
The Gradient Projection Algorithm

1 Projections and Optimality Conditions

In this section we study the problem

P : min f(x)
subject to x 2 ⌦

where ⌦ ⇢ Rn is assumed to be a nonempty closed convex set and f is C

1. The solution
method that we will study is known as the gradient projection algorithm and was pioneered
by Allen Goldstein of the University of Washington in 1964. In our theorem on first-order
necessary conditions for optimality we found that if x is a local minimum for P then

rf(x)T (y � x) � 0 (1)

for all y 2 ⌦. Moreover, if f is convex, then condition rfeqgp1 implies that x is a local
minimum for P . An instance of the function f that is of particular significance is

f(x) :=
1

2
kx� x0k22.

In this case problem P becomes one of finding the closest point x in ⌦ to x0. We now give
the celebrated projection theorem for convex sets.

Theorem 1.1 Let x0 2 Rn and let ⌦ ⇢ Rn be a nonempty closed convex set. Then x 2 ⌦
solves the problem

min{1
2
kx� x0k22 : x 2 ⌦}

if and only if
(x� x0)

T (y � x) � 0 (2)

for all y 2 ⌦. Moreover, the solution x always exists and is unique.

Proof. Existence follows from the compactness of the set

{x 2 ⌦ : kx� x0k2  kx̂� x0k2}

where x̂ is any element of ⌦. Uniqueness follows from the strong convexity of the 2-norm
squared. The remainder of the theorem follows immediately from Theorem ?? once it is
observed that if

f(x) =
1

2
kx� x0k22

then
rf(x) = x� x0. ⌅
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Definition 1.1 Let ⌦ ⇢ Rn be nonempty closed convex. We define the projection into ⌦
to be the mapping P⌦ : Rn ! ⌦ given by

1

2
kP⌦(x)� xk22 = min{1

2
ky � xk22 : y 2 ⌦}.

Observe that P⌦ is well-defined by Theorem 1.1.

We now introduce two geometric concepts that aid in interpreting the optimality condi-
tion given in Theorem 1.1. Recall that the tangent cone to ⌦ at a point x0 2 ⌦ is given
by

T⌦(x0) =
[

�>0

�(⌦� x0).

Dually, we call the set

N⌦(x) := {z : hz, y � zi  0 for all y 2 ⌦}

the normal cone to ⌦ at x.
Using the notions of a normal cone and a tangent cone we obtain the following restate-

ment.

Theorem 1.2 Let x be a solution to problem P and suppose that f is di↵erentiable at x,
then

�rf(x) 2 N⌦(x). (3)

Moreover, if f is convex then (3) is su�cient for x to be a global minimizer of f on ⌦.

Proof. We need only show that condition (3) is equivalent to the statement that

rf(x)T (y � x) � 0 for all y 2 ⌦.

But this is clear from the definition of the normal cone. ⌅

Theorem 1.3 Let ⌦ be a non-empty closed convex subset of Rn and let P⌦ denote the
projector into ⌦. Then given x 2 Rn we have z = P⌦(x) if and only if

(x� z) 2 N⌦(z). (4)

Proof. We need only show that (4) is equivalent to (2), but again this follows immediately
from the definition of the normal cone. ⌅

We have the following interesting corollary.

Corollary 1.3.1 Let x 2 ⌦, z 2 N⌦(x), and t � 0, then

P⌦(x+ tz) = x.
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Proof. Simply observe that

(x+ tz)� P⌦(x+ tz) = tz 2 N⌦(x),

so that the result follows from the theorem. ⌅
This yields the following corollary to Theorem 1.1 in the context of P .

Corollary 1.3.2 Let x be a solution to P, then

P⌦(x� trf(x)) = x (5)

for all t � 0.

Proof. Just apply Theorem 1.1 and Corollary 1.3.1. ⌅
We now show how (5) can be used both as a stopping criteria for our algorithm and as

a method for generating search directions.

Proposition 1.2 Let x 2 ⌦ and set d = P⌦(x� trf(x))� x. Then

rf(x)Td  �kP⌦(x� trf(x))� xk2

t

.

Proof. Simply observe that

kP⌦(x� trf(x))� xk2 = hP⌦(x� trf(x))� x, P⌦(x� trf(x))� xi
= �trf(x)Td+ hP⌦(x� trf(x))� (x� trf(x)), P⌦(x� trf(x))� xi
 �trf(x)Td

where the last inequality follows Theorem 1.1 equation rfeqgp2. ⌅
Based on these observations we have the following algorithm.

2 The Basic Gradient Projection Method

Initialization: x 2 ⌦, � 2 (0, 1), c 2 (0, 1)
Having xk obtain xk+1 as follows

1. Set dk := P⌦(xk �rf(xk))� xk

2. Set

�k := max �s

subject to s 2 {0, 1, 2, . . .}
f(xk) + �

s
dk)� f(xk)  c�

srf(xk)
T
dk.

3. Set xk+1 := xk + �kdk.
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We appeal to our result for the backtracking line search to yield a convergence theorem
for this method.

Theorem 2.1 Let f : Rn ! R be C

1 and let ⌦ ⇢ Rn be a nonempty closed convex set. Let
x0 2 ⌦ be such that f 0 is uniformly continuous on the set co{x 2 ⌦ : f(x)  f(x0)}. If {xk}
is the sequence generated by gradient projection algorithm given above with starting point x0,
then one of the following must occur.

1. There is a k0 such that �rf(xk0) 2 N⌦(xk0).

2. f(xk) # �1.

3. The sequence {kdkk} diverges to +1,

4. For every subsequence J ⇢ N for which {dk}J is bounded, we have that dk !
J
0, or

equivalently
kP⌦(xk �rf(xk))� xkk!

J
0.

Corollary 2.1.1 Let the hypotheses of Theorem 2.1 hold. Furthermore assume that the
sequence {dk} is bounded. Then every cluster point x of the sequence {xk} satisfies �rf(x) 2
N⌦(x).

3 The Computation of Projections

We now address the question of implementation. Specifically, how does one compute the
projection onto the convex set ⌦. In general this is not a finite process. Nonetheless, for
certain important convex sets ⌦ it can be done quite e�ciently.

Projection onto box constraints

Let us suppose that ⌦ is given by ⌦ := {x 2 Rn : `  x  u}, where `, u 2 Rn

with R = ⌦ [ {+1,�1} and ` : u, i = 1, . . . , n, `i 6= +1 i = 1, . . . , n and ui 6= �1
i = 1, . . . , n. Then P⌦ can be expressed componentwise as

[P⌦(x)]i :=

8
><

>:

`i if xi  `i

xi if `i < xi < ui

ui if ui  xi

Thus, for example, if ⌦ = Rn
+, then

P⌦(x) = x+.

Projection onto a Polyhedron
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Let ⌦ be the polyhedron given by

⌦ := {x 2 Rn : aTi x  ↵i, i = 1, . . . , 3, aTi x = ↵i, i = s+ 1, . . . ,m}.

Then P⌦ is determined by solving the quadratic program

min 1
2kx� yk22

subject to a

T
i x  ↵i i = 1, . . . , s

a

T
i x = ↵i i = s+ 1, . . . ,m.
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