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CHAPTER 1

Introduction

In mathematical optimization we seek to either minimize or maximize a function over a set of alternatives. The
function is called the objective function, and we allow it to be transfinite in the sense that at each point its value is
either a real number or it is one of the to infinite values ±∞. The set of alternatives is called the constraint region.
Since every maximization problem can be restated as a minimization problem by simply replacing the objective f0

by its negative −f0 (and visa versa), we choose to focus only on minimization problems. We denote such problems
using the notation

(1)
minimize

x∈X
f0(x)

subject to x ∈ Ω,

where f0 : X → R∪{±∞} is the objective function, X is the space over which the optimization occurs, and Ω ⊂ X
is the constraint region. This is a very general description of an optimization problem and as one might imagine
there is a taxonomy of optimization problems depending on the underlying structural features that the problem
possesses, e.g., properties of the space X, is it the integers, the real numbers, the complex numbers, matrices, or
an infinite dimensional space of functions, properties of the function f0, is it discrete, continuous, or differentiable,
the geometry of the set Ω, how Ω is represented, properties of the underlying applications and how they fit into a
broader context, methods of solution or approximate solution, ... . For our purposes, we assume that Ω is a subset
of Rn and that f0 : Rn → R ∪ {±∞}. This severely restricts the kind of optimization problems that we study,
however, it is sufficiently broad to include a wide variety of applied problems of great practical importance and
interest. For example, this framework includes linear programming (LP).

Linear Programming
In the case of LP, the objective function is linear, that is, there exists c ∈ Rn such that

f0(x) = cTx =

n∑
j=1

cjxj ,

and the constraint region is representable as the set of solution to a finite system of linear equation and inequalities,

(2) Ω =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

aijxj ≤ bj , i = 1, . . . , s,

n∑
i=1

aijxj = bj , i = s+ 1, . . . ,m

}
,

where A := [aij ] ∈ Rm×n and b ∈ Rm.

However, in this course we are primarily concerned with nonlinear problems, that is, problems that cannot be
encoded using finitely many linear function alone. A natural generalization of the LP framework to the nonlinear
setting is to simply replace each of the linear functions with a nonlinear function. This leads to the general nonlinear
programming (NLP) problem which is the problem of central concern in these notes.

Nonlinear Programming
In nonlinear programming we are given nonlinear functions fi : Rn → R, i = 1, 2, . . . ,m, where f0 is the objective
function in (1) and the functions fi, i = 1, 2, . . . ,m are called the constraint functions which are used to define the
constrain region in (1) by setting

(3) Ω = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m} .

If Ω = Rn, then we say that the problem (1) is an unconstrained optimization problem; otherwise, it called a
constrained problem. We begin or study with unconstrained problems. They are simpler to handle since we are only
concerned with minimizing the objective function and we need not concern ourselves with the constraint region.
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6 1. INTRODUCTION

However, since we allow the objective to take infinite values, we shall see that every explicitly constrained problem
can be restated as an ostensibly unconstrained problem.

In the following section, we begin our study of unconstrained optimization which is arguably the most widely
studied and used class of unconstrained unconstrained nonlinear optimization problems. This is the class of linear
least squares problems. The theory an techniques we develop for this class of problems provides a template for how
we address and exploit structure in a wide variety of other problem classes.

Linear Least Squares
A linear least squares problem is one of the form

(4) minimize
x∈Rn

1
2 ‖Ax− b‖

2
2 ,

where
A ∈ Rm×n, b ∈ Rm, and ‖y‖22 := y2

1 + y2
2 + · · ·+ y2

m .

Problems of this type arise in a diverse range of application, some of which are discussed in later chapters. Whole
books have been written about this problem, and various instances of this problem remain a very active area of
research. This problem formulation is usually credited to Legendre and Gauss who made careful studies of the
method around 1800. But others had applied the basic approach in a ad hoc manner in the previous 50 years to
observational data and, in particular, to studying the motion of the planets.

The second class most important class of unconstrained nonlinear optimization problems is the minimization
of quadratic functions. As we will see, the linear least squares problem is a member of this class of problems. It
is an important for a wide variety of reasons, not the least of which is the relationship to the second-order Taylor
approximations for functions mapping Rn into R.

Quadratic Functions
A function f : Rn → R is said to be quadratic if there exists α ∈ R, g ∈ Rn and H ∈ Rn×n such that

f(x) = α+ gTx+ 1
2x

THx .

The first thing to notice about such functions is that we may as well assume that the matrix H is symmetric since

xTHx = 1
2 (xTHx+ xTHx) = 1

2 ((xTHx)T + xTHx) = 1
2 (xTHTx+ xTHx) = xT ( 1

2 (HT +H))x,

that is, we may as well replace the matrix H by its symmetric part 1
2 (HT +H).

Having quadratic functions in hand, one arrives at an important nonlinear generalization of linear programming
where we simply replace the LP linear objective with a quadratic function.

Quadratic Programming
In quadratic programming we minimize a quadratic objective function subject convex polyhedral constraints of the
form (2).

The linear least squares problem and the optimization of quadratic functions are the themes for our initial forays
into optimization. The theory and methods we develop for these problems as well as certain variations on these
problems form the basis for our extensions to other problem classes. For this reason, we study these problems with
great care. Notice that although these problems are nonlinear, their component pieces come from linear algebra,
that is matrices and vectors. Obviously, these components play a key role in understanding the structure and
behavior of these problems. For this reason, our first task is to review and develop the essential elements from
linear algebra that provide the basis for our investigation into these problems.



CHAPTER 2

Review of Matrices and Block Structures

Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today
it is not uncommon to perform numerical computations with matrices having millions of components. The key to
understanding how to implement such algorithms is to exploit underlying structure within the matrices. In these
notes we touch on a few ideas and tools for dissecting matrix structure. Specifically we are concerned with the block
structure matrices.

1. Rows and Columns

Let A ∈ Rm×n so that A has m rows and n columns. Denote the element of A in the ith row and jth column
as Aij . Denote the m rows of A by A1·, A2·, A3·, . . . , Am· and the n columns of A by A·1, A·2, A·3, . . . , A·n. For
example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 ,
then A2,4 = −100,

A1· =
[
3 2 −1 5 7 3

]
, A2· =

[
−2 27 32 −100 0 0

]
, A3· =

[
−89 0 47 22 −21 33

]
and

A·1 =

 3
−2
−89

 , A·2 =

 2
27
0

 , A·3 =

−1
32
47

 , A·4 =

 5
−100

22

 , A·5 =

 7
0
−21

 , A·6 =

 3
0
33

 .
Exercise 1.1. If

C =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 ,

what are C4,4, C·4 and C4·? For example, C2· =
[
2 2 0 0 1 0

]
and C·2 =


−4
2
0
0
0

 .
The block structuring of a matrix into its rows and columns is of fundamental importance and is extremely

useful in understanding the properties of a matrix. In particular, for A ∈ Rm×n it allows us to write

A =


A1·
A2·
A3·

...
Am·

 and A =
[
A·1 A·2 A·3 . . . A·n

]
.

These are called the row and column block representations of A, respectively

7



8 2. REVIEW OF MATRICES AND BLOCK STRUCTURES

1.1. Matrix vector Multiplication. Let A ∈ Rm×n and x ∈ Rn. In terms of its coordinates (or components),

we can also write x =


x1

x2

...
xn

 with each xj ∈ R. The term xj is called the jth component of x. For example if

x =

 5
−100

22

 ,
then n = 3, x1 = 5, x2 = −100, x3 = 22. We define the matrix-vector product Ax by

Ax =


A1· • x
A2· • x
A3· • x

...
Am· • x

 ,
where for each i = 1, 2, . . . ,m, Ai· • x is the dot product of the ith row of A with x and is given by

Ai· • x =

n∑
j=1

Aijxj .

For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 and x =


1
−1
0
0
2
3

 ,
then

Ax =

 24
−29
−32

 .
Exercise 1.2. If

C =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 and x =


1
−1
0
0
2
3

 ,
what is Cx?

Note that if A ∈ Rm×n and x ∈ Rn, then Ax is always well defined with Ax ∈ Rm. In terms of components,
the ith component of Ax is given by the dot product of the ith row of A (i.e. Ai·) and x (i.e. Ai· • x).

The view of the matrix-vector product described above is the row-space perspective, where the term row-space
will be given a more rigorous definition at a later time. But there is a very different way of viewing the matrix-vector
product based on a column-space perspective. This view uses the notion of the linear combination of a collection of
vectors.

Given k vectors v1, v2, . . . , vk ∈ Rn and k scalars α1, α2, . . . , αk ∈ R, we can form the vector

α1v
1 + α2v

2 + · · ·+ αkv
k ∈ Rn .

Any vector of this kind is said to be a linear combination of the vectors v1, v2, . . . , vk where the α1, α2, . . . , αk
are called the coefficients in the linear combination. The set of all such vectors formed as linear combinations of
v1, v2, . . . , vk is said to be the linear span of v1, v2, . . . , vk and is denoted

span
(
v1, v2, . . . , vk

)
:=
{
α1v

1 + α2v
2 + · · ·+ αkv

k
∣∣α1, α2, . . . , αk ∈ R

}
.
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Returning to the matrix-vector product, one has that

Ax =


A11x1 +A12x2 +A13x3 + · · ·+A1nxn
A21x1 +A22x2 +A23x3 + · · ·+A2nxn

...
...

...
Am1x1 +Am2x2 +Am3x3 + · · ·+Amnxn

 = x1A·1 + x2A·2 + x3A·3 + · · ·+ xnA·n,

which is a linear combination of the columns of A. That is, we can view the matrix-vector product Ax as taking a
linear combination of the columns of A where the coefficients in the linear combination are the coordinates of the
vector x.

We now have two fundamentally different ways of viewing the matrix-vector product Ax.

Row-Space view of Ax:

Ax =


A1· • x
A2· • x
A3· • x

...
Am· • x


Column-Space view of Ax:

Ax = x1A·1 + x2A·2 + x3A·3 + · · ·+ xnA·n .

2. Matrix Multiplication

We now build on our notion of a matrix-vector product to define a notion of a matrix-matrix product which
we call matrix multiplication. Given two matrices A ∈ Rm×n and B ∈ Rn×k note that each of the columns of B
resides in Rn, i.e. B·j ∈ Rn i = 1, 2, . . . , k. Therefore, each of the matrix-vector products AB·j is well defined for
j = 1, 2, . . . , k. This allows us to define a matrix-matrix product that exploits the block column structure of B by
setting

(5) AB :=
[
AB·1 AB·2 AB·3 · · · AB·k

]
.

Note that the jth column of AB is (AB)·j = AB·j ∈ Rm and that AB ∈ Rm×k, i.e.

if H ∈ Rm×n and L ∈ Rn×k, then HL ∈ Rm×k.

Also note that

if T ∈ Rs×t and M ∈ Rr×`, then the matrix product TM is only defined when t = r.

For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 and B =


2 0
−2 2
0 3
0 0
1 1
2 −1

 ,
then

AB =

A


2
−2
0
0
1
2

 A


0
−2
3
0
1
−1



 =

 15 5
−58 150
−133 87

 .

Exercise 2.1. if

C =


3 −4 1 1
2 2 0 0
−1 0 0 0

0 0 0 2
0 1 0 1

 and D =


−1 0 2 4 3
0 −2 −1 4 5
5 2 −4 1 1
3 0 1 0 0

 ,



10 2. REVIEW OF MATRICES AND BLOCK STRUCTURES

is CD well defined and if so what is it?

The formula (5) can be used to give further insight into the individual components of the matrix product AB.
By the definition of the matrix-vector product we have for each j = 1, 2, . . . , k

AB·j =

A1· •B·j
A2· •B·j
Am· •B·j

 .
Consequently,

(AB)ij = Ai· •B·j ∀ i = 1, 2, . . .m, j = 1, 2, . . . , k.

That is, the element of AB in the ith row and jth column, (AB)ij , is the dot product of the ith row of A with the
jth column of B.

2.1. Elementary Matrices. We define the elementary unit coordinate matrices in Rm×n in much the same
way as we define the elementary unit coordinate vectors. Given i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, the
elementary unit coordinate matrix Eij ∈ Rm×n is the matrix whose ij entry is 1 with all other entries taking the
value zero. This is a slight abuse of notation since the notation Eij is supposed to represent the ijth entry in the
matrix E. To avoid confusion, we reserve the use of the letter E when speaking of matrices to the elementary
matrices.

Exercise 2.2. (Multiplication of square elementary matrices)Let i, k ∈ {1, 2, . . . ,m} and j, ` ∈ {1, 2, . . . ,m}.
Show the following for elementary matrices in Rm×m first for m = 3 and then in general.

(1) EijEk` =

{
Ei` , if j = k,

0 , otherwise.
(2) For any α ∈ R, if i 6= j, then (Im×m − αEij)(Im×m + αEij) = Im×m so that

(Im×m + αEij)
−1 = (Im×m − αEij).

(3) For any α ∈ R with α 6= 0, (I + (α−1 − 1)Eii)(I + (α− 1)Eii) = I so that

(I + (α− 1)Eii)
−1 = (I + (α−1 − 1)Eii).

Exercise 2.3. (Elementary permutation matrices)Let i, ` ∈ {1, 2, . . . ,m} and consider the matrix Pij ∈ Rm×m
obtained from the identity matrix by interchanging its i and `th rows. We call such a matrix an elementary
permutation matrix. Again we are abusing notation, but again we reserve the letter P for permutation matrices
(and, later, for projection matrices). Show the following are true first for m = 3 and then in general.

(1) Pi`Pi` = Im×m so that P−1
i` = Pi`.

(2) PTi` = Pi`.
(3) Pi` = I − Eii − E`` + Ei` + E`i.

Exercise 2.4. (Three elementary row operations as matrix multiplication)In this exercise we show that the
three elementary row operations can be performed by left multiplication by an invertible matrix. Let A ∈ Rm×n,
α ∈ R and let i, ` ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Show that the following results hold first for m = n = 3 and
then in general.

(1) (row interchanges) Given A ∈ Rm×n, the matrix PijA is the same as the matrix A except with the i and
jth rows interchanged.

(2) (row multiplication) Given α ∈ R with α 6= 0, show that the matrix (I + (α − 1)Eii)A is the same as the
matrix A except with the ith row replaced by α times the ith row of A.

(3) Show that matrix EijA is the matrix that contains the jth row of A in its ith row with all other entries
equal to zero.

(4) (replace a row by itself plus a multiple of another row) Given α ∈ R and i 6= j, show that the matrix
(I +αEij)A is the same as the matrix A except with the ith row replaced by itself plus α times the jth row
of A.
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2.2. Associativity of matrix multiplication. Note that the definition of matrix multiplication tells us that
this operation is associative. That is, if A ∈ Rm×n, B ∈ Rn×k, and C ∈ Rk×s, then AB ∈ Rm×k so that (AB)C is
well defined and BC ∈ Rn×s so that A(BC) is well defined, and, moreover,

(AB)C =
[
(AB)C·1 (AB)C·2 · · · (AB)C·s

]
(6)

where for each ` = 1, 2, . . . , s

(AB)C·` =
[
AB·1 AB·2 AB·3 · · · AB·k

]
C·`

= C1`AB·1 + C2`AB·2 + · · ·+ Ck`AB·k

= A
[
C1`B·1 + C2`B·2 + · · ·+ Ck`B·k

]
= A(BC·`) .

Therefore, we may write (6) as

(AB)C =
[
(AB)C·1 (AB)C·2 · · · (AB)C·s

]
=

[
A(BC·1) A(BC·2) . . . A(BC·s)

]
= A

[
BC·1 BC·2 . . . BC·s

]
= A(BC) .

Due to this associativity property, we may dispense with the parentheses and simply write ABC for this triple
matrix product. Obviously longer products are possible.

Exercise 2.5. Consider the following matrices:

A =

[
2 3 1
1 0 −3

]
B =

[
4 −1
0 −7

]
C =

−2 3 2
1 1 −3
2 1 0



D =

2 3
1 0
8 −5

 F =


2 1 1 2
1 0 −4 0
3 0 −2 0
5 1 1 1

 G =

[
2 3 1 −2
1 0 −3 0

]
.

Using these matrices, which pairs can be multiplied together and in what order? Which triples can be multiplied
together and in what order (e.g. the triple product BAC is well defined)? Which quadruples can be multiplied
together and in what order? Perform all of these multiplications.

3. Block Matrix Multiplication

To illustrate the general idea of block structures consider the following matrix.

A =


3 −4 1 1 0 0
0 2 2 0 1 0
1 0 −1 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 .

Visual inspection tells us that this matrix has structure. But what is it, and how can it be represented? We re-write
the the matrix given above blocking out some key structures:

A =


3 −4 1 1 0 0
0 2 2 0 1 0
1 0 −1 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 =

[
B I3×3

02×3 C

]
,

where

B =

 3 −4 1
0 2 2
1 0 −1

 , C =

[
2 1 4
1 0 3

]
,
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I3×3 is the 3 × 3 identity matrix, and 02×3 is the 2 × 3 zero matrix. Having established this structure for the
matrix A, it can now be exploited in various ways. As a simple example, we consider how it can be used in matrix
multiplication.

Consider the matrix

M =


1 2
0 4
−1 −1

2 −1
4 3
−2 0

 .

The matrix product AM is well defined since A is 5×6 and M is 6×2. We show how to compute this matrix product
using the structure of A. To do this we must first block decompose M conformally with the block decomposition of A.
Another way to say this is that we must give M a block structure that allows us to do block matrix multiplication
with the blocks of A. The correct block structure for M is

M =

[
X
Y

]
,

where

X =

 1 2
0 4
−1 −1

 , and Y =

 2 −1
4 3
−2 0

 ,

since then X can multiply

[
B

02×3

]
and Y can multiply

[
I3×3

C

]
. This gives

AM =

[
B I3×3

02×3 C

] [
X
Y

]
=

[
BX + Y
CY

]

=



 2 −11
2 12
−1 −2

 +

 −2 6
4 3
−2 0


[

0 1
−4 −1

]



=


4 −12
2 9
0 3
0 1
−4 −1

 .
Block structured matrices and their matrix product is a very powerful tool in matrix analysis. Consider the

matrices M ∈ Rn×m and T ∈ Rm×k given by

M =

[
An1×m1

Bn1×m2

Cn2×m1 Dn2×m2

]
and

T =

[
Em1×k1 Fm1×k2 Gm1×k3
Hm2×k1 Jm2×k2 Km2×k3

]
,

where n = n1 + n2, m = m1 +m2, and k = k1 + k2 + k3. The block structures for the matrices M and T are said
to be conformal with respect to matrix multiplication since

MT =

[
AE +BH AF +BJ AG+BK
CE +DH CF +DJ CG+DK

]
.

Similarly, one can conformally block structure matrices with respect to matrix addition (how is this done?).
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Exercise 3.1. Consider the the matrix

H =



−2 3 2 0 0 0 0
1 1 −3 0 0 0 0
2 1 −1 0 0 0 0
0 0 0 4 −1 0 0
0 0 0 2 −7 0 0
1 0 0 0 0 2 3
0 1 0 0 0 1 0
0 0 1 0 0 8 −5


.

Does H have a natural block structure that might be useful in performing a matrix-matrix multiply, and if so describe
it by giving the blocks? Describe a conformal block decomposition of the matrix

M =



1 2
3 −4
−5 6
1 −2
−3 4
1 1
1 1


that would be useful in performing the matrix product HM . Compute the matrix product HM using this conformal
decomposition.

Exercise 3.2. Let T ∈ Rm×n with T 6= 0 and let I be the m×m identity matrix. Consider the block structured
matrix A = [ I T ].

(i) If A ∈ Rk×s, what are k and s?
(ii) Construct a non-zero s× n matrix B such that AB = 0.

The examples given above illustrate how block matrix multiplication works and why it might be useful. One
of the most powerful uses of block structures is in understanding and implementing standard matrix factorizations
or reductions.

4. Gauss-Jordan Elimination Matrices and Reduction to Reduced Echelon Form

In this section, we show that Gaussian-Jordan elimination can be represented as a consequence of left multipli-
cation by a specially designed matrix called a Gaussian-Jordan elimination matrix.

Consider the vector v ∈ Rm block decomposed as

v =

 a
α
b


where a ∈ Rs, α ∈ R, and b ∈ Rt with m = s+ 1 + t. In this vector we refer to the α entry as the pivot and assume
that α 6= 0. We wish to determine a matrix G such that

Gv = es+1

where for j = 1, . . . , n, ej is the unit coordinate vector having a one in the jth position and zeros elsewhere. We
claim that the matrix

G =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t


does the trick. Indeed,

(7) Gv =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t

  a
α
b

 =

 a− a
α−1α
−b+ b

 =

 0
1
0

 = es+1.
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The matrix G is called a Gaussian-Jordan Elimination Matrix, or GJEM for short. Note that G is invertible since

G−1 =

 I a 0
0 α 0
0 b I

 ,
Moreover, for any vector of the form w =

 x
0
y

 where x ∈ Rs y ∈ Rt, we have

Gw = w.

The GJEM matrices perform precisely the operations required in order to execute Gauss-Jordan elimination. That
is, each elimination step can be realized as left multiplication of the augmented matrix by the appropriate GJEM.

For example, consider the linear system

2x1 + x2 + 3x3 = 5
2x1 + 2x2 + 4x3 = 8
4x1 + 2x2 + 7x3 = 11
5x1 + 3x2 + 4x3 = 10

and its associated augmented matrix

A =


2 1 3 5
2 2 4 8
4 2 7 11
5 3 4 10

 .
The first step of Gauss-Jordan elimination is to transform the first column of this augmented matrix into the first
unit coordinate vector. The procedure described in (7) can be employed for this purpose. In this case the pivot is
the (1, 1) entry of the augmented matrix and so

s = 0, a is void, α = 2, t = 3, and b =

2
4
5

 ,
which gives

G1 =


1/2 0 0 0
−1 1 0 0
−2 0 1 0
−5/2 0 0 1

 .
Multiplying these two matrices gives

G1A =


1/2 0 0 0
−1 1 0 0
−2 0 1 0
−5/2 0 0 1




2 1 3 5
2 2 4 8
4 2 7 11
5 3 4 10

 =


1 1/2 3/2 5/2
0 1 1 3
0 0 1 1
0 1/2 −7/2 −5/2

 .
We now repeat this process to transform the second column of this matrix into the second unit coordinate vector.
In this case the (2, 2) position becomes the pivot so that

s = 1, a = 1/2, α = 1, t = 2, and b =

[
0

1/2

]
yielding

G2 =


1 −1/2 0 0
0 1 0 0
0 0 1 0
0 −1/2 0 1

 .
Again, multiplying these two matrices gives

G2G1A =


1 −1/2 0 0
0 1 0 0
0 0 1 0
0 −1/2 0 1




1 1/2 3/2 5/2
0 1 1 3
0 0 1 1
0 1/2 −7/2 −5/2

 =


1 0 1 1
0 1 1 3
0 0 1 1
0 0 −4 −4

 .
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Repeating the process on the third column transforms it into the third unit coordinate vector. In this case the pivot
is the (3, 3) entry so that

s = 2, a =

[
1
1

]
, α = 1, t = 1, and b = −4

yielding

G3 =


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 4 1

 .
Multiplying these matrices gives

G3G2G1A =


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 4 1




1 0 1 1
0 1 1 3
0 0 1 1
0 0 −4 −4

 =


1 0 0 0
0 1 0 2
0 0 1 1
0 0 0 0

 ,
which is in reduced echelon form. Therefore the system is consistent and the unique solution is

x =

0
2
1

 .
Observe that

G3G2G1 =


3 −1/2 −1 0
1 1 −1 0
−2 0 1 0
−10 −1/2 4 1


and that

(G3G2G1)−1 = G−1
1 G−1

2 G−1
3

=


2 0 0 0
2 1 0 0
4 0 1 0
5 0 0 1




1 1/2 0 0
0 1 0 0
0 0 1 0
0 1/2 0 1




1 0 1 0
0 1 1 0
0 0 1 0
0 0 −4 1



=


2 1 3 0
2 2 4 0
4 2 7 0
5 3 4 1

 .
In particular, reduced Gauss-Jordan form can always be achieved by multiplying the augmented matrix on the left
by an invertible matrix which can be written as a product of Gauss-Jordan elimination matrices.

Exercise 4.1. What are the Gauss-Jordan elimination matrices that transform the vector


2
3
−2
5

 in to ej for

j = 1, 2, 3, 4, and what are the inverses of these matrices?

5. Some Special Square Matrices

We say that a matrix A is square if there is a positive integer n such that A ∈ Rn×n. For example, the Gauss-
Jordan elimination matrices are a special kind of square matrix. Below we give a list of some square matrices with
special properties that are very useful to our future work.

Diagonal Matrices: The diagonal of a matrix A = [Aij ] is the vector (A11, A22, . . . , Ann)T ∈ Rn. A matrix in
Rn×n is said to be diagonal if the only non-zero entries of the matrix are the diagonal entries. Given a
vector v ∈ Rn, we write diag(v) the denote the diagonal matrix whose diagonal is the vector v.

The Identity Matrix: The identity matrix is the diagonal matrix whose diagonal entries are all ones. We denote
the identity matrix in Rk by Ik. If the dimension of the identity is clear, we simply write I. Note that for
any matrix A ∈ Rm×n we have ImA = A = AIn.
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Inverse Matrices: The inverse of a matrix X ∈ Rn×n is any matrix Y ∈ Rn×n such that XY = I in which case
we write X−1 := Y . It is easily shown that if Y is an inverse of X, then Y is unique and Y X = I.

Permutation Matrices: A matrix P ∈ Rn×n is said to be a permutation matrix if P is obtained from the identity
matrix by either permuting the columns of the identity matrix or permuting its rows. It is easily seen that
P−1 = PT .

Unitary Matrices: A matrix U ∈ Rn×n is said to be a unitary matrix if UTU = I, that is UT = U−1. Note that
every permutation matrix is unitary. But the converse is note true since for any vector u with ‖u‖2 = 1
the matrix I − 2uuT is unitary.

Symmetric Matrices: A matrix M ∈ Rn×n is said to be symmetric if MT = M .
Skew Symmetric Matrices: A matrix M ∈ Rn×n is said to be skew symmetric if MT = −M .

6. The LU Factorization

In this section we revisit the reduction to echelon form, but we incorporate permutation matrices into the
pivoting process. Recall that a matrix P ∈ Rm×m is a permutation matrix if it can be obtained from the identity
matrix by permuting either its rows or columns. It is straightforward to show that PTP = I so that the inverse of
a permutation matrix is its transpose. Multiplication of a matrix on the left permutes the rows of the matrix while
multiplication on the right permutes the columns. We now apply permutation matrices in the Gaussian elimination
process in order to avoid zero pivots.

Let A ∈ Rm×n and assume that A 6= 0. Set Ã0 := A. If the (1, 1) entry of Ã0 is zero, then apply permutation

matrices Pl0 and Pr0 to the left and and right of Ã0, respectively, to bring any non-zero element of Ã0 into the

(1, 1) position (e.g., the one with largest magnitude) and set A0 := Pl0Ã0Pr0. Write A0 in block form as

A0 =

[
α1 vT1
u1 Â1

]
∈ Rm×n,

with 0 6= α1 ∈ R, u1 ∈ Rn−1, v1 ∈ Rm−1, and Ã1 ∈ R(m−1)×(n−1). Then using α1 to zero out u1 amounts to left
multiplication of the matrix A0 by the Gaussian elimination matrix[

1 0
− u1

α1
I

]
to get

(8)

[
1 0
− u1

α1
I

] [
α1 vT1
u1 Â1

]
=

[
α1 vT1
0 Ã1

]
∈ Rm×n ,

where

Ã1 = Â1 − u1v
T
1 /α1 .

Define

L̃1 =

[
1 0
u1

α1
I

]
∈ Rm×m and Ũ1 =

[
α1 vT1
0 Ã1

]
∈ Rm×n .

and observe that

L̃−1
1 =

[
1 0
− u1

α1
I

]
Hence (8) becomes

(9) L̃−1
1 Pl0Ã0Pr0 = Ũ1, or equivalently, A = Pl0L̃1Ũ1P

T
r0 .

Note that L̃1 is unit lower triangular (ones on the mail diagonal) and Ũ1 is block upper-triangular with one
nonsingular 1× 1 block and one (m− 1)× (n− 1) block on the block diagonal.

Next consider the matrix Ã1 in Ũ1. If the (1, 1) entry of Ã1 is zero, then apply permutation matrices P̃l1 ∈
R(m−1)×(m−1) and P̃r1 ∈ R(n−1)×(n−1) to the left and and right of Ã1 ∈ R(m−1)×(n−1), respectively, to bring any

non-zero element of Ã0 into the (1, 1) position (e.g., the one with largest magnitude) and set A1 := P̃l1Ã1Pr1. If

the element of Ã1 is zero, then stop. Define

Pl1 :=

[
1 0

0 P̃l1

]
and Pr1 :=

[
1 0

0 P̃r1

]



6. THE LU FACTORIZATION 17

so that Pl1 and Pr1 are also permutation matrices and

(10) Pl1Ũ1Pr1 =

[
1 0

0 P̃l1

] [
α1 vT1
0 Ã1

] [
1 0

0 P̃r1

]
=

[
α1 vT1 Pr1
0 P̃l1Ã1Pr1

]
=

[
α1 ṽT1
0 A1

]
,

where ṽ1 := PTr1v1. Define

U1 :=

[
α1 ṽT1
0 A1

]
, where A1 =

[
α2 vT2
u2 Â2

]
∈ R(m−1)×(n−1),

with 0 6= α2 ∈ R, u2 ∈ Rn−2, v1 ∈ Rm−2, and Ã2 ∈ R(m−2)×(n−2). In addition, define

L1 :=

[
1 0

P̃l1
u1

α1
I

]
,

so that

PTl1L1 =

[
1 0

0 P̃Tl1

] [
1 0

P̃l1
u1

α1 I

]
=

[
1 0
u1

α1 P̃Tl1

]
=

[
1 0
u1

α1 I

] [
1 0

0 P̃Tl1

]
= L̃1P

T
l1 ,

and consequently

L−1
1 Pl1 = Pl1L̃

−1
1 .

Plugging this into (9) and using (10), we obtain

L−1
1 Pl1Pl0Ã0Pr0Pr1 = Pl1L̃

−1
1 Pl0Ã0Pr0Pr1 = Pl1Ũ1Pr1 = U1,

or equivalently,

Pl1Pl0APr0Pr1 = L1U1.

We can now repeat this process on the matrix A1 since the (1, 1) entry of this matrix is non-zero. The process
can run for no more than the number of rows of A which is m. However, it may terminate after k < m steps if the

matrix Âk is the zero matrix. In either event, we obtain the following result.

Theorem 6.1. [The LU Factorization] Let A ∈ Rm×n. If k = rank (A), then there exist permutation matrices
Pl ∈ Rm×m and Pr ∈ Rn×n such that

PlAPr = LU,

where L ∈ Rm×m is a lower triangular matrix having ones on its diagonal and

U =

[
U1 U2

0 0

]
with U1 ∈ Rk×k a nonsingular upper triangular matrix.

Note that a column permutation is only required if the first column of Âk is zero for some k before termination.
In particular, this implies that the rank (A) < m. Therefore, if rank (A) = m, column permutations are not required,
and Pr = I. If one implements the LU factorization so that a column permutation is only employed in the case when
the first column of Âk is zero for some k, then we say the LU factorization is obtained through partial pivoting.

Example 6.1. We now use the procedure outlined above to compute the LU factorization of the matrix

A =

 1 1 2
2 4 2
−1 1 3

 .
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L−1
1 A =

 1 0 0
−2 1 0

1 0 1

 1 1 2
2 4 2
−1 1 3


=

 1 1 2
0 2 −3
0 2 5



L−1
2 L−1

1 A =

 1 0 0
0 1 0
0 −1 1

  1 1 2
0 2 −3
0 2 5


=

 1 1 2
0 2 −3
0 0 8


We now have

U =

 1 1 2
0 2 −3
0 0 8

 ,
and

L = L1L2 =

 1 0 0
2 1 0
−1 0 1

  1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1

 .
7. Solving Equations with the LU Factorization

Consider the equation Ax = b. In this section we show how to solve this equation using the LU factorization.
Recall from Theorem 6.1 that the algorithm of the previous section produces a factorization of A of the form
Pl ∈ Rm×m and Pr ∈ Rn×n such that

A = PTl LUP
T
r ,

where Pl ∈ Rm×m and Pr ∈ Rn×n are permutation matrices, L ∈ Rm×m is a lower triangular matrix having ones
on its diagonal, and

U =

[
U1 U2

0 0

]
with U1 ∈ Rk×k a nonsingular upper triangular matrix. Hence we may write the equation Ax = b as

PTl LUP
T
r x = b.

Multiplying through by Pl and replacing UPTr x by w gives the equation

Lw = b̂, where b̂ := Plb .

This equation is easily solved by forward substitution since L is a nonsingular lower triangular matrix. Denote the
solution by w. To obtain a solution x we must still solve UPTr x = w. Set y = Prx. The this equation becomes

w = Uy =

[
U1 U2

0 0

](
y1

y2

)
,

where we have decomposed y to conform to the decomposition of U . Doing the same for w gives(
w1

w2

)
=

[
U1 U2

0 0

](
y1

y2

)
,

or equivalently,
w1 = U1y1 + U2y2

w2 = 0.

Hence, if w2 6= 0, the system is inconsistent, i.e., no solution exists. On the other hand, if w2 = 0, we can take
y2 = 0 and solve the equation

(11) w1 = U1y1
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for y1, then

x = PTr

(
y1

0

)
is a solution to Ax = b. The equation (11) is also easy to solve since U1 is an upper triangular nonsingular matrix
so that (11) can be solved by back substitution.

8. The Four Fundamental Subspaces and Echelon Form

Recall that a subset W of Rn is a subspace if and only if it satisfies the following three conditions:

(1) The origin is an element of W .
(2) The set W is closed with respect to addition, i.e. if u ∈W and v ∈W , then u+ v ∈W .
(3) The set W is closed with respect to scalar multiplication, i.e. if α ∈ R and u ∈W , then αu ∈W .

Exercise 8.1. Given v1, v2, . . . , vk ∈ Rn, show that the linear span of these vectors,

span
(
v1, v2, . . . , vk

)
:=
{
α1v

1 + α2v
2 + · · ·+ αkv

k
∣∣α1, α2, . . . , αk ∈ R

}
is a subspace.

Exercise 8.2. Show that for any set S in Rn, the set

S⊥ = {v : wT v = 0 for all w ∈ S}

is a subspace. If S is itself a subspace, then S⊥ is called the subspace orthogonal (or perpendicular) to the subspace
S.

Exercise 8.3. If S is any suset of Rn (not necessarily a subspace), show that (S⊥)⊥ = span (S).

Exercise 8.4. If S ⊂ Rn is a subspace, show that S = (S⊥)⊥.

A set of vectors v1, v2, . . . , vk ∈ Rn are said to be linearly independent if 0 = a1v
1 + · · · + akv

k if and only if
0 = a1 = a2 = · · · = ak. A basis for a subspace in any maximal linearly independent subspace. An elementary fact
from linear algebra is that the subspace equals the linear span of any basis for the subspace and that every basis
of a subspace has the same number of vectors in it. We call this number the dimension for the subspace. If S is a
subspace, we denote the dimension of S by dimS.

Exercise 8.5. If s ⊂ Rn is a subspace, then any basis of S can contain only finitely many vectors.

Exercise 8.6. Show that every subspace can be represented as the linear span of a basis for that subspace.

Exercise 8.7. Show that every basis for a subspace contains the same number of vectors.

Exercise 8.8. If S ⊂ Rn is a subspace, show that

(12) Rn = S + S⊥

and that

(13) n = dimS + dimS⊥.

Let A ∈ Rm×n. We associate with A its four fundamental subspaces:

Ran(A) := {Ax |x ∈ Rn } Null(A) := {x |Ax = 0}
Ran(AT ) :=

{
AT y

∣∣ y ∈ Rm
}

Null(AT ) :=
{
y
∣∣AT y = 0

}
.

where

(14)
rank(A) := dim Ran(A) nullity(A) := dim Null(A)

rank(AT ) := dim Ran(AT ) nullity(AT ) := dim Null(AT )

Exercise 8.9. Show that the four fundamental subspaces associated with a matrix are indeed subspaces.
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Observe that

Null(A) := {x |Ax = 0}
= {x |Ai· • x = 0, i = 1, 2, . . . ,m}
= {A1·, A2·, . . . , Am·}⊥

= span (A1·, A2·, . . . , Am·)
⊥

= Ran(AT )⊥ .

Since for any subspace S ⊂ Rn, we have (S⊥)⊥ = S, we obtain

(15) Null(A)⊥ = Ran(AT ) and Null(AT ) = Ran(A)⊥.

The equivalences in (15) are called the Fundamental Theorem of the Alternative.
One of the big consequences of echelon form is that

(16) n = rank(A) + nullity(A).

By combining (16), (13) and (15), we obtain the equivalence

rank(AT ) = dim Ran(AT ) = dim Null(A)⊥ = n− nullity(A) = rank(A).

That is, the row rank of a matrix equals the column rank of a matrix, i.e., the dimensions of the row and column
spaces of a matrix are the same!



CHAPTER 3

The Linear Least Squares Problem

In this chapter we we study the linear least squares problem introduced in (4). Since this is such a huge and
important topic, we will only be able to briefly touch on a few aspects of this problem. But our introduction should
give the reader some idea of the scope of this topic and and an indication of a few current areas of research.

1. Applications

1.1. Polynomial Fitting. In many data fitting application one assumes a functional relationship between a
set of “inputs” and a set of “outputs”. For example, a patient is injected with a drug and the the research wishes
to understand the clearance of the drug as a function of time. One way to do this is to draw blood samples over
time and to measure the concentration of the drug in the drawn serum. The goal is to then provide a functional
description of the concentration at any point in time.

Suppose the observed data is yi ∈ R for each time point ti, i = 1, 2, . . . , N , respectively. The underlying
assumption it that there is some function of time f : R → R such that yi = f(ti), i = 1, 2, . . . , N . The goal is to
provide and estimate of the function f . One way to do this is to try to approximate f by a polynomial of a fixed
degree, say n:

p(t) = x0 + x1t+ x2t
2 + · · ·+ xnt

n.

We now wish to determine the values of the coefficients that “best” fit the data.
If were possible to exactly fit the data, then there would exist a value for the coefficient, say x = (x0, x1, x2, . . . , xn)

such that

yi = x0 + x1ti + x2t
2
i + · · ·+ xnt

n
i , i = 1, 2, . . . , N.

But if N is larger than n, then it is unlikely that such an x exists; while if N is less than n, then there are probably
many choices for x for which we can achieve a perfect fit. We discuss these two scenarios and their consequences
in more depth at a future dat, but, for the moment, we assume that N is larger than n. That is, we wish to
approximate f with a low degree polynomial.

When n << N , we cannot expect to fit the data perfectly and so there will be errors. In this case, we must
come up with a notion of what it means to “best” fit the data. In the context of least squares, “best” means that
we wish to minimized the sum of the squares of the errors in the fit:

(17) minimize
x∈Rn+1

1
2

N∑
i=1

(x0 + x1ti + x2t
2
i + · · ·+ xnt

n
i − yi)

2 .

The leading one half in the objective is used to simplify certain computations that occur in the analysis to come.
This minimization problem has the form

minimize
x∈Rn+1

1
2 ‖V x− y‖

2
2 ,

where

y =


y1

y2

...
yN

 , x =


x0

x1

x2

...
xn

 and V =


1 t1 t21 . . . tn1
1 t2 t22 . . . tn2
...
1 tN t2N . . . tnN

 ,
21
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since

V x =


x0 + x1t1 + x2t

2
1 + · · ·+ xnt

n
1

x0 + x1t2 + x2t
2
2 + · · ·+ xnt

n
2

...
x0 + x1tN + x2t

2
N + · · ·+ xnt

n
N

 .

That is, the polynomial fitting problem (17) is an example of a linear least squares problem (4). The matrix V is
called the Vandermonde matrix associated with this problem.

This is neat way to approximate functions. However, polynomials are a very poor way to approximate the
clearance data discussed in our motivation to this approach. The concentration of a drug in serum typically rises
quickly after injection to a maximum concentration and falls off gradually decaying exponentially. There is only
one place where such a function is zero, and this occurs at time zero. On the other hand, a polynomial of degree
n has n zeros (counting multiplicity). Therefore, it would seem that exponential functions would provide a better
basis for estimating clearance. This motivates our next application.

1.2. Function Approximation by Bases Functions. In this application we expand on the basic ideas
behind polynomial fitting to allow other kinds of approximations, such as approximation by sums of exponential
functions. In general, suppose we are given data points (zi, yi) ∈ R2, i = 1, 2, . . . , N where it is assumed that the
observation yi is a function of an unknown function f : R → R evaluated at the point zi for each i = 1, 2, . . . , N .
Based on other aspects of the underlying setting from which this data arises may lead us to believe that f comes
from a certain space F of functions, such as the space of continuous or differentiable functions on an interval. This
space of functions may itself be a vector space in the sense that the zero function is in the space (0 ∈ F), two
function in the space can be added pointwise to obtain another function in the space ( F is closed with respect
to addition), and any real multiple of a function is the space is also in the space (F is closed with respect to
scalar multiplication). In this case, we may select from X a finite subset of functions, say φ1, φ2, . . . , φk, and try to
approximate f as a linear combination of these functions:

f(x) ∼ x1φ1(z) + x2φ2(z) + · · ·+ xnφk(z).

This is exactly what we did in the polynomial fitting application discussed above. There φi(z) = zi but we
started the indexing at i = 0. Therefore, this idea is essentially the same as the polynomial fitting case. But
the functions zi have an additional properties. First, they are linearly independent in the sense that the only
linear combination that yields the zero function is the one where all of the coefficients are zero. In addition, any
continuous function on and interval can be approximated “arbitrarily well” by a polynomial assuming that we
allow the polynomials to be of arbitrarily high degree (think Taylor approximations). In this sense, polynomials
form a basis for the continuous function on and interval. By analogy, we would like our functions φi to be linearly
independent and to come from basis of functions. There are many possible choices of bases, but a discussion of
these would take us too far afield from this course.

Let now suppose that the functions φ1, φ2, . . . , φk are linearly independent and arise from a set of basis function
that reflect a deeper intuition about the behavior of the function f , e.g. it is well approximated as a sum of
exponentials (or trig functions). Then the task to to find those coefficient x1, x2, . . . , xn that best fits the data in
the least squares sense:

minimize
x∈Rn

1
2

N∑
i=1

(x1φ1(zi) + x2φ2(zi) + · · ·+ xnφk(zi)− yi)2.

This can be recast as the linear least squares problem

minimize
x∈Rn

1
2 ‖Ax− y‖

2
2 ,

where

y =


y1

y2

...
yN

 , x =


x1

x2

...
xn

 and A =


φ1(z1) φ2(z1) . . . φn(z1)
φ1(z2) φ2(z2) . . . φn(z2)

...
φ1(zN ) φ2(zN ) . . . φn(zN )

 .
May possible further generalizations of this basic idea are possible. For example, the data may be multi-

dimensional: (zi, yi) ∈ Rs×Rt. In addition, constraints may be added, e.g., the function must be monotone (either
increasing of decreasing), it must be unimodal (one “bump”), etc. But the essential features are that we estimate
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using linear combinations and errors are measured using sums of squares. In many cases, the sum of squares error
metric is not a good choice. But is can be motivated by assuming that the error are distributed using the Gaussian,
or normal, distribution.

1.3. Linear Regression and Maximum Likelihood. Suppose we are considering a new drug therapy for
reducing inflammation in a targeted population, and we have a relatively precise way of measuring inflammation for
each member of this population. We are trying to determine the dosing to achieve a target level of inflamation. Of
course, the dose needs to be adjusted for each individual due to the great amount of variability from one individual
to the next. One way to model this is to assume that the resultant level of inflamation is on average a linear function
of the dose and other individual specific covariates such as sex, age, weight, body surface area, gender, race, blood
iron levels, desease state, etc. We then sample a collection of N individuals from the target population, registar
their dose zi0 and the values of their individual specific covariates zi1, zi2, . . . , zin, i = 1, 2, . . . , N . After dosing we
observe that the resultant inflammation for the ith subject to be yi, i = 1, 2, . . . , N . By saying that the “resultant
level of inflamation is on average a linear function of the dose and other individual specific covariates ”, we mean
that there exist coefficients x0, x1, x2, . . . , xn such that

yi = x0zi0 + x1zi1 + x2zi2 + · · ·+ xnzin + vi,

where vi is an instance of a random variable representing the individuals deviation from the linear model. Assume
that the random variables vi are independently identically distributed N(0, σ2) (norm with zero mean and variance
σ2). The probability density function for the the normal distribution N(0, σ2) is

1

σ
√

2π
EXP[−v2/(2σ2)] .

Given values for the coefficients xi, the likelihood function for the sample yi, i = 1, 2, . . . , N is the joint probability
density function evaluated at this observation. The independence assumption tells us that this joint pdf is given by

L(x; y) =

(
1

σ
√

2π

)n
EXP

[
− 1

2σ2

N∑
i=1

(x0zi0 + x1zi1 + x2zi2 + · · ·+ xnzin − yi)2

]
.

We now wish to choose those values of the coefficients x0, x2, . . . , xn that make the observation y1, y2, . . . , yn most
probable. One way to try to do this is to maximize the likelihood function L(x; y) over all possible values of x. This
is called maximum likelihood estimation:

(18) maximize
x∈Rn+1

L(x; y) .

Since the natural logarithm is nondecreasing on the range of the likelihood function, the problem (18) is equivalent
to the problem

maximize
x∈Rn+1

ln(L(x; y)) ,

which in turn is equivalent to the minimization problem

(19) minimize
x∈Rn+1

− ln(L(x; y)) .

Finally, observe that

− ln(L(x; y)) = K +
1

2σ2

N∑
i=1

(x0zi0 + x1zi1 + x2zi2 + · · ·+ xnzin − yi)2
,

where K = n ln(σ
√

2π) is constant. Hence the problem (19) is equivalent to the linear least squares problem

minimize
x∈Rn+1

1
2 ‖Ax− y‖

2
2 ,

where

y =


y1

y2

...
yN

 , x =


x0

x1

x2

...
xn

 and A =


z10 z11 z12 . . . z1n

z20 z21 z22 . . . z2n

...
zN0 zN1 zN2 . . . zNn

 .
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This is the first step in trying to select an optimal dose for each individual across a target population. What is
missing from this analysis is some estimation of the variability in inflammation response due to changes in the
covariates. Understanding this sensitivity to variations in the covariates is an essential part of any regression
analysis. However, a discussion of this step lies beyond the scope of this brief introduction to linear regression.

1.4. System Identification in Signal Processing. We consider a standard problem in signal processing
concerning the behavior of a stable, causal, linear, continuous-time, time-invariant system with input signal u(t)
and output signal y(t). Assume that these signals can be described by the convolution integral

(20) y(t) = (g ∗ u)(t) :=

∫ +∞

0

g(τ)u(t− τ)dτ .

In applications, the goal is to obtain an estimate of g by observing outputs y from a variety of known input signals u.
For example, returning to our drug dosing example, the function u may represent the input of a drug into the body
through a drug pump any y represent the concentration of the drug in the body at any time t. The relationship
between the two is clearly causal (and can be shown to be stable). The transfer function g represents what the
body is doing to the drug. In the way, the model (20) is a common model used in pharmaco-kinetics.

The problem of estimating g in (20) is an infinite dimensional problem. Below we describe a way to approximate
g using the the FIR, or finite impulse response filter. In this model we discretize time by choosing a fixed number
N of time points ti to observe y from a known input u, and a finite time horizon n < N over which to approximate
the integral in (20). To simplify matters we index time on the integers, that is, we equate ti with the integer i.
After selecting the data points and the time horizon, we obtain the FIR model

(21) y(t) =

n∑
i=1

g(k)u(t− k),

where we try to find the “best” values for g(k), k = 0, 1, 2, . . . , n to fit the system

y(t) =

n∑
i=0

g(k)u(t− k), t = 1, 2, . . . , N.

Notice that this requires knowledge of the values u(t) for t = 1−n, 2−n, . . . , N . One often assumes a observational
error in this model that is N(0, σ2) for a given value of σ2. In this case, the FIR model (21) becomes

(22) y(t) =

n∑
i=1

g(k)u(t− k) + v(t),

where v(t), t = 1, . . . , N are iid N(0, σ2). In this case, the corresponding maximum likelihood estimation problem
becomes the linear least squares problem

minimize
g∈Rn+1

1
2 ‖Hg − y‖

2
2 ,

where

y =


y(1)
y(2)

...
y(N)

 , g =


g(0)
g(1)
g(2)

...
g(n)

 and H =


u(1) u(0) u(−1) u(−2) . . . u(1− n)
u(2) u(1) u(0) u(−1) . . . u(2− n)
u(3) u(2) u(1) u(0) . . . u(3− n)

...
u(N) u(N − 1) u(N − 2) u(N − 3) . . . u(N − n)

 .
Notice that the matrix H has constant “diagonals”. Such matrices are called Toeplitz matrices.

1.5. Kalman Smoothing. Kalman smoothing is a fundamental topic in signal processing and control litera-
ture, with numerous applications in navigation, tracking, healthcare, finance, and weather. Contributions to theory
and algorithms related to Kalman smoothing, and to dynamic system inference in general, have come from statis-
tics, engineering, numerical analysis, and optimization. Here, the term ‘Kalman smoother’ includes any method of
inference on any dynamical system fitting the graphical representation of Figure 1.

The combined mathematical, statistical, and probablistic model corresponding to Figure 1 is specified as follows:

(23)
x1 = g1(x0) + w1,
xk = gk(xk−1) + wk k = 2, . . . , N,
zk = hk(xk) + vk k = 1, . . . , N ,
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X0

Z1 Z2

XN

ZN

hN
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h1

X2g1 g2

h2

gN

Figure 1. Dynamic systems amenable to Kalman smoothing methods.

where wk, vk are mutually independent random variables with known positive definite covariance matrices Qk and
Rk, respectively. Here, wk often, but not always, arises from a probabilistic model (discretization of an underlying
stochastic differential equation) and vk comes from a statistical model for observations. We have xk,wk ∈ Rn,
and zk,vk ∈ Rm(k) , so dimensions can vary between time points. Here the sequence {xk} is called the state-space
sequence and {zk} is the observation sequence. The functions gk and hk as well as the matrices Qk and Rk are
known and given. In addition, the observation sequence {zk} is also known. The goal is to estimate the unobserved
state sequence {xk}. For example,in our drug dosing example, the amount of the drug remaining in the body at
time t is the unknown state sequence while the observation sequence is the observed concentration of the drug in
each of our blood draws.

The classic case is obtained by making the following assumptions:

(1) x0 is known, and gk, hk are known linear functions, which we denote by

(24) gk(xk−1) = Gkxk−1 hk(xk) = Hkxk

where Gk ∈ Rn×n and Hk ∈ Rm(k)×n,
(2) wk, vk are mutually independent Gaussian random variables.

In the classical setting, the connection to the linear least squares problem is obtained by formulating the maximum
a posteriori (MAP) problem under linear and Gaussian assumptions. As in the linear regression ad signal processing
applications, this yields the following linear least squares problem:

(25) min
{xk}

f({xk}) :=

N∑
k=1

1

2
(zk −Hkxk)TR−1

k (zk −Hkxk) +
1

2
(xk −Gkxk−1)TQ−1

k (xk −Gkxk−1) .

To simplify this expression, we introduce data structures that capture the entire state sequence, measurement
sequence, covariance matrices, and initial conditions. Given a sequence of column vectors {uk} and matrices {Tk}
we use the notation

vec({uk}) =


u1

u2

...
uN

 , diag({Tk}) =


T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 TN

 .
We now make the following definitions:

(26)

R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN})

G =


I 0

−G2 I
. . .

. . .
. . . 0
−GN I

 ,

where g0 := g1(x0) = G1x0. With definitions in (26), problem (25) can be written

(27) min
x
f(x) =

1

2
‖Hx− z‖2R−1 +

1

2
‖Gx− w‖2Q−1 ,
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where ‖a‖2M = a>Ma.
Since the number of time steps N can be quite large, it is essential that the underlying tri-diagonal structure

is exploits in any solution procedure. This is especially true when the state-space dimension n is also large which
occurs when making PET scan movies of brain metabolics or reconstructing weather patterns on a global scale.

2. Optimality in the Linear Least Squares Problem

We now turn to a discussion of optimality in the least squares problem (4) which we restate here for ease of
reference:

(28) minimize
x∈Rn

1
2 ‖Ax− b‖

2
2 ,

where

A ∈ Rm×n, b ∈ Rm, and ‖y‖22 := y2
1 + y2

2 + · · ·+ y2
m .

In particular, we will address the question of when a solution to this problem exists and how they can be identified
or characterized.

Suppose that x is a solution to (28), i.e.,

(29) ‖Ax− b‖2 ≤ ‖Ax− b‖2 ∀ x ∈ Rn.

Using this inequality, we derive necessary and sufficient conditions for the optimality of x. A useful identity for our
derivation is

(30) ‖u+ v‖22 = (u+ v)T (u+ v) = uTu+ 2uT v + vT v = ‖u‖22 + 2uT v + ‖v‖22 .

Let x be any other vector in Rn. Then, using (30) with u = A(x− x) and v = Ax− b we obtain

(31)

‖Ax− b‖22 = ‖A(x− x) + (Ax− b)‖22
= ‖A(x− x)‖22 + 2(A(x− x))T (Ax− b) + ‖Ax− b‖22
≥ ‖A(x− x)‖22 + 2(A(x− x))T (Ax− b) + ‖Ax− b‖22 (by (29)).

Therefore, by canceling ‖Ax− b‖22 from both sides, we know that, for all x ∈ Rn,

0 ≥ ‖A(x− x)‖22 + 2(A(x− x))T (Ax− b) = 2(A(x− x))T (Ax− b)− ‖A(x− x)‖22 .

By setting x = x+ tw for t ∈ T and w ∈ Rn, we find that

t2

2
‖Aw‖22 ≥ tw

TAT (Ax− b) ∀ t ∈ R and w ∈ Rn.

Dividing by t 6= 0, we find that

t

2
‖Aw‖22 ≥ w

TAT (Ax− b) ∀ t ∈ R \ {0} and w ∈ Rn,

and sending t to zero gives

0 ≥ wTAT (Ax− b) ∀ w ∈ Rn,

which implies that AT (Ax− b) = 0 (why?), or equivalently,

(32) ATAx = AT b.

The system of equations (32) is called the normal equations associated with the linear least squares problem (28).
This derivation leads to the following theorem.

Theorem 2.1. [Linear Least Squares and the Normal Equations]
The vector x solves the problem (28), i.e.,

‖Ax− b‖2 ≤ ‖Ax− b‖2 ∀ x ∈ Rn,

if and only if ATAx = AT b.
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Proof. We have just shown that if x is a solution to (28), then the normal equations are satisfied, so we need
only establish the reverse implication. Assume that (32) is satisfied. Then, for all x ∈ Rn,

‖Ax− b‖22 = ‖(Ax−Ax) + (Ax− b)‖22
= ‖A(x− x)‖22 + 2(A(x− x))T (Ax− b) + ‖Ax− b‖22 (by (30))

≥ 2(x− x)TAT (Ax− b) + ‖Ax− b‖22 (since ‖A(x− x)‖22 ≥ 0)

= ‖Ax− b‖22 (since AT (Ax− b) = 0),

or equivalently, x solves (28). �

This theorem provides a nice characterization of solutions to (28), but it does not tell us if a solution exits. For
this we use the following elementary result from linear algebra.

Lemma 2.1. For every matrix A ∈ Rm×n we have

Null(ATA) = Null(A) and Ran(ATA) = Ran(AT ) .

Proof. Note that if x ∈ Null(A), then Ax = 0 and so ATAx = 0, that is, x ∈ Null(ATA). Therefore,
Null(A) ⊂ Null(ATA). Conversely, if x ∈ Null(ATA), then

ATAx = 0 =⇒ xTATAx = 0 =⇒ (Ax)T (Ax) = 0 =⇒ ‖Ax‖22 = 0 =⇒ Ax = 0,

or equivalently, x ∈ Null(A). Therefore, Null(ATA) ⊂ Null(A), and so Null(ATA) = Null(A).
Since Null(ATA) = Null(A), the Fundamental Theorem of the Alternative tells us that

Ran(ATA) = Ran((ATA)T ) = Null(ATA)⊥ = Null(A)⊥ = Ran(AT ),

which proves the lemma. �

This lemma immediately gives us the following existence result.

Theorem 2.2. [Existence and Uniqueness for the Linear Least Squares Problem]
Consider the linear least squares problem (28).

(1) A solution to the normal equations (32) always exists.
(2) A solution to the linear least squares problem (28) always exists.
(3) The linear least squares problem (28) has a unique solution if and only if Null(A) = {0} in which case

(ATA)−1 exists and the unique solution is given by x = (ATA)−1AT b.
(4) If Ran(A) = Rm, then (AAT )−1 exists and x = AT (AAT )−1b solves (28), indeed, Ax = b.

Proof. (1) Lemma 2.1 tells us that Ran(ATA) = Ran(AT ); hence, a solution to ATAx = AT b must exist.
(2) This follows from Part (1) and Theorem 2.1.
(3) By Theorem 2.1, x solves the linear least squares problem if and only if x solves the normal equations. Hence, the
linear least squares problem has a uniques solution if and only if the normal equations have a unique solution. Since
ATA ∈ Rn×n is a square matrix, this is equivalent to saying that ATA is invertible, or equivalently, Null(ATA) =
{0}. However, by Lemma 2.1, Null(A) = Null(ATA). Therefore, the linear least squares problem has a uniques
solution if and only if Null(A) = {0} in which case ATA is invertible and the unique solution is given by x =
(ATA)−1AT b.
(4) By the hypotheses, Lemma 2.1, and the Fundamental Theorem of the Alternative, {0} = (Rm)⊥ = (Ran(A))⊥ =
Null(AT ) = Null(AAT ); hence, AAT ∈ Rm×m is invertible. Consequently, x = AT (AAT )−1b is well-defined and
satisfies Ax = b �

The results given above establish the existence and uniqueness of solutions, provide necessary and sufficient
conditions for optimality, and, in some cases, give a formula for the solution to the linear least squares problem.
However, these results do not indicate how a solution can be computed. Here the dimension of the problem, or the
problem size, plays a key role. In addition, the level of accuracy in the solution as well as the greatest accuracy
possible are also issues of concern. Linear least squares problems range in size from just a few variables and equations
to millions. Some are so large that all of the computing resources at our disposal today are insufficient to solve
them, and in many cases the matrix A is not even available to us although, with effort, we can obtain Ax for a given
vector x. Therefore, great care and inventiveness is required in the numerical solution of these problems. Research
into how to solve this class of problems is still a very hot research topic today.
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In our study of numerical solution techniques we present two classical methods. But before doing so, we study
other aspects of the problem in order to gain further insight into its geometric structure.

3. Orthogonal Projection onto a Subspace

In this section we view the linear least squares problem from the perspective of a least distance problem to a
subspace, or equivalently, as a projection problem for a subspace. Suppose S ⊂ Rm is a given subspace and b 6∈ S.
The least distance problem for S and b is to find that element of S that is as close to b as possible. That is we wish
to solve the problem

(33) min
z∈S

1
2 ‖z − y‖

2
2 ,

or equivalently, we wish to find the point z ∈ S such that

‖z − b‖2 ≤ ‖z − b‖2 ∀ z ∈ S.

If we now take the subspace to be the range of A, S = Ran(A), then the problem (33) is closely related to the
problem (28) since

(34) z ∈ Rm solves (33) if and only if there is an x ∈ Rn with z = Ax such that x solves (28). (why?)

Below we discuss this connection and its relationship to the notion of an orthogonal projection onto a subspace.
A matrix P ∈ Rm×m is said to be a projection if and only if P 2 = P . In this case we say that P is a projection

onto the subspace S = Ran(P ), the range of P . Note that if x ∈ Ran(P ), then there is a w ∈ Rm such that x = Pw,
therefore, Px = P (Pw) = P 2w = Pw = x. That is, P leaves all elements of Ran(P ) fixed. Also, note that, if P is
a projection, then

(I − P )2 = I − P − P + P 2 = I − P,
and so (I − P ) is also a projection. Since for all w ∈ Rm,

w = Pw + (I − P )w,

we have

Rm = Ran(P ) + Ran(I − P ).

In this case we say that the subspaces Ran(P ) and Ran(I − P ) are complementary subspaces since their sum is the
whole space and their intersection is the origin, i.e., Ran(P ) ∩ Ran(I − P ) = {0} (why?).

Conversely, given any two subspaces S1 and S2 that are complementary, that is, S1∩S2 = {0} and S1+S2 = Rm,
there is a projection P such that S1 = Ran(P ) and S2 = Ran(I − P ). We do not show how to construct these
projections here, but simply note that they can be constructed with the aid of bases for S1 and S2.

The relationship between projections and complementary subspaces allows us to define a notion of orthogonal
projection. Recall that for every subspace S ⊂ Rm, we have defined

S⊥ :=
{
x
∣∣xT y = 0 ∀ y ∈ S

}
as the subspace orthogonal to S. Clearly, S and S⊥ are complementary:

S ∩ S⊥ = {0} and S + S⊥ = Rm. (why?)

Therefore, there is a projection P such that Ran(P ) = S and Ran(I − P ) = S⊥, or equivalently,

(35) ((I − P )y)T (Pw) = 0 ∀ y, w ∈ Rm.

The orthogonal projection plays a very special role among all possible projections onto a subspace. For this reason,
we denote the orthogonal projection onto the subspace S by PS.

We now use the condition (35) to derive a simple test of whether a linear transformation is an orthogonal
projection. For brevity, we write P := PS and set M = (I − P )TP . Then, by (35),

0 = eTi Mej = Mij ∀ i, j = 1, . . . , n,

i.e., M is the zero matrix. But then, since 0 = (I − P )TP = P − PTP ,

P = PTP = (PTP )T = PT .

Conversely, if P = PT and P 2 = P , then (I − P )TP = 0. Therefore, a matrix P is an orthogonal projection if and
only if P 2 = P and P = PT .
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An orthogonal projection for a given subspace S can be constructed from any orthonormal basis for that
subspace. Indeed, if the columns of the matrix Q form an orthonormal basis for S, then the matrix P = QQT

satisfies

P 2 = QQTQQT
why?

= QIkQ
T = QQT = P and PT = (QQT )T = QQT = P,

where k = dim(S), and so P is the orthogonal projection onto S since, by construction, Ran(QQT ) = Ran(Q) = S.
We catalogue these observations in the following lemma.

Lemma 3.1. [Orthogonal Projections]

(1) The projection P ∈ Rn×n is orthogonal if and only if P = PT .
(2) If the columns of the matrix Q ∈ Rn×k form an orthonormal basis for the subspace S ⊂ Rn, then P := QQT

is the orthogonal projection onto S.

Let us now apply these projection ideas to the problem (33). Let P := PS be the orthogonal projection onto
the subspace S, and let z = Pb. Then, for every z ∈ S,

‖z − b‖22 = ‖Pz − Pb− (I − P )b‖22 (since z ∈ S)

= ‖P (z − b) + (I − P )b‖22
= ‖P (z − b)‖22 + 2(z − b)TPT (I − P )b+ ‖(I − P )b‖22
= ‖P (z − b)‖22 + ‖(I − P )b‖22 (since P = PT and P = P 2)

≥ ‖(P − I)b‖22 (since ‖P (z − b)‖22 >≥ 0)

= ‖z − b‖22 .

Consequently, ‖z − b‖2 ≤ ‖z − b‖2 for all z ∈ S, that is, z = Pb solves (33).

Theorem 3.1. [Subspace Projection Theorem]
Let S ⊂ Rm be a subspace and let b ∈ Rm \ S. Then the unique solution to the least distance problem

minimize
z∈S

‖z − b‖2

is z := PSb, where PS is the orthogonal projector onto S.

Proof. Everything but the uniqueness of the solution has been established in the discussion preceeding the
theorem. For this we make use of the identity

‖(1− t)u+ tv‖22 = (1− t) ‖u‖22 + t ‖v‖22 − t(1− t) ‖u− v‖
2
2 ∀ 0 ≤ t ≤ 1. (Verify!)

Let z1, z2 ∈ Rm be two points that solve the minimum distance problem. Then,
∥∥z1 − b

∥∥
2

=
∥∥z2 − b

∥∥
2

=: η > 0,
and so by the identity given above,∥∥ 1

2 (z1 + z2)− b
∥∥2

2
=

∥∥ 1
2 (z1 − b) + 1

2 (z2 − b)
∥∥2

2

= 1
2

∥∥z1 − b
∥∥2

2
+ 1

2

∥∥z2 − b
∥∥2

2
− 1

4

∥∥z1 − z2
∥∥2

2

= η2 − 1

4

∥∥z1 − z2
∥∥2

2
.

Since η = inf {‖z − b‖2 | z ∈ S }, we must have z1 = z2. �

Let us now reconsider the linear least-squares problem (28) as it relates to our new found knowledge about
orthogonal projections and their relationship to least distance problems for subspaces. Consider the case where
m >> n and Null(A) = {0}. In this case, Theorem 2.2 tells us that x = (ATA)−1AT b solves (28), and z = PSb
solves (35) where PS is the orthogonal projector onto S = Ran(A). Hence, by (34),

PSb = z = Ax = A(ATA)−1AT b.

Since this is true for all possible choices of the vector b, we have

(36) PS = PRan(A) = A(ATA)−1AT !

That is, the matrix A(ATA)−1AT is the orthogonal projector onto the range of A. One can also check this directly
by showing that the matrix M = A(ATA)−1AT satisfies M2 = M , MT = M , and Ran(M) = Ran(A).
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Proposition 3.1. Let A ∈ Rm×n with m ≤ n and Null(A) = {0}. Then

PRan(A) = A(ATA)−1AT .

4. Minimal Norm Solutions to Ax = b

Again let A ∈ Rm×n, but now we suppose that m << n. In this case A is short and fat so the matrix A most
likely has rank m, or equivalently,

(37) Ran(A) = Rm .

But regardless of the range of A and the choice of the vector b ∈ Rm, the set of solutions to Ax = b will be infinite
since the nullity of A is n−m. Indeed, if x0 is any particular solution to Ax = b, then the set of solutions is given
by x0 + Null(A) :=

{
x0 + z

∣∣ z ∈ Null(A)
}

. In this setting, one might prefer the solution to the system having least
norm. This solution is found by solving the problem

(38) min
z∈Null(A)

1
2

∥∥z + x0
∥∥2

2
.

This problem is of the form (33). Consequently, the solution is given by z = −PSx
0 where PS is now the orthogonal

projection onto S := Null(A).
In this context, note that (I − PNull(A)) is the orthogonal projector onto Null(A)⊥ = Ran(AT ). Recall that the

formula (36) shows that if M ∈ Rk×s is such that Null(M) = {0}, then the orthogonal projector onto Ran(M) is
given by

(39) PRan(M) = M(MTM)−1MT .

In our case, M = AT and MTM = AAT . Our working assumption (37) implies that

Null(M) = Null(AT ) = Ran(A)⊥ = (Rm)⊥ = {0}

and consequently, by (39), the orthogonal projector onto Ran(AT ) is given by

PRan(AT ) = AT (AAT )−1A .

Therefore, the orthogonal projector onto Null(A) = Ran(AT )⊥ is

PNull(A) = I − PNull(A)⊥ = I − PRan(AT ) = I −AT (AAT )−1A .

Putting this all together, we find that the solution to (38) is

z = PNull(A)(−x0) = (AT (AAT )−1A− I)x0 ,

and the solution to Ax = b of least norm is

x = x0 + z = AT (AAT )−1Ax0,

where x0 is any particular solution to Ax = b, i.e., Ax0 = b. Plugging x into Ax = b gives

Ax = AAT (AAT )−1Ax0 = Ax0 = b.

Theorem 4.1. [Least Norm Solution to Linear Systems] Let A ∈ Rm×n be such that m ≤ n and Ran(A) = Rm.

(1) The matrix AAT is invertible.
(2) The orthogonal projection onto Null(A) is given by

PNull(A) = I −AT (AAT )−1A .

(3) For every b ∈ Rm, the system Ax = b is consistent, and the least norm solution to this system is uniquely
given by

x = AT (AAT )−1Ax0 ,

where x0 is any particular solution to the system Ax = b.
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5. Gram-Schmidt Orthogonalization, the QR Factorization, and Solving the Normal Equations

5.1. Gram-Schmidt Orthogonalization. We learned in the previous sections the important role orthogonal
orthogonal projections play in the linear least squares problem. In addition, we found that if the matrix U contains
an orthonormal basis for the subspace S, then the matrix UUT is the orthogonal projection onto S. Hence, one
way to obtain these projections is to compute an orthogonal basis for a subspace. This is precisely what the
Gram-Schmidt orthogonalization process does.

Let us recall the Gram-Schmidt orthogonalization process for a sequence of linearly independent vectors
a1, . . . , ak ∈ Rm (note that this implies that n <≤ m (why?)). In this process we define vectors q1, . . . , qn in-
ductively, as follows: set

p1 = a1, q1 = p1/‖p1‖,

pj = aj −
j−1∑
i=1

〈aj , qj〉 qi and qj = pj/‖pj‖ for 2 ≤ j ≤ n.

For 1 ≤ j ≤ n, qj ∈ Span{a1, . . . , aj}, so pj 6= 0 by the linear independence of a1, . . . , aj . An elementary induction
argument shows that the qj ’s form an orthonormal basis for span (a1, . . . , an).

If we now define

rjj = ‖pj‖ 6= 0 and rij = 〈aj , qi〉 for 1 ≤ i < j ≤ n,
then

a1 = r11 q1,

a2 = r12 q1 + r22 q2,

a3 = r13 q1 + r23 q2 + r33 q3,

...

an =

n∑
i=1

rin qi.

Set

A = [a1 a2 . . . an] ∈ Rm×n, R = [rij ]Rn×n, and Q = [q1 q2 . . . qn] ∈ Rm×n ,
where rij = 0, i > j. Then

A = QR ,

where Q is unitary and R is an upper triangular n×n matrix. In addition, R is invertible since the diagonal entries
rjj are non-zero. This is called the QR factorization of the matrix A.

Remark 5.1. If the aj’s for j = 1, . . . , n are linearly dependent, then, for some value(s) of j,

aj ∈ Span{a1, . . . , aj−1}, and so pj = 0.

The process can be modified by setting rjj = 0, not defining a new qj for this iteration, but continuing to define
rij = 〈aj , qi〉 for 1 ≤ i < j, and proceeding. We still end up with orthogonormal vectors {q1, q2, . . . , qk}, but
now k < n. In general, after n iterations, there will be 1 ≤ k ≤ n vectors {q1, . . . , qk} that form an orthonormal
basis for Span{a1, . . . , an}, where n − k is the number of diagonal entries rjj that take the value zero. Again we
obtain A = QR, but now Q may not be square and the matrix R may have zero diagonal entries in which case it is
not invertible.

Remark 5.2. The classical Gram-Schmidt algorithm as described above does not behave well computationally.
This is due to the accumulation of round-off error. The computed qj’s are not orthogonal: 〈qj , qk〉 is small for
j 6= k with j near k, but not so small for j � k or j � k.

An alternate version, “Modified Gram-Schmidt,” is equivalent in exact arithmetic, but behaves better numeri-
cally. In the following “pseudo-codes,” p denotes a temporary storage vector used to accumulate the sums defining
the pj’s.
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Classic Gram-Schmidt Modified Gram-Schmidt
For j = 1, · · · , n do For j = 1, . . . , n do∣∣∣ p := aj

∣∣∣ p := aj∣∣∣ For i = 1, . . . , j − 1 do
∣∣∣ For i = 1, . . . , j − 1 do∣∣∣ ∣∣∣ rij = 〈aj , qi〉
∣∣∣ ∣∣∣ rij = 〈p, qi〉∣∣∣ ⌊

p := p− rijqi
∣∣∣ ⌊

p := p− rijqi∣∣∣ rjj := ‖p‖
∣∣∣ rjj = ‖p‖⌊

qj := p/rjj

⌊
qj := p/rjj

The only difference is in the computation of rij: in Modified Gram-Schmidt, we orthogonalize the accumulated
partial sum for pj against each qi successively.

Theorem 5.1. [The Full QR Factorization] Suppose A ∈ Rm×n with m ≥ n. Then there exists a permutation
matrix P ∈ Rn×n, a unitary matrix Q ∈ Rm×m, and an upper triangular matrix R ∈ Rm×n such that AP = QR.
Let Q1 ∈ Rm×n denote the first n columns of Q, Q2 the remaining (m− n) columns of Q, and R1 ∈ Rn×n the first
n rows of R, then

(40) AP = QR = [Q1 Q2]

[
R1

0

]
= Q1R1.

Moreover, we have the following:

(a) We may choose R to have nonnegative diagonal entries.
(b) If A is of full rank, then we can choose R with positive diagonal entries, in which case we obtain the

condensed factorization A = Q1R1, where R1 ∈ Rn×n invertible and the columns of Q1 forming an
orthonormal basis for the range of A.

(c) If rank (A) = k < n, then

R1 =

[
R11 R12

0 0

]
,

where R11 is a k × k invertible upper triangular matrix and R12 ∈ Rk×(n−k). In particular, this implies
that AP = Q11[R11 R12], where Q11 are the first k columns of Q. In this case, the columns of Q11 form
an orthonormal basis for the range of A.

Remark 5.3. We call the factorization AP = Q11[R11 R12] in Part (c) above the condensed QR Factorization.
Note that if P is a permutation matrix, then so is PT with P−1 = PT (i.e. permutation matrices are unitary). The
role of the permutation matrix is to make the first k = rank (A) columns of AP linearly independent.

To distinguish the condensed QR Factorization from the factorization in (40) with Q an m×m unitary matrix,
we will refer the factorization where Q is unitary as the full QR factorization.

Proof. If necessary, permute the columns of A so that the first k = rank (A) columns of A are linearly
independent and let P denote the permutation matrix that accomplishes this task so the the first k columns of AP
are linearly independent. Apply the Gram-Schmidt orthogonalization process to obtain the matrix

Q1 = [q1, . . . , qk] ∈ Rm×k and the upper triangular matrix R̃11 = [rij ] ∈ Rk×k

so that Q1R1 gives the first k columns of A. The write the remaining columns of A as linear combinations of
the columns of Q1 to obtain the coefficient matrix R12 ∈ Rk×(n−k) yielding AP = Q1[R11 R12]. Finally, extend
{q1, . . . , qk} to an orthonormal basis {q1, . . . , qm} of Rm, and set

Q = [q1, . . . , qm] and R =

[
R1

0

]
∈ Rm×n, so AP = QR.

As rjj > 0 in the Gram-Schmidt process, we have (b). �

Remark 5.4. There are more efficient and better computationally behaved ways of calculating the Q and R
factors. The idea is to create zeros below the diagonal (successively in columns 1, 2, . . .) as in Gaussian Elimination,
except instead of doing this by successive left multiplication by Gaussian elimination matrices, we left multiply by
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unitary matrices. Below, we show how this can be done with Householder transformations. But another popular
approach is to use Givens rotations.

In practice, every A ∈ Rm×n has a QR-factorization, even when m < n. This follows immediately from Part
(c) Theorem 5.1.

Corollary 5.1.1. [The General Condensed QR Factorization] Let A ∈ Rm×n have rank k ≤ min{m,n}. Then
there exist

Q ∈ Rm×k with orthonormal columns,

R ∈ Rk×n full rank upper triangular, and

P ∈ Rn×n a permutation matrix

such that

AP = QR.

In particular, the columns of the matrix Q form a basis for the range of A. Moreover, the matrix R can be written
in the form

R = [R1 R2],

where R1 ∈ Rk×k is nonsingular.

Remark 5.5. The permutation P in the corollary above can be taken to be any permutation that re-orders the

columns of A so that the first k columns of A are linearly independent, where k is the rank of A (similarly for P̃ in
permuting the columns of AT ).

Corollary 5.1.2. [Orthogonal Projections onto the Four Fundamental Subspaces] Let A ∈ Rm×n have rank
k ≤ min{m,n}. Let A and AT have generalized QR factorizations

AP = Q[R1 R2] and AT P̃ = Q̃[R̃1 R̃2].

Since row rank equals column rank, P ∈ Rn×n is a permutation matrix, P̃ ∈ Rm×m is a permutation matrix,

Q ∈ Rm×k and Q̃ ∈ Rn×k have orthonormal columns, R1, R̃1 ∈ Rk×k are both upper triangular nonsingular

matrices, R2 ∈ Rk×(n−k), and R̃2 ∈ Rk×(m−k). Moreover,

QQT is the orthogonal projection onto Ran(A),

I −QQT is the orthogonal projection onto Null(AT ),

Q̃Q̃T is the orthogonal projection onto Ran(AT ), and

I − Q̃Q̃T is the orthogonal projection onto Null(A)⊥.

Proof. The result follows immediately from Corollary 5.1.1 and the Fundamental Theorem of the Alternative.
�

Exercise 5.1. Verify the representations of the orthogonal projections onto Ran(A) and Null(A) given in
Corollary 5.1.2 correspond to those given in Proposition 3.1 and Theorem 4.1.

5.2. Solving the Normal Equations with the QR Factorization. Let’s now reconsider the linear least
squares problem (28) and how the QR factorization can be used in its solution. Specifically, we examine how is can
be used to solve the normal equations ATAx = AT b. Let A and b be as in (28), and let

AP = Q[R1 R2]

be the general condensedQR factorization of A, where P ∈ Rn×n is a permutation matrix, Q ∈ Rm×k has orthonor-
mal columns, R1 ∈ Rk×k is nonsingular and upper triangular, and R2 ∈ Rk×(n−k) with k = rank (A) ≤ min{n,m}.
Replacing A by A = Q[R1 R2]PT in the normal equations gives the following equivalent system:

PT
[
RT1
RT2

]
QTQ

[
R1 R2

]
Px = PT

[
RT1
RT2

] [
R1 R2

]
Px = AT b = PT

[
RT1
RT2

]
QT b,

since QTQ = Ik the k× k identity matrix. By multiplying on the left by P , replacing b by b̂ := QT b ∈ Rk and x by

(41) z :=
[
R1 R2

]
Px,
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we obtain [
RT1
RT2

]
z =

[
RT1
RT2

]
b̂.

Let us see if we can reconstruct a solution to the normal equations by choosing the most obvious solution to the

this system, namely, z := b̂. If this is to yield a solution to the normal equations, then, by (41), we need to solve
the system [

R1 R2

]
Px = b̂ .

Set [
w1

w2

]
:= Px ,

where w1 ∈ Rk and w2 ∈ R(n−k), and consider the system

R1w1 = b̂ ∈ Rk.
Since R1 ∈ Rk×k is invertible, this system has a unique solution w1 := R−1

1 b̂. Indeed, this system is very easy to

solve using back substitution since R1 is upper triangular. Next set w2 = 0 ∈ R(n−k) and

x := PTw = PT
[
R−1

1 b̂
0

]
.

Then

ATAx = ATAPT
[
R−1

1 b̂
0

]
= ATQ

[
R1 R2

]
PPT

[
R−1

1 b̂
0

]
= ATQR1R

−1
1 b̂ (since PPT = I)

= ATQb̂

= ATQQT b

= PT
[
RT1
RT2

]
QTQQT b (since AT = PT

[
RT1
RT2

]
QT )

= PT
[
RT1
RT2

]
QT b (since QTQ = I)

= AT b,

that is, x solves the normal equations!
Let us now consider the computational cost of obtaining the solution to the linear least squares problem in this

way. The key steps is this computation are as follows:

AP = Q[R1 R2] the general condensedQR factorization o(m2n)

b̂ = QT b a matrix-vector product o(km)

w1 = R−1
1 b̂ a back solve o(k2)

x = PT
[
R−1

1 b̂
0

]
a matrix-vector product o(kn).

Therefore, the majority of the numerical effort is in the computation of the QR factorization.

5.3. Computing the Full QR Factorization using Householder Reflections. In subsection 5.1 we
showed how to compute the QR factorization using the Gram-Schmidt orthogonalization procedure. We also
indicated that due to numerical round-off error this procedure has difficulty in preserving the orthogonality of the
columns of the matrix Q. To address this problem we presented the mathematically equivalent modified Gram-
Schmidt process which has improved performance. We now present a very different method for obtaining the
full QR factorization. The approach we describe is very much like Gauss-Jordan Elimination to obtain reduced
echelon form. However, now we successively multiply A on the left by unitary matrices, rather than Gauss-Jordan
elimination matrices, which eventually put A into upper triangular form. The matrices we multiply by are the
Householder reflection matrices.
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Given w ∈ Rn we can associate the matrix

U = I − 2
wwT

wTw

which reflects Rn across the hyperplane Span{w}⊥. The matrix U is call the Householder reflection across this
hyperplane.

Given a pair of vectors x and y with

‖x‖2 = ‖y‖2, and x 6= y,

the Householder reflection

U = I − 2
(x− y)(x− y)T

(x− y)T (x− y)

is such that y = Ux, since

Ux = x− 2(x− y)
‖x‖2 − yTx

‖x‖2 − 2yTx+ ‖y‖2

= x− 2(x− y)
‖x‖2 − yTx

2(‖x‖2 − yTx)
(since ‖x‖ = ‖y‖)

= y .

We now show how Householder reflections can be used to obtain the QR factorization. We begin by describing
the basic deflation step in the QR-factorization of the matrix A0 ∈ Rm×n which we block decompose as

A0 =

[
α0 aT0
b0 Ã0

]
, with Ã0 ∈ R(m−1)×(n−1),

and set

ν0 =

∥∥∥∥(α0

b0

)∥∥∥∥
2

.

If ν0 = 0, then multiply A0 on the left by a permutation matrix P0 to bring a non-zero (largest magnitude) column
in A0 into the first column and the zero column to the last column. Then block decompose A0P0 as above with

A0P0 =

[
α0 aT0
b0 Ã0

]
, with Ã0 ∈ R(m−1)×(n−1),

and set

ν0 =

∥∥∥∥(α0

b0

)∥∥∥∥
2

6= 0.

Let H0 be the Householder transformation that maps(
α0

b0

)
7→ ν0 e1 :

H0 = I − 2
wwT

wTw
where w =

(
α0

b0

)
− ν0e1 =

(
α0 − ν0

b0

)
.

Then,

H0A =

[
ν0 aT1
0 A1

]
.

Now repeat with A1.
If the above method is implemented by always permuting the column of greatest magnitude into the current

pivot column, then
AP = QR

gives a QR-factorization with the diagonal entries of R nonnegative and listed in the order of descending magnitude.
Since Q is unitary, this is the full QR factorization in (40).





CHAPTER 4

Optimization of Quadratic Functions

In this chapter we study the problem

(42) minimize
x∈Rn

1
2x

THx+ gTx+ β,

where H ∈ Rn×n is symmetric, g ∈ Rn, and β ∈ R. It has already been observed that we may as well assume that
H is symmetric since

xTHx = 1
2x

THx+ 1
2 (xTHx)T = xT

[
1
2 (H +HT )

]
x,

where 1
2 (H +HT ) is called the symmetric part of H. Therefore, in this chapter we assume that H is symmetric. In

addition, we have also noted that an objective function can always be shifted by a constant value without changing
the solution set to the optimization problem. Therefore, we assume that β = 0 for most of our discussion. However,
just as in the case of integration theory where it is often helpful to choose a particular constant of integration, in
many applications there is a “natural” choice for β that helps one interpret the problem as well as its solution.

The class of problems (42) is important for many reasons. Perhaps the most common instance of this problem
is the linear least squares problem:

(43) minimize
x∈Rn

1
2 ‖Ax− b‖

2
2 ,

where A ∈ Rm×n, and b ∈ Rm. By expanding the objective function in (43), we see that

(44) 1
2 ‖Ax− b‖

2
2 = 1

2x
T (ATA)x− (AT b)Tx+ 1

2 ‖b‖
2
2 = 1

2x
THx+ gTx+ β,

where H = ATA, g = −AT b, and β = 1
2 ‖b‖

2
2. This connection to the linear least squares problem will be explored

in detail later in this chapter. For the moment, we continue to exam the general problem (42). As in the case of
the linear least squares problem, we begin by discussing characterizations of the solutions as well as their existence
and uniqueness. In this discussion we try to follow the approach taken for the the linear least squares problem.
However, in the case of (43), the matrix H := ATA and the vector g = −AT b possess special features that allowed
us to establish very strong results on optimality conditions as well as on the existence and uniqueness of solutions.
In the case of a general symmetric matrix H and vector g it is possible to obtain similar results, but there are
some twists. Symmetric matrices have many special properties that can be exploited to help us achieve our goal.
Therefore, we begin by recalling a few of these properties, specifically those related to eigenvalue decomposition.

1. Eigenvalue Decomposition of Symmetric Matrices

Given a matrix A ∈ Rn×n, we say that the scalar λ is an eigenvalue of A if there is a non-zero vector x such
that Ax = λx, or equivalently, Null(λI − A) 6= {0}. Observe that Null(λI − A) 6= {0} if and only if (λI − A) is
singular, that is, det(λI − A) = 0. Consequently, λ is an eigenvalue of A if and only if det(λI − A) = 0. If we
now think of λ as a variable, this says that we can find all eigenvalues of A by finding all roots of the equation
det(λI − A) = 0. The function p(λ) := det(λI − A) is easily seen to be a polynomial of degree n in λ which we
call the characteristic polynomial of A. By the Fundamental Theorem of Algebra, we know that p(λ) has n roots
over the complex numbers if we count the multiplicities of these roots. Hence, when we discuss eigenvalues and
eigenvectors we are forced in the setting of complex numbers. For this reason we may as well assume that A ∈ Cn×n.

Working on Cn requires us to re-examine our notion of the Euclidean norm and its associated dot product.

Recall that for a complex number ζ := x+ iy, with x, y ∈ R and i :=
√
−1, the magnitude of ζ is given by |ζ| =

√
ζ̄ζ,

where ζ̄ := x− iy is the complex conjugate of ζ. If we now define the Euclidean norm of a vector z ∈ Cn to be the
square root of the sum of the squares of magnitude of its components, then

‖z‖2 =

√√√√ n∑
k−1

|zk|2 =

√√√√ n∑
k−1

zkzk =
√
zT z =

√
z∗z,

37
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where we define
z∗z = (z)T z,

that is, z∗ takes z to its conjugate transpose. When z ∈ Rn, we have z∗ = zT , and we recover the usual formulas.
With the ∗ operation, we can extend our notion of dot product (or, inner product) by writing

〈z, y〉 := z∗y ∈ C .
When z and y are real vectors we recover usual notion of dot product for such vectors. Finally, for matrices
A ∈ Cn×n, we define

A∗ := A
T
,

that is, we conjugate every element of A and then take the transpose. This notation is very helpful in a number of
ways. For example, we have

〈Ay, x〉 = (Ay)∗x = y∗A∗x and ‖Ax‖22 = x∗A∗Ax .

We call A∗ the adjoint of A.
Recall that a matrix H ∈ Rn×n is said to be symmetric of HT = H. By extension, we say that an matrix

Q ∈ Cn×n is self-adjoint if Q∗ = Q. Thus, in particular, every real symmetric matrix is self adjoint. We have the
following remarkable fact about self-adjoint matrices.

Lemma 1.1. If Q ∈ Cn×n is self-adjoint, then Q has only real eigenvalues. In particular, if H is a real symmetric
matrix, then H has only real eigenvalues and for each such eigenvalue there is a real eigenvector. Moreover, if
(λ1, v

1) and (λ2, v
2) are two eigenvalue-eigenvectors pairs for H with λ1 6= λ2, then (v1)T v2 = 0.

Proof. Let λ ∈ C be an eigenvalue of Q. Then there is a non-zero eigenvector x ∈ Cn such that Qx = λx.
Therefore,

λ ‖x‖22 = λx∗x = x∗Qx = x∗Q∗x = (x∗Qx)∗ = (λ ‖x‖22)∗ = λ ‖x‖22 ,
so that λ = λ which can only occur if λ is a real number.

If H is real symmetrix, then it is self adjoint so all of its eigenvalues are real. If λ is one such eigenvalue with
associated eigenvector z = x+ iy with x, y ∈ Rn, then

Hx+ iHy = Hz = λz = λx+ iλy.

Consequently, Hx = λx and Hy = λy since both Hx and Hy are real vectors. Since z 6= 0, either x or y or both
are non-zero, in any case we have a real eigenvector for H corresponding to λ.

Next let (λ1, v
1) and (λ2, v

2) be eigenvalue-eigenvectors pairs for H with λ1 6= λ2. Then

λ1(v1)T v2 = (Hv1)T v2 = (v1)THv2 = λ2(v1)T v2,

since λ1 6= λ2, we must have (v1)T v2 = 0. �

Next, suppose λ1 is an eigenvalue for the real symmetric matrix H ∈ Rn×n and let the columns of the matrix
U1 ∈ Rn×k form an orthonormal basis for the subspace Null(λ1I −H), where k = dim(Null(λ1I −H)) ≥ 1. Let the

columns of U2 ∈ Rn×(n−k) form an orthonormal basis for the subspace Null(λ1I−H)⊥ and set Ũ = [U1 U2] ∈ Rn×n.

Then ŨT Ũ = I, that is, Ũ is a unitary matrix. In particular, Ũ−1 = ŨT and so Ũ ŨT = I as well. We have the
following relationships between U1, U2, and H:

HU1 = λ1U1, UT1 HU1 = λ1U
T
1 U1 = λ1Ik and (UT1 HU2)T = UT2 HU1 = λ1U

T
2 U1 = 0(n−k)×k.

Consequently,

(45) ŨTHŨ =

[
UT1
UT2

]
H
[
U1 U2

]
=

[
UT1
UT2

] [
HU1 HU2

]
=

[
UT1 HU1 UT1 HU2

UT2 HU1 UT2 HU2

]
=

[
λ1Ik 0

0 UT2 HU2

]
,

and so

(46) H = Ũ ŨTHŨŨT =
[
U1 U2

] [λ1Ik 0
0 UT2 HU2

] [
UT1
UT2

]
.

These observations provide the foundation for the following eigenvalue theorem for real symmetric matrices.

Theorem 1.1. [Eigenvalue Decomposition for Symmetric Matrices] Let H ∈ Rn×n be a real symmetric matrix.
Then there is a unitary matrix U such that

H = UΛUT ,

where Λ := diag(λ1, λ2, . . . , λn) with λ1, λ2, . . . , λn being the eigenvalues of H repeated according to multiplicity.
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Proof. We proceed by induction on the dimension. The result is trivially true for n = 1. Assume that the
result is true for all dimensions k < n with n > 1 and show it is true for all n × n symmetric matrices. Let
H ∈ Rn×n be symmetric and let λ1 be any eigenvalue of H with k = dim(Null(λ1I −H)) ≥ 1. Let U1 ∈ Rn×k and
U2 ∈ Rn×(n−k) be as in (45) and (46) above. If k = n, the result follows from (45) so we can assume that k < n.

Since (45) is a similarity transformation of H, ŨTHŨ has the same characteristic polynomial as H:

det(λIn −H) = (λ− λ1)kq(λ) , where q(λ) = det(λIn−k − UT2 HU2).

Therefore, the eigenvalues of UT2 HU2 are necessarily those of H that are not equal to λ1 and each has the same
multiplicity as they have for H.

Apply the induction hypothesis to the (n − k) × (n − k) matrix UT2 HU2 to obtain a real unitary matrix
V ∈ R(n−k)×(n−k) such that

UT2 HU2 = V Λ̃V T ,

where Λ̃ = diag(µ1, µ2, . . . , µ(n−k)) with µ1, µ2, . . . , µ(n−k) being the eigenvalues of H that are not equal to λ1 with
each having the same multiplicity as they have for H. Then, by (46)

H =
[
U1 U2

] [λ1Ik 0
0 UT2 HU2

] [
UT1
UT2

]
=
[
U1 U2

] [Ik 0
0 V

] [
λ1Ik 0

0 Λ̃

] [
Ik 0
0 V T

] [
UT1
UT2

]
.

The result is obtained by setting

U =
[
U1 U2

] [Ik 0
0 V

]
=
[
U1 U2V

]
and observing that UTU = I. �

One important consequence of this result is the following theorem

Theorem 1.2. [The Rayleigh-Ritz Theorem] Let the symmetric matrix H ∈ Rn×n have smallest eigenvalue
λmin(H) and largest eigenvalue λmax(H). Then, for all u ∈ Rn,

λmin(H) ‖u‖22 ≤ u
THu ≤ λmax(H) ‖u‖22 ,

with equality holding on the left for every eigenvector u for λmin(H) and equality holding on the right for every
eigenvector u for λmax(H).

Proof. Let H = UΛUT be the eigenvalue decomposition of H in Theorem 1.1 with Λ = diag(λ1, λ2, . . . , λn).
Then the columns of U form an orthonormal basis for Rn. Therefore, given any u ∈ Rn \{0}, there is a z ∈ Rn \{0}
such that u = Uz. Hence

uTHu = (Uz)TUΛUT (Uz) = zTΛz =

n∑
j=1

λjz
2
j .

Clearly,

λmin(H) ‖z‖22 =

n∑
j=1

λmin(H)z2
j ≤

n∑
j=1

λjz
2
j ≤

n∑
j=1

λmax(H)z2
j = λmax(H) ‖z‖22 .

The result now follows since ‖z‖22 = zT z = zTUTUz = uTu = ‖u‖22. �

The following definition describes some important concepts associated with symmetric matrices that are im-
portant for optimization.

Definition 1.1. Let H ∈ Rn×n.

(1) H is said to be positive definite if xTHx > 0 for all x ∈ Rn \ {0}.
(2) H is said to be positive semi-definite if xTHx ≥ 0 for all x ∈ Rn.
(3) H is said to be negative definite if xTHx < 0 for all x ∈ Rn \ {0}.
(4) H is said to be positive semi-definite if xTHx ≤ 0 for all x ∈ Rn.
(5) H is said to be indefinite if H is none of the above.

We denote the set of real n×n symmetric matrices by Sn, the set of positive semi-definite real n×n symmetric
matrices by Sn+, and the set of positive definite real n× n symmetric matrices by Sn++. It is easily seen that Sn is
a vector space.

Theorem 1.2 provides necessary and sufficient conditions under which a symmetric matrix H is positive/negative

definite/semi-definite. For example, since λmin(H) ‖u‖22 ≤ uTHu with equality when u is an eigenvector associted
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with λmin(H), we have that H is positive definite if and only if λmin(H) > 0. Similar results can be obtained for
the other cases.

An additional property of positive semi-definite matrices is that they possess square roots. If H ∈ Rn×n
is symmetric and positive semi-definite, then Theorem 1.1 tells us that H = UΛUT , where U is unitary and
Λ = diag(λ1, . . . , λn) with λi ≥ 0, i = 1, . . . , n. If we define Λ1/2 := diag(

√
λ1, . . . ,

√
λn) and H1/2 = UΛ1/2UT ,

then H = UΛUT = UΛ1/2UT = H1/2H1/2, so H1/2 provides a natural notion of the square root of a matrix.
However, H1/2 is not uniquely defined since we can always re-order the diagonal elements and their corresponding
columns to produce the same effect. In addition, H1/2 is always symmetric while in some instances choosing a non-
symmetric square root may be beneficial. For example, if we consider the linear least squares problem (43), then
H = ATA. Should A be considered a square root of H? In order to cover the full range of possible considerations,
we make the following definition for the square root of a symmetric matrix.

Definition 1.2. [Square Roots of Positive Semi-Definite Matrices] Let H ∈ Rn×n be a symmetric positive
semi-definite matrix. We say that the matrix L ∈ Rn×n is a square root of H if H = LLT .

2. Optimality Properties of Quadratic Functions

Recall that for the linear least squares problem, we were able to establish a necessary and sufficient condition
for optimality, namely the normal equations, by working backward from a known solution. We now try to apply
this same approach to quadratic functions, in particular, we try to extend the derivation in (31) to the objective
function in (47). Suppose x is a local solution to the quadratic optimization problem

(47) minimize
x∈Rn

1
2x

THx+ gTx,

where H ∈ Rn×n is symmetric and g ∈ Rn, i.e., there is an ε > 0 such that

(48) 1
2x

THx+ gTx ≤ 1
2x

THx+ gTx ∀x ∈ x+ εB2,

where x + εB2 := {x+ εu |u ∈ B2 } and B2 := u‖u‖2 ≤ 1 (hence, x + εB2 = {x | ‖x− x‖2 ≤ ε}). Note that, for all
x ∈ Rn,

(49)

xTHx = (x+ (x− x))TH(x+ (x− x))

= xTHx+ 2xTH(x− x) + (x− x)TH(x− x)

= xTHx+ 2(x+ (x− x))TH(x− x) + (x− x)TH(x− x)

= xTHx+ 2xTH(x− x) + 2(x− x)TH(x− x) + (x− x)TH(x− x)

= xTHx+ 2xTH(x− x)− (x− x)TH(x− x).

Therefore, for all x ∈ x+ εB2,

1
2x

THx+ gTx = ( 1
2x

THx+ gTx) + (Hx+ g)T (x− x)− 1
2 (x− x)TH(x− x)

≥ ( 1
2x

THx+ gTx) + (Hx+ g)T (x− x)− 1
2 (x− x)TH(x− x) , (since x is a local solution)

and so

(50) 1
2 (x− x)TH(x− x) ≥ (Hx+ g)T (x− x) ∀x ∈ x+ εB2.

Let 0 ≤ t ≤ ε and v ∈ B2 and define x = x+ tv ∈ x+ εB2. If we plug x = x+ tv into (50), then

(51)
t2

2
vTHv ≥ −t(Hx+ g)T v.

Dividing this expression by t > 0 and taking the limit as t ↓ 0 tells us that

0 ≤ (Hx+ g)T v ∀ v ∈ B2 ,

which implies that Hx+ g = 0. Plugging this information back into (51) gives

t2

2
vTHv ≥ 0 ∀ v ∈ B2 .

Dividing by t2/2 for t 6= 0 tells us that

vTHv ≥ 0 ∀ v ∈ B2

or equivalently, that H is positive semi-definite. These observations motivate the following theorem.
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Theorem 2.1. [Existence and Uniqueness in Quadratic Optimization] Let H ∈ Rn×n and g ∈ Rn be as in (47).

(1) A local solution to the problem (47) exists if and only if H is positive semi-defnite and there exists a
solution x to the equation Hx+ g = 0 in which case x is a local solution to (47).

(2) If x is a local solution to (47), then it is a global solution to (47).
(3) The problem (47) has a unique global solution if and only if H is positive definite in which case this solution

is given by x = −H−1g.
(4) If either H is not positive semi-definite or there is no solution to the equation Hx+ g = 0 (or both), then

−∞ = inf
x∈Rn

1
2x

THx+ gTx .

Proof. (1) We have already shown that if a local solution x to (47) exists, then Hx+ g = 0 and H is positive
semi-definite. On the other hand, suppose that H is positive semi-definite and x is a solution to Hx+ g = 0. Then,
for all x ∈ Rn, we can interchange the roles of x and x in the second line of (49) to obtain

xTHx = xTHx+ 2xTH(x− x) + (x− x)TH(x− x).

Hence, for all x ∈ Rn,

1
2x

THx+ gTx = 1
2x

THx+ gTx+ (Hx+ g)T (x− x) + 1
2 (x− x)TH(x− x) ≥ 1

2x
THx+ gTx ,

since Hx+ g = 0 and H is positive semi-definite. That is, x is a global solution to (47) and hence a local solution.

(2) Suppose x is a local solution to (47) so that, by Part (1), H is positive semi-definite and Hx+ g = 0, and there
is an ε > 0 such that (48) holds. Next observe that, for all x, y ∈ Rn and λ ∈ R, we have

((1− λ)x+ λy)TH((1− λ)x+ λy)− (1− λ)xTHx− λyTHy
= (1− λ)2xTHx+ 2λ(1− λ)xTHy + λ2y2Hy − (1− λ)xTHx− λyTHy
= −λ(1− λ)xTHx+ 2λ(1− λ)xTHy − λ(1− λ)yTHy

= −λ(1− λ)(x− y)TH(x− y),

or equivalently,

(52) ((1− λ)x+ λy)TH((1− λ)x+ λy) ≤ (1− λ)xTHx+ λyTHy − λ(1− λ)(x− y)TH(x− y).

Since H is positive semi-definite, this implies that

(53) ((1− λ)x+ λy)TH((1− λ)x+ λy) ≤ (1− λ)xTHx+ λyTHy ∀ λ ∈ [0, 1].

If x is not a global solution, then there is an x̂ such that f(x̂) < f(x), where f(x) := 1
2x

THx + gTx. By (48), we
must have ‖x− x̂‖2 > ε. Set λ := ε

2‖x−x̂‖2
so that 0 < λ < 1, and define xλ := (1−λ)x+λx̂ = x+λ(x̂−x) so that

xλ ∈ x+ εB2. But then, by (53),

f(xλ) ≤ (1− λ)f(x) + λf(x̂) < (1− λ)f(x) + λf(x) = f(x),

which contradicts (48). Hence, no such x̂ can exist so that x is a global solution to (47).

(3) If (47) has a unique global solution x, then x must be the unique solution to the equation Hx+ g = 0. This can
only happen if H is invertible. Hence, H is invertible and positive semi-definite which implies that H is positive
definite. On the other hand, if H is positive definite, then it is positive semi-definite and there is a unique solution
to the equation Hx+ g = 0, i.e., (49) has a unique global solution.

(4) The result follows if we can show that f(x) := 1
2x

THx+ gTx is unbounded below when either H is not positive
semi-definite of there is no solution to the equation Hx+g = 0 (or both). Let us first suppose that H is not positive
semi-definite, or equivalently, λmin(H) < 0. Let u ∈ Rn be an eigenvector associated with the eigenvalue λmin(H)

with ‖u‖2 = 1. Then, for x := tu with t > 0, we have f(tu) = λmin(H) t
2

2 + tgTu
t↑∞−→ −∞ since λmin(H) < 0, so f

is unbounded below.
Next suppose that there is no solution to the equation Hx + g = 0. In particular, g 6= 0 and g /∈ Ran(H) =

Null(H)⊥. Then the orthogonal projection of g onto Null(H) cannot be zero: ĝ := PNull(H)(g) 6= 0. Hence, for

x := −tĝ with t > 0, we have f(−tĝ) = −t ‖ĝ‖22
t↑∞−→ −∞, so again f is unbounded below. �
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The identity (52) is a very powerful tool in the analysis of quadratic functions. It was the key tool in showing
that every local solution to (47) is necessarily a global solution. It is also remarkable, that a local solution exists
if and only if H is positive definite and there is a solution to the equation Hx + g = 0. We now show how these
results can be extended to problems with linear equality constraints.

3. Minimization of a Quadratic Function on an Affine Set

In this section we consider the problem

(54)
minimize 1

2x
THx+ gTx

subject to Ax = b,

where H ∈ Rn×n is symmetric, g ∈ Rn, A ∈ Rm×n, and b ∈ Rm. We assume that the system Ax = b is consistent.
That is, there exists x̂ ∈ Rn such that Ax̂ = b in which case

{x |Ax = b} = x̂+ Null(A).

Consequently, the problem (54) is of the form

(55) minimize
x∈x̂+S

1
2x

THx+ gTx ,

where S is a subspace of Rn. This representation of the problem shows that the problem (54) is trivial if Null(A) =
{0} since then the unique solution x̂ to Ax = b is the unique solution to (54). Hence, when considering the problem
(54) it is always assumed that Null(A) 6= {0}, and furthermore, that m < n.

Definition 3.1. [Affine Sets] A subset K of Rn is said to be an affine set if there exists a point x̂ ∈ Rn and a
subspace S ⊂ Rn such that K = x̂+ S = {x̂+ u |u ∈ S }.

We now develop necessary and sufficient optimality conditions for the problem (55), that is, for the minimization
of a quadratic function over an affine set. For this we assume that we have a basis v1, v2, . . . , vk for S so that
dim(S) = k. Let V ∈ Rn×k be the matrix whose columns are the vectors v1, v2, . . . , vk so that S = Ran(V ). Then
x̂+ S =

{
x̂+ V z

∣∣ z ∈ Rk
}

. This allows us to rewrite the problem (55) as

(56) minimize
z∈Rk

1
2 (x̂+ V z)TH(x̂+ V z) + gT (x̂+ V z) .

Proposition 3.1. Consider the two problems (55) and (56), where the columns of the matrix V form a basis
for the subspace S. The set of optimal solution to these problems are related as follows:

{x |x solves (55)} = {x̂+ V z | z solves (56)} .

By expanding the objective function in (56), we obtain

1
2 (x̂+ V z)TH(x̂+ V z) + gT (x̂+ V z) = 1

2z
TV THV z + (V T (Hx̂+ g))T v + f(x̂),

where f(x) := 1
2x

THx+ gTx. If we now set Ĥ := V THV , ĝ := V T (Hx̂+ g), and β := f(x̂), then problem (56) has
the form of (42):

(57) minimize
z∈Rk

1
2z
T Ĥz + ĝT z ,

where, as usual, we have dropped the constant term β = f(x̂). Since we have already developed necessary and
sufficient conditions for optimality in this problem, we can use them to state similar conditions for the problem
(55).

Theorem 3.1. [Optimization of Quadratics on Affine Sets]
Consider the problem (55).

(1) A local solution to the problem (55) exists if and only if uTHu ≥ 0 for all u ∈ S and there exists a vector
x ∈ x̂+ S such that Hx+ g ∈ S⊥, in which case x is a local solution to (55).

(2) If x is a local solution to (55), then it is a global solution.
(3) The problem (55) has a unique global solution if and only if uTHu > 0 for all u ∈ S \ {0}. Moreover, if

V ∈ Rn×k is any matrix such that Ran(V ) = S where k = dim(S), then a unique solution to (55) exists
if and only if the matrix V THV is positive definite in which case the unique solution x is given by

x = [I − V (V THV )−1V TH]x̂− V (V THV )−1V T g .
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(4) If either there exists u ∈ S such that uTHu < 0 or there does not exist x ∈ x̂+ S such that Hx+ g ∈ S⊥
(or both), then

−∞ = inf
x∈x̂+S

1
2x

THx+ gTx .

Proof. (1) By Proposition 3.1, a solution to (55) exists if and only if a solution to (56) exists. By Theorem
2.1, a solution to (56) exists if and only if V THV is positive semi-definite and there is a solution z to the equation
V T (H(x̂ + V z) + g) = 0 in which case z solves (56), or equivalently, by Proposition 3.1, x = x̂ + V z solves
(55). The condition that V THV is positive semi-definite is equivalent to the statement that zTV THV z ≥ 0 for
all z ∈ Rk, or equivalently, uTHu ≥ 0 for all u ∈ S. The condition, V T (H(x̂ + V z) + g) = 0 is equivalent to
Hx+ g ∈ Null(V T ) = Ran(V )⊥ = S⊥.

(2) This is an immediate consequence of Proposition 3.1 and Part (2) of Theorem 2.1.

(3) By Theorem 2.1, the problem (56) has a unique solution if and only if V THV is positive definite in which case
the solution is given by z = (V THV )−1V T (Hx̂+ g). Note that V THV is positive definite if and only if uTHu > 0
for all u ∈ S \ {0} which proves that this condition is necessary and sufficient. In addition, by Proposition 3.1,
x = x̂+ V z = [I − V (V THV )−1V TH]x̂− V (V THV )−1V T g is the unique solution to (55).

(4) This follows the same pattern of proof using Part (4) of Theorem 2.1. �

Theorem 3.2. [Optimization of Quadratics Subject to Linear Equality Constraints]
Consider the problem (54).

(1) A local solution to the problem (54) exists if and only if uTHu ≥ 0 for all u ∈ Null(A) and there exists a
vector pair (x, y) ∈ Rn × Rm such that Hx+AT y + g = 0, in which case x is a local solution to (55).

(2) If x is a local solution to (55), then it is a global solution.
(3) The problem (55) has a unique global solution if and only if uTHu > 0 for all u ∈ Null(A) \ {0}.
(4) If uTHu > 0 for all u ∈ Null(A) \ {0} and rank (A) = m, the matrix

M :=

[
H AT

A 0

]
is invertible, and the vector

[
x
y

]
= M−1

[
−g
b

]
has x as the unique global solution to (55).

(5) If either there exists u ∈ Null(A) such that uTHu < 0 or there does not exist a vector pair (x, y) ∈ Rn×Rm
such that Hx+AT y + g = 0 (or both), then

−∞ = inf
x∈x̂+S

1
2x

THx+ gTx .

Remark 3.1. The condition that rank (A) = m in Part (4) of the theorem can always be satisfied by replacing
A by first row reducing A to echelon form.

Proof. (1) Recall that Null(A)⊥ = Ran(AT ). Hence, w ∈ Null(A) if and only if there exists y ∈ Rm such that
w = AT y. By setting w = Hx+ g the result follows from Part (1) of Theorem 3.1.

(2) Again, this is an immediate consequence of Proposition 3.1 and Part (2) of Theorem 2.1.

(3) This is just Part (3) of Theorem 3.1.

(4) Suppose M

[
x
y

]
=

[
0
0

]
, then Hx+AT y = 0 and Ax = 0. If we multiply Hx+AT y on the left by xT , we obtain

0 = xTHx+ xTAT y = xTHx which implies that x = 0 since x ∈ Null(A). But then AT y = 0, so that y = 0 since
rank (A) = m. Consequently, Null(M) = {0}, i.e., M is invertible. The result now follows from Part (1).

(5) By Part (1), this is just a restatement of Theorem 3.1 Part (4). �

The vector y appearing in this Theorem is call a Lagrange multiplier vector. Lagrange multiplier vectors play
an essential role in constrained optimization and lie at the heart of what is called duality theory. This theory is
more fully developed in Chapter ??.

We now study how one might check when H is positive semi-definite as well as solving the equation Hx+g = 0
when H is positive semi-definite.
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4. The Principal Minor Test for Positive Definiteness

Let H ∈ Sn. We wish to obtain a test of when H is positive definite without having to compute its eigenvalue
decomposition. First note that Hii = eTi Hei, so that H can be positive definite only if Hii > 0. This is only a
“sanity check” for whether a matrix is positive definite. That is, if any diagonal element of H is not positive, then
H cannot be positive definite. In this section we develop a necessary and sufficient condition for H to be positive
definite that makes use of the determinant. We begin with the following lemma.

Lemma 4.1. Let H ∈ Sn, u ∈ Rn, and α ∈ R, and consider the block matrix

Ĥ :=

[
H u
uT α

]
∈ S(n+1) .

(1) The matrix Ĥ is positive semi-definite if and only if H is positive semi-definite and there exists a vector
z ∈ Rn such that u = Hz and α ≥ zTHz.

(2) The matrix Ĥ is positive definite if and only if H is positive definite and α > uTH−1u.

Proof. (1) Suppose H is positive semi-definite, and there exists z such that u = Hz and α ≥ zTHz. Then for

any x̂ =

[
x
xn

]
where xn ∈ R and x ∈ Rn, we have

x̂T Ĥx̂ = xTHx+ 2xTHxnz + x2
nα

= (x+ xnz)
TH(x+ xnz) + x2

n(α− zTHz) ≥ 0.

Hence, Ĥ is positive semi-definite.
Conversely, suppose that Ĥ is positive semi-definite. Write u = u1 + u2 where u1 ∈ Ran(H) and u2 ∈

Ran(H)⊥ = Null(H), so that there is a z ∈ Rn such that u1 = Hz. Then, for all x̂ =

(
x
xn

)
∈ R(n+1),

0 ≤ x̂T Ĥx̂ = xTHx+ 2xnu
Tx+ αx2

n

= xTHx+ 2xn(u1 + u2)Tx+ αx2
n

= xTHx+ 2xnz
THx+ x2

nz
THz + x2

n(α− zTHz) + 2xnu
T
2 x

= (x+ xnz)
TH(x+ xnz) + x2

n(α− zTHz) + 2xnu
T
2 x.

Taking xn = 0 tells us that H is positive semi-definite, and taking x̂ =

(
−tu2

1

)
for t ∈ R gives

α− 2t ‖u2‖22 ≥ 0 for all t ∈ R,

which implies that u2 = 0. Finally, taking x̂ =

(
−z
1

)
, tells us that zTHz ≤ α which proves the result.

(2) The proof follows the pattern of Part (1) but now we can take z = H−1u. �

If the matrix H is invertible, we can apply a kind of block Gaussian elimination to the matrix Ĥ in the lemma
to obtain a matrix with block upper triangular structure:[

I 0
(−H−1u)T 1

] [
H u
uT α

]
=

[
H u
0 (α− uTH−1u)

]
.

One consequence of this relationship is that

(58)

det

[
H u
uT α

]
= det

[
I 0

(−H−1u)T 1

]
det

[
H u
uT α

]
= det

([
I 0

(−H−1u)T 1

] [
H u
uT α

])
= det

[
H u
0 (α− uTH−1u)

]
= det(H)(α− uTH−1u).

We use this determinant identity in conjunction with the previous lemma to establish a test for whether a matrix
is positive definite based on determinants. The test requires us to introduce the following elementary definition.
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Definition 4.1. [Principal Minors] The kth principal minor of a matrix B ∈ Rn×n is the determinant of the
upper left–hand corner k×k–submatrix of B for 1 ≤ k ≤ n.

Proposition 4.1. [The Principal Minor Test] Let H ∈ Sn. Then H is positive definite if and only if each of
its principal minors is positive.

Proof. The proof proceeds by induction on the dimension n of H. The result is clearly true for n = 1. We
now assume the result is true for 1 ≤ k ≤ n and show it is true for dimension n+ 1. Write

H :=

[
Ĥ u
uT α

]
.

Then Lemma 4.1 tells us that H is positive definite if and only if Ĥ is positive definite and α > uT Ĥ−1u. By the
induction hypothesis, Ĥ is positive definite if and only if all of its principal minors are positive. If we now combine
this with the expression (58), we get that H is positive definite if and only if all principal minors of Ĥ are positive

and, by (58), det(H) = det(Ĥ)(α− uT Ĥ−1u) > 0, or equivalently, all principal minors of H are positive. �

This result only applies to positive definite matrices, and does not provide insight into how to solve linear
equations involving H such as Hx+ g = 0. These two issues can be addressed through the Cholesky factorization.

5. The Cholesky Factorizations

We now consider how one might solve a quadratic optimization problem. Recall that a solution only exists
when H is positive semi-definite and there is a solution to the equation Hx + g = 0. Let us first consider solving
the equation when H is positive definite. We use a procedure similar to the LU factorization but which also takes
advantage of symmetry.

Suppose

H =

[
α1 hT1
h1 H̃1

]
, where H̃1 ∈ Sn.

Note that α1 = eT1 He1 > 0 since H is positive definite (if α1 ≤ 0, then H cannot be positive definite), so there is
no need to apply a permutation. Multiply H on the left by the Gaussian elimination matrix for the first column,
we obtain

L−1
1 H =

[
1 0

− h1

α1
I

] [
α1 hT1
h1 H̃1

]
=

[
α1 hT1
0 H̃1 − α−1

1 h1h
T
1

]
.

By symmetry, we have

L−1
1 HL−T1 =

[
α1 hT1
0 H̃1 − α−1

1 h1h
T
1

][
1 −h

T
1

α1

0 I

]
=

[
α1 0

0 H̃1 − α−1
1 h1h

T
1

]
.

Set H1 = H̃1 − α−1h1h
T
1 . Observe that for every non-zero vector v ∈ R(n−1),

vTH1v =

(
0
v

)T [
α1 0
0 H1

](
0
v

)
=

(
L−T1

(
0
v

))T
H

(
L−T1

(
0
v

))
> 0,

which shows that H1 is positive definite. Decomposing H1 as we did H gives

H1 =

[
α2 hT2
h2 H̃2

]
, where H̃2 ∈ S(n−1).

Again, α2 > 0 since H1 is positive definite (if α2 ≤ 0, then H cannot be positive definite). Hence, can repeat the
reduction process for H1. But if at any stage we discover and αi ≤ 0, then we terminate, since H cannot be positive
definite.

If we can continue this process n times, we will have constructed a lower triangular matrix

L := L1L2 · · ·Ln such that L−1HL−T = D, where D := diag(α1, α2, . . . , αn)

is a diagonal matrix with strictly positive diagonal entries. On the other hand, if at some point in the process we
discover an αi that is not positive, then H cannot be positive definite and the process terminates. That is, this
computational procedure simultaneously tests whether H is positive definite as it tries to diagonalize H. We will
call this process the Cholesky diagonalization procedure. It is used to establish the following factorization theorem.
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Theorem 5.1. [The Cholesky Factorization] Let H ∈ Sn+ have rank k. Then there is a lower triangular matrix

L ∈ Rn×k such that H = LLT . Moreover, if the rank of H is n, then there is a positive diagonal matrix D and a

lower triangular matrix L̃ with ones on it diagonal such that H = L̃DL̃T .

Proof. Let the columns of the matrix V1 ∈ Rn×k be an orthonormal basis for Ran(H) and the columns of
V2 ∈ Rn×(n−k) be an orthonormal basis for Null(H) and set V = [V1 V2] ∈ Rn×n. Then

V THV =

[
V T1
V T2

]
H[V1 V2]

=

[
V T1 HV1 V T1 HV2

V T2 HV1 V T2 HV2

]
=

[
V T1 HV1 0

0 0

]
.

Since Ran(H) = Null(HT )⊥ = Null(H)⊥, V1HV
T
1 ∈ Rk×k is symmetric and positive definite. By applying the

procedure described prior to the statement of the theorem, we construct a nonsingular lower triangular matrix

L̃ ∈ Rk×k and a diagonal matrix D = diag(α1, α2, . . . , αk), with αi > 0, i = 1, . . . , k, such that V1HV
T
1 = L̃DL̃T .

Set L̂ = L̃D1/2 so that V1HV
T
1 = L̂L̂T . If k = n, taking V = I proves the theorem by setting L = L̂. If k < n,

H = [V1 V2]

[
L̂L̂T 0

0 0

] [
V T1
V T2

]
= (V1L̂)(V1L̂)T .

Let (V1L̂)T ∈ Rk×n have reduced QR factorization (V1L̂)T = QR (see Theorem 5.1). Since L̂T has rank k, Q ∈ Rk×k
is unitary and R = [R1 R2] with R1 ∈ Rk×k nonsingular and R2 ∈ Rk×(n−k). Therefore,

H = (V1L̂)(V1L̂)T = RTQTQR = RTR.

The theorem follows by setting L = RT . �

When H is positive definite, the factorization H = LLT is called the Cholesky factorization of H, and when
rank (H) < n it is called the generalized Cholesky factorization of H. In the positive definite case, the Cholesky
diagonalization procedure computes the Cholesky factorization of H. On the other hand, when H is only positive
semi-definite, the proof of the theorem provides a guide for obtaining the generalized Cholesky factorization.

5.1. Computing the Generalized Cholesky Factorization.

Step1: Initiate the Cholesky diagonalization procedure. If the procedure successfully completes n iterations, the
Cholesky factorization has been obtained. Otherwise the procedure terminates at some iteration k+1 < n.
If αk+1 < 0, proceed no further since the matrix H is not positive semi-definite. If αk+1 = 0, proceed to
Step 2.

Step 2: In Step 1, the factorization

L̂−1HL̂−T =

[
D̂ 0

0 Ĥ

]
,

where

L̂ =

[
L̂1 0

L̂2 I(n−k)

]
with L̂1 ∈ Rk×k lower triangular with ones on the diagonal, D̂ = diag(α1, α2, . . . , αk) ∈ Rk×k with

αi > 0 i = 1, . . . , k, and Ĥ ∈ R(n−k)×(n−k) with Ĥ symmetric has a nontrivial null space. Let the full QR

factorization of Ĥ be given by

Ĥ = [U1 U2]

[
R1 R2

0 0

]
= U

[
R
0

]
,

where
- U = [U1 U2] ∈ Rk×k is unitary,

- the columns of U1 ∈ Rk×k1 form an orthonormal basis for Ran(Ĥ) with k1 = rank
(
Ĥ
)
< k,

- the columns of U2 ∈ Rk×(k−k1) for an orthonormal basis for Null(Ĥ),
- R1 ∈ Rk1×k1 is upper triangular and nonsingular,
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- R2 ∈ Rk1×(k−k1), and
- R = [R1 R2] ∈ Rk1×k.

Consequently, [
UT1 ĤU1 0

0 0

]
=

[
UT1 ĤU1 UT1 ĤU2

UT2 ĤU1 UT2 ĤU2

]
= UT ĤU

=

[
R
0

]
[U1 U2]

=

[
RU1 RU2

0 0

]
,

and so RU2 = 0 and UT1 ĤU1 = RU1 ∈ Rk1×k1 is a nonsingular symmetric matrix.

Note that only the reduced QR factorization of H = U1R is required since UT1 ĤU1 = RU1.

Step 4: Initiate the Cholesky diagonalization procedure on UT1 ĤU1. If the procedure successfully completes k1

iterations, the Cholesky factorization

UT1 ĤU1 = L̂3L̂
T
3

has been obtained. If this does not occur, the procedure terminates at some iteration j < k1 with αj < 0

since UT1 ĤU1 is nonsingular. In this case, terminate the process since H cannot be positive semi-definfite.
Otherwise proceed to Step 5.

Step 5: We now have

H =

[
L̂1 0

L̂2 I(n−k)

][
D̂ 0

0 Ĥ

] [
L̂T1 L̂T2
0 I(n−k)

]

=

[
L̂1 0

L̂2 I(n−k)

] [
I 0
0 U

] [
D̂ 0

0 UT ĤU

] [
I 0
0 UT

] [
L̂T1 L̂T2
0 I(n−k)

]

=

[
L̂1 0 0

L̂2 U1 U2

]D̂ 0 0

0 L̂3L̂
T
3 0

0 0 0

L̂T1 L̂T2
0 UT1
0 UT2


=

[
L̃1D̂

1/2 0 0

L̂2D̂
1/2 U1L̂3 0

]D̂1/2L̃T1 D̂1/2L̂T2
0 L̂T3 U

T
1

0 0


=

[
L1 0

L2 U1L̂3

] [
LT1 LT2
0 L̂T3 U

T
1

]
,

where L1 = L̃1D̂
1/2 ∈ Rk×k is lower triangular, L2 = L̂2D̂

1/2 ∈ R(n−k)×k, and U1L̂3 ∈ R(n−k)×k1 . In

particular, k+k1 = rank (H) since L1 has rank k and U1L̂3 has rank k1. Let L̂T3 U
T
1 have QR factorization

L̂T3 U
T
1 = V LT3 , where V ∈ Rk1×k1 is unitary and L3 ∈ Rk1×(n−k) is lower triangular. Then

H =

[
L1 0

L2 U1L̂3

] [
LT1 LT2
0 L̂T3 U

T
1

]
=

[
L1 0
L2 L3V

T

] [
LT1 LT2
0 V LT3

]
=

[
L1 0
L2 L3

] [
LT1 LT2
0 LT3

]
,

since V TV = Ik1 . This is the generalized Cholesky factorization of H.

5.2. Computing Solutions to the Quadratic Optimization Problem via Cholesky Factorizations.

Step 1: Apply the procedure described in the previous section for computing the generalized Cholesky factorization
of H. If it is determined that H is not positive definite, then proceed no further since the problem (42)
has no solution and the optimal value is −∞.

Step 2: Step 1 provides us with the generalized Cholesky factorization for H = LLT with LT = [LT1 LT2 ], where
L1 ∈ Rk×k and L2 ∈ R(n−k)×k with k = rank (H). Write

g =

(
g1

g2

)
,
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where g1 ∈ Rk and g2 ∈ R(n−k). Since Ran(H) = Ran(L), the system Hx+ g = 0 is solvable if and only
if −g ∈ Ran(L). That is, there exists w ∈ Rk such that Lw = −g, or equivalently,

L1w = −g1 and L2w = −g2.

Since L1 is invertible, the system L1w = −g1 has as its unique solution w = L−1
1 g1. Note that w is easy

to compute by forward substitution since L1 is lower triangular. Having w check to see if L2w = −g2.
If this is not the case, then proceed no further, since the system Hx + g = 0 has no solution and so the
optimal value in (42) is −∞. Otherwise, proceed to Step 3.

Step 3: Use back substitution to solve the equation LT1 y = w for y := L−T1 w and set

x =

(
y
0

)
.

Then

Hx = LLTx =

[
L1

L2

]
[LT1 LT2 ]

(
y
0

)
=

[
L1

L2

]
w = −g .

Hence, x solves the equation Hx + g = 0 and so is an optimal solution to the quadratic optimization
problem (42).

6. Linear Least Squares Revisited

We have already see that the least squares problem is a special case of the problem of minimizing a quadratic
function. But what about the reverse? Part (4) of Theorem 2.1 tells us that, in general, the reverse cannot be
true since the linear least squares problem always has a solution. But what about the case when the quadratic
optimization problem has a solution? In this case the matrix H is necessarily positive semi-definite and a solution
to the system Hx+g = 0 exists. By Theorem 5.1, there is a lower triangular matrix L ∈ Rn×k, where k = rank (H),
such that H = LLT . Set A := LT . In particular, this implies that Ran(H) = Ran(L) = Ran(AT ). Since Hx+g = 0,
we know that −g ∈ Ran(H) = Ran(AT ), and so there is a vector b ∈ Rk such that −g = AT b. Consider the linear
least squares problem

min
x∈Rn

1
2 ‖Ax− b‖

2
2 .

As in (44), expand the objective in this problem to obtain

1
2 ‖Ax− b‖

2
2 = 1

2x
T (ATA)x− (AT b)Tx+ 1

2 ‖b‖
2
2

= 1
2x

TLLTx+ gTx+ β

= 1
2x

THx+ gTx+ β,

where β = 1
2 ‖b‖

2
2. We have just proved the following result.

Proposition 6.1. A quadratic optimization problem of the form (42) has an optimal solution if and only if it
is equivalent to a linear least squares problem.

7. The Conjugate Gradient Algorithm

The Cholesky factorization is an important and useful tool for computing solutions to the quadratic optimization
problem, but it is too costly to be employed in many very large scale applications. In some applications, the matrix
H is too large to be stored or it is not available as a data structure. However, in these problems it is often the
case that the matrix vector product Hx can be obtained for a given vector x ∈ Rn. This occurs, for example, in
a signal processing applications. In this section, we develop an algorithm for solving the quadratic optimization
problem (47) that only requires access to the matrix vector products Hx. Such an algorithm is called a matrix free
method since knowledge the whole matrix H is not required. In such cases the Cholesky factorization is inefficient
to compute. The focus of this section is the study of the matrix free method known as the conjugate gradient
algorithm. Throughout this section we assume that the matrix H is positive definite.
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7.1. Conjugate Direction Methods. Consider the problem (47) where it is known that H is symmetric and
positive definite. In this case it is possible to define a notion of orthogonality or congugacy with respect to H.

Definition 7.1 (Conjugacy). Let H ∈ Sn++. We say that the vectors x, y ∈ Rn\{0} are H-conjugate (or

H-orthogonal) if xTHy = 0.

Proposition 7.1. [Conjugacy implies Linear Independence]
If H ∈ Sn++ and the set of nonzero vectors d0, d1, . . . , dk are (pairwise) H-conjugate, then these vectors are linearly
independent.

Proof. If 0 =
k∑
i=0

µid
i, then for ī ∈ {0, 1, . . . , k}

0 = (dī)TH[

k∑
i=0

µid
i] = µī(d

ī)THdī,

Hence µi = 0 for each i = 0, . . . , k. �

Let x0 ∈ Rn and suppose that the vectors d0, d1, . . . , dk−1 ∈ Rn areH-conjugate. Set S = Span(d0, d1, . . . , dk−1).
Theorem 3.1 tells us that there is a unique optimal solution x to the problem min

{
1
2x

THx+ gTx
∣∣x ∈ x0 + S

}
, and

that x is uniquely identified by the condition Hx+ g ∈ S⊥, or equivalently, 0 = (dj)T (Hx+ g), j = 0, 1, . . . , k− 1.
Since x ∈ x0 + S, there are scalars µ0, . . ., µn−1 such that

(59) x = x0 + µ0d
0 + . . .+ µk−1d

k−1,

and so, for each j = 0, 1, . . . , k − 1,

0 = (dj)T (Hx+ g)

= (dj)T
(
H(x0 + µ0d

0 + . . .+ µk−1d
k−1) + g

)
= (dj)T (Hx0 + g) + µ0(dj)THd0 + . . .+ µk−1(dj)THdk−1

= (dj)T (Hx0 + g) + µj(d
j)THdj .

Therefore,

(60) µj =
−(Hx0 + g)T (dj)

(dj)THdj
j = 0, 1 . . . , k − 1 .

This observation motivates the following theorem.

Theorem 7.1. [Expanding Subspace Theorem]
Consider the problem (47) with H ∈ Sn++, and set f(x) = 1

2x
THx + gTx. Let {di}n−1

i=0 be a sequence of nonzero

H-conjugate vectors in Rn. Then, for any x0 ∈ Rn the sequence {xk} generated according to

xk+1 := xk + tkd
k,

with
tk := arg min{f(xk + tdk) : t ∈ R},

has the property that f(x) = 1
2x

THx+ gTx attains its minimum value on the affine set x0 + Span {d0, . . . , dk−1}
at the point xk. In particular, if k = n, then xn is the unique global solution to the problem (47).

Proof. Let us first compute the value of the tk’s. For j = 0, . . . , k − 1, define ϕj : R→ R by

ϕj(t) = f(xj + tdj)

= t2

2 (dj)THdj + t(gj)T dj + f(xj),

where gj = Hxj + g. Then, for j = 0, . . . , k − 1, ϕ′j(t) = t(dj)THdj + (gj)T dj and ϕ′′j (t) = (dj)THdj > 0. Since
ϕ′′j (t) > 0, our one dimensional calculus tells us that ϕj attains its global minmimum value at the unique solution
tj to the equation ϕ′j(t) = 0, i.e.,

tj = − (gj)T dj

(dj)THdj
.

Therefore,
xk = x0 + t0d

0 + t1d
1 + · · ·+ tkd

k
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with

tj = − (gj)T dj

(dj)THdj
, j = 0, 1, . . . , k.

In the discussion preceding the theorem it was shown that if x is the solution to the problem

min
{
f(x)

∣∣x ∈ x0 + Span(d0, d1, . . . , dk)
}
,

then x is given by (59) and (60). Therefore, if we can now show that µj = tj , j = 0, 1, . . . , k, then x = xk proving
the result. For each j ∈ {0, 1, . . . , k} we have

(gj)T dj = (Hxj + g)T dj

=
(
H(x0 + t0d

0 + t1d
1 + · · ·+ tj−1d

j−1) + g
)T
dj

= (Hx0 + g)T dj + t0(d0)THdj + t1(d1)THdj + · · ·+ tj−1(dj−1)THdj

= (Hx0 + g)T dj

= (g0)T dj .

Therefore, for each j ∈ {0, 1, . . . , k},

tj =
−(gj)T dj

(dj)THdj
=
−(g0)T dj

(dj)THdj
= µj ,

which proves the result. �

7.2. The Conjugate Gradient Algorithm. The major drawback of the Conjugate Direction Algorithm of
the previous section is that it seems to require that a set of H-conjugate directions must be obtained before the
algorithm can be implemented. This is in opposition to our working assumption that H is so large that it cannot
be kept in storage since any set of H-conjugate directions requires the same amount of storage as H. However, it
is possible to generate the directions dj one at a time and then discard them after each iteration of the algorithm.
One example of such an algorithm is the Conjugate Gradient Algorithm.

The C-G Algorithm:

Initialization: x0 ∈ Rn, d0 = −g0 = −(Hx0 + g).

For k = 0, 1, 2, . . .
tk := −(gk)T dk/(dk)THdk

xk+1 := xk + tkd
k

gk+1 := Hxk+1 + g (STOP if gk+1 = 0)
βk := (gk+1)THdk/(dk)THdk

dk+1 := −gk+1 + βkd
k

k := k + 1.

Theorem 7.2. [Conjugate Gradient Theorem]
The C-G algorithm is a conjugate direction method. If it does not terminate at xk (i.e. gk 6= 0), then

(1) Span [g0, g1, . . . , gk] = span [g0, Hg0, . . . ,Hkg0]
(2) Span [d0, d1, . . . , dk] = span [g0, Hg0, . . . ,Hkg0]
(3) (dk)THdi = 0 for i ≤ k − 1
(4) tk = (gk)T gk/(dk)THdk

(5) βk = (gk+1)T gk+1/(gk)T gk.

Proof. We first prove (1)-(3) by induction. The results are clearly true for k = 0. Now suppose they are true
for k, we show they are true for k + 1. First observe that

gk+1 = gk + tkHd
k

so that gk+1 ∈ Span[g0, . . . ,Hk+1g0] by the induction hypothesis on (1) and (2). Also gk+1 /∈ Span [d0, . . . , dk],
otherwise, by Theorem 3.1 Part (1), gk+1 = Hxk+1 + g = 0 since the method is a conjugate direction method
up to step k by the induction hypothesis. Hence gk+1 /∈ Span [g0, . . . ,Hkg0] and so Span [g0, g1, . . . , gk+1] =
Span [g0, . . . ,Hk+1g0], which proves (1).

To prove (2) write

dk+1 = −gk+1 + βkd
k
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so that (2) follows from (1) and the induction hypothesis on (2).
To see (3) observe that

(dk+1)THdi = −(gk+1)THdi + βk(dk)THdi.

For i = k the right hand side is zero by the definition of βk. For i < k both terms vanish. The term (gk+1)THdi = 0
by Theorem 7.1 since Hdi ∈ Span[d0, . . . , dk] by (1) and (2). The term (dk)THdi vanishes by the induction
hypothesis on (3).

To prove (4) write
−(gk)T dk = (gk)T gk − βk−1(gk)T dk−1

where (gk)T dk−1 = 0 by Theorem 7.1.
To prove (5) note that (gk+1)T gk = 0 by Theorem 7.1 because gk ∈ Span[d0, . . . , dk]. Hence

(gk+1)THdk =
1

tk
(gk+1)T [gk+1 − gk] =

1

tk
(gk+1)T gk+1.

Therefore,

βk =
1

tk

(gk+1)T gk+1

(dk)THdk
=

(gk+1)T gk+1

(gk)T gk
.

�

Remarks:

(1) The C–G method is an example of a descent method since the values

f(x0), f(x1), . . . , f(xn)

form a decreasing sequence.
(2) It should be observed that due to the occurrence of round-off error the C-G algorithm is best implemented

as an iterative method. That is, at the end of n steps, xn may not be the global optimal solution and the
intervening directions dk may not be H-conjugate. Consequently, the algorithm is usually iterated until∥∥gk∥∥

2
is sufficiently small. Due to the observations in the previous remark, this approach is guarenteed

to continue to reduce the function value if possible since the overall method is a descent method. In this
sense the C–G algorithm is self correcting.





CHAPTER 5

Elements of Multivariable Calculus

1. Norms and Continuity

As we have seen the 2-norm gives us a measure of the magnitude of a vector v in Rn, ‖v‖2. As such it also gives
us a measure of the distance between to vectors u, v ∈ Rn, ‖u− v‖2. Such measures of magnitude and distance are
very useful tools for measuring model misfit as is the case in linear least squares problem. They are also essential
for analyzing the behavior of sequences and functions on Rn as well as on the space of matrices Rm×n. For this
reason, we formalize the notion of a norm to incorporate other measures of magnitude and distance.

Definition 1.1. [Vector Norm] A function ‖·‖ : Rn → R is a vector norm on Rn if

(1) ‖x‖ ≥ 0 for all x ∈ Rn with equality if and only if x = 0,
(2) ‖αx‖ = |α| ‖x‖ for all x ∈ Rn and α ∈ R, and
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

Example 1.1. Perhaps the most common examples of norms are the p-norms for 1 ≤ p ≤ ∞. Given 1 ≤ p <∞,
the `p-norm on Rn is defined as

‖x‖p :=

 n∑
j=1

|xj |p
1/p

.

For p =∞, we define

‖x‖∞ := max {|xi| | i = 1, 2, . . . , n} .
This choice of notation for the ∞-norm comes from the relation

lim
p↑∞
‖x‖p = ‖x‖∞ ∀ x ∈ Rn.

In applications, the most important of these norms are the p = 1, 2,∞ norms as well as variations on these norms.

In finite dimensions all norms are said the equivalent in the sense that one can show that for any two norms
‖·‖(a) and ‖·‖(b) on Rn there exist positive constants α and β such that

α ‖x‖a ≤ ‖x‖b ≤ β ‖x‖a ∀x ∈ Rn .

But we caution that in practice the numerical behavior of these norms differ greatly when the dimension is large.
Since norms can be used to measure the distance between vectors, they can be used to form notions of continuity

for functions mapping Rn to Rm that parallel those established for mappings from R to R.

Definition 1.2. [Continuous Functions] Let F : Rn → Rn.

(1) F is said to be continuous at a point x ∈ Rn if for all ε > 0 there is a δ > 0 such that

‖F (x)− F (x)‖ ≤ ε whenever ‖x− x‖ ≤ δ .

(2) F is said to be continuous on a set S ⊂ Rn if it is continuous at every point of S.
(3) The function F is said to be continuous relative to a set S ⊂ Rn if

‖F (x)− F (x)‖ ≤ ε whenever ‖x− x‖ ≤ δ and x ∈ S .

(4) The function F is said to be uniformly continuous on a set S ⊂ Rn if if for all ε > 0 there is a δ > 0 such
that

‖F (x)− F (y)‖ ≤ ε whenever ‖x− y‖ ≤ δ and x, y ∈ S.
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Norms allow us to define certain topological notions that are very helpful in analizing the behavior of sequences
and functions. Since we will make frequent use of these concepts, it is helpful to have certain notational conventions
associated with norms. We list a few of these below:

the closed unit ball B := {x | ‖x‖ ≤ 1}
the unit vectors S := {x | ‖x‖ = 1}
ε-ball about x x+ εB := {x+ εu |u ∈ B} = {x | ‖x− x‖ ≤ ε}

The unit ball associated with the 1, 2, and ∞ norms will be denoted by B1, B2, and B∞, respectively.
A few basic topological notions are listed in the following definition. The most important of these for our

purposes is compactness.

Definition 1.3. Let S be a subset of Rn, and let ‖·‖ be a norm on Rn.

(1) The set S is said to be an open set if for every x ∈ S there is an ε > 0 such that x+ εB ⊂ S.
(2) The set S is said to be a closed set if S contains every point x ∈ Rn for which there is a sequence {xk} ⊂ S

with limk→∞
∥∥xk − x∥∥ = 0.

(3) The set S is said to be a bounded set set if there is a β > 0 such that S ⊂ βB.
(4) The set S is said to be a compact set if it is both closed and bounded.
(5) A point x ∈ Rn is a cluster point of the set S if there is a sequence {xk} ⊂ S with limk→∞

∥∥xk − x∥∥ = 0.
(6) A point x ∈ Rn is said to be a boundary point of the set S if for all ε > 0, (x + εB) ∩ S 6= ∅ while

(x+ εB) 6⊂ S, i.e., every ε ball about x contains points that are in S and points that are not in S.

The importance of the notion of compactness in optimization is illustrated in following basic theorems from
analysis that we make extensive use of, but do not prove.

Theorem 1.1. [Compactness implies Uniform Continuity] Let F : Rn → Rn be a continuous function on an
open set S ⊂ Rn. Then F is uniformly continuous on every compact subset of S.

Theorem 1.2. [Weierstrass Compactness Theorem] A set D ⊂ Rn is compact if and only if every infinite
sequence in D has a cluster point in D.

Theorem 1.3. [Weierstrass Extreme Value Theorem] Every continuous function on a compact set attains its
extreme values on that set. That is, there are points in the set at which both the infimum and the supremum of the
function relative to the set are attained.

We will also have need of a norm on the space of matrices. First note that the space of matrices Rm×n is itself
a vector space since it is closed with respect to addition and real scalar multiplication with both operations being
distributive and commutative and Rm×n contains the zero matrix. In addition, we can embed Rm×n in Rmn by
stacking one column on top of another to get a long vector of length mn. This process of stacking the columns is
denoted by the vec operator (column vec): given A ∈ Rm×n,

vec(A) =


A·1
A·2

...
A·n

 ∈ Rmn .

Example 1.2.

vec

[
1 2 −3
0 −1 4

]
=


1
0
2
−1
−3

4


Using the vec operation, we define an inner product on Rm×n by taking the inner product of these vectors of

length mn. Given A,B ∈ Rm×n we write this inner product as 〈A, B〉. It is easy to show that this inner product
obeys the formula

〈A, B〉 = vec(A)Tvec(B) = tr
(
ATB

)
.
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This is known as the Frobenius inner product. It generates a corresponding norm, called the Frobenius norm, by
setting

‖A‖F := ‖vec(A)‖2 =
√
〈A, A〉.

Note that for a given x ∈ Rn and A ∈ Rm×n we have

‖Ax‖22 =

m∑
i=1

(Ai· • x)2 ≤
m∑
i=1

(‖Ai·‖2 ‖x‖2)2 = ‖x‖22
m∑
i=1

‖Ai·‖22 = ‖A‖2F ‖x‖
2
2 ,

and so

(61) ‖Ax‖2 ≤ ‖A‖F ‖x‖2 .

This relationship between the Frobenius norm and the 2-norm is very important and is used extensively in our
development. In particular, this implies that for any two matrices A ∈ Rm×n and B ∈ Rn×k we have

‖AB‖F ≤ ‖A‖F ‖B‖F .

2. Differentiation

In this section we use our understanding of differentiability for mappings from R to R to build a theory of
differentiation for mappings from Rn to Rm. Let F be a mapping from Rn to Rm which we denote by F : Rn → Rm.
Let the component functions of F be denoted by Fi : Rn → R:

F (x) =


F1(x)
F2(x)

...
Fm(x)

 .

Example 2.1.

F (x) = F

x1

x2

x3

 =


3x2

1 + x1x2x3

2 cos(x1) sin(x2x3)
ln[exp(x2

1 + x2
2 + x2

3)]

1/
√

1 + (x2x3)2

 .

In this case, n = 3, m = 4, and

F1(x) = 3x2
1 + x1x2x3, F2(x) = 2 cos(x1) sin(x2x3), F3(x) = ln[exp(x2

1 + x2
2 + x2

3)], F4(x) = 1/
√

1 + (x2x3)2 .

The first step in understanding the differentiability of mappings on Rn is to study their one dimensional
properties. For this, consider a function f : Rn → R and let x and d be elements of Rn. We define the directional
derivative of f in the direction d, when it exits, to be the one sided limit

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Example 2.2. Let f : R2 → R be given by f(x1, x2) := x1 |x2|, and let x = (1, 0)T and d = (2, 2). Then,

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
= lim

t↓0

(1 + 2t) |0 + 2t| − 1 |0|
t

= lim
t↓0

2(1 + 2t)t

t
= 2 ,

while, for d = −(2, 2)T ,

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
= lim

t↓0

(1− 2t) |0− 2t| − 1 |0|
t

= lim
t↓0

2(1− 2t)t

t
= 2 .

In general, we have

f ′((1, 0); (d1, d2)) = lim
t↓0

(1 + d1t) |d2t|
t

= |d2|.

For technical reasons, we allow this limit to take the values ±∞. For example, if f(x) = x1/3, then

f ′(0; 1) = lim
t↓0

t−2/3 = +∞ and f ′(0;−1) = lim
t↓0
−t−2/3 = −∞.
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This example as well as the one given in Example 2.2 show that the directional derivative f ′(x; d) is not necessarily
either continuous or smooth in the d argument even if it exists for all choices of d. However, the directional derivative
is always positively homogeneous in the sense that, given λ ≥ 0, we have

f ′(x;λd) = lim
t↓0

f(x+ λtd)− f(x)

t
= λ lim

t↓0

f(x+ λtd)− f(x)

λt
= λf ′(x; d) .

The directional derivative idea can be extended to functions F mapping Rn into Rm by defining it componen-
twise: if the limit

F ′(x; d) := lim
t↓0

F (x+ td)− F (x)

t
=


limt↓0

F1(x+td)−F1(x)
t

limt↓0
F2(x+td)−F2(x)

t
...

limt↓0
Fm(x+td)−Fm(x)

t


exists, it is called the directional derivative of F at x in the direction d.

These elementary ideas lead to the following notions of differentiability.

Definition 2.1. [Differentiable Functions] Let f : Rn → R and F : Rn → Rm.

(1) If f ′(x; d) = limt→0
f(x+λtd)−f(x)

t , then we say that f is differentiable in the direction d, in which case
f ′(x;−d) = −f ′(x; d).

(2) Let ej j = 1, . . . , n denote the unit coordinate vectors. If f is differentiable in the direction ej, we say that
the partial derivative of f with respect to the component xj exists and write

∂f(x)

∂xj
:= f ′(x; ej).

In particular, we have

f(x+ tej) = f(x) + t
∂f(x)

∂xj
+ o(t), where limt→0

o(t)
t = 0.

Note that ∂f(·)
∂xj

: Rn → R.

(3) We say that f is (Fréchet) differentiable at x ∈ Rn if there is a vector g ∈ Rn such that

lim
y→x

|f(y)− f(x)− gT (y − x)|
‖y − x‖

= 0.

If such a vector g exists, we write g = ∇f(x) and call ∇f(x) the gradient of f at x. In particular, the
differentiability of f at x is equivalent to the following statement:

f(y) = f(x) +∇f(x)T (y − x) + o(‖y − x‖)

for all y near x, where limy→x
o(‖y−x‖)
‖y−x‖ = 0.

(4) We say that F is (Fréchet) differentiable at x ∈ Rn if there is a matrix J ∈ Rm×n such that

lim
y→x

‖F (y)− F (x)− J(y − x)‖
‖y − x‖

= 0.

If such a matrix J exists, we write J = ∇F (x) and call ∇F (x) the Jacobian of F at x. In particular, the
differentiability of f at x is equivalent to the following statement:

F (y) = F (x) +∇F (x)T (y − x) + o(‖y − x‖)

for all y near x, where limy→x
o(‖y−x‖)
‖y−x‖ = 0.

Remark 2.1. Note that there is an inconsistency here in the use of the ∇ notation when F : Rn → Rm with
m = 1. The inconsistency arises due to the presense of gT in Part (3) of Definition 2.1 and the absence of a
transpose in Part (4) of this definition. For this reason, we must take extra care in interpreting this notation in
this case.

Remark 2.2. [Little-o Notation] In these notes we use the notation o(t) to represent any element of a function

class for which limt→0
o(t)
t = 0. In particular, this implies that for all α ∈ R

αo(t) = o(t), o(t) + o(t) = o(t), and tso(tr) = o(tr+s).
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Several observations about these notions of differentiability are in order. First, the existence of the directional
derivative f ′(x; d) nor the differentiability of f at x in the direction d requires the continuity of the function
at that point. Second, the existence of f ′(x; d) in all directions d does imply the continuity of the mapping
d 7→ f ′(x; d). Therefore, the directional derivative, although useful, is a very weak object to describe the local
variational properties of a function. On the other hand, differentiability is a very powerful statement. A few
consequences of differentiability are listed in the following theorem.

Theorem 2.1. Let f : Rn → R and F : Rn → Rm.

(1) If f is differentiable at x, then

∇f(x) =


∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xn

 ,

and f ′(x; d) = ∇f(x)T d for all d ∈ Rn.
(2) If F is differentiable at x, then

(∇F (x))ij =
∂Fi(x)

∂xj
i = 1, . . . ,m and j = 1, 2, . . . , n.

(3) If F is differentiable at a point x, then it is necessarily continuous at x.

Higher order derivatives are obtained by applying these notions of differentiability to the derivatives themselves.
For example, to compute the second derivative, the derivative needs to exist at all points near the point at which
the second derivative needs to be computed so that the necessary limit is well defined. From the above, we know

that the partial derivative ∂Fi(x)
∂xj

, when it exists, is a mapping from Rn to R. Therefore, it is possible to consider

the partial derivatives of these partial derivatives. For such partial derivatives we use the notation

(62)
∂2Fi(x)

∂xj∂xk
:=

∂
(
∂Fi(x)
∂xk

)
∂xj

.

The second derivative of f : Rn → R is the derivative of the mapping ∇f : Rn → Rn, and we write ∇(∇f(x)) =:
∇2f(x). We call ∇2f(x) the Hessian of f at x. By (62), we have

∇2f(x) =


∂2f(x)
∂2x1

∂2f(x)
∂x2∂x1

. . . ∂2f(x)
∂xn∂x1

∂2f(x)
∂x1∂x2

∂2f(x)
∂2x2

. . . ∂2f(x)
∂xn∂x2

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

. . . ∂2f(x)
∂2xn

 .
We have the following key property of the Hessian.

Theorem 2.2. Let f : Rn → R be such that all of the second partials ∂2f(x)
∂xi∂xj

, i, j = 1, 2, . . . , n exist and are

continuous near x ∈ Rn. Then ∇2f(x) is a real symmetric matrix, i.e., ∇2f(x) = ∇2f(x)T .

The partial derivative representations of the gradient, Hessian, and Jacobian matrices is a convenient tool for
computing these objects. For example, if we have

f(x) := 3x2
1 + x1x2x3,

then

∇f(x) =

6x1 + x2x3

x1x3

x1x2

 and ∇2f(x) =

 6 x3 x2

x3 0 x1

x2 x1 0

 .

However, the partial derivatives are not the only tool for computing derivatives. In many cases, it is easier to
compute the gradient, Hessian, and/or Jacobian directly from the definition using the little-o notation.
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3. The Delta Method for Computing Derivatives

Recall that a function f : Rn → R is said to be differentiable at a point x if there is a vector g ∈ Rn such that

(63) f(x+ ∆x) = f(x) + gT∆x+ o(‖∆x‖).

Hence, if we can write f(x + ∆x) in this form, then g = ∇f(x). To see how to use this idea, consider the least
squares objective function

f(x) = 1
2 ‖Ax− b‖

2
2 , where A ∈ Rm×n, b ∈ Rm.

Then

(64)

f(x+ ∆x) = 1
2 ‖A(x+ ∆x)− b‖22

= 1
2 ‖(Ax− b) +A∆x‖22

= 1
2 ‖Ax− b‖

2
2 + (Ax− b)TA∆x+ 1

2 ‖A∆x‖22
= f(x) + (AT (Ax− b))T∆x+ 1

2 ‖A∆x‖22 .

In this expression, 1
2 ‖A∆x‖22 = o(‖∆x‖2) since

1
2 ‖A∆x‖22
‖∆x‖2

= 1
2 ‖A∆x‖2

∥∥∥∥A ∆x

‖∆x‖2

∥∥∥∥
2

→ 0 as ‖∆x‖2 → 0 .

Therefore, by (63), the expression (64) tells us that

∇f(x) = AT (Ax− b).

This approach to computing the derivative of a function is called the delta method. In a similar manner it can be
used to compute the Hessian of f by applying the approach to ∇f :

∇f(x+ ∆x) = AT (A(x+ ∆x)− b) = AT (Ax− b) +ATA∆x = ∇f(x) +ATA∆x,

and, hence, ∇2f(x) = ATA.
Let us now apply the delta method to compute the gradient and Hessian of the quadratic function

f(x) := 1
2x

THx+ gTx, where H ∈ Sn, g ∈ Rn.

Then

f(x+ ∆x) = 1
2 (x+ ∆x)TH(x+ ∆x) + gT (x+ ∆x)

= 1
2x

THx+ gTx+ (Hx+ g)T∆x+ 1
2∆xTH∆x

= f(x) + (Hx+ g)T∆x+ 1
2∆xTH∆x,

where 1
2∆xTH∆x = o(‖∆x‖2) since

1
2∆xTH∆x

‖∆x‖2
= 1

2∆xTH
∆x

‖∆x‖2
→ 0 .

Therefore, by (63), we must have

∇f(x) = Hx+ g .

Again, we compute the Hessian by applying the delta method to the gradient:

∇f(x+ ∆x) = H(x+ ∆x) + g = (Hx+ g) +H∆x = ∇f(x) +H∆x,

and so

∇2f(x) = H .
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4. Differential Calculus

There are many further tools for computing derivatives that do not require a direct appeal to either the partial
derivatives or the delta method. These tools allow us to compute new derivatives from derivatives that are already
known based on a calculus of differentiation. We are familiar with this differential calculus for functions mapping R
to R. Here we show how a few of these calculus rules extend to mappings from Rn to Rm. The most elementary of
these are the facts that the derivative of the scalar multiple of a function equals the scalar multiple of the derivative
and the derivative of a sum is the sum of derivatives: given F : Rn → Rm, G : Rn → Rm and α ∈ R,

∇(αF ) = α∇F and ∇(F +G) = ∇F +∇G .

These rules are themselves derivable from the much more powerful chain rule.

Theorem 4.1. Let F : Rn → Rm and H : Rm → Rk be such that F is differentiable at x and H is differentiable
at F (x). Then G := H ◦ F is differentiable at x with

∇G(x) = ∇H(F (x)) ◦ ∇F (x) .

Remark 4.1. As noted in Remark 2.1, one must take special care in the interpretation of this chain rule when
k = 1 due to the presence of an additional transpose. In this case,

∇G(x) = ∇F (x)T∇H(F (x)) .

For example, let F : Rn → Rm and consider the function

f(x) := 1
2 ‖F (x)‖22 = ( 1

2 ‖·‖
2
2) ◦ F (x),

that is, we are composing half the 2-norm squared with F . Since ∇( 1
2 ‖·‖

2
2)(y) = y, we have

∇f(x) = ∇F (x)TF (x) .

This chain rule computation can be verified using the delta method:

f(x+ ∆x) = 1
2 ‖F (x+ ∆x)‖22

= 1
2 ‖F (x) +∇F (x)∆x+ o(‖∆x‖2)‖2

2

= 1
2 ‖F (x) +∇F (x)∆x‖22 + (F (x) +∇F (x)∆x)T (o(‖∆x‖2)) + 1

2 ‖o(‖∆x‖2)‖2
2

= 1
2 ‖F (x) +∇F (x)∆x‖2 + o(‖∆x‖2)

= 1
2 ‖F (x)‖22 + (∇F (x)TF (x))T∆x+ 1

2 ‖∇F (x)∆x‖22 + o(‖∆x‖2)

= f(x) + (∇F (x)TF (x))T∆x+ o(‖∆x‖2),

where limt→0
o(t)
t = 0 and we have used this notation as described in Remark 4.1. Hence, again ∇f(x) =

∇F (x)TF (x) .

5. The Mean Value Theorem

Given f : Rn → R, the defining formula for the derivative,

f(y) = f(x) +∇f(x)(y − x) + o(‖y − x‖),
is a powerful tool for understanding the local behavior of the function f near x. If we drop the little-o term from
the right hand side, we obtain the first-order Taylor expansion of f at x. This is called a first-order approximation
to f at x due to the fact that the power of ‖y − x‖ in the error term o(‖y − x‖) is 1. Higher order approximations
to f can be obtained using higher order derivatives. But before turning to these approximations, we make a closer
study of the first-order expansion. In particular, we wish to extend the Mean Value Theorem to functions of many
variables.

Theorem 5.1. [1-Dimensional Mean Value Theorem]
Let φ : R→ R be k+ 1 times differentiable on an open interval (a, b) ⊂ R. Then, for every x, y ∈ (a, b) with x 6= y,
there exists a z ∈ (a, b) strictly between x and y such that

φ(y) = φ(x) + φ′(x)(y − x) + · · ·+ 1

k!
φ(k)(x)(y − x)k +

1

(k + 1)!
φ(k+1)(z)(y − x)(k+1) .
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Remark 5.1. Theorem 5.1 is also called Taylor’s Theorem with remainder, where we have chosen the Lagrange
form for the remainder. Other forms for the remainder include the integral form and Cauchy’s form. In most texts
the name Mean Value Theorem is reserved for the first-order case alone.

We use this results to easily obtain the following mean value theorem for function mapping Rn to R.

Theorem 5.2. [n-Dimensional Mean Value Theorem]
Let f : Rn → R be differentiable on an open set containing the two points x, y ∈ Rn with x 6= y. Define the closed
and open line segments connecting x and y by

[x, y] := {(1− λ)x+ λy | 0 ≤ λ ≤ 1} and (x, y) := {(1− λ)x+ λy | 0 < λ < 1} ,
respectively. Then there exists a z, w ∈ (x, y) such that

f(y) = f(x) +∇f(z)T (y − x) and f(y) = f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(z)(y − x).

Proof. Define the function φ : R → R by φ(t) := f(x + t(y − x)). Since f is differentiable, so is φ and the
chain rule tells us that

φ′(t) = ∇f(x+ t(y − x))T (y − x) and φ′(t) = (y − x)T∇2f(x+ t(y − x))(y − x).

By applying the Mean Value Theorem 5.1 to φ we obtain the existence of t, s ∈ (0, 1) such that

f(y) = φ(1) = φ(0) + φ′(t)(1− 0) = f(x) +∇f(x+ t(y − x))T (y − x)

and

f(y) = φ(1) = φ(0) + φ′(0)(1− 0) + 1
2φ
′′(s)(1− 0)2 = f(x) +∇f(x)T (y − x) + 1

2 (y − x)T∇2f(x+ s(y − x))(y − x).

By setting z := x+ t(y − x) and w := x+ s(y − x) we obtain the result. �

In a similar manner we can apply the Fundamental Theorem of Calculus to such functions.

Theorem 5.3. Let f : Rn → R be differentiable on an open set containing the two points x, y ∈ Rn with x 6= y.
Then

f(y) = f(x) +

∫ 1

0

∇f(x+ t(y − x))T (y − x) dt .

Proof. Apply the Fundamental Theorem of Calculus to the function φ defined in the proof of Theorem 5.2. �

Unfortunately, the Mean Value Theorem does not extend to general differentiable function mapping from Rn
to Rm for m > 1. Nonetheless, we have the following approximate result.

Theorem 5.4. Let F : Rn → Rm be differentiable on an open set containing the two points x, y ∈ Rn with
x 6= y. Then

(65) ‖F (y)− F (x)‖2 ≤
[

max
z∈[x,y]

‖F ′(z)‖F

]
‖y − x‖2 .

Proof. By the Fundamental Theorem of Calculus, we have

F (y)− F (x) =


∫ 1

0
∇F1(x+ t(y − x))T (y − x) dt

...∫ 1

0
∇Fm(x+ t(y − x))T (y − x) dt

 =

∫ 1

0

∇F (x+ t(y − x))(y − x) dt .

Therefore,

‖F (y)− F (x)‖2 =

∥∥∥∥∫ 1

0

∇F (x+ t(y − x))(y − x) dt

∥∥∥∥
2

≤
∫ 1

0

‖∇F (x+ t(y − x))(y − x)‖2 dt

≤
∫ 1

0

‖∇F (x+ t(y − x))‖F ‖y − x‖2 dt

≤
[

max
z∈[x,y]

‖F ′(z)‖F

]
‖y − x‖2 .

�
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The bound (65) is very useful in many applications. But it can be simplified in cases where ∇F is known to be
continuous since in this case the Weierstrass extreme value theorem says that, for every β > 0,

max
z∈βB

‖F ′(z)‖F =: K <∞ .

Hence, by Theorem 5.4,
‖F (x)− F (y)‖2 ≤ K ‖x− y‖2 ∀ x, y ∈ βB .

This kind of inequality is extremely useful and leads to the following notion of continuity.

Definition 5.1. [Lipschitz Continuity]
We say that F : Rn → Rm is Lipschitz continuous on a set S ⊂ Rn if there exists a constant K > 0 such that

‖F (x)− F (y)‖ ≤ K ‖x− y‖ ∀ x, y ∈ S .

The constant K is called the modulus of Lipschitz continuity for F over S, and depends on the choice of norms for
Rn and Rm.

As one application of Lipschitz continuity, we give the following lemma concerning the accuracy of the first-order
Taylor approximation of a function.

Lemma 5.1. [Quadratic Bound Lemma]
Let F : Rn → Rm be such that ∇F is Lipschitz continuous on the set S ⊂ Rn. If x, y ∈ S are such that [x, y] ⊂ S,
then

‖F (y)− (F (x) +∇F (x)(y − x))‖2 ≤
K

2
‖y − x‖22 ,

where K is the modulus of Lipschitz continuity for ∇F on S.

Proof. Observe that

F (y)− F (x)−∇F (x)(y − x) =
∫ 1

0
∇F (x+ t(y − x))(y − x)dt−∇F (x)(y − x)

=
∫ 1

0
[∇F (x+ t(y − x))−∇F (x)](y − x)dt.

Hence

‖F (y)− (F (x) +∇F (x)(y − x))‖2 =
∥∥∥∫ 1

0
[∇F (x+ t(y − x))−∇F (x)](y − x)dt

∥∥∥
2

≤
∫ 1

0
‖(∇F (x+ t(y − x)−∇F (x))(y − x)‖2 dt

≤
∫ 1

0
‖∇F (x+ t(y − x))−∇F (x)‖F ‖y − x‖2 dt

≤
∫ 1

0
Kt ‖y − x‖22 dt

= K
2 ‖y − x‖

2
2 .

�

The Mean Value Theorem also allows to obtain the following second order approximation.

Theorem 5.5. Let f : Rn → R and suppose that ∇2f(x) exists and is continuous at x. Then

(66) f(y) = f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(x)(y − x) + o(‖y − x‖2).

Proof. The mean value theorem tells us the for every y ∈ x+ εB there is a z ∈ (x, y) such that

f(y) = f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(z)(y − x)

= f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(x)(y − x) + 1

2 (y − x)T
[
∇2f(z)−∇2f(x)

]
(y − x)

= f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(x)(y − x) + o(‖y − x‖2).

�

If we drop the o(‖y − x‖2) in the equation (66), we obtain the second-order Taylor approximation to f at x.

This is a second-order approximation since the power of ‖y − x‖ in the little-o term is 2, i.e., o(‖y − x‖2).





CHAPTER 6

Optimality Conditions for Unconstrained Problems

1. Existence of Optimal Solutions

Consider the problem of minimizing the function f : Rn → R where f is continuous on all of Rn:

P min
x∈Rn

f(x).

As we have seen, there is no guarantee that f has a minimum value, or if it does, it may not be attained. To clarify
this situation, we examine conditions under which a solution is guaranteed to exist. Recall that we already have
at our disposal a rudimentary existence result for constrained problems. This is the Weierstrass Extreme Value
Theorem.

Theorem 1.1. (Weierstrass Extreme Value Theorem) Every continuous function on a compact set
attains its extreme values on that set.

We now build a basic existence result for unconstrained problems based on this theorem. For this we make use
of the notion of a coercive function.

Definition 1.1. A function f : Rn → R is said to be coercive if for every sequence {xν} ⊂ Rn for which
‖xν‖ → ∞ it must be the case that f(xν)→ +∞ as well.

Continuous coercive functions can be characterized by an underlying compactness property on their lower level
sets.

Theorem 1.2. (Coercivity and Compactness) Let f : Rn → R be continuous on all of Rn. The function f is
coercive if and only if for every α ∈ R the set {x | f(x) ≤ α} is compact.

Proof. We first show that the coercivity of f implies the compactness of the sets {x | f(x) ≤ α}. We begin
by noting that the continuity of f implies the closedness of the sets {x | f(x) ≤ α}. Thus, it remains only to show
that any set of the form {x | f(x) ≤ α} is bounded. We show this by contradiction. Suppose to the contrary that
there is an α ∈ Rn such that the set S = {x | f(x) ≤ α} is unbounded. Then there must exist a sequence {xν} ⊂ S
with ‖xν‖ → ∞. But then, by the coercivity of f , we must also have f(xν) → ∞. This contradicts the fact that
f(xν) ≤ α for all ν = 1, 2, . . . . Therefore the set S must be bounded.

Let us now assume that each of the sets {x | f(x) ≤ α} is bounded and let {xν} ⊂ Rn be such that ‖xν‖ → ∞.
Let us suppose that there exists a subsequence of the integers J ⊂ N such that the set {f(xν)}J is bounded
above. Then there exists α ∈ Rn such that {xν}J ⊂ {x | f(x) ≤ α}. But this cannot be the case since each
of the sets {x | f(x) ≤ α} is bounded while every subsequence of the sequence {xν} is unbounded by definition.
Therefore, the set {f(xν)}J cannot be bounded, and so the sequence {f(xν)} contains no bounded subsequence,
i.e. f(xν)→∞. �

This result in conjunction with Weierstrass’s Theorem immediately yields the following existence result for the
problem P.

Theorem 1.3. (Coercivity implies existence) Let f : Rn → R be continuous on all of Rn. If f is coercive, then
f has at least one global minimizer.

Proof. Let α ∈ R be chosen so that the set S = {x | f(x) ≤ α} is non-empty. By coercivity, this set is
compact. By Weierstrass’s Theorem, the problem min {f(x) |x ∈ S } has at least one global solution. Obviously,
the set of global solutions to the problem min {f(x) |x ∈ S } is a global solution to P which proves the result. �

Remark 1.1. It should be noted that the coercivity hypothesis is stronger than is strictly required in order to
establish the existence of a solution. Indeed, a global minimizer must exist if there exist one non-empty compact
lower level set. We do not need all of them to be compact. However, in practice, coercivity is easy to check.
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2. First-Order Optimality Conditions

This existence result can be quite useful, but unfortunately it does not give us a constructive test for optimality.
That is, we may know a solution exists, but we still do not have a method for determining whether any given point
may or may not be a solution. We now present such a test using the derivatives of the objective function f . For this
we will assume that f is twice continuously differentiable on Rn and develop constructible first- and second-order
necessary and sufficient conditions for optimality.

The optimality conditions we consider are built up from those developed in first term calculus for functions
mapping from R to R. The reduction to the one dimensional case comes about by considering the functions
φ : R→ R given by

φ(t) = f(x+ td)

for some choice of x and d in Rn. The key variational object in this context is the directional derivative of f at a
point x in the direction d given by

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
.

When f is differentiable at the point x ∈ Rn, then

f ′(x; d) = ∇f(x)T d = φ′(0).

Note that if f ′(x; d) < 0, then there must be a t̄ > 0 such that

f(x+ td)− f(x)

t
< 0 whenever 0 < t < t̄ .

In this case, we must have

f(x+ td) < f(x) whenever 0 < t < t̄ .

That is, we can always reduce the function value at x by moving in the direction d an arbitrarily small amount. In
particular, if there is a direction d such that f ′(x; d) exists with f ′(x; d) < 0, then x cannot be a local solution to
the problem minx∈Rn f(x). Or equivalently, if x is a local to the problem minx∈Rn f(x), then f ′(x; d) ≥ 0 whenever
f ′(x; d) exists. We state this elementary result in the following lemma.

Lemma 2.1 (Basic First-Order Optimality Result). Let f : Rn → R and let x ∈ Rn be a local solution to the
problem minx∈Rn f(x). Then

f ′(x; d) ≥ 0

for every direction d ∈ Rn for which f ′(x; d) exists.

We now apply this result to the case in which f : Rn → R is differentiable.

Theorem 2.1. Let f : Rn → R be differentiable at a point x ∈ Rn. If x is a local minimum of f , then
∇f(x) = 0.

Proof. By Lemma 2.1 we have

0 ≤ f ′(x; d) = ∇f(x)T d for all d ∈ Rn .

Taking d = −∇f(x) we get

0 ≤ −∇f(x)T∇f(x) = −‖∇f(x)‖2 ≤ 0.

Therefore, ∇f(x) = 0. �

When f : Rn → R is differentiable, any point x ∈ Rn satisfying ∇f(x) = 0 is said to be a stationary (or,
equivalently, a critical) point of f . In our next result we link the notions of coercivity and stationarity.

Theorem 2.2. Let f : Rn → R be differentiable on all of Rn. If f is coercive, then f has at least one global
minimizer these global minimizers can be found from among the set of critical points of f .

Proof. Since differentiability implies continuity, we already know that f has at least one global minimizer.
Differentiabilty implies that this global minimizer is critical. �

This result indicates that one way to find a global minimizer of a coercive differentiable function is to first find
all critical points and then from among these determine those yielding the smallest function value.
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3. Second-Order Optimality Conditions

To obtain second-order conditions for optimality we must first recall a few properties of the Hessian matrix
∇2f(x). The calculus tells us that if f is twice continuously differentiable at a point x ∈ Rn, then the hessian
∇2f(x) is a symmetric matrix. Symmetric matrices are orthogonally diagonalizable. That is, there exists and
orthonormal basis of eigenvectors of ∇2f(x) , v1, v2, . . . , vn ∈ Rn such that

∇2f(x) = V


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

. . .
...

0 0 . . . . . . λn

V T
where λ1, λ2, . . . , λn are the eigenvalues of ∇2f(x) and V is the matrix whose columns are given by their corre-
sponding vectors v1, v2, . . . , vn:

V =
[
v1, v2, . . . , vn

]
.

It can be shown that ∇2f(x) is positive semi-definite if and only if λi ≥ 0, i = 1, 2, . . . , n, and it is positive definite
if and only if λi > 0, i = 1, 2, . . . , n. Thus, in particular, if ∇2f(x) is positive definite, then

dT∇2f(x)d ≥ λmin ‖d‖2 for all d ∈ Rn,

where λmin is the smallest eigenvalue of ∇2f(x).
We now give our main result on second-order necessary and sufficient conditions for optimality in the problem

minx∈Rn f(x). The key tools in the proof are the notions of positive semi-definiteness and definiteness along with
the second-order Taylor series expansion for f at a given point x ∈ Rn:

(67) f(x) = f(x) +∇f(x)T (x− x) +
1

2
(x− x)T∇2f(x)(x− x) + o(‖x− x‖2)

where

lim
x→x

o(‖x− x‖2)

‖x− x‖2
= 0.

Theorem 3.1. Let f : Rn → R be twice continuously differentiable at the point x ∈ Rn.

(1) (Necessity) If x is a local minimum of f , then ∇f(x) = 0 and ∇2f(x) is positive semi-definite.
(2) (Sufficiency) If ∇f(x) = 0 and ∇2f(x) is positive definite, then there is an α > 0 such that f(x) ≥

f(x) + α‖x− x‖2 for all x near x.

Proof. (1) We make use of the second-order Taylor series expansion (67) and the fact that ∇f(x) = 0
by Theorem 2.1. Given d ∈ Rn and t > 0 set x := x+ td, plugging this into (67) we find that

0 ≤ f(x+ td)− f(x)

t2
=

1

2
dT∇2f(x)d+

o(t2)

t2

since ∇f(x) = 0 by Theorem 2.1. Taking the limit as t→ 0 we get that

0 ≤ dT∇2f(x)d.

Since d was chosen arbitrarily, ∇2f(x) is positive semi-definite.
(2) The Taylor expansion (67) and the hypothesis that ∇f(x) = 0 imply that

(68)
f(x)− f(x)

‖x− x‖2
=

1

2

(x− x)T

‖x− x‖
∇2f(x)

(x− x)

‖x− x‖
+
o(‖x− x‖2)

‖x− x‖2
.

If λmin > 0 is the smallest eigenvalue of ∇2f(x), choose ε > 0 so that

(69)

∣∣∣∣o(‖x− x‖2)

‖x− x‖2

∣∣∣∣ ≤ λmin

4

whenever ‖x− x‖ < ε. Then, for all ‖x− x‖ < ε, we have from (68) and (69) that

f(x)− f(x)

‖x− x‖2
≥ 1

2
λmin +

o(‖x− x‖2)

‖x− x‖2

≥ 1

4
λmin.
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Consequently, if we set α = 1
4λmin, then

f(x) ≥ f(x) + α‖x− x‖2

whenever ‖x− x‖ < ε.
�

In order to apply the second-order sufficient condition one must be able to check that a symmetric matrix is
positive definite. As we have seen, this can be done by computing the eigenvalues of the matrix and checking that
they are all positive. But there is another approach that is often easier to implement using the principal minors of
the matrix.

Theorem 3.2. Let H ∈ Rn×n be symmetric. We define the kth principal minor of H, denoted ∆k(H), to be
the determinant of the upper-left k × k submatrix of H. Then

(1) H is positive definite if and only if ∆k(H) > 0, k = 1, 2, . . . , n.
(2) H is negative definite if and only if (−1)k∆k(H) > 0, k = 1, 2, . . . , n.

Definition 3.1. Let f : Rn → R be continuously differentiable at x. If ∇f(x) = 0, but x is neither a local
maximum or a local minimum, we call x a saddle point for f .

Theorem 3.3. Let f : Rn → R be twice continuously differentiable at x. If ∇f(x) = 0 and ∇2f(x) has both
positive and negative eigenvalues, then x is a saddle point of f .

Theorem 3.4. Let H ∈ Rn×n be symmetric. If H is niether positive definite or negative definite and all of its
principal minors are non-zero, then H has both positive and negative eigenvalues. In this case we say that H is
indefinite.

Example 3.1. Consider the matrix

H =

 1 1 −1
1 5 1
−1 1 4

 .
We have

∆1(H) = 1, ∆2(H) =

∣∣∣∣ 1 1
1 5

∣∣∣∣ = 4, and ∆3(H) = det(H) = 8.

Therefore, H is positive definite.

4. Convexity

In the previous section we established first- and second-order optimality conditions. These conditions are based
on only local information and so only refer to properties of local extrema. In this section we study the notion of
convexity which allows us to provide optimality conditions for global solutions.

Definition 4.1. (1) A set C ⊂ Rn is said to be convex if for every x, y ∈ C and λ ∈ [0, 1] one has

(1− λ)x+ λy ∈ C .

(2) A function f : Rn → R is said to be convex if for every two points x1, x2 ∈ Rn and λ ∈ [0, 1] we have

(70) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

The function f is said to be strictly convex if for every two distinct points x1, x2 ∈ Rn and λ ∈ (0, 1) we
have

(71) f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).

The inequality (70) is equivalent to the statement that the secant line connecting (x1, f(x1)) and (x2, f(x2))
lies above the graph of f on the line segment λx1 + (1− λ)x2, λ ∈ [0, 1].
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x  x  + (1 -   )x 2x

2
1(x  , f (x  ))1

2(x  , f (x   ))

λ 1 λ 21

That is, the set

epi (f) = {(x, µ) : f(x) ≤ µ},
called the epi-graph of f is a convex set. Indeed, it can be shown that the convexity of the set epi (f) is equivalent
to the convexity of the function f . This observation allows us to extend the definition of the convexity of a function
to functions taking potentially infinite values.

Definition 4.2. A function f : Rn → R∪{+∞} = R̄ is said to be convex if the set epi (f) = {(x, µ) : f(x) ≤ µ}
is a convex set. We also define the essential domain of f to be the set

dom (f) = {x : f(x) < +∞} .

We say that f is strictly convex if the strict inequality (71) holds whenever x1, x2 ∈ dom (f) are distinct.

Example 4.1. cTx, ‖x‖, ex, x2

The role of convexity in linking the global and the local in optimization theory is illustrated by the following
result.

Theorem 4.1. Let f : Rn → R̄ be convex. If x ∈ Rn is a local minimum for f , then x is a global minimum for
f .

Proof. Suppose to the contrary that there is a x̂ ∈ Rn with f(x̂) < f(x). Since x is a local solution, there is
an ε > 0 such that

f(x) ≤ f(x) whenever ‖x− x‖ ≤ ε .
Taking ε smaller if necessary, we may assume that

ε < 2‖x− x̂‖ .
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Set λ := ε(2‖x− x̂‖)−1 < 1 and xλ := x+ λ(x̂− x). Then ‖xλ− x‖ ≤ ε/2 and f(xλ) ≤ (1− λ)f(x) + λf(x̂) < f(x).
This contradicts the choice of ε and so no such x̂ exists. �

Strict convexity implies the uniqueness of solutions.

Theorem 4.2. Let f : Rn → R̄ be strictly convex. If f has a global minimizer, then it is unique.

Proof. Let x1 and x2 be distinct global minimizers of f . Then, for λ ∈ (0, 1),

f((1− λ)x1 + λx2) < (1− λ)f(x1) + λf(x2) = f(x1) ,

which contradicts the assumption that x1 is a global minimizer. �

If f is a differentiable convex function, much more can be said. We begin with the following lemma.

Lemma 4.1. Let f : Rn → R̄ be convex (not necessarilty differentiable).

(1) Given x, d ∈ Rn the difference quotient

(72)
f(x+ td)− f(x)

t

is a non-decreasing function of t on (0,+∞).
(2) For every x, d ∈ Rn the directional derivative f ′(x; d) always exists and is given by

(73) f ′(x; d) := inf
t>0

f(x+ td)− f(x)

t
.

Proof. We first assume (1) is true and show (2). Recall that

(74) f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Now if the difference quotient (72) is non-decreasing in t on (0,+∞), then the limit in (74) is necessarily given by
the infimum in (73). This infimum always exists and so f ′(x; d) always exists and is given by (73).

We now prove (1). Let x, d ∈ Rn and let 0 < t1 < t2. Then

f(x+ t1d) = f
(
x+

(
t1
t2

)
t2d
)

= f
[(

1−
(
t1
t2

))
x+

(
t1
t2

)
(x+ t2d)

]
≤

(
1− t1

t2

)
f(x) +

(
t1
t2

)
f(x+ t2d).

Hence
f(x+ t1d)− f(x)

t1
≤ f(x+ t2d)− f(x)

t2
.

�

A very important consequence of Lemma 4.1 is the subdifferential inequality. This inequality is obtained by
plugging t = 1 and d = y − x into the right hand side of (73) where y is any other point in Rn. This substitution
gives the inequality

(75) f(y) ≥ f(x) + f ′(x; y − x) for all y ∈ Rn and x ∈ dom f .

The subdifferential inequality immediately yields the following result.

Theorem 4.3 (Convexity and Optimality). Let f : Rn → R̄ be convex (not necessarilty differentiable) and let
x ∈ dom f . Then the following three statements are equivalent.

(i) x is a local solution to minx∈Rn f(x).
(ii) f ′(x; d) ≥ 0 for all d ∈ Rn.

(iii) x is a global solution to minx∈Rn f(x).

Proof. Lemma 2.1 gives the implication (i)⇒(ii). To see the implication (ii)⇒(iii) we use the subdifferential
inequality and the fact that f ′(x; y − x) exists for all y ∈ Rn to obtain

f(y) ≥ f(x) + f ′(x; y − x) ≥ f(x) for all y ∈ Rn.

The implication (iii)⇒(i) is obvious. �
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If it is further assumed that f is differentiable, then we obtain the following elementary consequence of Theorem
4.3.

Theorem 4.4. Let f : Rn → R be convex and suppose that x ∈ Rn is a point at which f is differentiable. Then
x is a global minimum of f if and only if ∇f(x) = 0.

As Theorems 4.3 and 4.4 demonstrate, convex functions are well suited to optimization theory. Thus, it is
important that we are able to recognize when a function is convex. For this reason we give the following result.

Theorem 4.5. Let f : Rn → R̄.

(1) If f is differentiable on Rn, then the following statements are equivalent:
(a) f is convex,
(b) f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn
(c) (∇f(x)−∇f(y))T (x− y) ≥ 0 for all x, y ∈ Rn.

(2) If f is twice differentiable then f is convex if and only if ∇2f(x) is positive semi-definite for all x ∈ Rn.

Remark 4.1. The condition in Part (c) is called monotonicity.

Proof. (a) ⇒ (b) If f is convex, then 4.5 holds. By setting t := 1 and d := y − x we obtain (b).

(b) ⇒ (c) Let x, y ∈ Rn. From (b) we have

f(y) ≥ f(x) +∇f(x)T (y − x)

and

f(x) ≥ f(y) +∇f(y)T (x− y).

By adding these two inequalities we obtain (c).
(c) ⇒ (b) Let x, y ∈ Rn. By the Mean Value Theorem there exists 0 < λ < 1 such that

f(y)− f(x) = ∇f(xλ)T (y − x)

where xλ := λy + (1− λ)x. By hypothesis,

0 ≤ [∇f(xλ)−∇f(x)]T (xλ − x)
= λ[∇f(xλ)−∇f(x)]T (y − x)
= λ[f(y)− f(x)−∇f(x)T (y − x)].

Hence f(y) ≥ f(x) +∇f(x)T (y − x).
(b) ⇒ (a) Let x, y ∈ Rn and set

α := max
λ∈[0,1]

ϕ(λ) := [f(λy + (1− λ)x)− (λf(y) + (1− λ)f(x))].

We need to show that α ≤ 0. Since [0, 1] is compact and ϕ is continuous, there is a λ ∈ [0, 1] such that
ϕ(λ) = α. If λ equals zero or one, we are done. Hence we may as well assume that 0 < λ < 1 in which
case

0 = ϕ′(λ) = ∇f(xλ)T (y − x) + f(x)− f(y)

where xλ = x+ λ(y − x), or equivalently

λf(y) = λf(x)−∇f(xλ)T (x− xλ).

But then
α = f(xλ)− (f(x) + λ(f(y)− f(x)))

= f(xλ) +∇f(xλ)T (x− xλ)− f(x)
≤ 0

by (b).

2) Suppose f is convex and let x, d ∈ Rn, then by (b) of Part (1),

f(x+ td) ≥ f(x) + t∇f(x)T d

for all t ∈ R. Replacing the left hand side of this inequality with its second-order Taylor expansion yields
the inequality

f(x) + t∇f(x)T d+
t2

2
dT∇2f(x)d+ o(t2) ≥ f(x) + t∇f(x)T d,
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or equivalently,

1

2
dt∇2f(x)d+

o(t2)

t2
≥ 0.

Letting t→ 0 yields the inequality

dT∇2f(x)d ≥ 0.

Since d was arbitrary, ∇2f(x) is positive semi-definite.
Conversely, if x, y ∈ Rn, then by the Mean Value Theorem there is a λ ∈ (0, 1) such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(xλ)(y − x)

where xλ = λy + (1− λ)x. Hence

f(y) ≥ f(x) +∇f(x)T (y − x)

since ∇2f(xλ) is positive semi-definite. Therefore, f is convex by (b) of Part (1).

�

Convexity is also preserved by certain operations on convex functions. A few of these are given below.

Theorem 4.6. Let f : Rn → R, h : Rs × Rk → R and fν : Rn → R be convex functions for ν ∈ N where N is
an arbitrary index set, and let νi ∈ N and λi ≥ 0, i = 1, . . . ,m. Then the following functions are also convex.

(1) φ ◦ f , where φ : R→ R is any non-decreasing function on R.
(2) f(x) :=

∑m
i=1 λifnui(x) (Non-negative linear combinations)

(3) f(x) := maxν∈N fν(x) (pointwise max)
(4) f(x) := sup

{∑m
i=1 fνi(x

i)
∣∣x =

∑m
i=1 x

i
}

(infimal convolution)

(5) f∗(y) := supx∈Rn [yTx− f(x)] (convex conjugation)
(6) ψ(y) = infx∈Rs h(x, y) (infimal projection)

4.0.1. More on the Directional Derivative. It is a powerful fact that convex function are directionally differen-
tiable at every point of their domain in every direction. But this is just the beginning of the story. The directional
derivative of a convex function possess several other important and surprising properties. We now develop a few of
these.

Definition 4.3. Let h : Rn → R ∪ {+∞}. We say that h is positively homogeneous if

h(λx) = λh(x) for all x ∈ R and λ > 0.

We say that h is subadditive if

h(x+ y) ≤ h(x) + h(y) for all x, y ∈ R.

Finally, we say that h is sublinear if it is both positively homogeneous and subadditive.

There are numerous important examples of sublinear functions (as we shall soon see), but perhaps the most
familiar of these is the norm ‖x‖. Positive homogeneity is obvious and subadditivity is simply the triangle inequality.
In a certain sense the class of sublinear function is a generalization of norms. It is also important to note that
sublinear functions are always convex functions. Indeed, given x, y ∈ domh and 0 ≤ λ ≤ 1,

h(λx+ (1− λ)y) ≤ h(λx) + h(1− λ)y)

= λh(x) + (1− λ)h(y).

Theorem 4.7. Let f : Rn → R ∪ {+∞} be a convex function. Then at every point x ∈ dom f the directional
derivative f ′(x; d) is a sublinear function of the d argument, that is, the function f ′(x; ·) : Rn → R ∪ {+∞} is
sublinear. Thus, in particular, the function f ′(x; ·) is a convex function.

Remark 4.2. Since f is convex and x ∈ dom f , f ′(x; d) exists for all d ∈ Rn.
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Proof. Let x ∈ dom f , d ∈ Rn, and λ > 0. Then

f ′(x;λd) = lim
t↓0

f(x+ tλd)− f(x)

t

= lim
t↓0

λ
f(x+ tλd)− f(x)

λt

= λ lim
(λt)↓0

f(x+ (tλ)d)− f(x)

(λt)

= λf ′(x; d),

showing that f ′(x; ·) is positively homogeneous.
Next let d1, d2 ∈ Rn, Then

f ′(x; d1 + d2) = lim
t↓0

f(x+ t(d1 + d2))− f(x)

t

= lim
t↓0

f( 1
2 (x+ 2td1) + 1

2 (x+ 2td2))− f(x)

t

≤ lim
t↓0

1
2f(x+ 2td1) + 1

2f(x+ 2td2)− f(x)

t

≤ lim
t↓0

1
2 (f(x+ 2td1)− f(x)) + 1

2 (f(x+ 2td2)− f(x))

t

= lim
t↓0

f(x+ 2td1)− f(x)

2t
+ lim

t↓0

f(x+ 2td2)− f(x)

2t

= f ′(x; d1) + f ′(x; d2),

showing that f ′(x; ·) is subadditive and completing the proof. �





CHAPTER 7

Optimality Conditions for Constrained Optimization

1. First–Order Conditions

In this section we consider first–order optimality conditions for the constrained problem

P : minimize f0(x)
subject to x ∈ Ω,

where f0 : Rn → R is continuously differentiable and Ω ⊂ Rn is closed and non-empty. The first step in the analysis
of the problem P is to derive conditions that allow us to recognize when a particular vector x is a solution, or local
solution, to the problem. For example, when we minimize a function of one variable we first take the derivative and
see if it is zero. If it is, then we take the second derivative and check that it is positive. If this is also true, then we
know that the point under consideration is a local minimizer of the function. Of course, the presence of constraints
complicates this kind of test.

To understand how an optimality test might be derived in the constrained case, let us first suppose that we
are at a feasible point x and we wish to find a better point x̃. That is, we wish to find a point x̃ such that x̃ ∈ Ω
and f(x̃) < f(x). As in the unconstrained case, one way to do this is to find a direction d in which the directional
derivative of f in the direction d is negative: f ′(x; d) < 0. We know that for such directions we can reduce the
value of the function by moving away from the point x in the direction d. However, moving in such a direction may
violate feasibility. That is, it may happen that x + td /∈ Ω regardless of how small we take t > 0. To avoid this
problem, we consider the notion of a feasible direction.

Definition 1.1. [Feasible Directions]
Given a subset Ω of Rn and a point x ∈ Ω, we say that a direction d ∈ Rn is a feasible direction for Ω at x if there
is a t > 0 such that x+ td ∈ Ω for all t ∈ [0, t].

Theorem 1.1. If x is a local solution to the problem P, then f ′(x; d) ≥ 0 for all feasible directions d for Ω at
x for which f ′(x; d) exists.

Proof. The proof is a straightforward application of the definitions. If the result were false, then there would
be a direction of descent for f at x that is also a feasible direction for Ω at x. But then moving a little bit in this
direction both keeps us in Ω and strictly reduces the value of f . This contradicts the assumption that x is a local
solution. Therefore, the result must be true. �

Unfortunately, this result is insufficient in many important cases. The insufficiency comes from the dependence
on the notion of feasible direction. For example, if

Ω = {(x1, x2)T : x2
1 + x2

2 = 1},

then the only feasible direction at any point of Ω is the zero direction. Hence, regardless of the objective function
f and the point x ∈ Ω, we have that f ′(x; d) ≥ 0 for every feasible direction to Ω at x. In this case, Theorem 1.1
has no content.

To overcome this deficiency we introduce a general notion of tangency that considers all directions d pointing
into Ω at x ∈ Ω in a limiting sense. Define the tangent cone to Ω at a point x ∈ Ω to be the set of limiting directions
obtained from sequences in Ω that converge to x. Specifically, the tangent cone is given by

T (x |Ω) := {d : ∃ τi ↘ 0 and {xi} ⊂ Ω, with xi → x, such that τ−1
i (xi − x)→ d}.

Example 1.1. (1) If Ω = {x : Ax = b}, where A ∈ Rm×n and b ∈ Rm, then T (x |Ω) = Nul (A) for
every x ∈ Ω.

73
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Reason: Let x ∈ Ω. Note that if d ∈ Nul (A), then for every t ≥ 0 we have A(x + td) =
Ax+ tAd = Ax = b so that d ∈ T (x |Ω). Since d ∈ Nul (A) was chosen arbitrarily, this implies
that Nul (A) ⊂ T (x |Ω). Hence we only need to establish the reverse inclusion to verify the
equivalence of these sets.
Let d ∈ T (x |Ω). Then, by definition, there are sequences ti ↓ 0 and {xi} ⊂ Ω with xi → x such
that di → d where di = t−1

i (xi − x), i = 1, 2, . . . . Note that

Adi = t−1
i A(xi − x) = t−1

i [Axi −Ax] = t−1
i [b− b] = 0 ∀ i = 1, 2, . . . .

Therefore, Ad = limi→∞Adi = 0 so that d ∈ Nul (A). Since d was chosen arbitrarily from
T (x |Ω), we have T (x |Ω) ⊂ Nul (A) which proves the equivalence.

(2) If Ω = {(x1, x2)T : x2
1 + x2

2 = 1}, then T (x |Ω) = {(y1, y2) : x1y1 + x2y2 = 0}.
(3) A convex set is said to be polyhedral if it can be represented as the solution set of a finite number of linear

equality and /or inequality constraints. Thus, for example te constraint region for an LPs is a convex
polyhedron. If it is assumed that Ω is a convex polyhedron, then

T (x |Ω) =
⋃
λ≥0

λ(Ω− x) = {λ(y − x) |λ ≥ 0, y ∈ Ω} .

(4) If Ω is a convex subset of Rn, then

T (x |Ω) =
⋃
λ≥0

λ(Ω− x) = cl {λ(y − x) |λ ≥ 0, y ∈ Ω} .

Theorem 1.2. [Basic Constrained First-Order Necessary Conditions]
Suppose that the function f0 : Rn → R in P is continuously differentiable near the point x ∈ Ω. If x is a local
solution to P, then

f ′0(x; d) ≥ 0 for all d ∈ T (x |Ω) .

Proof. Note that the MVT (Mean Value Theorem) implies that

f ′0(x; d) = lim
τ↘0

f0(x+ τd)− f0(x)

τ
= lim

s→d
τ↘0

f0(x+ τs)− f0(x)

τ

since f0 is continuously differentiable.
Suppose x is a local solution to P and let d ∈ T (x |Ω). Since d ∈ T (x |Ω), there is a sequence {xi} ⊂ Ω and

ti ↓ 0 such that xi → x and si = t−1
i (xi−x)→ d. Note that x+tid ≈ x+tisi = xi, and so f(x+tisi) = f(xi) ≥ f(x).

Using the representation of the drectional derivative given above, we obtain

f ′0(x; d) = lim
s→d
τ↘0

f0(x+ τs)− f0(x)

τ
= lim
i→∞

f0(x+ tisi)− f0(x)

ti
= lim
i→∞

f0(xi)− f0(x)

ti
≥ 0.

�

This general result is not particulary useful on its own since it refers the the abstract notion of tangent cone.
In order to make it useful, we need to be able to compute the tangent cone once a representation for Ω is given.
We now show how this can be done.

We begin by assuming that Ω has the form

(76) Ω := {x : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m},
where each fi : Rn → R is continuously differentiable on Rn. Observe that if x ∈ Ω and d ∈ T (x |Ω) then there
are sequences {xk} ⊂ Ω and τk ↘ 0 with xk → x such that τ−1

k (xk − x) → d. Setting dk = τ−1
k (xk − x) for all k

we have that

f ′i(x; d) = lim
k→∞

fi(x+ τkdk)− fi(x)

τk
equals 0 for i ∈ {s+ 1, . . . , m} and is less than or equal to 0 for i ∈ I(x) where

I(x) := {i : i ∈ {1, . . . , s}, fi(x) = 0} .
Consequently,

T (x |Ω) ⊂ {d : ∇fi(x)T d ≤ 0, i ∈ I(x), ∇fi(x)T d = 0, i = s+ 1, . . . ,m} .
The set on the right hand side of this inclusion is a computationally tractable. Moreover, in a certain sense, the
cases where these two sets do not coincide are exceptional. For this reason we make the following definition.
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Definition 1.2. [Regularity]
We say that the set Ω is regular at x ∈ Ω if

T (x |Ω) = {d ∈ Rn : f ′i(x; d) ≤ 0, i ∈ I(x), f ′i(x; d) = 0 i = s+ 1, . . . ,m}.

But it is important to note that not every set is regular.

Exercise 1.1. Graph the set
Ω := {x ∈ R2| − x3

1 ≤ x2 ≤ x3
1},

and show that it is not regular at the origin. This is done by first showing that

TΩ(0) =
{

(d1, d2)T
∣∣ d1 ≥ 0, d2 = 0

}
.

Then set
f1(x1, x2) = −x3

1 − x2 and f1(x1, x2) = −x3
1 + x2,

so that Ω =
{

(x1, x2)T
∣∣ f1(x1, x2) ≤ 0, f2(x1, x2) ≤ 0

}
. Finally, show that{

d
∣∣∇f1(0, 0)T d ≤ 0,∇f2(0, 0)T d ≤ 0

}
=
{

(d1, d2)T
∣∣ d2 = 0

}
6= TΩ(0).

Next let us suppose we are at a given point x ∈ Ω and that we wish to obtain a new point x+ = x + td for
which f(x+) < f(x) for some direction d ∈ Rn and steplength t > 0. A good candidate for a search direction d
is one that minimizes f ′(x; d) over all directions that point into Ω up to first-order. That is, we should minimize
∇f(x)T d over the set of tangent directions. Remarkably, this search for a feasible direction of steepest descent can
be posed as the following linear program (assuming regularity):

(77)
max (−∇f0(x̄))T d
subject to ∇fi(x̄)T d ≤ 0 i ∈ I(x̄)

∇fi(x̄)T d = 0 i = s+ 1, . . . ,m.

The dual of (77) is the linear program

(78)

min 0
subject to

∑
i∈I(x̄) ui∇fi(x̄) +

∑m
i=s+1 ui∇fi(x̄) = −∇f0(x̄)

0 ≤ ui, i ∈ I(x̄).

If we assume that x is a local solution to P, Theorem 1.2 tells us that the maximum in (77) is less than or
equal to zero. But d = 0 is feasible for (77), hence the maximum value in (77) is zero. Therefore, by the
Strong Duality Theorem for Linear Programming, the linear program (78) is feasible, that is, there exist scalars
ui, i ∈ I(x) ∪ {s+ 1, . . . ,m} with ui ≥ 0 for i ∈ I(x) such that

(79) 0 = ∇f0(x) +
∑
i∈I(x)

ui∇fi(x) +

m∑
i=s+1

ui∇fi(x).

This observation yields the following result.

Theorem 1.3. [Constrained First-Order Optimality Conditions]
Let x ∈ Ω be a local solution to P at which Ω is regular. Then there exist u ∈ Rm such that

(1) 0 = ∇xL(x, u),
(2) 0 = uifi(x) for i = 1, . . . , s, and
(3) 0 ≤ ui, i = 1, . . . , s,

where the mapping L : Rn × Rm → R is defined by

L(x, u) := f0(x) +

m∑
i=1

uifi(x)

and is called the Lagrangian for the problem P.

Proof. For i ∈ I(x) ∪ {s + 1, . . . ,m} let ui be as given in (79) and for i ∈ {1, . . . , s} \ I(x) set ui = 0. Then
this choice of u ∈ Rm satisfies (1)–(3) above. �

Definition 1.3. [KKT Conditions]
Let x ∈ Rn and u ∈ Rm. We say that (x, u) is a Karush-Kuhn-Tucker (KKT) pair for P if
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(1) fi(x) ≤ 0 i = 1, . . . , s, fi(x) = 0 i = s+ 1, . . . ,m (Primal feasibility),
(2) ui ≥ 0 for i = 1, . . . , s (Dual feasibility),
(3) 0 = uifi(x) for i = 1, . . . , s (complementarity), and
(4) 0 = ∇xL(x, u) (stationarity of the Lagrangian).

Given x ∈ Rn, if there is a u ∈ Rm such that (x, u) is a Karush-Kuhn-Tucker pair for P, then we say that x is
a KKT point for P (we also refer to such an x as a stationary point for P). �

2. Regularity and Constraint Qualifications

We now briefly discuss conditions that yield the regularity of Ω at a point x ∈ Ω. These conditions should be
testable in the sense that there is a finitely terminating algorithm that can determine whether they are satisfied
or not satisfied. The condition that we will concentrate on is the so called Mangasarian-Fromovitz constraint
qualification (MFCQ).

Definition 2.1. [MFCQ]
We say that a point x ∈ Ω satisfies the Mangasarian-Fromovitz constraint qualification (or MFCQ) at x if

(1) there is a d ∈ Rn such that

∇fi(x)T d < 0 for i ∈ I(x),
∇fi(x)T d = 0 for i = s+ 1, · · · ,m,

and
(2) the gradients {∇fi(x)|i = s+ 1, · · · ,m} are linearly independent.

We have the following key result which we shall not prove.

Theorem 2.1. [MFCQ → Regularity] Let fi : Rn → R, i = 1, 2, · · · ,m be C1 near x ∈ Ω. If the MFCQ
holds at x, then Ω is regular at x.

The MFCQ is algorithmically verifiable. This is seen by considering the LP

(80)
min 0
subject to ∇fi(x)T d ≤ −1 i ∈ I(x)

∇fi(x)T d = 0 i = s+ 1, · · · ,m.

Cleary, the MFCQ is satisfied at x if and only if the above LP is feasible and the gradients {∇fi(x) | i = s+1, · · · ,m}
are linearly independent. This observation also leads to a dual characterization of the MFCQ by considering the
dual of the LP (80).

Lemma 2.1. [Dual MFCQ]
The MFCQ is satisfied at a point x ∈ Ω if and only if the only solution to the system

m∑
i=1

ui∇fi(x) = 0,

uifi(x) = 0 i = 1, 2, · · · , s, and

ui ≥ 0 i = 1, 2, · · · , s,

is ui = 0, i = 1, 2, · · · ,m.

Proof. The dual the LP (80) is the LP

(81)

min
∑
i∈I(x) ui

subject to
∑
i∈I(x) ui∇fi(x) +

∑m
i=s+1 ui∇fi(x) = 0

0 ≤ ui, i ∈ I(x).

This LP is always feasible, simply take all ui’s equal to zero. Hence, by the Strong Duality Theorem of Linear
Programming, the LP (80) is feasible if and only if the LP (81) is finite valued in which case the optimal value
in both is zero. That is, the MFCQ holds at x if and only if the optimal value in (81) is zero and the gradients
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{∇fi(x) | i = s+ 1, · · · ,m} are linearly independent. The latter statement is equvalent to the statement that the
only solution to the system

m∑
i=1

ui∇fi(x) = 0,

uifi(x) = 0 i = 1, 2, · · · , s, and

ui ≥ 0 i = 1, 2, · · · , s,

is ui = 0, i = 1, 2, · · · ,m. �

Techniques similar to these show that the MFCQ is a local property. That is, if it is satisfied at a point then
it must be satisfied on a neighborhood of that point. The MFCQ is a powerful tool in the analysis of constraint
systems as it implies many useful properties. One such property is established in the following result.

Theorem 2.2. [MFCQ → Compact Multiplier Set]
Let x ∈ Ω be a local solution to P at which the set of Karush-Kuhn-Tucker multipliers

(82) KKT (x) :=

u ∈ Rm
∣∣∣∣∣∣

∇xL(x, u) = 0
uifi(x) = 0, i = 1, 2, · · · , s,

0 ≤ ui, i = 1, 2, · · · , s


is non-empty. Then KKT (x) is a compact set if and only if the MFCQ is satisfied at x.

Proof. (⇒) If MFCQ is not satisfied at x, then from the Strong Duality Theorem for linear programming,
Lemma 2.1, and the LP (81) guarentees the existence of a non-zero vector ū ∈ Rm satisfying

m∑
i=1

ui∇fi(x) = 0 and 0 ≤ ui with 0 = uifi(x) for i = 1, 2, · · · , s.

Then for each u ∈ KKT (x) we have that u + tū ∈ KKT (x) for all t > 0. Consequently, KKT (x) cannot be
compact.
(⇐) If KKT (x) is not compact, there is a sequence {uj} ⊂ KKT (x) with

∥∥uj∥∥ ↑ +∞. With no loss is generality,
we may assume that

uj

‖uj‖
→ u.

But then

ui ≥ 0, i = 1, 2, · · · , s,
uifi(x) = limi→∞

uj

‖uj‖fi(x) = 0, i = 1, 2, · · · , s, and∑m
i=1 uifi(x) = limi→∞

∇xL(x,uj)
‖uj‖ = 0.

Hence, by Lemma 2.1, the MFCQ cannot be satisfied at x. �

Before closing this section we introduce one more constraint qualification. This is the so called LI condition
and is associated with the uniqueness of the multipliers..

Definition 2.2 (Linear Independence Condition). The LI condition is said to be satisfied at the point
x ∈ Ω if the constraint gradients

{∇fi(x) | i ∈ I(x) ∪ {s+ 1, · · · ,m}}

are linearly independent.

Clearly, the LI condition implies the MFCQ. However, it is a much stronger condition in the presence of
inequality constraints. In particular, the LI condition implies the uniqueness of the multipliers at a local solution
to P.
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3. Second–Order Conditions

Second–order conditions are introduced by way of the Lagrangian. As is illustrated in the following result, the
multipliers provide a natural way to incorporate the curvature of the constraints.

Theorem 3.1. [Constrained Second-Order Sufficiency]
Let Ω have representation (76) and suppose that each of the functions fi, i = 0, 1, 2, . . .m are C2. Let x ∈ Ω. If
(x, u) ∈ Rn × Rm is a Karush-Kuhn-Tucker pair for P such that

dT∇2
xL(x, u)d > 0

for all d ∈ TΩ(x), d 6= 0, with ∇f0(x)T d = 0, then there is an ε > 0 and ν > 0 such that

f0(x) ≥ f0(x) + ν‖x− x‖2

for every x ∈ Ω with ‖x− x‖ ≤ ε, in particular x is a strict local solution to P.

Proof. Suppose to the contrary that no such ε > 0 and ν > 0 exist, then there exist sequences {xk} ⊂ Ω,
{νk} ⊂ R+ such that xk → x, νk ↓ 0, and

f0(xk) ≤ f0(x) + νk‖xk − x‖2

for all k = 1, 2, . . .. For every x ∈ Ω we know that uT f(x) ≤ 0 and 0 = uT f(x) where the ith component of
f : Rn → Rm is fi. Hence

L(xk, u) ≤ f0(xk) ≤ f0(x) + νk‖xk − x‖2
= L(x, u) + νk‖xk − x‖2.

Therefore,

(83) f0(x) +∇f0(x)T (xk − x) + o(‖xk − x‖) ≤ f0(x) + νk‖xk − x‖2

and

(84)
L(x, u) +∇xL(x, u)T (xk − x)

+ 1
2 (xk − x)T∇2

xL(x, u)(xk − x) + o(‖xk − x‖2)
≤ L(x, u) + νk‖xk − x‖2 .

With no loss of generality, we can assume that

dk :=
xk − x
‖xk − x‖

→ d ∈ TΩ(x).

Dividing (83) through by ‖xk − x‖ and taking the limit we find that ∇f0(x)T d ≤ 0. Since

TΩ(x) ⊂ {d : ∇fi(x)T d ≤ 0, i ∈ I(x), ∇fi(x)T d = 0, i = s+ 1, . . . ,m},
we have ∇fi(x)T d ≤ 0, i ∈ I(x) ∪ {0} and ∇fi(x)T d = 0 for i = s + 1, . . . ,m. On the other hand, (x, u) is a
Karush-Kuhn-Tucker point so

∇f0(x)T d = −
∑
i∈I(x)

ui∇fi(x)T d ≥ 0.

Hence ∇f0(x)T d = 0, so that

d
T∇2

xL(x, u)d > 0.

But if we divide (84) by ‖xk − x‖2 and take the limit, we arrive at the contradiction

1

2
d
T∇2

xL(x, u)d ≤ 0,

whereby the result is established. �

The assumptions required to establish Theorem 3.1 are somewhat strong but they do lead to a very practical
and, in many cases, satisfactory second-order sufficiency result. In order to improve on this result one requires a
much more sophisticated mathematical machinery. We do not take the time to develop this machinery. Instead
we simply state a very general result. The statement of this result employs the entire set of Karush-Kuhn-Tucker
multipliers KKT (x).

Theorem 3.2 (General Constrained Second-Order Necessity and Sufficiency). Let x ∈ Ω be a
point at which Ω is regular.
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(1) If x is a local solution to P, then KKT (x) 6= ∅, and for every d ∈ T (x̄ |Ω) there is a u ∈ KKT (x) such
that

dT∇2
xL(x, u)d ≥ 0.

(2) If KKT (x) 6= ∅, and for every d ∈ T (x̄ |Ω), d 6= 0, for which ∇f0(x)T d = 0 there is a u ∈ KKT (x) such
that

dT∇2
xL(x, u)d > 0,

then there is an ε > 0 and ν > 0 such that

f0(x) ≥ f0(x) + ν‖x− x‖2

for every x ∈ Ω with ‖x− x‖ ≤ ε, in particular x is a strict local solution to P.

4. Optimality Conditions in the Presence of Convexity

As we saw in the unconstrained case, convexity can have profound implications for optimality and optimality
conditions. To begin with, we have the following very powerful result whose proof is identicle to the proof in the
unconstrained case.

Theorem 4.1. [Convexity+Local Optimality→Global Optimality]
Suppose that f0 : Rn → R is convex and that Ω ⊂ Rn is a convex set. If x ∈ Rn is a local solution to P, then x is
a global solution to P.

Proof. Suppose there is a x̂ ∈ Ω with f0(x̂) < f0(x). Let ε > 0 be such that

f0(x) ≤ f0(x) whenever ‖x− x‖ ≤ ε and x ∈ Ω,

and
ε < 2‖x− x̂‖ .

Set λ := ε(2‖x− x̂‖)−1 < 1 and xλ := x+λ(x̂−x) ∈ Ω. Then ‖xλ−x‖ ≤ ε/2 and f0(xλ) ≤ (1−λ)f0(x) +λf0(x̂) <
f0(x). This contradicts the choice of ε and so no such x̂ exists. �

We also have the following first-order necessary conditions for optimality. The proof of this result again follows
that for the unconstrained case.

Theorem 4.2. [1st-Order Necessity and Sufficiency]
Suppose that f0 : Rn → R is convex and that Ω ⊂ Rn is a convex set, and let x ∈ Ω. Then the following statements
are equivalent.

(i) x is a local solution to P.
(ii) f ′0(x : y − x) ≥ 0 for all y ∈ Ω.

(iii) x is a global solution to P.

Proof. The implication (i)⇒(ii) follows from Theorem 1.1 since each of the directions d = y − x, y ∈ Ω is
a feasible direction for Ω at x due to the convexity of Ω. To see the implication (ii)⇒(iii), we again resort to the
subdifferential inequality. Let y be any other point in Ω. Then d = y − x ∈ TΩ(x) and so by the subdifferential
inequality we have

f0(y) ≥ f0(x) + f ′0(x; y − x) ≥ f0(x).

Since y ∈ Ω was arbitrary the implication (ii)⇒(iii) follows. The implication (iii)⇒(i) is trivial. �

The utility of this result again depends on our ability to represent the tangent cone TΩ(x) in a computationally
tractable manner. Following the general case, we assume that the set Ω has the representation (76):

(85) Ω := {x : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m}.
The first issue we must address is to determine reasonable conditions on the functions fi that guarentee that the
set Ω is convex. We begin with the following elementary facts about convex functions and convex sets whose proofs
we leave to the reader.

Lemma 4.1. If Ci ⊂ Rn, i = 1, 2, . . . , N, are convex sets, then so is the set C =
⋂N
i=1 Ci.

Lemma 4.2. If h : Rn → R̄ is a convex function, then for every α ∈ R the set

levh (α) = {x |h(x) ≤ α}
is a convex set.
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These facts combine to give the following result.

Lemma 4.3. If the functions fi, i = 1, 2, . . . , s are convex and the functions fi, i = s + 1, . . . ,m are linear,
then the set Ω given by (85) is a convex set.

Remark 4.1. Recall that a function f : Rn → R is said to be linear if there exists c ∈ Rn and α ∈ R such that
f(x) = cTx+ α.

Proof. Note that

Ω =

(
m⋂
i=1

levfi (0)

)
∩

(
m⋂

i=s+1

lev−fi (0)

)
,

where each of the functions fi, i = 1, . . . ,m and −fi, i = s + 1, . . . ,m is convex. Therefore, the convexity of Ω
follows from Lemmas 4.2 and 4.1. �

In order to make the link to the KKT condition in the presence of convexity, we still require the regularity of
the set Ω at the point of interest x. If the set Ω is a polyhedral convex set, i.e.

Ω = {x |Ax ≤ a, Bx = b}
for some A ∈ Rs×n, a ∈ Rs, B ∈ R(m−s)×n, and b ∈ R(m−s), then the set Ω is everywhere regular (Why?). In the
general convex case this may not be true. However, convexity can be used to derive a much simpler test for the
regularity of non-polyhedral convex sets.

Definition 4.1 (The Slater Constraint Qualification). Let Ω ⊂ Rn be as given in (85) with fi, i =
1, . . . , s convex and fi, i = s + 1, . . . ,m linear. We say that Ω satisfies the Slater constraint qualification if there
exists x̃ ∈ Ω such that fi(x̃) < 0 for i = 1, . . . , s.

Theorem 4.3 (Convexity and Regularity). Suppose Ω ⊂ Rn is as given in (85) with fi, i = 1, . . . , s convex
and fi, i = s+ 1, . . . ,m linear. If either Ω is polyhedral convex or satisfies the Slater constraint qualification, then
Ω is regular at every point x ∈ Ω at which the function fi, i = 1, . . . , s are differentiable.

We do not present the proof of this result as it takes us too far afield of our study. Nonetheless, we make use
of this fact in the following result of the KKT conditions.

Theorem 4.4 (Convexity+Regularity→(Optimality⇔ KKT Conditions)). Let f0 : Rn → R be a
differentiable convex function and let Ω be as given in Lemma 4.3 where each of the function fi, i = 1, . . . , s is
differentiable.

(i) If x ∈ Ω is a KKT point for P, then x is a global solution to P.
(ii) Suppose the functions fi, i = 0, 1, . . . , s are continuously differentiable. If x is a solution to P at which Ω

is regular, then x is a KKT point for P.

Proof. Part (ii) of this theorem is just a restatement of Theorem 1.3 and so we need only prove Part (i).
Since x is a KKT point there exists y ∈ Rm such that (x, y) is a KKT pair for P. Consider the function

h : Rn → R given by

h(x) = L(x, y) = f0(x) +

m∑
i=1

yifi(x).

By construction, the function h is convex with 0 = ∇h(x) = ∇xL(x, y). Therefore, x is a global solution to the
problem minx∈Rn h(x). Also note that for every x ∈ Ω we have

m∑
i=1

yifi(x) ≤ 0,

since yifi(x) ≤ 0 i = 1, . . . , s and yifi(x) = 0 i = s+ 1, . . . ,m. Consequently,

f0(x) = h(x) ≤ h(x) = L(x, y)

= f0(x) +
m∑
i=1

yifi(x)

≤ f0(x)

for all x ∈ Ω. This establishes Part (i). �
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If all of the functions fi i = 0, 1, . . . ,m are twice continuously differentiable, then the second-order sufficiency
conditions stated in Theorem 3.1 apply. However, in the presence of convexity another kind of second-order
condition is possible that does not directly incorporate curvature information about the functions fii = 1, . . . ,m.
These second-order conditions are most appropriate when Ω is polyhedral convex.

Theorem 4.5. [2nd-Order Optimality Conditions for Polyhedral Constraints]
Let f0 : Rn → R be C2 and x be an element of the convex set Ω.

(1) (necessity) If x ∈ Rn is a local solution to P with Ω a polyhedral convex set, then ∇f0(x)T d ≥ 0 for all
d ∈ TΩ(x) and

dT∇2f0(x)d ≥ 0

for all d ∈ TΩ(x) with ∇f(x)T d = 0.
(2) (sufficiency) If x ∈ Rn is such that ∇f0(x)T (y − x) ≥ 0 for all d ∈ TΩ(x) and

dT∇2f0(x)d > 0

for all d ∈ TΩ(x)\{0} with ∇f0(x)T d = 0, then there exist ε, ν > 0 such that

f0(x) ≥ f0(x) + ν‖x− x‖2

for all x ∈ Ω with ‖x− x‖ ≤ ε.

Proof. (1) Since Ω is polyhedral convex, we have TΩ(x) =
⋃
λ≥0(Ω−x̄). Therefore, the fact that∇f0(x)T d ≥ 0

for all d ∈ TΩ(x) follows from Theorem 4.2. Next let d ∈ TΩ(x) =
⋃
λ≥0(Ω− x̄) be such that ∇f0(x)T d = 0. Then

there is a y ∈ Ω, y 6= x, and a λ0 > 0 such that d = λ0(y − x). Let ε > 0 be such that f0(x) ≤ f0(x) for all x ∈ Ω
with ‖x− x‖ ≤ ε. Set λ = min{λ0, ε(λ0‖y− x‖)−1} > 0 so that x+λd ∈ Ω and ‖x− (x+λd)‖ ≤ ε for all λ ∈ [0, λ].
By hypothesis, we now have

f0(x) ≤ f0(x+ λd)

= f0(x) + λ∇f0(x)T (y − x) + λ2

2 d
T∇2f0(x)d+ o(λ2)

= f0(x) + λ2

2 d
T∇2f0(x)d+ o(λ2),

where the second equality follows from the choice of d (∇f0(x)T d = 0) Therefore
dT∇2f0(x)d ≥ 0.

(2) We show that f0(x) ≤ f0(x)− ν‖x− x‖2 for some ν > 0 for all x ∈ Ω near x. Indeed, if this were not the case
there would exist sequences {xk} ⊂ Ω, {νk} ⊂ R+ with xk → x, νk ↓ 0, and

f0(xk) < f0(x) + νk‖xk − x‖2

for all k = 1, 2, . . . where, with no loss of generality, xk−x
‖xk−x‖ → d. Clearly, d ∈ TΩ(x). Moreover,

f0(x) +∇f0(x)T (xk − x) +o(‖xk − x‖)
= f0(xk)
≤ f0(x) + νk‖xk − x‖2

so that ∇f0(x)T d = 0.
Now, since ∇f0(x)T (xk − x) ≥ 0 for all k = 1, 2, . . .,

f0(x) + 1
2 (xk − x)T∇2f0(x)(xk − x) + o(‖xk − x‖2)

≤ f0(x) +∇f0(x)T (xk − x) + 1
2 (xk − x)T∇2f0(x)(xk − x)

+o(‖xk − x‖2)
= f0(xk)
< f0(x) + νk‖xk − x‖2.

Hence, (
xk − x
‖xk − x‖

)T
∇2f0(x)

(
xk − x
‖xk − x‖

)
≤ νk +

o(‖xk − x‖2)

‖xk − x‖2
Taking the limit in k we obtain the contradiction

0 < dT∇2f0(x)d ≤ 0,

whereby the result is established. �
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Although it is possible to weaken the assumption of polyhedrality in Part 1, such weakenings are somewhat
artificial as they essentially imply that TΩ(x) =

⋃
λ≥0(Ω−x). The following example illustrates what can go wrong

when the assumption of polyhedrality is dropped.

Example 4.1. Consider the problem

min 1
2 (x2 − x2

1)
subject to 0 ≤ x2, x

3
1 ≤ x2

2.

Observe that the constraint region in this problem can be written as Ω := {(x1, x2)T : |x1|
3
2 ≤ x2}, therefore

f0(x) = 1
2 (x2 − x2

1)

≥ 1
2 ( |x1|

3
2 − |x1| 2)

= 1
2 |x1|

3
2 (1− |x1|

1
2 ) > 0

whenever 0 < |x1| ≤ 1. Consequently, the origin is a strict local solution for this problem. Nonetheless,

TΩ(0) ∩ [∇f0(0)]⊥ = {(δ, 0)T : δ ∈ R},
while

∇2f0(0) =

[
−1 0
0 0

]
.

That is, even though the origin is a strict local solution, the Hessian of f0 is not positive semidefinite on TΩ(0).

When using the second-order conditions given above, one needs to be careful about the relationship between
the Hessian of f0 and the set K := TΩ(x) ∩ [∇f0(x)]⊥. In particular, the positive definiteness (or semidefiniteness)
of the Hessian of f0 on the cone K does not necessarily imply the positive definiteness (or semidefiniteness) of the
Hessian of f0 on the subspace spaned by K. This is illustrated by the following example.

Example 4.2. Consider the problem

min (x2
1 − 1

2x
2
2)

subject to −x1 ≤ x2 ≤ x1.

Clearly, the origin is the unique global solution for this problem. Moreover, the constraint region for this problem,
Ω, satisfies

TΩ(0) ∩ [∇f(0)]⊥ = TΩ(0) = Ω ,

with the span of Ω being all of R2. Now, while the Hessian of f0 is positive definite on Ω, it is not positive definite
on all of R2.

In the polyhedral case it is easy to see that the sufficiency result in Theorem 4.5 is equivalent to the sufficiency
result of Theorem 3.1. However, in the nonpolyhedral case, these results are not comparable. It is easy to see that
Theorem 4.5 can handle situations where Theorem 3.1 does not apply even if Ω is given in the form (76). Just
let one of the active constraint functions be nondifferentiable at the solution. Similarly, Theorem 3.1 can provide
information when Theorem 4.5 does not. This is illustrated by the following example.

Example 4.3. Consider the problem

min x2

subject to x2
1 ≤ x2.

Clearly, x = 0 is the unique global solution to this convex program. Moreover,

f0(x) + 1
2 ‖x− x‖

2
= 1

2 (x2
1 + x2

2)

≤ 1
2 (x2 + x2

2)

≤ x2 = f0(x)

for all x in the constraint region Ω with ‖x− x‖ ≤ 1. It is easily verified that this growth property is predicted by
Theorem 4.5.
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5. Convex Optimization, Saddle Point Theory, and Lagrangian Duality

In this section we extend the duality theory for linear programming to general problmes of convex optimization.
This is accomplished using the saddle point properties of the Lagrangian in convex optimization. Again, consider
the problem

P minimize f0(x)
subject to fi ≤ 0, i = 1, 2, . . . , s

fi(x) = 0, i = s+ 1, . . . ,m,

where it is assumed that the functions f0, f1, . . . , fs are convex functions mapping Rn to R, and fs+1, . . . , fm are
affine mappings from Rn to R. We denote the constraint region for P by Ω.

The Lagrangian for P is the function

L(x, y) = f0(x) + y1f1(x) + y2f2(x) + · · ·+ ymfm(x),

where it is always assumed that 0 ≤ yi, i = 1, 2, . . . , s. Set K = Rs+ ×Rm−s ⊂ Rm. A pair (x, y) ∈ Rn ×K is said
to be a saddle point for L if

L(x, y) ≤ L(x, y) ≤ L(x, y) ∀ (x, y) ∈ Rn ×K.

We have the following basic saddle point theorem for L.

Theorem 5.1 (Saddle Point Theorem). Let x ∈ Rn. If there exists y ∈ K such that (x, y) is a saddle point
for the Lagrangian L, then x solves P. Conversely, if x is a solution to P at which the Slater C.Q. is satisfied, then
there is a y ∈ K such that (x, y) is a saddle point for L.

Proof. If (x, y) ∈ Rn ×K is a saddle point for P then

sup
y∈K

L(x, y) = sup
y∈K

f0(x) + y1f1(x) + y2f2(x) + · · ·+ ymfm(x) ≤ L(x, y).

If for some i ∈ {1, . . . , s} such that fi(x) > 0, then we could send yi ↑ +∞ to find that the supremum on the
left is +∞ which is a contradiction, so we must have fi(x) ≤ 0, i = 1, . . . , s. Moreover, if fi(x) 6= 0 for some
i ∈ {s + 1, . . . ,m}, then we could send yi ↑ −sign(fi(x))∞ to again find that the supremum on the left is +∞
again a contradiction, so we must have fi(x) = 0, i = s + 1, . . . ,m. That is, we must have x ∈ Ω. Since
L(x, y) = supy∈K L(x, y), we must have

∑m
i=1 yifi(x) = 0. Therefore the right half of the saddle point condition

implies that

f0(x) = L(x, y) ≤ inf
x
L(x, y) ≤ inf

x∈Ω
L(x, y) ≤ inf

x∈Ω
f0(x) ≤ f0(x),

and so x solves P.
Conversely, if x is a solution to P at which the Slater C.Q. is satisfied, then there is a vector y such that (x, y) is

a KKT pair for P. Primal feasibility (x ∈ Ω), dual feaasibility (y ∈ K), and complementarity (yifi(x), i = 1, . . . , s)
imply that

L(x, y) ≤ f0(x) = L(x, y) ∀ y ∈ K.
On the other hand, dual feasibility and convexity imply the convexity of the function L(x, y) in x. Hence the
condition 0 = ∇xL(x, y) implies that x is a global minimizer for the function x→ L(x, y), that is

L(x, y) ≤ L(x, y) ∀ x ∈ Rn.

Therefore, (x, y) is a saddle point for L. �

Note that it is always the case that

sup
y∈K

inf
x∈Rn

L(x, y) ≤ inf
x∈Rn

sup
y∈K

L(x, y)

since the largest minimum is always smaller that the smallest maximum. On the other hand, if (x, y) is a saddle
point for L, then

inf
x∈Rn

sup
y∈K

L(x, y) ≤ sup
y∈K

L(x, y) ≤ L(x, y) ≤ inf
x∈Rn

L(x, y) ≤ sup
y∈K

inf
x∈Rn

L(x, y).

Hence, if a saddle point for L exists on Rn ×K, then

sup
y∈K

inf
x∈Rn

L(x, y) = inf
x∈Rn

sup
y∈K

L(x, y).
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Such a result is called a mini-max theorem and provides conditions under which one can exchange and inf-sup for
a sup-inf. This mini-max result can be used as a basis for convex duality theory.

Observe that we have already shown that

sup
y∈K

L(x, y) =

{
+∞ if x /∈ Ω,
f0(x) if x ∈ Ω.

Therefore,

inf
x∈Rn

sup
y∈K

L(x, y) = inf
x∈Ω

f0(x) .

We will call this the primal problem. This is the inf-sup side of the saddle point problem. The other side, the
sup-inf problem, we will call the dual problem with dual objective function

g(y) = inf
x∈Rn

L(x, y) .

The Saddle Point Theorem says that if (x, y) is a saddle point for L, then x solves the primal problem, y solves the
dual problem, and the optimal values in the primal and dual problems coincide. This is a Weak Duality Theorem.
The Strong Duality Theorem follows from the second half of the Saddle Point Theorem and requires the use of the
Slater Constraint Qualification.

5.1. Linear Programming Duality. We now show how the Lagrangian Duality Theory described above
gives linear programming duality as a special case. Consider the following LP:

P minimize bTx
subject to ATx ≥ c, 0 ≤ x .

The Lagrangian is

L(x, y, v) = bTx+ yT (c−ATx)− vTx, where 0 ≤ y, 0 ≤ v .

The dual objective function is

g(y, u) = min
x∈Rn

L(x, y, v) = min
x∈Rn

bTx+ yT (c−ATx)− vTx .

Our first goal is to obtain a closed form expression for g(y, u). This is accomplished by using the optimality
conditions for minimizing L(x, y, u) to eliminate x from the definition of L. Since L(x, y, v) is a convex function in
x, the global solution to minx∈Rn L(x, y, v) is obtained by solving the equation 0 = ∇xL(x, y, u) = b−Ay − v with
0 ≤ y, 0 ≤ v. Using this condition in the definition of L we get

L(x, y, u) = bTx+ yT (c−ATx)− vTx = (b−Ay − v)Tx+ cT y = cT y,

subject to b−AT y = v and 0 ≤ y, 0 ≤ v. Hence the Lagrangian dual problem

maximize g(y, v)
subject to 0 ≤ y, 0 ≤ v

can be written as

D maximize cT y
subject to b−Ay = v, 0 ≤ y, 0 ≤ v .

Note that we can treat the variable v as a slack variable in this LP and write

D maximize cT y
subject to Ay ≤ b, 0 ≤ y .

The linear program D is the dual to the linear program P.
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5.2. Convex Quadratic Programming Duality. One can also apply the Lagrangian Duality Theory in
the context of Convex Quadratic Programming. To see how this is done let Q ∈ Rn×n be symmetric and positive
definite, and let c ∈ Rn. Consider the convex quadratic program

D minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x .

The Lagrangian is given by

L(x, y, v) = 1
2x

TQx+ cTx+ yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v.
The dual objective function is

g(y, v) = min
x∈Rn

L(x, y, v) .

The goal is to obtain a closed form expression for g with the variable x removed by using the first-order optimality
condition 0 = ∇xL(x, y, v). This optimality condition completely identifies the solution since L is convex in x. We
have

0 = ∇xL(x, y, v) = Qx+ c+AT y − v.
Since Q is invertible, we have

x = Q−1(v −AT y − c).
Plugging this expression for x into L(x, y, v) gives

g(y, v) = L(Q−1(v −AT y − c), y, v)

= 1
2 (v −AT y − c)TQ−1(v −AT y − c)

+cTQ−1(v −AT y − c) + yT (AQ−1(v −AT y − c)− b)− vTQ−1(v −AT y − c)
= 1

2 (v −AT y − c)TQ−1(v −AT y − c)− (v −AT y − c)TQ−1(v −AT y − c)− bT y
= − 1

2 (v −AT y − c)TQ−1(v −AT y − c)− bT y .
Hence the dual problem is

maximize − 1
2 (v −AT y − c)TQ−1(v −AT y − c)− bT y

subject to 0 ≤ y, 0 ≤ v .

Moreover, (y, v) solve the dual problem if an only if x = Q−1(v − AT y − c) solves the primal problem with the
primal and dual optimal values coinciding.
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Exercises
(1) Locate all of the KKT points for the following problems. Can you show that these points are local

solutions? Global solutions?
(a)

minimize e(x1−x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

(b)

minimize e(−x1+x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

(c)

minimize x2
1 + x2

2 − 4x1 − 4x2

subject to x2
1 ≤ x2

x1 + x2 ≤ 2

(d)

minimize 1
2 ‖x‖

2

subject to Ax = b

where b ∈ Rm and A ∈ Rm×n satisfies Nul (AT ) = {0}.
(2) Show that the set

Ω := {x ∈ R2| − x3
1 ≤ x2 ≤ x3

1}
is not regular at the origin. Graph the set Ω.

(3) Construct an example of a constraint region of the form (76) at which the MFCQ is satisfied, but the LI
condition is not satisfied.

(4) Suppose Ω = {x ; Ax ≤ b, Ex = h} where A ∈ Rm×, E ∈ Rk×n, b ∈ Rm, and h ∈ Rk.
(a) Given x ∈ Ω, show that

T (x |Ω) = {d : Ai·d ≤ 0 for i ∈ I(x), Ed = 0},

where Ai· denotes the ith row of the matrix A and I(x) = {i Ai·x = bi}.
(b) Given x ∈ Ω, show that every d ∈ T (x |Ω) is a feasible direction for Ω at x.
(c) Note that parts (a) and (b) above show that

T (x |Ω) =
⋃
λ>0

λ(Ω− x)

whenever Ω is a convex polyhedral set. Why?
(5) Let C ⊂ Rn be non-empty, closed and convex. For any x ∈ Rn consider the problem of finding the closest

point in C to x using the 2-norm:

D minimize 1
2 ‖x− z‖

2
2

subject to x ∈ C .

Show that z ∈ C solves this problem if and only if

〈x− z, z − z〉 ≤ 0 for all z ∈ C.

(6) Let Ω be a non-empty closed convex subset of Rn. The geometric object dual to the tangent cone is called
the normal cone:

N (x |Ω) = {z ; 〈z, d〉 ≤ 0, for all d ∈ T (x |Ω)}.
(a) Show that if x solves the problem min{f(x) : x ∈ Ω} then

−∇f(x) ∈ N (x |Ω) .

(b) Show that

N (x |Ω) = {z : 〈z, x− x〉 ≤ 0, for all x ∈ Ω}.
(c) Let x ∈ Ω. Show that x solves the problem min{ 1

2 ‖x− y‖
2
2 : x ∈ Ω} for every y ∈ x+N (x |Ω).
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(7) Consider the functions

f(x) =
1

2
xTQx− cTx

and

ft(x) =
1

2
xTQx− cTx+ tφ(x),

where t > 0, Q ∈ Rn×n is positive semi-definite, c ∈ Rn, and φ : Rn → R ∪ {+∞} is given by

φ(x) =

{
−
∑n
i=1 lnxi , if xi > 0, i = 1, 2, . . . , n,

+∞ , otherwise.

(a) Show that φ is a convex function.
(b) Show that both f and ft are convex functions.
(c) Show that the solution to the problem min ft(x) always exists and is unique.
(d) Let {ti} be a decreasing sequence of positive real scalars with ti ↓ 0, and let xi be the solution to the

problem min fti(x). Show that if the sequence {xi} has a cluster point x, then x must be a solution
to the problem min{f(x) : 0 ≤ x}.
Hint: Use the KKT conditions for the QP min{f(x) : 0 ≤ x}.





CHAPTER 8

Line Search Methods

Let f : Rn → R be given and suppose that xc is our current best estimate of a solution to

P min
x∈Rn

f(x) .

A standard method for improving the estimate xc is to choose a direction of search d ∈ Rn and the compute a step
length t∗ ∈ R so that xc + t∗d approximately optimizes f along the line {x+ td | t ∈ R}. The new estimate for the
solution to P is then xn = xc + t∗d. The procedure for choosing t∗ is called a line search method. If t∗ is taken to
be the global solution to the problem

min
t∈R

f(xc + td) ,

then t∗ is called the Curry step length. However, except in certain very special cases, the Curry step length is far
too costly to compute. For this reason we focus on a few easily computed step lengths. We begin the simplest and
the most commonly used line search method called backtracking.

1. The Basic Backtracking Algorithm

In the backtracking line search we assume that f : Rn → R is differentiable and that we are given a direction d
of strict descent at the current point xc, that is f ′(xc; d) < 0.

Initialization: Choose γ ∈ (0, 1) and c ∈ (0, 1).

Having xc obtain xn as follows:

Step 1: Compute the backtracking stepsize

t∗ := max γν

s.t.ν ∈ {0, 1, 2, . . .} and
f(xc + γνd) ≤ f(xc) + cγνf ′(xc; d).

Step 2: Set xn = xc + t∗d.

The backtracking line search method forms the basic structure upon which most line search methods are built. Due
to the importance of this method, we take a moment to emphasize its key features.

(1) The update to xc has the form

(86) xn = xc + t∗d .

Here d is called the search direction while t∗ is called the step length or stepsize.
(2) The search direction d must satisfy

f ′(xc; d) < 0.

Any direction satisfying this strict inequality is called a direction of strict descent for f at xc. If∇f(xc) 6= 0,
then a direction of strict descent always exists. Just take d = −∇f ′(xc). As we have already seen

f ′(xc;−∇f ′(xc)) = −‖∇f ′(xc)‖
2
.

It is important to note that if d is a direction of strict descent for f at xc, then there is a t > 0 such that

f(xc + td) < f(xc) ∀ t ∈ (0, t).

In order to see this recall that

f ′(xc; d) = lim
t↓0

f(xc + td)− f(xc)

t
.

89
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Hence, if f ′(xc; d) < 0, there is a t > 0 such that

f(xc + td)− f(xc)

t
< 0 ∀ t ∈ (0, t),

that is

f(xc + td) < f(xc) ∀ t ∈ (0, t).

(3) In Step 1 of the algorithm, we require that the step length t∗ be chosen so that

(87) f(xc + t∗d) ≤ f(xc) + cγνf ′(xc; d).

This inequality is called the Armijo-Goldstein inequality. It is named after the two researchers to first use
it in the design of line search routines (Allen Goldstein is a Professor Emeritus here at the University of
Washington). Observe that this inequality guarantees that

f(xc + t∗d) < f(xc).

For this reason, the algorithm described above is called a descent algorithm. It was observed in point
(2) above that it is always possible to choose t∗ so that f(xc + t∗d) < f(xc). But the Armijo-Goldstein
inequality is a somewhat stronger statement. To see that it too can be satisfied observe that since
f ′(xc; d) < 0,

lim
t↓0

f(xc + td)− f(xc)

t
= f ′(xc; d) < cf ′(xc; d) < 0.

Hence, there is a t > 0 such that

f(xc + td)− f(xc)

t
≤ cf ′(xc; d) ∀ t ∈ (0, t),

that is

f(xc + td) ≤ f(xc) + tcf ′(xc; d) ∀ t ∈ (0, t).

(4) The Armijo-Goldstein inequality is known as a condition of sufficient decrease. It is essential that we
do not choose t∗ too small. This is the reason for setting t∗ equal to the first (largest) member of the
geometric sequence {γν} for which the Armijo-Goldstein inequality is satisfied. In general, we always wish
to choose t∗ as large as possible since it is often the case that some effort was put into the selection of the
search direction d. Indeed, as we will see, for Newton’s method we must take t∗ = 1 in order to achieve
rapid local convergence.

(5) There is a balance that must be struck between taking t∗ as large as possible and not having to evaluating
the function at many points. Such a balance is obtained with an appropriate selection of the parameters
γ and c. Typically one takes γ ∈ [.5, .8] while c ∈ [.001, .1] with adjustments depending on the cost of
function evaluation and degree of nonlinearity.

(6) The backtracking procedure of Step 1 is easy to program. A pseudo-Matlab code follows:

fc = f(xc)
∆f = cf ′(xc; d)

newf = f(xc + d)
t = 1

while newf > fc + t∆f
t = γt

newf = f(xc + td)
endwhile

Point (3) above guarantees that this procedure is finitely terminating.
(7) The backtracking procedure has a nice graphical illustration. Set ϕ(t) = f(xc+td) so that ϕ′(0) = f ′(xc; d).
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0 γ3 γ2 γ 1

t

ϕ(t)

ϕ(0)+tcϕ′(0)

ϕ(0)+tϕ′(0)

. t∗ = γ3, xn = xc + γ3d.

Before proceeding to a convergence result for the backtracking algorithm, we consider some possible choices for
the search directions d. There are essentially three directions of interest:

(1) Steepest Descent (or Cauchy Direction):

d = −∇f(xc)/ ‖∇f(xc)‖ .
(2) Newton Direction:

d = −∇2f(xc)
−1∇f(xc) .

(3) Newton-Like Direction:
d = −H∇f(xc),

where H ∈ Rn×n is symmetric and constructed to approximate the inverse of ∇2f(xc).

In order to base a descent method on these directions we must have

f ′(xc; d) < 0.

For the Cauchy direction −∇f(xc)/ ‖∇f(xc)‖, this inequality always holds when ∇f(xc) 6= 0;

f ′(xc;−∇f(xc)/ ‖∇f(xc)‖) = −‖∇f(xc)‖ < 0.

On the other hand the Newton and Newton-like directions do not always satisfy this property:

f ′(xc;−H∇f(xc)) = −∇f(xc)
TH∇f(xc).

These directions are directions of strict descent if and only if

0 < ∇f(xc)
TH∇f(xc) .

This condition is related to second-order sufficiency conditions for optimality when H is an approximation to the
inverse of the Hessian.
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The advantage of the Cauchy direction is that it always provides a direction of strict descent. However, once
the iterates get “close” to a stationary point, the procedure takes a very long time to obtain a moderately accurate
estimate of the stationary point. Most often numerical error takes over due to very small stepsizes and the iterates
behave chaotically.

On the other hand, Newton’s method (and its approximation, the secant method), may not define directions of
strict descent until one is very close to a stationary point satisfying the second-order sufficiency condition. However,
once one is near such a stationary point, then Newton’s method (and some Newton-Like methods) zoom in on the
stationary point very rapidly. This behavior will be made precise when we establish our convergence result from
Newton’s method.

Let us now consider the basic convergence result for the backtracking algorithm.

Theorem 1.1. (Convergence for Backtracking) Let f : Rn → R and x0 ∈ R be such that f is differen-
tiable on Rn with ∇f Lipschitz continuous on an open convex set containing the set {x : f(x) ≤ f(x0)}. Let {xk}
be the sequence satisfying xk+1 = xk if ∇f(xk) = 0; otherwise,

xk+1 = xk + tkd
k, where dk satisfies f ′(xk; dk) < 0,

and tk is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a k0 such that ∇f ′(xk0) = 0.
(ii) f(xk)↘ −∞

(iii) The sequence {
∥∥dk∥∥} diverges (

∥∥dk∥∥→∞).

(iv) For every subsequence J ⊂ N for which {dk : k ∈ J} is bounded, we have

lim
k∈J

f ′(xk; dk) = 0.

Remark 1.1. It is important to note that this theorem says nothing about the convergence of the sequence {xk}.
Indeed, this sequence may diverge. The theorem only concerns the function values and the first-order necessary
condition for optimality.

Before proving this Theorem, we first consider some important corollaries concerning the Cauchy and Newton
search directions. Each corollary assumes that the hypotheses of Theorem 1.1 hold.

Corollary 1.1.1. If the sequences {dk} and {f(xk)} are bounded, then

lim
k→∞

f ′(xk; dk) = 0.

Proof. The hypotheses imply that either (i) or (iv) with J = N occurs in Theorem 1.1. Hence, lim
k→∞

f ′(xk; dk) =

0. �

Corollary 1.1.2. If dk = −∇f ′(xk)/
∥∥∇f(xk)

∥∥ is the Cauchy direction for all k, then every accumulation

point, x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. The sequence {f(xk)} is decreasing. If x is any accumulation point of the sequence {xk}, then we
claim that f(x) is a lower bound for the sequence {f(xk)}. Indeed, if this were not the case, then for some k0 and
ε > 0

f(xk) + ε < f(x)

for all k > k0 since {f(xk)} is decreasing. But x is a cluster point of {xk} and f is continuous. Hence, there is a

k̂ > k0 such that

|f(x)− f(xk̂)| < ε/2.

But then
f(x) <

ε

2
+ f(xk̂) and f(xk̂) + ε < f(x).

Hence,

f(xk̂) + ε <
ε

2
+ f(xk̂), or

ε

2
< 0.

This contradiction implies that {f(xk)} is bounded below by f(x). But then the sequence {f(xk)} is bounded so
that Corollary 1.1.1 applies. That is,

0 = lim
k→∞

f ′
(
xk;
−∇f(xk)

‖∇f(xk)‖

)
= lim
k→∞

−
∥∥∇f(xk)

∥∥ .
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Since ∇f is continuous, ∇f(x) = 0. �

Corollary 1.1.3. Let us further assume that f is twice continuously differentiable and that there is a β > 0
such that, for all u ∈ Rn, β ‖u‖2 < uT∇2f(x)u on {x : f(x) ≤ f(x0)}. If the Basic Backtracking algorithm is
implemented using the Newton search directions,

dk = −∇2f(xk)−1∇f(xk),

then every accumulation point, x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. Let x be an accumulation point of the sequence {xk} and let J ⊂ N be such that xk
J−→x. Clearly,

{xk : k ∈ J} is bounded. Hence, the continuity of ∇f and ∇2f , along with the Weierstrass Compactness Theorem,
imply that the sets {∇f(xk) : k ∈ J} and {∇2f(xk) : k ∈ J} are also bounded. Let M1 be a bound on the values
{
∥∥∇f(xk)

∥∥ : k ∈ J} and let M2 be an upper bound on the values {
∥∥∇2f(xk)

∥∥ : k ∈ J}. Recall that by hypotheses

β ‖u‖2 is a uniform lower bound on the values {uT∇2f(xk)u} for every u ∈ Rn. Take u = dk to obtain the bound

β
∥∥dk∥∥2 ≤ ∇f(xk)T∇2f(xk)−1∇f(xk) ≤

∥∥dk∥∥∥∥∇f(xk)
∥∥ ,

and so ∥∥dk∥∥ ≤ β−1M1 ∀ k ∈ J.
Therefore, the sequence {dk : k ∈ J} is bounded. Moreover, as in the proof of Corollary 1.1.2, the sequence {f(tk)}
is also bounded. On the other hand,∥∥∇f(xk)

∥∥ =
∥∥∇2f(xk)dk

∥∥ ≤M2

∥∥dk∥∥ ∀ k ∈ J.
Therefore,

M−1
2

∥∥∇f(xk)
∥∥ ≤ ∥∥dk∥∥ ∀ k ∈ J.

Consequently, Theorem 1.1 Part (iv) implies that

0 = lim
k∈J
|f ′(xk; dk)|

= lim
k∈J
|∇f(xk)T∇2f(xk)−1∇f(xk)|

≥ lim
k∈J

β
∥∥dk∥∥2

≥ lim
k∈J

βM−2
2

∥∥∇f(xk)
∥∥2

= βM−2
2 ‖∇f(x)‖2.

Therefore, ∇f(x) = 0. �

Proof of Theorem 1.1: We assume that none of (i), (ii), (iii), and (iv) hold and establish a contradiction.
Since (i) does not occur, ∇f(xk) 6= 0 for all k = 1, 2, . . . . Since (ii) does not occur, the sequence {f(xk)} is

bounded below. Since {f(xk)} is a bounded decreasing sequence in R, we have f(xk)↘ f for some f . In particular,
(f(xk+1) − f(xk)) → 0. Next, since (iii) and (iv) do not occur, there is a subsequence J ⊂ N and a vector d such

that dk
J−→ d and

sup
k∈J

f ′(xk; dk) =: β < 0.

The Armijo-Goldstein inequality combined with the fact that (f(xk+1)− f(xk))→ 0, imply that

tkf
′(xk; dk)→ 0.

Since f ′(xk; dk) ≤ β < 0 for k ∈ J , we must have tk
J−→ 0. With no loss in generality, we assume that tk < 1 for all

k ∈ J . Hence,

(88) cγ−1tkf
′(xk; dk) < f(xk + tkγ

−1dk)− f(xk)

for all k ∈ J due to Step 1 of the line search and the fact that τk < 1. By the Mean Value Theorem, there exists
for each k ∈ J a θk ∈ (0, 1) such that

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)
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where
x̂n := (1− θk)xk + θk(xk + tkγ

−1dk)
= xk + θktkγ

−1dk.

Now, since ∇f is Lipschitz continuous, we have

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

= tkγ
−1f ′(xk; dk) + tkγ

−1[f ′(x̂k; dk)− f ′(xk; dk)]

= tkγ
−1f ′(xk; dk) + tkγ

−1[∇f(x̂k)−∇f(xk)]T dk

≤ tkγ
−1f ′(xk; dk) + tkγ

−1L
∥∥x̂k − xk∥∥∥∥dk∥∥

= tkγ
−1f ′(xk; dk) + L(tkγ

−1)2θk
∥∥dk∥∥2

.

Combining this inequality with inequality (88) yields the inequality

ctkγ
−1f ′(xk; dk) < tkγ

−1f ′(xk; dk) + L(tkγ
−1)2θk

∥∥dk∥∥2
.

By rearranging and then substituting β for f ′(xk; dk) we obtain

0 < (1− c)β + (tkγ
−1)L ‖δk‖2 ∀ k ∈ J.

Now taking the limit over k ∈ J , we obtain the contradiction

0 ≤ (1− c)β < 0.

�

2. The Wolfe Conditions

We now consider a couple of modifications to the basic backtracking line search that attempt to better approximate
an exact line-search (Curry line search), i.e. the stepsize tk is chosen to satisfy

f(xk + tkd
k) = min

t∈R
f(xk + tdk).

In this case, the first-order optimality conditions tell us that 0 = ∇f(xk + tkd
k)T dk. The Wolfe conditions try to

combine the Armijo-Goldstein sufficient decrease condition with a condition that tries to push ∇f(xk + tkd
k)T dk

either toward zero, or at least to a point where the search direction dk is less of a direction of descent. To describe
these line search conditions, we take parameters 0 < c1 < c2 < 1.

Weak Wolfe Conditions

f(xk + tkd
k) ≤ f(xk) + c1tkf

′(xk; dk)(89)

c2f
′(xk; dk) ≤ f ′(xk + tkd

k; dk) .(90)

Strong Wolfe Conditions

f(xk + tkd
k) ≤ f(xk) + c1tkf

′(xk; dk)(91)

|f ′(xk + tkd
k; dk)| ≤ c2|f ′(xk; dk)| .(92)

The weak Wolfe condition (90) tries to make dk less of a direction of descent (and possibly a direction of ascent)
at the new point, while the strong Wolfe condition tries to push the directional derivative in the direction dk closer
to zero at the new point. Imposing one or the other of the Wolfe conditions on a line search procedure has become
standard practice for optimization software based on line search methods.

We now give a result showing that there exists stepsizes satisfying the weak Wolfe conditions. A similar result
(with a similar proof) holds for the strong Wolfe conditions.

Lemma 2.1. Let f : Rn → R be continuously differentiable and suppose that x, d ∈ Rn are such that the set
{f(x+ td) : t ≥ 0} is bounded below and f ′(x; d) < 0, then for each 0 < c1 < c2 < 1 the set{

t

∣∣∣∣ t > 0, f ′(x+ td; d) ≥ c2f ′(x; d), and
f(x+ td) ≤ f(x) + c1tf

′(x; d)

}
has non–empty interior.
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Proof. Set φ(t) = f(x+ td)− (f(x) + c1tf
′(x; d)). Then φ(0) = 0 and φ′(0) = (1− c1)f ′(x; d) < 0. So there

is a t̄ > 0 such that φ(t) < 0 for t ∈ (0, t̄). Moreover, since f ′(x; d) < 0 and {f(x + td) : t ≥ 0} is bounded
below, we have φ(t) → +∞ as t ↑ ∞. Hence, by the continuity of f , there exists t̂ > 0 such that φ(t̂) = 0. Let
t∗ = inf

{
t̂
∣∣ 0 ≤ t, φ(t̂) = 0

}
. Since φ(t) < 0 for t ∈ (0, t̄), t∗ > 0 and by continuity φ(t∗) = 0. By Rolle’s theorem

(or the mean value theorem) there must exist t̃ ∈ (0, t∗) with φ′(t̃) = 0. That is,

∇f(x+ t̃d)T d = c1∇f(x)T d > c2∇f(x)T d.

From the definition of t∗ and the fact that t̃ ∈ (0, t∗), we also have

f(x+ td)− (f(x) + c1t̃∇f(x)T d) < 0 .

The result now follows from the continuity of f and ∇f . �

We now describe a bisection method that either computes a stepsize satisfying the weak Wolfe conditions or
sends the function values to −∞. Let x and d in Rn be such that f ′(x; d) < 0.

A Bisection Method for the Weak Wolfe Conditions

Initialization: Choose 0 < c1 < c2 < 1, and set α = 0, t = 1, and β = +∞.

Repeat
If f(x+ td) > f(x) + c1tf

′(x; d),
set β = t and reset t = 1

2 (α+ β).
Else if f ′(x+ td; d) < c2f

′(x; d),
set α = t and reset

t =

{
2α, if β = +∞

1
2 (α+ β), otherwise.

Else, STOP.
End Repeat

Lemma 2.2. Let f : Rn → R be continuously differentiable and suppose that x, d ∈ Rn are such that f ′(x; d) < 0.
Then one of the following two possibilities must occur in the Bisection Method for the Weak Wolfe Condition
described above.

(i) The procedure terminates finitely at a value of t for which the weal Wolfe conditions are satisfied.
(ii) The procedure does not terminate finitely, the parameter β is never set to a finite value, the parameter

α becomes positive on the first iteration and is doubled in magnitude at every iteration thereafter, and
f(x+ td) ↓ −∞.

Proof. Let us suppose that the procedure does not terminate finitely. If the parameter β is never set to a
finite value, then it must be the case that that α becomes positive on the first iteration (since we did not terminate)
and is doubled on each subsequent iteration with

f(x+ αd) ≤ f(x) + c1αf
′(x; d).

But then f(x+ td) ↓ −∞ since f ′(x; d) < 0. That is, option (ii) above occurs. Hence, we may as well assume that β
is eventually finite and the procedure is not finitely terminating. For the sake of clarity, let us index the bounds and
trial steps by iteration as follows: αk < tk < βk, k = 1, 2, . . . . Since β is eventually finite, the bisection procedure
guarantees that there is a t̄ > 0 such that

(93) αk ↑ t̄, tk → t̄, and βk ↓ t̄ .

If αk = 0 for all k, then t̄ = 0 and

f(x+ tkd)− f(x)

tk
− c1f ′(x; d) > 0 ∀k.

But then, taking the limit in k, we obtain f ′(x; d) ≥ c1f
′(x; d), or equivalently, 0 > (1− c1)f ′(x; d) ≥ 0 which is a

contradiction. Hence, we can assume that eventually αk > 0.
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We now have that the sequences {αk}, {tk}, and {βk} are infinite with (93) satisfied, and there is a k0 such
that 0 < αk < tk < βk <∞ for all k ≥ k0. By construction, we know that for all k > k0

f(x+ αkd) ≤ f(x) + c1αkf
′(x; d)(94)

f(x) + c1βkf
′(x; d) < f(x+ βkd)(95)

f ′(x+ αkd; d) < c2f
′(x; d) .(96)

Taking the limit in k in (96) tells us that

(97) f ′(x+ t̄d; d) ≤ c2f ′(x; d) .

Adding (94) and (95) together and using the Mean Value Theorem gives

c1(βk − αk)f ′(x; d) ≤ f(x+ βkd)− f(x+ αkd) = (βk − αk)f ′(x+ t̂kd; d) ∀ k > k0,

where αk ≤ t̂k ≤ βk. Dividing by (βk − αk) > 0 and taking the limit in k gives c1f
′(x; d) ≤ f ′(x + t̄d; d) which

combined with (97) yields the contradiction f ′(x + t̄d; d) ≤ c2f
′(x; d) < c1f

′(x; d) ≤ f ′(x + t̄d; d) . Consequently,
option (i) above must occur if (ii) does not. �

A global convergence result for a line search routine based on the Weak Wolfe conditions now follows.

Theorem 2.1. Let f : Rn → R, x0 ∈ Rn, and 0 < c1 < c2 < 1. Assume that ∇f(x) exists and is Lipschitz
continuous on an open set containing the set

{
x
∣∣ f(x) ≤ f(x0)

}
. Let {xν} be a sequence initiated at x0 and generated

by the following algorithm:

Step 0: Set k = 0.
Step 1: Choose dk ∈ Rn such that f ′(xk; dk) < 0.

If no such dk exists, then STOP.
First-order necessary conditions for optimality are satisfied at xk.

Step 2: Let tk be a stepsize satisfying the Weak Wolfe conditions (89) and (90).
If no such tk exists, then STOP.
The function f is unbounded below.

Step 3: Set xk+1 = xk + tkd
k, reset k = k + 1, and return to Step 1.

One of the following must occur:

(i) The algorithm terminates finitely at a first-order stationary point for f .
(ii) For some k the stepsize selection procedure generates a sequence of trial stepsizes tkν ↑ +∞ such that

f(xk + tkνd
k)→ −∞.

(iii) f(xk) ↓ −∞.

(iv)

∞∑
k=0

∥∥∇f(xk)
∥∥2

cos2 θk < +∞, where cos θk =
∇f(xk)T dk

‖∇f(xk)‖ ‖dk‖
for all k = 1, 2, . . . .

Proof. We assume that (i), (ii), and (iii) do not occur and show that (iv) occurs. Since (i) and (ii) do not
occur the sequence {xν} is infinite and f ′(xk; dk) < 0 for all k = 1, 2, . . . . Since (ii) does not occur, the weak
Wolfe conditions are satisfied at every iteration. The condition (89) implies that the sequence {f(xk)} is strictly
decreasing. In particular, this implies that {xν} ⊂

{
x
∣∣ f(x) ≤ f(x0)

}
. The condition (90) implies that

(c2 − 1)∇f(xk)T dk ≤ (∇f(xk+1)−∇f(xk))T dk

for all k. Combining this with the Lipschitz continuity of ∇f on an open neighborhood of
{
x
∣∣ f(x) ≤ f(x0)

}
, gives

(c2 − 1)∇f(xk)T dk ≤ (∇f(xk+1)−∇f(xk))T dk ≤ Ltk
∥∥dk∥∥2

.

Hence

tk ≥
c2 − 1

L

∇f(xk)T dk

‖dk‖2
> 0.

Plugging this into (89) give the inequality

f(xk+1) ≤ f(xk)− c1
1− c2
L

(∇f(xk)T dk)2

‖dk‖2
= f(xk)− c1

1− c2
L

∥∥∇f(xk)
∥∥2

cos2 θk.
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Setting c = c1
1−c2
L and summing over k gives

f(xk+1) ≤ f(x0)− c
k∑
ν=0

‖∇f(xν)‖2 cos2 θν .

Since (iii) does not occur, we can take the limit in k and obtain
∞∑
ν=0

‖∇f(xν)‖2 cos2 θν < +∞ .

�

If the function f is bounded below and the algorithm does not terminate finitely, then Part (iv) of this theorem
states that ∥∥∇f(xk)

∥∥ cos2 θk → 0 .

Hence, if the search directions dk are chosen so that there is a δ > 0, independent of the iteration k, such that
cos θk < −δ for all k, then it must be the case that

∥∥∇f(xk)
∥∥→ 0 so that every cluster point of the sequence {xk}

is a first-order stationary point for f . For example, we have the following corollary to the theorem.

Corollary 2.1.1. Let f and {xk} be as in the theorem, and let {Bk} be a sequence of symmetric positive
definite matrices for which there exists λ̄ > λ > 0 such that

(98) λ ‖u‖2 ≤ uTBku ≤ λ̄ ‖u‖2 ∀u ∈ Rn and k = 1, 2, . . . .

Let us further assume that f is bounded below. If the search directions dk are given by

dk = −Bk∇f(xk) ∀ k = 1, 2, . . . ,

then ∇f(xk)→ 0.

Proof. It is easily shown (see exercises) that the condition (98) implies that the eigenvalues of the sequence
{Bk} are uniformly lower bounded by λ and uniformly upper bounded by λ̄. In particular, this implies that

λ ‖u‖ ≤ ‖Bku‖ ≤ λ̄ ‖u‖ ∀u ∈ Rn and k = 1, 2, . . .

(see exercises). Hence for all k

cos θk =
∇f(xk)T dk

‖∇f(xk)‖ ‖dk‖

= − ∇f(xk)TBk∇f(xk)

‖∇f(xk)‖ ‖Bk∇f(xk)‖

≤ −
λ
∥∥∇f(xk)

∥∥2

‖∇f(xk)‖ ‖Bk∇f(xk)‖

≤ −
λ
∥∥∇f(xk)

∥∥2

‖∇f(xk)‖ λ̄ ‖∇f(xk)‖
= −λ/λ̄
< 0 .

Therefore ∇f(xk)→ 0. �

A possible choice for the matrices Bk in the above result is Bk = I for all k. This essentially gives the method
of steepest descent.





CHAPTER 9

Search Directions for Unconstrained Optimization

In this chapter we study the choice of search directions used in our basic updating scheme

xk+1 = xk + tkd
k .

for solving

P min
x∈Rn

f(x).

All of the search directions considered can be classified as Newton-like since they are all of the form

dk = −Hk∇f(xk),

whereHk is a symmetric n×nmatrix. IfHk = µkI for all k, the resulting search directions a a scaled steepest descent
direction with scale factors µk. More generally, we choose Hk to approximate ∇2f(xk)−1 in order to approximate
Newton’s method for optimization. The Newton is important since it possesses rapid local convergence properties,
and can be shown to be scale independent. We precede our discussion of search directions by making precise a
useful notion of speed or rate of convergence.

1. Rate of Convergence

We focus on notions of quotient rates convergence, or Q-convergence rates. Let {xν} ⊂ Rn and x ∈ Rn be such
that xν → x. We say that xν → x at a linear rate if

lim sup
ν→∞

∥∥xν+1 − x
∥∥

‖xν − x‖
< 1 .

The convergence is said to be superlinear if this limsup is 0. The convergence is said to be quadratic if

lim sup
ν→∞

∥∥xν+1 − x
∥∥

‖xν − x‖2
<∞ .

For example, given γ ∈ (0, 1) the sequence {γν} converges linearly to zero, but not superlinearly. The sequence

{γν2} converges superlinearly to 0, but not quadratically. Finally, the sequence {γ2ν} converges quadratically to
zero. Superlinear convergence is much faster than linear convergences, but quadratic convergence is much, much
faster than superlinear convergence.

2. Newton’s Method for Solving Equations

Newton’s method is an iterative scheme designed to solve nonlinear equations of the form

(99) g(x) = 0,

where g : Rn → Rn is assumed to be continuously differentiable. Many problems of importance can be posed in
this way. In the context of the optimization problem P, we wish to locate critical points, that is, points at which
∇f(x) = 0. We begin our discussion of Newton’s method in the usual context of equation solvng.

Assume that the function g in (99) is continuously differentiable and that we have an approximate solution
x0 ∈ Rn. We now wish to improve on this approximation. If x is a solution to (99), then

0 = g(x) = g(x0) + g′(x0)(x− x0) + o‖x− x0‖.
Thus, if x0 is “close” to x, it is reasonable to suppose that the solution to the linearized system

(100) 0 = g(x0) + g′(x0)(x− x0)

is even closer. This is Newton’s method for finding the roots of the equation g(x) = 0. It has one obvious pitfall.
Equation (100) may not be consistent. That is, there may not exist a solution to (100).

99
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For the sake of the present argument, we assume that (3) holds, i.e. g′(x0)−1 exists. Under this assumption
(100) defines the iteration scheme,

(101) xk+1 := xk − [g′(xk)]−1g(xk),

called the Newton iteration. The associated direction

(102) dk := −[g′(xk)]−1g(xk).

is called the Newton direction. We analyze the convergence behavior of this scheme under the additional assumption
that only an approximation to g′(xk)−1 is available. We denote this approximation by Jk. The resulting iteration
scheme is

(103) xk+1 := xk − Jkg(xk).

Methods of this type are called Newton-Like methods.

Theorem 2.1. Let g : Rn → Rn be differentiable, x0 ∈ Rn, and J0 ∈ Rn×n. Suppose that there exists
x, x0 ∈ Rn, and ε > 0 with

∥∥x0 − x
∥∥ < ε such that

(1) g(x) = 0,
(2) g′(x)−1 exists for x ∈ B(x; ε) := {x ∈ Rn : ‖x− x‖ < ε} with

sup{‖g′(x)−1‖ : x ∈ B(x; ε)] ≤M1

(3) g′ is Lipschitz continuous on c`B(x; ε) with Lipschitz constant L, and
(4) θ0 := LM1

2 ‖x
0 − x‖ + M0K < 1 where K ≥ ‖(g′(x0)−1 − J0)y0‖, y0 := g(x0)/‖g(x0)‖, and M0 =

max{‖g′(x)‖ : x ∈ B(x; ε)}.
Further suppose that iteration (103) is initiated at x0 where the Jk’s are chosen to satisfy one of the following
conditions;

(i) ‖(g′(xk)−1 − Jk)yk‖ ≤ K,
(ii) ‖(g′(xk)−1 − Jk)yk‖ ≤ θk1K for some θ1 ∈ (0, 1),

(iii) ‖(g′(xk)−1 − Jk)yk‖ ≤ min{M3‖xk − xk−1‖,K}, for some M2 > 0, or
(iv) ‖(g′(xk)−1 − Jk)yk‖ ≤ min{M2‖g(xk)‖,K}, for some M3 > 0,

where for each k = 1, 2, . . . , yk := g(xk)/
∥∥g(xk)

∥∥.
These hypotheses on the accuracy of the approximations Jk yield the following conclusions about the rate of

convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadratically.

Proof. We begin by inductively establishing the basic inequalities

(104) ‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖,

and

(105) ‖xk+1 − x‖ ≤ θ0‖xk − x‖

as well as the inclusion

(106) xk+1 ∈ B(x; ε)

for k = 0, 1, 2, . . . . For k = 0 we have

x1 − x = x0 − x− g′(x0)−1g(x0) +
[
g′(x0)−1 − J0

]
g(x0)

= g′(x0)−1
[
g(x)− (g(x0) + g′(x0)(x− x0))

]
+
[
g′(x0)−1 − J0

]
g(x0),
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since g′(x0)−1 exists by the hypotheses. Consequently, the hypothese (1)–(4) plus the quadratic bound lemma
imply that ∥∥xk+1 − x

∥∥ ≤
∥∥g′(x0)−1

∥∥∥∥g(x)−
(
g(x0) + g′(x0)(x− x0)

)∥∥
+
∥∥(g′(x0)−1 − J0

)
g(x0)

∥∥
≤ M1L

2

∥∥x0 − x
∥∥2

+K
∥∥g(x0)− g(x)

∥∥
≤ M1L

2

∥∥x0 − x
∥∥2

+M0K
∥∥x0 − x

∥∥
≤ θ0

∥∥x0 − x
∥∥ < ε,

whereby (104) – (106) are established for k = 0.
Next suppose that (104) – (106) hold for k = 0, 1, . . . , s− 1. We show that (104) – (106) hold at k = s. Since

xs ∈ B(x, ε), hypotheses (2)–(4) hold at xs, one can proceed exactly as in the case k = 0 to obtain (104). Now if
any one of (i)–(iv) holds, then (i) holds. Thus, by (104), we find that∥∥xs+1 − x

∥∥ ≤ M1L
2 ‖xs − x‖2 +

∥∥(g′(xs)−1 − Js)g(xs)
∥∥

≤
[
M1L

2 θs0
∥∥x0 − x

∥∥+M0K
]
‖xs − x‖

≤
[
M1L

2

∥∥x0 − x
∥∥+M0K

]
‖xs − x‖

= θ0 ‖xs − x‖ .

Hence
∥∥xs+1 − x

∥∥ ≤ θ0 ‖xs − x‖ ≤ θ0ε < ε and so xs+1 ∈ B(x, ε). We now proceed to establish (a)–(d).
(a) This clearly holds since the induction above established that∥∥xk+1 − x

∥∥ ≤ θ0

∥∥xk − x∥∥ .
(b) From (104), we have ∥∥xk+1 − x

∥∥ ≤ LM1

2

∥∥xk − x∥∥2
+
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x∥∥2
+ θk1K

∥∥g(xk)
∥∥

≤
[
LM1

2
θk0
∥∥x0 − x

∥∥+ θk1M0K

] ∥∥xk − x∥∥
Hence xk → x superlinearly.
(c) From (104) and the fact that xk → x, we eventually have∥∥xk+1 − x

∥∥ ≤ LM1

2

∥∥xk − x∥∥2
+
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x∥∥2
+M2

∥∥xk − xk−1
∥∥ ∥∥g(xk)

∥∥
≤

[
LM1

2

∥∥xk − x∥∥+M0M2

[∥∥xk−1 − x
∥∥+

∥∥xk − x∥∥]] ∥∥xk − x∥∥
≤

[
LM1

2
θ0

∥∥xk−1 − x
∥∥+M0M2(1 + θ0)

∥∥xk−1 − x
∥∥]

×θ0

∥∥xk−1 − x
∥∥

=

[
LM1

2
θ0 +M0M2(1 + θ0)

]
θ0

∥∥xk−1 − x
∥∥2
.

Hence xk → x two step quadratically.
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(d) Again by (104) and the fact that xk → x, we eventually have∥∥xk+1 − x
∥∥ ≤ LM1

2

∥∥xk − x∥∥2
+
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x∥∥2
+M2

∥∥g(xk)
∥∥2

≤
[
LM1

2
+M2M

2
0

] ∥∥xk − x∥∥2
.

�

Note that the conditions required for the approximations to the Jacobian matrices g′(xk)−1 given in (i)–(ii) do
not imply that Jk → g′(x)−1. The stronger conditions

(i)′
∥∥g′(xk)−1 − Jk

∥∥ ≤ ∥∥g′(x0)−1 − J0

∥∥,

(ii)′
∥∥g′(xk+1)−1 − Jk+1

∥∥ ≤ θ1

∥∥g′(xk)−1 − Jk
∥∥ for some θ1 ∈ (0, 1),

(iii)′
∥∥g′(xk)−1 − Jk

∥∥ ≤ min{M2

∥∥xk+1 − xk
∥∥ ,∥∥g′(x0)−1 − J0

∥∥} for some M2 > 0, or

(iv)′ g′(xk)−1 = Jk,

which imply the conditions (i) through (iv) of Theorem 2.1 respectively, all imply the convergence of the inverse
Jacobian approximates to g′(x)−1. The conditions (i)′–(iv)′ are less desirable since they require greater expense
and care in the construction of the inverse Jacobian approximates.

3. Newton’s Method for Minimization

We now translate the results of previous section to the optimization setting. The underlying problem is

P min
x∈Rn

f(x) .

The Newton-like iterations take the form

xk+1 = xk −Hk∇f(xk),

where Hk is an approximation to the inverse of the Hessian matrix ∇2f(xk).

Theorem 3.1. Let f : Rn → R be twice continuously differentiable, x0 ∈ Rn, and H0 ∈ Rn×n. Suppose that

(1) there exists x ∈ Rn and ε >
∥∥x0 − x

∥∥ such that f(x) ≤ f(x) whenever ‖x− x‖ ≤ ε,
(2) there is a δ > 0 such that δ ‖z‖22 ≤ zT∇2f(x)z for all x ∈ B(x, ε),
(3) ∇2f is Lipschitz continuous on cl (B) (x; ε) with Lipschitz constant L, and

(4) θ0 := L
2δ

∥∥x0 − x
∥∥ + M0K < 1 where M0 > 0 satisfies zT∇2f(x)z ≤ M0 ‖z‖22 for all x ∈ B(x, ε) and

K ≥ ‖(∇2f(x0)−1 −H0)y0‖ with y0 = ∇f(x0)/
∥∥∇f(x0)

∥∥.

Further, suppose that the iteration

(107) xk+1 := xk −Hk∇f(xk)

is initiated at x0 where the Hk’s are chosen to satisfy one of the following conditions:

(i)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ K,

(ii)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ θk1K for some θ1 ∈ (0, 1),

(iii)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ min{M2

∥∥xk − xk−1
∥∥ ,K}, for some M2 > 0, or

(iv)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ min{M3

∥∥∇f(xk)
∥∥ ,K}, for some M3 > 0,

where for each k = 1, 2, . . . yk := ∇f(xk)/
∥∥∇f(xk)

∥∥.
These hypotheses on the accuracy of the approximations Hk yield the following conclusions about the rate of

convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadradically.
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To more fully understand the convergence behavior described in this theorem, let us examine the nature of
the controling parameters L, M0, and M1. Since L is a Lipschitz constant for ∇2f it loosely corresponds to a
bound on the third–order behavior of f . Thus the assumptions for convergence make implicit demands on the third
derivative. The constant δ is a local lower bound on the eigenvalues of ∇2f near x. That is, f behaves locally
as if it were a strongly convex function (see exercises) with modulus δ. Finally, M0 can be interpreted as a local
Lipschitz constant for ∇f and only plays a role when ∇2f is approximated inexactly by Hk’s.

We now illustrate the performance differences between the method of steepest descent and Newton’s method
on a simple one dimensional problem. Let f(x) = x2 + ex. Clearly, f is a strongly convex function with

f(x) = x2 + ex

f ′(x) = 2x+ ex

f ′′(x) = 2 + ex > 2

f ′′′(x) = ex.

If we apply the steepest descent algorithm with backtracking (γ = 1/2, c = 0.01) initiated at x0 = 1, we get the
following table

k xk f(xk) f ′(xk) s
0 1 .37182818 4.7182818 0
1 0 1 1 0
2 −.5 .8565307 −0.3934693 1
3 −.25 .8413008 0.2788008 2
4 −.375 .8279143 −.0627107 3
5 −.34075 .8273473 .0297367 5
6 −.356375 .8272131 −.01254 6
7 −.3485625 .8271976 .0085768 7
8 −.3524688 .8271848 −.001987 8
9 −.3514922 .8271841 .0006528 10
10 −.3517364 .827184 −.0000072 12

If we apply Newton’s method from the same starting point and take a unit step at each iteration, we obtain a
dramatically different table.

x f ′(x)
1 4.7182818
0 1
−1/3 .0498646

−.3516893 .00012
−.3517337 .00000000064

In addition, one more iteration gives |f ′(x5)| ≤ 10−20. This is a stunning improvement in performance and shows
why one always uses Newton’s method (or an approximation to it) whenever possible.

Our next objective is to develop numerically viable methods for approximating Jacobians and Hessians in
Newton-like methods.

4. Matrix Secant Methods

Let us return to the problem of finding x ∈ Rn such that g(x) = 0 where g : Rn → Rn is continuously
differentiable. In this section we consider Newton-Like methods of a special type. Recall that in a Newton-Like
method the iteration scheme takes the form

(108) xk+1 := xk − Jkg(xk),

where Jk is meant to approximate the inverse of g′(xk). In the one dimensional case, a method proposed by the
Babylonians 3700 years ago is of particular significance. Today we call it the secant method:

(109) Jk =
xk − xk−1

g(xk)− g(xk−1)
.
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With this approximation one has

g′(xk)−1 − Jk =
g(xk−1)− [g(xk) + g′(xk)(xk−1 − xk)]

g′(xk)[g(xk−1)− g(xk)]
.

Near a point x∗ at which g′(x∗) 6= 0 one can use the MVT to show there exists an α > 0 such that

α ‖x− y‖ ≤ ‖g(x)− g(y)‖ .
Consequently, by the Quadratic Bound Lemma,∥∥g′(xk)−1 − Jk

∥∥ ≤ L
2

∥∥xk−1 − xk
∥∥2

α ‖g′(xk)‖ ‖xk−1 − xk‖
≤ K

∥∥xk−1 − xk
∥∥

for some constant K > 0 whenever xk and xk−1 are sufficiently close to x∗. Therefore, by our convergence Theorem
for Newton Like methods, the secant method is locally two step quadratically convergent to a non–singular solution
of the equation g(x) = 0. An additional advantage of this approach is that no extra function evaluations are required
to obtain the approximation Jk.

4.0.1. Matrix Secant Methods for Equations. Unfortunately, the secant approximation (109) is meaningless if
the dimension n is greater than 1 since division by vectors is undefined. But this can be rectified by multiplying
(109) on the right by (g(xk−1)− g(xk)) and writing

(110) Jk(g(xk)− g(xk−1)) = xk − xk−1.

Equation (110) is called the Quasi-Newton equation (QNE), or matrix secant equation (MSE), at xk. Here the
matrix Jk is unknown, but is required to satisfy the n linear equations of the MSE. These equations determine an
n dimensional affine manifold in Rn×n. Since Jk contains n2 unknowns, the n linear equations in (110) are not
sufficient to uniquely determine Jk. To nail down a specific Jk further conditions on the update Jk must be given.
What conditions should these be?

To develop sensible conditions on Jk, let us consider an overall iteration scheme based on (108). For convenience,
let us denote J−1

k by Bk (i.e. Bk = J−1
k ). Using the Bk’s, the MSE (110) becomes

(111) Bk(xk − xk−1) = g(xk)− g(xk−1).

At every iteration we have (xk, Bk) and compute xk+1 by (108). Then Bk+1 is constructed to satisfy (111). If Bk
is close to g′(xk) and xk+1 is close to xk, then Bk+1 should be chosen not only to satisfy (111) but also to be as
“close” to Bk as possible. With this in mind, we must now decide what we mean by “close”. From a computational
perspective, we prefer “close” to mean easy to compute. That is, Bk+1 should be algebraically close to Bk in the
sense that Bk+1 is only a rank 1 modification of Bk. Since we are assuming that Bk+1 is a rank 1 modification to
Bk, there are vectors u, v ∈ Rn such that

(112) Bk+1 = Bk + uvT .

We now use the matrix secant equation (111) to derive conditions on the choice of u and v. In this setting, the
MSE becomes

Bk+1s
k = yk,

where
sk := xk+1 − xk and yk := g(xk+1)− g(xk) .

Multiplying (??) by sk gives

yk = Bk+1s
k = Bks

k + uvT sk .

Hence, if vT sk 6= 0, we obtain

u =
yk −Bksk

vT sk

and

(113) Bk+1 = Bk +

(
yk −Bksk

)
vT

vT sk
.

Equation (113) determines a whole class of rank one updates that satisfy the MSE where one is allowed to choose
v ∈ Rn as long as vT sk 6= 0. If sk 6= 0, then an obvious choice for v is sk yielding the update

(114) Bk+1 = Bk =

(
yk −Bksk

)
sk
T

sk
T
sk

.
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This is known as Broyden’s update. It turns out that the Broyden update is also analytically close.

Theorem 4.1. Let A ∈ Rn×n, s, y ∈ Rn, s 6= 0. Then for any matrix norms ‖·‖ and ‖·‖2 such that

‖AB‖ ≤ ‖A‖ ‖B‖2
and ∥∥∥∥vvTvT v

∥∥∥∥
2

≤ 1,

the solution to

(115) min{‖B −A‖ : Bs = y}

is

(116) A+ = A+
(y −As)sT

sT s
.

In particular, (116) solves (115) when ‖·‖ is the `2 matrix norm, and (116) solves (115) uniquely when ‖·‖ is the
Frobenius norm.

Proof. Let B ∈ {B ∈ Rn×n : Bs = y}, then

‖A+ −A‖ =

∥∥∥∥ (y −As)sT

sT s

∥∥∥∥ =

∥∥∥∥(B −A)
ssT

sT s

∥∥∥∥
≤ ‖B −A‖

∥∥∥∥ssTsT s
∥∥∥∥

2

≤ ‖B −A‖ .

Note that if ‖·‖2 = ‖·‖2, then ∥∥∥∥vvTvT v

∥∥∥∥
2

= sup

{∥∥∥∥vvTvT v
x

∥∥∥∥
2

∣∣∣∣ ‖x‖2 = 1

}
= sup

{√
(vTx)2

‖v‖2

∣∣∣∣∣ ‖x‖2 = 1

}
= 1,

so that the conclusion of the result is not vacuous. For uniqueness observe that the Frobenius norm is strictly
convex and ‖A ·B‖F ≤ ‖A‖F ‖B‖2. �

Therefore, the Broyden update (114) is both algebraically and analytically close to Bk. These properties indicate
that it should perform well in practice and indeed it does.

Algorithm: Broyden’s Method

Initialization: x0 ∈ Rn, B0 ∈ Rn×n

Having (xk, Bk) compute (xk+1, Bx+1) as follows:

Solve Bks
k = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk+1)− g(xk)

Bk+1 : = Bk +
(yk −Bksk)sk

T

sk
T
sk

.

We would prefer to write the Broyden update in terms of the matrices Jk = B−1
k so that we can write the step

computation as sk = −Jkg(xk) avoiding the need to solve an equation. To obtain the formula for Jk we use the the
following important lemma for matrix inversion.

Lemma 4.1. (Sherman-Morrison-Woodbury) Suppose A ∈ Rn×n, U ∈ Rn×k, V ∈ Rn×k are such that both A−1

and (I + V TA−1U)−1 exist, then

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1
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The above lemma verifies that if B−1
k = Jk exists and sk

T
Jky

k = sk
T
B−1
k yk 6= 0, then

(117) Jk+1 =

[
Bk +

(yk −Bksk)sk
T

sk
T
sk

]−1

= B−1
k +

(sk −B−1
k yk)sk

T
B−1
k

sk
T
B−1
k y

= Jk +
(sk − Jkyk)sk

T
Jk

sk
T
Jky

.

In this case, it is possible to directly update the inverses Jk. It should be cautioned though that this process can

become numerically unstable if |skTJkyk| is small. Therefore, in practise, the value |skTJkyk| must be monitored
to avoid numerical instability.

Although we do not pause to establish the convergence rates here, we do give the following result due to Dennis
and Moré (1974).

Theorem 4.2. Let g : Rn → Rn be continuously differentiable in an open convex set D ⊂ Rn. Assume that
there exists x∗ ∈ Rn and r, β > 0 such that x∗ + rB ⊂ D, g(x∗) = 0, g′(x∗)−1 exists with ‖g′(x∗)−1‖ ≤ β, and g′

is Lipschitz continuous on x∗ + rB with Lipschitz constant γ > 0. Then there exist positive constants ε and δ such
that if ‖x0 − x∗‖2 ≤ ε and ‖B0 − g′(x0)‖ ≤ δ, then the sequence {xk} generated by the iteration[

xk+1 := xk + sk where sk solves 0 = g(xk) +Bks

Bk+1 := Bk +
(yk−Bksk)sTk

sTk s
k where yk = g(xk+1)− g(xk)

is well-defined with xk → x∗ superlinearly.

4.0.2. Matrix Secant Methods for Minimization. We now extend these matrix secant ideas to optimization,
specifically minimization. The underlying problem we consider is

P : minimize
x∈Rn

f(x) ,

where f : Rn → R is assumed to be twice continuously differentiable. In this setting, we wish to solve the equation
∇f(x) = 0 and the MSE (111) becomes

(118) Hk+1y
k = sk ,

where sk := xk+1 − xk and
yk := ∇f(xk+1)−∇f(xk).

Here the matrix Hk is intended to be an approximation to the inverse of the hessian matrix ∇2f(xk). Writing
Mk = H−1

k , a straightforward application of Broyden’s method gives the update

Mk+1 = Mk +
(yk −Mks

k)sk
T

sk
T
sk

.

However, this is unsatisfactory for two reasons:

(1) Since Mk approximates ∇2f(xk) it must be symmetric.
(2) Since we are minimizing, then Mk must be positive definite to insure that sk = −M−1

k ∇f(xk) is a direction

of descent for f at xk.

To address problem 1 above, one could return to equation (113) an find an update that preserves symmetry.
Such an update is uniquely obtained by setting

v = (yk −Mks
k).

This is called the symmetric rank 1 update or SR1. Although this update can on occasion exhibit problems with
numerical stability, it has recently received a great deal of renewed interest. The stability problems occur whenever

(119) vT sk = (yk −Mks
k)T ss

has small magnitude. The inverse SR1 update is given by

Hk+1 = Hk +
(sk −Hky

k)(sk −Hky
k)T

(sk −Hkyk)T yk

which exists whenever (sk −Hky
k)T yk 6= 0.

We now approach the question of how to update Mk in a way that addresses both the issue of symmetry and
positive definiteness while still using the Broyden updating ideas. Given a symmetric positive definite matrix M
and two vectors s and y, our goal is to find a symmetric positive definite matrix M̄ such that M̄s = y. Since M
is symmertic and positive definite, there is a non-singular n × n matrix L such that M = LLT . Indeed, L can be
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chosen to be the lower triangular Cholesky factor of M . If M is also symmetric and positive definite then there is
a matrix J ∈ Rn×n such that M = JJT . The MSE (??) implies that if

(120) JT s = v

then

(121) Jv = y.

Let us apply the Broyden update technique to (121), J , and L. That is, suppose that

(122) J = L+
(y − Lv)vT

vT v
.

Then by (120)

(123) v = JT s = LT s+
v(y − Lv)T s

vT v
.

This expression implies that v must have the form

v = αLT s

for some α ∈ R. Substituting this back into (123) we get

αLT s = LT s+
αLT s(y − αLLT s)T s

α2sTLLT s
.

Hence

(124) α2 =

[
sT y

sTMs

]
.

Consequently, such a matrix J satisfying (123) exists only if sT y > 0 in which case

J = L+
(y − αMs)sTL

αsTMs
,

with

α =

[
sT y

sTMs

]1/2

,

yielding

(125) M = M +
yyT

yT s
− MssTM

sTMs
.

Moreover, the Cholesky factorization for M can be obtained directly from the matrices J . Specifically, if the QR
factorization of JT is JT = QR, we can set L = R yielding

M = JJT = RTQTQR = LL
T
.

The formula for updating the inverses is again given by applying the Sherman-Morrison-Woodbury formula to
obtain

(126) H = H +
(s+Hy)T yssT

(sT y)2
− HysT + syTH

sT y
,

where H = M−1. The update (125) is called the BFGS update and (126) the inverse BFGS update. The letter
BFGS stand for Broyden, Flethcher, Goldfarb, and Shanno.

We have shown that beginning with a symmetric positive definite matrix Mk we can obtain a symmetric
and positive definite update Mk+1 that satisfies the MSE Mk+1sk = yk by applying the formula (125) whenever

sk
T
yk > 0. We must now address the question of how to choose xk+1 so that sk

T
yk > 0. Recall that

y = yk = ∇f(xk+1)−∇f(xk)

and

sk = xk+1 − xk = tkd
k ,

where

dk = −tkHk∇f(xk)
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is the matrix secant search direction and tk is the stepsize. Hence

yk
T
sk = ∇f(xk+1)T sk −∇f(xk)T sk

= tk(∇f(xk + tkdk)T dk −∇f(xk)T dk) ,

where dk := −Hk∇f(xk). Since Hk is positive definite the direction dk is a descent direction for f at xk and so

tk > 0. Therefore, to insure that sk
T
yk > 0 we need only show that tk > 0 can be choosen so that

(127) ∇f(xk + tkd
k)T dk ≥ β∇f(xk)T dk

for some β ∈ (0, 1) since in this case

∇f(xk + tkdk)T dk −∇f(xk)T dk ≥ (β − 1)∇f(xk)T dk > 0.

But this precisely the second condition in the weak Wolfe conditions with β = c2. Hence a successful BFGS
update can always be obtained. The BFGS update and is currently considered the best matrix secant update for
minimization.

BFGS Updating

σ :=

√
sk
T
yk

ŝk := sk/σ

ŷk := yk/σ

Hk+1 := Hk + (ŝk −Hkŷ
k)(ŝk)T + ŝk(ŝk −Hkŷ

k)T − (ŝk −Hkŷ
k)T ŷkŝk(ŝk)T
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