x € N(X). Let x € N(%)
and choose y € Ran(g’(x)) N int K. Then there exists € > 0 such that y + €B C int X,
where B is the unit ball in R™. Hence A(y + ¢B) C int K for all A > 0. Therefore
AeB = —Ay + A(y + €B) C Ran(g’(x)) + int K for all A > 0, and so Ran(g’(x)) +
int K = R™, for every x € N(Xx). Now since p(x) = dist(g(x),—[Ran(g’(x)) + K])
and Ran(g’(Xx)) + int K = R™, there exists -d € D(x) such that g(x) + g'(x)d €
—int(K). Hence there is a neighborhood of X, say N,(¥), such that g(x) + g’(x)d €
—int(K) for all x € N,(X), since both g and g’ are continuous, and so g is K-regular
at X.

(2) We begin by showing that if (a) and (b) hold, then there is a neighborhood N(x)
of x on which Ran(g’(x)) + K is closed, and so by Theorem (3.2), D(x) is nonempty
on this neighborhood.

Since (a) holds we know that the projector, P,, onto Ran(g’(x)) is a continuous
function of x on some neighborhood, say N(X), of x. Hence on N(X), Ran(g’(x)) N
bdry K = {0}, since otherwise there would exist sequences {x;} and {A;} with h; €
Ran(g’(x;)) N bdryK and Jjh,)| =1, for all i, h, » h*, and x; — X. But then h; =
P, h; = P;h* = h*, a contradiction, since ||h*|| =1, h* € bdryK, and A* €
Ran(g’(x)).

We now proceed to show that if Ran(g’(x)) N bdry X = {0}, then Ran(g’(x)) + K
is closed, yielding the first step of our proof.

Suppose to the contrary that Ran(g’(x)) + K is not closed, then there are sequences
{z;} € Ran(g’(x)), and {k,} < K such that z; + k;, = h & Ran(g’(x)) + K. Clearly,
the sequences {z;} and {k,} must be unbounded since both Ran(g’(x)) and X are
closed sets. Thus with no loss of generality, we will suppose that k,/|lk || = k*, with
lIk*|| = 1, and since

"}:_ _h-g
el ~ Tk

-0,

we can also assume that z,/]|k;|| = k*. Hence k* € Ran(g’(x)) N K. Now if k* €
int K, then eventually so is k,/]|k ]I, so that eventually (2 — z,)/]lk;|| is in int K. Hence
h € Ran(g’(x)) + int K, a contradiction, and so k* € bdry K. But then k* = 0, also
a contradiction. Hence Ran(g’(x)) + K is closed. _

We now have that D(x)# ¢ on N(X). Define P, to be the projector onto
Nul(g’(x))*, and note that since g’ is of locally constant rank, we can assume that P,
is a continuous function of x on N(X). Now if 4 € D(x), then so is P d and so for
every x € N(X), thereis a d, € D(x) N Nul(g’(x))* such that

i, )l = dist(0, D(x) N Nul(g’(x))*).

The proof is now concluded by assuming that g is not K-regular at X and deriving 2
contradiction.
Since g is not K-regular at X, there exist sequences {x,} and {d,} with

Il = dist{0, D(x,) N Nul(g"(x,))*), Idll = o0, ddill - d*,

and x, - X. Also, since p(x) is upper-semicontinuous, we know that p(x) is locally
bounded at x, hence p(x,)/lid,|| = 0. By the positive homogeneity of ¢ (see Theorem
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(3.1), we find that
1 1 .
TP (x) = papdist(s(x) + £'(x)d) - )

T g(xi) , d,
= dlst("——“d'" +g (x,)ml - K

- dist(g’(¥)d*| - K),

and so —g’(x)d* € Ran(g’(x)) N K. Now if g’(X¥)d* € int(— K ), then eventually so
is (g(x;) + g*(x;)d))/lid;|. Hence, eventually, g(x;) + g'(x;)d; is in int(—K). But
then for each such i there is a A € [0,1) for which g(x;) + g’(x;XA d,) € int(—K),
contradicting the choice of the d,’s. Hence —g’(X)d* € bdry(K), and so by (b),
g'(¥)d* = 0, yielding d* € Nul(g’(X)). But
d —( d —

— = L * — %

/A ( ud.~u) ™ Bed® = d%
and so d* € Nul(g’(X))* . Therefore d* = 0, and ||d *|| = 1, a contradiction. Hence g
is K-regular on N(X), and in particular at X. =

We now have the following continuity results for p, p*, and D:

(5.3) THEOREM. Let g be a continuously Fréchet differentiable map between the real
normed linear spaces X and Y, let K be a closed convex cone contained in Y, and let p,
p*, and D be as defined in the algorithm of §2. Then

(i) p is continuous on X,

(ii) p* is upper semicontinuous on X,

(iii) if g is K-regular at x,, then p* is continuous at x,, and

(iv) if Y is a reflexive Banach space and (Ran(g’(x)) + K) is closed for all x € X,
then the multi-valued map D(x) is upper semicontinuous (i.e. if x; > x*, and d, - d*
with d; € D(x,), then d* € D(x*)).

PROOF. (i) This is a well-known and easily established result; for its proof, see for

example [2].
(i) Let x and z be elements of X and let ¢ > 0. Choose d € X so that

dist(g(x) + g*(x)d,— k) < p*(x) + €.
Then
p*(2) < dist(g(z) + g(2)d,- K)
< li(g(2) + g/(2)d) — (8(x) + g'(x)d)|| + dist(g(x) + g'(x)d,~ K)
< llg(z) — g(x)1l + l1g’(2) — g’ (NIl + o*(x) + . (51)
Therefore,
limsupp*(z) < € + p*(x),

yielding the upper semicontinuity of p*.
(ili) By K-regularity there is a neighborhood N(x,) of x, and a constant M > 0
such that dist(0, D(x)) < M for all x € N(x,). Note, in particular, that this implies
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that D(x) + @ for all x € N(x,). Let € > 0 be given, choose x, and x, in N(x,), and
select d, € D(x;) such that ||d;|| < dist(0, D(x,)) + ¢, i =1,2. Then employing a
derivation similar to that of inequality (5.1) and using symmetry we get that

[p*(x;) = p*(x,)l
< lig(x1) = g(x )l +118°(x1) — &'(x2)
X ||[max{dist(0, D(x,)), dist(0, D(x,))} + €]
< |Ig(x1) — g(x)Il +118"(x1) — g"(x2)[ M + €].

Therefore, p* is continuous at x,.

(iv) Theorem (3.2) tells us that D(x) # @ forall x € X. Let x; » x* and d, - d*
with d, € D(x;) for all i =1,2,.... We need to show that d* € D(x*). First note
that since the function L(x, d) == g(x) + g’(x)d is continuous in both its variables x
and d, we obtain via part (i) that the function o(x, d) = dist(L(x,d)| — K) is
continuous on X X X. Combining this fact with the upper semicontinuity of p* we get
that

dist(g(x*) + g’(x*)d*,— K) = o(x*,d*)
lim o(x;, d;)

i~ 00
= lim P*(xi)
i~ 00
= limsup p*(x*)

i—> o0

< p*(x*)

]

and so d* € D(x*).

6. Convergence. We begin this section by showing that the algorithm of §2 is
indeed well defined. In Step (1), the algorithm is terminated if x, is a stationary point
of p, since, by Theorem (4.2), the condition A(x,) = 0 is equivalent to 0 € dp(x,). In
Step (2) a search direction d, is chosen from the set of Gauss-Newton directions
D(x,) satisfying [|d, || < dis(0, D(x,)) + M. If M > 0 then the existence of such a d;
is guaranteed by assuming either that Y is a Banach space and the set Ran(g’(x;)) + K
is closed (Theorem (3.2)), or that g is K-regular at x, (Definition (5.1)). If M =0 then
it must be further assumed that X is a Banach space (Theorem (3.2)). Step (3) of the
algorithm produces a step-length via an Armijo type steplength procedure where
¢(x; d,) is replaced by A(x,). By Lemma (4.1) we know that p'(x,; d,) < A(x,) < 0,
hence, since A(x,) # 0, the Armijo procedure is finitely terminating. Therefore the
algorithm is well defined so long as D(x,) # 0 for every iterate x,.

(6.1) THEOREM. Let g be a continuously Fréchet differentiable map between the
normed linear spaces X and Y. (if the parameter M in the algorithm is zero, X must be
taken to be a Banach space.) Suppose that K is a closed convex cone contained in Y, and
that p, p*, D and A are as defined in the algorithm of §2. Let x, € X and set
S = cl(co{ x: 0 < p(x) € p(x,)})- If

(a) g’ is bounded on an open set containing S,

(b) g’ is uniformly continuous on S, and

(¢) g is uniformly K-regular on S,
then if {x,} is the sequence generated by the algorithm of §2 with initial point x,, then
A(x;) =0, and {x;} C 8.
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PROOF. Let us suppose that A(x;) + 0, then the sequence {x;} is infinite and there
exist a subsequence {x;;} and a B < O such that A(x;;) < B<Oforall j=1,2,.
Since {p(x;)} is a strictly decreasing sequence that is bounded below, we know that
(p(x;41) — p(x,)) = 0 and so A,A(x;) —» 0. But then A;; — 0, since A(x,,) <8 <0
for all j=1,2,... . With no loss of generality we further assume that A, i; < 1forall
j=1,2,....The Armljo inequality of Step (3) of the algorithm, and the Lebourg mean
value theorem [9], now tell us that

C.Y.‘lAijA(xij) < p(xij + Y—l}‘.’jdij) - P(xu)
Y_IAijp’(zj; dij)

for some z; on the open line segment joining x,, to x,; + vy~ IA, ;d,;. Dividing this
inequality through by y~'A,, we obtain the mcquahty cA(x;) < p'(z,; d,;). By
Lemma (4.1) we can replace the right-hand side of this inequality by

dISt(g(Z ) + g'(Z )dlj’ ) - p(zj)
to obtain
cA(x;;) < dist(g(z)) + 8'(2))d;;,— K) = p(2,)
< 2"g(z]) - g(x:/)“ + "g,(zj) - g’(xu)” ”du" + A(xl])‘
But A, d;; > 0 as j — oo, since A;, - 0 and g is uniformly K-regular on S. Hence
0 < (1~ c)limsupA(x,;),
J

where —p(x,) < limsup;,A(x;;) < B <0, a contradiction.
If Y is taken to be a Hilbert space then a stronger result can be obtained.

(6.2) THEOREM. Let the hypothesis of Theorem (6.1) hold. If {x;} is the sequence
generated by the algorithm with initial point x,, then either p(x,) = 0 or dist(0, dp(x,;))
= 0 for every subsequence {x,;} of the x;’s for which {p(x,;)} is bounded away from
zero.

(For the proof of this theorem, see {2].)

The above theorems only provide information concerning the limiting properties of
certain stationarity criterion for p, making no claims about convergence of the x,’s. In
such a general setting this is of course the best one could hope for without placing
further restrictions upon S, g, g’, and p (see [2]). But such a discussion lies far beyond
the scope and purpose of this paper.

In finite dimensions the existence of cluster points of the sequence can be guaranteed
by suitable hypothesis either on S or g. In this case Theorem (6.1) guarantees these
points to be stationary points for p. Furthermore, if p*(x;) = 0 and M = 0, then our
search directions are identical to those found in Robinson’s Newton method [15]. In
fact if the sequence has a cluster point X that satisfies Robinson’s PL I condition [15],
then it is possible to show, using techniques similar to those found in Robinson [15] or
Garcia-Palomares and Restuccia [7], that the entire sequence converges to X at a
quadratic rate. This result is not presented here as it requires a great deal of extra
effort, but it may be found in [2]. We conclude this section with a corollary describing
the convergence behavior for finite dimensions when it is assumed that the sequence
remains bounded.
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(6.3) COROLLARY. Let g: R" = R™ be continuously Fréchet differentiable on R".
Suppose that K is a closed convex cone contained in R™, and that p, p*, D, and A are as
defined in the algorithm of §2. Let x, € R". If the sequence {x;} generated by the
algorithm with initial point x, is bounded, then either

(1) A(x,) — O and every cluster point X of the sequence {x;} satisfies 0 € dp(X), or

(i) there is a cluster point X of {x;} such that g is not K-regular at X.

PrROOF. We will assume that (ii) does not hold and prove that (i) does hold.

First note that if indeed A(x;) = 0 and X is a cluster point of {x,}, then g is by
assumption K-regular at X and so by Theorem (5.3), A(x) = p*(x) — p(x) is continu-
ous at X. Hence A(X) = 0 and 0 € dp(X) by Theorem (4.2). Thus we would be done if
we knew that A(x;) — 0. Let us assume to the contrary that A(x;) + 0 and derive a
contradiction. The proof proceeds in much the same way as that of Theorem (6.1).

Since A(x;) + 0, the sequence {x;,} is infinite and there are a subsequence { x;;} and
a B <0 such that A(x;;)) < B8<0 for all j=1,2,.... Since {p(x,)} is a strictly
decreasing sequence that is bounded below, we know that (p(x;,,) — p(x,)) = 0 and
so A,A(x;) = 0. But then A;; — 0, since A(x,;;) < B <Oforall j=1,2,.... Withno
loss of generality we further assume that A;, < 1forall j=1,2,... and x;; > X € R".
Moreover, since by assumption g is K-regular at X, we shall assume that {x,;} < N(X)
where N(X) is some compact neighborhood of X on which g is uniformly K-regular.
Now, exactly as in Theorem (6.1), we can employ the Armijo inequality and the
Lebourg mean value theorem to obtain the inequality

0<(1- C)A(xij) + 2"8(’1) - g(xij)" + "g’(zj) - 8'(":’_;)" 41l

where z; is some point on the line segment joining x,; to x,; + ¥~ '\, ,d;;. Now taking
limits and remembering that by K-regularity, A is continuous at x and the d,’s are
bounded, we get that 0 < (1 — c)A(X) € (1 — ¢)B <0, a contradiction, thereby
establishing the result. =
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