
11. Dualization

In the realm of convexity, almost every mathematical object can be paired with
another, said to be dual to it. The pairing between convex cones and their po-
lars has already been fundamental in the variational geometry of Chapter 6 in
relating tangent vectors to normal vectors. The pairing between convex sets
and sublinear functions in Chapter 8 has served as the vehicle for expressing
connections between subgradients and subderivatives. Both correspondences
are rooted in a deeper principle of duality for ‘conjugate’ pairs of convex func-
tions, which will emerge fully here.

On the basis of this duality, close connections between otherwise disparate
properties are revealed. It will be seen for instance that the level boundedness
of one function in a conjugate pair corresponds to the finiteness of the other
function around the origin. A catalog of such surprising linkages can be put
together, and lists of dual operations and constructions to go with them.

In this way the analysis of a given situation can often be translated into
an equivalent yet very different context. This can be a major source of in-
sights as well as a means of unifying seemingly divergent parts of theory. The
consequences go far beyond situations ruled by pure convexity, because many
problems, although nonconvex, have crucial aspects of convexity in their struc-
ture, and the dualization of these can already be very fruitful. Among other
things, we’ll be able to apply such ideas to the general expression of optimality
conditions in terms of a Lagrangian function, and even to the dualization of
optimization problems themselves.

A. Legendre-Fenchel Transform

The general framework for duality is built around a ‘transform’ that gives an
operational form to the envelope representations of convex functions. For any
function f : IRn → IR, the function f∗ : IRn → IR defined by

f∗(v) := supx
{

〈v, x〉 − f(x)
}

11(1)

is conjugate to f , while the function f∗∗ = (f∗)∗ defined by

f∗∗(x) := supv
{

〈v, x〉 − f∗(v)
}

11(2)
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is biconjugate to f . The mapping f �→ f∗ from fcns(IRn) into fcns(IRn) is the
Legendre-Fenchel transform.

The significance of the conjugate function f∗ can easily be understood in
terms of epigraph relationships. Formula 11(1) says that

(v, β) ∈ epi f∗ ⇐⇒ β ≥ 〈v, x〉 − α for all (x, α) ∈ epi f.

If we write the inequality as α ≥ 〈v, x〉− β and think of the affine functions on
IRn as parameterized by pairs (v, β) ∈ IRn × IR, we can express this as

(v, β) ∈ epi f∗ ⇐⇒ lv,β ≤ f, where lv,β(x) := 〈v, x〉 − β.

Since the specification of a function on IRn is tantamount to the specification
of its epigraph, this means that f∗ describes the family of all affine functions

majorized by f . Simultaneously, though, our calculation reveals that

β ≥ f∗(v) ⇐⇒ β ≥ lx,α(v) for all (x, α) ∈ epi f,

In other words, f∗ is the pointwise supremum of the family of all affine functions

lx,α for (x, α) ∈ epi f . By the same token then, formula 11(2) means that f∗∗

is the pointwise supremum of all the affine functions majorized by f .

epi f

(ν,β)(x, )α

l αx,
(a) (b)

epi f*

l
βv,

Fig. 11–1. (a) Affine functions majorized by f . (b) Affine functions majorized by f∗.

Recalling the facts about envelope representations in Theorem 8.13 and
making use of the notion of the convex hull con f of an arbitrary function
f : IRn → IR (see 2.31), we can summarize these relationships as follows.

11.1 Theorem (Legendre-Fenchel transform). For any function f : IRn → IR
with con f proper, both f∗ and f∗∗ are proper, lsc and convex, and

f∗∗ = cl con f.

Thus f∗∗ ≤ f , and when f is itself proper, lsc and convex, one has f∗∗ = f .
Anyway, regardless of such assumptions, one always has

f∗ = (con f)∗ = (cl f)∗ = (cl con f)∗.

Proof. In the light of the preceding explanation of the meaning of the
Legendre-Fenchel transform, this is immediate from Theorem 8.13; see 2.32
for the properness of cl f when f is convex and proper.
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11.2 Exercise (improper conjugates). For a function f : IRn → IR with con f
improper in the sense of taking on −∞, one has f∗ ≡ ∞ and f∗∗ ≡ −∞, while
cl con f has the value −∞ on the set cl dom(con f) but the value ∞ outside
this set. For the improper function f ≡ ∞, one has f∗ ≡ −∞ and f∗∗ ≡ ∞.

Guide. Make use of 2.5.

The Legendre-Fenchel transform obviously reverses ordering among the
functions to which it is applied:

f1 ≤ f2 =⇒ f∗
1 ≥ f∗

2 .

The fact that f = f∗∗ when f is proper, lsc and convex means that the
Legendre-Fenchel transform sets up a one-to-one correspondence in the class of
all such functions: if g is conjugate to f , then f is conjugate to g:

f ←→∗ g when

{

g(v) = supx
{

〈v, x〉 − f(x)
}

,

f(x) = supv
{

〈v, x〉 − g(v)
}

.

This is called the conjugacy correspondence. Every property of one function in
a conjugate pair must mirror some property of the other function. Every con-
struction or operation must have its conjugate counterpart. This far-reaching
principle of duality allows everything to be viewed from two different angles,
often with remarkable consequences.

An initial illustration of the duality of operations is seen in the following
relations, which immediately fall out of the definition of conjugacy. In each
case the expression on the left gives a function of x while the one on the right
gives the corresponding function of v under the assumption that f ←→∗ g:

f(x)− 〈a, x〉 ←→∗ g(v + a),

f(x+ b) ←→∗ g(v)− 〈v, b〉,

f(x) + c ←→∗ g(v)− c,

λf(x) ←→∗ λg(λ−1v) (for λ > 0),

λf(λ−1x) ←→∗ λg(v) (for λ > 0).

11(3)

Interestingly, the last two relations pair multiplication with epi-multiplication:

(λf)∗ = λ⋆f∗, (λ⋆f)∗ = λf∗,

for positive scalars λ. (An extension to λ = 0 will come out in Theorem 11.5.)
Later we’ll see a similar duality between addition and epi-addition of functions
(in Theorem 11.23(a)).

One of the most important dualization rules operates on subgradients. It
stems from the fact that the subgradients of a convex function correspond to
its affine supports (as described after 8.12). To say that the affine function lv̄,β̄
supports f at x̄, with ᾱ = f(x̄), is to say that the affine function lx̄,ᾱ supports
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f∗ at v̄, with β̄ = f∗(v̄); cf. Figure 11–1 again. This gives us a relationship
between subgradients of f and those of f∗.

11.3 Proposition (inversion rule for subgradient relations). For any proper, lsc,
convex function f , one has ∂f∗ = (∂f)−1 and ∂f = (∂f∗)−1. Indeed,

v̄ ∈ ∂f(x̄) ⇐⇒ x̄ ∈ ∂f∗(v̄) ⇐⇒ f(x̄) + f∗(v̄) = 〈v̄, x̄〉,

whereas f(x) + f∗(v) ≥ 〈v, x〉 for all x, v. Hence gph ∂f is closed and

∂f(x̄) = argmaxv
{

〈v, x̄〉 − f∗(v)
}

, ∂f∗(v̄) = argmaxx
{

〈v̄, x〉 − f(x)
}

.

Proof. The argument just given would suffice, but here’s another view of why
the relations hold. From the first formula in 11(3) we know that for any v̄ the
points x̄ furnishing the minimum of the convex function fv̄(x) := f(x)−〈v̄, x〉,
if any, are the ones such that f(x̄)−〈v̄, x〉 = −f∗(v̄), finite. But by the version
of Fermat’s principle in 10.1 they are also the ones such that 0 ∈ ∂fv̄(x̄), this
subgradient set being the same as ∂f(x̄)− v̄ (cf. 8.8(c)). Thus, f(x̄) + f∗(v̄) =
〈v̄, x̄〉 if and only if v̄ ∈ ∂f(x̄). The rest follows now by symmetry.

v

x

x

v

(a) (b)

gph f*6gph f6

Fig. 11–2. Subgradient inversion for conjugate functions.

Subgradient relations, with normal cone relations as a special case, are
widespread in the statement of optimality conditions. The inversion rule in
11.3 (illustrated in Figure 11–2) is therefore a key to writing such conditions
in alternative ways and gaining other interpretations of them. That pattern
will be prominent in our work with generalized Lagrangian functions and dual
problems of optimization later in this chapter.

B. Special Cases of Conjugacy

Before proceeding with other features of the Legendre-Fenchel transform, let’s
observe that Theorem 11.1 covers, as special instances of the conjugacy cor-
respondence, the fundamentals of cone polarity in 6.21 and support function
theory in 8.24. This confirms that those earlier modes of dualization fit squarely
in the picture now being unveiled.
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11.4 Example (support functions and cone polarity).

(a) For any set C ⊂ IRn, the conjugate of the indicator function δC
is the support function σC . On the other hand, for any positively homo-
geneous function h on IRn the conjugate h∗ is the indicator δC of the set
C =

{

x
∣

∣ 〈v, x〉 ≤ h(v) for all v
}

. In this sense, the correspondence between
closed, convex sets and their support functions is imbedded within conjugacy:

δC ←→∗ σC for C a closed, convex, set.

Under this correspondence one has

v̄ ∈ NC(x̄) ⇐⇒ x̄ ∈ ∂σC(v̄) ⇐⇒ x̄ ∈ C, 〈v̄, x̄〉 = σC(v̄). 11(4)

(b) For a cone K ⊂ IRn, the conjugate of the indicator function δK is the
indicator function δK∗ . In this sense, the polarity correspondence for closed,
convex cones is imbedded within conjugacy:

δK ←→∗ δK∗ for K a closed, convex cone.

Under this correspondence one has

v̄ ∈ NK(x̄) ⇐⇒ x̄ ∈ NK∗(v̄) ⇐⇒ x̄ ∈ K, v̄ ∈ K∗, x̄ ⊥ v̄. 11(5)

Detail. The formulas for the conjugate functions immediately reduce in these
ways, and then 11.3 can be applied.

In particular, the orthogonal subspace correspondence M ↔ M⊥ is imbed-
ded within conjugacy through δ∗M = δM⊥ .

The support function correspondence has a bearing on the Legendre-
Fenchel transform from a different angle too, namely in characterizing the
effective domains of functions conjugate to each other.

11.5 Theorem (horizon functions as support functions). Let f : IRn → IR be
proper, lsc and convex. The horizon function f∞ is then the support function
of dom f∗, whereas f∗∞ is the support function of dom f .

Proof. We have (f∗)∗ = f (by 11.1), and because of this symmetry it suffices
to prove that the function f∗∞ = (f∗)∞ is the support function of D := dom f .
Fix any v0 ∈ dom f∗. We have for arbitrary v ∈ IRn and τ > 0 that

f∗(v0 + τv) = sup
x∈D

{

〈v0 + τv, x〉 − f(x)
}

≤ sup
x∈D

{

〈v0, x〉 − f(x)
}

+ τ sup
x∈D

〈v, x〉 = f∗(v0) + τσD(v),

hence
[

f∗(v0 + τv) − f∗(v0)
]

/τ ≤ σD(v) for all v ∈ IRn, τ > 0. Through 3(4)
this guarantees that f∗∞ ≤ σD. On the other hand, for v ∈ IRn and β ∈ IR
with f∗∞(v) ≤ β one has f∗(v0 + τv) ≤ f∗(v0) + τβ for all τ > 0, hence for
any x ∈ IRn that
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f(x) ≥ 〈v0 + τv, x〉 − f∗(v0 + τv)

≥ 〈v0, x〉 − f∗(v0) + τ
(

〈v, x〉 − β
)

for all τ > 0.

This implies that 〈v, x〉 ≤ β for all x with f(x) < ∞, so D ⊂
{

x
∣

∣ 〈v, x〉 ≤ β
}

.
Thus σD(v) ≤ β, and we conclude that also σD ≤ f∗∞, so σD = f∗∞.

Another way that support functions come up in the dualization of prop-
erties of f and f∗ is seen in connection with level sets. For simplicity in the
following, we look only at 0-level sets, since lev

≤α f can be studied as lev
≤0 fα

for fα = f − α, with f∗
α = f∗ + α by 11(3).

11.6 Exercise (support functions of level sets). If C =
{

x
∣

∣ f(x) ≤ 0
}

for a
finite, convex function f such that inf f < 0, then

σC(v) = inf
λ>0

λf∗(λ−1v) for all v �= 0.

Guide. Let h denote the function of v on the right side of the equation; take
h(0) = 0. Show in terms of the ‘pos’ operation defined ahead of 3.48 that h
is a positively homogeneous, convex function for which the points x satisfying
〈v, x〉 ≤ h(v) for all v are the ones such that f∗∗(x) ≤ 0. Argue that f∗∗ = f
and hence via support function theory that σC = cl h. Verify through 11.5 that
f∗∞ = δ{0} and in this way deduce from 3.48(b) that cl h = h.

Note that the roles of f and f∗ in 11.6 could be reversed: the support
functions for the level sets of f∗, when that function is finite, can be derived
from f (as long as the convex function f is proper and lsc, so that (f∗)∗ = f .)

While the polarity of cones is a special case of conjugacy of functions, the
opposite is true as well, in a certain sense. This is not only interesting but
valuable for certain theoretical purposes.

11.7 Exercise (conjugacy as cone polarity). For proper functions f and g on
IRn, consider in IRn+2 the cones

Kf =
{

(x, α,−λ)
∣

∣

∣
λ > 0, (x, α) ∈ λ epi f ; or λ = 0, (x, α) ∈ epi f∞

}

,

Kg =
{

(v,−µ, β)
∣

∣

∣
µ > 0, (v, β) ∈ µ epi g; or µ = 0, (v, β) ∈ epi g∞

}

.

Then f and g are conjugate to each other if and only if Kf and Kg are polar
to each other.

Guide. Verify that Kf is convex and closed if and only if f is convex and
lsc; indeed, Kf is then the cone representing epi f in the ray space model
for csm IRn+1. The cone Kg has a similar interpretation with respect to g,
except for a reversal in the roles of last two components. Use the definition of
conjugacy along with the relationships in 11.5 to analyze polarity.

How does the duality between f and f∗ affect situations where f represents
a problem of optimization? Here are the central facts.
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11.8 Theorem (dual properties in minimization). The properties of a proper,
lsc, convex function f : IRn → IR are paired with those of its conjugate function
f∗ in the following manner.

(a) inf f = −f∗(0) and argmin f = ∂f∗(0).

(b) argmin f = {x̄} if and only f∗ is differentiable at 0 with ∇f∗(0) = x̄.

(c) f is level-coercive (or level-bounded) if and only if 0 ∈ int(dom f∗).

(d) f is coercive if and only if dom f∗ = IRn.

Proof. The first property in (a) simply re-expresses the definition of f∗(0),
while the second comes from 11.3 and the fact that argmin f consists of the
points x such that 0 ∈ ∂f(x); cf. 10.1. In (b) this is elaborated through the fact
that ∂f∗(0) = {x̄} if and only if f∗ is strictly differentiable at 0, this by 9.18
and the fact that because f∗ is itself proper, lsc and convex, f is regular with
∂∞f∗(0) = ∂f∗(0)∞ (see 7.27 and 8.11). The regularity of f∗ implies further
that f∗ is strictly differentiable wherever it’s differentiable (cf. 9.20).

In (c) we recall that f is level-coercive if and only if f∞(w) > 0 for all
w �= 0 (see 3.26(a)), whereas the convex set D = dom f∗ has 0 ∈ intD if and
only if σD(w) > 0 for all w �= 0 (see 8.29(a)). The equivalence comes from 11.5,
where f∞(w) is identified with σD(w). (Recall too that a convex function is
level-bounded if and only if it is level-coercive; 3.27.) Similarly, in (d) we are
seeing an instance of the fact that a convex set is the whole space if and only if
it isn’t contained in any closed half-space, i.e., its support function is δ{0}.

The dualizations in 11.8 can be extended through elementary conjugacy
relations like the ones in 11(3). Thus, one has

infx
{

f(x)− 〈a, x〉
}

= −f∗(a), argminx
{

f(x)− 〈a, x〉
}

= ∂f∗(a), 11(6)

the argmin being {b} if and only if f∗ is differentiable at a with ∇f∗(a) = b.
The function f − 〈a, ·〉 is level-coercive if and only if a ∈ int(dom f∗).

So far, little has been said about how f∗ can effectively be determined
when f is given. Because of conjugacy’s abstract uses in analysis and the
dualization of properties for purposes of understanding them better, a formula
for f beyond the defining one in 11(1) isn’t always needed, but what about
the times when it is? Ways of constructing f∗ out of the conjugates of other
functions that are part of the make up of f can be very helpful (and will be
occupy our attention in due course), but somewhere along the line it’s crucial
to have a repertory of examples that can serve as building blocks, much as
power functions, exponentials, logarithms and trigonometric expressions serve
in classical differentiation and integration.

We’ve observed in 11.4(a) that f∗ can sometimes be identified as a support
function (here examples like 8.26 and 8.27 can be kept in mind), or in reverse
as the indicator of a convex set defined by the system of linear constraints
associated with a sublinear function (cf. 8.24) when f exhibits sublinearity. In
this respect the results in 11.5 and 11.6 can be useful, and further also the
subderivative-subgradient relations in Chapter 8 for functions that are subdif-
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ferentially regular. Then again, as in 11.4(b), f∗ might be the indicator of a
polar cone. For instance, the polar of IRn

+
is IRn

−
, and the polar of a subspace

M is M⊥. The Farkas lemma in 6.45 and the relations between tangent cones
and polar cones can provide assistance as well.

C. The Role of Differentiability

Beyond special cases such as these, there is the possibility of generating ex-
amples directly from the formula in 11(1) for f∗ in terms of f . This may be
intimidating, though, because it not only demands the calculation of a global
supremum (the solution of a certain optimization problem), but requires this
to be done parametrically—the supremum must be expressed as a function of
the v element. For functions on IR1, ‘brute force’ may succeed, but elsewhere
some guidelines are needed. The next three examples will present important
cases where f∗ can be calculated from f by use of derivatives alone.

As long as f is convex and differentiable everywhere, one can hope to get
the supremum in formula 11(1), and thereby the value of f∗(v), by setting
the gradient (with respect to x) of the expression 〈v, x〉 − f(x) equal to 0 and
solving that equation for x. This is justified because the expression is concave
with respect to x; the vanishing of its gradient corresponds therefore to the
attainment of the global maximum. The equation in question is v−∇f(x) = 0,
and its solutions are the vectors x, if any, belonging to (∇f)−1(v). An x
identified in this manner can be substituted into 〈v, x〉 − f(x) to get f∗(v).
Pitfalls gape, however, in the fact that the range of the mapping ∇f might
not be all of IRn. For v /∈ rge∇f , the supremum would need to be determined
through additional analysis. It might be ∞, with the meaning that v /∈ dom f∗,
or it might be finite, yet not attained.

Putting such troubles aside to get a picture first of the nicest circum-
stances, one can ask what happens when ∇f is a one-to-one mapping from IRn

onto IRn, so that (∇f)−1 is single-valued everywhere. Understandably, this is
the historical case in which conjugate functions first attracted interest.

11.9 Example (classical Legendre transform). Let f be a finite, coercive, convex
function of class C2 (twice continuously differentiable) on IRn whose Hessian
matrix ∇2f(x) is positive-definite for every x. Then the conjugate g = f∗

is likewise a finite, coercive, convex function of class C2 on IRn with ∇2g(v)
positive-definite for every v and g∗ = f . The gradient mapping ∇f is one-to-
one from IRn onto IRn, and its inverse is ∇g; one has

g(v) =
〈

(∇f)−1(v), v
〉

− f
(

(∇f)−1(v)
)

,

f(x) =
〈

(∇g)−1(x), x
〉

− g
(

(∇g)−1(x)
)

.
11(7)

Moreover the matrices ∇2f(x) and ∇2g(v) are inverse to each other when
v = ∇f(x), or equivalently x = ∇g(v) (then x and v are conjugate points).
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Detail. The assumption on second derivatives makes f strictly convex (see
2.14). Then for a fixed a ∈ IRn in 11(6) we not only have through coercivity
the attainment of the infimum but its attainment at a unique point x (by 2.6).
Then ∇f(x)−a = 0 by Fermat’s principle. This line of reasoning demonstrates
that for each v ∈ IRn there is a unique x with ∇f(x) = v, i.e., the mapping
∇f is invertible. The first equation in 11(7) is immediate, and the rest of the
assertions can then be obtained from 11.8(d) and differentiation of g, using the
standard inverse mapping theorem.

f

α)(x,
lv,β

g

β)(y,

lx,α

Fig. 11–3. Conjugate points in the classical setting.

The next example fits the pattern of the preceding one in part, but also
illustrates how the approach to calculating f∗ from the derivatives of f can be
followed a bit more flexibly.

11.10 Example (linear-quadratic functions). Suppose

f(x) = 1
2〈x,Ax〉+ 〈a, x〉+ α

with A ∈ IRn×n symmetric and positive-semidefinite, so that f is convex. If A
is nonsingular, the conjugate function is

f∗(v) = 1
2

〈

v − a, A−1(v − a)
〉

− α.

At the other extreme, if A = 0, so that f is merely affine, the conjugate function
is given by f∗(v) = δ{a}(v)− α.

In general, the column space of A (the range of x �→ Ax) is a linear
subspace L, and there is a unique symmetric, positive-semidefinite matrix A†

(the pseudo-inverse of A) having A†A = AA† = [orthogonal projector on L].
The conjugate function is given then by

f∗(v) =

{

1
2

〈

v − a, A†(v − a)
〉

− α when v − a ∈ L,
∞ when v − a �∈ L.

Detail. The nonsingular case fits the pattern of 11.9, while the affine case is
obvious on its own. The general case is made simple by reducing to a = 0 and
α = 0 through the relations 11(3) and invoking a change of coordinates that
diagonalizes the matrix A.
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11.11 Example (self-conjugacy). The function f(x) =
1
2 |x|

2 on IRn has f∗ = f
and is the only function with this property.

Detail. The self-conjugacy of this function is evident as the special case of
11.10 in which A = I, a = 0. Its uniqueness in this respect is seen as follows.
If f = f∗, then f∗∗ = f by 11.1, and f is proper by 11.2. Formula 11(1)
gives in this case f(v) + f(x) ≥ 〈v, x〉 for all x and v, hence with x = v that
f(x) ≥ 1

2 |x|
2 for all x. Passing to conjugates in this inequality, one sees on the

other hand that f∗(v) ≤ 1
2 |v|

2 for all v, hence from f∗ = f that f(x) ≤ 1
2 |x|

2

for all x. Therefore, f(x) =
1
2 |x|

2 for all x.

The formula in 11.6 for the support function of a level set can be illustrated
through Example 11.10. For a convex set of the form

C =
{

x
∣

∣

1
2 〈x,Ax〉+ 〈a, x〉+ α ≤ 0

}

with A symmetric and positive-definite, and such that the inequality is satisfied
strictly by at least one x, one necessarily has 〈a, A−1a〉 − 2α > 0 (by 11.8(a)
because this quantity is 2f∗(0)), and thus the expression

σC(v) = β
√

〈v, A−1v〉 − 〈b, v〉 for b = A−1a, β =
√

〈a, A−1a〉 − 2α.

In general, if one of the functions in a general conjugate pair is finite
and coercive, so too must be the other function; this is clear from 11.8(d).
Otherwise, at least one of the two functions in a conjugate pair must take on
the value ∞ somewhere and thus have some convex set other than IRn itself
as its effective domain. The support function relation in 11.5 shows in these
cases how dom f∗ relates to properties of f through the horizon function f∞.
For the same reason, since f∗∗ = f (when f is proper, lsc and convex), dom f
relates to properties of f∗ through the way it determines f∗∞. Information
about effective domains facilitates the calculation of conjugates in many cases.

The following example illustrates this principle as an extension of the
method for calculating f∗ from the derivatives of f .

11.12 Example (log-exponential function and entropy). For f(x) = logexp(x),
the conjugate f∗ is the entropy function g defined for v = (v1, . . . , vn) by

g(v) =

{

∑n
j=1 vj log vj when vj ≥ 0,

∑n
j=1 vj = 1,

∞ otherwise,

with 0 log 0 = 0. The support function of the set C =
{

x
∣

∣ logexp(x) ≤ 0
}

is

the function h : IRn → IR defined under the same convention by

h(v) =

{

∑n
j=1 vj log vj −

(
∑n

j=1 vj
)

log
(
∑n

j=1 vj
)

when vj ≥ 0,
∞ otherwise.

Detail. The horizon function of f(x) = logexp(x) is f∞(x) = vecmax x by
3(5), and this is the support function of the unit simplex C consisting of the
vectors v ≥ 0 with v1+ · · ·+vn = 1, as already noted in 8.26. Since f is a finite,
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convex function (cf. 2.16), it’s in particular a proper, lsc, convex function (cf.
2.36). We may conclude from 11.5 that dom f∗ has the same support function
as C and therefore has cl(dom f∗) = C (cf. 8.24). Hence in terms of relative
interiors (cf. 2.40),

rint(dom f∗) = rintC =
{

v
∣

∣ vj > 0,
∑n

j=1vj = 1
}

.

From the formula ∇f(x) = σ(x)−1(ex1 , . . . , exn) for σ(x) := ex1 + · · ·+exn it is
apparent that each v̄ ∈ rintC is of the form ∇f(x̄) for x̄ = (log v̄1, . . . , log v̄n).
The inequality f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 in 2.14(b) yields

supx
{

〈x,∇f(x̄)〉 − f(x)
}

= 〈x̄,∇f(x̄)〉 − f(x̄),

which is the same as

supx
{

〈x, v̄〉 − f(x)
}

=
∑n

j=1(log v̄j)v̄j − log
(
∑n

j=1v̄j
)

= g(v̄).

Thus f∗ = g on rintC. The closure formula in 2.35 as translated to the context
of relative interiors shows then that these functions agree on all of C, therefore
on all of IRn.

The function h is pos g, where g(0) = ∞ and inf f = −∞; cf. 11.8(a).
According to 11.6, h is then the support function of lev≤0 f .

With minor qualifications on the boundaries of domains, differentiability
itself dualizes under the Legendre-Fenchel transform to strict convexity.

11.13 Theorem (strict convexity versus differentiability). The following prop-
erties are equivalent for a proper, lsc, convex function f : IRn → IR and its
conjugate function f∗:

(a) f is almost differentiable, in the sense that f is differentiable on the
open, convex set int(dom f), which is nonempty, but ∂f(x) = ∅ for all points
x ∈ dom f \ int(dom f), if any;

(b) f∗ is almost strictly convex, in the sense that f∗ is strictly convex on
every convex subset of dom ∂f∗ (hence on rint(dom f∗), in particular).

Likewise, the function f∗ is almost differentiable if and only if f is almost
strictly convex.

Proof. Since f = (f∗)∗ under our assumptions (by 11.1), there’s symmetry
between the first equivalence asserted and the one claimed at the end. We can
just as well work at verifying the latter. As seen from 11.8 (and its extension
explained after the proof of that result), f∗ is almost differentiable if and only
if, for every a ∈ IRn such that the set argminx

{

f(x) − 〈a, x〉
}

= ∂f∗(a) is
nonempty, it’s actually a singleton. Our task is to show that this holds if and
only if f is almost strictly convex.

Certainly if for some a this minimizing set, which is convex, contained
two different points x0 and x1, it would contain xτ := (1 − τ)x0 + τx1 for
all τ ∈ (0, 1). Because xτ ∈ ∂f∗(a) we would have a ∈ ∂f(xτ ) by 11.3, so
the line segment joining x0 and x1 would lie in dom ∂f . From the fact that
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infx
{

f(x) − 〈a, x〉
}

= −f∗(a), we would have f(xτ ) − 〈a, xτ〉 = −f∗(a) for
τ ∈ (0, 1). This implies f(xτ ) = (1 − τ)f(x0) + τf(x1) for τ ∈ (0, 1), since
〈a, xτ〉 = (1− τ)〈a, x0〉+ τ〈a, x1〉. Then f isn’t almost strictly convex.

Conversely, if f fails to be almost strictly convex there must exist x0 �= x1

such that the points xτ on the line segment joining them belong to dom ∂f and
satisfy f(xτ ) = (1− τ)f(x0) + τf(x1). Fix any τ̄ ∈ (0, 1) and any a ∈ ∂f(xτ̄).
From 11.3 and formula 11(1) for f∗ in terms of f , we have

f(xτ ) ≥ 〈a, xτ 〉 − f∗(a) for all τ ∈ (0, 1), with equality for τ = τ̄ .

The affine function ϕ(τ) := f(xτ ) on (0, 1) thus attains its minimum at the
intermediate point τ̄ . But then ϕ has to be constant on (0, 1). In other words,
for all τ ∈ (0, 1) we must have f(xτ ) = 〈a, xτ 〉 − f∗(a), hence xτ ∈ ∂f∗(a) by
11.3. In this event ∂f∗(a) isn’t a singleton.

The property in 11.13(a) of being almost differentiable can be identified
with the single-valuedness of the mapping ∂f relative to its domain (see 9.18,
recalling from 7.27 that proper, lsc, convex functions are regular). It implies f
is continuously differentiable—smooth—on int(dom f); cf. 9.20.

D. Piecewise Linear-Quadratic Functions

Differentiability isn’t the only tool available for understanding the nature of
conjugate functions, of course. A major class of nondifferentiable functions
with nice behavior under the Legendre-Fenchel transform consists of the convex
functions that are piecewise linear (see 2.47) or more generally piecewise linear-
quadratic (see 10.20).

11.14 Theorem (piecewise linear-quadratic functions in conjugacy). Suppose
that f : IRn → IR be proper, lsc and convex. Then

(a) f is piecewise linear if and only if f∗ has this property;

(b) f is piecewise linear-quadratic if and only if f∗ has this property.

For proving part (b) we’ll need a lemma, which is of some interest in itself.
We take care of this first.

11.15 Lemma (linear-quadratic test on line segments). In order that f be linear-
quadratic relative to a convex set C ⊂ IRn, in the sense of being expressible by
a formula of type f(x) = 1

2 〈x,Ax〉 + 〈a, x〉 + α for x ∈ C, it is necessary and
sufficient that f be linear-quadratic relative to every line segment in C.

Proof. The condition is trivially necessary, so the challenge is proving its
sufficiency. Without loss of generality we can focus on the case where intC �= ∅
(cf. 2.40 and the discussion preceding it). It’s enough actually to demonstrate
that the condition implies f is linear-quadratic relative to intC, because the
formula obtained on intC must then extend to the rest of C through the fact



D. Piecewise Linear-Quadratic Functions 485

that when a boundary point x of C is joined by a line segment to an interior
point, all of the segment except x itself lies in intC (see 2.33).

We claim next that if f is linear-quadratic in some neighborhood of each
point of intC, then it’s linear-quadratic relative to intC. Consider any two
points x0 and x1 of intC. We’ll show that the formula around x0 must agree
with the formula around x1.

The line segment [x0, x1] is a compact set, every point of which has an open
ball relative to which f is linear-quadratic, and it can therefore be covered by a
finite collection of such open balls, say Ok for k = 1, . . . , r, each with a formula
f(x) = 1

2〈x,Akx〉+〈ak, x〉+αk. If two sets Ok1
and Ok2

overlap, their formulas
have to agree on the intersection; this implies that Ak1

= Ak2
, ak1

= ak2
and

αk1
= αk2

. But as one moves along [x0, x1] from x0 to x1, each transition out of
one set Ok and into another passes through a region of overlap (again because
of the line segment principle for convex sets, or more generally because line
segments are connected sets). Thus, all the formulas for k = 1, . . . , r agree.

Having reduced the task to proving that f is linear-quadratic relative to
a neighborhood of each point of intC, we can take such neighborhoods to be
cubes. The question then is whether, if f is linear-quadratic on every line
segment in a certain cube, it must be linear-quadratic relative to the cube.

A cube in IRn is a product of n intervals, so an induction argument can be
contemplated in which the product grows by one interval at a time until the
cube is built up, and at each stage the linear-quadratic property of f relative to
the partial product is verified. For a single interval, as the starter, the property
holds by hypothesis.

To validate the induction argument we only have to show that if U and
V are convex neighborhoods of the origin in IRp and IRq respectively, and if a
function f on U × V is such that f(u, v) is linear-quadratic in u for fixed v,
linear-quadratic in v for fixed u, and moreover f is linear-quadratic relative to
all line segments in U × V , then f is linear-quadratic relative to U × V as a
whole. We go about this by first using the property in u to express

f(u, v) = 1
2

〈

u,A(v)u
〉

+
〈

a(v), u
〉

+ α(v) for u ∈ U when v ∈ V. 11(8)

We’ll demonstrate next, invoking the linear-quadratic property of f(u, v) in v,
that α(v) and each component of the vector a(v) and the matrix A(v) must
be linear-quadratic as a function of v ∈ V . For α(v) this is clear from having
α(v) = f(0, v). In the case of A(v) we observe that

〈

u′, A(v)u
〉

= f(u+ u′, v)− f(u, v)− f(u′, v) + α(v)

for any u and u′ in IRp small enough that they and u+ u′ belong to U . Hence
〈u′, A(v)u〉 is linear-quadratic in v ∈ V for any such u and u′. Choosing u and
u′ among εe1, . . . , εep for small ε > 0 and the canonical basis vectors ek for IRp

(where ek has 1 in kth position and 0’s elsewhere), we deduce that for every
row i and column j the component Aij(v) is linear-quadratic in v. By writing
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〈

a(v), u
〉

= f(u, v)− 1
2

〈

u,A(v)u
〉

− α(v),

where the right side is now known to be linear-quadratic in v ∈ V , we see that
〈a(v), u〉 has this property for each u sufficiently near to 0. Again by choosing
u from among εe1, . . . , εep we are able to conclude that each component aj(v)
of a(v) is linear-quadratic in v ∈ V .

When such linear-quadratic expressions in v for α(v), a(v) and A(v) are
introduced in 11(8), a polynomial formula for f(u, v) is obtained in which there
are no terms of degree higher than 4. We have to show that there really aren’t
any terms of degree higher than 2, i.e., that f is linear-quadratic relative to
U × V as a whole. We already know that α(v) has no higher-order terms, so
the issue concerns a(v) and A(v).

This is where we bring in the last of our assumptions, that f is linear-
quadratic on all line segments in U×V . We’ll only need to look at line segments
that join an arbitrary point (ū, v̄) ∈ U×V to (0, 0). The assumption means then
that f(θū, θv̄) is linear-quadratic in θ ∈ [0, 1]. The argument just presented for
reducing to individual components can be repeated by looking at f(θ[ū+ ū′])
with the vectors ū and ū′ chosen from among εe1, . . . , εep, and so forth, to see
that θ2Aij(θv̄) and θaj(θv̄) are polynomials of at most degree 2 in θ for every
choice of v̄ ∈ V . In the linear-quadratic expressions for Aij(v) and aj(v) as
functions of v, it is obvious then that Aij(v) has to be constant in v, while
aj(v) can at most have first-order terms in v. This finishes the proof.

Proof of 11.14. The justification of (a) is relatively easy on the basis of earlier
results. When the convex function f is piecewise linear, it can be expressed in
the manner of 3.54: for some choice of vectors ai and scalars ci,

f(x) =







infimum of t1c1 + · · ·+ tmcm + tm+1cm+1 + · · ·+ trcr
subject to t1a1 + · · ·+ tmam + tm+1am+1 + · · ·+ trar = x
with ti ≥ 0 for i = 1, . . . , r,

∑

m

i=1
ti = 1.

From f∗(v) = supx
{

〈v, x〉−f(x)
}

we get f∗(v) = maxi=1,...,m

{

〈v, ai〉−ci
}

+δC
for the polyhedral set C :=

{

v
∣

∣ 〈v, ai〉 ≤ ci for i = m+1, . . . , r
}

. This signifies
by 2.49 that f∗ is piecewise linear. On the other hand, if f∗ is piecewise linear,
then so is f∗∗ by this argument; but f∗∗ = f .

For (b), suppose now that f is piecewise linear-quadratic: for D := dom f
there are polyhedral sets Ck, k = 1, . . . , r, such that D =

⋃r
k=1 Ck and

f(x) = 1
2〈x,Akx〉+ 〈ak, x〉+ αk when x ∈ Ck. 11(9)

Our task is to show that f∗ has a similar representation. We’ll base our argu-
ment on the fact in 11.3 that

f∗(v) = 〈v, x〉 − f(x) for any x with v ∈ ∂f(x). 11(10)

This requires careful investigation of the structure of the mapping ∂f .
Recall from 10.21 that the convex set D = dom f , as the union of finitely

many polyhedral sets Ck, is itself polyhedral. Any polyhedral set may be
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represented as the intersection of a finite collection of closed half-spaces, so
we can contemplate a finite collection H of closed half-spaces in IRn such that
(1) each of the sets D, C1, . . . , Cr is the intersection of a subcollection of the
half-spaces in H, and (2) for every H ∈ H the opposite closed half-space H ′

(meeting H in a shared hyperplane) is likewise in H.

Let Jx =
{

H ∈ H
∣

∣x ∈ H for each x ∈ D. Let J consist of all J ⊂ H such
that J = Jx for some x ∈ D, and for each J ∈ J let DJ be the intersection of
the half-spaces H ∈ J . It is clear that each DJ is a nonempty polyhedral set
contained in D; in fact, the half-spaces in H that intersect to form Ck belong
to Jx if x ∈ Ck), so that DJ ⊂ Ck when J = Jx for any x ∈ Ck.

For each J ∈ J , let FJ = rintDJ , recalling that then DJ = clFJ . We
claim that J = Jx if and only if x ∈ FJ . For the half-spaces H ∈ Jx, there
are only two possibilities: either x ∈ intH or x lies on the boundary of H,
which corresponds to having both H and the opposite half-space H ′ belong to
Jx. Thus, for J = Jx, DJ is the intersection of various hyperplanes along with
some closed half-spaces having x in their associated open half-spaces. That
intersection is the relatively open set FJ . Hence x ∈ FJ . On the other hand,
for any x′ in this set FJ , and in particular DJ , we have Jx′ ⊃ J = Jx. If there
were a half-space H in Jx′\Jx, then x would have to lie outside of H, or more
specifically, in the interior of the opposite half-space H ′ (likewise belonging to
H). In that case, however, intH ′ is one of the open half-spaces that includes FJ ,
and hence contains x′, in contradiction to x′ being in H. Thus, any x′ ∈ FJ

must have Jx′ = J . Indeed, we see from this that
{

FJ

∣

∣ J ∈ J
}

is a finite
partition of D, comprised in effect of the equivalence classes under the relation
that x′ ∼ x when Jx′ = Jx. Moreover, if any FJ touches a sets Ck, it must lie
entirely in Ck, and the same is true then for its closure, namely DJ . In other
words, the index set K(x) =

{

k
∣

∣x ∈ Ck

}

is the same set K(J) for all x ∈ FJ .

It was shown in the proof of 10.21 that df(x) is piecewise linear with
dom df(x̄) = TD(x) =

⋃

k∈K(x)
TCk

(x) and df(x)(w) = 〈Akx + ak, w〉 when

w ∈ TCk
(x). Because f , being a proper, lsc, convex function, is regular (cf.

7.27), we know that ∂f(x) consists of the vectors v such that 〈v, w〉 ≤ df(x)(w)
for all w ∈ IRn (see 8.30). Hence

∂f(x) =
⋂

k∈K(x)

{

v
∣

∣

∣
〈v − Akx− ak, w〉 ≤ 0 for all w ∈ TCk

(x)
}

=
⋂

k∈K(x)

{

v
∣

∣

∣
v − Akx− ak ∈ NCk

(x)
}

.

In this we appeal to the polarity between TCk
(x) and NCk

(x), which results
from Ck being convex (cf. 6.24). Observe next that the normal cone NCk

(x)
(polyhedral) must be the same for all x in a given FJ . That’s because having
v ∈ NCk

(x) corresponds to the maximum of 〈v, x′〉 over x′ ∈ Ck being attained
at x, and by virtue of FJ being relatively open, that can’t happen unless this
linear function is constant on FJ (and therefore attains its maximum at every
point of FJ ). This common normal cone can be denoted by Nk(J), and in
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terms of the common index set K(x) = K(J) for x ∈ FJ , we then have

〈v, x′〉 = 〈v, x〉 for all x, x′ ∈ FJ when v ∈ Nk(J), k ∈ K(J), 11(11)

along with ∂f(x) =
{

v
∣

∣ v−ak−Akx ∈ Nk(J) for all k ∈ K(J)
}

when x ∈ FJ .
Consider for each J ∈ J the polyhedral set

GJ =
{

(x, v)
∣

∣x ∈ DJ and v − ak − Akx ∈ Nk(J) for all k ∈ K(J)
}

,

which is the closure of the analogous set with FJ in place of DJ . Because
gph ∂f is closed (cf. 11.3), it follows now that gph ∂f =

⋂

J∈J GJ .

For each J ∈ J let EJ be the image of GJ under (x, v) �→ v, which like
GJ is polyhedral by 3.55(a), therefore closed. Since dom∂f∗ = rge ∂f (by the
inversion rule in 11.3), it follows that dom ∂f∗ =

⋃

J∈J EJ . Hence dom ∂f∗

is closed, because the union of finitely many closed sets is closed. But since
f∗ is lsc and proper, dom ∂f∗ is dense in dom f∗ (see 8.10). The union of the
polyhedral sets EJ is thus dom f∗.

All that’s left now is to show f∗ is linear-quadratic relative to each set
EJ . We’ll appeal to Lemma 11.15. Consider any v0 and v1 in a given EJ ,
coming from GJ , and choose any x0 and x1 such that (x0, v0) and (x1, v1)
belong to GJ . Then the pair (xτ , vτ ) := (1− τ)(x0, v0) + τ(x1, v1) belongs to
GJ too, so that vτ ∈ ∂f(xτ). From 11(9) and 11(10) we get, for any k ∈ K(J),
that f∗(vτ ) = 〈vτ , xτ 〉 − f(xτ ) = 〈vτ − Akxτ − ak, xτ 〉 − αk +

1
2 〈xτ , Akxτ 〉 =

〈vτ − Akxτ − ak, x0〉 − αk + 1
2 〈xτ , Akxτ 〉, where the last equation is justified

through the fact that xτ = x0 + τ(x1 − x0) but 〈vτ −Akxτ − ak, x1 − x0〉 = 0
by 11(11). This expression for f∗(vτ ), being linear-quadratic in τ ∈ [0, 1], gives
us what was required.

The fact that f∗ is piecewise linear-quadratic only if f is piecewise linear-
quadratic follows now by symmetry, because f = f∗∗.

11.16 Corollary (minimum of a piecewise linear-quadratic function). For any
proper, convex, piecewise linear-quadratic function f : IRn → IR, if inf f is
finite, then argmin f is nonempty and polyhedral.

Proof. We apply 11.8(a) with the knowledge that f∗ is piecewise linear-
quadratic like f , so that when 0 ∈ dom f∗ the set ∂f∗(0) must be nonempty
and polyhedral (cf. 10.21).

11.17 Corollary (polyhedral sets in duality).

(a) A closed, convex set C is polyhedral if and only if its support function
σC is piecewise linear.

(b) A closed, convex cone K is polyhedral if and only if its polar cone K∗

is polyhedral.

Proof. This specializes 11.14(b) to the correspondences in 11.4. A convex
indicator δC is piecewise linear if and only if C is polyhedral. The cone fact
could also be deduced right from the Minkowski-Weyl theorem in 3.52.
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The preservation of the piecewise linear-quadratic property in passing to
the conjugate of a given function, as in Theorem 11.14(b), is illustrated in
Figure 11–4. As the figure suggests, this duality is closely tied to a property
of the associated subgradient mappings through the inversion rule in 11.3. It
will later be established in 12.30 that a convex function is piecewise linear-
quadratic if and only if its subgradient mapping is piecewise polyhedral as
defined in 9.57. The inverse of a piecewise polyhedral mapping is obviously
still piecewise polyhedral.

(a) (b)

(c) (d)
v

v

x v

x

f*f

x
f6 f*6

Fig. 11–4. Conjugate piecewise linear-quadratic functions.

An important application of the conjugacy in Theorem 11.14 comes up in
the following class of functions θ : IRm → IR, which are useful in setting up
‘penalty’ expressions θ

(

f1(x), . . . , fm(x)
)

in composite formats of optimization.

11.18 Example (piecewise linear-quadratic penalties). For a nonempty polyhe-
dral set Y ⊂ IRm and a symmetric positive-semidefinite matrix B ∈ IRm×m

(possibly B = 0), the function θY,B : IRn → IR defined by

θY,B(u) := sup
y∈Y

{

〈

y, u
〉

− 1
2

〈

y, By
〉

}

is proper, convex and piecewise linear-quadratic. When B = 0, it is piecewise
linear; θY,0 = σY (support function). In general,

dom θY,B = (Y ∞ ∩ kerB)∗ =: DY,B , where kerB :=
{

y
∣

∣By = 0
}

;
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this is a polyhedral cone, and it is all of IRm if and only if Y ∞ ∩ kerB = {0}.
The subgradients of θY,B are given by

∂θY,B(u) = argmax
y∈Y

{

〈

y, u
〉

− 1
2

〈

y, By
〉

}

=
{

y
∣

∣u−By ∈ NY (y)
}

= (NY +B)−1(u),

∂
∞
θY,B(u) =

{

y ∈ Y ∞ ∩ kerB
∣

∣ 〈y, u〉 = 0
}

= NDY,B
(u),

these sets being polyhedral as well, while the subderivative function dθY,B is
piecewise linear and expressed by the formula

dθY,B(u)(z) = sup
{

〈y, z〉
∣

∣ y ∈ (NY +B)−1(u)
}

.

Detail. We have θY,B = (δY + jB)
∗ for jB(y) := 1

2 〈y, By〉. The function
δY + jB is proper, convex and piecewise linear-quadratic, and θY,B therefore
has these properties as well by 11.14. In particular, the effective domain of
θY,B is a polyhedral set, hence closed. The support function of this effective
domain is (δY + jB)

∞ by 11.5, and

(δY + jB)
∞ = δ∞

Y + j∞

B = δY ∞ + δkerB = δY ∞∩kerB.

Hence by 11.4, dom θY,B must be the polar cone (Y ∞ ∩ kerB)∗, which is IRm

if and only if Y ∞ ∩ kerB is the zero cone.
The argmax formula for ∂θY,B(u) specializes the argmax part of 11.3. The

maximum of the concave function h(y) = 〈y, u〉− 1
2 〈y, By〉 over Y is attained at

y if and only if the gradient ∇h(y) = u−By belongs to NY (y); cf. 6.12. That
yields the other expressions for ∂θY,B(u). We know from the convexity of θY,B
that ∂∞θY,B(u) = NDY,B

(u); cf. 8.12. Since the cones DY,B and Y ∞ ∩ kerB
are polar to each other, we have from 11.4(b) that y ∈ NDY,B

(u) if and only if
u ∈ DY,B , y ∈ Y ∞ ∩ kerB, and u ⊥ y.

On the basis of 10.21, the sets ∂θY,B(u) and ∂∞θY,B(u) are polyhedral and
the function dθY,B(u) is piecewise linear. The formula for dθY,B(u)(z) merely
expresses the fact that this is the support function of ∂θY,B(u).

E. Polar Sets and Gauges

While most of the major duality correspondences, like convex sets versus sub-
linear functions, or polarity of convex cones, fit directly within the framework
of conjugate convex functions as in 11.4, others, like polarity of convex sets
that aren’t necessarily cones but contain the origin, fit obliquely. In the next
example we draw on the notion of the gauge γC of a set C in 3.50.

11.19 Example (general polarity of sets). For any set C ⊂ IRn with 0 ∈ C, the
polar of C is the set
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C◦ :=
{

v
∣

∣ 〈v, x〉 ≤ 1 for all x ∈ C
}

,

which is closed and convex with 0 ∈ C◦; when C is a cone, C◦ agrees with the
polar cone C∗. The bipolar of C, which is the set

C◦◦ := (C◦)◦ =
{

x
∣

∣ 〈v, x〉 ≤ 1 for all v ∈ C◦
}

,

agrees always with cl(conC). Thus, C◦◦ = C when C is a closed, convex set
containing the origin, so the transformation C �→ C◦ maps that class of sets
one-to-one onto itself. This correspondence is connected to conjugacy through
the associated gauges, which obey the rule that

γC = σC◦ ←→∗ δC◦ , γC◦ = σC
←→∗ δC .

When two convex sets are polar to each other, one says that their gauges are

polar to each other as well.

Detail. The facts about C◦ and C◦◦ are evident from the envelope description
of convex sets in 6.20. Clearly C◦◦ is the intersection of all the closed half-spaces
that include C and have the origin in their interior.

Because the gauge γC is proper, lsc and sublinear (cf. 3.50), we know from
8.24 that it’s the support function of a certain nonempty, closed, convex set,
namely the one consisting the vectors v such that 〈v, x〉 ≤ γC(x) for all x. But
in view of the definition of γC (in 3.50) this set is C◦. Thus γC = σC◦ , and
since C◦◦ = C also by symmetry γC◦ = σC . These functions are conjugate to
δC◦ and δC respectively by 11.4(a).

11.20 Exercise (dual properties of polar sets). Let C be a closed, convex subset
of IRn containing the origin, and let C◦ be its polar as defined in 11.19.

(a) C is bounded if and only if 0 ∈ intC◦; likewise, C◦ is bounded if and
only if 0 ∈ intC.

(b) C is polyhedral if and only if C◦ is polyhedral.

(c) C∞ = (posC◦)∗ and (C◦)∞ = (posC)∗.

Guide. In (a) and (b), rely on the gauge interpretation of polarity in 11.19;
apply 11.8(c) and 11.14. Argue the second equation in (c) from the intersection
rule in 3.9 and the definition of C◦ as an intersection of half-spaces. Obtain
the other equation in (c) then by symmetry.

Polars of convex sets other than cones are employed most notably in the
study of norms. Any closed, bounded, convex set B ⊂ IRn that’s symmetric

(−B = B) with nonempty interior (and hence has the origin in this interior)
corresponds to a certain norm ‖ · ‖, given by its gauge γB, cf. 3.50. The polar set
B◦ is likewise a closed, bounded, convex set that’s symmetric with nonempty
interior. Its gauge γB◦ gives the norm ‖ · ‖◦ polar to ‖ · ‖. Of particular note
is the famous rule for polarity in the family of lp norms in 2.17, namely

‖ · ‖◦p = ‖ · ‖q when 1 < p < ∞, 1 < q < ∞, p−1 + q−1 = 1,

‖ · ‖◦1 = ‖ · ‖∞, ‖ · ‖◦∞ = ‖ · ‖1.
11(12)
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This can be derived from the next result, which furnishes additional examples
of conjugate convex functions. The argument will be sketched after the proof.

11.21 Proposition (conjugate composite functions from polar gauges). Consider
the gauge γC of a closed, convex set C ⊂ IRn with 0 ∈ C and any lsc, convex
function θ : IR → IR with θ(−r) = θ(r). Under the convention θ(∞) = ∞ one
has the conjugacy relation

θ
(

γC(x)
)

←→∗ θ∗
(

γC◦(v)
)

.

In particular, for any norm ‖ · ‖ and its polar norm ‖ · ‖◦, one has

θ
(

‖x‖
)

←→∗ θ∗
(

‖v‖◦
)

.

Proof. Let f(x) = θ
(

γC(x)
)

. The function θ has to be nondecreasing on IR+

since for any r > 0 in dom θ we have θ(−r) = θ(r) < ∞ and consequently

θ
(

(1− τ)(−r) + τr
)

≤ (1− τ)θ(−r) + τθ(r) = θ(r) for 0 < τ < 1,

so that θ(r′) ≤ θ(r) for all r′ ∈ (−r, r). This monotonicity ensures that f is
convex and enables us to write f(x) = inf

{

θ(λ)
∣

∣λ ≥ γC(x)
}

. In calculating
the conjugate we then have

f∗(v) = sup
{

〈v, x〉 − θ(λ)
∣

∣

∣
(x, λ) ∈ epi γC

}

= sup
λ≥0

λ∈dom θ

sup
{

〈v, x〉 − θ(λ)
∣

∣

∣
x ∈ lev

≤λ γC

}

= sup
λ≥0

λ∈dom θ

{

λσC(v)− θ(λ) for λ > 0
δC∞∗(v) for λ = 0

}

= sup
λ≥0

λ∈dom θ

{

λγC◦(v)− θ(λ) for λ > 0
δ
cl
(

dom γC◦

)(v) for λ = 0

}

= θ∗
(

γC◦(v)
)

,

relying here on lev≤0 γC = C∞ and C∞∗ = cl(domσC); cf. the end of 8.24.

An illustration of the possibilities in Proposition 11.21 is furnished by the
case of composition with the dual functions

θp(r) =
1

p
|r|p ←→∗ θ∗q(s) =

1

q
|s|q

when 1 <p < ∞, 1 < q < ∞, p−1 + q−1 = 1.

11(13)

This one-dimensional conjugacy can be used to deduce from Proposition 11.21
the polarity rule for the lp-norms in 11(12). The argument proceeds as follows
for p ∈ (1,∞). The function f(x) := θp(x1) + · · ·+ θp(xn) is convex, so the set
IBp =

{

x
∣

∣ f(x) ≤ p−1
}

is convex; also, it’s closed and symmetric about 0. The

function h := ‖ · ‖p = (pf)1/p is nonnegative, lsc and positively homogeneous
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with lev
≤1 h = IBp. This implies that ‖ · ‖p = γIBp

and also that ‖ · ‖p is convex
(hence truly is a norm); furthermore f = θp◦γIBp

. In parallel, the function
g(v) := θq(v1) + · · · θq(vn) agrees with g = θq◦γIBq

, with ‖ · ‖q = γIBq
. But f

and g are conjugate to each other, as seen directly through 11(13). It follows
then from Proposition 11.21 that ‖ · ‖p and ‖ · ‖q must be polar to each other.
(For p = 1 and p = ∞ the polarity in 11(12) can be deduced more simply from
11.19 and the fact that ‖ · ‖1 is the support function of IB∞ = [−1, 1]n.)

F. Dual Operations

With a wealth of examples of conjugate convex functions now in hand, we
turn to the question of how to dualize other functions generated from these
by various operations. The effects of some elementary operations have already
been compiled in 11(3), but we now take up the topic in earnest.

11.22 Proposition (conjugation in product spaces). For proper functions fi
on IRni , the function conjugate to f(x1, . . . , xm) = f1(x1) + · · · + fm(xm)
is f∗(v1, . . . , vm) = f∗

1 (v1) + · · ·+ f∗
m(vm).

Proof. This is elementary from the definition of the transform.

11.23 Theorem (dual operations).

(a) (addition/epi-addition). For proper functions fi, if f = f1 f2, then
f∗ = f∗

1 + f∗
2 . Dually, if f = f1 + f2 for proper, lsc, convex functions fi such

that dom f1 meets dom f2, then f∗ = cl
(

f∗
1 f∗

2

)

. Here the closure operation
is superfluous when 0 ∈ int(dom f1 − dom f2), as is true in particular when
dom f1 meets int(dom f2) or when dom f2 meets int(dom f1).

(b) (composition/epi-composition). If g = Af for f : IRn → IR and
A ∈ IRm×n, where (Af)(u) := inf

{

f(x)
∣

∣Ax = u
}

, then g∗ = f∗A∗, where
(f∗A∗)(y) := f∗(A∗y) (with A∗ the transpose of A). Dually, if f = gA for a
proper, lsc, convex function g : IRm → IR such that the subspace rgeA meets
dom g, then f∗ = cl(A∗g∗). Here the closure operation is superfluous when
0 ∈ int(dom g − rgeA), as is true in particular when rgeA meets int(dom g).

(c) (restriction/inf-projection). If p(u) = infx f(x, u) for a proper function
f : IRn × IRm → IR, then p∗(y) = f∗(0, y). Dually, if f is also convex and
lsc, then ϕ(x) = f(x, ū) for some ū ∈ U :=

{

u
∣

∣ ∃x, f(x, u) < ∞
}

, one has

ϕ∗ = cl q for the function q(v) = infy
{

f∗(v, y) − 〈y, ū〉
}

. Here the closure
operation is superfluous when actually ū ∈ intU .

(d) (pointwise sup/inf). For a family of functions fi, if f = inf i∈I fi, then
f∗ = supi∈I f

∗
i . Dually, if f = supi∈I fi with fi proper, lsc and convex, and if

f is proper, then f∗ = cl con
(

inf i∈I f
∗
i

)

.

Proof. The first relation in (a) falls out of the definition of f∗ and the formula
for f1 f2 in 1(12). It implies that (f∗

1 f∗
2 )

∗ = f∗∗
1 + f∗∗

2 , the latter being the
same as f1 + f2 when each fi is proper, lsc and convex. When that is true and
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dom f1 ∩ dom f2 �= ∅, so that f = f1 + f2 is proper, we get f∗ = (f∗
1 f∗

2 )
∗∗ =

cl con(f∗
1 f∗

2 ) by 11.1. The convex hull operation is superfluous because the
convexity of f∗

i implies that of f∗
1 f∗

2 (cf. 2.24). The closure operation can be
omitted when f∗

1 f∗
2 is lsc, which holds when the set epi f∗

1+epi f∗
2 is closed (cf.

1.28), a property guaranteed by the absence of any nonzero (v, β) ∈ (epi f∗
1 )

∞

with (−v,−β) ∈ (epi f∗
2 )

∞ (cf. 3.12).
Because (epi f∗

i )
∞ is the epigraph of f∗∞

i , which we have identified in 11.5
with the support function of Di = dom fi, this condition translates to the
nonexistence of v �= 0 such that σD1

(v) ≤ −σD2
(−v). But this is equivalent by

8.29(b) to having 0 ∈ int(D1 −D2). Obviously int(D1 −D2) includes the sets
D1 − (intD2) and (intD1)−D2, since these are open.

For (b) the same pattern works. It’s easily seen from the definitions that
(Af)∗ = f∗A∗. For the same reason, (A∗g∗)∗ = g∗∗A∗∗ = gA when g is proper,
lsc and convex. When rgeA meets dom g, so that gA is proper, we obtain from
11.1 that (gA)∗ = (A∗g∗)∗∗ = cl conA∗g∗. The convex hull operation can be
omitted because the convexity of A∗g∗ accompanies that of g∗ by 2.22(b). The
closure operation can be omitted when A∗g∗ is lsc, which holds when the set
L(epi g∗) is closed for the linear mapping L(y, α) = (A∗y, α); cf. 1.31. This
is implied by the absence of any nonzero (y, α) in L−1(0, 0) ∩ (epi g∗)∞, i.e.,
the absence of any y �= 0 such that A∗y = 0, g∗∞(y) ≤ 0. Identifying g∗∞

with the support function of dom g through 11.5, and identifying the indicator
of the null space

{

y
∣

∣A∗y = 0
}

with the support function of the range space
rgeA, we translate this condition into the absence of any y �= 0 such that
σdom g(y) ≤ −σrgeA(−y). By 8.29(b), this means 0 ∈ int(dom g − rgeA). Here
int(dom g − rgeA) includes the open set int(dom g)− rgeA.

Likewise in (c), the definitions of p and p∗ give

p∗(y) = supu
{

〈y, u〉 − infx f(x, u)
}

= supx,u
{〈

(0, y), (x, u)
〉

− f(x, u)
}

= f∗(0, y).

For parallel reasons, q∗(x) = f∗∗(x, ū). When f is proper, lsc and convex,
we have f∗∗ = f , so q∗ = ϕ. But the convexity of f∗ implies that of q by
2.22(a). Hence as long as ū ∈ U , so that ϕ is proper, we have ϕ∗ = cl q by
11.1. To omit the closure operation as well, we can look to cases where q is
known to be lsc. One such case, furnished by 3.31, is associated with having
f∗∞(0, y)− 〈y, ū〉 > 0 when y �= 0. But if f is proper and convex, f∗∞ is the
support function of dom f by 11.5, and f∗∞(0, ·) is then the support function
of the image U of dom f under the projection (x, u) �→ u. The condition that
f∗∞(0, y) − 〈y, ū〉 > 0 when y �= 0 translates therefore to the condition that
σU (y) > 0 when y �= 0, which by 8.29(a) is equivalent to having 0 ∈ intU .

The first relation in (d) is immediate from the definition of f∗. It implies
that (infi∈I f

∗
i )

∗ = supi∈I f
∗∗
i . When f = supi∈I fi with fi proper, lsc and

convex, so that fi = f∗∗
i by 11.1, and f is proper (in addition to being convex

by 2.9), we obtain from 11.1 that f∗ = (infi∈I f
∗
i )

∗∗ = cl con(infi∈I f
∗
i ).

In part (a) of Theorem 11.23, the condition 0 ∈ int(dom g − rgeA) is
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equivalent to the nonexistence of a ‘separating hyperplane’ for C1 and C2 (see
2.39). Likewise in part (b), the condition 0 ∈ int(dom g − rgeA) means that
dom g can’t be separated from rgeA, even improperly.

11.24 Corollary (rules for support functions).

(a) If D = λC with C �= ∅ and λ > 0, then σD = λσC .

(b) If C = C1 + C2 with Ci �= ∅, then σC = σC1
+ σC2

.

(c) If D =
{

Ax
∣

∣x ∈ C
}

with A ∈ IRm×n, then σD(y) = σC(A
∗y).

(d) If C =
{

x
∣

∣Ax ∈ D
}

for a closed, convex set D ⊂ IRm, and if C �= ∅,

then σC = clA∗σD, where (A∗σD)(v) := inf
{

σD(y)
∣

∣A∗y = v
}

. Here the
closure operation is superfluous when 0 ∈ int(D−rgeA), as is true in particular
when the subspace rgeA meets intD.

(e) If C = C1 ∩ C2 �= ∅ with each set Ci convex and closed, then σC =
cl(σC1

σC2
). Here the closure operation is superfluous when 0 ∈ int(C1−C2),

as is true in particular when C1 meets intC2 or C2 meets intC1.

(f) If C =
⋃

i∈I Ci, then σC = supi∈I σCi
.

Proof. These six rules correspond to the cases where (a) δD = λ⋆δC , (b)
δC = δC1

δC2
, (c) δD = AδC , (d) δC = δDA, (e) δC = δC1

+ δC2
, and (f)

δC = infi∈I δCi
. All except (a) are covered by Theorem 11.23 through 11.4(a),

while (a) simply comes from 11(3)—but is best listed here.

11.25 Corollary (rules for polar cones).

(a) If K = K1 + K2 for cones Ki, then K∗ = K∗
1 ∩ K∗

2 . Likewise, if
K =

⋃

i∈I Ki one has K∗ =
⋂

i∈I K
∗
i .

(b) If K = K1 ∩K2 for closed, convex cones Ki, then K∗ = cl(K∗
1 +K∗

2 ).
The closure operation is superfluous when 0 ∈ int(K1 −K2).

(c) If H =
{

Ax
∣

∣x ∈ K
}

for A ∈ IRm×n and a cone K ⊂ IRn, then

H∗ =
{

y
∣

∣A∗y ∈ K∗
}

.

(d) If K =
{

x
∣

∣Ax ∈ H
}

for A ∈ IRm×n and a closed, convex cone H ⊂

IRm, then K∗ = cl
{

A∗y
∣

∣ y ∈ H∗
}

. The closure operation is superfluous when
0 ∈ int(H − rgeA).

Proof. In (a) we apply 11.23(a) to δK = δK1
δK2

, or 11.23(d) to δK =
infi∈I δKi

, whereas in (b) we apply 11.23(a) to δK = δK1
+ δK2

, each time
making the observation in 11.4(b). In (c) and (d) it’s the same story in applying
11.23(b) with δH = AδK in the first case and δK = δHA in the second.

11.26 Example (distance functions, Moreau envelopes and proximal hulls).

(a) For any nonempty, closed, convex set C ⊂ IRn, the functions dC and
σC + δIB are conjugate to each other.

(b) For any proper, lsc, convex function f : IRn → IR and any λ > 0, the
functions eλf and f∗ + λ

2
| · |2 are conjugate to each other. This entails

e
λ
f(x) + eλ−1f∗(λ−1x) =

1

2λ
|x|2 for all x ∈ IRn, λ > 0.
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(c) For any f : IRn → IR, not necessarily convex, the Moreau envelope eλf
and proximal hull hλf for each λ > 0 are expressed by

eλf(x) = λ−1j(x)− (f + λ−1j)∗(λ−1x)

hλf(x) = (f + λ−1j)∗∗(x)− λ−1j(x)

}

for j = 1
2 | · |

2.

Here (f +λ−1j)∗∗ can be replaced by con(f + λ−1j) when f is lsc, proper and
prox-bounded with threshold λf > λ. Then domhλf = con(dom f), and on
the interior of this convex set the function hλf must be lower-C2.

(d) A proper function f : IRn → IR is λ-proximal, in the sense that hλf = f ,
if and only if f is lsc and f + 1

2λ
| · |2 is convex.

Detail. In (a) we have dC = δC | · | by 1(13), where the Euclidean norm | · |
is the support function σIB, as recorded in 8.27, and σ∗

IB = δIB by 11.4(a). Then
d∗C = δ∗C + σ∗

IB
by 11.23(b), with δ∗C = σC by 11.4(a). Because dC is finite,

hence continuous (cf. 2.36), we have d∗∗C = dC (by 11.1).

In (b) the situation is similar. In terms of j(x) = 1
2 |x|

2 we have eλf =
f λ−1j by 1(13), with eλf finite and convex by 2.25. Here λ−1j is the same
as λ⋆j and is conjugate to λj by 11.11 and the rules in 11(3). The conjugate
function (eλf)

∗ is calculated then from 11.23(a) to be f∗+λj. But to say that
eλf is conjugate to f∗ + λj is to say that for all x one has

eλf(x) = supw

{

〈w, x〉 − f∗(w)−
λ

2
|w|2

}

=
1

2λ
|x|2 − infw

{

f∗(w) +
λ

2
|w − λ−1x|2

}

=
1

2λ
|x|2 − eλ−1f∗(λ−1x).

This gives the identity claimed in (b).
The same calculation produces the first identity in (c), and the second then

follows from the formula for hλf in 1.44. Justification for replacing (f+λ−1j)∗∗

by con(f + λ−1j) comes from 3.28 and 3.47; f + λ−1j is coercive when λ ∈
(0, λf ). The domain assertion is then obvious. The claim about hλf being
lower-C2 on the interior is supported by 10.33. To get (d), we merely invoke
the rule from (c) that hλf = f if and only if (f + λ−1j)∗∗ = (f + λ−1j).

11.27 Exercise (proximal mappings and projections as gradient mappings).

(a) For any proper, lsc, convex function f : IRn → IR and any λ > 0 the
proximal mapping Pλf is ∇g for g = λ⋆

(

eλ−1f∗
)

.

(b) For any nonempty, closed, convex set C ⊂ IRn, the projection mapping
PC is ∇g for g = e1σC = σC

1
2 | · |

2.

Guide. Derive the first expression from the formula for ∇eλf in 2.26 using
the identity in 11.26(b). Then derive the second expression by specializing to
f = δC and λ = 1; cf. 11.4.

11.28 Example (piecewise linear-quadratic envelopes).

(a) For f : IRn → IR proper, convex and piecewise linear-quadratic and for
any λ > 0, the convex function eλf is piecewise linear-quadratic.
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(b) For C ⊂ IRn nonempty and polyhedral, the convex function d2C is piece-
wise linear-quadratic.

Detail. The assertion in (a) is justified by the conjugacy rules in 11.14(a) and
11.26(b). The one in (b) specializes this to f = δC ; then eλf = 1

2λ
d2C .

The use of several dualizing rules during the course of a calculation is
illustrated by the next example, which concerns adjoints of sublinear mappings
as defined in 8(27) and 8(28). Relations are obtained between the outer and
inner norms for such mappings that were introduced in 9(4) and 9(5).

11.29 Example (norm duality for sublinear mappings). The outer norm |H|+

and inner norm |H|− of a sublinear, osc mapping H : IRn
→→ IRm are related

to those of its upper adjoint H∗+ and lower adjoint H∗− by

|H|+ = |H∗+|− = |H∗−|−, |H|− = |H∗+|+ = |H∗−|+.

In addition, one has d
(

0, H(w)
)

= σH∗+(IB)(w) and σ
H(IB)

(y) = d
(

0, H∗−(y)
)

.

As a special case, if a mapping S : IRn
→→ IRm is graphically regular at x̄

for ū, one has

∣

∣D∗S(x̄ | ū)
∣

∣

+

=
∣

∣DS(x̄ | ū)
∣

∣

−

,
∣

∣D∗S(x̄ | ū)−1
∣

∣

+

=
∣

∣DS(x̄ | ū)−1
∣

∣

−

.

Detail. This can be derived by using the support function rules in 11.24 along
with the rules of cone polarity. From the definition of |H|+ in 9(4) and the
description of the Euclidean norm in 8.27 we have

|H|+ = sup
z∈H(IB)

|z| = sup
z∈H(IB), y∈IB

〈y, z〉 = sup
y∈IB

σ
H(IB)

(y).

To prove that this equals |H∗+|−, hence also |H∗−|− (inasmuch as H∗−(y) =
−H∗+(−y)), it’s enough now to demonstrate that σH(IB)(y) = d

(

0, H∗−(y)
)

.
In terms of the projection A : IRn × IRm → IRm the set H(IB) has the repre-
sentation AC for C = C1 ∩ C2 with C1 = IB × IRm and C2 = gphH. From
11.24(c) we get σH(IB)(y) = σC(A

∗y) = σC

(

(0, y)
)

. On the other hand we have

C2 ∩ intC1 �= ∅, so σ
C

(

(0, y)
)

= min(w,u)

{

σC1

(

(0, y)− (w, u)
)

+ σC2

(

(w, u)
)}

by 11.24(e). Next we note that σC1

(

(w, u)
)

= |w|+ δ{0}(u) (cf. 8.27), whereas

σC2
= δ(gphH)∗ by 11.4(b), so that σC2

(

(w, u)
)

= δgphH∗−

(

(−w, u)
)

by the

definition of H∗− in 8(28). Therefore,

σH(IB)(y) = min
(w,u)

{

|0− w|+ δ{0}(y − u) + δ
gphH∗−

(

(−w, u)
)

}

= min
−w∈H∗−(y)

|w| = d
(

0, H∗−
(y)

)

.

Thus, |H|+ = |H∗+|− is confirmed. To get the remaining formulas, we merely
have to apply the ones already obtained to G = H∗+, since G∗− = H.

The application at the end is based on having, in the presence of graphical
regularity, D∗S(x̄ | ū) = DS(x̄ | ū)∗− and likewise D∗S−1(x̄ | ū) = DS−1(x̄ | ū)∗−;
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cf. 8.40. It’s elementary that one always has |D∗S−1(x̄ | ū)|+ = |D∗S(x̄ | ū)−1|+

and |DS−1(x̄ | ū)|− = |DS(x̄ | ū)−1|−.

11.30 Exercise (uniform boundedness of sublinear mappings). If a family H of
osc, sublinear mappings H : IRn

→→ IRm has supH∈H d
(

0, H(w)
)

< ∞ for each
w ∈ IRn, it must actually have supH∈H |H|− < ∞.

Guide. Make use of 11.29, arguing that h(w) = supH∈H d
(

0, H(w)
)

is the
support function of the set

⋃

H∈H H∗+(IB).

11.31 Exercise (duality in calculating adjoints of sublinear mappings).

(a) For sublinear mappings H : IRn
→→ IRm and G : IRm

→→ IRp with
rint(rgeH) ∩ rint(domG) �= ∅, one has

(G◦H)∗
+
= H∗+

◦G∗+
, (G◦H)∗

−
= H∗−

◦G∗−
.

(b) For sublinear mappings H : IRn
→→ IRm and G : IRn

→→ IRm with
rint(domH) ∩ rint(domG) �= ∅, one has

(H +G)∗
+

= H∗+

+G∗+

, (H +G)∗
−
= H∗−

+G∗−
.

(c) For a sublinear mapping H : IRn
→→ IRm and arbitrary λ > 0, one has

(λH)∗
+
= λH∗+

, (λH)∗
−
= λH∗−

.

Guide. In (a), gph(G◦H) = L(K) for K =
[

gphH × IRp
]

∩
[

IRn × gphG
]

and L the projection of IRn × IRm × IRp onto IRn × IRp. Apply the rules in
11.25(b)(c), relating the polars gphH, gphG and gph(G◦H), to the graphs of
the adjoint mappings by way of definitions 8(27) and 8(28).

In (b) use the representation gph(H + G) = L2

(

L−1
1 (K)

)

for the cone
K = (gphH)× (gphG), the linear mapping L1 : (x, y, z) �→ (x, y, x, z) and the
linear mapping L2 : (x, y, z) �→ (x, y + z). Apply the rules in 11.25(c)(d). Get
the elementary fact in (c) straight from the definitions of H∗+ and H∗−.

For the pairs of operations in Theorem 11.23 to be fully dual to each other,
closures had to be taken, but a readily verifiable condition was provided under
which this was superfluous. Another common case where it can be omitted
comes up when the functions are piecewise linear-quadratic.

11.32 Proposition (operations on piecewise linear-quadratic functions).

(a) If f = f1 f2 with fi proper, convex and piecewise linear-quadratic,
then f is proper, convex and piecewise linear-quadratic, unless f is improper
with dom f a polyhedral set on which f ≡ −∞. Either way, f is lsc.

(b) If g(u) = (Af)(u) = infx
{

f(x)
∣

∣Ax = u
}

for A ∈ IRm×n and f proper,
convex and piecewise linear-quadratic on IRn, then g is proper, convex and
piecewise linear-quadratic on IRm, unless g is improper with dom g a polyhedral
set on which g ≡ −∞. Either way, g is lsc.

(c) If p(u) = infx f(x, u) for a proper, convex, piecewise linear-quadratic
function f : IRn × IRm → IR, then p is proper, convex and piecewise linear-
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quadratic, unless p is improper with dom p a polyhedral set on which p ≡ −∞.
Either way, p is lsc.

Proof. Let’s deal with (c) first; it will be leveraged into the other assertions.
Because f is convex, its inf-projection p is convex; cf. 2.22(a). The set dom p
is the image of dom f under the projection mapping (x, u) �→ u, and dom f
is polyhedral. Hence dom p is itself polyhedral and in particular closed; cf.
3.55(a). The function conjugate to p is known from 11.23(c) to be f∗(0, ·),
which is not only convex but piecewise linear-quadratic by 10.22(c), due to the
fact that f∗ inherits being piecewise linear-quadratic from f by 11.14(b). As
long as f∗(0, ·) is proper, which is equivalent by 11.1 to p being proper, it
follows further by 11.14(b) that p∗∗, as the function conjugate to f∗(0, ·), is
piecewise linear-quadratic too. The claim in (c) can be established therefore in
showing that p∗∗ = p unless p is improper with no values other than ±∞.

Suppose p is finite at ū. The function ϕ := f( · , ū), whose infimum over IRn

is p(ū), is convex and piecewise linear-quadratic, hence its minimum is attained
at some x̄; cf. 11.16. Then 0 ∈ ∂ϕ(x̄). But ∂ϕ(x̄) =

{

v
∣

∣ ∃ y, (v, y) ∈ ∂f(x̄, ū)
}

by 10.22(c). Hence there exists ȳ with (0, ȳ) ∈ ∂f(x̄, ū). Through convexity
this subgradient condition can be written as

f(x, u) ≥ f(x̄, ū) +
〈

(0, ȳ), (x, u)− (x̄, ū)
〉

for all (x, u)

(see 8.12), which gives us p(u) ≥ p(ū) + 〈ȳ, u − ū〉 for all u, implying that p
is proper on IRm and lsc at ū. Thus, unless p ≡ −∞ on dom p, p is a proper,
convex function which is lsc at every point of dom p. Since dom p is closed, we
conclude that p is lsc everywhere, so p∗∗ = p. This proves (c).

We get (b) now as the case of (c) where Af = p for p(u) = infx f̄(x, u)
with f̄(x, u) = f(x) + δM (x, u) and M =

{

(x, u)
∣

∣Ax = u
}

. Because δM ,
like f , is convex and piecewise linear-quadratic (the set M being affine, hence
polyhedral; cf. 2.10), f̄ is piecewise linear-quadratic by 10.22.

Finally, (a) specializes (b) to f1 f2 = Ag with g(x1, x2) = f1(x1)+f2(x2)
on IRn × IRn and A the matrix of the linear mapping (x1, x2) �→ x1 + x2.

11.33 Corollary (conjugate formulas in piecewise linear-quadratic case).

(a) If f = f1 + f2 with fi proper, convex and piecewise linear-quadratic,
and if f �≡ ∞, then f∗ = f∗

1 f∗
2 .

(b) If f = gA with A ∈ IRm × IRn and g proper, convex and piecewise
linear-quadratic, and if f �≡ ∞, then f∗ = A∗g∗.

(c) If ϕ(x) = f(x, ū) with f proper, convex and piecewise linear-quadratic
on IRn × IRm, and if ϕ �≡ ∞, then ϕ∗(v) = infy

{

f∗(v, y)− 〈y, ū〉
}

.

Proof. We apply 11.23 in the light of the additional conditions furnished by
11.32 for the dual operations to produce a lower semicontinuous function, so
that the closure operation can be omitted.
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G. Duality in Convergence

Switching to another topic, we look next at how the Legendre-Fenchel transform
behaves with respect to the epi-convergence studied in Chapter 7.

11.34 Theorem (epi-continuity of the Legendre-Fenchel transform; Wijsman). If
the functions fν and f on IRn are proper, lsc, and convex, one has

fν →e f ⇐⇒ fν∗→e f∗.

More generally, as long as e-lim infν f
ν nowhere takes on −∞ and a bounded

set B exists with lim supν [infB fν ] < ∞, one has

e-lim infν f
ν ≥ f ⇐⇒ e-lim supν f

ν∗ ≤ f∗,

e-lim supν f
ν ≤ f ⇐⇒ e-lim infν f

ν∗ ≥ f∗.

Proof. For any λ > 0 we have through 7.37 that fν →e f if and only if
eλf

ν →p eλf . Likewise, fν∗→e f if and only if eλf
ν∗ →p eλf

∗. In particular we
can take λ = 1 in these conditions. But from 11.26 we have

e1f
ν(x) + e1f

ν∗(x) = 1
2 |x|

2 = e1f(x) + e1f
∗(x).

Thus, the two conditions are equivalent.
The assumption about B in the more general case means the existence of

β ∈ IR such that epi fν ∩ (B× (−∞, β]) �= ∅ for all ν in some index set in N∞.
This ensures that no subsequence of {fν}ν∈IN can escape epigraphically to the
horizon; cf. 7.5. Then every subsequence has an epi-convergent subsequence by
7.6, but on the other hand, the epi-limit of such a sequence can’t take on −∞
because of the assumption about e-lim infν f

ν . We are therefore in a setting
where every subsequence of {fν}ν∈IN has a subsequence that epi-converges to
some proper, lsc function g, which must of course be convex. Through the
cluster description of outer limits in 4.19 as applied to epigraphs, we see that
e-lim infν f

ν ≥ f if and only if g ≥ f for every such function g; likewise in terms
of inner limits, we have e-lim supν f

ν ≤ f if and only if g ≥ f for every such
g. It remains only to invoke for these epi-convergent sequences the continuity
property established in the main part of the theorem.

11.35 Corollary (convergence of support functions and polar cones).

(a) For nonempty, closed, convex sets Cν and C in IRn, one has

Cν → C ⇐⇒ σ
Cν →e σ

C
,

and if the sets are bounded this is equivalent to having σ
Cν (v) → σ

C
(v) for

each v. More generally, as long as lim supν d(0, C
ν) < ∞ one has

lim supν C
ν ⊂ C ⇐⇒ e-lim supν σCν ≤ σ

C
,

lim infν C
ν ⊃ C ⇐⇒ e-lim infν σCν ≥ σ

C
.

(b) For closed, convex cones Kν and K in IRn, one has
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Kν → K ⇐⇒ Kν∗ → K∗,

and more generally,

lim supν K
ν ⊂ K ⇐⇒ lim infν K

ν∗ ⊃ K∗,

lim infν K
ν ⊃ K ⇐⇒ lim supν K

ν∗ ⊂ K∗.

Proof. We apply Theorem 11.34 in the setting of 11.4. The case of bounded
Cν , in which the support functions are finite-valued, appeals also to 7.18.

The Legendre-Fenchel transform isn’t just continuous; it’s an isometry

with respect to a suitable choice of metric on the space of proper, lsc, convex
functions on IRn. We’ll establish that by developing isometric properties of
the polarity correspondence in 6.24 and 11.4(b) and then appealing to the way
that conjugate functions can be associated with polar cones, as in 11.7. In this
geometric context, the set metric dl in 4(12) will be apt.

11.36 Theorem (cone polarity as an isometry; Walkup-Wets). For any cones
K1, K2 ⊂ IRn that are convex, one has

dl(K1, K2) = dl(K∗
1 , K

∗
2 ).

Proof. It can be assumed that K1 and K2 are closed, since dl(K1, K2) =
dl(clK1, clK2) with clKi convex and [clKi]

∗ = K∗
i . Then [K∗

i ]
∗ = Ki by

11.4(b). We have dl(K1, K2) = dl1(K1, K2) = d̂l1(K1, K2) and dl(K∗
1 , K

∗
2 ) =

dl1(K
∗
1 , K

∗
2) = d̂l1(K

∗
1 , K

∗
2 ) by 4.44. Thus, we need only demonstrate that

dl1(K1, K2) ≤ d̂l1(K
∗
1 , K

∗
2 ) and dl1(K

∗
1 , K

∗
2 ) ≤ d̂l1(K1, K2); but the latter is

just the former as applied to K∗
1 and K∗

2 , so the former suffices. Because of the
way that K1 and K2 enter symmetrically in the definition of dl1(K1, K2) and

d̂l1(K
∗
1 , K

∗
2) in 4(11), our task reduces simply to verifying for η > 0 that

dK1
≤ dK2

+ η on IB =⇒ K∗
1 ∩ IB ⊂ K∗

2 + ηIB. 11(14)

The convex functions dK1
and dK2

are positively homogeneous, so the left side
of 11(14) corresponds to the inequality dK1

≤ dK2
+ η| · | holding on IRn, or

equivalently d∗K1
≥ (dK2

+ η| · |)∗. Here dK1
= δK1

| · | and dK2
= δK2

| · |
(cf. 1.20), while | · | = σIB (cf. 8.27) and η| · | = σηIB, so the inequality in
11(14) dualizes to δ∗K1

+ σ∗
IB ≥ [δ∗K2

+ σ∗
IB ] σ∗

ηIB through the rules in 11.23(a).
By 11.4, this is the same as δK∗

1
+ δIB ≥ [δK∗

2
+ δIB ] δηIB, or in other words

K∗
1 ∩ IB ⊂ [K∗

2 ∩ IB] + ηIB, which implies the right side of 11(14).

Theorem 11.36 can be applied to convex cones in the ray space model of
cosmic space, most fruitfully to the cones in IRn+2 that represent the epigraphs
in IRn+1 of convex functions on IRn. Since the cosmic metric dlcsm for functions
on IRn, as defined in 7(28), is based on the set distance between such cones,
the following result is obtained.

11.37 Corollary (Legendre-Fenchel transform as an isometry). For functions
f1, f2 : IRn → IR that are convex and proper, one has
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dlcsm(f1, f2) = dlcsm(f∗
1 , f

∗
2 ).

Proof. This comes out of the characterization of conjugate functions in terms
of polar cones in 11.7. The cosmic epi-distances correspond to cone distances,
and the isometry is apparent then from the one for cones in Theorem 11.36.

It might be puzzling that this result is based on the cosmic epi-metric
dlcsm, which is known from 7.59 to characterize total epi-convergence, whereas
the ‘homeomorphism’ in Theorem 11.34 refers to ordinary epi-convergence,
which according to 7.58 is characterized by the ordinary epi-metric dl. The
seeming discord vanishes when one recalls that, for sequences of convex func-
tions, epi-convergence implies total epi-convergence (cf. 7.53). On the space of
convex functions within lsc-fcns

�≡∞(IRn), the metrics dl and dlcsm are actually
equivalent topologically. Theorem 11.34 could equally well be stated in terms
of total epi-convergence, but only dlcsm produces an isometry.

H. Dual Problems of Optimization

The rest of this chapter will be occupied with the important question of how
optimization problems can be dualized. It will be shown that any optimization
problem of convex type, when provided with a scheme of perturbation that re-
spects convexity, is paired with a certain other optimization problem of convex
type, which is provided in turn with a dual scheme of perturbation. The two
problems are related to each other in remarkable ways. Even for problems that
aren’t of convex type, something analogous can be built up, although not as
powerfully and not with full symmetry.

Hints of such duality are already present in the formulas we’ve been de-
veloping, and we’ll work our way into the subject by looking there first. In
principle, the value of the conjugate of a given function can be calculated at a
given point by maximization in terms of the defining expression 11(1). But the
formulas developed in 11.23, and more specially in 11.34, furnish an alternative
approach to calculating the same value by minimization. This idea is captured
most succinctly by the operation of inf-projection.

11.38 Lemma (dual calculations in parametric optimization). For any function
f : IRn × IRm → IR, one has

p(0) = infx ϕ(x)

p∗∗(0) = supy ψ(y)

}

for











p(u) = infx f(x, u)

ϕ(x) = f(x, 0)

ψ(y) = −f∗(0, y).

Proof. This is immediate from 11.23(c).

The circumstances under which p(0) = p∗∗(0), and therefore inf ϕ = supψ
in this scheme, are of course governed in general by 11.1 and 11.2 and are rich in
possibilities. The focus in 11.38 on u = 0 enhances symmetry and corresponds
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to interpreting u as a perturbation parameter. Much will be made of this
perturbation idea as we proceed.

The next theorem develops out of 11.38 a symmetric framework in which
some of the most distinguishing features of optimization problems of convex
type find expression. Later we’ll explore the extent to which dualization can
be effective through 11.38 even for problems involving nonconvexities.

11.39 Theorem (dual problems of optimization). Let f : IRn × IRm → IR be
proper, lsc and convex, and consider the primal problem

minimize ϕ on IRn, ϕ(x) := f(x, 0),

along with the dual problem

maximize ψ on IRm, ψ(y) := −f∗(0, y),

where ϕ is convex and lsc, but ψ is concave and usc. Let p(u) = infx f(x, u)
and U = dom p, while q(v) = infy f

∗(v, y) and V = dom q; these sets and
functions are convex.

(a) The inequality infx ϕ(x) ≥ supy ψ(y) holds always, and infx ϕ(x) < ∞
if and only if 0 ∈ U , whereas supy ψ(y) > −∞ if and only if 0 ∈ V . Moreover,

infx ϕ(x) = supy ψ(y) if either 0 ∈ intU or 0 ∈ intV.

(b) The set argmaxy ψ(y) is nonempty and bounded if and only if 0 ∈ intU
and the value infx ϕ(x) = p(0) is finite, in which case argmaxy ψ(y) = ∂p(0).

(c) The set argminx ϕ(x) is nonempty and bounded if and only if 0 ∈ intV
and the value supy ψ(y) = −q(0) is finite, in which case argminx ϕ(x) = ∂q(0).

(d) Optimal solutions are characterized jointly through primal and dual
forms of Fermat’s rule:

x̄ ∈ argminx ϕ(x)

ȳ ∈ argmaxy ψ(y)

infx ϕ(x) = supy ψ(y)











⇐⇒ (0, ȳ) ∈ ∂f(x̄, 0) ⇐⇒ (x̄, 0) ∈ ∂f∗(0, ȳ).

ϕ(x) := f(x, 0) p(u) := infx f(x, u) U := dom p

↑ ∗ ↓ ∗

q(v) := infy f
∗(v, y) − ψ(y) := f∗(0, y) V := dom q

Fig. 11–5. Notation for dual problems of convex type.

Proof. The convexity in the preamble is obvious from that of f and f∗. (The
preservation of convexity under inf-projection is attested to by 2.22(a).)
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We apply 11.23(c) in the context of 11.38, noting from 11.1 and 11.2 that
p(0) = p∗∗(0) in particular when 0 ∈ intU . The latter condition in combination
with p(0) > −∞ is equivalent by 11.8(c) to −ψ being proper and level-bounded.
But a proper, lsc, convex function is level-bounded if and only if its argmin set
is nonempty and bounded; cf. 3.27 and 1.9. Then too, ∂p(0) = argmin p∗ =
argmaxψ by 11.8(a).

Next we invoke the same facts with f replaced by f∗, using the relation
f∗∗ = f . This gives − supψ = q(0) ≥ q∗∗(0) = − inf ϕ with ϕ = q∗, where
q(0) = q∗∗(0) in particular when 0 ∈ intV . The latter condition in combination
with q(0) > −∞ corresponds by parallel argument to having argminϕ being
nonempty and bounded. It also gives ∂q(0) = argmin q∗ = argminϕ.

Turning to (d), we note that through 11.3 the relations (0, ȳ) ∈ ∂f(x̄, 0)
and (x̄, 0) ∈ ∂f∗(0, ȳ) are equivalent to each other and to having ϕ(x̄) = ψ(ȳ).
Since inf ϕ ≥ supψ in general by (a), they are equivalent further to having
ϕ(x̄) = inf ϕ = supψ = ψ(ȳ).

11.40 Corollary (general best-case primal-dual relations). In the context of
Theorem 11.39, the following conditions are equivalent to each other and serve
to guarantee that −∞ < minϕ = maxψ < ∞:

(a) 0 ∈ intU and 0 ∈ intV ;

(b) 0 ∈ intU , and argminϕ is nonempty and bounded;

(c) 0 ∈ intV , and argmaxψ is nonempty and bounded;

(d) argminϕ and argmaxψ are nonempty and bounded.

The relation argmaxψ = ∂p(0) in 11.39(b) shows the significance of opti-
mal solutions ȳ to the dual problem. In the situation in 11.39(b), the convex
function p is finite on a neighborhood of 0, so the relation tells us that

dp(0)(w) = max
{

〈ȳ, w〉
∣

∣ ȳ ∈ argmaxψ
}

(cf. 8.30, 7.27) and further that a unique optimal solution ȳ to the dual problem
corresponds to having ∇p(0) = ȳ (cf. 9.18, 9.14). All this has to be seen in the
light of p(0) being the optimal value in the given ‘primal’ problem of minimizing
ϕ, with p(u) the optimal value obtained when this problem is perturbed by the
amount u in the way prescribed by the chosen parametric representation.

This kind of interpretation of the dual elements ȳ accompanying the primal
elements x̄ resembles one that was discussed in parametric minimization more
generally (cf. 10.14 and 10.15), but without a dual problem being brought
in for a supplementary description of the vectors ȳ as optimal in their own
right: ȳ ∈ argmaxψ. In the present setup, fortified by convexity and the
relation argminϕ = ∂q(0) in 11.39(c), the roles of x̄ and ȳ can be interchanged.
Remarkably, the solutions x̄ ∈ argminϕ to the primal problem gain a parallel
interpretation relative to perturbations to the dual problem, namely:

dq(0)(z) = max
{

〈x̄, z〉
∣

∣ x̄ ∈ argminϕ
}

.

Because f∗∗ = f , everything is completely symmetric between primal and
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dual, apart from the sign convention in designating whether a problem should
be viewed in maximization or minimization mode. The dualization scheme
proceeds from a primal problem with perturbation vector u to a dual problem
with perturbation vector v, and it does so in such a way that the dual of the

dual problem is identical to the primal problem.

11.41 Example (Fenchel-type duality scheme). Consider the two problems

minimize ϕ on IRn, ϕ(x) := 〈c, x〉+ k(x) + h(b− Ax),

maximize ψ on IRm, ψ(y) := 〈b, y〉 − h∗(y)− k∗(A∗y − c),

where k : IRn → IR and h : IRm → IR are proper, lsc and convex, and one has
A ∈ IRm×n, b ∈ IRm, and c ∈ IRn. These problems fit the format of 11.39 with

f(x, u) = 〈c, x〉+ k(x) + h(b− Ax+ u),

f∗(v, y) = −〈b, y〉+ h∗(y) + k∗(A∗y − c+ v).

The assertions of 11.39 and 11.40 are valid then in the context of having

0 ∈ intU ⇐⇒ b ∈ int
(

A dom k + domh
)

,

0 ∈ intV ⇐⇒ c ∈ int
(

A∗domh∗ − dom k∗
)

.

Furthermore, optimal solutions are characterized by

x̄ ∈ argminϕ

ȳ ∈ argmaxψ

inf ϕ = supψ











⇐⇒

{

ȳ ∈ ∂h(b− Ax̄)

A∗ȳ − c ∈ ∂k(x̄)

}

⇐⇒

{

x̄ ∈ ∂k∗(A∗ȳ − c)

b− Ax̄ ∈ ∂h∗(ȳ)

}

.

Detail. The function f is proper, lsc (by 1.39, 1.40) and convex (by 2.18,
2.20). The function p, defined by p(u) := infx f(x, u), has nonempty effective
domain U = A dom k + domh− b. Direct calculation of f∗ yields

f∗(v, y) = supx,u

{

〈

v, x
〉

+
〈

y, u
〉

−
〈

c, x
〉

− k(x)− h(b− Ax+ u)
}

= supx,w

{

〈

v, x
〉

+
〈

y, w − b+Ax
〉

−
〈

c, x
〉

− k(x)− h(w)
}

= supx

{

〈

A∗y − c+ v, x
〉

− k(x)
}

+ supw

{

〈

y, w
〉

− h(w)
}

−
〈

y, b
〉

= k∗(A∗y − c+ v) + h∗(y)−
〈

y, b
〉

as claimed. The effective domain of the function q(v) = infy f
∗(v, y) is then

V = dom k∗ −A∗ domh∗ + c.
To determine ∂f(x, u) so as to verify the optimality condition claimed, we

write f = g◦F for g(x, w) = 〈c, x〉+k(x)+h(b+w) and F (x, u) = (x,−Ax+u),
noting that F is linear and nonsingular. We observe then that ∂g(x, w) =
{

(c + v, y)
∣

∣v ∈ ∂k(x), y ∈ ∂h(b + w)
}

, and therefore through 10.7 that we

have ∂f(x, u) =
{

(c + v − A∗y, y)
∣

∣v ∈ ∂k(x), y ∈ ∂h(b − Ax + u)
}

. The
condition (0, ȳ) ∈ ∂f(x̄, 0) in 11.39(d) reduces to having A∗ȳ − c ∈ ∂k(x̄) for
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ȳ ∈ ∂h(b − Ax̄). The alternate expression of optimality in terms of ∂k∗ and
∂h∗ comes immediately then from the inversion principle in 11.3.

11.42 Theorem (piecewise linear-quadratic optimization). For a proper, convex
and piecewise linear-quadratic function f : IRn×IRm → IR, consider the primal
and dual problems

minimize ϕ on IRn, ϕ(x) := f(x, 0),

maximize ψ on IRm, ψ(y) :=−f∗(0, y),

along with the functions p(u) = infx f(x, u) and q(v) = infy f
∗(v, y).

If either of the values inf ϕ or supψ is finite, then both are finite and both
are attained. Moreover in that case one has inf ϕ = supψ and

(argminϕ)× (argmaxψ) =
{

(x̄, ȳ)
∣

∣ (0, ȳ) ∈ ∂f(x̄, 0)
}

=
{

(x̄, ȳ)
∣

∣ (x̄, 0) ∈ ∂f∗(0, ȳ)
}

= ∂q(0)× ∂p(0).

Proof. This parallels Theorem 11.39, but in coming up with circumstances in
which p∗∗(0) = p(0), or q∗∗(0) = q(0), it relies on the piecewise linear-quadratic
nature of p and q in 11.32 instead of properties of general convex functions.

11.43 Example (linear and extended linear-quadratic programming). The prob-
lems in the Fenchel duality scheme in 11.41 fit the framework of piecewise
linear-quadratic optimization in 11.42 when the convex functions k and h are
piecewise linear-quadratic. A particular case of this, called extended linear-

quadratic programming, concerns the primal and dual problems

minimize 〈c, x〉+ 1
2 〈x, Cx〉+ θY,B(b−Ax) over x ∈ X,

maximize 〈b, y〉 − 1
2〈y, By〉 − θX,C(A

∗y − c) over y ∈ Y,

where the sets X ⊂ IRn and Y ⊂ IRm are nonempty and polyhedral, the
matrices C ∈ IRn×n and B ∈ IRm×m are symmetric and positive-semidefinite,
and the functions θY,B and θX,C have expressions as in 11.18:

θY,B(u) = sup
y∈Y

{

〈y, u〉 − 1
2 〈y, By〉

}

, θX,C(v) = sup
x∈X

{

〈v, x〉 − 1
2 〈x, Cx〉

}

.

When C = 0 and B = 0, while X and Y are cones, these primal and dual
problems reduce to the linear programming problems

minimize 〈c, x〉 subject to x ∈ X, b−Ax ∈ Y ∗,

maximize 〈b, y〉 subject to y ∈ Y, A∗y − c ∈ X∗.

If in addition X = IRn
+
and Y = IRm

+
, the linear programming problems have

the form
minimize 〈c, x〉 subject to x ≥ 0, Ax ≥ b,

maximize 〈b, y〉 subject to y ≥ 0, A∗y ≤ c.
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More generally, if X = IRr
+
× IRn−r and Y = IRs

+
× IRm−s these linear pro-

gramming problems have mixed inequality and equality constraints.

Detail. When k and h are piecewise linear-quadratic in the Fenchel scheme in
11.41, so too is f by the calculus in 10.22. Then Theorem 11.42 is applicable.
In the special case described, we have k = δX + jC for jC(x) := 1

2 〈x, Cx〉,
whereas h = (δY + jB)

∗; cf. 11.18.

Between linear programming and extended linear-quadratic programming
in 11.43 is quadratic programming , where the primal problem takes the form

minimize 〈c, x〉+ 1
2 〈x, Cx〉 subject to x ∈ X, b− Ax ∈ Y ∗,

for some choice of polyhedral cones X ⊂ IRn, Y ⊂ IRm (such as X = IRn
+
,

Y = IRm
+
) and a positive semidefinite matrix C ∈ IRn×n. This corresponds to

the primal problem of extended linear-quadratic programming of 11.43 in the
case of B = 0 and dualizes to

maximize 〈b, y〉 − θX,C(A
∗y − c) over y ∈ Y.

Thus, the dual of a quadratic programming problem isn’t another quadratic

programming problem, except in the linear programming subcase.
The general duality framework in Theorem 11.39 can be useful also in the

derivation of conjugacy formulas. The next example shows this while demon-
strating how the criteria in 11.39 can be verified in a particular case.

11.44 Example (dualized composition). Let g : IRn → IR and θ : IR → IR be
lsc, proper and convex with dom θ ⊂ IR+ and limλ→∞ θ(λ)/λ > −g(0). With
g∞(z) replacing λg(λ−1z) when λ = 0, one has for all z ∈ IRn that

inf
λ≥0

{

θ(λ) + λg(λ−1z)
}

= (θ∗◦g∗)∗(z).

Detail. The assumption on dom θ is equivalent to θ∗ being nondecreasing; cf.
8.51. In particular, therefore, θ∗◦g∗ is another convex function; cf. 2.20(b).

Fixing any z, define f(λ, u) to be θ(λ) + h(λ, z + u), with h(λ, w) =
λg(λ−1w) when λ > 0 but g∞(w) when λ = 0; set h(λ, w) = ∞ when λ < 0.
The left side of the claimed formula is then the optimal value in the problem
of minimizing ϕ(λ) = f(λ, 0) over λ ∈ IR1.

The function f is lsc, proper and convex by 3.49(c), so we’re in the territory
of Theorem 11.39. To proceed, we have to determine f∗. Calculating from the
definition (with µ as the variable dual to λ), we get

f∗(µ, y) = sup
λ,u

{

〈

(µ, y), (λ, u)
〉

− f(λ, u)
}

= sup
λ

{

µλ− θ(λ) + sup
w

{

〈y, w − z〉 − h(λ, w)
}

}

,
11(15)

where the inner supremum only has to be analyzed for λ ≥ 0, inasmuch as
dom θ ⊂ IR+. For λ > 0 it comes out as
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sup
w

{

〈y, w − z〉 − (λ⋆g)(w)
}

= λg∗(y)− 〈y, z〉,

cf. 11(3). For λ = 0, we use the fact in 11.5 that g∞ is the support function of
D = dom g∗ in order to see that the inner supremum is

sup
w

{

〈y, w − z〉 − σD(w)
}

= δclD(y)− 〈y, z〉,

cf. 11.4(a). Substituting these into the last part of 11(15), we find that

f∗(µ, y) = θ∗
(

g∗(y) + µ
)

− 〈y, z〉

(with θ∗(∞) interpreted as ∞). The dual problem, which consists of maxi-
mizing ψ(y) = −f∗(0, y) over y ∈ IRn, therefore has optimal value supψ =
(θ∗◦g∗)∗(z), which is the value on the right side of the claimed formula.

We can obtain the desired conclusion by verifying that inf ϕ = supψ.
A criterion is provided for this purpose in 11.39(a): it suffices to know that
0 ∈ int

{

µ
∣

∣∃ y with g∗(y)+µ ∈ dom θ∗
}

. Because θ∗ is nondecreasing, dom θ∗

is an interval that’s unbounded below; its right endpoint (maybe ∞) is θ∞(1)
by 11.5. What we need to have is inf g∗ < θ∞(1). But inf g∗ = −g(0) by
11.8(a) as applied to g∗. The criterion thus means −g(0) < θ∞(1). Since
θ∞(1) = limλր∞ θ(λ)/λ, we’ve reached our goal.

I. Lagrangian Functions

Duality in the elegant style of Theorem 11.39 and its accompaniment is a feature
of optimization problems of convex type only. In general, for an optimization
problem represented as minimizing ϕ = f( · , 0) over IRn for a function f :
IRn×IRm → IR, regardless of convexity, we speak of the problem of maximizing
ψ = −f∗(0, ·) over IRn as the associated dual problem, in contrast to the given
problem as the primal problem, but the relationships might not be as tight as
the ones we’ve been seeing. The issue of whether inf ϕ = supψ comes down
to whether p(0) = p∗∗(0) for p(u) = infx f(x, u), as observed in 11.38. The
trouble is that in the absence of p being convex—which is hard to guarantee
without simply assuming f is convex—there’s no strong handle on whether
p(0) = p∗∗(0). We’ll nonetheless eventually uncover some facts of considerable
power about nonconvex duality and how it can be put to use.

An important step along the way is the study of general ‘Lagrangian func-
tions’. That has other motivations as well, most notably in the expression
of optimality conditions and the development of methods for computing opti-
mal solutions. Although tradition merely associates Lagrangian functions with
constraint systems, their role can go far beyond just that.

The key idea is that a Lagrangian arises through partial dualization of a
given problem in relation to a particular choice of perturbation parameters.
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11.45 Definition (Lagrangians and dualizing parameterizations). For a problem
of minimizing ϕ on IRn, a dualizing parameterization is a representation ϕ =
f( · , 0) in terms of a proper function f : IRn× IRm → IR such that f(x, u) is lsc
convex in u. The associated Lagrangian l : IRn × IRm → IR is given by

l(x, y) := infu

{

f(x, u)− 〈y, u〉
}

. 11(16)

This definition has its roots in the Legendre-Fenchel transform: for each
x ∈ IRn the function −l(x, ·) is conjugate to f(x, ·) on IRm. The conditions
on f have the purpose of ensuring that f(x, ·) is in turn conjugate to −l(x, ·):

f(x, u) = supy

{

l(x, y) + 〈y, u〉
}

. 11(17)

Indeed, they require f(x, ·) to be proper, lsc and convex, unless f(x, ·) ≡ ∞;
either way, f(x, ·) then coincides with its biconjugate by 11.1 and 11.2.

The convexity of f(x, u) in u is a vastly weaker requirement than con-
vexity in (x, u), although it’s certainly implied by the latter. The parametric
representations in 11.39, 11.41, and 11.42 are dualizing parameterizations in
particular. Before going any further with those cases, however, let’s look at
how Definition 11.45 captures the notion of a Lagrangian function as a vehicle
for conditions about Lagrange multipliers. It does so with such generality that
the multipliers aren’t merely associated with constraints but equally well with
penalties and other features of composite modeling structure in optimization.

11.46 Example (multiplier rule in Lagrangian form). Consider the problem

minimize f0(x) + θ
(

f1(x), . . . , fm(x)
)

over x ∈ X

for a nonempty, closed set X ⊂ IRn, smooth functions fi : IRn → IR, and a
proper, lsc, convex function θ : IRm → IR. Taking F (x) =

(

f1(x), . . . , fm(x)
)

,
identify this with the problem of minimizing ϕ(x) = f(x, 0) over x ∈ IRn for

f(x, u) = δX(x) + f0(x) + θ
(

F (x) + u
)

.

This furnishes a dualizing parameterization for which the Lagrangian is

l(x, y) = δX(x) + f0(x) +
〈

y, F (x)
〉

− θ∗(y)

(with ∞ − ∞ = ∞ on the right). The optimality condition in the extended
multiplier rule of 10.8, namely,

−
[

∇f0(x̄) +∇F (x̄)∗ȳ
]

∈ NX(x̄) for some ȳ ∈ ∂θ
(

F (x̄)
)

,

can then be written equivalently in the Lagrangian form

0 ∈ ∂xl(x̄, ȳ), 0 ∈ ∂y[−l](x̄, ȳ).

As a particular case, when θ = θY,B for a closed, convex set Y ⊂ IRm and a
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symmetric, positive-semidefinite matrix B ∈ IRm×m as in 11.18, possibly with
B = 0 , the Lagrangian specializes to

l(x, y) = δX(x) + L(x, y)− δY (y)

for L(x, y) = f0(x) +
〈

y, F (x)
〉

− 1
2

〈

y, By
〉

,

and then the Lagrangian form of the multiplier rule specializes to

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

The case of θ = δK for a closed, convex cone corresponds to B = 0 and Y = K∗.

Detail. It’s elementary that Definition 11.45 yields the expression claimed for
l(x, y). (The convention about infinities reconciles what happens when both
x /∈ X and y /∈ dom θ∗; we have f(x, ·) ≡ ∞ when x /∈ X , so the conjugate
function −l(x, ·) is then correctly the constant function −∞, i.e., we have
l(x, ·) ≡ ∞.) Subgradient inversion through 11.3 turns the multiplier rule into
the condition on subgradients of l.

When θ = θY,B as in 11.18, we have θ = (δY + jB)
∗ for jB(y) :=

1
2 〈y, By〉,

hence θ∗ = δY + jB by 11.1. The subgradient condition calculates out then to
the one stated in terms of ∇xL(x̄, ȳ) and ∇yL(x̄, ȳ); cf. 8.8(c).

The possibility of expressing conditions for optimality in Lagrangian form
is useful for many purposes, such as the design of numerical methods. The
Lagrangian brings out properties of the problem that otherwise might be ob-
scured. This is seen in Example 11.46 when θ is a function of type θY,B, which
may lack continuous derivatives through the incorporation of various penalty
terms. From some perspectives, such nonsmoothness could be a handicap in
contemplating how to minimize f0(x) + θ

(

F (x)
)

directly. But in working with
the Lagrangian L(x, y), one has a finite, smooth function on a relatively simple
product set X × Y , and that may be more approachable.

Problems of extended linear-quadratic programming fit Example 11.46
with f0(x) = 〈c, x〉 + 1

2 〈x, Cx〉, F (x) = b − Ax and θ = θY,B. Their La-
grangians can also be viewed as specializing the ones associated with problems
in the Fenchel scheme.

11.47 Example (Lagrangians in the Fenchel scheme). In the problem formula-
tion of 11.41, the Lagrangian function is given by

l(x, y) = 〈c, x〉+ k(x) + 〈b, y〉 − h∗(y)− 〈y, Ax〉

(with ∞−∞ = ∞ on the right). The optimality conditions at the end of 11.41
can be written equivalently in the Lagrangian form

0 ∈ ∂xl(x̄, ȳ), 0 ∈ ∂y[−l](x̄, ȳ).

For the special case of extended linear-quadratic programming described in
11.43, the Lagrangian reduces to
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l(x, y) = δX(x) + L(x, y)− δY (y)

for L(x, y) = 〈c, x〉+ 1
2〈x, Cx〉+ 〈b, y〉 − 1

2〈y, By〉 − 〈y, Ax〉,

and the optimality condition translates then to

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ),

or in other words,

−c− Cx̄+ A∗ȳ ∈ NX(x̄), b− Ax̄−Bȳ ∈ NY (ȳ).

Detail. The Lagrangian can be calculated right from Definition 11.45. The
convention about ∞−∞ comes in because the formula makes l(x, y) have the
value ∞ when k(x) = ∞, even if h∗(y) = ∞. The Lagrangian form of the
optimality condition merely restates the conditions at the end of 11.41 in an
alternative manner.

Here l(x, y) is convex in x and concave in y. This is characteristic of the
convex duality framework in general.

11.48 Proposition (convexity properties of Lagrangians). For any dualizing pa-
rameterization ϕ = f( · , 0), the associated Lagrangian l(x, y) is usc concave in
y. It is convex in x besides if and only if f(x, u) is convex in (x, u) rather than
just with respect to u. In that case, one has

(v, y) ∈ ∂f(x, u) ⇐⇒ v ∈ ∂xl(x, y), u ∈ ∂y[−l](x, y),

the value l(x, y) in these circumstances being finite and equal to f(x, u)−〈y, u〉.

Proof. The fact that l(x, y) is usc concave in y is obvious from −l(x, ·) being
conjugate to f(x, ·). If f(x, u) is convex in (x, u), so too for any y ∈ IRm

is the function fy(x, u) := f(x, u) − 〈y, u〉, and then infu fy(x, u) is convex
because the inf-projection of any convex function is convex; cf. 2.22. But
infu fy(x, u) = l(x, y) by definition. Thus, the convexity of f(x, u) in (x, u)
implies the convexity of l(x, y) in x.

Conversely, if l(x, y) is convex in x, the function ly(x, u) := l(x, y)+ 〈y, u〉
is convex in (x, u). But according to 11(17), f is the pointwise supremum of the
collection of functions ly as y ranges over IRm. Since the pointwise supremum of
a collection of convex functions is convex, we conclude that in this case f(x, u)
is convex in (x, u).

To check the equivalence in subgradient relations for particular x0, u0, v0
and y0, observe from 11.3 and the conjugacy between f(x0, ·) and −l(x0, ·)
that the conditions y0 ∈ ∂uf(x0, u0) and u0 ∈ ∂y[−l](x0, y0) are equivalent to
each other and to having l(x0, y0) = f(x0, u0) − 〈y0, u0〉 (finite). When f is
convex, we can appeal to 8.12 to write the full condition (v0, y0) ∈ ∂f(x0, u0)
as the inequality

f(x, u) ≥ f(x0, u0) + 〈v0, x− x0〉+ 〈y0, u− u0〉 for all x, u,
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cf. 8.12. From the case of x = x0 we see that this entails y0 ∈ ∂uf(x0, u0) and
therefore is equivalent to having u0 ∈ ∂y[−l](x0, y0) along with

infu
{

f(x, u)− 〈y0, u〉
}

≥ f(x0, u0)− 〈y0, u0〉+ 〈v0, x− x0〉 for all x.

But the latter translates to l(x, y0) ≥ l(x0, y0) + 〈v0, x − x0〉 for all x, which
by 8.12 and the convexity of l(x, y0) in x means that v0 ∈ ∂xl(x0, y0). Thus,
(v0, y0) ∈ ∂f(x0, u0) if and only if v0 ∈ ∂xl(x0, y0) and u0 ∈ ∂y[−l](x0, y0).

Whenever l(x, y) is convex in x as well as concave in y, the Lagrangian
condition in 11.46 and 11.47 can be interpreted through the following concept.

11.49 Definition (saddle points). A vector pair (x̄, ȳ) is said to be a saddle

point of the function l on IRn × IRm (in the minimax sense, and under the
convention of minimizing in the first argument and maximizing in the second)
if infx l(x, ȳ) = l(x̄, ȳ) = supy l(x̄, y), or in other words

l(x, ȳ) ≥ l(x̄, ȳ) ≥ l(x̄, y) for all x and y. 11(18)

The set of all such saddle points (x̄, ȳ) is denoted by argminimax l, or in more
detail by argminimaxx,y l(x, y).

Likewise in the case of a function L on a product set X × Y , a pair (x̄, ȳ)
is said to be a saddle point of L with respect to X × Y if

{

x̄ ∈ X, ȳ ∈ Y, and

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X, y ∈ Y.
11(19)

The notation for the saddle point set is then

argminimax
X,Y

L, or argminimax
x∈X, y∈Y

L(x, y).

11.50 Theorem (minimax relations). Let l : IRn×IRm → IR be the Lagrangian
for a problem of minimizing ϕ on IRn with dualizing parameterization ϕ =
f( · , 0), f : IRn × IRm → IR. Let ψ = −f∗(0, ·) on IRm. Then

ϕ(x) = supy l(x, y), ψ(y) = infx l(x, y), 11(20)

infx ϕ(x) = infx
[

supy l(x, y)
]

≥ supy
[

infx l(x, y)
]

= supy ψ(y), 11(21)

and furthermore

x̄ ∈ argminx ϕ(x)

ȳ ∈ argmaxy ψ(y)

infx ϕ(x) = supy ψ(y)















⇐⇒ (x̄, ȳ) ∈ argminimaxx,y l(x, y)

⇐⇒ ϕ(x̄) = ψ(ȳ) = l(x̄, ȳ).

11(22)

The saddle point condition (x̄, ȳ) ∈ argminimaxx,y l(x, y) always entails the
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subgradient condition

0 ∈ ∂xl(x̄, ȳ), 0 ∈ ∂y[−l](x̄, ȳ), 11(23)

and is equivalent to it whenever l(x, y) is convex in x and concave in y, in which
case it is also the same as having (0, ȳ) ∈ ∂f(x̄, 0).

Proof. The expression for ϕ in 11(20) comes from 11(17) with u = 0, while
the one for ψ is based on the observation that the formula

−f∗(v, y) = infx,u
{

f(x, u)− 〈v, x〉 − 〈y, u〉
}

can be rewritten through 11(16) as

−f∗(v, y) = infx
{

l(x, y)− 〈v, x〉
}

. 11(24)

From 11(20) we immediately get 11(21), since inf ϕ = p(0) and supψ = p∗∗(0)
for p(u) := infx f(x, u); cf. 11.38 with u = 0. We then have 11(22), whose
right side is now seen to be just another way of writing ϕ(x̄) = ψ(ȳ). The final
assertion about subgradients dualizes 11(23) through the relation in 11.48.

An interesting consequence of Theorem 11.50 is the fact that the set of
saddle points is always a product set:

argminimax l =

{

(argminϕ)× (argmaxψ) if inf ϕ = supψ,
∅ if inf ϕ > supψ.

11(25)

Moreover, l is constant on argminimax l. This constant is called the saddle

value of l and is denoted by minimax l.

The crucial question of whether inf ϕ = supψ in our Lagrangian setting
is that of whether p(0) = p∗∗(0) for p(u) := infx f(x, u), as we know already
from 11.38. We’ll return to this presently.

11.51 Corollary (saddle point conditions for convex problems). Consider a
problem of minimizing ϕ(x) over x ∈ IRn in the convex duality framework
of 11.39, and let l(x, y) be the corresponding Lagrangian. Suppose 0 ∈ intU ,
or merely that 0 ∈ U but f is piecewise linear-quadratic.

Then for x̄ to be an optimal solution it is necessary and sufficient that
there exist a vector ȳ such that (x̄, ȳ) is a saddle point of the Lagrangian l on
IRn × IRm. Furthermore, ȳ appears in this role with x̄ if and only if ȳ is an
optimal solution to the dual problem of maximizing ψ(y) over y ∈ IRm.

Proof. From 0 ∈ intU we have inf ϕ = supψ < ∞ by 11.39(a) along with
the further fact in 11.39(b) that argmaxψ contains a vector ȳ if inf ϕ > −∞.
When x̄ ∈ argminϕ, ϕ(x̄) is finite (by the definition of ‘argmin’). The claims
follow then from the equivalences at the end of Theorem 11.50; cf. the preceding
discussion. The piecewise linear-quadratic case substitutes the stronger results
in 11.42 for those in 11.39.
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For instance, saddle points of the Lagrangian in 11.46 characterize optimal-
ity in the Fenchel scheme in 11.41 when b ∈ int

(

A dom k+domh
)

. When k and
h are piecewise linear-quadratic, the sharper form of 11.51 is applicable—no
constraint qualification is needed.

J∗. Minimax Problems

Problems of minimizing ϕ and maximizing ψ, in which ϕ and ψ are derived from
some function l on IRn×IRm by the formulas in 11(18), are well known in game
theory. It’s interesting to see that the circumstances in which such problems
also form a primal-dual pair arising out of a dualizing parameterization are
completely described by the foregoing. All we need to know is that l(x, y) is
concave and usc in y, and that for each x either l(x, ·) < ∞ or l(x, ·) ≡ ∞.
These conditions ensure that in defining f by 11(17) we get ϕ = f( · , 0) for a
dualizing parameterization such that the associated Lagrangian is l.

11.52 Example (minimax problems). Consider nonempty, closed, convex sets
X ⊂ IRn, Y ⊂ IRm, and a continuous function L : X × Y → IR with L(x, y)
convex in x ∈ X for y ∈ Y and concave in y ∈ Y for x ∈ X . Let

l(x, y) =







L(x, y) for x ∈ X , y ∈ Y ,
−∞ for x ∈ X , y /∈ Y ,
∞ for x /∈ X ,

ϕ(x) =

{

supy∈Y L(x, y) for x ∈ X ,

∞ for x /∈ X ,

ψ(x) =

{

infx∈X L(x, y) for y ∈ Y ,
−∞ for y /∈ Y .

The saddle point set argminimaxX,Y L, which is closed and convex, coincides
then with argminimax l and has the product structure in 11(25); on this set,
L is constant, the saddle value minimaxX,Y L being minimax l.

Indeed, l is the Lagrangian for the problem of minimizing ϕ over IRn under
the dualizing parameterization furnished by

f(x, u) =

{

supy∈Y

{

L(x, y) + 〈y, u〉
}

for x ∈ X ,
∞ for x /∈ X .

.

The function f is lsc, proper, and convex with

−f∗(v, y) =

{

infx∈X

{

L(x, y)− 〈v, x〉
}

for y ∈ Y ,
−∞ for y /∈ Y ,

.

so the corresponding dual problem is that of maximizing ψ over IRm.

If L is smooth on an open set that includes X × Y , argminimaxX,Y L
consists of the pairs (x̄, ȳ) ∈ X × Y satisfying
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−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

The equivalent conditions in 11.40 are necessary and sufficient for this saddle
point set to be nonempty and bounded. In particular, the saddle point set is
nonempty and bounded when X and Y are bounded.

Detail. Obviously f(x, 0) = ϕ(x). For x ∈ X , the function −l(x, ·) is lsc,
proper and convex with conjugate f(x, ·), while for x /∈ X it is the constant
function −∞, whereas f(x, ·) is the constant function ∞. Hence −l(x, ·) is the
conjugate of f(x, ·) for all x ∈ IRn. Thus, f furnishes a dualizing parameteri-
zation for the problem of minimizing ϕ on IRn, and the associated Lagrangian
is l. We have l(x, y) convex in x and concave in y, so f is convex by 11.48.
The continuity of L on X × Y ensures that −l(x, ·) depends epi-continuously
on x ∈ X , and the same then holds for f(x, ·) by Theorem 11.34. It follows
that f is lsc on IRn × IRm. The rest is clear then from 11.50. When X and Y
are bounded, the sets U and V in 11.40 are all of IRn and IRm.

A powerful rule about the behavior of optimal values in parameterized
problems of convex type comes out of this principle.

11.53 Theorem (perturbation of saddle values; Golshtein). Consider nonempty,
closed, convex sets X ⊂ IRn and Y ⊂ IRm, and an interval [0, T ] ⊂ IR. Let
L : [0, T ] × X × Y → IR be continuous, with L(t, x, y) convex in x ∈ X and
concave in y ∈ Y , and suppose that the saddle point set

X0 × Y0 = argminimax
x∈X, y∈Y

L(0, x, y)

is nonempty and bounded. Then, relative to t in an interval [0, ε] for some
ε > 0, the saddle point set argminimaxX,Y L(t, ·, ·) is nonempty and bounded,
the mapping t �→ argminimaxX,Y L(t, ·, ·) is osc and locally bounded at t = 0,
and the saddle value

λ(t) := minimax
x∈X, y∈Y

L(t, x, y)

converges to λ(0) as t ց 0. If in addition the limit

L′
+
(0, x, y) := lim

t ց 0
x′ →

X x

y′→
Y y

L(t, x′, y′)− L(0, x′, y′)

t
11(26)

exists for all (x, y) ∈ X0 × Y0, then the value L′
+
(0, x, y) is continuous relative

to (x, y) ∈ X0 × Y0, convex in x ∈ X0 for each y ∈ Y0, and concave in y ∈ Y0

for each x ∈ X0. Indeed, the right derivative λ′
+
(0) exists and is given by

λ′
+
(0) = minimax

x∈X0, y∈Y0

L′
+
(0, x, y).

Proof. We put ourselves in the picture of Example 11.52 and its detail, but
with everything depending additionally on t ∈ [0, T ], in particular f(t, x, u).
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In extension of the earlier argument, the mapping (t, x) �→ f(t, x, ·) is epi-
continuous relative to [0, T ] × X . From this it follows that the mapping
t �→ f(t, ·, ·) is epi-continuous as well. The convex functions p(t, ·) defined
by p(t, u) = infx f(t, x, u) and the convex sets U(t) = dom p(t, ·) then have

p(0, ·) = e-lim
t ց 0

p(t, ·), U(0) ⊂ lim inf
t ց 0

U(t),

by 7.57 and 7.4(h). Similarly, in using f∗(t, ·, ·) to denote the convex func-
tion conjugate to f(t, ·, ·), we have the epi-continuity of t �→ f∗(t, ·, ·) by
Theorem 11.34 and thus, for the convex functions q(t, ·) defined by q(t, v) =
infy f

∗(t, v, y) and the convex sets V (t) = dom q(t, ·) that

q(0, ·) = e-lim
t ց 0

q(t, ·), V (0) ⊂ lim inf
t ց 0

V (t).

Our assumption that argminimaxX,Y L(0, ·, ·) is nonempty and bounded corre-
sponds by 11.40 to having 0 ∈ intU(0) and 0 ∈ intV (0). The inner limit inclu-
sions for these sets imply then by 4.15 that also 0 ∈ intU(t) and 0 ∈ intV (t)
for all t in some interval [0, ε]. Hence by 11.40 we have argminimaxL(t, ·, ·)
nonempty and bounded for t in this interval. We know further from Theorem
11.39, via 11.50 and 11.52, that

argminimaxX,Y L(t, ·, ·) = ∂up(t, 0)× ∂vq(t, 0) for t ∈ [0, ε].

The epi-convergence of p(t, ·) to p(0, ·) guarantees by the convexity of these
functions that, as t ց 0, uniform convergence on a neighborhood of u = 0;
cf. 7.17. Likewise, q(t, ·) converges uniformly to q(0, ·) around v = 0. The
subgradient bounds in 9.14 imply that the mapping

t �→ ∂up(t, 0)× ∂vq(t, 0) on [0, ε]

is osc and locally bounded at t = 0. And thus, the constant value λ(t) that
L(t, ·, ·) has on ∂up(t, 0)×∂vq(t, 0) must converge as t ց 0 to the constant value
λ(0) that L(0, ·, ·) has on ∂up(0, 0)× ∂vq(0, 0).

The fact that the limit in 11(26) is taken over x′→
X0

x and y′→Y0
y guaran-

tees that L′
+
(0, x, y) is continuous relative to (x, y) ∈ X0 × Y0. The convexity-

concavity of L′
+
(0, ·, ·) on X0 × Y0 follows immediately from that of L(t, ·, ·)

and the constancy of L(0, ·, ·) on X0 × Y0. Because the sets X0 and Y0 are
closed and bounded, we know then from 11.52 that the saddle point set for
L′

+
(0, ·, ·) on X0 × Y0 is nonempty. Let µ = minimaxX0,Y0

L′
+
(0, ·, ·). We have

to demonstrate that

lim
t ց 0

1

t

(

λ(t)− λ(0)
)

= µ.

Henceforth we can suppose for simplicity that ε = T and write the set
argminimaxX,Y L(t, ·, ·) as Xt × Yt; the mappings t �→ Xt and t �→ Yt are
nonempty-valued, and they are osc and locally bounded at t = 0. Consider any
(x̄, ȳ) ∈ X0 × Y0 and, for t ∈ (0, T ], pairs (x̄t, ȳt) ∈ Xt × Yt. As t ց 0, (x̄t, ȳt)



J∗. Minimax Problems 517

stays bounded, and any cluster point (x0, y0) belongs to X0 × Y0. The saddle
point conditions imply that

L(0, x̄t, ȳ) ≥ L(0, x̄, ȳ) ≥ L(0, x̄, ȳt), L(0, x̄, ȳ) = λ(0),

L(t, x̄, ȳt) ≥ L(t, x̄t, ȳt) ≥ L(t, x̄t, ȳ), L(t, x̄t, ȳt) = λ(t).

Using these relations, we consider any sequence tν ց 0 such that ȳtν converges
to some y0 and estimate that

lim sup
ν→∞

λ(tν)− λ(0)

tν
= lim sup

ν→∞

L(tν , x̄tν , ȳtν )− L(0, x̄, ȳ)

tν

≤ lim sup
ν→∞

L(tν , x̄, ȳtν )− L(0, x̄, ȳtν )

tν

= L′
+
(0, x̄, y0) ≤ sup

y∈Y0

L′
+
(0, x̄, y).

Since x̄ was an arbitrary point of X0, this yields the bound

lim sup
t ց 0

λ(t)− λ(0)

t
≤ inf

x∈X0

[

sup
y∈Y0

L′
+
(0, x, y)

]

= µ.

A parallel argument with the roles of x and y switched shows also that

lim inf
t ց 0

λ(t)− λ(0)

t
≥ sup

y∈Y0

[

inf
x∈X0

L′
+
(0, x, y)

]

= µ.

Thus, [λ(t)− λ(0)]/t does tend to µ as t ց 0.

11.54 Example (perturbations in extended linear-quadratic programming). In
the format and assumptions of 11.43, but with dependence additionally on a
parameter t, consider for each t ∈ [0, T ] the primal and dual problems

minimize
〈

c(t), x
〉

+
1
2

〈

x, C(t)x
〉

+ θY,B(t)

(

b(t)−A(t)x
)

over x ∈ X,

maximize
〈

b(t), y
〉

− 1
2

〈

y, B(t)y
〉

− θX,C(t)

(

A(t)∗y − c(t)
)

over y ∈ Y,

denoting their optimal solution sets by Xt and Yt. Suppose that X0 and Y0 are
nonempty and bounded.

If c(t), C(t), b(t), B(t), and A(t) depend continuously on t, there exists
ε > 0 such that, relative to t ∈ [0, ε], the mappings t �→ Xt and t �→ Yt are
nonempty-valued and, at t = 0, are osc and locally bounded. Then too, the
common optimal value in the two problems, denoted by λ(t), behaves contin-
uously at t = 0. If in addition the right derivatives

c0 := c′
+
(0), C0 := C′

+
(0), b0 := b′

+
(0), B0 := B′

+
(0), A0 := A′

+
(0),

exist, then the right derivative λ′
+
(0) exists and is the common optimal value

in the problems
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minimize 〈c0, x〉+
1
2 〈x, C0x〉+ θY0,B0

(b0 − A0x) over x ∈ X0,

maximize 〈b0, y〉 −
1
2 〈y, B0y〉 − θX0,C0

(A∗
0y − c0) over y ∈ Y0.

Detail. This specializes Theorem 11.53 to the Lagrangian setup for extended
linear-quadratic programming in 11.47.

Note that the matrices B0 and C0 in Example 11.54, although symmetric,
might not be positive definite, so the subproblem giving the rate of change of
the optimal value might not be one of extended linear-quadratic programming
strictly as described in 11.43. But it’s clear from the convexity-concavity of
L′

+
(0, ·, ·) in Theorem 11.55 that the expression

1
2 〈x, C0x〉 is convex with respect

to x ∈ X0, while
1
2〈y, B0y〉 is convex with respect to y ∈ Y0. The primal and

dual subproblems for λ′
+
(0) are thus of convex type nonetheless. (The notion of

piecewise linear-quadratic programming can readily be refined in this direction.
The special features of duality in Theorem 11.42 persist, and in 11.18 all that
changes is the description of the effective domains of the θ functions.)

K∗. Augmented Lagrangians and Nonconvex Duality

The question of the extent to which the duality relation inf ϕ = supψ might
hold for problems of nonconvex type, beyond the framework in 11.39, has its
answer in a closer examination of the relationships in 11.38. The general situ-
ation is shown in Figure 11–6, where the notation is still that of ϕ = f( · , 0),
ψ = −f∗(0, ·), and p(u) = infx f(x, u). By the definition of p∗∗, the value
supψ = p∗∗(0) is the supremum of the intercepts on the vertical axis that are
achievable by affine functions majorized by p; the vectors ȳ ∈ argmaxψ, if any,
correspond to the affine functions that are ‘highest’ in this sense.

p

0 u

inf ϕ

sup ψ

p(0) + <y, >.
_

�

Fig. 11–6. Duality gap in minimization problems lacking adequate convexity.

A duality gap inf ϕ > supψ arises precisely when the intercepts are pre-
vented from getting as high as the value inf ϕ = p(0). A lack of convexity can
evidently be the source of such a shortfall. (Of course, a duality gap can also



K∗. Augmented Lagrangians and Nonconvex Duality 519

occur even when p is convex if p fails to be lsc at 0 or if p takes on −∞ but
0 �∈ cl(dom p); cf. 11.2.) In particular, it’s clear that

inf ϕ = supψ

ȳ ∈ argmaxψ

}

⇐⇒

{

p(u) ≥ p(0) + 〈ȳ, u〉 for all u,

with p(0) �= −∞.
11(27)

This picture suggests that a duality gap might be avoided if the dual
problem could be set up to correspond not to pushing affine functions up
against epi p, but some other class of functions capable of penetrating possible
‘dents’. This turns out to be attainable with only a little extra effort.

11.55 Definition (augmented Lagrangian functions). For a primal problem of
minimizing ϕ(x) over x ∈ IRn and any dualizing parameterization ϕ = f( · , 0)
for a choice of f : IRn×IRm → IR, consider any augmenting function σ; by this
is meant a proper, lsc, convex function

σ : IRm → IR with minσ = 0, argminσ = {0}.

The corresponding augmented Lagrangian with penalty parameter r > 0 is then
the function l : IRn × IRm × (0,∞) → IR defined by

l (x, y, r) := infu

{

f(x, u) + rσ(u)− 〈y, u〉
}

.

The corresponding augmented dual problem consists of maximizing over all
(y, r) ∈ IRm × (0,∞) the function

ψ(y, r) := infx,u

{

f(x, u) + rσ(u)− 〈y, u〉
}

.

p

0 u

σ.p(0)+<y, > _ r

Fig. 11–7. Duality gap removed by an augmenting function.

The notion of the augmented Lagrangian grows from the idea of replacing
the inequality in 11(27) by one of the form

p(u) ≥ p(0) + 〈ȳ, u〉 − rσ(u) for all u
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for some augmenting function σ (as just defined) and a parameter value r > 0
sufficiently high, as in Figure 11–7. What makes the approach successful in
modifying the dual problem to get rid of the duality gap is that this inequality
is identical to

prσ(u) ≥ prσ(0) + 〈ȳ, u〉 for all u

where prσ(u) := infx frσ(x, u) for the function frσ(x, u) := f(x, u) + rσ(u).
Indeed, prσ(u) = p(u) + rσ(u) and prσ(0) = p(0), because σ(0) = 0.

We have ϕ = frσ( · , 0) as well as ϕ = f( · , 0). Moreover because σ is
proper, lsc and convex, the representation of ϕ in terms of frσ, like that in
terms of f , is a dualizing parameterization. The Lagrangian associated with
frσ is lrσ(x, y) = l (x, y, r), as seen from the definition of l (x, y, r) above. The
resulting dual problem, which consists of maximizing ψrσ = −f∗

rσ(0, ·) over
y ∈ IRm, has ψrσ(y) = ψ(y, r). We can apply the theory already developed to
this modified setting, where frσ replaces f , and capture powerful new features.

Before translating this argument into a theorem about duality, we record
some general consequences of Definition 11.55 for background, and we look at
a couple of examples.

11.56 Exercise (properties of augmented Lagrangians). For any dualizing pa-
rameterization f and augmenting function σ, the augmented Lagrangian
l (x, y, r) is concave and usc in (y, r) and nondecreasing in r. It is convex in x
if f(x, u) is actually convex in (x, u). If σ is finite everywhere, the augmented
Lagrangian is given in terms of the ordinary Lagrangian l(x, y) by

l (x, y, r) = supz

{

l(x, y − z)− rσ∗(r−1z)
}

. 11(28)

Likewise, the augmented dual expression ψ(y, r) is concave and usc in (y, r)
and nondecreasing in r. In the case of f(x, u) convex in (x, u) and σ finite
everywhere, it is given in terms of the ordinary dual expression ψ(y) by

ψ(y, r) = supz

{

ψ(y − z)− rσ∗(r−1z)
}

. 11(29)

Then in fact, (ȳ, r̄) maximizes ψ if and only if ȳ maximizes ψ; the value of
r̄ > 0 can be chosen arbitrarily.

Guide. Derive the properties of l straight from the formula in 11.55, using
2.22(a) for the convexity in x. Develop 11(28) out of the fact that −l (x, · , r)
is conjugate to f(x, ·) + rσ, taking note of 11.23(a). Handle ψ similarly. The
final assertion about maximizing pairs (ȳ, r̄) falls out of 11(29).

The monotonicity of l (x, y, r) and ψ(y, r) in r is consistent with r being a
penalty parameter, an interpretation that will become clearer as we proceed. It
lends special character to the augmented dual problem. In maximizing ψ(y, r)
in y and r, the requirement that r > 0 doesn’t act like a real constraint. There’s
no danger of having to move toward r = 0 to get higher values of ψ(y, r).

The fact at the end of 11.56, that, in the convex case, solutions to the
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augmented dual problem correspond simply to solutions to the ordinary dual
problem, is reassuring. Augmentation doesn’t destroy duality that may exist
without it. This doesn’t mean, though, that augmented Lagrangians have
nothing to offer in the convex duality framework. Quite to the contrary, some
of the main features of augmentation, for instance in achieving ‘exact penalty
representations’ (as described below in 11.60), are most easily accessed in that
special framework.

11.57 Example (proximal Lagrangians). An augmented Lagrangian generated
with the augmenting function σ(u) = 1

2 |u|
2 is a proximal Lagrangian. Then

l (x, y, r) = infu

{

f(x, u) +
r

2
|u|2 − 〈y, u〉

}

= supz

{

l(x, y − z)−
1

2r
|z|2

}

= supz

{

l(x, z)−
1

2r
|z − y|2

}

.

As an illustration, consider the case of Example 11.46 in which θ = δD for a
closed, convex, set D �= ∅. This calculates out to

l (x, y, r) = f0(x) +
r

2

[

dD
(

r−1y + F (x)
)2

− |r−1y|2
]

,

which for y = 0 gives the standard quadratic penalty function for the constraint
F (x) ∈ D. When D = {0}, one gets

l (x, y, r) = f0(x) +
〈

y, F (x)
〉

+
r

2

∣

∣F (x)
∣

∣

2
.

Detail. These specializations are obtained from the first of the formulas for
l (x, y, r) in writing (r/2)|u|2 − 〈y, u〉 as (r/2)

(

|u− r−1y|2 − |r−1y|2
)

.

11.58 Example (sharp Lagrangians). An augmented Lagrangian generated with
augmenting function σ(u) = ‖u‖ (any norm ‖ · ‖) is a sharp Lagrangian. Then

l (x, y, r) = infu

{

f(x, u) + r‖u‖ − 〈y, u〉
}

= supz

{

l(x, y − z)− δrB◦(z)
}

= sup
‖z−y‖◦≤r

l(x, z),

where ‖ · ‖◦ is the polar norm and B◦ its unit ball. For Example 11.46 in the
case of θ = δD for a closed, convex set D, one gets

l (x, y, r) = f0(x) + sup
‖z−y‖◦≤r

{

〈

z, F (x)
〉

− σD(z)
}

,

which can be calculated out completely for instance when D is a box and
‖ · ‖ = ‖ · ‖1, so that ‖ · ‖◦ = ‖ · ‖∞. Anyway, for y = 0 one has the standard
linear penalty representation of the constraint F (x) ∈ D:

l (x, 0, r) = f0(x) + rdD
(

F (x)
)

(distance in ‖ · ‖).

For general y but D = {0} one obtains
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l (x, y, r) = f0(x) +
〈

y, F (x)
〉

+ r‖F (x)‖.

Outfitted with these background facts and examples, we return now to the
derivation of a duality theory in terms of augmented Lagrangians that is able
even to cover certain nonconvex problems.

11.59 Theorem (duality without convexity). For a problem of minimizing ϕ on
IRn, consider the augmented Lagrangian l (x, y, r) associated with a dualizing
parameterization ϕ = f( · , 0), f : IRn × IRm → IR, and some augmenting func-
tion σ : IRm → IR. Suppose that f(x, u) is level-bounded in x locally uniformly
in u, and let p(u) := infx f(x, u). Suppose further that infx l (x, y, r) > −∞
for at least one (y, r) ∈ IRm × (0,∞). Then

ϕ(x) = supy,r l (x, y, r), ψ(y, r) = infx l (x, y, r),

where actually ϕ(x) = supy l (x, y, r) for every r > 0, and in fact

infx ϕ(x) = infx
[

supy,r l (x, y, r)
]

= supy,r
[

infx l (x, y, r)
]

= supy,r ψ(y, r).
11(30)

Moreover, optimal solutions to the primal and augmented dual problems are
characterized as saddle points of the augmented Lagrangian:

x̄ ∈ argminx ϕ(x) and (ȳ, r̄) ∈ argmaxy,r ψ(y, r)

⇐⇒ infx l (x, ȳ, r̄) = l (x̄, ȳ, r̄) = supy,r l (x̄, y, r),
11(31)

the elements of argmaxy,r ψ(y, r) being the pairs (ȳ, r̄) with the property that

p(u) ≥ p(0) + 〈ȳ, u〉 − r̄ σ(u) for all u. 11(32)

Proof. Most of this is evident from the monotonicity with respect to r in
11.56 and the explanation after Definition 11.55 of how 11(27) and Theorem
11.50 can be applied. The crucial new fact needing justification is the equality
in the middle of 11(30), in place of merely the automatic ‘≥’.

By hypothesis there’s at least one pair (ỹ, r̃) such that ψ(ỹ, r̃) is finite. To
get the equality in question, it will suffice to demonstrate that ψ(ỹ, r) → p(0)
as r → ∞, since p(0) = infx ϕ(x). We can utilize along the way the fact that
p is proper and lsc by virtue of the level boundedness assumption placed on f
(cf. 1.17). From the definition of ψ in 11.55 we have for all r > 0 that

ψ(ỹ, r) = infu
{

p(u) + rσ(u)− 〈ỹ, u〉
}

.

Let p̃(u) := p(u)+r̃σ(u)−〈ỹ, u〉, noting that p̃(0) = p(0) because σ(0) = 0. This
function is bounded below by ψ(ỹ, r̃), and like p it is proper and lsc because σ
is proper and lsc. We can write

ψ(ỹ, r̃ + s) = infu
{

p̃(u) + sσ(u)
}

for s > 0
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and concentrate on proving that the limit of this as s → ∞ is p̃(0). Because
σ is convex with argminσ = {0}, it’s level-coercive (by 3.27), and so too then
is p̃ + sσ, due to p̃ being bounded below. The positivity of σ away from 0
guarantees that p̃+ sσ increases pointwise as s → ∞ to the function δ{0} + γ
for the constant γ = p̃(0). In particular then p̃ + sσ epi-converges to δ{0} + γ
in the setting of Theorem 7.33 (see also 7.4(f)), and we are able to conclude
that inf(p̃+ sσ) → inf(δ{0} + γ) = γ. This was what we needed.

The importance of the solutions to the augmented dual problem is found
in the following idea.

11.60 Definition (exact penalty representations). In the augmented Lagrangian
framework of 11.55, a vector ȳ is said to support an exact penalty representation

for the problem of minimizing ϕ on IRn if, for all r > 0 sufficiently large, this
problem is equivalent to minimizing l̄( · , ȳ, r) on IRn in the sense that

infx ϕ(x) = infx l̄(x, ȳ, r), argminx ϕ(x) = argminx l̄(x, ȳ, r).

Specifically, a value r̄ > 0 is said to serve as an adequate penalty threshold in
this respect if the property holds for all r ∈ (r̄,∞).

11.61 Theorem (criterion for exact penalty representations). In the notation
and assumptions of Theorem 11.59, a vector ȳ supports an exact penalty rep-
resentation for the primal problem if and only if there exist W ∈ N (0) and
r̂ > 0 such that

p(u) ≥ p(0) + 〈ȳ, u〉 − r̂σ(u) for all u ∈ W. 11(33)

This criterion is equivalent in turn to the existence of an r̄ > 0 with (ȳ, r̄) ∈
argmaxy,r ψ(y, r), and moreover such values r̄ are the ones serving as adequate
penalty thresholds for the exact penalty property with respect to ȳ.

Proof. As a starter, note that the assumptions of Theorem 11.59 guarantee
that p is lsc and proper and hence that the condition in 11(33), and for that
matter the one in 11(32), can’t hold unless the value p(0) = inf ϕ is finite.

First we argue that the condition (ȳ, r̄) ∈ argmaxy,r ψ(y, r) is both neces-
sary and sufficient for ȳ to support an exact penalty representation with r̄ as
an adequate penalty threshold. For the necessity, note that the latter condi-
tions imply through Definition 11.60 that ψ(ȳ, r) = inf ϕ for all r ∈ (r̄,∞) and
hence, because ψ is usc (by 11.56), that ψ(ȳ, r̄) ≥ inf ϕ. Since supψ = inf ϕ
by 11(31), it follows that (ȳ, r̄) maximizes ψ.

For the sufficiency, recall from the end of Theorem 11.59 that the condition
(ȳ, r̄) ∈ argmaxy,r ψ(y, r) corresponds to the inequality 11(32) holding. When
r̄ is replaced in 11(32) by any higher value r, this inequality becomes strict for
u �= 0, because σ(0) = 0 but σ(u) > 0 for u �= 0. Then

argminu

{

p(u) + rσ(u)− 〈ȳ, u〉
}

= {0}.
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Fixing such r > r̄, consider the function g(x, u) := f(x, u) + rσ(u) − 〈ȳ, u〉
and its associated inf-projections h(u) := infx g(x, u) and k(x) := infu g(x, u),
noting that h(u) = p(u) + rσ(u)− 〈ȳ, u〉 whereas k(x) = l (x, ȳ, r). According
to the interchange rule in 1.35, one has

ū ∈ argminu h(u)

x̄ ∈ argminx g(x, ū)

}

⇐⇒

{

x̄ ∈ argminx k(x)

ū ∈ argminu g(x̄, u)

We’ve just seen that argminu h(u) = {0}. The pairs (x̄, ū) on the left of this rule
are thus the ones with ū = 0 and x̄ ∈ argminx g(x, 0) = argminx ϕ(x). These
are then also the pairs on the right; in other words, in minimizing l (x, ȳ, r) in
x one obtains exactly the points x̄ ∈ argminx ϕ(x), and then in maximizing
for any such x̄ the expression f(x̄, u) + rσ(u) − 〈ȳ, u〉 in u one finds that the
maximum is attained uniquely at 0. In particular, the sets argminx ϕ(x) and
argminx l (x, ȳ, r) are the same.

To complete the proof of the theorem we need only show now that when
11(33) holds there must exist r̄ ∈ (r̂,∞) such that the stronger condition
11(32) holds. In assuming 11(33) there’s no loss of generality in taking W to
be a ball εIB, ε > 0. Obviously 11(33) continues to hold when r̂ is replaced by a
higher value r̄, so the question is whether, once r̄ is high enough, we will have,
in addition, the inequality in 11(32) holding for all |u| > ε. By hypothesis
(inherited from Theorem 11.59) there exists (ỹ, r̃) ∈ IRm × (0,∞) such that
ψ(ỹ, r̃) is finite; then for α := ψ(ỹ, r̃) we have

p(u) ≥ α+ 〈ỹ, u〉 − r̃σ(u) for all u.

It will suffice to show that, when r̄ is chosen high enough, one will have

α+ 〈ỹ, u〉 − r̃σ(u) > p(0) + 〈ȳ, u〉 − r̄σ(u) when |u| > ε.

This amounts to showing that for high enough values of r̄ one will have
{

u
∣

∣ (r̄ − r̃)σ(u) ≤ 〈ȳ − ỹ, u〉+ p(0)− α
}

⊂ εIB.

The issue can be simplified by working with s = r̄−r̃ > 0 and letting λ := |ȳ−ỹ|
and µ := p(0)− α. Then we only need to check that the set

C(s) :=
{

u
∣

∣ sσ(u) ≤ λ|u|+ µ
}

lies in εIB when s is chosen high enough.

We know σ is level-coercive, because argminσ = {0} (cf. 3.23, 3.27), hence
there exist γ > 0 and β such that σ(u) ≥ γ|u|+β for all u (cf. 3.26). Let s0 > 0
be high enough that s0γ−λ > 0. For u ∈ C(s0) we have s0(γ|u|+β) ≤ λ|u|+µ,
hence |u| ≤ ρ := (µ−s0β)/(s0γ−λ). But C(s) ⊂ C(s0) when s > s0, inasmuch
as σ(u) ≥ 0 for all u. Therefore

C(s) ⊂
{

u
∣

∣σ(u) ≤ (λρ+ µ)/s
}
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when s > s0. On the other hand, because σ(u) = 0 only for u = 0, the level
set

{

u
∣

∣σ(u) ≤ δ
}

must lie in εIB for small δ > 0. Taking such a δ and noting
that (λρ+ µ)/s ≤ δ when s exceeds a certain s1, we conclude that C(s) ⊂ εIB
when s > s1.

11.62 Example (exactness of linear or quadratic penalties).

(a) Consider the proximal Lagrangian of 11.57 under the assumption that
infx l(x, y, r) > −∞ for at least one choice of (y, r). Then a necessary and
sufficient condition for a vector ȳ to support an exact penalty representation is
that ȳ be a proximal subgradient of the function p(u) = infx f(x, u) at u = 0.

(b) Consider the sharp Lagrangian of 11.58 under the assumption that
infx l(x, 0, r) > −∞ for some r. Then a necessary and sufficient condition
for the vector ȳ = 0 to support an exact penalty representation is that the
function p(u) = infx f(x, u) be calm from below at u = 0.

Detail. These results specialize Theorem 11.61. Relation 11(33) corresponds
in (a) to the definition of a proximal subgradient (see 8.45), whereas in (b) it
means calmness from below (see the material around 8.32).

L∗. Generalized Conjugacy

The notion of conjugate functions can be generalized in a number of ways,
although none achieves the full power of the Legendre-Fenchel transform. Con-
sider any nonempty sets X and Y and any function Φ : X × Y → IR. (The
‘ordinary case’, corresponding to what we have been involved with until now,
has X = IRn, Y = IRn, and Φ(x, y) = 〈x, y〉.) For any function f : X → IR,
the Φ-conjugate of f on Y is the function

fΦ(y) := sup
x∈X

{

Φ(x, y)− f(x)
}

,

while the Φ-biconjugate of f back on X is the function

fΦΦ(x) := sup
y∈Y

{

Φ(x, y)− fΦ(y)
}

.

Likewise, for any function g : Y → IR, the Φ-conjugate of g on X is the function

gΦ(x) := sup
y∈Y

{

Φ(x, y)− g(y)
}

,

while the Φ-biconjugate of g back on Y is the function

gΦΦ(y) := sup
x∈X

{

Φ(x, y)− gΦ(x)
}

.

Define the Φ-envelope functions on X to be the functions expressible as the
pointwise supremum of some collection of functions of the form Φ( · , y)+constant
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for various choices of y ∈ Y , and define the Φ-envelope functions on Y analo-
gously. (In the ‘ordinary case’, the proper Φ-envelope functions are the proper,
lsc, convex functions.) Note that in circumstances where X = Y but Φ(x, y)
isn’t symmetric in the arguments x and y, two different kinds of Φ-envelope
functions might have to be distinguished on the same space.

11.63 Exercise (generalized conjugate functions). In the scheme of Φ-conjugacy,
for any function f : X → IR, fΦ is a Φ-envelope function on Y , while fΦΦ is the
greatest Φ-envelope function on X majorized by f . Similarly, for any function
g : Y → IR, gΦ is a Φ-envelope function on X , while gΦΦ is the greatest Φ-
envelope function on Y majorized by g.

Thus, Φ-conjugacy sets up a one-to-one correspondence between all the
Φ-envelope functions f on X and all the Φ-envelope functions g on Y , with

g(y) = sup
x∈X

{

Φ(x, y)− f(x)
}

, f(x) = sup
y∈Y

{

Φ(x, y)− g(y)
}

.

Guide. Derive all this right from the definitions by elementary reasoning.

11.64 Example (proximal transform). For fixed λ > 0, pair IRn with itself under

Φ(x, y) = −
1

2λ
|x− y|2 =

1

λ
〈x, y〉 −

1

2λ
|x|2 −

1

2λ
|y|2.

Then for any function f : IRn → IR and its Moreau envelope eλf and λ-proximal
hull hλf one has

fΦ = −eλf, fΦΦ(x) = −eλ[−eλf ] = hλf.

In this case the Φ-envelope functions are the λ-proximal functions, defined as
agreeing with their λ-proximal hull.

A one-to-one correspondence f ↔ g in the collection of all proper functions
of such type is obtained in which

g = −eλf, f = −eλg.

Detail. This follows from the definitions of fΦ and fΦΦ along with those of
eλf in 1.22 and hλf ; see 1.44 and also 11.26(c). The symmetry of Φ in its two
arguments yields the symmetry of the correspondence that is obtained.

For the next example we recall from 2(13) the notation IRn×n
sym for the space

of all symmetric real matrices of order n.

11.65 Example (full quadratic transform). Pair IRn with IRn × IRn×n
sym under

Φ(x, y) = 〈v, x〉 − jQ(x) for y = (v,Q), with jQ(x) =
1

2
〈x,Qx〉.

In this case one has for any function f : IRn → IR that
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fΦ(v,Q) = (f + jQ)
∗(v),

fΦΦ(x) =

{

(cl f)(x) if f is prox-bounded,
−∞ otherwise.

Here fΦ ≡ −∞ if f ≡ ∞, whereas fΦ ≡ ∞ if f fails to be prox-bounded;
otherwise fΦ is a proper, lsc, convex function on the space IRn × IRn×n

sym .

Thus, Φ-conjugacy of this kind sets up a one-to-one correspondence f ↔ g
between the proper, lsc, prox-bounded functions f on IRn and certain proper,
lsc, convex functions g on IRn × IRn×n

sym .

Detail. The formula for fΦ is immediate from the definitions, and the one for
fΦΦ follows then from 1.44. The convexity of fΦΦ comes from the linearity of
Φ(x, y) with respect to the y argument for fixed x.

11.66 Example (basic quadratic transform). Pair IRn with IRn × IR under

Φ(x, y) = 〈v, x〉 − rj(x) for y = (v, r), with j(x) = 1
2 |x|

2.

In this case one has for any function f : IRn → IR that

fΦ(v, r) = (f + rj)∗(v), fΦΦ(x) =

{

(cl f)(x) if f is prox-bounded,
−∞ otherwise.

Here fΦ ≡ −∞ if f ≡ ∞, whereas fΦ ≡ ∞ if f fails to be prox-bounded; aside
from those extreme cases, fΦ is a proper, lsc, convex function on IRn × IR.
Thus, Φ-conjugacy of this kind sets up a one-to-one correspondence f ↔ g
between the proper, lsc, prox-bounded functions f on IRn and certain proper,
lsc, convex functions g on IRn × IR.

Detail. This restricts the conjugate function in the preceding example to the
subspace of IRn×n

sym consisting of the matrices of form Q = rI. The biconjugate
function is unaffected by this restriction because the derivation of its formula
only relied on such special matrices, through 1.44.

Yet another way that problems of optimization can be meaningfully be
paired with one another is through the interchange rule for minimization in
1.35. In this framework the duality relations take the form of ‘min = min’
instead of ‘min = max’. The idea is very simple. For comparison with the
duality schemes in this chapter, it can be formulated as follows.

Given arbitrary nonempty sets X and Y and any function l : X×Y �→ IR,
consider the problems,

minimize ϕ(x) over x ∈ X, where ϕ(x) := infy l(x, y),

minimize ψ(y) over y ∈ Y, where ψ(y) := infx l(x, y).

It’s obvious that infX ϕ = infY ψ; both values coincide with infX×Y l.
In contrast to the duality theory of convex optimization in 11.39, the two

problems in this scheme aren’t related to each other through perturbations,
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and the solutions to one problem can’t be interpreted as ‘multipliers’ for the
other. Rather, the two problems represent intermediate stages in an overall
problem, namely that of minimizing l(x, y) with respect to (x, y) ∈ X × Y .
Nonetheless, the scheme can be interesting in situations where a way exists
for passing directly from one problem to the other without writing down the
function l, especially if a correspondence between more than optimal values
emerges. This is seen in the case of a Fenchel-type format resembling 11.41,
where however the functions ϕ and ψ being minimized generally aren’t convex.

11.67 Theorem (double-min duality in optimization). Consider any primal
problem of the form

minimize ϕ(x) over x ∈ IRn, with ϕ(x) = 〈c, x〉+ k(x)− h(Ax− b),

for convex functions k on IRn and h on IRm such that k is proper, lsc, fully
coercive and almost strictly convex, while h is finite and differentiable. Pair
this with the dual problem

minimize ψ(y) over y ∈ IRm, with ψ(y) = 〈b, y〉+ h∗(y)− k∗(A∗y − c);

this similarly has h∗ lsc, proper, fully coercive and almost strictly convex, while
k∗ is finite and differentiable. The objective functions ϕ and ψ in these two
problems are amenable, and the two optimal values always agree: inf ϕ = inf ψ.
Furthermore, in terms of

S : =
{

(x, y)
∣

∣ y = ∇h(Ax− b), A∗y − c ∈ ∂k(x)
}

=
{

(x, y)
∣

∣x = ∇k∗(A∗y − c), Ax− b ∈ ∂h∗(y)
}

,

one has the following relations, which tie not only optimal solutions but also
generalized stationary points of either problem to those of the other problem:

0 ∈ ∂ϕ(x̄) ⇐⇒ ∃ ȳ with (x̄, ȳ) ∈ S,

0 ∈ ∂ψ(ȳ) ⇐⇒ ∃ x̄ with (x̄, ȳ) ∈ S,

(x̄, ȳ) ∈ S =⇒ ϕ(x̄) = ψ(ȳ).

Proof. In the general format described before the theorem, these problems
correspond to l(x, y) = 〈c, x〉+ k(x) + 〈b, y〉+ h∗(y)− 〈y, Ax〉.

The claim that h∗ is fully coercive and almost strictly convex is justified
by 11.5 and 3.27 for the coercivity and 11.13 for the strict convexity. The same
results, in reverse implication, support the claim that k∗ is finite and differen-
tiable. Because convex functions that are finite and differentiable actually are
C1 (by 9.20), the functions h0(x) = −h(Ax− b) and k0(y) = −k∗(A∗y− c) are
C1, and consequently ϕ and ψ are amenable by 10.24(g). Then also

∂ϕ(x) = ∂k(x) +∇h0(x) with ∇h0(x) = −A∗∇h(Ax− b),

∂ψ(y) = ∂h∗(y) +∇k0(x) with ∇k0(x) = −A∇k∗(A∗y − c),
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from which the characterizations of 0 ∈ ∂ϕ(x̄) and 0 ∈ ∂ψ(ȳ) are evident,
the equivalence between the two expressions for S being a consequence of the
subgradient inversion rule in 11.3. Pairs (x̄, ȳ) ∈ S satisfy h(Ax̄− b) + h∗(ȳ) =
〈Ax̄− b, ȳ〉 and k(x̄) + k∗(A∗ȳ− c) = 〈x̄, A∗ȳ − c〉 (again on the basis of 11.3),
and these equations give ϕ(x̄) = ψ(ȳ).

A case worth noting in 11.67 is the one in which k(x) = δX(x) + 1
2 〈x, Cx〉

and h(u) = θY,B(u) (cf. 11.18) for polyhedral sets X and Y and symmetric
positive-definite matrices C and B. Then in minimizing ϕ one is minimizing
the smooth piecewise linear-quadratic function

ϕ0(x) = 〈c, x〉+ 1
2〈x, Cx〉 − θY,B(Ax− b)

subject to the linear constraints represented by x ∈ X , whereas in minimizing
ψ one is minimizing the smooth piecewise linear-quadratic function

ψ0(y) = 〈b, y〉+ 1
2 〈y, By〉 − θX,C(A

∗y − c)

subject to the linear constraints represented by y ∈ Y . The functions ϕ0 and ψ0

needn’t be convex, because the θ-expressions are subtracted rather than added
as they were in 11.43, so this is a form of nonconvex extended linear-quadratic
programming duality.

Commentary

A description of the ‘Legendre transform’ can be found in any text on the calcu-
lus of variations, since it’s the means of generating the Hamiltonian functions and
Hamiltonian equations that are crucial to that subject. The treatments in such texts
often fall short in rigor, however. They revolve around inverting a gradient mapping
∇f as in 11.9, but typically without serious attention being paid to the mapping’s
domain and range, or to the conditions needed to ensure its global single-valued in-
vertibility, such as (for most cases in practice) the strict convexity of f . The beauty
of the Legendre-Fenchel transform, devised by Fenchel [1949], [1951], is that gradient
inversion is replaced by an operation of maximization. Moreover, convexity proper-
ties are embraced from the start. In this way, a much more powerful tool is created
which, interestingly, is perhaps the first in mathematical analysis to have relied on
minimization/maximization in its very definition.

Mandelbrojt [1939] had earlier developed a limited case of conjugacy for func-
tions of a single real variable. In the still more special context of nondecreasing
convex functions on IR+, similar notions were explored by Young [1912] and utilized
in the theory of Banach spaces and beyond; cf. Birnbaum and Orlicz [1931] and Kras-
nosel’skii and Rutitskii [1961]. None of this captured the n-dimensional character of
the Legendre transform, however, or allowed for the kind of focus on domains that’s
essential to handling constraints in the process of dualization.

Fenchel formulated the basic result in Theorem 11.1 in terms of pairs (C, f)
consisting of a finite convex function f on a nonempty convex set C in IRn. His trans-
form was extended to infinite-dimensional spaces by Moreau [1962] and Brøndsted
[1964] (publication of a dissertation written under Fenchel’s supervision), with Moreau
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adopting the pattern of extended-real-valued functions f defined on all the whole
space. The details of the Legendre case in 11.9 were worked out by Rockafellar
[1967d]. All these authors were, in some way, aware of the facts in 11.2–11.4.

Rockafellar [1966b] discovered the support function meaning of horizon functions
in 11.5 as well as the formula in 11.6 for the support function of a level set and
the dualizations of coercivity and level-coercivity in 11.8(c)(d). The dualizations of
differentiability in 11.8(b) and 11.13 were developed in Rockafellar [1970a], which
is also the source for the connection in 11.7 between conjugate functions and cone
polarity (probably known to Fenchel), and for the linear-quadratic examples in 11.10
and 11.11 and the log-exponential example in 11.12.

In the important case of convex functions on IR1, special techniques can be used
for determining the conjugate functions, for instance by ‘integrating’ right or left
derivatives; for a thorough treatment see Chapter 8 of Rockafellar [1984b]. The one-
dimensional version of Theorem 11.14, that f∗ inherits from f the property of being
piecewise linear, or piecewise linear-quadratic, can be found there as well.

In the full, n-dimensional version of Theorem 11.14, part (a) is new in its state-
ment about the preservation of piecewise linearity when passing from a convex func-
tion to its conjugate, but this property corresponds through 2.49 to the fact that if
epi f is polyhedral, the same is true also of epi f∗. In that form, the observation goes
back to Rockafellar [1963]. The assertion in 11.17(a) about the support functions of
polyhedral sets being piecewise linear has similar status. The fact in 11.17(b), that
the polar of a polyhedral cone is polyhedral, was recognized by Weyl [1935].

As for part (b) of Theorem 11.14, concerning the self-duality of the class of piece-
wise linear-quadratic functions, this was proved by Sun [1986], but with machinery
from the theory of monotone mappings. Without the availability of that machinery
in this chapter (it won’t be set up until Chapter 12), we had to invent a different,
more direct proof. The line segment test in 11.15, on which it rests, doesn’t seem to
have been formulated previously.

The consequent fact in 11.16, about piecewise linear-quadratic convex functions
f : IRn

→ IR attaining their minimum value when that value is finite, can be compared
to the result of Frank and Wolfe [1956] that a linear-quadratic convex function f0
achieves its minimum relative to any polyhedral convex set C on which it’s bounded
from below. The latter can be identified with the case of 11.16 where f = f0 + δC .

The general polarity correspondence in 11.19, for sets that contain the origin but
aren’t necessarily cones, was developed first for bounded sets by Minkowski [1911],
whose insights extended to the dualizations in 11.20. The formula for conjugate
composite functions in 11.21 comes from Rockafellar [1970a].

The dual operations in 11.22 and 11.23 were investigated in various degrees by
Fenchel [1951], Rockafellar [1963] and Moreau [1967]. The special cases in 11.24 for
support functions and in 11.25 for cones were known much earlier. Moreau [1965]
established the dual envelope formula in 11.26(b) (for λ = 1) and also the gradient
interpretation in 11.27 for the proximal mappings associated with convex functions.

The results on the norms of sublinear mappings in 11.29 and 11.30 are new, but
the adjoint duality for operations on such mappings in 11.31 was already disclosed in
Rockafellar [1970a]. The special results in 11.32 and 11.33 on duality for operations
on piecewise linear-quadratic functions are original as well.

The epi-continuity of the Legendre-Fenchel transform in Theorem 11.34 was
discovered by Wijsman [1964], [1966], who also reported the corresponding behavior
of support functions and polar cones in 11.35. The ‘epi-semicontinuity’ results in
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Theorem 11.34, which provide inequalities for dualizing e-liminf and e-limsup, are
actually new, and likewise for the support function version in 11.35(a). The inner
and outer limit relations for cone polarity in 11.35(b) were noted by Walkup and
Wets [1967], however. Those authors, in the same paper, established the polar cone
isometry in Theorem 11.36, moreover not just for IRn but any reflexive Banach space.
The proof of this isometry that we give here in terms of the duality between addition
and epi-addition of convex functions is new. It readily generalizes to any norm and
its polar, not only the Euclidean norm and unit ball, in setting up cone distances,
and it too could therefore be followed in the Banach space setting.

The application in 11.37, showing that the Legendre-Fenchel transform is an
isometry with respect to cosmic epi-distances, is new, but an isometry result with re-
spect to a different metric, based instead on uniform convergence of Moreau envelopes
on bounded sets, was obtained by Attouch and Wets [1986]. The technique of pass-
ing through cones and the continuity of the polar operation in 11.36 for purposes of
investigating duality in the epi-convergence of convex functions (apart from questions
of isometry), and thereby developing extensions of Wijsman’s theorem, began with
Wets [1980]. That approach has been followed more recently in infinite dimensions by
Penot [1991] and Beer [1993]. Other epi-continuity results for the Legendre-Fenchel
transform in spaces beyond IRn can be found in those works and in earlier papers of
Mosco [1971], Joly [1973], Back [1986] and Beer [1990].

Many researchers have been fascinated by dual problems of optimization. The
most significant early example was linear programming duality (cf. 11.43), which was
laid out by Gale, Kuhn and Tucker [1951]. This duality grew out of the theory of
minimax problems and two-person, zero-sum games that was initiated by von Neu-
mann [1928]. Fenchel [1951], while visiting at Princeton where Gale and Kuhn were
Ph.D. students of Tucker, sought to set up a parallel theory of dual problems in which
the primal problem consisted of minimizing h(x) + k(x), for what we now call lsc,
proper, convex functions h and k on IRn, while the dual problem consisted of maxi-
mizing −h∗(y)− k∗(−y). Fenchel’s duality theorem suffered from an error, however.
Rockafellar [1963], [1964a], [1966c], [1967a], fixed the error and incorporated a linear
mapping into the problem statement so as to obtain the scheme in 11.41. Perturba-
tions played a role in that duality, but the scheme in 11.39 and 11.40, explicitly built
around primal and dual perturbations, didn’t emerge until Rockafellar [1970a].

Extended linear-quadratic programming was developed by Rockafellar and Wets
[1986] along with the duality results in 11.43; further details were added by Rockafellar
[1987]. It was in those papers that the dualizing penalty expressions θY,B in 11.18
made their debut. The application to dualized composition in 11.44 is new.

The Lagrangian perturbation format in 11.45 came out in Rockafellar [1970a],
[1974a], for the case of f(x, u) convex in (x, u). The associated minimax theory in
11.50–11.52 was developed there also. The extension of Lagrangian dualization to the
case of f(x, u) convex merely in u started with Rockafellar [1993a], and that’s where
the multiplier rule in 11.46 was proved.

The formula in 11.48, relating the subgradients of f(x, u) to those of l(x, y) for
convex f , can be interpreted as a generalization of the inversion rule in 11.3 through
the fact that the functions f(x, ·) and −l(x, ·) are conjugate to each other. Instead of
full inversion one has a partial inversion along with a change of sign in the residual
argument. A similar partial inversion rule is known classically for smooth f with
respect to taking the Legendre transform in the u argument, this being essential to
the theory of Hamiltonian equations in the ‘calculus of variations’. One could ask
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whether a broader formula of such type can be established for nonsmooth functions
f that might only be convex in u, not necessarily in x and u jointly. Rockafellar
[1993b], [1996], has answered this in the affirmative for particular function structures
and more generally in terms of a partial convexification operation on subgradients.

The results on perturbing saddle values and saddle points in Theorem 11.53 are
largely due to Golshtein [1972]. The linear programming case in Example 11.54 was
treated earlier by Williams [1970]. The application here to linear-quadratic program-
ming is new. For some nonconvex extensions of such perturbation theory that instead
utilize augmented Lagrangians, see Rockafellar [1984a].

Augmented Lagrangians were introduced in connection with numerical methods
for solving problems in nonlinear programming, and they have mainly been viewed in
that special context; see Rockafellar [1974b], [1993a], Bertsekas [1982], and Golshtein
and Tretyakov [1996]. They haven’t been considered before with the degree of gen-
erality in 11.55–11.61. Exact penalty representations of the linear type in 11.62(b)
have a separate history; see Burke [1991] for this background.

The generalized conjugacy in 11.64 was brought to light by Moreau [1967], [1970].
Something similar was noted by Weiss [1969], [1974], and also by Elster and Nehse
[1974]. Such ideas were utilized by Balder [1977] in work related to augmented La-
grangians; this expanded on the strategy in Rockafellar [1974b], where the basic
quadratic transform in 11.66 was implicitly utilized for this purpose. For related work
see also Dolecki and Kurcyusz [1978]. The basic quadratic transform was fleshed out
by Poliquin [1990], who put it to work in nonsmooth analysis; he demonstrated by
this means, for instance, that any proper, lsc function f : IRn

→ IR that’s bounded
from below can be expressed as a composite function g◦F with g lsc convex and F of
class C∞. The full quadratic transform in 11.65 was set up earlier by Janin [1973]. He
observed that its main properties could be derived as consequences of known features
of the Legendre-Fenchel transform.

The earliest duality theory of the double-min variety as in 11.67 is due to Toland
[1978], [1979]. He concentrated on the difference of two convex functions; there was
no linear mapping, as associated here with the matrix A. The particular content
of Theorem 11.67, in adding a linear transformation and drawing on facts in 11.8
(coercivity versus finiteness) and in 11.13 (strict convexity versus differentiability)
hasn’t been furnished before. The idea of relating ‘extremal points’ of one problem
to those of another was carried forward on a broader front by Ekeland [1977], who,
like Toland, was motivated by applications in the calculus of variations.

Also in the line of duality for nonconvex problems of optimization, the work of
Aubin and Ekeland [1976] deserves special mentions. They constructed quantitative
estimates of the ‘lack of convexity’ of a function and showed how these estimates can
be utilized to get bounds on the size of the duality gap (between primal and dual
optimal values) in a Fenchel-like format.

Although we haven’t taken it up here, there is also a concept of conjugacy for
convex-concave functions; see Rockafellar [1964b], [1970a]. A theory of dual mini-
max problems has been developed in such terms by McLinden [1973], [1974]. Epi-
convergence isn’t the right convergence for such functions and must be replaced by
epi-hypo-convergence; see Attouch and Wets [1983a], Attouch, Azé and Wets [1988].


