
Chapter 0

Mathematical Preliminaries

0.1 Norms

Throughout this course we will be working with the vector space Rn. For this reason we
begin with a brief review of its metric space properties

Definition 0.1.1 (Vector Norm) A function ν : Rn → R is a vector norm on Rn if

i. ν(x) ≥ 0 ∀ x ∈ Rn with equality iff x = 0.

ii. ν(αx) = |α|ν(x) ∀ x ∈ Rn α ∈ R

iii. ν(x+ y) ≤ ν(x) + ν(y) ∀ x, y ∈ Rn

We usually denote ν(x) by ‖x‖. Norms are convex functions.

Example: lp norms

‖x‖p := (
∑n
i=1 |xi|p)

1
p , 1 ≤ p <∞

‖x‖∞ = maxi=1,...,n |xi|

– P = 1, 2,∞ are most important cases

‖x‖1 = 1 ‖x‖2 = 1 ‖x‖∞ = 1

– The unit ball of a norm is a convex set.

1



2 CHAPTER 0. MATHEMATICAL PRELIMINARIES

0.1.1 Equivalence of Norms

α(p, q)‖x‖q ≤ ‖x‖p ≤ β(p, q)‖x‖q

α(p, q) p
∣∣∣∣q 1 2 3

1 1 1 1

2 n−
1
2 1 1

3 n−1 n−
1
2 1

β(p, q) p
∣∣∣∣q 1 2 3

1 1 n
1
2 n

2 1 1 n
1
2

3 1 1 1

0.2 Open, Closed, and Compact Sets

– A subset D ⊂ Rn is said to be open if for every x ∈ D there exists ε > 0 such that
x+ εB ⊂ D where

x+ εB = {x+ εu : u ∈ B}

and B is the unit ball of some given norm on Rn.

– A point x is said to be a cluster point (or accumulation point) of the set D ⊂ Rn if

(x+ εB) ∩D 6= ∅

for every ε > 0.

– A subset D ⊂ Rn is said to be closed if it contains all of its cluster points.

– A subset D ⊂ Rn is said to be bounded if there exists m > 0 such that

‖x‖ ≤ m for all x ∈ D.

– A subset D ⊂ Rn is said to be compact, if it is closed and bounded.

Fact: [Bolzano–Weierstrass Compactness Theorem] A set D ⊂ Rn is compact if and only
if every infinite subset of D has a cluster point in D.
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0.3 Continuity and the Existence of Extrema

– The mapping F : Rn → Rn is said to be continuous at the point x if

lim
‖x−x‖→0

‖F (x)− F (x)‖ = 0,

or equivalently, for every ε > 0 there exists a δ > 0 such that

‖F (x)− F (x)‖ < ε

whenever ‖x− x‖ < δ. The function F is said to be continuous on a set D ⊂ Rn if F
is continuous at every point of D.

Weierstrass Extreme Value Theorem Every continuous function on a compact set
attains its extreme values on that set.

0.4 Dual Norms

Let ‖ · ‖ be a given norm on Rn with associated closed unit ball B. For each x ∈ Rn define

‖x‖0 := max{xTy : ‖y‖ ≤ 1}.

Since the transformation y 7→ xTy is continuous (in fact, linear) and B is compact, Weier-
strass’s Theorem says that the maximum in the definition of ‖x‖0 is attained. Thus, in
particular, the function x → ‖x‖0 is well defined and finite-valued. Indeed, the mapping
defines a norm on Rn. This norm is said to be the norm dual to the norm ‖ · ‖. Thus, every
norm has a norm dual to it.

We now show that the mapping x 7→ ‖x‖0 is a norm.

(a) It is easily seen that ‖x‖0 = 0 if and only if x = 0. If x 6= 0, then

‖x‖0 = max{xTy : ‖y‖ ≤ 1} ≥ xT
(
x

‖x‖

)
=
‖x‖2

‖x‖
> 0.

(b) From (a), ‖0 · x‖0 = 0 = 0 · ‖x‖0. Next suppose α ∈ R with α 6= 0. Then

‖αx‖0 = max{xT (αy) : ‖y‖ ≤ 1}, (z = αy)

= max
{
xT z : 1 ≤

∥∥∥ z
α

∥∥∥ = 1
|α|‖z‖ =

∥∥∥ z
|α|

∥∥∥} , (w = z
|α|

)
= max{xT (|α|z) : 1 ≥ ‖w‖}
= |α| ‖x‖0.
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In order to establish the triangle inequality, we make use of the following elementary, but
very useful, fact.

Fact: If f : Rn → R and C ⊂ D ⊂ Rn, then

sup
x∈C

f(x) ≤ sup
x∈D

f(x).

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger
set must be smaller.

(c) ‖x+ z‖0 = max{xTy + zTy : ‖y‖ ≤ 1}

= max

{
xTy1 + zTy2 :

‖y1‖ ≤ 1
‖y2‖ ≤ 1

, y1 = y2

}
(max over a larger set)

= ≤ max{xTy1 + zTy2 : ‖y1‖ ≤ 1, ‖y2‖ ≤ 1}
= ‖x‖0 + ‖z‖0

Facts:

(i) xTy ≤ ‖x‖ ‖y‖0 (apply definition)

(ii) ‖x‖∞ = ‖x‖

(iii) (‖x‖p)0 = ‖x‖q where 1
p

+ 1
q

= 1, 1 ≤ p ≤ ∞

(iv) Hölder’s Inequality: |xTy| ≤ ‖x‖p‖y‖q

1

p
+

1

q
= 1

(v) Cauchy-Schwartz Inequality:

|xTy| ≤ ‖x‖2‖y‖2

0.5 Operators

0.5.1 Operator Norms

A ∈ Rm×n

‖A‖(a,b) = max{‖Ax‖(a) : ‖x‖(b) ≤ 1}
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Example: ‖A‖2 = max{‖Ax‖2 : ‖x‖2 ≤ 1}
‖A‖∞ = max{‖Ax‖∞ : ‖x‖∞ ≤ 1}

= max
1≤i≤m

∑n
j=1 |aij|,max row sum

‖A‖1 = max{‖Ax‖1 : ‖x‖1 ≤ 1}
= max

1≤j≤n

∑m
i=1 |aij|,max column sum

Fact: ‖Ax‖(a) ≤ ‖A‖(a,b)‖x‖(b).

(a) ‖A‖ ≥ 0 with equality ⇔ ‖Ax‖ = 0 ∀ x or A ≡ 0.

(b) ‖αA‖ = max{‖αAx‖ : ‖x‖ ≤ 1}
= max{|α| ‖Ax‖ : ‖α‖ ≤ 1} = |α| ‖A‖

(c) ‖A+B‖ = max{‖Ax+Bx‖ : ‖x‖ ≤ 1} ≤ max{‖Ax‖+ ‖Bx‖A ≤ 1}
= max{‖Ax1‖+ ‖Bx2‖ : x1 = x2, ‖x1‖ ≤ 1, ‖x2‖ ≤ 1}
≤ max{‖Ax1‖+ ‖Bx2‖ : ‖x1‖ ≤ 1, ‖x2‖ ≤ 1}
= ‖A‖+ ‖B‖

0.5.2 Spectral Radius

A ∈ Rn×n

ρ(A) := max{|λ| : λ ∈ Σ(A)}

Σ(A) = {λ ∈ C : Ax = λx for some x 6= 0).

ρ(A) ∼ spectral radius of A

Σ(A) ∼ spectrum of A

Fact:

(i) ‖A‖2 = (ρ(ATA))
1
2

(ii) ρ(A) < 1⇔ lim
k→∞

Ak = 0

(iii) ρ(A) < 1⇒ (I − A)−1 =
∞∑
i=0

Ai (Neumann Lemma)
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0.5.3 Condition number

A ∈ Rn×n

κ(A) =

{
‖A‖ ‖A−1‖ if A−1 exists
∞ otherwise

Fact: [Error estimates in the solution of linear equations] If Ax1 = b and Ax2 = b+ e, then

‖x1 − x2‖
‖x1‖

≤ κ(A)
‖e‖
‖b‖

Proof: ‖b‖ = ‖Ax1‖ ≤ ‖A‖ ‖x1‖ ⇒ 1
‖x1‖ ≤

‖A‖
‖b‖ , so

‖x1 − x2‖
‖x1‖

≤ ‖A‖
‖b‖
‖A−1(A(x1 − x2)‖ ≤ ‖A‖ ‖A−1‖ 1

‖b‖
‖Ax1 − Ax2‖

�

0.5.4 The Frobenius Norm

There is one further norm for matrices that is very useful. It is called the Frobenius norm.
Observe that we can identify Rm×n with R(mn) by simply stacking the columns of a matrix
one on top of the other to create a very long vector in R(mn). The mapping from Rm×n to
R(mn) defined in this way is denoted by vec (·). The Frobenius norm of a matrix A ∈ Rm×n

is then the 2-norm of vec (A). It can be verified that

‖A‖F = tr (ATA).

0.6 Review of Differentiation

1) Let F : Rn → Rm and let x, d ∈ Rn. If the limit

lim
t↓0

F (x+ td)− F (x)

t
=: F ′(x; d)

exists, it is called the directional derivative of F at x in the direction h. If this limit
exists for all d ∈ Rn and is linear in the d argument,

F ′(x;αd1 + βd2) = αF ′(x; d1) + βF ′(x; d2),

then F is said to be Gâteaux differentiable at x.
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2) Let F : Rn → Rm and let x ∈ Rn. If there exists J ∈ Rm×n such that

lim
‖y−x‖→0

‖F (y)− (F (x) + J(y − x))‖
‖y − x‖

= 0,

then F is said to be Fréchet differentiable at x and J is said to be its “Fréchet deriva-
tive”. We denote J by J = F ′(x).

Facts:

(i) If F ′(x) exists, it is unique.

(ii) If F ′(x) exists, then F ′(x; d) exists for all d and

F ′(x; d) = F ′(x)d.

(iii) If F ′(x) exists, then F is continuous at x.

(iv) (Matrix Representation)

Suppose F ′(x) exists for all x near x and that the mapping x 7→ F ′(x) is continuous
at x,

lim
‖x−x‖→0

‖F ′(x)− F ′(x)‖ = 0,

then ∂Fi/∂xj exist for each i = 1, . . . ,m, j = 1, . . . , n and with respect to the standard
basis the linear operator F ′(x) has the representation

∇F (x) =



∂F1

∂x1
∂F1

∂x2
· · · ∂F1

∂xn
∂F2

∂x1
∂F2

∂x2
· · · ∂F2

∂xn

...
∂Fn
∂x1

· · · · · · ∂Fm
∂xn



T

=

[
∂Fi
∂xj

]T

where each partial derivative is evaluated at x = (x1, . . . , xn)T . This matrix is called
the Jacobian matrix for F at x.

Notation: For f : Rn → R, f ′(x) =
[
∂f1
∂x1
, . . . , ∂f∗

∂xn

]
we write ∇f(x) = f ′(x)T .

(v) If F : Rn → Rm has continuous partials ∂Fi/∂xi on an open set D ⊂ Rn, then F
is differentiable on D. Moreover, in the standard basis the matrix representation for
F ′(x) is the Jacobian of F at x.

(vi) (Chain Rule) Let F : A ⊂ Rm → Rk be differentiable on the open set A and let
G : B ⊂ Rk → Rn be differentiable on the open set B. If F (A) ⊂ B, then the
composite function G ◦ F is differentiable on A and

(G ◦ F )′(x0) = G′(F (x0)) ◦ F ′(x0).
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Remarks: Let F : Rn → Rm be differentiable. If L(Rn,Rm) denotes the set of linear maps
from Rn to Rm, then

F ′ : Rn → L(Rn,Rm).

(In a standard basis we usually identify L(Rn,Rm) with Rm×n.) Therefore hierarchy for
higher derivatives:

F : Rn → Rm

F ′ : Rn → L(Rn,Rm) ≈ Rm×n

F ′′ : Rn → L(Rn, L(Rn,Rm)) ≈ Rm×n×n

F ′′′ : Rn → L(Rn, L(Rn, L(Rn,Rm))) ≈ Rm×n×n×n

...

(v) The Mean Value Theorem:

(a) If f : R → R is differentiable, then for every x, y ∈ R there exists z between x
and y such that

f(y) = f(x) + f ′(z)(y − x).

(b) If f : Rn → R is differentiable, then for every x, y ∈ R there is a z ∈ [x, y] such
that

f(y) = f(x) +∇f(z)T (y − x).

(c) If F : Rn → Rm continuously differentiable, then for every x, y ∈ R

‖F (y)− F (x)‖ ≤
[

sup
z∈[x,y]

‖F ′(z)‖
]
‖x− y‖.

Proof of (b): Set ϕ(t) = f(x + t(y − x)). Then, by the chain rule, ϕ′(t) = ∇f(x + t(y −
x))T (y − x) so that ϕ is differentiable. Moreover, ϕ : R → R. Thus, by (a), there exists
t ∈ (0, 1) such that

ϕ(1) = ϕ(0) + ϕ′(t)(1− 0),

or equivalently,
f(y) = f(x) +∇f(z)T (y − x)

where z = x+ t(y − x). �

0.6.1 The Implicit Function Theorem

Let F : Rn+m → Rn be continuously differentiable on an open set E ⊂ Rn+m. Further
suppose that there is a point (x̄, ȳ) ∈ Rn+m at which F (x̄, ȳ) = 0. If ∇xF (x̄, ȳ) is invertable,
then there exist open sets U ⊂ Rn+m and W ⊂ Rm, with (x̄, ȳ) ∈ U and ȳ ∈ W , having the
following property:
To every y ∈ W corresponds a unique x ∈ Rn such that

(x, y) ∈ U and F (x, y) = 0 .
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Moreover, if x is defined to be G(y), then G is a continuously differentiable mapping of W
into Rn satisfying

G(ȳ) = x̄, F (G(y), x) = 0 ∀ y ∈ W, and G′(ȳ) = −(∇xF (x̄, ȳ))−1∇yF (x̄, ȳ) .

0.6.2 Some facts about the Second Derivative

Let f : Rn → R so that f ′ : Rn → L(Rn,R)(≈ Rn×1 = R2) and

f ′′ : Rn → L(Rn, L(Rn,R))(≈ Rn×n×1 = Rn×n).

(i) If f ′′ exists and is continuous at x0, then in the standard basis

f ′′(x0) ≈ ∇2f(x0) =

[
∂2f

∂xi∂xj

]
x=x0

Moreover, ∂f
∂xi∂xj

= ∂f
∂xj∂xi

for all i, j = 1, . . . , n. The matrix ∇2f(x2) is called the

Hessian of f at x0. It is a symmetric matrix.

(ii) Second-Order Taylor Theorem:

If f : Rn → R is twice continuously differentiable on an open set containing [x, y], then
there is a z ∈ [x, y] such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x).

We also obtain

‖f(7)− (f(x) + f ′(x)(y − x))‖ ≤ 1

2
‖x− y‖2 sup

z∈[x,y]

‖f ′′(z)‖.

0.6.3 Integration

Let f : Rn → R1 be differentiable and set ϕ(t) = f(x+ t(y − x)) so that ϕ : R→ R. Then

f(y)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0 ϕ
′(t)dt

=
∫ 1

0 ∇f(x+ t(y − x))T (y − x)dt

Similarly, if F : Rn → Rm, then

F (y)− F (x) =


∫ 1

0 ∇F1(x+ t(y − x))T (y − x)dt
...∫ 1

0 ∇Fm(x+ t(y − x))T (y − x)dt


=

∫ 1
0 F

′(x+ t(y − x))(y − x)dt
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0.6.4 More Facts about Continuity

Let F : Rn → Rm.

– We say that F is continuous on a set D ⊂ Rn if for every x ∈ D and ε > 0 there exists
a δ(x, ε) > 0 such that

‖F (y)− F (x)‖ ≤ ε whenever ‖y − x‖ ≤ δ(x, ε).

– We say that F is uniformly continuous on D ⊂ Rn if for every ε > 0 there exists a
δ(ε) > 0 such that

‖F (y)− F (x)‖ ≤ ε whenever ‖y − x‖ ≤ δ(ε).

Fact: If F is continuous on a compact set D ⊂ Rn, then F is uniformly continuous on D.

– We say that F is Lipschitz continuous on a set D ⊂ Rn if there exists a constant K ≥ 0
such that

‖F (x)− F (y)‖ ≤ K‖x− y‖

for all x, y ∈ D.

Fact: Lipschitz continuity implies uniform continuity.

Proof: δ = ε/K. �

Examples:

1. f(x) = x−1 is continuous on (0, 1), but it is not uniformly continuous on (0, 1).

2. f(x) =
√
x is uniformly continuous on [0, 1], but it is not Lipschitz continuous on [0, 1].

Fact: If F ′ exists and is continuous on a compact convex set D ⊂ Rm, then F is Lipschitz
continuous on D.

Proof: Mean value Theorem:

‖F (x)− F (y)‖ ≤
(

sup
z∈[x,y]

‖F ′(z)‖
)
‖x− y‖.

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz
constant provides bounds on rate of change.
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�

Quadratic Bound Lemma

Lemma 0.6.1 Let F : Rn → Rm be such that F ′ is Lipschitz continuous on the convex set
D ⊂ Rn. Then

‖F (y)− (F (x) + F ′(x)(y − x))‖ ≤ K

2
‖y − x‖2

for all x, y ∈ D where K is a Lipschitz constant for F ′ on D.

Proof: F (y)− F (x)− F ′(x)(y − x) =
∫ 1
0 F

′(x+ t(y − x))(y − x)dt− F ′(x)(y − x)
=

∫ 1
0 [F ′(x+ t(y − x))− F ′(x)](y − x)dt

‖F (y)− (F (x) + F ′(x)(y − x))‖ = ‖
∫ 1
0 [F ′(x+ t(y − x))− F ′(x)](y − x)dt‖

≤
∫ 1
0 ‖(F ′(x+ t(y − x)− F ′(x))(y − x)‖dt

≤
∫ 1

0 ‖F ′(x+ t(y − x))− F ′(x)‖ ‖y − x‖dt
≤

∫ 1
0 Kt‖y − x‖2dt

= K
2
‖y − x‖2.

�

Extended Quadratic Bound Lemma

Lemma 0.6.2 Let F : Rn → Rm be continuously differentiable in an open convex set D ⊂
Rn. If we assume that F ′ is Lipschitz continuous in D with Lipschitz constant K > 0, then
for all x, y, z ∈ D we have

‖F (y)− F (x) − F ′(z)(y − x)‖

≤ K
‖x− z‖+ ‖y − z‖

2
‖x− y‖

Proof: Just as in the proof of the quadratic bound lemma

F (y)− F (x)− F ′(z)(y − x) =
∫ 1

0
(F ′(x+ t(y − x))− F ′(z))(y − x)dt.
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Therefore,

‖F (y)− F (x)− F ′(z)(y − x)‖ ≤ ‖y − x‖
∫ t

0
‖x+ t(y − x)− z‖dt

= ‖y − x‖
∫ t

0
K‖t(y − z) + (1− t)(x− z)‖dt

≤ ‖y − x‖K
∫ t

0
t‖y − z‖+ (1− t)‖x− z‖dt

= K
‖y − z‖+ ‖x− z‖

2
‖y − x‖.

�

0.6.5 Some Facts about Symmetric Matrices

Let H ∈ Rn×n be symmetric, i.e. HT = H

1. There exists an orthonormal basis of eigen-vectors for H, i.e. if λ1 ≥ λ2 ≥ · · · ≥ λn
are the n eigenvalues of H (not necessarily distinct), then there exist vectors q1, . . . , qn
such that λiqi = Hqi i = 1, . . . , n with qTi qj = δij. Equivalently, there exists a unitary
transformation Q = {q1, . . . , qn} such that

H = QΛQT

where Λ = diag[λ1, . . . , λn].

2. H ∈ Rn×n is positive semi-definite, i.e.

xTHx ≥ 0 for all x ∈ Rn,

if and only if ∀ λ ∈ Σ
(

1
2
(H +HT )

)
λ ≥ 0.



Chapter 1

Optimality Conditions:
Unconstrained Optimization

1.1 Differentiable Problems

Consider the problem of minimizing the function f : Rn → R where f is twice continuously
differentiable on Rn:

P minimize f(x)
x ∈ Rn

We wish to obtain constructible first– and second–order necessary and sufficient conditions
for optimality. Recall the following elementary results.

Theorem 1.1.1 [First– Order Necessary Conditions for Optimality]
Let f : Rn → R be differentiable at a point x ∈ Rn. If x is a local solution to the problem P,
then ∇f(x) = 0.

Proof: From the definition of the derivative we have that

f(x) = f(x) +∇f(x)T (x− x) + o(‖x− x‖)

where lim
x→x

o(‖x− x‖)
‖x− x‖

= 0. Let x := x− t∇f(x). Then

0 ≤ f(x− t∇f(x))− f(x)

t
= −‖∇f(x)‖2 +

o(t‖∇f(x)‖)
t

.

Taking the limit as t ↓ 0 we obtain

0 ≤ −‖∇f(x)‖2 ≤ 0.

Hence ∇f(x) = 0. �

13
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Theorem 1.1.2 [Second–Order Optimality Conditions]
Let f : Rn → R be twice differentiable at the point x ∈ Rn.

1. (necessity) If x is a local solution to the problem P, then ∇f(x) = 0 and ∇2f(x) is
positive semi-definite.

2. (sufficiency) If ∇f(x) = 0 and ∇2f(x) is positive definite, then there is an α > 0 such
that f(x) ≥ f(x) + α‖x− x‖2 for all x near x.

Proof:

1. We make use of the second–order Taylor series expansion

f(x) = f(x) +∇f(x)T (x− x) +
1

2
(x− x)T∇2f(x)(x− x) + o(‖x− x‖2) .(1.1.1)

Given d ∈ Rn and t > 0 set x := x+ td, plugging this into (1.1.1) we find that

0 ≤ f(x+ td)− f(x)

t2
=

1

2
dT∇2f(x)d+

o(t2)

t2

since ∇f(x) = 0 by Theorem 1.1.1. Taking the limit as t→ 0 we get that

0 ≤ dT∇2f(x)d.

Now since d was chosen arbitrarily we have that ∇2f(x) is positive semi-definite.

2. From (1.1.1) we have that

f(x)− f(x)

‖x− x‖2
=

1

2

(x− x)T

‖x− x‖
∇2f(x)

(x− x)

‖x− x‖
+
o(‖x− x‖2)

‖x− x‖2
.(1.1.2)

If λ > 0 is the smallest eigenvalue of ∇2f(x), choose ε > 0 so that∣∣∣∣∣o(‖x− x‖2)

‖x− x‖2

∣∣∣∣∣ ≤ λ

4
(1.1.3)

whenever ‖x− x‖ < ε. Then for all ‖x− x‖ < ε we have from (1.1.2) and (1.1.3) that

f(x)−f(x)
‖x−x‖2 ≥ 1

2
λ+ 0(‖x−x‖2)

‖x−x‖2

≥ 1
4
λ.

Consequently, if we set α = 1
4
λ, then

f(x) ≥ f(x) + α‖x− x‖2

whenever ‖x− x‖ < ε.

�
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1.2 Convex Problems

Observe that Theorem 1.1.1 establishes first–order necessary conditions while Theorem 1.1.2
establishes both second–order necessary and sufficient conditions. What about first–order
sufficiency conditions? For this we introduce the following definitions.

Definition 1.2.1 [Convex Sets and Functions]

1. A subset C ⊂ Rn is said to be convex is for every pair of points x and y taken from C,
the entire line segment connecting x and y is also contained in C, i.e.,

[x, y] ⊂ C where [x, y] = {(1− λ)x+ λy : 0 ≤ λ ≤ 1} .

2. A function f : Rn → R ∪ {±∞} is said to be convex if the set

epi (f) = {(µ, x) : f(x) ≤ µ}

is a convex subset of R1+n. In this context, we also define the set

dom (f) = {x ∈ Rn : f(x) < +∞}

to be the essential domain of f .

Lemma 1.2.1 The function f : Rn → R is convex if and only if for every two points
x1, x2 ∈ dom (f) and λ ∈ [0, 1] we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

That is, the secant line connecting (x1, f(x1)) and (x2, f(x2)) lies above the graph of f .

Example: The following functions are examples of convex functions: cTx, ‖x‖, ex, x2

The significance of convexity in optimization theory is illustrated in the following result.
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Theorem 1.2.1 Let f : Rn → R ∪ {±∞} be convex. If x ∈ dom (f) is a local solution to
the problem P, then x is a global solution to the problem P.

Proof: If f(x̄) = −∞ we are done, so let us assume that −∞ < f(x̄). Suppose there is
a x̂ ∈ Rn with f(x̂) < f(x). Let ε > 0 be such that f(x) ≤ f(x) whenever ‖x − x‖ ≤ ε.
Set λ := ε(2‖x − x̂‖)−1 and xλ := x + λ(x̂ − x). Then ‖xλ − x‖ ≤ ε/2 and f(xλ) ≤
(1− λ)f(x) + λf(x̂) < f(x). This contradicts the choice of ε, hence no such x̂ exists. �

If f is a differentiable convex function, then a better result can be established. In order
to obtain this result we need the following lemma.

Lemma 1.2.2 Let f : Rn → R ∪ {+∞} be convex.

1. Given x ∈ dom (f) and d ∈ Rn the difference quotient

f(x+ td)− f(x)

t
(1.2.4)

is a non-decreasing function of t on (0,+∞).

2. For every x ∈ dom (f) and d ∈ Rn the directional derivative f ′(x; d) always exists and
is given by

f ′(x; d) := inf
t>0

f(x+ td)− f(x)

t
.(1.2.5)

3. For every x ∈ dom (f), the function f ′(x; ·) is sublinear, i.e. f ′(x; ·) is positively
homogeneous,

f ′(x;αd) = αf ′(x; d) ∀ d ∈ Rn, 0 ≤ α,

and subadditive,
f ′(x;u+ v) ≤ f ′(x;u) + f ′(x; v).

Proof: We assume (1.2.4) is true and show (1.2.5). If x+ td /∈ dom (f) for all t > 0, then
the result obviously true. Therefore, we may as well assume that there is a t̄ > 0 such that
x+ td ∈ dom (f) for all t ∈ (0, t̄]. Recall that

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.(1.2.6)

Now if the difference quotient (1.2.4) is non-decreasing in t on (0,+∞), then the limit in
(1.2.6) is necessarily given by the infimum in (1.2.5). This infimum always exists and so
f ′(x; d) always exists and is given by (1.2.5).

We now prove (1.2.4). Let x ∈ dom (f) and d ∈ Rn. If x + td /∈ dom (f) for all t > 0,
then the result is obviously true. Thus, we may assume that

0 < t̄ = sup{t : x+ td ∈ dom (f)}.
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Let 0 < t1 < t2 < t̄ (we allow the possibility that t2 = t̄ if t̄ < +∞). Then

f(x+ t1d) = f
(
x+

(
t1
t2

)
t2d
)

= f
[(

1−
(
t1
t2

))
x+

(
t1
t2

)
(x+ t2d)

]
≤

(
1− t1

t2

)
f(x) +

(
t1
t2

)
f(x+ t2d).

Hence
f(x+ t1d)− f(x)

t1
≤ f(x+ t2d)− f(x)

t2
.

We now show Part 3 of this result. To see that f ′(x; ·) is positively homogeneous let
d ∈ Rn and α > 0 and note that

f ′(x;αd) = α lim
t↓0

f(x+ (tα)d)− f(x)

(tα)
= αf ′(x; d).

To see that f ′(x; ·) is subadditive let u, v ∈ Rn, then

f ′(x;u+ v) = lim
t↓0

f(x+ t(u+ v))− f(x)

t

= lim
t↓0

f(x+ t
2
(u+ v))− f(x)

t/2

= lim
t↓0

2
f(1

2
(x+ tu) + 1

2
(x+ tv))− f(x)

t

≤ lim
t↓0

2
1
2
f(x+ tu) + 1

2
f(x+ tv)− f(x)

t

= lim
t↓0

f(x+ tu)− f(x)

t
+
f(x+ tv)− f(x)

t
= f ′(x;u) + f(x; v) .

�

From Lemma 1.2.2 we immediately obtain the following result.

Theorem 1.2.2 Let f : Rn → R ∪ {+∞} be convex and suppose that x ∈ Rn is a point
at which f is differentiable. Then x is a global solution to the problem P if and only if
∇f(x) = 0.

Proof: If x is a global solution to the problem P , then, in particular, x is a local solution
to the problem P and so ∇f(x) = 0 by Theorem 1.1.1. Conversely, if ∇f(x) = 0, then, by
setting t := 1, x := x, and d := y − x in (1.2.5), we get that

0 ≤ f(y)− f(x),

or f(x) ≤ f(y). Since y was chosen arbitrarily, the result follows. �
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As Theorems 1.2.1 and 1.2.2 demonstrate, convex functions are very nice functions indeed.
This is especially so with regard to optimization theory. Thus, it is important that we be
able to recognize when a function is convex. For this reason we give the following result.

Theorem 1.2.3 Let f : Rn → R.

1. If f is differentiable on Rn, then the following statements are equivalent:

(a) f is convex,

(b) f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn

(c) (∇f(x)−∇f(y))T (x− y) ≥ 0 for all x, y ∈ Rn.

2. If f is twice differentiable then f is convex if and only if f is positive semi-definite for
all x ∈ Rn.

Proof: (a) ⇒ (b) If f is convex, then 1.2.3 holds. By setting t := 1 and d := y − x we
obtain (b).

(b) ⇒ (c) Let x, y ∈ Rn. From (b) we have

f(y) ≥ f(x) +∇f(x)T (y − x)

and
f(x) ≥ f(y) +∇f(y)T (x− y).

By adding these two inequalities we obtain (c).

(c) ⇒ (b) Let x, y ∈ Rn. By the mean value theorem there exists 0 < λ < 1 such
that

f(y)− f(x) = ∇f(xλ)
T (y − x)

where xλ := λy + (1− λ)x. By hypothesis,

0 ≤ [∇f(xλ)−∇f(x)]T (xλ − x)
= λ[∇f(xλ)−∇f(x)]T (y − x)
= λ[f(y)− f(x)−∇f(x)T (y − x)].

Hence f(y) ≥ f(x) +∇f(x)T (y − x).

(b) ⇒ (a) Let x, y ∈ Rn and set

α := max
λ∈[0,1]

ϕ(λ) := [f(λy + (1− λ)x)− (λf(y) + (1− λ)f(x))].

We need to show that α ≤ 0. Since [0, 1] is compact and ϕ is continuous, there is a
λ ∈ [0, 1] such that ϕ(λ) = α. If λ equals zero or one, we are done. Hence we may as
well assume that 0 < λ < 1 in which case

0 = ϕ′(λ) = ∇f(xλ)
T (y − x) + f(x)− f(y)
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where xλ = x+ λ(y − x), or equivalently

λf(y) = λf(x)−∇f(xλ)
T (x− xλ).

But then
α = f(xλ)− (f(x) + λ(f(y)− f(x)))

= f(xλ) +∇f(xλ)
T (x− xλ)− f(x)

≤ 0

by (b).

2) Suppose f is convex and let x, d ∈ Rn, then by (b) of Part (1),

f(x+ td) ≥ f(x) + t∇f(x)Td

for all t ∈ R. Replacing the left hand side of this inequality with its second–order
Taylor expansion yields the inequality

f(x) + t∇f(x)Td+
t2

2
dT∇2f(x)d+ o(t2) ≥ f(x) + t∇f(x)Td

or equivalently
1

2
dt∇2f(x)d+

o(t2)

t2
≥ 0.

Letting t→ 0 yields the inequality

dT∇2f(x)d ≥ 0.

Since d was arbitrary, ∇2f(x) is positive semi-definite.

Conversely, if x, y ∈ Rn, then by the mean value theorem there is a λ ∈ (0, 1) such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(xλ)(y − x)

where xλ = λy + (1− λ)x. Hence

f(y) ≥ f(x) +∇f(x)T (y − x)

since ∇2f(xλ) is positive semi-definite. Therefore, f is convex by (b) of Part (1).

�

We have established that f ′(x; d) exists for all x ∈ dom (f) and d ∈ Rn, but we have not
yet discussed to continuity properties of f . We give a partial result in this direction in the
next lemma.

Lemma 1.2.3 Let f : Rn → R ∪ {+∞} be convex. Then f if bounded in a neighborhood of
a point x̄ if and only if f is Lipschitz in a neighborhood of x̄.
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Proof: If f is Lipschitz in a neighborhood of x̄, then f is clearly bounded above in a neigh-
borhood of x̄. Therefore, we assume local boundedness and establish Lipschitz continuity.

Let ε > 0 and M > 0 be such that |f(x)| ≤ M for all x ∈ x̄ + 2εB. Set g(x) =
f(x + x̄) − f(x̄). It is sufficient to show that g is Lipschitz on εB. First note that for all
x ∈ 2εB

0 = g(0) = g(
1

2
x+

1

2
(−x)) ≤ 1

2
g(x) +

1

2
g(−x),

and so −g(x) ≤ g(−x) for all x ∈ 2εB. Next, let x, y ∈ εB with x 6= y and set α = ‖x− y‖.
Then w = y + εα−1(y − x) ∈ 2εB, and so

g(y) = g

(
1

1 + ε−1α
x+

ε−1α

1 + ε−1α
w

)
≤ 1

1 + ε−1α
g(x) +

ε−1α

1 + ε−1α
g(w).

Consequently,

g(y)− g(x) ≤ ε−1α

1 + ε−1α
(g(w)− g(x)) ≤ 2Mε−1α = 2Mε−1‖x− y‖.

Since this inequality is symmetric in x and y, we obtain the result. �

1.3 Convex Composite Problems

Convex composite optimization is concerned with the minimization of functions of the form
f(x) := h(F (x)) where h : Rm → R∪{+∞} is a proper convex function and F : Rn → Rn is
continuously differentiable. Most problems from nonlinear programming can be cast in this
framework.

Examples:

(1) Let F : Rn → Rm where m > n, and consider the equation F (x) = 0. Since m > n
it is highly unlikely that a solution to this equation exists. However, one might try
to obtain a best approximate solution by solving the problem min{‖F (x)‖ : x ∈ Rn}.
This is a convex composite optimization problem since the norm is a convex function.

(2) Again let F : Rn → Rm where m > n, and consider the inclusion F (x) ∈ C, where
C ⊂ Rn is a non-empty closed convex set. One can pose this inclusion as the optimiza-
tion problem min{dist(F (x)|C) : x ∈ Rn}. This is a convex composite optimization
problem since the distance function

dist(y | C) := inf
z∈C
‖y − z‖

is a convex function.
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(3) Let F : Rn → Rm, C ⊂ Rn a non-empty closed convex set, and f0 : Rn → R,
and consider the constrained optimization problem min{f0(x) : F (x) ∈ C}. One can
approximate this problem by the unconstrained optimization problem

min{f0(x) + αdist(f(x)|C) : x ∈ Rn}.

This is a convex composite optimization problem where h(η, y) = η + αdist(y|C) is a
convex function. The function f0(x)+αdist(f(x)|C) is called an exact penalty function
for the problem min{f0(x) : F (x) ∈ C}. We will review the theory of such functions
in a later section.

Most of the first-order theory for convex composite functions is easily derived from the
observation that

f(y) = h(F (y)) = h(F (x) + F ′(x)(y − x)) + o(‖y − x‖).(1.3.7)

This local representation for f is a direct consequence of h being locally Lipschitz:

|h(F (y)) − h(F (x) + F ′(x)(y − x))|
≤ K‖y − x‖

∫ 1
0 ‖F ′(x+ t(y − x))− F ′(x)‖dt

for some K ≥ 0. Equation (1) can be written equivalently as

h(F (x+ d)) = h(F (x)) + ∆f(x; d) + o(‖d‖)(1.3.8)

where
∆f(x; d) := h(F (x) + F ′(x)d)− h(F (x)).

From 1.3.8, one immediately obtains the following result.

Lemma 1.3.1 Let h : Rn → R be convex and let F : Rn → Rm be continuously differentiable.
Then the function f = h ◦ F is everywhere directional differentiable and one has

f ′(x; d) = h′(F (x);F ′(x)d)

= infλ>0
∆f(x;λd)

λ
.

(1.3.9)

This result yields the following optimality condition for convex composite optimization
problems.

Theorem 1.3.1 Let h : Rm → R be convex and F : Rn → Rm be continuously differentiable.
If x̄ is a local solution to the problem min{h(F (x))}, then d = 0 is a global solution to the
problem

min
d∈Rn

h(F (x̄) + F ′(x̄)d).(1.3.10)

There are various ways to test condition 1.3.8. A few of these are given below.
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Lemma 1.3.2 Let h and F be as in Theorem 1.3.1. The following conditions are equivalent

(a) d = 0 is a global solution to 1.3.10.

(b) 0 ≤ h′(F (x);F ′(x)d) for all d ∈ Rn.

(c) 0 ≤ ∆f(x; d) for all d ∈ Rn.

Proof:The equivalence of (a) and (b) follows immediately from convexity. Indeed, this
equivalence is the heart of the proof of Theorem 1.3.1. The equivalence of (b) and (c) is an
immediate consequence of 1.3.2. �

In the sequel, we say that x ∈ Rn satisfies the first-order condition for optimality for the
convex composite optimization problem if it satisfies any of the three conditions (a)–(c) of
Lemma 1.3.2.

1.3.1 A Note on Directional Derivatives

Recall that if f : Rn → R is differentiable, then the function f ′(x; d) is linear in d:

f ′(x;αd1 + βd2) = αf ′(x; d1) + βf ′(x; d2) .

If f is only assumed to be convex and not necessarily differentiable, then f ′(x; ·) is sublinear
and hence convex. Finally, if f = h ◦ F is convex composite with h : Rm → R convex and
F : Rn → Rm continuously differentiable, then, by Lemma (1.3.1), f ′(x; ·) is also sublinear
and hence convex. Moreover, the approximate directional derivative ∆f(x; d) satisfies

λ−1
1 ∆f(x;λ1d) ≤ λ−1

2 ∆f(x;λ2d) for 0 < λ1 ≤ λ2,

by the non–decreasing nature of the difference quotients. Thus, in particular,

∆f(x;λd) ≤ λ∆f(x; d) for all λ ∈ [0, 1].



Chapter 2

Basic Convergence Theory

2.1 Global Theory

2.1.1 Line–Search Methods

In this section we consider the problem of minimizing a function f : Rn → R. In particular,
we are interested in iterative schemes of the form

xk+1 := xk + λkdk,

where it is intended that f(xk+1) < f(xk). Such methods are called descent methods. The
scalar λk is called the step length and the vector dk is called the search direction. It is easily
seen from the definition of the directional derivative that

{d : f ′(x; d) < 0} ⊂ {d : ∃ λ̄ > 0, s.t. f(x+ λd) < f(x) ∀λ ∈ (0, λ̄)}.

Thus one way to implement a descent method is to choose the search direction from the set
{d : f ′(x0; d) < 0}. For example, one could take dk as the solution to the problem

min{f ′(xk; d) : ‖d‖ = 1}.(2.1.1)

The search direction dk obtained in this way is called the direction of steepest descent, or the
Cauchy direction. If f is differentiable at xk and ∇f(xk) 6= 0, then the solution to (2.1.1) is

dk := −∇f(xk)‖∇f(xk)‖−1.(2.1.2)

The Cauchy direction is only one of many choices that we will consider. The common
feature in all of these methods is that

f ′(xk; dk) < 0(2.1.3)

unless ∇f(xk) = 0. In this regard, we have the following general convergence result.

23
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Theorem 2.1.1 (Differentiable Objective) Let f : Rn → R and x0 ∈ Rn be such that
f is differentiable on Rn with f ′ uniformly continuous on co{x : f(x) ≤ f(x0)}. Consider
the following algorithm.

Choose γ ∈ (0, 1), c ∈ (0, 1). Having xk determine xk+1 as follows:

1. Let Dk be a subset of {d : f ′(xk : d) < 0}. If Dk = ∅ stop; otherwise choose dk ∈ Dk.

2. Set
λk := max γs

subject to s ∈ N := {0, 1, 2, . . .}
f(xk + γsdk)− f(xk) ≤ cγsf ′(xk; dk).

(2.1.4)

3. Set xk+1 := xk + λkdk.

If {xk} is the sequence generated by the algorithm, then one of the following must occur:

(i) There is a k0 such that Dk0 = ∅;

(ii) f(xk) ↓ −∞;

(iii) The sequence {‖dk‖} diverges to +∞;

(iv) For every subsequence J ⊂ N for which {dk}J is bounded, we have that limJ f
′(xk; dk) =

0.

Remarks

1. The set Dk is introduced at each interation to represent general termination criteria.
We do not specify these criteria at this time as they will depend on the specific type
of problem under consideration.

2. If (ii) occurs, then the end result of the iteration is considered to be successful.

3. Depending on the structure of Dk, it is possible to prevent (iii) from occurring. For
example, one could take

Dk :=
{
−∇f(xk)/‖∇f(x0)‖, if ∇f(xk) 6= 0;
∅ otherwise.

in which case {dk} is bounded so that f ′(xk; dk)→ 0.

4. Since c ∈ (0, 1), the process of determining λk in (2.1.4) is finite. In order to see this
simply divide the inequality in (2.1.4) by γs to obtain

f(xk) + γsdn)− f(xk)

γs
≤ cf ′(xk; dk).(2.1.5)

Since the left hand side of this inequality converges to f ′(xk; dk) as s → ∞ and
f ′(xi; dk) < 0, inequality (2.1.5) is valid for all s sufficiently large.
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5. One should think of (iv) as a limiting stationarity condition. For example, if Dk is as
given in remark (3) above then

f ′(xk; dk) = −‖∇f(xk)‖.

Hence (iv) implies that ‖∇f(xk)‖ → 0.

Proof: We will assume that none of the conclusions (i)–(iv) occur and establish a contra-
diction. Since (iii) and (iv) do not occur, there is a subsequence J ⊂ N and a vector d ∈ Rn

with dk
J→ d and supJ f

′(xk; dk) < β < 0. Moreover, as (ii) does not occur, f(xk) ↓ f ∗ ∈ R,
and so (f(xk+1)− f(xk))→ 0. Step 2 of the algorithm now implies that

λkf
′(xk; dk)→ 0.

Therefore λ
J→ 0, and so with no loss of generality, λk < 1 for all k ∈ J . Hence

cλkγ
−1f ′(xk; dk) < f(xk + λkγ

−1dk)− f(xk),(2.1.6)

for all k ∈ J . Now, since f ′ is uniformly continuous on co{x : f(x) ≤ f(x0)} we have that

f(xk + λkγ
−1dk)− f(xk) ≤ γ−1λk[f

′(xk; dk) + ω(γ−1λk‖dk‖)],(2.1.7)

where ω is the modulus of continuity for f ′. Inequalities (2.1.6) and (2.1.7) yield the in-
equality

0 < (1− c)β + ω(γ−1λk‖dk‖).

Taking the limit over k ∈ J , we have that γ−1λk‖dk‖ → 0 and so

ω(γ−1λk‖dk‖)→ 0.

This yields the contradiction
0 < (1− c)β < 0.

�

This convergence result will be refered to repreatedly throughout the course. It allows us
to dispense with discussions of the global behavior for various algorithms very quickly. For
example, we have the following result.

Corollary 2.1.1.1 Let f and {xk} be as in Theorem 2.1.1 and suppose that

1. f is bounded below, and

2. Dk :=
{
−∇f(xk)/‖∇f(xk)‖ if ∇f(xk) 6= ∅
0 else.

Then ‖∇f(xk)‖ → 0.
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Proof: Since {dk} is bounded and f is bounded below neither (ii) or (iii) of Theorem 2.1.1
can occur. If (i) occurs, then ∇f(xk0) = 0; otherwise (iv) occurs in which case

−‖∇f(xk)‖ = f ′(xk; dk)→ 0.

�

Observe that Theorem 2.1.1 says nothing about the convergence of the sequence {xk}.
Indeed, the sequence {xk} may diverge, e.g. f(x) = ex. But if {xk} has a cluster point x,

then we know that f ′(xk; dk)
J→ f ′(x; d) = 0. Hence, depending on the limit d, stationarity

criteria for x can be obtained via the theorem.
We now establish a similar global convergence result for the problem of convex composite

optimization.

Theorem 2.1.2 (Convex Composite Objective) Let f : Rn → R be given by f(x) =
h(F (x)) where h : Rm → R is convex and F : Rn → Rm is differentiable. Let x0 ∈ Rn and
assume that

(a) h is Lipschitz continuous on the set {y : h(y) ≤ h(F (x0))}, and

(b) F ′ is uniformly continuous on the set co{x : h(F (x)) ≤ h(F (x0))}.

Consider the following algorithm:
Choose γ ∈ (0, 1) and c ∈ (0, 1). Having xk determine xk+1 as follows:

1) Let Dk be a subset of {d : ∆f(xk; d) < 0} where ∆f(x; d) := h(F (x)+F ′(x)d)−h(F (x)).
If Dk = ∅ stop; otherwise choose dk ∈ Dk.

2) Set λk := max γs

subject to s ∈ {0, 1, 2, . . .} and
h(F (x+ γsd)) ≤ h(F (x)) + cγs∆f(xkdk).

3) Set xk+1 := xk + λkdk

If {xk} is the sequence generated by the algorithm initiated at x0, then one of the following
must occur:

(i) There is a k0 such that Dk0 = ∅;

(ii) f(xn) ↓ −∞

(iii) The sequence {‖dk‖} diverges to +∞;

(iv) For every subsequence J ⊂ N for which {dk}J is bounded, we have

lim
J

∆f(xk; dk) = 0.
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Proof: Suppose to the contrary that none of (i) – (iv) occur. Then there is a subsequence
J ⊂ N such that {dj}J is bounded and there is a β > 0 with

sup
J

∆f(xj; dj) ≤ −β < 0.

Now {f(xj)} is a decreasing sequence that is bounded below, hence f(xj) → f ∗ for some
f ∗ ∈ R. Consequently, (f(xj+1)− f(xj))→ 0. The choice of λk implies that λj∆f(xj; dj)→
0. Therefore, λj

J→ 0 so with no loss in generality we assume that λj < 1 for all j ∈ J . Again,
the choice of λj implies that

cλjγ
−1∆f(xj; dj) ≤ f(xj + λjγ

−1dj)− f(xj)

for all j ∈ J . But,

f(xj + λjγ
−1dj)− f(xj)

≤ λjγ
−1∆f(xj; dj) +K‖F (xj + λjγ

−1dj)− (F (xj) + λjγ
−1F ′(xj)dj)‖

≤ λjγ
−1∆f(xj; dj) +Kλjγ

−1‖dj‖
∫ 1
0 ‖F ′(xj + τγ−1λjdj)− F ′(xj)‖dτ

≤ λjγ
−1{∆f(xj; dj) +K‖dj‖ω(γ−1λj‖dj‖)]

for all j ∈ J , where K is a Lipschitz constant for h and ω is the modulus of continuity for
F ′. Therefore,

0 < (1− c)∆f(xj; dj) +Kω(λjγ
−1‖dj‖)‖dj‖

≤ (c− 1)β +Kω(λjγ
−1‖dj‖)‖dj‖

for all j ∈ J . Letting j ∈ J go to ∞, we obtain the contradiction

0 ≤ (c− 1)β < 0.

�

It should be noted that the line search procedure in Step (2) of the algorithm is finitely
terminating since f ′(x; d) ≤ ∆f(x; d). As an illustration of how the above result can be used
we consider an instance of the choice of set Dk that corresponds to steepest descent in the
differentiable case if h is the identity map on R.

Corollary 2.1.2.1 Let f and {xk} be as in the statement of Theorem 2.1.2 and suppose
that

(a) f is bounded below, and

(b) Dk := arg min{h(F (xk) + F ′(xk)dk) : ‖dk‖ ≤ 1}.

Then every cluster, x, point of the sequence {xj} satisfies

f ′(x; d) ≥ 0 ∀ d ∈ Rn,

i.e., x satisfies first–order optimality conditions for the convex composite optimization prob-
lem.
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Proof: First note that Theorem (2.1.2) indicates that

∆f(xj; dj)→ 0.

If J ⊂ N is such that xj
J→x we can always refine J if necessary to get that dj

J→ d for some
d with ‖d‖ ≤ 1. But then

∆f(x; d) = 0

or

h(F (x) + F ′(x)d) = h(F (x)).

Further note that for all d ∈ B

h(F (xj) + F ′(xj)dj) ≤ h(F (xj) + F ′(xj)d).

Hence, in the limit over J

h(F (x) + F ′(x)d) ≤ h(F (x) + F ′(x)d).

Consequently, d ∈ arg min{h(F (x) + F ′(x)d) : ‖d‖ ≤ 1}. But h(F (x)) = h(F (x) + F ′(x)d)
so that 0 ∈ arg min{h(F (x) + F ′(x)d) : ‖d‖ ≤ 1} as well. Therefore d = 0 is a local solution
to the problem min{h(F (x) +F ′(x)d)}. As the function h(F (x) +F ′(x)d) is convex in d, we
have that d = 0 is actually a global minimum so that

f ′(x; d) ≥ 0 ∀ d ∈ Rn

by Lemma 3. �

2.1.2 Trust–Region Methods

We again consider the problem of minimizing a function f : Rn → R, but this time we
require that a step-size of 1 must be taken at each iteration. In order to guarantee that the
method is a descent method we take greater care in the selection of the search direction or
step. In this context we label the search direction sk to emphasize that it is the step to the
new point and not just a direction to search along. The direction finding subproblem takes
the form

P(x, δ) : min
‖s‖≤δ

φ(x; s)

where φ(x; s) = f(x) + ∇f(x)T s + 1
2
sTHs is a quadratic approximation to the function f

at x. For obvious reasons, a good choice for H is ∇2f(x). The parameter δ is called the
trust-region radius. At a given point x we require the step s to be an approximate solution
to P(x, δ). More specifically we make the following assumption.
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Basic Assumption on the Trust-Region Step

For all ε > 0 there exist constants κ1, κ2 > 0 such that

∇f(xk)
T sk +

1

2
sTkHksk ≤ −κ1 min{κ2, δk}

whenever ε < ‖∇f(xk)‖o.

This assumption guarentees that the step sk must be at least as effective as a step optained
by taking Hk = 0. In order to illustrate this comment and to show that this assumption can
be satisfied for some choice of sk, we give the following lemma.

Lemma 2.1.1 Let Hk ∈ Rn×n. If ŝk sovles min{∇f(xk)
T sk : ‖sk‖ ≤ δk}, then there exists

t̂ ∈ (0, 1] such that

t∇f(xk)
T ŝk +

t̂2

2
ŝTkHkŝk ≤ −

1

2
‖∇f(xk)‖o min

{
‖∇f(xk)‖o
σ2‖Hk‖2

, δk

}

where σ > 0 is such that ‖s‖ ≤ σ‖s‖2.

Proof: ŝk solves min{∇f(xk)
T s : ‖s‖ ≤ δk} if and only if ∇f(xk)

T ŝk = −δk‖∇f(xk)‖o.
Next note that

t∇f(xk)
T ŝk + t2

2
ŝTkHkŝk ≤ t∇f(xk)

T ŝk + t2

2
(σ2δ2

k)‖Hk‖2

=: αt+ β
2
t2

with α < 0 and β > 0. One directly verifies that

min

{
−α
β
, 1

}
= arg min

[0,1]
{αt+

β

2
t2}.

Case 1:
(
−α
β
≤ 1

)
. Then set t̂ = −α

β
to get

t̂∇f(xk)
T ŝk +

t̂2

2
ŝTkHkŝk ≤

1

2
∇f(xk)

T ŝk
|∇f(xk)

T ŝk|
σ2δ2

k‖Hk‖2

.

Case 2:
(
1 < −α

β

)
. Then set t̂ = 1 to get

t̂∇f(x2)T ŝk + t̂2

2
ŝkHkŝk ≤ ∇f(xk)

T ŝk + 1
2
σ2δ2

k · ‖Hk‖2

≤ 1
2
∇f(xk)

T ŝk.

In either case we obtain

t̂∇f(xk)
T ŝk +

t̂2

2
ŝTkHkŝk ≤

1

2
∇f(xk)

T ŝk min

{
1,
|∇f(xk)

T sk|
σ2δ2

k‖Hk‖2

}
.
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Now, by employing the relation

∇f(xk)
T ŝk = −δk‖∇f(xk)‖o

we obtain

t̂∇f(xk)
T ŝk + t̂2

2
ŝTkHkŝk ≤ −1

2
δk‖∇f(xk)‖o min

{
1, δk‖∇f(xk)‖o

σ2δ2
k
‖Hk‖2

}
= −1

2
‖∇f(xk)‖o min

{
δk,
‖∇f(xk)‖o
σ2‖Hk‖2

}
�

Before proceeding to the main result, we need the following technical lemma.

Lemma 2.1.2 Let H ∈ Rn×n 0 < β1 ≤ β2 < 1 and α, κ1, κ2 > 0. Choose δ > 0 so that

κ1(1− β2) min{κ2, δ} ≥ δωs(δ) +
1

2
σ2δ2‖H‖2

for all δ ∈ [0, δ], where σ > 0 satisfies ‖z‖ ≤ σ‖z‖2 and

ωx(δ) = max{‖∇f(x)−∇f(y)‖o : y ∈ x+ δB}.

Thus for every δ ∈ [0, δ] and s ∈ δB for which

∇f(x)T s+
1

2
sTHs ≤ −κ1 min{κ2, δ}

one has

f(x+ s)− f(x) ≤ β1[∇f(x)T s+
1

2
sTHs].

Proof:

f(x+ s)− f(x) ≤ ∇f(x)T s+ |f(x+ s)− (f(x) +∇f(x)T s)|
≤ ∇f(x)T s+ ‖s‖ωx(‖s‖)
≤ ∇f(x)T s+ 1

2
sTHs+ δωx(δ) + 1

2
σ2δ2‖H‖2

≤ ∇f(x)T s+ 1
2
sTHs+ κ1(1− β1) min{κ2, δ}

≤ ∇f(x)T s+ 1
2
sTHs− (1− β1)[∇f(x)T s+ 1

2
sTHs]

= β1[∇f(x)T s+ 1
2
sTHs]

.

�

Theorem 2.1.3 Let f : Rn → R be differentiable and let x0 ∈ Rn be such that ∇f is
uniformly continuous on the set c̄o{x : f(x) ≤ f(x0)}.
Consider the following algorithm:
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Initialization: Choose H0 ∈ Rn×n, δ0 > 0,

0 < γ1 ≤ γ2 < 1 ≤ γ3, 0 < β1 ≤ β2 < β3 ≤ 1.

Having xk obtain xk+1 as follows.

Step 1: Choose sk ∈ Dk ⊂ {s : ‖s‖ ≤ δk, ∇f(xk)
T s+ 1

2
sTHks < 0}. If Dk = ∅ then stop.

Step 2: Set rk = f(xk+sk)−f(xk)

∇f(xk)T sk+ 1
2
sT
k
Hksk

If rk > β3 choose δk+1 ∈ [δk, γ3δk].

If β2 ≤ rk ≤ β3, set δk+1 = δk.

If rk < β2, choose δk+1 ∈ [γ1δk, γ2δk].

Step 3: If rk < β1, set xk+1 = xk, Hk+1 = Hk; otherwise, set xk+1 = xk + sk and choose
Hk+1 ∈ Rn×n.

If the sequence {Hk} is bounded and the basic trust-region assumption is satisfied, then at
least one of the following must occur:

(1) Dk = ∅ for some k.

(2) f(xk)↘ −∞

(3) ‖∇f(xk)‖o → 0

Proof: We assume that none of (1)–(3) occur and derive a contradiction.
The sequence {xk} is infinite and

2ζ < ‖∇f(xk)‖o k ∈ J(A)

for some ζ > 0 and subsequence J ⊂ N.
Thus, by the basic assumption there are constants κ1 and κ2 > 0 such that

∇f(xk)
T sk +

1

2
sTkHksk ≤ −κ1 min{κ2, δk}(B)

whenever ‖∇f(xk)‖o > ζ. In particular, (B) holds ∀ k ∈ J . The technical lemma and the
uniform continuity of ∇f yield the existence of a δ̂ such that

rk ≥ β1 and xk+1 = xk + sk(C)

whenever δk ≤ δ̂. We now show that f(xk) ↓ −∞ to establish the contradiction:
Suppose there is a subsequence Ĵ ⊂ J such that

inf{δk : k ∈ Ĵ} > ξ > 0.(D)
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Then for each k ∈ Ĵ let σ(k) be the first integer greater than or equal to k for which

xσ(k)+1 = xσ(k) + sσ(k)

and consider the subsequence
Ĵσ := {σ(k) : k ∈ Ĵ}.

Observe that for each k ∈ Ĵσ we have

δk ≥ min{γ1δ̂, γ1ξ}. ( by (C))

Consequently, we have from (B) that for each k ∈ Ĵσ

f(xk+1) ≤ f(xk)− κ1β1 min{κ2, γ1δ̂, γ1ξ}.

But then f(xk) ↓ −∞ which is a contradiction. Therefore, we can assume that δk ≤ δ̂
∀ k ∈ J and lim

J
δk = 0.

We obtain from the uniform continuity of ∇f the existence of an ε > 0 such that

| ‖∇f(xi)‖o − ‖∇f(xj)‖o| < ζ(E)

whenever ‖xi− xj‖ < ε i, j ∈ N. Given k ∈ J , let v(k) be the first integer greater than k for
which one of

‖xv(k) − xk‖ ≤ ε(F)

and
δv(k) ≤ δ̂(G)

is violated. Let us first show that v(k) is well-defined and finite. Indeed, if ‖xj − xk‖ ≤ ε

∀ j ≥ k and δj ≤ δ̂ ∀ j ≥ k, then, by (A) and (E)

‖∇f(xj)‖o > ζ > 0 ∀ j ≥ k.

Therefore, (B) and (C) hold for all j ≥ k. Now take β1 = β2 = β2 in the technical lemma to
obtain the existence of a 0 < δ̃ < δ̂ such that

rk ≥ β2 whenever δk < δ̃.

Hence
f(xj+1) ≤ f(xj)− κ1 min{κ2, γ1δ̃}

for all j ≥ k, so f(xk) ↓ −∞. This contradiction implies that v(k) is well defined and finite
for all k ∈ J .

Let k ∈ J and consider v(k). If (F) is violated, then by (A)–(E)–(B)

f(xl+1) ≤ f(xl)− κ1β1 min{x2, δl}



2.2. LOCAL THEORY 33

and

δl ≤ δl+1

for l = k, . . . , v(k)− 1. Hence

f(xv(k)) ≤ f(xk)− κ1β1 min{κ2, ε}(H)

since
v(k)∑
l=k

δk ≥ ‖xv(k) − xk‖ ≥ ε.

If (G) is violated, then

f(xv(k)) ≤ f(xk)− κ1β1 min{κ2, γ
−1
3 δ̂}.

In either case,

f(xv(k)) ≤ f(xk)− κ1β1 min{κ2, ε, γ
−1
3 δ̂}

so that f(xk)↘ −∞. This contradiction establishes the result. �

A similar result holds for convex composite objective functions f(x) = h(F (x)). However,
in this context we take

φ(x; s) = h(F (x) + F ′(x)s) +
1

3
sTHs

and take

Dk ⊂ {s : ‖s‖ ≤ δk, ∆f(xk : s) +
1

2
sTHks < 0}

where

∆f(xk; s) = h(F (x) + F ′(xk)s)− h(F (x)).

One shows that either Dk = ∅ for some k, f(xk) ↓ −∞, or ∆f(xk, δk)→ 0 where

∆f(xk, δk) = inf{∆f(xk : s) : ‖s‖ ≤ δ}.

2.2 Local Theory

In this section we make assumptions that guarantee that the algorithm of the previous
section converges to some point x and then study the rate or speed of convergence. The key
assumption for the investigations of this section is that of strong convexity.
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2.2.1 Strong Convexity

Definition 2.2.1 The function f : Rn → R is said to be strongly convex if there is a δ > 0
such that

f(x+ λ(y − x)) ≤ f(x) + λ[f(y)− f(x)]− δ

2
λ(1− λ)‖y − x‖2(2.2.8)

for every x, y ∈ Rn and λ ⊂ [0, 1]. The parameter δ is called the modulus of strong convexity.

Theorem 2.2.1 (Characterizations of strongly convex functions) Let f : Rn → R be differ-
entiable. Then the following statements are equivalent.

1. f is strongly convex with modulus δ.

2. f(y) ≥ f(x) +∇f(x)T (y − x) + δ
2
‖y − x‖2 for all x,∈ Rn.

3. (∇f(x)−∇f(y))T (x− y) ≥ δ‖y − x‖2 for all x, y ∈ Rn.

If it is further assumed that f is twice continuously differentiable on Rn, then then the above
conditions are also equivalent to the following statement:

inf{uT∇2f(x)u : ‖u‖ = 1, x ∈ Rn} ≥ δ .

That is, the spectrum of the Hessian of f is uniformly bounded below bu δ on Rn.

Proof: [(1) =⇒ (2) ] From inequality (2.2.8) we have that

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x)− δ

2
(1− λ)‖y − x‖2

for x, y ∈ Rn and λ ∈ [0, 1]. Taking the limit as λ ↓ 0 we obtain (2).
[(2) =⇒ (3) ] Simply add the two inequalities

f(y) ≥ f(x) +∇f(x)T (y − x) +
δ

2
‖y − x‖2

and

f(x) ≥ f(y) +∇f(y)T (y − x) +
δ

2
‖y − x‖2

to obtain the result.
[(3) =⇒ (2)] Let x, y ∈ Rn and define

xλ := x+ λ(y − x) for λ ∈ R.

By the mean value Theorem we have for some λ ∈ (0, 1) that

f(y)− f(x) = ∇f(xλ)
T (y − x)

= ∇f(x)T (y − x) + [∇f(xλ)−∇f(x)]T (y − x)

= ∇f(x)T (y − x) + λ−1[∇f(xλ)−∇f(x)]T (xλ − x)

≥ ∇f(x)T (y − x) + λ−1δ‖xλ − x‖2

≥ ∇f(x)T (y − x) +
δ

2
|y − x‖2
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which proves the implication (3) =⇒ (2).
[(2) =⇒ (1)] Multiply the inequality

f(x) ≥ f(xλ) +∇f(xλ)
T (x− xλ) +

δ

2
‖x− xλ‖2

by (1− λ) to obtain the inequality

(1− λ)f(x) ≥ (1− λ)f(xλ)− λ(1− λ)∇f(xλ)
T (y − x) +

δ

2
λ2(1− λ‖y − x‖2.(2.2.9)

Then multiply the inequality

f(y) ≥ f(xλ) +∇f(xλ)
T (y − xλ) +

δ

2
‖y − xλ‖2

by λ to obtain the inequality

λf(y) ≥ λf(xλ) + λ(1− λ)∇f(xλ)
T (y − x) +

δ

2
λ(1− λ)2‖y − x‖2.(2.2.10)

Adding (2.2.9) and (2.2.10) yields the result.

The final statement of the theorem is an immediate consequence of 3. and the second–
order Taylor series expansion of f . �

Strongly convex functions possess two properties that are significant to our study.

Theorem 2.2.2 Let f : Rn → R be strongly convex.

1. The sets {x : f(x) ≤ α} are compact convex sets for each α ∈ R.

2. The problem min f has a unique global optimal solution on Rn.

Exercise: Prove Theorem 2.2.2.

2.2.2 Linear Convergence

We employ two basic assumptions for the convergence analysis of this section:

Basic Assumptions:

1. f ′ is Lipschitz continuous with modulus K > 0 on an open
convex set S containing the set {x : f(x) ≤ f(x0)}, and

2. f is strongly convex on S with modulus δ > 0.
(2.2.11)

If f is twice differentiable on Rn, then the constants K and δ have an interpretation in
terms of the spectral structure of the hessian matrices ∇2f(x).
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Theorem 2.2.3 Suppose f : Rn → R satisfies the basic assumptions (2.2.11). If f is twice
differentiable on S, then

1. δ‖z‖2 ≤ zT∇2f(x)z ≤ K‖z‖2 for all x ∈ Rn and x ∈ S,

2. if λ is an eigenvalue of ∇2f(x) for some x ∈ S, then δ ≤ λ ≤ K, and

3. sup
x∈S

κ(∇2f(x)) ≤ δ−1K where κ(∇2f(x)) is the condition number of the matrix ∇2f(x).

Proof: We only show (1). By (2) and (3) of Theorem 2.2.1 and the definition of Lipschitz
continuity we know that

δλ2‖z‖2 ≤ λ[∇f(x+ λz)−∇f(x)]T z ≤ Kλ2‖z‖2

for x ∈ S, z ∈ Rn, and λ > 0 sufficiently small. Dividing this expression by λ2 and taking
the limit as λ ↓ 0 yields the result. �

The condition number refered to in the above result is defined in the supplement on
matrices. In this supplement the significance of the condition number to numerical compu-
tation is discussed. The condition number of a matrix is directly correlated to the stability
of linear systems associated with said matrix. Under the assumption that the function f
is twice continuously differntiable, the final statement in the above theorem implies that
the Basic Assumptions in (??) are equivalent to the statement that the norm and condition
number of the Hessian of f must both be uniformly bounded on Rn. The condition number
of the hessian matrix will also be seen to be closely correlated to the convergence rates of
the various optimization algorithms that we will consider. Our first result along these lines
now follows.

Theorem 2.2.4 (Linear Convergence Theorem) Let f : Rn → R, {xk} ⊂ Rn, and S := {x :
f(x) ≤ f(x0)}. Suppose that the basic assumptions (2.2.11) hold. Moreover, assume that
the sequence {xn} is such that

f(xk)− f(xk+1) ≥ α‖∇f(xk)‖2,(2.2.12)

for some α > 0 and each k = 1, 2, . . .. Then the sequence {xk} converges to a unique solution
x of the problem min{f(x) : x ∈ Rn} at the linear root rate

‖xi − x‖ ≤
[
2

δ
(f(x0)− f(x)

]1/2
[
1− 2αδ2

K

]i/2
.(2.2.13)

Proof: By Theorem 2.2.2, S is compact and the problem min f has a unique global solution,
x, on S. Hence there is at least one cluster point x̂. Since the sequence {f(xk)} is bounded
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below by f(x̂), we have (f(xk) − f(xk+1)) → 0 and so ∇f(x̂) = 0 by (2.2.12). Therefore
x = x̂ and xk → x. We now establish the rate. By Theorem 2.2.1,

‖∇f(xk)‖‖xk − x‖ = ‖∇f(xk)−∇f(x)‖‖xk − x‖
≥ (∇f(xk)−∇f(x))(xk − x)

≥ δ‖xk − x̄‖2.

Hence, by (2.2.12),

f(xk)− f(xk+1) ≥ αδ2‖xk − x‖2.

The quadratic bound Lemma (B.2) thus yields

f(xk)− f(xk+1) ≥ 2αK−1δ2(f(xk)− f(x))

which is equivalent to

(1− 2αK−1δ2)(f(xk)− f(x)) ≥ (f(xk+1)− f(x)).

By induction we obtain

(f(xi)− f(x)) ≤ (1− 2αK−1δ2)i(f(x0)− f(x)).

But, by Theorem 2.2.1,

δ

2
‖xi − x‖2 +∇f(x̄)T (xi − x) ≤ f(xi)− f(x)

or

‖xi − x‖ ≤ (
2

δ
(f(xi)− f(x))1/2).

Using this last ineqality we obtain

‖xi − x‖ ≤ ((1− 2αK−1δ2)1/2)i(
2

δ
(f(x0)− f(x)))1/2.

�

We now apply this result to the algorithm described in Theorem 2.1.1.

Corollary 2.2.4.1 Let the assumptions of Theorem 2.2.4 hold except for hypothesis (2.2.12).
Suppose that the sequence {xk} is generated by the algorithm of Theorem 2.1.1 where di ∈ Di

implies that

1. −∇f(xi)
Tdi ≥ ν‖∇f(xi)‖‖di‖ for some ν ∈ [0, 1], and

2. ‖di‖ ≥ ρ‖∇f(xi)‖ for some ρ > 0.
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Then xi → x where x is the unique global solution of min f and

‖xi − x‖ ≤
[
2

δ
(f(x0)− f(x)

]1/2
[
1− 2αδ2

K

]i/2
,(2.2.14)

where

α := min{2γc(1− c)ν2

K
, cγρ}.(2.2.15)

Proof: By the Armijo inequality

f(xi+1)− f(xi) ≤
cλi∇f(xi)

Tdi
‖∇f(xi)‖2

‖∇f(xi)‖2.

Thus the result will follow from Theorem 2.2.4 if we can show that

α ≤ −cλi∇f(xi)
Tdi

‖∇f(xi)‖2
.

To this end, observe that by the quadratic bound lemma (Appendix B)

f(xi + λdi)− f(xi)− λ∇f(xi)
Tdi ≤

K

2
λ2‖di‖2

and so

f(xi)− f(xi + λidi) ≥ −λ∇f(xi)
Tdi −

K

2
λ2‖di‖2

= λ[(1− c)(−∇f(xi)
Tdi)−

K

2
λ‖di‖2 − c∇f(xi)

Tdi]

Hence the Arimijo inequality in Step 2 of the algorithm is satisfied if

(1− c)(−∇f(xi)
Tdi)−

K

2
λ‖di‖2 ≥ 0

or equivalently if

λ ≤ 2

K
(1− c)(−∇f(xi)

Tdi)

‖di‖2
.

Therefore, by the maximality of λi, we know that

λi ≥ min{1, 2γ(1− c)
K

(−∇f(xi)
Tdi)

‖di‖2
}.

Consequently, by (1) and (2),

−cλi∇f(xi)
Tdi

‖∇f(xi)‖2
≥ min{−c∇f(xi)

T di
‖∇f(xi)‖2 , 2γc(1−c)

K
(∇f(xi)

T di)
2

(‖∇f(xi)‖‖di‖)2}

≥ min{cνρ, 2γc(1−c)ν2
K

}
= α.
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�

We now relate the convergence rate (2.2.14) to the condition of the hessian matrices
∇2f(x). In order to simplify the discussion we assume that

ν ∼ ρ ∼ 1, K > 1,

and
K

δ
∼ κmax := sup{κ(∇2f(x)) : x ∈ S}.

In later sections it will be shown that these assumption are quite reasonable and provide an
accurate description of most of the algorithms that we consider. With these assumption the
parameter α in (2.2.15) is

α =
2γc(1− c)

K
.

Thus (2.2.14) becomes

‖xi − x‖ ≤ (
2

δ
(f(x0)− f(x)))1/2(1− 4γc(1− c)κ−2

max)i/2.

Now in order to achieve the fastest rate of convergence we would like

(1− 4γc(1− c)κ−2
max)

to be as close to zero as possible, and so γc(1 − c) should be as large as possible with
0 < γ < 1, 0 < c < 1. The supremum of γc(1− c) over the allowable values is 1/4. Thus the
most optimistic rate is

‖xi − x‖ ≤ (
2

δ
(f(x0)− f(x)))(1− [κmax]−2)i/2.

Thus we see that the smaller δ is and the larger κmax is the slower the convergence. Moreover,
the convergence is clearly most sensitive to κmax.

Let us now consider an explicit example and examine the actual convergence behavior.

Example: Let f(x) = x2 + ex. Then f ′(x) = 2x + ex and f ′′(x) = 2 + ex. Hence f is
strongly convex on R. If we take x0 = 1, c = .01, γ = 1

2
, and Di = {−∇f(xi)/‖∇f(xi)‖}

then one can show that the parameters appearing in Corollary 2.1.1. can be taken to be
K = 4, δ = 2, ν = 1, ρ = 1, and consequently α = .0025. Hence (1− 2αδ2

K
)1/2 ∼= .997 and so

in the limit we get

‖xi − x‖ ≤
√

2(.997)i.

Therefore, in order to obtain ‖xi− x‖ ≤ .01, this inequality implies that we should compute
i = 1649 iterations. This convergence behavior on such a nice function is terrifyingly slow.
Let us now look at the actual performance.
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K X f(x) f ′(x) s

0 1 .37182818 4.7182818 0
1 0 1 1 0
2 −.5 .8565307 −0.3934693 1
3 −.25 .8413008 0.2788008 2
4 −.375 .8279143 −.0627107 3
5 −.34075 .8273473 .0297367 5
6 −.356375 .8272131 −.01254 6
7 −.3485625 .8271976 .0085768 7
8 −.3524688 .8271848 −.001987 8
9 −.3514922 .8271841 .0006528 10
10 −.3517364 .827184 −.0000072 12

The behavior is clearly not as bad as that which is predicted by Corollary 2.2.4.1. It is
rather slow and requires 55 function evaluations. In the next section we consider a much
faster proceedure.

2.3 Newton’s Method

2.3.1 Newton’s Method for Equation Solving

In this section we study the following problem:

E : Given g : Rn → Rn, find x ∈ Rn for which g(x) = 0.

In the context of optimization, this problem is significant for many reasons. In particular,
it is directly related to the first–order necessary conditions in unconstrained optimization,
i.e. ∇f(x) = 0. In our discussion of E we always assume that g is C1.

Suppose one is given an approximate solution x0 ∈ Rn to E and wishes to improve upon
it. If x is an actual solution to E , then

0 = g(x) = g(x0) + g′(x0)(x− x0) + o‖x− x0‖.

Thus, if x0 is “close” to x, it is reasonable to suppose that the solution to the linearized
system

0 = g(x0) + g′(x0)(x− x0)(2.3.16)

is even closer. This proceedure is known as Newton’s method for finding the roots of the
equation g(x) = 0. It has one obvious pitfall. Equation (2.3.16) may not be consistent. That
is, there may not exist an x solving (2.3.16). In general, the set of solutions to (2.3.16) is
either

1. the empty set,

2. an infinite set, or
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3. a single point.

For the sake of the present argument, we assume that (3) holds, i.e. g′(x0)−1 exists.
Under this assumption (2.3.16) defines the iteration scheme,

xk+1 := xk − [g′(xi)]
−1g(xk),(2.3.17)

called the Newton iteration. The associated direction

d := −[g′(xk)]
−1g(xk).(2.3.18)

is called the Newton direction. We analyze the convergence behavior of this scheme under
the additional assumption that only an approximation to g′(xk) is available. We denote this
approximation by Jk. The resulting iteration scheme is

xk+1 := xk − J−1
k g(xk).(2.3.19)

Methods of this type are called Newton-Like methods.

Theorem 2.3.1 Let g : Rn → Rn be differentiable, x0 ∈ Rn, and J0 ∈ Rn×n. Suppose that
there exists x̄, x0 ∈ Rn, and ε > 0 with ‖x0 − x̄‖ < ε such that

1. g(x) = 0,

2. g′(x)−1 exists for x ∈ B(x; ε) := {x ∈ Rn : ‖x− x‖ < ε} with

sup{‖g′(x)−1‖ : x ∈ B(x; ε)] ≤M1

3. g′ is Lipschitz continuous on c`B(x; ε) with Lipschitz constant L, and

4. θ0 := LM1

2
‖x0 − x‖+M0K < 1 where K ≥ ‖(g′(x0)−1 − J−1

0 )y0‖, y0 := g(x0)/‖g(x0)‖,
and M0 = max{‖g′(x)‖ : x ∈ B(x; ε)}.

Further suppose that iteration (2.3.19) is initiated at x0 where the Jk’s are chosen to satisfy
one of the following conditions;

(i) ‖(g′(xk)−1 − J−1
k )yk‖ ≤ K,

(ii) ‖(g′(xk)−1 − J−1
k )yk‖ ≤ θk1K for some θ1 ∈ (0, 1),

(iii) ‖(g′(xk)−1 − J−1
k )yk‖ ≤ min{M2‖xk − xk−1‖, K}, for some M2 > 0, or

(iv) ‖(g′(xk)−1 − J−1
k )yk‖ ≤ min{M2‖g(xk)‖, K}, for some M3 > 0,

where for each k = 1, 2, . . ., yk := g(xk)/‖g(xk)‖.
These hypotheses on the accuracy of the approximations Jk yield the following conclusions

about the rate of convergence of the iterates xk.
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(a) If (i) holds, then xk → x linearly.

(b) If (ii) holds, then xk → x superlinearly.

(c) If (iii) holds, then xk → x two step quadratically.

(d) If (iv) holds, then xi → x quadratically.

Proof: We begin by establishing the basic inequalities

‖xk+1 − x‖ ≤
LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − J−1

k )g(xk)‖,(2.3.20)

and
‖xk+1 − x‖ ≤ θ0‖xk − x‖(2.3.21)

and the inclusion
xk+1 ∈ B(x̄; ε)(2.3.22)

by induction on k. For k = 0 we have

x1 − x = x0 − x− g′(x0)−1g(x0) + [g′(x0)−1 − J−1
0 ]g(x0)

= g′(x0)−1[g(x)− (g(x0) + g′(x0)(x− x0))]

+[g′(x0)−1 − J−1
0 ]g(x0),

since g′(x0)−1 exists by the hypotheses. Consequently, the hypothese (1)–(4) plus the
quadratic bound lemma imply that

‖xk+1 − x‖ ≤ ‖g′(x0)−1‖‖g(x)− (g(x0) + g′(x0)(x− x0))‖
+‖(g′(x0)−1 − J−1

0 )g(x0)‖

≤ M1L

2
‖x0 − x‖2 +K‖g(x0)− g(x)‖

≤ M1L

2
‖x0 − x‖2 +M0K‖x0 − x‖

≤ θ0‖x0 − x‖ < ε,

whereby (2.3.20) – (2.3.21) are established for k = 0.
Next suppose that (2.3.20) – (2.3.21) hold for k = 0, 1, . . . , s− 1. We show that (2.3.20)

– (2.3.21) hold at k = s. Since xs ∈ B(x, ε), hypotheses (2)–(4) hold at xs, one can proceed
exactly as in the case k = 0 to obtain (2.3.20). Now if any one of (i)–(iv) holds, then (i)
holds. Thus, by (2.3.20), we find that

‖xs+1 − x‖ ≤ M1L
2
‖xs − x‖2 + ‖(g′(xs)−1 − J−1

s )g(xs)‖

≤ [M1L
2
θs0‖x0 − x‖+M0K]‖xs − x‖

≤ [M1L
2
‖x0 − x‖+M0K]‖xs − x‖

= θ0‖xs − x‖.
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Hence ‖xs+1−x‖ ≤ θ0‖xs−x‖ ≤ θ0ε < ε and so xs+1 ∈ B(x, ε). We now proceed to establish
(a)–(d).
(a) This clearly holds since the induction above established that

‖xk+1 − x‖ ≤ θ0‖xk − x‖.

(b) From (2.3.20), we have

‖xk+1 − x‖ ≤
LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − J−1

k )g(xk)‖

≤ LM1

2
‖xk − x‖2 + θk1K‖g(xk)‖

≤ [
LM1

2
θk0‖x0 − x‖+ θk1M0K]‖xk − x̄‖

Hence xk → x superlinearly.
(c) From (2.3.20) and the fact that xk → x̄, we eventually have

‖xk+1 − x‖ ≤
LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − J−1

k )g(xk)‖

≤ LM1

2
‖xk − x‖2 +M2‖xk − xk−1‖‖g(xk)‖

≤ [
LM1

2
‖xk − x‖+M0M2[‖xk−1 − x̄‖+ ‖xk − x̄‖]]‖xk − x̄‖

≤ [
LM1

2
θ0‖xk−1 − x‖+M0M2(1 + θ0)‖xk−1 − x‖]

×θ0‖xk−1 − x‖

= [
LM1

2
θ0 +M0M2(1 + θ0)]θ0‖xk−1 − x‖2.

Hence xk → x two step quadratically.
(d) Again by (2.3.20) and the fact that xk → x̄, we eventually have

‖xk+1 − x‖ ≤
LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − J−1

k )g(xk)‖

≤ LM1

2
‖xk − x‖2 +M2‖g(xk)‖2

≤ [
LM1

2
+M2M

2
0 ]‖xk − x‖2 .

�

Note that the conditions required for the approximations to the Jacobian matrices g′(xk)
given in (i)–(ii) do not imply that Jk → g′(x̄). The stronger conditions
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(i)′ ‖g′(xk)−1 − J−1
k ‖ ≤ ‖g′(x0)−1 − J−1

0 ‖,

(ii)′ ‖g′(xk+1)−1 − J−1
k+1‖ ≤ θ1‖g′(xk)−1 − J−1

k ‖ for some θ1 ∈ (0, 1),

(iii)′ ‖g′(xk)−1 − J−1
k ‖ ≤ min{M2‖xk+1 − xk‖, ‖g′(x0)−1 − J−1

0 ‖} for some M2 > 0, or

(iv)′ g′(xk) = Jk,

which imply the conditions (i) through (iv) of Theorem 2.3.1 respectively, all imply the
convergence of the Jacobian approximates to g′(x̄). Clearly the conditions (i)′–(iv)′ are not
as desirable since they require a great deal more expense and care in the construction of the
Jacobian approximates.

2.3.2 Newton’s Method for Minimization

In this section we interpret the results of previous section in the context of minimization.
That is, we apply them to the equation ∇f(x) = 0 in the context of minimization. The
translation of Theorem 2.3.1 for minimization follows.

Theorem 2.3.2 Let f : Rn → R be twice differentiable, x0 ∈ Rn, and H0 ∈ Rn×n. Suppose
that

1. there exists x ∈ Rn and ε > ‖x0 − x̄‖ such that f(x) ≤ f(x) whenever ‖x− x̄‖ ≤ ε,

2. there is a δ > 0 such that δ‖z‖2
2 ≤ zT∇2f(x)z for all x ∈ B(x, ε),

3. ∇2f is Lipschitz continuous on clB(x; ε) with Lipschitz constant L, and

4. θ0 := L
2δ
‖x0 − x‖ + M0K < 1 where M0 > 0 satisfies zT∇2f(x)z ≤ M0‖z‖2

2 for all
x ∈ B(x, ε) and K ≥ ‖(∇2f(x0)−1 −H−1

0 )y0‖ with y0 = ∇f(x0)/norm∇f(x0).

Further, suppose that the iteration

xk+1 := xk −H−1
k ∇f(xk)(2.3.23)

is initiated at x0 where the Hk’s are chosen to satisfy one of the following conditions:

(i) ‖(∇2f(xk)
−1 −H−1

k )yk‖ ≤ K,

(ii) ‖(∇2f(xk)
−1 −H−1

k )yk‖ ≤ θk1K for some θ1 ∈ (0, 1),

(iii) ‖(∇2f(xk)
−1 −H−1

k )yk‖ ≤ min{M2‖xk − xk−1‖, K}, for some M2 > 0, or

(iv) ‖(∇2f(xk)
−1 −H−1

k )yk‖ ≤ min{M2‖∇f(xk)‖, K}, for some M3 > 0,

where for each k = 1, 2, . . . yk := ∇f(xk)/‖∇f(xk)‖.
These hypotheses on the accuracy of the approximations Hk yield the following conclusions

about the rate of convergence of the iterates xk.
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(a) If (i) holds, then xk → x linearly.

(b) If (ii) holds, then xk → x superlinearly.

(c) If (iii) holds, then xε → x two step quadratically.

(d) If (iv) holds, then xk → k quadradically.

In order to more fully understand the convergence behavior described in the above result
a careful study of the role of the controling parameters L, M0, and M1 needs to be made.
Although we do not attempt this study, we do make a few observations. First observe that
since L is a Lipschitz constant for ∇2f it represents a bound on the third–order behavior
of f . Thus the assumptions for convergence make implicit demands on the third derivative.
Next, the constant δ in the context of minimization represents a local uniform lower bound
on the eigenvalues of ∇2f . That is, f behaves locally as if it were a strongly convex function
with modulus δ. Finally, M0 can be interpreted as a local Lipschitz constant for ∇f and
only plays a role when ∇2f is approximated inexactly by Hk’s. Let us now consider the
convergence behavior of this preceedure when applied to the example of Section 2.2.2.

Example: Let f(x) = x2 + ex. Then f ′(x) = 2x + ex, f ′′(x) = 2 + ex, f ′′′(x) = ex. Given
x0 = 1 we may take L = 2, M0 = 4, and M1 = 1

2
. Hence the pure Newton strategy should

converge to x ≈ −0.3517337 with

‖xk − x‖ ≤ 2(.676)2k .

The actual interates are given in the following table.

x f ′(x)
1 4.7182818
0 1
−1/3 .0498646

−.3516893 .00012
−.3517337 .00000000064

2.4 Linking Global and Local Methods

Recall that in the global theory we chose our search direction dk from the set

{d : f ′(xk; d) < 0}.

If ∇2f(xk) is positive definite, then the solution to the problem

min
d∈Rn

f(xk) +∇f(xk)
Td+

1

2
dT∇2f(xk)d
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is the Newton step dNk = −∇2f(xk)
−1∇f(xk). In this case, we have

f ′(xk; d
N
k ) = −∇f(xk)

T∇2f(xk)
T∇f(xk) < 0

as long as ∇f(xk) 6= 0. That is,

dNk ∈ {d; f ′(xk; d) < 0}

and so is potentially a candidate direction for both the line-search and trust-region based
methods. However, in line search methods it may be that a unit step length is not chosen and
in trust-region methods the trust-region radius is too small, in which case the method may
not attain the excellent local convergence rate of Newton’s method. In this section we show
that the full Newton step is locally acceptable under certain conditions. This in turn implies
a local rate of convergence result for these global methods. We begin our analysis with the
following local attraction result. The result says that, under reasonable assumptions on the
construction of the iterates, any cluster point satisfying second–order sufficient conditions
for optimality is actually the unique limit point of the sequence.

Lemma 2.4.1 Let f : Rn → R be twice continuously differentiable. Suppose that {xk} ⊂ Rn

is a sequence generated to satisfy

(i) ∇f(xk)
T (xk+1 − xk) + 1

2
(xk+1 − xk)T∇2f(xk)(xk+1 − xk) ≤ 0,

(ii) f(xk+1) ≤ f(xk), and

(iii) ∇f(xk)→ 0.

If x is a cluster point of {xk} at which ∇2f(x) is positive definite, then it must be the case
that xk → x.

Proof: Since ∇2f(x) is positive definite, there is an ε > 0 and δ > 0 such that

sT∇2f(x)s ≥ δ‖s‖2 ∀ x ∈ x+ εB.

Also note that ∇f(x) = 0 by (ii). For all k > 0 define

Jε := {k : xk ∈ x+ εB} and let k = inf{k : k ∈ Jε}.

Clearly, Jε is infinite for all ε > 0 since x is a cluster point of {xk}. Define sk := xk+1 − xk.
Then, by hypothesis (i),

δ

2
‖sk‖2 ≤ 1

2
sTk∇2f(xk)sk ≤ −∇f(xk)

T sk ≤ ‖∇f(xk)‖ ‖sk‖

for all k ∈ Jε. Consequently
δ

2
‖sk‖ ≤ ‖∇f(xk)‖
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for all k ∈ Jε.
Since ∇f(xk) → 0, there is a k̂ ≥ k, k̂ ∈ Jε/2 such that, for all k ≥ k̂, ‖∇f(xk)‖ ≤ εδ

4
.

We now claim that for any k ≥ k̂, k ∈ Jε/2 we have

{x ∈ x+ εB : f(x) ≤ f(xk)} ⊂ x+
ε

2
B.

Indeed, if x ∈ {x ∈ x+ εB : f(x) ≤ f(xk)}, then

f(xk) ≥ f(x) ≥ f(x) + δ
2
‖x− x‖2

≥ f(xk) +∇f(xk)
T (x− xk) + δ

2
‖x− x‖

so that

‖∇f(xk)‖ ‖x− xk‖ ≥
δ

2
‖x− x‖2 .

Since xk ∈ x̄+ εB and x+ εB, we obtain

εδ

4
≥ δ

2
‖x− x‖

or
ε

2
≥ ‖x− x‖.

But if k ≥ k, k ∈ Jε/2, then f(xk+1) ≤ f(xk) and

δ

2
‖sk‖ ≤ ‖∇f(xk)‖ ≤

εδ

4
,

or equivalently ‖sk‖ ≤ ε
2
, so that ‖xk+1−x‖ ≤ ε. Hence, ‖xk+1−x‖ ≤ ε

2
. An easy induction

yields xk ∈ x+ ε
2
B for all k ≥ k. Letting ε→ 0 establishes the result. �

2.4.1 Line Search Methods

There are many approaches to safe–guarding the Newton search direction in the context of
a line search strategy. We consider one such approach known as the dog-leg strategy. In
this context the word dog-leg refers to a golfing term for a fairway of a given shape. The
originator of this term is the well–known golfer M.J.D. Powell.

Dog-Leg Search Direction: Let δ > 0 be given.

Step 1 For each pair (x,H) ∈ Rn × Rn×n
s define

dSD =

{
0 if ∇f(x) = 0
tu else

where u = −∇f(x)/‖∇f(x)‖2 and t solves

min{t∇f(x)Tu+
t2

2
uT∇2f(x)u : t ∈ [0, δ]}.
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Step 2 Solve ∇2f(x)d = −∇f(x) for dN . If in the solution process one finds that
∇2f(x) is not positive definite, then terminate the computation and set dDL :=
dSD.

Step 3 If the computation of dN in Step 2 was successful, then set dDL := dN if
‖dN‖ ≤ δ; otherwise set dDL := λdSD + (1 − λ)dN where λ is chosen so that
‖dDL‖2 = δ.

The resulting direction dDL is called a dog-leg search direction.

The dog-leg search direction can be used in the line-search algorithm of Theorem 3.1.1
to yield the following result.

Theorem 2.4.1 Let the hypotheses of Theorem 3.1.1 be satisfied and let it be further as-
sumed that ∇2f(x) is bounded on the set co{x : f(x) ≤ f(x0)} and that the search direction
dn be taken to be the dog-leg direction. Then one of the following must occur:

(i) ∇f(xk) = 0 for some k,

(ii) f(xk)↘∞,

(iii) ‖∇f(xk)‖ → 0.

Proof: Using the notation given in the definition of the dog-leg search direction, set

dk = λkd
SD
k + (1− λk)dNk ,

dSDk = tkuk, and

uk = −∇f(xk)/‖∇f(xk)‖

where

tk =

 1, if uTk∇f(xk)uk ≤ 0

min
{

‖∇f(xk)‖
|uT
k
∇2f(xk)uk|

, 1
}
, otherwise,
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λk ∈ [0, 1] with λk = 1 if dNk is not computed.
We will assume that (i) and (ii) do not occur and show that (iii) must occur. Since {dk}

is bounded, we have from Theorem 3.1.1 that f ′(xk; dk)→ 0, where

f ′(xk; dk) = −λktk‖∇f(xk)‖ − (1− λk)ζk

with

ζk =

{
0, if λk = 1
|∇f(xk)

T∇2f(xk)
−1∇f(xk)|, otherwise.

Since {∇2f(xk)} is bounded, for any subsequence J ⊂ N one has that tk
J→ 0 only if

‖∇f(xk)‖
J→ 0. Therefore, for every subsequence J ⊂ N for which inf

J
λk > 0 one has

‖∇f(xk)‖
J→ 0.

Let J ⊂ N be any subsequence for which λk
J→ 0 and λk 6= 1 for all k ∈ J . Then

ζk = |∇f(xk)
T∇2f(xk)

−1∇f(xk)| and, by construction, ∇2f(xk) is positive definite for all
k ∈ J . Moreover, ζk → 0 since f ′(xk; dk)→ 0. Since ∇2f(xk) is bounded there exists M > 0
such that vT∇2f(xk)v ≤M‖v‖2, or equivalently, vT∇2f(xk)

−1vT ≥M−1‖v‖2, for all k ∈ J .
But then,

0 < M−1‖∇f(xk)‖2 ≤ ∇f(xk)
T∇2f(xk)

−1∇f(xk)→ 0.

Therefore, ‖∇f(xk)‖
J→ 0.

Now, since ‖∇f(xk)‖
J→ 0 for every subsequence for which λk → 0 and for every subse-

quence on which λk is bounded away from zero, we have that ‖∇f(xk)‖ → 0. �

We can now apply Lemma 2.4.1 to obtain a local rate of convergence for the dog-leg
method.

Theorem 2.4.2 Let the hypotheses of Theorem 2.4.1 be satisfied and let it further be as-
sumed that the backtracking parameter c satisfies 0 < c < 1

2
. If x is a cluster point of the

sequence {xk} at which ∇2f(x) is positive definite, then xk → x at a quadratic rate.

Proof: By construction, the sequence {f(xk)} is bounded below by f(x). Therefore,
Theorem 2.4.1 and Lemma 2.4.1 combine to imply that xk → x. Since ∇2f(x) is positive
definite and ∇f(xk) → 0, we have that dNk exists with ‖dNk ‖ < δ for all k large. We now
show that the step length λk = 1 for all k large. This will establish the result since then the
method is locally equivalent to Newton’s method and so xk → x quadratically.

Since ∇2f is continuous, it is uniformly continuous in a neighborhood of x. Let ω(t) be
the modulus of continuity for ∇2f near x and let µ > 0 and M > 0 be such that

µ‖v‖2 ≤ vT∇2f(x)v ≤M‖v‖

for all x near x. Let t > 0 be such that

ω(t) ≤
(

1

2
− c

)
µ2

M
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for all t ∈ [0, t] and let k be such that ‖dNk ‖ ≤ t for all k ≥ k. Then, for k ≥ k and some
zk ∈ [xk, xk + dNk ],

f(xk + dNk )− f(xk) = ∇f(xk)
TdNk + 1

2
dN

T

k ∇2f(zk)d
N
k

≤ ∇f(xk)
TdNk + 1

2
dN

T

k ∇2f(xk)d
N
k + ω(‖dNk ‖)‖dNk ‖2

≤ c∇f(xk)
TdNk + (1− c)∇f(xk)

TdNk − 1
2
∇f(xk)

TdNk

+
(

1
2
− c

)
µ2

M
‖dNk ‖2

= c∇f(xk)
TdNk +

(
c− 1

2

)
∇f(xk)

T∇2f(xk)
−1∇f(xk)

+
(

1
2
− c

)
µ2

M
‖∇2f(xk)

−1∇f(xk)‖2

≤ c∇f(xk)
TdNk +

(
c− 1

2

)
M−1‖∇f(xk)‖2

+
(

1
2
− c

)
M−1‖∇f(xk)‖2

= c∇f(xk)
TdNk .

Therefore, the step length λk = 1 for all k large. �

2.4.2 Trust–Region Methods

A similar result is easily obtained for trust–region methods by making more explicit the
requirement that the step sk be at least as effective as a step based on linear information
alone. This is done by requiring that the step satisfy the inequality established in Lemma
2.1.1. This inequality is a refinement of the Basic Assumption on the Trust–Region Step.

Theorem 2.4.3 Let f : Rn → R be differentiable and let x0 ∈ Rn be such that ∇f is
uniformly continuous on the set co{x : f(x) ≤ f(x0)}. Suppose {xk} is a sequence generated
by the trust-region algorithm of Theorem 2.1.3 with Hk = ∇2f(xk) and sk satisfying

∇f(xk)
T sk +

1

2
sTk∇2f(xk)sk ≤ −

1

2
‖∇f(xk)‖o min

{
‖∇f(xk)‖o

σ2‖∇2f(xk)‖2
, δk

}
(2.4.1)

for all k = 1, 2, . . ., where σ > 0 is chosen to satisfy ‖sk‖2 ≤ σ‖sk‖ (note that such an sk
is guaranteed to exist by Lemma 3.1.1). If x is a cluster point of {xk} at which ∇2f(x) is
positive definite, then xk → x and rk → 1.
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Proof: Theorem 2.1.2 and Lemma 2.4.1 combine to imply that xk → x. Let ε > 0 and
δ > 0 be chosen so that

sT∇2f(x)s ≥ δ‖s‖2 ∀ x ∈ x+ εB.

Let k be such that xk ∈ x+ εB for all k ≥ k. Then for k ≥ k

δ

2
‖sk‖2

2 ≤
1

2
sTk∇2f(xk)sk ≤ −∇f(xk)

T s2 ≤ ‖∇f(xk)‖2‖sk‖2

so that
δ

2
‖sk‖2 ≤ ‖∇f(xk)‖2.(2.4.2)

Let σ2 > 0 be such that σ2‖s‖ ≤ ‖s‖2. Note that σ2B2 ⊂ B since if u ∈ σ2B2, then
‖u‖ ≤ σ−1

2 ‖u‖2 ≤ σ−1
2 σ2 = 1. Therefore,

‖v‖o = sup{〈v, u〉 : u ∈ B} ≥ sup{〈v, u〉 : u ∈ σ2B2} = σ2‖v‖2.

Thus, (2.4.2) implies that
δσ2

2
‖s‖ ≤ σ−1

2 ‖∇f(xk)‖o,

or
δ

2
σ2

2‖s‖ ≤ ‖∇f(xk)‖o.

Combining this with assumption (2.4.1) yields the existence of a constant κ > 0 such that

−[∇f(xk)
T sk +

1

2
sTk∇2f(xk)sk] ≥ κ‖sk‖2

for all k ≥ k. Therefore,

|rk − 1| =
∣∣∣∣f(x2+sk)−[f(xk)+∇f(xk)T s2+ 1

2
sTk∇

2f(xk)sk]

−[∇f(xk)T sk+ 1
2
sT
k
∇2f(xk)sk]

∣∣∣∣
≤ |f(xk+sk)−(f(xk)+∇f(xk)T sk+ 1

2
sT2 ∇

2f(xk)sk)|
κ‖sk‖2

→ 0 as k →∞.

�

Corollary 2.4.3.1 Let the hypotheses of the Theorem hold. If it is further assume that sk
is chosen as the solution to the subproblem P(xk, δk), then xε → x quadratically.

Proof: Since rk → 1 and sk → 0, we have ‖sk‖ < δk for all k large. In this case, the
method is locally equivalent to Newton’s Method so the result follows from Theorem 2.3.2.
�
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Chapter 3

Conjugate Direction Methods

3.1 General Discussion

In this section we are again concerned with the problem of unconstrained optimization:

P : minimize f(x)
subject to x ∈ Rn

where f : Rn → R is C2. However, the emphasis will be on local quadratic approximations
to f . In particular, we study the problem P when f has the form

f(x) :=
1

2
xTQx− bTx,(3.1.1)

where Q is a symmetric positive definite matrix. In this regard the notion of Q-conjugacy
plays a key role.

Definition 3.1.1 Let Q ∈ Rn×n be symmetric and positive definite. We say that the vectors
x, y ∈ Rn\{0} are Q-conjugate (or Q-orthogonal) if xTQy = 0.

Proposition 3.1.2 If Q ∈ Rn×n is positive definite and the set of nonzero vectors d0,
d1, . . . , dk are (pairwise) Q-conjugate, then these vectors are linearly independent.

Proof: If 0 =
k∑
i=0

αidi, then for i0 ∈ {0, 1, . . . , k}

0 = dTi0Q[
k∑
i=0

αidi] = αi0d
T
i0
Qdi,

Hence αi = 0 for each i = 0, . . . , k. �

Observe that the unique solution to P when f is given by (3.1.1) is

x∗ = Q−1b.

53
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If {d0, d1, . . . , dn−1} is a Q-conjugate basis for Rn, there are scalars α0, . . ., αn−1 such that

x∗ = α0d0 + . . .+ αn−1dn−1.(3.1.2)

Multiplying this expression through by Qdi for each i = 0, . . . , n− 1 we find that

αi =
dTi Qx

∗

dTi Qdi
=

dTi b

dTi Qdi

for each i = 0, . . . , n− 1. Therefore

x∗ =
n−1∑
i=0

dTi b

dTi Qdi
=

[
n−1∑
i=0

did
T
i

dTi Qdi

]
b

so that

Q−1 =
n−1∑
i=0

did
T
i

dTi Qdi
.

It is important to note that the coefficients αi in the representation (3.1.2) can be computed
without knowledge of x∗. This observation is the basis of the following result.

Theorem 3.1.1 Let {di}n−1
i=0 be a set of nonzero Q-conjugate vectors. For any x0 ∈ Rn the

sequence {xk} generated according to

xk+1 := xk + αkdk, k ≥ 0

with
αk := arg min{f(xk + αdk) : α ∈ R}

converges to the unique solution, x∗ of P with f given by (3.1.1) after n steps, that is xn = x∗.

Proof: Let us first compute the value of the αk’s. Set

ϕk(α) = f(xi + αdk)

= α2

2
dTkQdk + αgTk dk + f(xk),

where gk = ∇f(xk) = Qxk − b. Then ϕ′k(α) = αdTkQdk + gTk dk, hence

αk = − gTk dk
dTkQdk

.

Now suppose x∗ − x0 has representation

x∗ − x0 = α̂0d0 + α̂1d1 + . . .+ α̂n−1dn−1.(3.1.3)

Since xn = x0 + α0d0 + . . .+ αn−1dn−1, the result is established if we can show that α̂k = αk
for each k = 0, 1, . . . , n− 1. Multiplying (1.3) through by Qdk yields

α̂k =
dTkQ(x∗ − x0)

dTkQdk
.(3.1.4)
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But Qx∗ = b and
dTkQx0 = dTkQ(x0 + α0d0 + . . .+ αk−1dk−1)

= dTkQdk.

Therefore
α̂k = −dTkQ(x0−x∗)

dT
k
Qdk

= −dTk (Qxk−b)
dT
k
Qdk

= − dTk gk
dT
k
Qdk

= αk.

�

The following result provides further geometric insight into how the algorithm is pro-
ceeding.

Theorem 3.1.2 (Expanding Subspace Theorem) Let {di}n−1
i=0 be a sequence of nonzero Q-

conjugate vectors in Rn. Then for any x0 ∈ Rn the sequence {xk} generated according to

xk+1 = xk + αkdk

αk = − gTk dk
dT
k
Qdk

has the property that f(x) = 1
2
xTQx − bTx attains its minimum value on the affine set

x0 + Span {d0, . . . , dk−1} at the point xk.

Proof: We establish the result by directly computing the solution to

min f(x)
subject to x− x0 ∈ Span {d0, d1, . . . , dk−1}.

(3.1.5)

By setting Dk = [d0, d1, . . . , dk−1] and z = x− x0 we can rewrite (3.1.5) as

min
(z,y)

f(z + x0)

subject to z = Dky,

which can be written as
min
y
f(Dky + x0).(3.1.6)

Writing
ϕ(y) = f(Dky + x0)

= 1
2
yTDT

kQDkY + gT0 Dky + f(x0),

where g0 = ∇f(x0), we see that the solution to (3.1.6) is obtained by setting

0 = ∇ϕ(y) = DT
kQDky +DT

k g0.

Now
DT
kQDk = [dTi Qdj]

k−1
i,j=0

= diag[dTi Qdi]
k−1
i=0 ,
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and
DT
k g0 = [dT0 g0, d

T
1 g0, . . . , d

T
k−1g, ]

T .

Hence

yi =
−dTi g0

dTi Qdi
for i = 0, . . . , k − 1.

Therefore, the solution (3.1.5) is

x∗k = x0 +
k−1∑
i=0

− dTi g0

dTi Qdi
di.

Consequently, the result will be established if we can show that

− dTi g0

dTi Qdi
= − dTi gi

dTi Qdi
(3.1.7)

for each i = 0, 1, . . . , k − 1. But this follows immediately from (3.1.4) since

αi = − dTi gi
dTi Qdi

=
dTi (Qxi − b)
dTi Qdi

= −dTi (Q(x0+α0d0+α1d1+...+αi−1di−1−b)
dTi Qdi

= − dTi g0
dTi Qdi

where the global minimum value of f is attained at x∗ and so satisfies Qx∗ = b. �

Corollary 3.1.2.1 In the method of Conjugate directions the gradients gk, k = 0, 1, . . . , n
satisfy

gTk di = 0 for i < k.

Proof: This follows from a general property of minimization on affine sets. Consider the
problem

minϕ(x)
subject to x ∈ x0 + S,

where ϕ : Rn → R is C1 and S is the subspace S := span {v1, . . . , vk}. If V is the matrix
whose columns are given by v1, . . . , vk, then this problem is equivalent to the problem

minϕ(x0 + V z)
subject to z ∈ Rk .

Setting φ̂(z) = ϕ(x0 +V z), we get that if z̄ solves the latter problem, then V T∇ϕ(x0 +V z̄) =
∇φ̄(z̄) = 0. Setting x̄ = x0 + V z̄, we conclude that x̄ solves the original problem if and only
if z̄ solves the latter problem in which case V T∇ϕ(x̄) = 0, or equivalently, vTi ∇ϕ(x̄) = 0 for
i = 1, 2, . . . , k. �
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3.2 The Conjugate Gradient Algorithm

The conjugate direction algorithm of the previous section appears to be seriously flawed in
that one must have on hand a set of conjugate directions {d0, . . . , dn−1} in order to apply it.
However, one builds a set of Q–conjugate directions as the algorithm proceeds. The example
of such a procedure studied in this section is called the conjugate gradient algorithm.

The C-G Algorithm:

Initialization: x0 ∈ Rn, d0 = −g0 = −∇f(x0) = b−Qx0.

For k = 0, 1, 2, . . .
αk := −gTk dk/dTkQdk
xk+1 := xk + αkdk
gk+1 := Qxk+1 − b
βk := gTk+1Qdk/d

T
kQdk

dk+1 := −gk+1 + βkdk
k := k + 1.

Theorem 3.2.1 Conjugate Gradient Theorem
The C-G algorithm is a conjugate direction method. If it does not terminate at xk, then

1. Span [g0, g1, . . . , gk] = span [g0, Qg0, . . . , Q
kg0]

2. Span [d0, d1, . . . , dk] = span [g0, Qg0, . . . , Q
kg0]

3. dTkQdi = 0 for i ≤ k − 1

4. αk = gTk gk/d
T
kQdk

5. βk = gTk+1gk+1/g
T
k gk.

Proof: We first prove (1)-(3) by induction. The results are clearly true for k = 0. Now
suppose they are true for k, we show they are true for k + 1. First observe that

gk+1 = gk + αkQdk

so that gk+1 ∈ Span[g0, . . . , Q
k+1g0] by the induction hypothesis on (1) and (2). Also gk+1 /∈

Span [d0, . . . , dk] otherwise gk+1 = 0 (by Theorem 3.1.2.1 since the method is a conjugate
direction method up to step k by the induction hypothesis. Hence gk+1 /∈ Span [g0, . . . , Q

kg0]
and so Span [g0, g1, . . . , gk+1] = Span [g0, . . . , Q

k+1g0], which proves (1).
To prove (2) write

dk+1 = −gk+1 + βkdk

so that (2) follows from (1) and the induction hypothesis on (2).
To see (3) observe that

dTk+1Qdi = −gk+1Qdi + βkd
T
kQdi.
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For i = k the right hand side is zero by the definition of βk. For i < k both terms vanish.
The term gTk+1Qdi = 0 by Theorem 3.1.2 since Qdi ∈ Span[d0, . . . , dk] by (1) and (2). The
term dTi Qdi vanishes by the induction hypothesis on (3).

To prove (4) write
−gTk dk = gTk gk − βk−1g

T
k dk−1

where gTk dk−1 = 0 by Theorem 3.1.2.
To prove (5) note that gTk+1gk = 0 by Theorem 3.1.2 because gk ∈ Span[d0, . . . , dk].

Hence

gTk+1Qdk =
1

αk
gTk+1[gk+1 − gk] =

1

αk
gTk+1gk+1.

Therefore,

βk =
1

αk

gTk+1gk+1

dTkQdk
=
gTk+1gk+1

gTk gk
.

�

Remarks:

1. The C–G method decribed above is a descent method since the values f(x0), f(x1), . . . , f(xn)
form a decreasing sequence. Moreover, note that

∇f(xk)
Tdk = −gTk gk and αk > 0 .

Thus, the C–G method behaves very much like the methods discussed at the beginning
of Chapter 2.

2. It should be observed that due to the occurrence of round-off error the C-G algorithm
is best implemented as an iterative method. That is, at the end of n steps, f may
not attain its global minimum at xn and the intervening directions dk may not be
Q-conjugate. Consequently, at the end of the nth step one should check the value
‖∇f(xn)‖. If it is sufficiently small, then accept xn as the point at which f attains its
global minimum value; otherwise, reset x0 := xn and run the algorithm again. Due to
the observations in remark above, this approach is guarenteed to continue to reduce
the function value if possible since the overall method is a descent method. In this
sense the C–G algorithm is self correcting.

3.3 Extensions to Non-Quadratic Problems

If f : Rn → R is not quadratic, then the Hessian matrix ∇2f(xk) changes with k. Hence the
C-G method needs modification in this case. An obvious approach is to replace Q by∇2f(xk)
everywhere it occurs in the C-G algorithm. However, this approach is fundamentally flawed
in its explicit use of ∇2f . By using parts (4) and (5) of the conjugate gradient Theorem 3.2.1
and by trying to mimic the descent features of the C–G method, one can obtain a workable
approximation of the C–G algorithm in the non–quadratic case.
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The Non-Quadratic C-G Algorithm

Initialization: x0 ∈ Rn, g0 = ∇f(x0), d0 = −g0, 0 < c < β < 1.
Having xk otain xk+1 as follows:
Check restart criteria. If a restart condition is satisfied, then reset x0 = xn, g0 = ∇f(x0),
d0 = −g0; otherwise, set

αk ∈
{
λ

∣∣∣∣∣ λ > 0,∇f(xk + λdk)
Td ≥ β∇f(xk)

Tdk, and
f(xk + λdk)− f(xk) ≤ cλ∇f(xk)

Tdk

}
xk+1 := xk + αkdk
gk+1 := ∇f(xk+1)

βk :=


gTk+1gk+1

gT
k
gk

Fletcher-Reeves

max
{

0,
gTk+1(gk+1−gk)

gT
k
gk

}
Polak-Ribiere

dk+1 := −gk+1 + βkdk
k := k + 1.

Remarks

1. The Polak-Ribiere update for βk has a demonstrated experimental superiority. One
way to see why this might be true is to observe that

gTk+1(gk+1 − gk) ≈ αkg
T
k+1∇2f(xk)dk

thereby yielding a better second–order approximation. Indeed, the formula for βk in
in the quadratic case is precisely

αkg
T
k+1∇2f(xk)dk
gTk gk .

2. Observe that the Hessian is never explicitly refered to in the above algorithm.

3. At any given iteration the procedure requires the storage of only 2 vectors if Fletcher-
Reeves is used and 3 vectors if Polak-Ribiere is used. This is of great significance if
n is very large, say n = 50, 000. Thus we see that one of the advantages of the C-G
method is that it can be practically applied to very large scale problems.

4. Aside from the cost of gradient and function evaluations the greatest cost lies in the
line search employed for the computation of αk.

We now consider appropriate restart criteria. Clearly, we should restart when k = n
since this is what we do in the quadratic case. But there are other issues to take into
consideration. First, since ∇2f(xk) changes with each iteration, there is no reason to think
that we are preserving any sort of conjugacy relation from one iteration to the next. In order
to get some kind of control on this behavior, we define a measure of conjugacy and if this
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measure is violated, then we restart. Second, we need to make sure that the search directions
dk are descent directions. Moreover, (a) the angle between these directions and the negative
gradient should be bounded away from zero in order to force the gradient to zero, and (b)
the directions should have a magnitude that is comparable to that of the gradient in order
to prevent ill–conditioning. The precise restart conditions are given below.

Restart Conditions

1. k = n

2. |gTk+1gk| ≥ 0.2gTk gk

3. −2gTk gk ≥ gTk dk ≥ −0.2gTk gk

Conditions (2) and (3) above are known as the Powell restart conditions.



Chapter 4

Matrix Secant Methods

4.1 Equation Solving

In this section we again study the problem of finding x ∈ Rn such that g(x) = 0 where
g : Rn → Rn is C1. Specifically, we will consider Newton-Like methods of a special type.
Recall that in a Newton-Like method the iteration scheme takes the form

xk+1 := xk −M−1
k g(xk),(4.1.1)

where Mk is meant to approximate g′(xk). In the one dimensional case, a choice of particular
note is the secant approximation

Mk =
g(xk−1)− g(xk)

xk−1 − xk
.(4.1.2)

With this approximation one has

g′(xk)
−1 −M−1

k =
g(xk−1)− [g(xk) + g′(xk)(xk−1 − xk)]

g′(xk)[g(xk−1)− g(xk)]
.

Also, near a point x∗ at which g′ is non–singular there exists an α > 0 such that

α‖x− y‖ ≤ ‖g(x)− g(y)‖.

Consequently, by the Quadratic Bound Lemma,

‖g′(xk)−1 −M−1
k ‖ ≤

L
2
‖xk−1 − xk‖2

α‖g′(xk)‖‖xk−1 − xk‖
≤ K‖xk−1 − xk‖

for some constant K > 0 whenever xk and xk−1 are sufficiently close to x∗. Therefore, by
Theorem 2.3.1, there secant method is locally two step quadratically convergent to a non–
singular solution of the equation g(x) = 0. An additional advantage of this approach is that
no extra function evaluations are required to obtain the approximation Mk.

61
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Unfortunately, the secant approximation (4.1.2 is meaningless in the n > 1 dimensional
case since division by vectors is undefined. However, this can be rectified by simply writing

Mk(xk−1 − xk) = g(xk−1)− g(xk).(4.1.3)

Equation (4.1.3) is called the Quasi-Newton equation (QNE) at xk and it determines Mk

along an n dimensional manifold in Rn×n. Thus equation (4.1.3) is not enough to uniquely
determine Mk since (4.1.3) is n linear equations in n2 unknowns. Consequently, we may
place further conditions on the update Mk if we wish to do so. In order to see what further
properties one would like the update to possess, let us consider an overall iteration scheme
based on (4.1.1). At every iteration we have (xk,Mk) and compute xk+1 by (4.1.1). Then
Mk+1 is constructed to satisfy (4.1.3). If Mk is close to g′(xk) and xk+1 is close to xk, then
Mk+1 should be chosen not only to satisfy (4.1.3) but also to be as “close” to Mk as possible.
In what sense should we mean “close” here? In order to facilitate the computations it is
reasonable to mean “algebraically” close in the sense that Mk+1 is only a rank 1 modification
of Mk, i.e. there are vectors u, v ∈ Rn such that

Mk+1 = Mk + uvT .(4.1.4)

Multiplying (1.3) by
sk := xk+1 − xk

and using (4.1.3) we find that

yk = Mk+1sk = Mksk + uvTsk

where yk := g(xk+1)− g(xk). Hence, if vTsk 6= 0, we obtain

u =
yk −Mksk
vTsk

and

Mk+1 = Mk +
(yk −Mksk)v

T

vTsk
.(4.1.5)

Equation (4.1.5) determines a whole class of rank one updates that satisfy the QNE where
one is allowed to choose v ∈ Rn as long as vTsk 6= 0. If sk 6= 0, then an obvious choice for v
is sk yielding the update

Mk+1 = Mk =
(yk −Mksk)s

T
k

sTksk
.(4.1.6)

This is known as Broyden’s update. Given the algebraically “close” updates in (4.1.5), it is
reasonable to ask whether there related updates that are analytically close.

Theorem 4.1.1 Let A ∈ Rn×n, s, y ∈ Rn, s 6= 0. Then for any matrix norms ‖ · ‖ and
‖| · ‖| such that

‖AB‖ ≤ ‖A‖ ‖|B‖|



4.1. EQUATION SOLVING 63

and

‖|vv
T

vTv
‖| ≤ 1,

the solution to
min{‖B − A‖ : Bs = y}(4.1.7)

is

A+ = A+
(y − As)sT

sTs
.(4.1.8)

In particular, (4.1.8) solves (4.1.7) when ‖ · ‖ is the `2 matrix norm, and (4.1.8) solves
(4.1.7) uniquely when ‖ · ‖ is the Frobenius norm.

Proof: Let B ∈ {B ∈ Rn×n : Bs = y}, then

‖A+ − A‖ = ‖(y − As)sT

sTs
‖ = ‖(B − A)

ssT

sTs
‖

≤ ‖B − A‖ ‖|ss
T

sTs
‖| ≤ ‖B − A‖.

Note that if ‖| · ‖| = ‖ · ‖2, then

‖vv
T

vTv
‖2 = sup{‖vv

T

vTv
x‖2 : ‖x‖2 = 1}

= sup{

√√√√(vTx)2

‖v‖2
: ‖x‖2 = 1}

= 1,

so that the conclusion of the result is not vacuous. For uniqueness observe that the Frobenius
norm is strictly convex and ‖A ·B‖F ≤ ‖A‖F‖B‖2. �

Therefore, the Broyden update (4.1.6) is both algebraically and analytically close to Mk.
These properties indicate that it should perform well in practice and indeed it does.

Algorithm: Broyden’s Method

Initialization: x0 ∈ Rn, M0 ∈ Rn×n

Having (xk,Mk) compute (xk+1,Mx+1) as follows:
Solve Mksk = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk)− g(xk+1)

Mk+1 : = Mk +
(yk −Mksk)s

T
k

sTksk
.

Due to its derivation we call methods based up (4.1.5) matrix secant methods. In the
literature they are also called Quasi-Newton methods.
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Observe that the derivation of (4.1.5) only relied upon the relations

Mk+1sk = yk

and
Mk+1 = Mk + uvT .

Thus by switching the roles of sk and yk it is possible to obtain an inverse updating scheme.
That is if instead of (4.1.1) we write

xk+1 := xk −Wkg(xk)

where Wk ≈ [g′(xk)]
−1, then a matrix secant method for updating Wk would be

Wk+1 := Wk +
(sk −Wkyk)y

T
k

yTk yk
,(4.1.9)

since we want the QNE

xk+1 − xk = sk −Wk+1yk = Wk+1(g(xk+1)− g(xk))

to hold. It would be interesting to determine if Wk = M−1
k , For this we require the following

well-know lemma.

Lemma 4.1.1 (Sherman-Morrison-Woodbury) Suppose A ∈ Rn×n, U ∈ Rn×k, V ∈ Rn×k

are such that both A−1 and (I + V TA−1U)−1 exist, then

(A+ UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1

Exercise: Prove Lemma 4.1.1.

The above lemma verifies that if M−1 exists and sTM−1y 6= 0, then

[M +
(y −Ms)sT

sTs
]−1 = M−1 +

(s−M−1y)sTM−1

sTM−1y
.(4.1.10)

Consequently, it is not true that the Wk’s obtained from (4.1.9) and the Mk’s from (4.1.6)
satisfy

Wk = M−1
k .

However, (4.1.10) does indicate a variation on both (4.1.6) and (4.1.9). Specifically, in (4.1.5)
one could choose v = Mkyk, in which case one does obtain the inverse of (4.1.9). Conversely,
one could replace (4.1.9) with

Wk+1 := Wk +
(sk −Wkyk)s

T
kWk

sTkWkyk
(4.1.11)

yielding the inverse of (4.1.6).
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On the surface computing the inverse updates appears to be more attractive since then
we need not solve the equation

Bksk = yk

for sk at every iteration. However, this approach can suffer from fatal numerical instabilities
if g′(x∗) is singular or nearly singular.

Although we do not pause to establish the convergence rates here, we do give the following
result due to Dennis and Moré (1974).

Theorem 4.1.2 Let g : Rn → Rn be continuously differentiable in an open convex set
D ⊂ Rn. Assume that there exists x∗ ∈ Rn and r, β > 0 such that x∗ + rB ⊂ D, g(x∗) = 0,
g′(x∗)−1 exists with ‖g′(x∗)−1‖ ≤ β, and g′ is Lipschitz continuous on x∗+ rB with Lipschitz
constant γ > 0. Then there exist positive constants ε and δ such that if ‖x0 − x∗‖2 ≤ ε and
‖B0 − g′(x0)‖ ≤ δ, then the sequence {xk} generated by the iteration xk+1 := xk + sk where sk solves 0 = g(xk) +Bks

Bk+1 := Bk +
(yk−Bksk)sTk

sT
k
sk

where yk = g(xk+1)− g(xk)

is well-defined with xk → x∗ superlinearly.

4.2 Minimization

In this section the underlying problem is one of minimization:

P : minimize
x∈Rn

f(x)

where f : Rn → R is C2. The basic idea is to modify and/or extend the matrix secant
methods of the previous section to the setting of minimization where one wishes to solve the
equation ∇f(x) = 0. In this context the QNE becomes

Mk+1sk = yk

where sk := xk+1 − xk and

yk := ∇f(xk+1)−∇f(xk).

A straightforward application of Broyden’s method would yield the update

Mk+1 = Mk +
(yk −Mksk)s

T
k

sTksk
.

However, this is unsatisfactory for two reasons:

1. Since Mk is intended to approximate ∇2f(xk) it is desirable that Mk be symmetric.
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2. Since we are concerned with minimization, then at least locally one can assume the
second order sufficiency condition holds. Consequently, we would like the Mk’s to be
positive definite.

To address problem 1 above, one could return to equation (4.1.5) for an alternate update
that preserves symmetry. Such an update is uniquely obtained by setting

v = (yk −Mksk).

This is called the symmetric rank 1 update or SR1. Although this update can on occasion
exhibit problems with numerical stability, it has recently received a great deal of renewed
interest. The stability problems occur whenever

vTsk = ∇f(xk)
TM−1

k (∇f(xk)−∇f(xk+1))

tends to zero faster than ‖∇f(xk)‖2.
The following alternate strategy has been proposed by Powell. One begins by symmetriz-

ing the Broyden update

M1 = M +
(y −Ms)sT

sTs
.

This is done by replacing M1 with its symmetric part

M2 =
1

2
(M1 +M

T

1 ).

But then the QNE fails. To remedy this set

M3 = M2 +
(y −M2s)s

T

sTs
.

But again symmetry fails so set

M4 =
1

2
(M3 +M

T

3 ).

Proceeding in this way we get a sequence {Mk} withM2k+1 = M2k + (y−M2ks)s
T

sT s

M2(K+1) = 1
2
(M2k+1 +M

T

2k+1)

for k = 0, 1, . . .. Since the set S1 = {M ∈ Rn×n : Ms = y} is an affine subset of Rn×n

and the set S2 = {M ∈ Rn×n : M is symmetric} is a subspace of Rn×n, and the equations
(4.2) represent a sequence of alternating orthogonal projections in Rn×n onto S1, and S2

respectively, the sequence {Mk} must converge to a fixed point solving the proximation
problem

min ‖M −M‖F
subject to M ∈ S1, (M −M) ∈ S2.
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It is possible to show that the solution is

M = M +
(y −Ms)sT + s(y −Ms)T

sTs
− (y −Ms)TsssT

(sTs)2
.(4.2.12)

The update (4.2.12) is called the Powell-symmetric-Broyden (PSB) update.
Update (4.2.12) was derived to preserve both symmetry and stability, however there is

no guarantee that if M is positive definite, then M is also. We now address the question
of when this is possible. That is, suppose M ∈ Rn×n symmetric and positive definite, we
wish to find M satisfying the QNE such that M is also symmetric and positive definite. Let
M = LLT be the Cholesky factorization of M . If M is to be symmetric and positive definite
then there is a matrix J ∈ Rn×n such that M = JJT . The QNE implies that if

JTs = v(4.2.13)

then
Jv = y.(4.2.14)

Let us try to apply the Broyden update technique to (4.2.14), J , and L. That is, suppose
that

J = L+
(y − Lv)vT

vTv
.(4.2.15)

Then by (4.2.13)

v = JTs = LTs+
v(y − Lv)Ts

vTv
.(4.2.16)

This expression implies that v must have the form

v = αLTs

for some α ∈ R. Substituting this back into (4.2.16) we get

αLTs = LTs+
αLTs(y − αLLTs)Ts

α2sTLLTs
.

Hence

α2 =

[
sTy

sTMs

]
.

Consequently, such a matrix J satisfying (4.2.16) exists only if sTy > 0 in which case

J = L+
(y − αMs)sTL

αsTMs
,

with

α =

[
sTy

sTMs

]1/2

,
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yielding

M = M +
yyT

yTs
− MssTM

sTMs
.(4.2.17)

Moreover, the Cholesky factorization for M can be obtained directly from the matrices J .
Specifically, if the QR factorization of JT is JT = QR, we can set L = R yielding

M = JJT = RTQTQR = LL
T
.

The question of course remains as to how one can assure the positivity of the product
sTy. Recall that in the iterative context

s = sk = −λkM−1
k ∇f(xk)

and
y = yk = ∇f(xk+1)−∇f(xk).

Hence

yTs = yTk sk = ∇f(xk+1)Tsk −∇f(xk)
Tsk

= λk∇f(xk + λkdk)
Tdk − λk∇f(xk)

Tkk ,

where dk := −M−1
k ∇f(xk). Now since Mk is positive definite the direction dk is a descent

direction for f at xk and so i λk > 0. Therefore, to assure that yTs > 0 we need only show
that we can choose λk > 0 so that

∇f(xk + λkdk)
Tdk ≥ β∇f(xk)

Tdk(4.2.18)

for some β ∈ (0, 1).
Note that for any descent direction d of f at xk we can choose

λ := arg min{f(xk + λd) : λ > 0}

in which case λ = +∞ or
∇f(xk + λd)Td = 0.

Therefore, λk can always be chosen to make yTk sk > 0, and so the updating strategy (4.2.17)
can be used to guarantee both symmetry and positive definiteness if a suitable line search is
employed. We return to the question of what a suitable line search is later in this section.

The update (4.2.17) is called the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) update and is currently considered the best available matrix secant type update
for minimization. Observe in (4.2.17) that if both M and M are positive definite, then they
are both invertible. The Sherman-Morrison-Woodbury formula shows that the inverse is
given by

M
−1

= M−1 +
(s−M−1y)sT + s(s−M−1y)T

yTs

− (s−M−1y)TyssT

(yTs)2
.
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Thus the corresponding inverse updating scheme for the BFGS update is

W = W +
(s−Wy)sT + s(s−Wy)T

yTs

− (s−Wy)TyssT

(yTs)2
.

One can now use this representation of the inverse to write down an alternate update of
M , it is

M̂ = M +
(y −Ms)yT + y(y −Ms)T

yTs

− (y −Ms)TyyT

(yTs)2
.

This is known as the DFP formula named after Davidon-Fletcher-Powell.
One can show that the DFP, BFGS, and SR1 updates are all members of a one parameter

family of updates known as the Broyden family. In order to see this set

a := sTMs, b := yTs, c := yTWy,

and, assuming a, b, and c are nonzero, define two vectors

m :=
y

b
− Ms

a

and

w :=
s

b
− Wy

c

satisfying mTs = 0 = wTy. Then define two parameterized families of matrices by

M̄(µ) := M − MssTM

a
+
yyT

b
+ µammT ,(4.2.19)

and

W̄ (ν) := W − WyyTW

c
+
ssT

b
+ νcwwT .(4.2.20)

The following table illustrates the relationship between the updates and various values of µ
and ν:

Update µ ν
DFP 1 0
BFGS 0 1
SR1 b/(b− a) b/(b− c)

We now turn to the study of an appropriate line search procedure. In particular, this pro-
cedure should enforce inequality (4.2.18). The line search that we consider is a combination
of the Armijo-Goldstein procedure and (4.2.18).
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Lemma 4.2.1 Let f : Rn → R be C1 and let x, d ∈ Rn be given so that ∇f(x)Td < 0 and the
set {f(x+λd) : λ > 0} is bounded below. Then for every choice of the scalars 0 < c < β < 1
the set {

λ > 0
∣∣∣∣ f(x+ λd)− f(x) ≤ cλ∇f(x)Td, and

∇f(x+ λd)Td ≥ β∇f(x)Td

}
(4.2.21)

is non-empty.

Exercise: Prove Lemma 4.2.1.

Thus it is possible to choose a steplength λ such that both the Armijo inequality

f(x+ λd)− f(x) ≤ cλ∇f(x)Td

and inequality (4.2.18) are satisfied. Concerning this steplength Powell [1976] has established
the following convergence result.

Theorem 4.2.1 Let f : Rn → R be C2. Assume that

1. ∇2f is Lipschitz continuous, and

2. ∇2f is strongly convex.

Let x0 ∈ Rn, H0 ∈ Rn×n symmetric and positive definite, and {xk} be a sequence defined by

sk := −M−1
k ∇f(xk), xk+1 = xk + λksk

where λk is chosen from the set defined in (4.2.21) with λk = 1 being used whenever it is a
permissible value, and Mk+1 is defined as the BFGS update

Mk+1 := Mk +
yky

T
k

yTk sk
− MksKs

T
kMk

sTkHksk
.

Then the sequences {xk} and {Mk} are well defined and {xk} converges q-superlinearly to x
the unique point at which f attains its global minimum value.

We omit the proof of the above result as it is rather involved. It may be found in

M.J.D. Powell, “Some global convergence properties of a
variable metric algorithm without exact line searches,” in

Nonlinear Programming. R. Cottle and C. Lemke, eds. AMS,
Providence, R.I. (1976) 53–72.

We mention though that it is still an open problem as to whether a similar result holds
for the DFP update.

The variable metric methods discussed in this section are by far the methods of choice
for most unconstrained optimization problems when good derivative approximations are
available. Observe that one could employ the PSB, BFGS, or DFP formulas to do inverse
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updating, but in general this is not done due to possible numerical instabilities that can arise
when the hessians are nearly singular. If one wishes to investigate these methods further an
excellent survey article is

J.E. Dennis, Jr. and J. J. Moré, “Quasi-Newton methods,
motivation and theory,” SIAM Review 19 (1977) 46–89.
also see

J.E. Dennis, Jr., and R. B. Schnabel, “Numerical Methods
for Unconstrained Optimization and Nonlinear Equations,”

Prentice-Hall Inc. (1983).
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Chapter 5

Optimality Conditions: Constrained
Optimization

5.1 First–Order Conditions

In this section we consider first–order optimality conditions for the constrained problem

P : minimize f0(x)
subject to x ∈ Ω,

where f0 : Rn → R is continuously differentiable and Ω ⊂ Rn is closed and non-empty. A
very general result can be obtained by simply observing that x̄ is a local solution to P if
f ′0(x̄ : d) ≥ 0 for all directions d pointing into Ω. To make this statement more precise we
define the tangent cone to Ω at a point x ∈ Ω to be the set of limiting directions obtained
from sequences in Ω that converge to x. Specifically, the tangent cone is given by

TΩ(x) := {d : ∃τi ↘ 0, and {xi} ⊂ Ω, with xi → x, such that τ−1
i (xi − x)→ d}.

Theorem 5.1.1 If x̄ is a local solution to P, the

f ′0(x̄; d) ≥ 0 for all d ∈ TΩ(x̄).

Proof: The result follows immediately from the fact that

f ′0(x; d) = lim
τ↘0

f0(x̄+ τd)− f0(x̄)

τ
= lim

s→d
τ↘0

f0(x̄+ τs)− f0(x̄)

τ

due to the fact that f0 is continuously differentiable (just apply the Mean–Value Theorem).
�

Although this theorem is a first–order optimality condition, it is not particularly useful
without a more concrete description for the set TΩ(x̄). Recall that in the case of uncon-
strained optimization we derived the first–order condition ∇f0(x̄) = 0. This condition is

73
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testable and provides a basis for stopping criteria for our algorithms. In its current form,
the condition given by Theorem 5.1.1 has niether of these properties. The derivation of a
more useful first–order condition requires a more concrete description of the set Ω.

We begin by assuming that Ω has the form

Ω := {x : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m},(5.1.1)

where each fi : Rn → R is continuously differentiable on Rn. Observe that if x ∈ Ω
and d ∈ TΩ(x) then there are sequences {xk} ⊂ Ω and τk ↘ 0 with xk → x such that
τ−1
k (xk − x)→ x. Setting dk = τ−1

k (xk − x) for all k we have that

f ′i(x; d) = lim
fi(x+ τkdk)− f(x)

τk

equals 0 for i ∈ {s+ 1, . . . , m} and is less than or equal to 0 for i ∈ A(x) where

A(x) := {i : i ∈ {1, . . . , s}, fi(x) = 0} .

Consequently,

TΩ(x) ⊂ {d : ∇fi(x)Td ≤ 0, i ∈ A(x), ∇fi(x)Td = 0, i = s+ 1, . . . ,m} .

Clearly the set on the right hand side of the inclusion above is a much more tractable
representation with respect to the optimality condition given in Theorem 5.1.1. Moreover,
it is a somewhat unusual case where these two sets differ. For this reason we make the
following definition.

Definition 5.1.1 We say that the set Ω is regular at x ∈ Ω if

TΩ(x) = {d ∈ Rn : f ′i(x; d) ≤ 0, i ∈ A(x), f ′i(x; d) = 0 i = s+ 1, . . . ,m}.

Unfortunately, not every set is regular.

Exercise: Show that the set

Ω := {x ∈ R2| − x3
1 ≤ x2 ≤ x3

1}

is not regular at the origin. Graph the set Ω.

Before discussing conditions under which one can guarantee the regularity of Ω at a point
x ∈ Ω, we will use regularity to develop a set of tractable first–order necessary conditions for
optimality in P . In order to do this we need to recall the strong duality theorem of linear
programming.

Theorem 5.1.2 (The Duality Theorem of Linear Programming) Let A ∈ Rs×n, a ∈ Rs,
B ∈ R(m−s)×n, b ∈ Rm−s, and c ∈ Rn, and consider the pair of linear programs

max cTx
subject to Ax ≤ a,Bx = b

(5.1.2)
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and
min aTu+ bTv
subject to ATu+BTv = c, u ≥ 0.

(5.1.3)

The linear program (5.1.3) is called the dual of (5.1.2). They are related as follows:

1. The L.P. (5.1.2) has finite value if and only if (5.1.3) has finite value in which case
these values coincide and there exist an x ∈ Rn feasible for (5.1.2) and dual variables
(u, v) feasible for (5.1.3) such that x solves (5.1.2), (u, v) solves (5.1.3), and

cTx = uTAx+ vTBx = aTu+ bTv.

2. If (5.1.2) [(5.1.3)] is infeasible then either (5.1.3) [(5.1.2)] is infeasible or the optimal
value in (5.1.3) [(5.1.2)] is −∞[+∞]. �

Although we will not take the time to establish this fundamental result we do observe
that if x is feasible for (5.1.2) and (u, v) is feasible for (5.1.3) then

cTx = [ATu+BTv]Tx = uT (Ax) + vT (Bx)
≤ aTu+ bTv.

Hence (5.1.2) ≤ (5.1.3) and every dual feasible pair (u, v) provide an upper bound to (5.1.2).
We will now apply Theorem 5.1.1 in conjunction with Theorem 5.1.2 to obtain the main

result of this section. Let x ∈ Ω be a local solution to P at which Ω is regular and consider
the the linear program

max (−∇f0(x))Td
subject to ∇fi(x0)Td ≤ 0 i ∈ I(x0)

∇fi(x0)Td = 0 i = s+ 1, . . . ,m.
(5.1.4)

According to Theorem 5.1.2, the dual of (5.1.4) is the linear program

min 0
subject to

∑
i∈I(x0) ui∇fi(x0) +

∑m
i=s+1 ui∇fi(x0) = −∇f0(x0)

0 ≤ ui, i ∈ I(x0).
(5.1.5)

From our assumptions on x0, Theorem 5.1.1 tells us that the maximum in (5.1.4) is less than
or equal to zero. But d = 0 is feasible for (5.1.4), hence the maximum value in (5.1.4) is
zero. Therefore, by Theorem 5.1.2, the linear program (5.1.5) is feasible, that is, there exist
scalars ui, i ∈ I(x0) ∪ {s+ 1, . . . ,m} with ui ≥ 0 for i ∈ I(x0) such that

0 = ∇f0(x0) +
∑

i∈I(x0)

ui∇fi(x0) +
m∑

i=s+1

ui∇fi(x0).(5.1.6)

This observation yields the following result.
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Theorem 5.1.3 Let x0 ⊂ Ω be a local solution to P at which Ω is regular. Then there exist
u ∈ Rm such that

1. 0 = ∇xL(x0, u),

2. 0 = uifi(x0) for i = 1, . . . , s, and

3. 0 ≤ ui, i = 1, . . . , s,

where the mapping L : Rn × Rm → R is defined by

L(x, u) := f0(x) +
m∑
i=1

uifi(x)

and is called the Lagrangian for the problem P.

Proof: For i ∈ I(x0)∪{s+1, . . . ,m} let ui be as given in (5.1.6) and for i ∈ {1, . . . , s}\I(x0)
set ui = 0. Then this choice of u ∈ Rm satisfies (1)–(3) above. �

Definition 5.1.2 Let x ∈ Rn and u ∈ Rm. We say that (x, u) is a Kuhn-Tucker pair for
P if

1. fi(x0) ≤ 0 i = 1, . . . , s, fi(x0) = 0 i = s+ 1, . . . ,m (Primal feasibility),

2. ui ≥ 0 for i = 1, . . . , s (Dual feasibility),

3. 0 = uifi(x) for i = 1, . . . , s (complementarity), and

4. 0 = ∇xL(x, u) (stationarity of the Lagrangian).

Given x ∈ Rn, if there is a u ∈ Rm such that (x, u) is a Kuhn-Tucker pair for P, then
we say that x is a stationary point for P. �

5.2 Regularity and Constraint Qualifications

We now briefly discuss conditions that yield the regularity of Ω at a point x ∈ Ω. These
conditions should be testable in the sense that there is a finitely terminating algorithm
that can determine whether they are satisfied or not satisfied. The condition that we will
concentrate on is the so called Mangasarian-Fromovitz constraint qualification (MFCQ).

Definition 5.2.1 We say that a point x ∈ Ω satisfies the Mangasarian-Fromovitz con-
straint qualification (or MFCQ) at x if

1. there is a d ∈ Rn such that

∇fi(x)Td < 0 for i ∈ I(x),
∇fi(x)Td = 0 for i = s+ 1, · · · ,m,

and



5.2. REGULARITY AND CONSTRAINT QUALIFICATIONS 77

2. the gradients {∇fi(x)|i = s+ 1, · · · ,m} are linearly independent.

We have the following key result which we shall not prove.

Theorem 5.2.1 (MFCQ → regularity) Let fi : Rn → R, i = 1, 2, · · · ,m be C1 near
x̄ ∈ Ω. If the MFCQ holds at x̄, then Ω is regular at x̄.

The MFCQ is algorithmically verifiable. This is seen by considering the LP

min 0
subject to ∇fi(x̄)Td ≤ −1 i ∈ I(x̄)

∇fi(x̄)Td = 0 i = s+ 1, · · · ,m.
(5.2.7)

Cleary, if the MFCQ is satisfied at x̄ if and only if the above LP is feasible and the gradients
{∇fi(x̄) | i = s + 1, · · · ,m} are linearly independent. This observation also leads to a dual
characterization of the MFCQ by considering the dual of the LP (5.2.7).

Proposition 5.2.2 The MFCQ is satisfied at a point x̄ ∈ Ω if and only if the only solution
to the system

m∑
i=1

ui∇fi(x̄) = 0,

uifi(x̄) = 0 i = 1, 2, · · · , s, and

ui ≥ 0 i = 1, 2, · · · , s,

is ui = 0, i = 1, 2, · · · ,m.

Proof: The dual the LP (5.2.7) is the LP

min
∑
i∈I(x̄) ui

subject to
∑
i∈I(x̄) ui∇fi(x̄) +

∑m
i=s+1 ui∇fi(x̄) = 0

0 ≤ ui, i ∈ I(x̄).
(5.2.8)

This LP is always feasible, simply take all ui’s equal to zero. Hence, by Theorem 5.1.2, the
LP (5.2.7) is feasible if and only if the LP (5.2.8) is finite valued in which case the optimal
value in both is zero. That is, the MFCQ holds at x̄ if and only if the optimal value in
(5.2.8) is zero and the gradients {∇fi(x̄) | i = s + 1, · · · ,m} are linearly independent. The
latter statement is equvalent to the statement that the only solution to the system

m∑
i=1

ui∇fi(x̄) = 0,

uifi(x̄) = 0 i = 1, 2, · · · , s, and

ui ≥ 0 i = 1, 2, · · · , s,

is ui = 0, i = 1, 2, · · · ,m. �
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Techniques similar to these show that the MFCQ is a local property. That is, if it is
satisfied at a point then it must be satisfied on a neighborhood of that point. The MFCQ
is a powerful tool in the analysis of constraint systems as it implies many useful properties.
One such property is established in the following result.

Theorem 5.2.2 Let x̄ ∈ Ω be a local solution to P at which the set of Kuhn-Tucker multi-
pliers

K–T(x̄) :=

u ∈ Rm

∣∣∣∣∣∣∣
∇xL(x̄, u) = 0

uifi(x̄) = 0, i = 1, 2, · · · , s,
0 ≤ ui, i = 1, 2, · · · , s

(5.2.9)

is non-empty. Then K–T(x̄) is a compact set if and only if the MFCQ is satisfied at x̄.

Proof: (⇒) If MFCQ is not satisfied at x̄, then from Theorem 5.1.2, Proposition 5.2.2, and
the LP (5.2.8) the existence of a non-zero vector ū ∈ Rm satisfying

m∑
i=1

ui∇fi(x̄) = 0 and 0 ≤ ui with 0 = uifi(x̄) for i = 1, 2, · · · , s.

Then for each u ∈ K–T(x̄) we have that u + tū ∈ K–T(x̄) for all t > 0. Consequently,
K–T(x̄) cannot be compact.
(⇐) If K–T(x̄) is not compact, there is a sequence {uj} ⊂ K–T(x̄) with ‖uj‖ ↑ +∞. With
no loss is generality, we may assume that

uj

‖uj‖
→ u.

But then
ui ≥ 0, i = 1, 2, · · · , s,

uifi(x̄) = limi→∞
uj

‖uj‖fi(x̄) = 0, i = 1, 2, · · · , s, and∑m
i=1 uifi(x̄) = limi→∞

∇xL(x̄,uj)
‖uj‖ = 0.

Hence, by Proposition 5.2.2, the MFCQ cannot be satisfied at x̄. �

Before closing this section we introduce one more constraint qualification. This is the so
called LI condition and is associated with the uniqueness of the multipliers..

Definition 5.2.3 The LI condition is said to be satisfied at the point x ∈ Ω if the constraint
gradients

{∇fi(x) | i ∈ I(x) ∪ {s+ 1, · · · ,m}}

are linearly independent.

Clearly, the LI condition implies the MFCQ. However, it is a much stronger condition in
the presence of inequality constraints. In particular, the LI condition implies the uniqueness
of the multipliers at a local solution to P .
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5.3 Second–Order Conditions

Second–order conditions are introduced by way of the Lagrangian. As is illustrated in the
following result, the multipliers provide a natural way to incorporate the curvature of the
constraints.

Theorem 5.3.1 Let Ω have representation (5.1.1) and suppose that each of the functions
fi, i = 0, 1, 2, . . .m are C2. Let x ∈ Ω be such that Ω is regular at x. If (x, u) ∈ Rn × Rm is
a Kuhn-Tucker pair for P such that

dT∇2
xL(x, u)d > 0

for all d ∈ TΩ(x), d 6= 0, with ∇f0(x)Td = 0, then there is an ε > 0 and ν > 0 such that

f0(x) ≤ f0(x)− ν‖x− x‖2

for every x ∈ Ω with ‖x− x‖ ≤ ε, in particular x is a strict local solution to P.

Proof: Suppose to the contrary that no such ε > 0 and ν > 0 exist, then there exist
sequences {xk} ⊂ Ω, {νk} ⊂ R+ such that xk → x, νk ↓ 0, and

f0(xk) ≤ f0(x) + νk‖xk − x‖2

for all k = 1, 2, . . .. Now for every x ∈ Ω we know that uTf(x) ≤ 0 and 0 = uTf(x) where
the ith component of f : Rn → Rm is fi. Hence

L(xk, u) ≤ f0(xk) ≤ f0(x) + νk‖xk − x‖2

= L(x, u) + νk‖xk − x‖2.

Therefore,
f0(x) +∇f0(x)T (xk − x) + o(‖xk − x‖) ≤ f0(x) + νk‖xk − x‖2(5.3.10)

and
L(x, u) +∇xL(x, u)T (xk − x)

+1
2
(xk − x)T∇2

xL(x, u)(xk − x) + o(‖xk − x‖2)
≤ L(x, u) + νk‖xk − x‖2 .

(5.3.11)

Now, with no loss of generality, we can assume that

dk :=
xk − x
‖xk − x‖

→ d ∈ TΩ(x).

By dividing (5.3.10) through by ‖xk − x‖ and taking the limit we find that ∇f0(x)Td ≤ 0.
Since Ω is regular at x, we know that

TΩ(x) = {d : ∇fi(x)Td ≤ 0, i ∈ I(x), ∇fi(x)Td = 0, i = s+ 1, . . . ,m}.
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Therefore ∇fi(x)Td ≤ 0, i ∈ I(x)∪{0} and ∇fi(x)Td = 0 for i = s+ 1, . . . ,m. On the other
land, (x, u) is a Kuhn-Tucker point so

∇f0(x)Td = −
∑
i∈I(x)

ui∇fi(x)Td ≥ 0.

Hence ∇f0(x)Td = 0, so that
d
T∇2

xL(x, u)d > 0.

But if we divide (5.3.11) by ‖xk − x‖2 and take the limit, we arrive at the contradiction

1

2
d
T∇2

xL(x, u)d ≤ 0,

whereby the result is established. �

The assumptions required to establish Theorem 5.3.1 are somewhat strong but they do
lead to a very practical and, in many cases, satisfactory second-order sufficiency result.
In order to improve on this result one requires a much more sophisticated mathematical
machinery. We do not take the time to develop this machinery. Instead we simply state
a very general result. The statement of this result employs the entire set of Kuhn-Tucker
multipliers K–T(x̄).

Theorem 5.3.2 Let x ∈ Ω be a point at which Ω is regular.

1. If x is a local solution to P, then K–T(x) 6= ∅, and for every d ∈ TΩ(x̄) there is a
u ∈ K–T(x) such that

dT∇2
xL(x, u)d ≥ 0.

2. If K–T(x) 6= ∅, and for every d ∈ TΩ(x̄), d 6= 0, for which ∇f0(x)Td = 0 there is a
u ∈ K–T(x) such that

dT∇2
xL(x, u)d > 0,

then there is an ε > 0 and ν > 0 such that

f0(x) ≤ f0(x)− ν‖x− x‖2

for every x ∈ Ω with ‖x− x‖ ≤ ε, in particular x is a strict local solution to P.

5.4 Optimality Conditions in the Presence of Convex-

ity

Just as in the unconstrained case, necessary conditions for optimality become sufficient
conditions in the presence of convexity. A key observation in this regard is the equivalence

TΩ(x) =
⋃
λ≥0

(Ω− x) .(5.4.12)
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This equivalence can be refined to

TΩ(x) =
⋃
λ≥0

(Ω− x) .(5.4.13)

if it is further assumed that Ω is polyhedral.

Theorem 5.4.1 If in the problem P both the function f0 and the set Ω are assumed to be
convex, then x0 is the global solution to P if and only if

f ′0(x0; y − x0) ≥ 0

for all y ∈ Ω.

Proof: By Theorem 5.1.1, we know that if x0 is the global solution to P , then f ′0(x0; d) ≥ 0
for all d ∈ TΩ(x). Thus, in particular, this inequality holds for d = y − x0 for all y ∈ Ω due
to the equivalence 5.4.12.

In order to see the reverse implication recall that f ′0(x; y − x) ≤ f0(y) − f0(x) for all
x, y ∈ Rn. Therefore,

0 ≤ f ′0(x0; y − x) ≤ f0(y)− f0(x0)

for all y ∈ Rn. �

The assumption of convexity also yields a somewhat different second–order result. In
particular, we now obtain a second–order necessary condition.

Theorem 5.4.2 Let f0 : Rn → R be C2 and x be an element of the convex set Ω.

1. (necessity) If x ∈ Rn is a local solution to P with Ω a polyhedral convex set, then
∇f0(x)T (y − x) ≥ 0 for all d ∈ TΩ(x̄) and

dT∇2f0(x)d ≥ 0

for all d ∈ TΩ(x̄) with ∇f(x)Td = 0.

2. (sufficiency) If x ∈ Rn is such that ∇f0(x)T (y − x) ≥ 0 for all d ∈ TΩ(x̄) and

dT∇2f0(x)d > 0

for all d ∈ TΩ(x̄)\{0} with ∇f0(x)Td = 0, then there exist ε, ν > 0 such that

f0(x) ≤ f0(x)− ν‖x− x‖2

for all x ∈ Ω with ‖x− x̄‖ ≤ ε.
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Proof: (1) Let ε > 0 be such that f0(x) ≤ f0(x) for all x ∈ Ω with ‖x − x‖ ≤ ε and let
d ∈ TΩ(x̄) =

⋃
λ≥0(Ω−x̄). Then there is a y ∈ Ω, y 6= x, and a λ0 > 0 such that d = λ0(y−x).

Set λ = min{λ0, ε(λ0‖y − x‖)−1} > 0 so that x + λd ∈ Ω and ‖x − (x + λd)‖ ≤ ε for all
λ ∈ [0, λ]. By hypothesis, we now have

f0(x) ≤ f0(x+ λd)

= f0(x) + λ∇f0(x)T (y − x) + λ2

2
dT∇2f0(x)d+ o(λ2)

≤ f0(x) + λ2

2
dT∇2f0(x)d+ o(λ2),

where the second inequality follows from Theorem 5.4.1. Therefore
dT∇2f0(x)d ≥ 0.

(2) We show that f0(x) ≤ f0(x) − ν‖x − x‖2 for some ν > 0 for all x ∈ Ω near x̄. Indeed,
if this were not the case there would exist sequences {xk} ⊂ Ω, {νk} ⊂ R+ with xk → x,
νk ↓ 0, and

f0(xk) < f0(x) + νk‖xk − x‖2

for all k = 1, 2, . . . where, with no loss of generality, xk−x
‖xk−x‖

→ d. Clearly, d ∈ TΩ(x̄).
Moreover,

f0(x) +∇f0(x)T (xk − x) +o(‖xk − x‖)
= f0(xk)
≤ f0(x) + νk‖xk − x‖2

so that ∇f0(x)Td = 0.
Now, since ∇f0(x)T (xk − x) ≥ 0 for all k = 1, 2, . . .,

f0(x) + 1
2
(xk − x)T∇2f0(x)(xk − x) + o(‖xk − x‖2)

≤ f0(x) +∇f0(x)T (xk − x) + 1
2
(xk − x)T∇2f0(x)(xk − x)

+o(‖xk − x‖2)
= f0(xk)
< f0(x) + νk‖xk − x‖2.

Hence, (
xk − x
‖xk − x‖

)T
∇2f0(x)

(
xk − x
‖xk − x‖

)
≤ νk +

o(‖xk − x‖2)

‖xk − x‖2

Taking the limit in k we obtain the contradiction

0 < dT∇2f0(x)d ≤ 0,

whereby the result is established. �

Although it is possible to weaken the assumption of polyhedrality in Part 1. of the above
theorem, such weakenings are somewhat artificial as they essentially imply that TΩ(x) =⋃
λ≥0(Ω− x). The following example illustrates what can go wrong when the assumption of

polyhedrality is dropped.
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Example: Consider the problem

min 1
2
(x2 − x2

1)
subject to 0 ≤ x2, x

3
1 ≤ x2

2.

Observe that the constraint region in this problem can be written as Ω := {(x1, x2)T :

|x1|
3
2 ≤ x2}, therefore

f0(x) =
1

2
(x2 − x2

1)

≥ 1

2
(|x1|

3
2 − |x1|2)

=
1

2
|x1|

3
2 (1− |x1|

1
2 ) > 0

whenever 0 < |x1| ≤ 1. Consequently, the origin is a strict local solution for this problem.
Nonetheless,

TΩ(0) ∩ [∇f0(0)]⊥ = {(δ, 0)T : δ ∈ R},

while

∇2f0(0) =

[
−1 0
0 0

]
.

That is, even though the origin is a strict local solution, the hessian of f0 is not positive
semidefinite on TΩ(0).

In employing the second-order conditions given above, one needs to be careful about the
relationship between the hessian of f0 and the set K := TΩ(x) ∩ [∇f0(x)]⊥. In particular,
the positive definiteness (or semidefiniteness) of the hessian of f0 on the cone K does not
necessarily imply the positive definiteness (or semidefiniteness) of the hessian of f0 on the
subspace spaned by K. This is illustrated by the following example.

Example: Consider the problem

min(x2
1 − 1

2
x2

2)
subject to −x1 ≤ x2 ≤ x1.

Clearly, the origin is the unique global solution for this problem. Moreover, the constraint
region for this problem, Ω, satisfies

TΩ(0) ∩ [∇f(0)]⊥ = TΩ(0) = Ω ,

with the span of Ω being all of R2. Now, while the hessian of f0 is positive definite on Ω, it
is not positive definite on all of R2.

In the polyhedral case it is easy to see that the sufficiency result in Theorem 5.4.2 is
equivalent to the sufficiency result of Theorem 5.3.1. However, in the nonpolyhedral case,
these results are not comparable. It is easy to see that Theorem 5.4.2 can handle more
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general situations than Theorem 5.4.2 even if Ω is given in the form (5.1.1). Just let one
of the active constraint functions be nondifferentiable at the solution. On the other hand,
Theorem 5.4.2 can provide information when Theorem 5.4.2 does not. This is illustrated by
the following example.

Example: Consider the problem

minx2

subject to x2
1 ≤ x2.

Clearly, x̄ = 0 is the unique global solution to this convex program. Moreover,

f0(x̄) +
1

2
‖x− x̄‖ =

1

2
(x2

1 + x2
2)

≤ 1

2
(x2 + x2

2)

≤ x2 = f0(x)

for all x in the constraint region Ω with ‖x − x̄‖ ≤ 1. It is easily verified that this growth
property is predicted by Theorem 5.4.2.

5.5 Application to Solving Trust-Region Subproblems

Let us recall the form of the basic trust-region subproblem for unconstrained minimization:

(TR) min
‖x‖≤∆

cTx+
1

2
xTQx

where Q ∈ Rn×n
s , c ∈ Rn, and ∆ > 0. In this discussion, we assume that the norm is the

usual Euclidean norm ‖ · ‖2. Although the matrix Q is not assumed to be positive semi-
definite, this problem behaves very much like a convex programming problem with respect
to its optimality conditions.

Theorem 5.5.1 Consider the problem (TR). A point x̄ ∈ ∆B solves (TR) if and only if
there is a λ ≥ 0 such that

(a) λ[‖x‖ −∆] = 0.

(b) c+ (Q+ λI)x = 0, and

(c) Q+ λI is positive semi-definite.

Proof: (=⇒) First observe that since ‖0‖ < ∆ the Slater constraint qualification holds.
Therefore there exists λ ≥ 0 such that (a) and (b) hold. To see (c) observe that for every
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x ∈ ∆B we have

0 ≤ cTx+
1

2
xTQx− cTx− 1

2
xTQx

= −xT (Q+ λI)x+
1

2
xTQx+ xT (Q+ λI)x− 1

2
xTQx

=
1

2
xTQx− xTQx+

1

2
xQx+ λ

[
1

2
xTx− 2xTx+

1

2
xTx

]
+
λ

2
xTx− λ

2
xTx

=
1

2
(x− x)T (Q+ λI)(x− x) +

λ

2
[‖x‖2 − ‖x‖2]

so
λ[‖x‖2 − ‖x‖2] ≤ (x− x)T (Q+ λI)(x− x).

If λ = 0, then this inequality implies that Q is positive semi-definite. If λ > 0, then ‖x‖2 = δ.
Therefore,

0 ≤ (x− x)T (Q+ λI)(x− x)

for all x ∈ ∆B with ‖x‖ = ∆. Let d ∈ Rn be such that dTx 6= 0 and ‖d‖ = 1. Setting
x = x− 2dTxd we get that ‖x‖ = ∆ so that (2dTx)2dT (Q+λI)d ≥ 0. By continuity, Q+λI
is therefore positive semi-definite.

(⇐=) Consider the Lagrangian

L(x, λ) = cTx+
1

2
xTQx+

λ

2
[‖x‖2 −∆2]

= cTx+
1

2
xT [Q+ λI]x− λ

2
∆2.

Since Q + λI is positive semi-definite, L(x, λ) is convex in x. Therefore, L(·, λ) attains
a global minimum at any point x for which ∇xL(x, λ) = 0. Hence x is a solution to
min{L(x, λ) : x ∈ Rk}. Thus, in particular, for all x ∈ ∆B

cTx+
1

2
xTQx ≥ cTx+

1

2
xTQx+

λ

2
[‖x‖2 −∆2]

≥ L(x, λ)

= cTx+
1

2
xTQx.

Consequently, x is a global solution to (TR). �

This is a remarkable result on the structure of the problem (TR). It also provides the
key to a very efficient method for solving (TR). Indeed,either there is a unique solution to
(TR) lying in the interior of ∆B, in which case Q is necessarily positive definite, or there is
a solution lying on the boundary of ∆B. In the latter case, we need only solve the system

(Q+ λI)x = −c
0 ≤ λ, ‖x‖2 = ∆2
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subject to the condition that Q + λI is positive semi-definite. In this regard, observe that
if λ1 ≤ λ2 ≤ · · · ≤ λn is the spectrum of Q, then λ + λ1 ≤ λ + λ2 ≤ · · · ≤ λ + λn is the
spectrum of λI + Q. Hence the condition that λ ≥ 0 and Q + λI is positive semi-definite
boils down to saying that

λ ≥ λl := max{0,−λ1}.
That is, λl is a lower bound on λ. In the case that λ 6= 0, one can also obtain an upper
bound on λ. Indeed, if λ 6= 0, then ‖x‖ = ∆. In this case the condition λx = −(c + Qx)
implies that

λ‖x‖ ≤ ‖c‖+ ‖Q‖ ‖x‖,
and since ‖x‖ = ∆ we have

λ ≤ ‖c‖
∆

+ ‖Q‖ =: λu

is an upper bound on λ. If it is further known that Q is positive semi-definite then this
upper can be refined. In this case we have

λxTx = −cTx− xTQx ≤ −cTx ≤ ‖c‖ ‖x‖,

and so λ ≤ ‖c‖/∆ = λ∗u is a better upper bound. Also observe that since Q is symmetric

‖Q‖ = max{|λ1|, |λn|},

and both λ1 and λn can be estimated using the power method.
Having both upper and lower bounds on λ one can now consider applying Newton’s

method to the system

(Q+ λI)x = −c
‖x‖2 = ∆2

over [λl, λu]. Although this approach is reasonable, it is far from the most efficient. We
now discuss an alternative approach based on well-known facts from the theory of rational
functions.

Consider the function

ϕ(λ) =
1

∆
− 1

‖(λI +Q)−1c‖
on the interval (λ∗,+∞). We claim that ϕ is a convex function on the interval (λ∗,+∞). In
order to see this let {v1, . . . , vn} be an orthonormal basis of eigenvectors for Q with associated
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, respectively, and suppose

c =
n∑
i=1

µivi .

Then

ϕ(λ) =
1

∆
−
[
n∑
i=1

(
µi

λ+ λi

)2
]−1/2

.
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Hence

ϕ′(λ) = −
[
n∑
i=1

(
µi

λ+ λi

)2
]−3/2 [ n∑

i=1

µ−1
i

(
µi

λ+ λi

)3
]

and

ϕ′′(λ) = 3

[
n∑
i=1

(
µi

λ+ λi

)2
]−5/2

( n∑
i=1

µ−2
i

(
µi

λ+ λi

)4
)(

n∑
i=1

(
µi

λ+ λi

)2
)
−
(

n∑
i=1

µ−1
i

(
µi

λ+ λi

)3
)2
 .

Recall that the Cauchy-Schwartz inequality implies that[
n∑
i=1

aibi

]2

≤
n∑
i=1

a2
i

n∑
i=1

b2
i .

Setting ai = µi
λ+λi

and bi = µ−1
i

(
µi

λ+λi

)2
, we find that[

n∑
i=1

µ−1
i

(
µi

λ+ λi

)3
]2

≤
[
n∑
i=1

(
µi

λ+ λi

)2
] [

n∑
i=1

µ−2
i

(
µi

λ+ λi

)4
]
.

Therefore, ϕ′′(λ) ≥ 0 on (λ∗,+∞) so that ϕ is convex there.
Moreover, ϕ is nearly linear on (λ∗,+∞) and is essentially flat for all large λ. This is

obvious from the expression for ϕ′′(λ) given above since ϕ′′(λ) = O
(

1
λ

)
.

We can now describe a general procedure for solving (TR). First obtain an estimate for λ1

the smallest eigenvalue of Q. If λ1 > 0, then Q is positive definite. In this case we terminate
at a solution x = −Q−1c if ‖Q−1c‖ < ∆. If λ2 ≤ 0 or ‖Q−1c‖ > ∆, then apply Newton’s

method to locate a zero of the function ϕ on the interval
(
λ1,

‖c‖
∆

+ ‖Q‖
]
. That is, we are

applying Newton’s method to a nearly linear convex function on R. Since ϕ is nearly linear,
this procedure converges rapidly if a solution exists. Since ϕ is convex we also have that

λk+1 < λk if λ < λk

and
λk+1 > λk if λ > λk.

Moreover, if λk < λ, then λk+1 < λ. All of these facts follow from the subdifferential
inequality of convex analysis.

The difficult case occurs when λ = λl. In this case Q + λI is not invertible if Q is not
positive definite. If in measuring the behavior of the iterate, it is thought that λ = λl, then
one can terminate by computing a least-norm solution to the equation −c = (Q+ λlI)x.

The best known methods basically work in this way. However, they also incorporate more
sophisticated methods for approximating and updating λl and λu at each iteration. We do
not go into this here. Nonetheless, we should mention that if the Newton step λk+1 is such
that

λk+1 < λl

then one should reset λk+1 = 1
2
(λk + λl) in order to preserve the inclusion λk ∈ (λl, λu].
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Chapter 6

LP’s, QP’s, and LCP’s

6.1 Introduction

The KKT conditions for linear and quadratic programming yield an instance of a more gen-
eral class of problems called linear complementarity problems. In order to see this connection,
consider the quadratic program

Q minimize 1
2
uTQu− cTu

subject to Au ≤ b, 0 ≤ u,

where Q ∈ Rn×n, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. If we assume that Q is positive semi-
definite, then Q is a convex programming problem. By setting Q = 0, we recover linear
programming as a special case.

Define

M =

(
Q AT

−A 0

)
and q =

(
c
b

)
.(6.1.1)

Then the KKT conditions for the quadratic program Q are equivalent to the conditions

y = Mx+ q, yTx = 0, 0 ≤ x, and 0 ≤ y ,

where

x =

(
u
v

)
.

The classical approach to solving Q when Q = 0 is the simplex algorithm due to George
Danzig. If Q 6= 0, then the corresponding method is called Lemke’s algorithm. Both of these
approaches are known as pivoting methods. There is an enormous literature on methods of
this type. Nonetheless, we do not consider pivoting strategies in this section. Rather we
consider an approach of a much more modern vintage. This approach is defined for a more
general class of problems known as linear complementarity problems or LCP’s.

89
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(LCP) Find x ∈ Rn such that

y = Mx+ q, xTy = 0, 0 ≤ x, 0 ≤ y

where M ∈ Rn×n and q ∈ Rn.

We denote by S the solution set to (LCP):

S := {(x, y) ∈ Rn × Rn : F (x, y) = 0, 0 ≤ x, 0 ≤ y}.

Of special interest to us is the case where M is assumed to be positive semi-definite, but
not necessarily symmetric.

Definition 6.1.1 The problem (LCP) is said to be a monotone linear complementarity
problem if the matrix M is positive semi-definite.

6.2 Boundedness Properties of LCP

The algorithms we consider are designed to solve monotone LCP’s. One of the most impor-
tant properties of monotone LCP’s is that they are naturally associated with the following
convex quadratic program:

(QP-LCP)
minxT (Mx+ q)
subject to 0 ≤Mx+ q, 0 ≤ x.

That this is a convex QP follows immediately from the fact that M is positive semi-definite.
Moreover, the optimal value of (QP–LCP) is non-negative since 0 ≤Mx+ q and 0 ≤ x. The
optimal value is zero precisely when S 6= ∅ in which case the solution set is given by

{x : ∃ y ≥ 0 such that (x, y) ∈ S}.

This observation is the key to analyzing the boundedness properties of the set S and the
sets

F(t) = {(x, y) : 0 ≤ x, 0 ≤ y, Mx+ q = y, xTy ≤ t}

for t ≥ 0. These sets play an important role in the analysis to follow.
Note that since (QP-LCP) is a convex quadratic program its solution set is a convex

set. Thus, in particular, this implies that the set S is always a closed convex set (although
possibly empty). Moreover, since xT (Mx + q) is a convex function, all of its level sets are
convex as well. In particular, we get that the sets

F1(t) = {x : 0 ≤ x, 0 ≤Mx+ q, xT (Mx+ q) ≤ t}

are closed convex sets for every t ≥ 0. Therefore, the sets

F(t) = {(x, y) : x ∈ F1(t), y = Mx+ q}
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are closed convex sets as well since they are the linear image of a closed convex set.
We now consider the boundedness of the sets F(t). For this we make use of the following

sets:

F := {(x, y) ∈ Rn × Rn : Mx+ q = y, 0 ≤ x, 0 ≤ y}
F+ := {(x, y) ∈ Rn × Rn : Mx+ q = y, 0 < x, 0 < y}.

Theorem 6.2.1 If M is positive semi–definite and F+ is nonempty, then F(t) is bounded
for all t ≥ 0.

Proof: Let (x̄, ȳ) ∈ F+ and let (x, y) ∈ F(t). Then (x− x̄)T (y− ȳ) ≥ 0 since M is positive
semi–definite. Therefore,

t+ x̄T ȳ ≥ xTy + x̄T ȳ ≥ x̄Ty + ȳTx ≥ κ‖(x, y)‖1 ,

where κ := min1=1,2,...,n{x̄i, ȳi}. �

6.3 The Central Path

Given a vector x ∈ Rn we denote by X the diagonal matrix diag(x). Hence Y = diag(y),
U = diag(u), W = diag(w), etc. Consider the function

F (x, y) =

[
Mx− y + q

XY e

]

where e ∈ Rn is the vector of all cones. Clearly, (x, y) ∈ Rn×Rn solves (LCP) if and only if
0 ≤ x, y, and F (x, y) = 0. The basic idea behind interior point algorithms for solving (LCP)
is to apply a damped Newton’s method to the function F (x, y) on the interior of the cone
Rn

+ × Rn
+. In this regard, following result is key.

Theorem 6.3.1 If M is positive semi-definite, then F ′(x, y) is non-singular whenever 0 <
x, 0 < y.

Proof: Let (x, y) ∈ int(Rn × Rn) and suppose that F ′(x, y)

(
u
v

)
= 0. Then

v = Mu and v = −X−1Y u.

Hence, 0 ≥ −uTX−1Y u = uTMu ≥ 0, so uTX−1Y u = 0 or u = 0. But then v = 0 as well. �

Thus, the Newton step is well defined at points in int(Rn
+ × Rn

+). Moreover, one can
always choose a step length so that a damped Newton step stays in int(Rn

+×Rn
+). However,

it may happen that the iterates approach the boundary of Rn
+ × Rn

+ too quickly and the
procedure gets bogged down. For this reason we introduce the notion of a central path.
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Definition 6.3.1 The set

C := {(x, y) ∈ F : XY e = te for some t > 0}

is called the central path for (LCP).

We now proceed to show that if F+ 6= ∅ and M is positive semi-definite, then C exists.
The first step is to establish the following lemma concerning the function

u(x, y) = XY e.

Lemma 6.3.1 Suppose M is positive semi–definite and F+ 6= ∅.

(1) The system
u(x, y) = a and (x, y) ∈ F+

has a solution for every a > 0.

(2) The mapping u : Rn × Rn → Rn is diffeomorphism between F+ and int (Rn
+), i.e. u

is a one–to–one surjective mapping between F+ and int (Rn
+) with u ∈ C∞ on F+ and

u−1 ∈ C∞ on int (Rn
+).

Proof:

(1) Let a > 0 and (x, y) ∈ F+. Set a = u(x, y). Consider the function

F̂ (x, y, t) := F (x, y)−
[

0
(1− t)a+ ta

]
.

Note that F̂ (x, y, 0) = 0 and

∇(x,y)F̂ (x, y, t) = ∇F (x, y) =

[
M −1
Y X

]
.

Hence, by the implicit function theorem, there is an open neighborhood U ⊂ Rn ×Rn

containing (x, y), δ > 0, and a unique smooth mapping t 7→ (x(t), y(t)) on [0, δ) such
that

(x(t), y(t)) ∈ U and F̂ (x(t), y(t)) = 0 on [0, δ).

Let δ be the largest such δ in [0, 1]. We claim that δ = 1. First observe that
(x(t), y(t)) ∈ F(t) for t := max{aT e, aT e}. Moreover, F(t) is a compact set by
Theorem 6.2.1. Hence, for some sequence ti ↑ δ there exists an (x̂, ŷ) such that
(x, (ti), y(ti)) → (x̂, ŷ). Clearly, (x̂, ŷ) ∈ F++. Applying the implicit function the-
orem again at (x̂, ŷ) yields a contradiction to the maximality of δ. Finally, observe
that

F (x(1), y(1)) = a

which establishes the result.
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(2) In Part (1) above, we have already shown that u is a surjective map from F+ to Rn
+.

We now show that it is one–to–one. Assume to the contrary, that u(x1, y1) = u(x2, y2)
for distinct points (x1, y1) and (x2, y2) in F+. Then

M(x1 − x2) = y1 − y2 and x1
i y

1
i = x2

i y
2
i > 0 ∀ i = 1, . . . , n.

Since (x1 − x2)TM(x1 − x2) ≥ 0, we have

(x1 − x2)T (y1 − y2) ≥ 0.

Hence for some i with x1
i 6= x2

i we must have (x1
i − x2

i )(y
1
i − y2

i ) ≥ 0. If x1
i > x2

i , then
y1
i ≥ y2

i > 0. But then x1
i y

1
i 6= x2

i y
2
i . Similarly, if x1

i < x2
i , then 0 < y1

i ≤ y2
i , so again

x1
i y

1
i 6= x2

i y
2
i . This contradiction establishes that u is one–to–one.

Finally, it is clear that u is C∞. To see that u−1 is C∞ simply note that (u−1)′(a) =
[XM +Y ]−1 where u−1(a) = (x, y). To see that [XM +Y ]−1 exists write [XM +Y ] =
X[M +X−1Y ] where both X and [M +X−1Y ] are positive definite matrices.

�

An immediate consequence of this Lemma is the following existence theorem for (LCP).

Theorem 6.3.2 If M is positive semi-definite and F+ 6= ∅, then there exists a solution to
(LCP).

Proof: Let (x, y) ∈ F+. Then F(xTy) is compact by Theorem ??. Moreover, the system

F (x, y) =

[
0
µxTye

]
is solvable for all µ ∈ (0, 1]. Hence there exist {(xi, yi)} ⊂ F+, µi ↓ 0,

and (x̂, ŷ) ∈ F such that (xi, yi)→ (x̂, ŷ) and F (xi, yi) =

[
0
µix

Tye

]
. But then F (x̂, ŷ) = 0

so that (x̂, ŷ) ∈ S. �

The existence of the central path can now also be established. The proof is similar to
the proof given for Part 2 of Lemma 6.3.1.

Theorem 6.3.3 If M is positive semi-definite and F+ 6= ∅, then the central path C exists
as a smooth curve in F+.

Proof: Just compose the smooth trajectory {te : t > 0} ⊂ int (Rn
+) with the diffeomor-

phism u−1 in Lemma 6.3.1 to obtain the result. �
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6.3.1 Asymptotic behavior of the central path

In this section we study the limiting behavior of the central path as t ↓ 0. In particular,
we show that this limit exists and is a solution of (LCP). The key to this analysis is the
potential function

P (x, y, t) = xTy − t
n∑
i=1

ln(xiyi)

defined over the set F+ × {t > 0}. Let us first observe that for fixed t > 0 the function
P (·, ·, t) is strictly convex on F+. In order to see this observe that

∇2
(x,y)P (x, y, t) =

[
tX−2 I
I tY −2

]
.

Hence if (x1, y1), (x2, y2) ∈ F+, then[
x1 − x2

y1 − y2

]T
∇2

(x,y)
P (x,y,t)

[
x1 − x2

y1 − y2

]
=t[(x1−x2)TX−2(x1−x2)+(y1−y2)TY −2(y1−y2)]+2(x1−x2)T (y1−y2)>0.

Therefore, for each t > 0, the solution to the problem

(Pt) minP (x, y, t)
subject to (x, y) ∈ F+,

if it exists, is unique. With this in mind we give the following theorem.

Theorem 6.3.4 If M is positive semi-definite and F+ 6= ∅, then the unique solution to the

problem (Pt) exists and corresponds to the unique solution of the equation F (x, y) =

[
0
te

]
,

i.e., it lies on the central path.

Proof: Due to our observation concerning the strict convexity of P (x, y, t), we need only

show that the unique solution, (x(t), y(t)), to F (x, y) =

[
0
te

]
satisfies the first-order opti-

mality conditions for (Pt). The first-order conditions for (Pt) are

∇(x,y)P (x, y, t) ∈ ker
[
M −I

]⊥
= Ran

[
M
−I

]
.

Since ∇(x,y)P (x, y, t) =

[
y − tx−1

x− ty−1

]
, where (x−1)i := (xi)

−1, these conditions imply the

existence of a vector v ∈ Rn such that

y − tx−1 = Mv

x− ty−1 = −v.
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Multiplying the first of these equations by X and the second by Y , we get the system

Xy − te = XMv

Y x− te = −Y v.

Therefore, [XM+Y ]v = 0, or equivalently, [M+X−1Y ]v = 0. But [M+X−1Y ] is a positive
definite matrix so we must have v = 0. Consequently, the conditions Xy = te, 0 < x, 0 < y,
and Mx+ q = y, are equivalent to the first-order necessary and sufficient conditions in (Pt).
The unique solution of this system is (x(t), y(t)) so this is the unique solution to (Pt). �

Next set

E = {i : xi = 0 = yi for all (x, y) ∈ S},
B = {i : xi 6= 0 for some (x, y) ∈ S}, and

N = {i : yi 6= 0 for some (x, y) ∈ S}.

We make the following observations about these index sets:

1. Since S is convex, there exists (x̂, ŷ) ∈ S with

x̂i > 0 ∀ i ∈ B, and

ŷi > 0 ∀ i ∈ N.

To obtain (x̂, ŷ) just take a convex combination of points (x, y) for which xi > 0 i ∈ B
and yi > 0 for i ∈ N .

2. Due to the above observation we have B ∩ N = ∅. This implies that the sets B, E,
and N form a partition of the integers from 1 to n, i.e. {1, 2, . . . , n} = B ∪N ∪E with
B ∩N = ∅, B ∩ E = ∅, and N ∩ E = ∅.

3. For all (x, y) ∈ S we have xi = 0 for all i ∈ {1, 2, . . . , n}\B̄ and yi = 0 for all
i ∈ {1, 2, . . . , n}\N̄ , where B̄ = B ∪ E and N̄ = N ∪ E.

4. The solution set S has the representation

S =

{
(x, y)

∣∣∣∣∣ 0 ≤ xB, 0 ≤ yN ,
0 = xN , 0 = yB,

MBxB + q = yN

}
,(6.3.2)

We claim that the limit as t↘ 0 in the central path is the unique solution to the problem

(P0) min− [
∑
B lnxi +

∑
N ln yi]

subject to (x, y) ∈ S.

One can view the problem (P0) as the limit of the problems (Pt) as t↘ 0. Observe that

−
∑
B

lnxi −
∑
N

ln yi = − ln

[(∏
B

xi

)(∏
N

yi

)]
.
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Therefore, since − ln(µ) is strictly decreasing for µ > 0, minimizing − ln
[(∏

B
xi

)(∏
N
yi

)]
over S is the same as maximizing

(∏
B
xi

)(∏
N
yi

)
over S. That is, (P0) is equivalent to the

problem

(P̂0) max
(∏
B
xi

)(∏
N
yi

)
subject to (x, y) ∈ S.

(6.3.3)

Using this fact we can show that the problem (P0) has a solution and that it is unique.

Lemma 6.3.2 If M is positive semi-definite and F+ 6= ∅, then the solution (x∗, y∗) to (P0)
exists, is unique, and satisfies x∗B > 0 and y∗N > 0.

Proof: By Theorem ??, S is a compact set. Hence the solution to (P̂0), or equivalently
(P0), exists since problem (P̂0) is the maximization of a continuous function over a compact
set. The fact that the solution is unique is the consequence of the fact that the objective
function in (P0) is strictly convex on S as seen by considering the representation (6.3.2). The
condition that the solution (x∗, y∗) satisfies x∗B > 0 and y∗N > 0 follows from the finiteness
of the optimal value. �

Before proving the main result, we first establish the following technical lemma.

Lemma 6.3.3 Let (x∗, y∗) ∈ S be the unique solution to (P0), let (x, y) ∈ C, and set µ =

xTy/n. Then XY e = µe,
∑
B
x∗i
xi

+
∑
N

y∗i
yi
≤ n, xB ≥ 1

n
x∗B > 0, and yN ≥ 1

n
y∗N > 0.

Proof: As usual,

0 ≤ (x− x∗)T (y − y∗)
= xTy − x∗Ty − xTy∗ + x∗Ty∗,

so
x∗Ty + xTy∗ ≤ xTy = nµ.

Since (x, y) ∈ C, we have XY e = µe so

x = µy−1 and y = µx−1.

But then

µ(x∗
T

x−1 + y∗
T

y−1) ≤ x∗Ty + y∗Tx

= µn,

or equivalently, ∑
B

x∗i
xi

+
∑
N

y∗i
yi
≤ n.
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Due to the positivity of each term in the sum, we get that

x∗i
xi
≤ n for i ∈ B and

y∗i
yi
≤ n for i ∈ N,

or equivalently,
1

n
x∗B ≤ xB and

1

n
y∗N ≤ yN .

�

Theorem 6.3.5 Let M be positive semi-definite, F+ 6= ∅, and assume that E = ∅. Then
the limit of the central path C exists as t ↓ 0 and is the solution to the problem (P0).

Proof: Let (x̂, ŷ) be any cluster point of C as t ↓ 0. Since (x̂, ŷ) ∈ S, we have that
x̂N = 0 and ŷB = 0. Since this is true for every cluster point, we obtain that xN(t)→ 0 and
yB(t)→ 0.

Letting (x∗, y∗) be the unique solution to (P0) and taking the limit as t ↘ 0, we obtain
from Lemma 6.3.3 that ∑

B

x∗i
x̂i

+
∑
N

y∗i
ŷi
≤ n,(6.3.4)

x̂B ≥ 1−β
n
x∗B > 0, and ŷN ≥ 1−β

n
y∗N > 0. Thus, in particular, (x̂, ŷ) is feasible for (P0).

Next recall that the arithmetic–geometric mean inequality says that for any collection
{γ1, γ2, . . . , γN} of non–negative real numbers we have that

(
N∏
i=1

γi

)1/N

≤ 1

N

N∑
i=1

γi .

Therefore, by (6.3.4) and the fact that B ∪N = {1, 2, . . . , n}, we have(∏
B

x∗i
x̂i

∏
N

y∗i
ŷi

)
≤
(

1

n

∑
B

x∗i
x̂i

+
∑
N

y∗i
ŷi

)n
≤ 1n = 1 .

Consequently, (∏
B

x∗i
∏
N

y∗i

)
=

(∏
B

x̂i
∏
N

ŷi

)(∏
B

x∗i
x̂i

∏
N

y∗i
ŷi

)

≤
(∏
B

x̂i
∏
N

ŷi

)
.

But then (x̂, ŷ) must also be a solution to (P̂0) in which case (x̂, ŷ) = (x∗, y∗) by uniqueness.
Since (x∗, y∗) is the only possible cluster point, it must be the case that the limit of the
central path is (x∗, y∗). �
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6.4 A Theoretical Infeasible Interior Point Algorithm

In this section we consider a specific algorithm for solving the equation

F (x, y) = 0

where, as before,

F (x, y) =

[
Mx+ q − y

XY e

]
.

The procedure is initiated in the region int(Rn
+ × Rn

+) and generates iterates that stay in
this region. For this reason such methods are called interior point methods. Given a point
(x0, y0) ∈ int(Rn

+ × Rn
+) one needs to compute an iterate that reduces the value of both

‖Mx0 + q− y0‖ and x0T y0. If it so happens that Mx0 + q− y0 = 0 from the outset, then this
quality is preserved. Indeed, if all of the iterates must satisfy the equation Mx+ q − y = 0,
then the method is called a feasible interior point method (FIP). If the iterates do not
necessarily satisfy this equation, then the method is called an infeasible interior point method
(IIP). From the practical point of view, the (IIP) methods are more tractable since it is often
very difficult to obtain an initial (x0, y0) > 0 with Mx0 + q = y0. Indeed, it may be that no
such (x0, y0) exists. Nonetheless, if we set

F+(q) = {(x, y) > 0 : Mx+ q = u},

and
F(q) = {(x, y) ≥ 0 : Mx+ q = y},

then if F(q) 6= ∅ and ε > 0, there exists q̂ with ‖q − q̂‖ ≤ ε such that F+(q) 6= ∅. Simply
take (x, y) ∈ F(q) and (u, v) > 0 and choose δ > 0 such that δ‖Mu − v‖ ≤ ε, then set
(x̂, ŷ) = (x+ δu, y + δv) > 0 and q̂ = q − δ(Mu− v) so that ‖q − q̂‖ ≤ ε while

Mx̂+ q̂ = Mx+ δMu+ q − δMu+ δv

= y + δv = ŷ.

The algorithm that we consider has two basic features:

(1) The quantities xTy and ‖Mx+ q − y‖ are reduced at the same rate at each iteration,
and

(2) all iterates stay in a fixed neighborhood of the central path;

N(t) = {(x, y) ≥ 0 : φt(x, y) ≤ β }

where β > 0 and the function φ : Rn × Rn → R is given by

φt(x, y) = ‖te−XY e‖2/t .
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The basic idea of the iteration is as follows: At each iteration we take a damped Newton
stet (the predictor step) for the equations

XY e = 0, Mx+ q − y = 0;

This step is followed by a Newton step (the corrector step) for the equations

XY e = te, Mx+ q − y = −s

for a suitably chosen vector s. The purpose of the corrector step is to return the iterates to
a position closer to the central path.

Infeasible Interior Point Algorithm:

Initialization: Choose (β0, β1, β2) ∈ R3 satisfying

0 < β0 < β1 < β2 <
√
β0 < 1

and set

η + 1 =
β0 − β2

2

β0 +
√
n
.(6.4.5)

Find (x0, y0, t0) ∈ R2n+1
+ satisfying

ϕt0(x
0, y0) ≤ β0.

Having (xν , yν , tν) obtain (xν+1, yν+1, tν+1) as follows:
Predictor Step: Set

x̂ν = xν + θν∆x
ν , ŷν = yν + θν∆y

ν , t̂ν = (1− θn)t̂ν(6.4.6)

where (∆xν ,∆yν) is the unique vector in R2n satisfying

Y ν∆xν +Xν∆yν = −Xνyν ,
M∆xν −∆yν = −(Mxν + q − yν),(6.4.7)

and θν is the largest θ ∈ (0, 1] satisfying (xν + θ∆xν , yν + θ∆yν) > 0 and

ϕ(1−θ)tν (xν + θ∆xν , yν + θ∆yν) ≤ β1.(6.4.8)

Corrector Step: Set

xν+1 = x̂ν + ∆x̂ν , yν+1 = ŷν + ∆ŷν , tν+1 = (1− γν)t̂ν ,(6.4.9)

where γν is the largest γ ∈ (0, η1] satisfying

‖t̂νe− X̂ν ŷν − γX̂ν(Mx̂ν + q − ŷν)‖/t̂ν ≤ β2,(6.4.10)

and (∆x̂ν ,∆ŷν) is the unique vector satisfying

t̂ν [X̂ν ]−1∆x̂ν + X̂ν∆ŷν = t̂νe− X̂ν ŷν

M∆x̂ν −∆ŷν = −γν(Mx̂ν + q − ŷν).(6.4.11)

Remarks:
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1. To obtain θν in the predictor step, first compute the largest value, θ, of θ ∈ (0, 1] for
which

(xν + θ∆xν , yν + θ∆yν) ≥ 0.

Then solve the equation

ϕ(1−θ)tν (xν + θ∆xν , yν + θ∆yν)2 = β2
1 .

This is a fourth degree polynomial in θ. Take θν to be the largest root of this polynomial
that is less than θ.

2. To obtain γν in the corrector step, just find the roots of the quadratic polynomial

‖t̂νe− X̂ν ŷν − γX̂ν(Mx̂ν + q − ŷν)‖2 = (β0t̂
ν)2

and take γν to be the largest root less than η1.

3. The expression “t̂ν [X̂ν ]−1” in the computation of the update in the Corrector step can
be replaced by “Ŷ ν” without effecting the convergence of the iterates. We choose the
so-called primal scaling in order to simplify the analysis.

4. One choice for β0, β1, and β2 is β0 = .2, β1 = .201, and β2 = .3. In this case one can
take η = 1.1

2+10
√
n
.

5. The initial values for (x0, y0, t0) can be taken to be x0 = e, y0 = e, t0 = β0. However,
this ignores the feasibility condition Mx + q = y. This can slow down convergence
and inhibit rapid local convergence. To compensate for this set µ = .9‖Me + q‖−1

∞ if
Me + q 6= 0; otherwise set µ = 0. Then take (x0, y0, t0) = (e, e + µ(Me + q), .9) and
β0 = 1. This choice is allowed since x0 > 0, y0 > 0, and ‖X0y0 − e‖2 = µ‖Me+ q‖2 =

.9 ‖Me+q‖2
‖Me+q‖∞ ≤ .9.

Our first objective is to show that the iterates defined in this way all satisfy

(xν , yν) > 0 and ϕtν (x
ν , yν) ≤ β0.

Lemma 6.4.1 Fix any (β0, β1, β2) ∈ R3 so that 0 < β0 < β1 < β2 <
√
β0 < 1, and let

η1 be given by (6.4.5). If (x̂ν , ŷν , t̂ν) ∈ R2n+1 satisfies ϕt̂ν (x̂
ν , ŷν) ≤ β1, then the quantity

(∆x̂ν ,∆ŷν , γν) computed by the corrector step satisfies

(x̂ν + ∆x̂ν , ŷν + ∆ŷν) > 0, ϕ(1−γν )̂tν
(x̂ν + ∆x̂ν , ŷν + ∆ŷν) ≤ β0.

Proof: For simplicity, set (x, y, t) = (x̂ν , ŷν , t̂ν) and (∆x,∆y) = (∆x̂ν ,∆ŷν). Let

r = te−Xy, s = Mx+ q − y, and d = X−1∆x.
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Then (6.4.11) can be written as

td+X∆y = r, MXd−∆y = −γs.(6.4.12)

Since (XMX + tI) is positive definite we can solve for d to obtain

d = (XMX + tI)−1(r − γXs).

Since XMX is positive semi-definite, we get

t‖d‖2 ≤ dT (XMX + tI)d
= dT (r − γXs)
≤ ‖d‖ ‖r − γXs‖,

(6.4.13)

so that
‖d‖ ≤ ‖r − γXs‖/t.(6.4.14)

Let x′ = x+ ∆x and y′ = y + ∆y. Equations (6.4.10) and (6.4.14) yield ‖d‖ ≤ β2 < 1 so
that e+ d > 0. Also x > 0, so x′ = x+Xd = X(e+ d) > 0. Therefore,

te−X ′y′ = te− (I +D)X(y + ∆y)
= td−DX(y + ∆y)
= D[te−Xy −X∆y]
= tDd,

where the last three equations follow from (6.4.12). Hence

‖te−X ′y′‖2 = t‖Dd‖2

≤ t‖Dd‖1

= t‖d‖2
2

≤ ‖r − γXs‖2/t
≤ (β2)2t.

Since β2 < 1 and x′ > 0, this relation implies that y′ > 0. In conjunction with the triangle
inequality, the relation also implies that

ϕ(1−γ)t(x
′, y′) = ‖(1− γ)te−X ′y′‖/((1− γ)t)

≤ ‖te−X ′y′‖/((1− γ)t) + γ
√
n/(1− γ)

≤ (β2)2/(1− γ) + γ
√
n/(1− γ)

= [(β2)2 + γ
√
n](1− γ)−1

≤ [(β2)2 + η1

√
n](1− η1)−1

= β0.

�

The following lemma allows us to bound ‖(xν , yν)‖ from above and certain components
of (xν , yν) from below.
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Lemma 6.4.2 Let (x∗, y∗) ∈ S, µ ∈ [0, 1], and (x0, y0), (x, y) ∈ Rn
+ × Rn

+ with and Mx +
q − y = µ(Mx0 + q − y0). Then

µ(xTy0 + yTx0) ≤ xTy + µ(x0Ty0 + x∗Ty0 + x0Ty∗)

and
(1− µ)(xTy∗ + yTx∗) ≤ xTy + µ(x0Ty0 + x∗Ty0 + x0Ty∗).

Proof: Since Mx∗ + q = y∗, we have

M(x− µx0 − (1− µ)x∗) = (y − µy0 − (1− µ)y∗).

Multiplying both sides by x − µx0 − (1 − µ)x∗ and using the fact that M is positive semi-
definite yields

0 ≤ (x− µx0 − (1− µ)x∗)T (y − µy0 − (1− µ)y∗).

Rearranging this inequality yields the inequality

µ(xTy0 + yTx0) + (1− µ)(xTy∗ + yTx∗)
≤ xTy + µ2x0Ty0 + µ(1− µ)(x∗Ty0 + x0Ty∗)

since x∗Ty∗ = 0. This yields the result since µ ∈ [0, 1]. �

We now have the following global convergence result.

Theorem 6.4.1 Let {(xν , yν , tν , x̂ν , ŷν , t̂ν , θν , γν)} be generated by Algorithm 6.4. Then

(xν , yν) > 0 , ϕtν (x
ν , yν) ≤ β0(6.4.15)

tν = µνt0 , Mxν + q − yν = µν(Mx0 + q − y0)(6.4.16)

t̂ν = (1− θν)µνt0 , Mx̂ν + q − ŷν = (1− θν)µν(Mx0 + q − y0)(6.4.17)

for all ν, where
µν = (1− γν−1)(1− θν−1) · · · (1− γ0)(1− θ0).

If {(x̂ν , ŷν)} is bounded, then S 6= ∅. If S 6= ∅, then {(x̂ν , ŷν)} and {(xν , yν)} are bounded
and for any (x∗, y∗) ∈ S we have γν ≥ min{η1, η2} for all ν where η2 = η1 if Mx0+q−y0 = 0;
otherwise

η2 =
(β2 − β1)t0(min

i
y0
i )/‖Mx0 + q − y0‖∞

(1 + β1)nt0 + x0Ty0 + x∗Ty0 + x0Ty∗
.

Proof:The relations (6.4.16), (6.4.17), and (6.4.17) are easily verfiied by induction on ν.
Now for every ν we have ϕt̂ν (x̂

ν , ŷν) ≤ β1 which implies that

X̂ν ŷν ≤ (1 + β1)t̂νe.

This, in turn, yields
x̂νT ŷν ≤ (1 + β1)n(1− θν)µνt0(6.4.18)
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by (6.4.17). The inequality ϕt̂ν (x̂
ν , ŷν) ≤ β1 also yields the inequality

‖t̂νe− X̂ν ŷν − γX̂ν(Mx̂ν + q − ŷν)‖/t̂ν
≤ ϕt̂ν (x̂

ν , ŷν) + γ‖X̂(Mx̂ν + q − ŷν)‖/t̂ν
≤ β1 + γ‖X̂ν(Mx̂ν + q − ŷν)‖/t̂ν

for all γ ≥ 0. Let γν be the largest γ for which the lefthand side of this inequality is less than
or equal to β2. This designation for γν implies that γν = min{η1, γ

ν}. Note in particular,
that this value for γν must exceed the value of γ for which the righthand side of the inequality
is equal to β2, i.e., γν = +∞ if Mx∗ + q − y0 = 0; otherwise

γν ≥ (β2−β1 )̂tν

‖X̂ν(Mx̂ν+q−ŷν)‖
≥ (β2−β1 )̂tν
‖x̂ν‖,‖Mxν+q−yν‖∞

= (β2−β1)t0
‖x̂ν‖,‖Mx0+q−y0‖∞

(6.4.19)

where the equality follows from the relations

t̂ν = (1− θν)µνt0 and Mx̂ν + q − ŷν = (1− θν)µν(Mx0 + q − y0)

(see relations (6.4.17).

Let us now assume that the sequence {(x̂ν , ŷν)} is bounded. In this case (6.4.19) implies
that γν ≥ η for some η > 0. Hence γν = min{η1, γν} ≥ min{η1, η} for all ν and so µν → 0.
Since (x̂ν , ŷν) > 0, relations (6.4.18) and (6.4.17) imply that any cluster point of the sequence
{(x̂ν , ŷν)} is in S.

Next assume that S 6= ∅ and fix (x∗, y∗) ∈ S. The relations (6.4.16) and (6.4.17) imply
that the conclusion of Lemma 6.4.2 holds with (x, y) = (x̂ν , ŷν) and µ = (1−θν)µν . Therefore,

‖x̂ν‖1(min
i
y0
i ) + ‖ŷν‖1(min

i
x0
i )

≤ x̂νTy0 + ŷνTx0

≤ x̂νT ŷν/µν + x0Ty0 + x∗Ty0 + x0Ty∗

≤ (1 + β1)nt0 + x0Ty0 + x∗Ty0 + x0Ty∗

where the last inequality follows from (6.4.18). Since (x0, y0) > 0 this shows that {(x̂ν , ŷν)}
is bounded. A similar argument using (6.4.17)shows that the sequence {(xν , yν)} is bounded.
Combining the above inequality with (6.4.19) yields γν ≥ η1 if Mx0 + g − y0 = 0 and

γ̂ν ≥
(β2 − β1)t0(mini y

0
i )/‖Mx0

q − y0‖∞
(1 + β1)nt0 + x0Ty0 + x∗Ty0 + x0Ty∗

if Mx0 + q − y0 6= 0, for all ν. Hence γν = min{η1, γν} ≥ min{η1, η2}. �
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6.5 A Practical Infeasible Interior Point Algorithm

A major drawback of the algorithm presented in the previous section is the tortuous care
with which the parameters defining the algorithm must be chosen. The second drawback is
that the algorithm does not perform in practise nearly as well as similar algorithms that are
much more easily designed and implemented, but for which a complete convergence theory
does not yet exist. We present just such an algorithm in this section. Again, the basic idea
is to try to follow the central path to the solution. In order to do this the algorithm must be
constructed so that it stays close to the central path while reducing the homotopy parameter
t at each iteration. Then as t is reduced to zero we hopefully converge to a solution. There
are several obstacles that must be overcome for this strategy to succeed. The most obvious
and significant of these is that it is very difficult to locate points in the set F+ let alone
points on the central path. For this reason we consider algorithms that initialize at points
satisfying 0 < x and 0 < y but for which the affine constraint Mx+ q = y may be violated.
Algorithms of this type are called infeasible interior point algorithms.

Infeasible interior point algorithms must balance reduction in the homotopy parameter t
with reduction in the residual of the affine constraints Mx+q = y. Indeed, the overall success
of the procedure depends on how this balance in achieved. In general, one must reduce these
two quantities at roughly the same rate while simultaneously staying sufficiently close to the
central path. An algorithm that attempts to achieve this balance is given below.
Infeasible Interior Point Algorithm for LCP

Initialization

ε = 10−8

(
stopping

tolerance

)

σ = 0.3

(
homotopy

scaling parameter

)

x0 = 2e (initial x)
(y0)i = max{ (Mx0 + q)i, 2}, i = 1, 2, . . . , n (initial y)

τ = (x0)Ty0/n

(
homotopy

parameter

)

ρ = ‖Mx0 − y0 + q‖∞ (residual)

Iteration While nτ > ε or ρ > ε,

Step 1 (Compute the Newton Step)

Solve the linear equation

F (xk, yk) + F ′(xk, yk)

(
∆x
∆y

)
=

(
0
στe

)
,
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or equivalently, solve the equation[
M −I
Y X

](
∆x
∆y

)
=

(
−Mxk + yk − q
στe−XkYke

)
,

for ∆x and ∆y.

Step 2 (Compute a Feasible Steplength)

tx = min
{
−(xk)i
(∆x)i

: (∆x)i < 0
}

tx = min{ 1, 0.999tx}

ty = min
{
−(yk)i
(∆y)i

: (∆y)i < 0
}

ty = min{ 1, 0.999ty}

Step 3 (Update Iterates)

xk+1 = xk + tx∆x
yk+1 = yk + ty∆y
k = k + 1
τ = (xk)Tyk/n
ρ = ‖Mxk − yk + q‖∞

Step 4 (Update Scaling Parameter)

σ =

{
1 , if nτ ≤ ε and ρ > ε,

min
{
.3, (1− tx)2, (1− ty)2, |ρ−nτ |

ρ+10nτ

}
, otherwise.
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Chapter 7

The Gradient Projection Algorithm

7.1 Projections and Optimality Conditions

In this section we study the problem

P : min f(x)
subject to x ∈ Ω

where Ω ⊂ Rn is assumed to be a nonempty closed convex set and f is C1. The solution
method that we will study is known as the gradient projection algorithm and was pioneered
by Allen Goldstein of the University of Washington in 1964. In Theorem 5.4.1 we found that
if x is a local minimum for P then

∇f(x)T (y − x) ≤ 0(7.1.1)

for all y ∈ Ω. Moreover, if f is convex, then condition rfeqgp1 implies that x is a local
minimum for P . An instance of the function f that is of particular significance is

f(x) :=
1

2
‖x− x0‖2

2.

In this case problem P becomes one of finding the closest point x in Ω to x0. By applying
Theorem 5.4.1 one obtains the celebrated projection theorem for convex sets.

Theorem 7.1.1 Let x0 ∈ Rn and let Ω ⊂ Rn be a nonempty closed convex set. Then x ∈ Ω
solves the problem

min{1

2
‖x− x0‖2

2 : x ∈ Ω}

if and only if

(x− x0)T (y − x) ≥ 0(7.1.2)

for all y ∈ Ω. Moreover, the solution x always exists and is unique.

107
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Proof. Existence follows from the compactness of the set

{x ∈ Ω : ‖x− x0‖2 ≤ ‖x̂− x0‖2}

where x̂ is any element of Ω. Uniqueness follows from the strong convexity of the 2-norm
squared. The remainder of the theorem follows immediately from Theorem 5.4.1 once it is
observed that if

f(x) =
1

2
‖x− x0‖2

2

then
∇f(x) = x− x0. �

Definition 7.1.1 Let Ω ⊂ Rn be nonempty closed convex. We define the projection into Ω
to be the mapping PΩ : Rn → Ω given by

1

2
‖PΩ(x)− x‖2

2 = min{1

2
‖y − x‖2

2 : y ∈ Ω}.

Observe that PΩ is well-defined by Theorem 7.1.1.

We now introduce two geometric concepts that aid in interpreting the optimality condi-
tion given in Theorem 7.1.1. Recall that the tangent cone to Ω at a point x0 ∈ Ω is given
by

TΩ(x0) =
⋃
λ>0

λ(Ω− x0).

Dually, we call the set

NΩ(x) := {z : 〈z, y − z〉 ≤ 0 for all y ∈ Ω}

the normal cone to Ω at x.
Using the notions of a normal cone and a tangent cone we obtain the following restate-

ments of Theorems 5.4.1 and 7.1.1.

Theorem 7.1.2 Let x be a solution to problem P and suppose that f is differentiable at x,
then

−∇f(x) ∈ NΩ(x).(7.1.3)

Moreover, if f is convex then (7.1.3) is sufficient for x to be a global minimizer of f on Ω.

Proof. We need only show that condition (7.1.3) is equivalent to the statement that

∇f(x)T (y − x) ≥ 0 for all y ∈ Ω.

But this is clear from the definition of the normal cone. �

Theorem 7.1.3 Let Ω be a non-empty closed convex subset of Rn and let PΩ denote the
projector into Ω. Then given x ∈ Rn we have z = PΩ(x) if and only if

(x− z) ∈ NΩ(z).(7.1.4)
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Proof. We need only show that (7.1.4) is equivalent to (7.1.2), but again this follows
immediately from the definition of the normal cone. �

We have the following interesting corollary.

Corollary 7.1.3.1 Let x ∈ Ω, z ∈ NΩ(x), and t ≥ 0, then

PΩ(x+ tz) = x.

Proof. Simply observe that

(x+ tz)− PΩ(x+ tz) = tz ∈ NΩ(x),

so that the result follows from the theorem. �

This yields the following corollary to Theorem 7.1.1 in the context of P .

Corollary 7.1.3.2 Let x be a solution to P, then

PΩ(x− t∇f(x)) = x(7.1.5)

for all t ≥ 0.

Proof. Just apply Theorem 7.1.1 and Corollary 7.1.3.1. �

We now show how (7.1.5) can be used both as a stopping criteria for our algorithm and
as a method for generating search directions.

Proposition 7.1.2 Let x ∈ Ω and set d = PΩ(x− t∇f(x))− x. Then

∇f(x)Td ≤ −‖PΩ(x− t∇f(x))− x‖2

t
.

Proof. Simply observe that

‖PΩ(x− t∇f(x))− x‖2 = 〈PΩ(x− t∇f(x))− x, PΩ(x− t∇f(x))− x〉
= −t∇f(x)Td+ 〈PΩ(x− t∇f(x))− (x− t∇f(x)), PΩ(x− t∇f(x))− x〉
≤ −t∇f(x)Td

where the last inequality follows Theorem 7.1.1 equation rfeqgp2. �

Based on these observations we have the following algorithm.

7.2 The Basic Gradient Projection Method

Initialization: x ∈ Ω, γ ∈ (0, 1), c ∈ (0, 1)
Having xk obtain xk+1 as follows

1. Set dk := PΩ(xk −∇f(xk))− xk
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2. Set

λk := max γs

subject to s ∈ {0, 1, 2, . . .}
f(xk) + γsdk)− f(xk) ≤ cγs∇f(xk)

Tdk.

3. Set xk+1 := xk + λkdk.

We now apply Theorem 2.1.1 to yield a convergence theorem for this method.

Theorem 7.2.1 Let f : Rn → R be C1 and let Ω ⊂ Rn be a nonempty closed convex set.
Let x0 ∈ Ω be such that f ′ is uniformly continuous on the set co{x ∈ Ω : f(x) ≤ f(x0)}.
If {xk} is the sequence generated by gradient projection algorithm given above with starting
point x0, then one of the following must occur.

1. There is a k0 such that −∇f(xk0) ∈ NΩ(xk0).

2. f(xk) ↓ −∞.

3. The sequence {‖dk‖} diverges to +∞,

4. For every subsequence J ⊂ N for which {dk}J is bounded, we have that dk→
J

0, or

equivalently
‖PΩ(xk −∇f(xk))− xk‖→

J
0.

Corollary 7.2.1.1 Let the hypotheses of Theorem 7.2.1 hold. Furthermore assume that
the sequence {dk} is bounded. Then every cluster point x of the sequence {xk} satisfies
−∇f(x) ∈ NΩ(x).
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7.3 The Computation of Projections

We now address the question of implementation. Specifically, how does one compute the
projection onto the convex set Ω. In general this is not a finite process. Nonetheless, for
certain important convex sets Ω it can be done quite efficiently.

Projection onto box constraints

Let us suppose that Ω is given by Ω := {x ∈ Rn : ` ≤ x ≤ u}, where `, u ∈ Rn

with R = Ω ∪ {+∞,−∞} and ` :≤ u, i = 1, . . . , n, `i 6= +∞ i = 1, . . . , n and ui 6= −∞
i = 1, . . . , n. Then PΩ can be expressed componentwise as

[PΩ(x)]i :=


`i if xi ≤ `i
xi if `i < xi < ui
ui if ui ≤ xi

Thus, for example, if Ω = Rn
+, then

PΩ(x) = x+.

Projection onto a Polyhedron

Let Ω be the polyhedron given by

Ω := {x ∈ Rn : aTi x ≤ αi, i = 1, . . . , 3, aTi x = αi, i = s+ 1, . . . ,m}.

Then PΩ is determined by solving the quadratic program

min 1
2
‖x− y‖2

2

subject to aTi x ≤ αi i = 1, . . . , s
aTi x = αi i = s+ 1, . . . ,m.
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Chapter 8

Exterior Penalty Methods

8.1 Basic Theory

We now return to the constrained optimization problem

P : min f0(x)
subject to fi(x) ≤ 0 i = 1, . . . , q

fi(x) = 0 i = q + 1, . . . ,m.

Observe that the problem P is really composed of two problems. The first is the problem of
feasibility, that is, we need to identify points x ∈ Rn such that

x ∈ Ω := {x : fi(x) ≤ 0 i = 1, . . . , q, fi(x) = 0 i = q, . . . ,m}.

This problem is quite difficult in its own right as is evidence by the effort devoted to its
solution in the previous chapter. In particular, given the problem P one cannot be positive
that Ω is non-empty. In P the feasibility problem is complicated by the secondary problem
of trying to minimize f0 over Ω. In all methods designed to solve P a balance must be struck
between trying to attain feasibility and trying to minimize f0.

In the methods of this section we replace P by an unconstrained optimization problem
of the form

minPα(x),(8.1.1)

where
Pα(x) := f0(x) + αβ(x).

The function β appearing in the definition of Pα is called a penalty term, α the penalty
parameter, and Pα an exterior penalty function. The role of the function β is to penalize
non-inclusion in Ω, β must satisfy the following three conditions:

(i) β : Rn → R is continuous.
(ii) β(x) ≥ 0 for all x ∈ Rn.
(iii) β(x) = 0 if and only if x ∈ Ω.

113
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Several examples of functions satisfying (8.1) were examined in the previous chapters, for
example

β̂2(x) =
1

2
[
q∑
i=1

(max{0, fi(x)})2 +
m∑

i=q+1

(fi(x)2]

β1(x) =
q∑
i=1

max{0, fi(x)}+
m∑

i=q+1

|fi(x)|

β∞(x) = max{0; fi(x), i = 1, . . . , q; |fi(x)|i = q + 1, . . . ,m}
β2(x) = (2β̂2(x))1/2 .

The function β̂2 has an advantage over βi i = 1, 2,∞ since it is differentiable on R whereas the
others are not. However, as we will see, a price must be paid for this differentiability. Given
a way to construct the penalty function Pα, consider the following algorithm for solving P .

Exterior Penalty (E-P) Algorithm

Initialization: Let {αi} < R+ be such that αi ↑ ∞ with αi < αi+1 for all i = 1, 2, . . ..
For k = 1, 2, . . ., let xk solve min{Pαk(x) : x ∈ Rn}.

Although the above algorithm appears to be somewhat unwieldy we will show that it has
several practical refinements. In order to visualize how the method behaves we consider a
two dimensional example:

min(x2
1 − x2)

subject to x1 + x2 − 1 = 0, 0 ≤ x .

The solution is clearly the point (x1, x2) = (0, 1). Set

Pα(x) = x2
1 − x2 +

α

2
((x1 + x2 − 1)2 + (−x1)2

+)

Then

(a) ∂Pα(x)
∂x1

= 2x1 + α((x1 + x2 − 1)− (−x1)+)

(b) ∂Pα(x)
∂x2

= −1 + α(x1 + x2 − 1).

Let us set these to zero and solve.
First assume that x1 ≥ 0, then from (b) α(x1 + x2 − 1) = 1 so (a) implies x1 = −1/2, a

contradiction. Thus it must be the case that x1 < 0. In this case we use α(x1 + x2 − 1) = 1
in (a) to see that

x1 =
−1

2 + α

Hence x2 = 1 + 1
α

+ 1
2+α

. Therefore, as α → ∞ (x1, x2) → (0, 1). We now establish the
convergence of the method. We begin with the following lemma.
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Lemma 8.1.1 Let {αk} be as in the E-P Algorithm and assume that

arg min{Pαk(x)} 6= ∅

for all k = 1, 2, . . . (for example if lim
‖x‖→∞

f0(x) = +∞). If {xk} ⊂ Rn is generated by the

E-P Algorithm , then

1. Pαk(xk) ≤ Pαk+1
(xk+1),

2. β(xk) ≥ β(xk+1) and

3. f(xk) ≤ f(xk+1)

for all k = 1, 2, . . ..

Proof: Let us first observe that

Pαk(xk) ≤ Pαk(xk+1) ≤ Pαk+1
(xk+1),

which establishes (1). In order to see (2), we use (1) to write

f(xk) + αkβ(xk) ≤ f(xk+1) + αkβ(xk+1) and

f(xk+1) + αk+1β(xk+1) ≤ f(xk) + αk+1β(xk).

Adding these we get
(αk+1 − αk)β(xk+1) ≤ (αk+1 − αk)β(xk).

Hence β(xk+1) ≤ β(xk).
To obtain (3), we use (1) and (2) to write

f(xk) + αkβ(xk) ≤ f(xk+1) + αkβ(xk+1)

≤ f(xk+1) + αkβ(xk).

Hence f(xk) ≤ f(xk+1). �

Theorem 8.1.1 Let {αk} be as in the E-P Algorithm and suppose that

arg min{Pαk(x)} 6= ∅

for all k. Further assume that Ω 6= ∅. Then every cluster point of {xk} is a solution to P.
In particular, if a cluster point exists, then a solution to P exists.

Proof: Let x ∈ Ω and observe that for each k = 1, 2, . . .,

f(x) = Pαk(x) ≥ Pαk(xk) ≥ f(xk).(8.1.2)



116 CHAPTER 8. EXTERIOR PENALTY METHODS

Let x∗ be a cluster point of {xk}. Since {f(xk)} is an increasing sequence and {β(xk)} is a
decreasing sequence, we know that

f(xk) ↑ f(x∗) and β(xk) ↓ β(x∗).

Also, by (8.1.2) {Pαk(xk)} is an increasing sequence that is bounded above. Hence there is
a P ∗ such that Pαk(xk) ↑ P ∗. Consequently,

lim β(xk) = lim(Pα(xk)− f(xk))α
−1
k

= 0,

so that β(x∗) = 0 or x∗ ∈ Ω. Also, by (8.1.2), f(x∗) ≤ f(x) for all x ∈ Ω. Hence x∗ solves
P . �

Corollary 8.1.1.1 Let α0 > 0, x0 ∈ arg minPα0, and ε > 0 be given. Choose δ ∈ [0, 1) so
that

(1− δ)γ > 1 and δε < β(x0).

Select x̄ ∈ {x : β(x) < δε} and take

α > max{γε−1|f(x0)− f(x̄)|, α0} .

Then, either x0 or x̄ solves P, or

β(xα) ≤ ε and f(xα) ≤ min
x∈Ω

f(x) ,

where xα ∈ arg minPα.

Proof: Assume that neither x0 or x̄ solves P and that the result is false. Then f(x0) < f(x)
and β(xα) > ε. Hence

0 ≥ Pα(xα)− Pα(x)

= f(xα)− f(x) + αβ(xα)− αβ(x̄)

≥ f(x0)− f(x̄) + α(1− δ)ε
≥ −|f(x0)− f(x)|+ (1− δ)γ|f(x0)− f(x)|
= ((1− δ)γ − 1)|f(x0)− f(x)| > 0,

which is a contradiction. �

Corollary 8.1.1.1 implies that good approximate solutions can be obtained using the
Exterior Penalty method without sending α to +∞. In situations where the constraints
have a “soft” character to them this is quite acceptable .
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8.2 Exact Penalization

Clearly the most unpleasant feature of exterior penalty function methods as we have dis-
cussed them thus far is the requirement that the penalty parameters diverge to +∞. For
obvious reasons this requirement could instill serious numerical instabilities in any method
proposed to solve the subproblems. In this section we will study a class of penalty terms
β(x) that do not necessarily require the divergence of the penalty parameters. Specifically,
we will show that for certain choices of β there is a finite α > 0 such that if x is a local
solution to P , then x is also a local solution to Pα for all α ≥ α. Such a function Pα is called
an exact penalty function. By the example of the previous section, it is clear that β2 does
not in general yield an exact penalty function. As an alternative let us apply β̂2 and β1 to
the problem

min
0≤x

x.(8.2.3)

The solution to this problem is x = 0. If we minimize

Pα(x) = x+
α

2
[(−x)+]2

we get x = −α−1 as the solution, and as α ↑ ∞ x→ 0. Next, if we minimize

Pα(x) = x+ α(−x)+

=
{
x if x ≥ 0
(1− α)x if x < 0

we get no solution for α < 1, infinitely many solutions ({x : x ≤ 0}) for α = 1, and the
unique solution x = 0 for α > 1. Therefore, (8.2.3) is an exact penalty function for this
problem.

Exercise: Show that β1 is also an exact penalty function for the example in the previous
section. Choose α > 1.

In the general case, determining whether β1 is an exact penalty function or not is sub-
stantially more difficult due to the nondifferentiability of β1. Nonetheless, it is possible to
approach the problem in the general setting via convex composite functions. We do not do
this here. Instead we will simply state the relevant results.

Theorem 8.2.1 Let x ∈ Ω, then x is a Kuhn-Tucker point for P if and only if x is a
stationary point for the penalty function

Pα(x) := f0(x) + αdist(f(x)|K)

for all α ≥ α for some α > 0, where

K := Rs
− × {0}Rm−s

and
dist(y|K) := inf{‖y − z‖ : z ∈ K}
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where ‖ · ‖ is any given norm on Rn. Moreover, the parameter α can be chosen to equal
‖u‖0 where u is any Lagrange multiplier vector at x and ‖ · ‖0 is the norm dual to the norm
employed in the definition of dist(·|K).

Theorem 8.2.2 Let (x, u) be a Kuhn-Tucker point for P and suppose that

dT∇2
xxL(x, u)d > 0

for every d ∈ Rn\{0} such that

∇f0(x)Td = 0

∇fi(x)Td ≤ 0 i ∈ A(x)

∇fi(x)Td = 0 i ∈ {s+ 1, . . . ,m}.

Then x is a such that there exist ε > 0 and ν > 0 for which

f0(x) ≥ f(x) + ν‖x− x‖2
2

for all x ∈ Ω ∩ (x+ εB) and

Pα(x) ≥ Pα(x) + ν‖x− x‖2
2

for all x ∈ (x+ εB) for all α > ‖u‖0 where

Pα(x) := f0(x) + αdist(f(x)|K)

and ‖ · ‖0 is the norm dual to that used in the definition of dist(·|K).

Theorems 8.2.1 and 8.2.2 indicate that any exterior penalty function of the form

Pα(x) := f0(x) + αdist(f(x)|K)

is an exact penalty function for P . Unfortunately such functions are not differentiable. Thus
locating points at which they attain they’re global minimum value may be a difficult if not
impossible task. The situation is of course complicated by the need to compute an estimate
for an appropriate value of the penalty parameter α. Nonetheless, even in the face of such
difficulties these methods can be quite successful. We now show how this can be done in the
special cases where the norm is chosen to be either the `∞ or `1 norm.

Observe that for the `1 norm

dist(y|K) =
s∑
i=1

(yi)+ +
m∑

i=s+1

|yi|,

while for the `∞ norm

dist(y|K) = max{0; yi, i = 1, . . . , s; |yi|i = s+ 1, . . . ,m}.

Thus the penalty functions associated with these norms are easily computed. Let us now
consider an algorithm for minimizing

Pα(x) := f0(x) + α[
m∑
i=1

fi(x)+ +
m∑

i=s+1

|fi(x)|].
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The S`1QP Algorithm

Initialization: Let x0 ∈ Rn, H0 ∈ Rn×n with H0 symmetric and positive definite, δ > 0,
γ ∈ (0, 1), c ∈ (0, 1), and let the norm on Rm be the `1 norm.

Having (xi, Hi) obtain (xi+1, Hi+1) as follows:

1. Let di be the solution to

min
‖d‖≤δ

∇f0(xi)
Td+

1

2
dTi Hidi + αdist(f(xi) + f ′(xi)d|K)

where K := Rs
− × {0}Rm−s .

2. Stop if ∆(xi, di) = 0; otherwise set

λi : = max γs

subject to s ∈ {0, 1, 2, . . .}, and
Pα(xi + γsdi)− Pα(xi) ≤ cγs∆(xi, di),

where

∆(x; d) := ∇f0(x)Td+ α[dist(f(x) + f ′(x)d|K)− dist(f(x)|K)].

3. Update xi+1 := xi + λidi, Hi+1 ∈ Rn×n symmetric positive definite.

Remark: The use of the 1-norm is not crucial to the algorithm.

The convergence theory for the above procedure rests on the following two facts about
the function ∆(x, d).

Theorem 8.2.3 Let x ∈ Rn, δ > 0, and H ∈ Rn×n be symmetric positive definite.

1. For all d ∈ Rn

P ′α(x; d) ≤ ∆(x, d).

2. If d solves

min
‖d‖≤δ

∇f0(x)Td+
1

2
dTHd+ αdist(f(x) + f ′(x)d|K),

then ∆(x, d) ≤ 0 with equality if and only if

P ′α(x; d) ≥ 0

for all d ∈ Rn.

Theorem 8.2.3 in conjunction with Theorem 2.1.1 yield the following convergence result.
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Theorem 8.2.4 Let fi : Rn → R i = 0, 1, . . . ,m be C ′ with ∇fi uniformly continuous on
{x : Pα(x) ≤ Pα(x0)} for some x0 ∈ Rn, where Pα(x) := f0(x) + αdist(f(x)|K). If {xk} is
the sequence generate by the S`1QP Algorithm with initial point x0, then one of the following
must occur:

1. There is an i0 such that
∆(xi0 , di0) = 0.

2. Pα(xi) ↓ −∞.

3. limi→∞∆(xi, di) = 0.

Thus, every cluster point of the sequence is a stationary point for Pα. If this stationary point
is feasible for P, then it is a Kuhn-Tucker point for P.

We now address the question of how one can solve direction finding subproblems of the
form

min∇f0(x)Td+ 1
2
dTHdα + dist(f(x) + f ′(x)Td|K)

subject to ‖d‖ ≤ δ.
(8.2.4)

In this regard one can simply employ the same tricks described in the final section of
Chapter 7. For example, if we use the `∞-norm on Rm, then (8.2.4) can be written as the
quadratic program

QP1 min(z,d) ∇f0(x)Td+ αeTz + 1
2
dTHd

subject to fi(x) + f ′i(x)Td ≤ zi i = 1, . . . , s
0 ≤ zi i = 1, . . . , s

−zi ≤ fi(x) +∇f(x)Td ≤ zi i = s+ 1, . . . ,m
−δe ≤ d ≤ δe

Similarly, if both Rn and Rm are equipped with the `∞-norm, then (8.2.4) becomes the
quadratic program

QP∞ min(γ,d) ∇f0(x)Td+ αγ + 1
2
dTHd

subject to fi(x) +∇fi(x)Td ≤ γ i = 1, . . . , s
−γ ≤ fi(x) +∇fi(x)Td ≤ γ i = s+ 1, . . . ,m

−δe ≤ d ≤ δe .

However, it should be noted that the penalty functions based on the 1− or 2−norms are
vastly superior in practise to one based on the ∞−norm. The reason is that the ∞−norm
penalty function only works on the most violated constraints at a particular point. Whereas
the 1− and 2−norm penalty functions work on all of the constraints simultaneously.

Finally how does one update the matrices Hi? For reasons that will be made clear in
subsequent sections, one should construct Hi so that it approximates the hessian of the
Lagrangian at xi. In order to do this, we first need approximations to the Kuhn–Tucker
multipliers. There are two standard methods for obtaining these multiplier estimates. In the
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first method the estimates come directly from the subproblem used to compute the search
direction di. For example, if the Sl1QP algorithm is used, then the subproblems are of the
form QP1. One then simply uses the Kuhn–Tucker multipliers for the constraints in this
subproblem as estimates of the multipliers for P . In the second approach, one computes least
squares estimates for the Kuhn–Tucker multipliers. That is, let the multiplier estimates be
a solution to the unconstrained subproblem

min
u∈Rm

1

2
‖∇f0(xi) +

m∑
j=1

uj∇fj(xi)‖2
2

or, perhaps, the constrained subproblem

min
u∈Rm

uj≥0, j=1,2,···,s

1

2
‖∇f0(xi) +

m∑
j=1

uj∇fj(xi)‖2
2 .

Once the multiplier estimates are obtained, we update the Hi’s using the BFGS formula
with si := xi+1 − xi and

yi = ∇xL(xi+1, ui+1)−∇xLα(xi, ui).
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Chapter 9

The Method of Multipliers

9.1 Introduction

In our study of exterior penalty functions in the previous section we found that there was a
compromise between differentiability and exactness. That is given a penalty function

Pα(x) = f0(x) + αβ(x)

either the penalty term is differentiable in which case the penalty parameter α must tend
to +∞ or β(x) is nondifferentiable in which case α need not tend to +∞. In this section
we consider a modification to the quadratic differentiable penalty term β̂2 which avoids the
need to send α to +∞.

Recall that in each step of the exterior penalty method applied to

Pα(x) := f0(x) + α

 s∑
i=1

(fi(x)+)2 +
m∑

i=s+1

(fi(x))2


one solves the unconstrained minimization problem

min
x∈Rn

Pα(x).

The solution xα satisfies

0 = ∇Pα(xα) = ∇f0(xα) +
s∑
i=1

∇fi(xα)(αfi(xα)+) +
m∑

i=s+1

∇f(xα)(αfi(x)).(9.1.1)

Setting

(uα)i :=
{
αfi(xα)+ if i = 1, . . . , s
αfi(xα) if i = s+ 1, . . . ,m

we can write (9.1.1) as
0 = ∇xL(xα, uα)

123
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where L(x, u) = f0(x) + uTf(x) is the Lagrangian for the problem P .

min f0(x)
subject to f0(x) ≤ 0 i = 1, . . . , s

f0(x) = 0 i = s+ 1, . . . ,m

Consequently, if xα → x a local solution to P , then every cluster point of {uα} is a Kuhn-
Tucker multiplier for x. This indicates that we should think of the vectors uα as multiplier
approximates that are to be updated at each iteration. By doing so, we avoid the need
to send the penalty parameter α to +∞. The strategy is as follows: given α > 0 and an
estimate of the multipliers u ∈ Rm, let xα,u be the solution to the equation

0 = ∇f0(x) +
∑s
i=1∇fi(x)(αfi(x) + ui)+

+
∑m
i=s+1∇fi(x)(αfi(x) + ui) .

Then update the multiplier estimates ui via the equations

ui = (αfi(xα,u) + ui)+ for i = 1, . . . , s

and
ui = (αfi(xα,u) + ui) for i = s+ 1, . . . ,m.

This procedure describes the basic structure of an algorithm known as the method of multipli-
ers. Before we provide a precise description of this algorithm let us first examine expression
(9.1) more carefully.

9.2 The Augmented Lagrangian

Observe that expression (9.1) is a first order optimality condition for some function. In order
to recover this function we can integrate the right hand side of (9.1) in the variable x. By
adding in the appropriate constant term this integration yields the function

L(x, u, α) := f0(x) + 1
2α

[dist2
2[αf(x) + u|K]− ‖u‖2

2]
:= f0(x) + 1

2α

∑s
i=1((αfi(x) + ui)+)2 − u2

i

+ α
2

∑m
i=s+1 fi(x)(fi(x) + ui).

where K := Rs
−×{0}Rm−s . The function L(x, u, α) is called the augmented Lagrangian for P .

The name is derived from the fact that if s = 0, that is there are only equality constraints,
then L(x, u, α) takes the form

L(x, u, α) = L(x, u) +
α

2
‖f(x)‖2

2

where L(x, u) = f0(x) + uTf(x) is the usual Lagrangian. Thus L(x, u, α) can be thought of
as arising from the usual Lagrangian after one has incorporated a vehicle for penalizing con-
straint violation. The augmented Lagrangian possesses the following remarkable property.
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Theorem 9.2.1 Let α > 0, fi, i = 0, . . . ,m differentiable at x ∈ Rn. Then

0 = ∇x,uL(x, u, α)

if and only if (x, u) is a Kuhn-Tucker pair for P.

Proof: Note that 0 = ∇x,uL(x, u, α) if and only if

0 = ∇f0(x) +
s∑
i=1

(αfi(x) + ui)+∇fi(x) +
m∑

i=s+1

(αfi(x) + ui)∇fi(x)

ui = (αfi(x) + ui)+ i = 1, . . . , s

0 = fi(x) i = s+ 1, . . . ,m .

Hence the result will be established once we have shown that

[(a− b)+ − a = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0].

Case 1: a− b ≥ 0
If a− b ≥ 0, then (a− b)+ = a− b so that b = 0. Consequently, a ≥ 0, b ≥ 0, ab = 0.

Case 2: a− b ≤ 0
If (a− b) ≤ 0, then (a− b)+ = 0 so that a = 0. Consequently, a ≥ 0, b ≥ 0 and ab = 0.

The converse is trivial. �

Thus it would seem that we need only find the roots of the equation 0 = ∇x,uL(x, u, α)
in order to locate Kuhn-Tucker points for the problem P . This is precisely what the method
of multipliers attempts to do.

In order to investigate the rate of convergence for these methods we require the nonsin-
gularity of the hessian

∇2
x,uL(x, u, α).

Unfortunately, ∇2
x,uL(x, u, α) does not always exists since (αfi(x) + ui)+ is not everywhere

differentiable. A sufficient condition under which ∇2
x,uL(x, u, α) does exist near a Kuhn-

Tucker point (x, u) for P is strict complementary slackness.

Definition 9.2.1 Let (x, u) be a Kuhn-Tucker pair for P. We say that the strict com-
plementary slackness condition (SCSC) is satisfied at (x, u) if ui > 0 whenever fi(x) < 0
i = 1, . . . , s.

Observe that if the SCSC is satisfied at the K-T pair (x, u) then

(αfi(x) + ui)+ = 0

for all (x, u) near (x, u) for each i /∈ A(x) = {i : fi(x̄) = 0}, and

(αfi(x) + ui)+ = (αfi(x) + ui)
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for all (x, u) near (x, u) for each i ∈ A(x). Consequently, ∇2
x,uL(x, u, α) exists near (x, u)

and is given by

∇2
x,uL(x, u, α) =


∇x,xL(x, u, α) f ′E(x)τ f ′A(x) 0

f ′E(x) 0 0 0
f ′A(x) 0 0 0

0 0 0 − 1
α
IN

 .

Here we have reordered the components of the vector u into the multipliers associated with
the equality constraints uE with E = {s+1, . . . ,m}, the multipliers associated with the active
inequality constraints uA with A = A(x), and the multipliers associated with the inactive
inequality constraints uN with N = {1, . . . , s}\A(x). Also for any matrix M ⊂ Rm×n and
index set J ⊂ {1, . . . ,m}, MJ represents that matrix whose rows are those of M with index
in J . Finally,

∇xxL(x, u, α) = ∇2f0(x) +
∑
i∈A

α∇fi(x)∇fi(x)T + (αfi(x) + ui)∇2fi(x)

+
m∑

i=s+1

α∇fi(x)∇fi(x)T + (αfi(x) + ui)∇2fi(x)

= ∇2
xxL(x, u) + α

∑
i∈A∪{s+1,...,m}

∇fi(x)∇fi(x)T + fi(x)∇2fi(x)

In order to establish the nonsingularity of ∇2L(x, u, α) we need the following three facts
from linear algebra whose proof are left as an exercise.

Lemma 9.2.1 Let A ∈ Rm×n, B ∈ Rn×n and D ∈ Rn×n. If

1. the rows of D are linearly independent,

2. Dx = 0, x 6= 0 =⇒ xTBx > 0, and

3. µ ≥ 0,

then the matrix

[
B + µATA DT

D 0

]
is nonsingular

Theorem 9.2.2 [Finsler’s Theorem] Let B,C ∈ Rn×n with C positive semi-definite. Then
xTBx > 0 for every x ∈ Rn, x 6= 0 such that xTCx = 0 if and only if B + µC is positive
definite for all µ ≥ µ for some µ.

Theorem 9.2.3 [Debreu’s Theorem] Let A ∈ Rm×n and B ∈ Rn×n. Then xTBx > 0 for
every x ∈ Rn with x 6= 0 such that Ax = 0 if and only if B + µATA is positive definite for
all µ ≥ µ for some µ.

The following result is an easy consequence of these linear algebraic results.
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Theorem 9.2.4 (The positive definiteness of ∇2
xxL(x, u, α) and the nonsingularity of ∇2L(x, u, α))

1. Let (x, u) be a Kuhn-Tucker point for P and suppose that

(a) (Strict Complementary Slackness)

ui > 0 whenever fi(x) < 0 i = 1, . . . , s.

and

(b) (Second–Order Sufficiency)

∇fi(x)Td = 0 i ∈ A(x) ∪ {s+ 1, . . . ,m} =⇒ dT∇11L(x, u)d > 0.

Then ∇xxL(x, u, α) is positive definite for all α ≥ α for some α > 0.

2. If in addition to the hypotheses in (1) we assume that

(c) (The LI Condition) the gradients {∇fi(x) : i ∈ A(x)∪{s+ 1, . . . ,m}} are linearly
independent ,

Then ∇2L(x, u, α) is non-singular for all α > 0.

Proof: (i) We have that

∇2
xxL(x, u, α) = ∇2

xxL(x, u) + αf ′I(x)f ′I(x)T

where I = A(x) ∪ {s + 1, . . . ,m). Consequently, the result follows from Debreu’s Theorem
9.2.3.

(ii) This just follows from Lemma 9.2.1. �

We now formally state the method of multipliers.

9.2.1 Algorithm: The Method of Multipliers

Let (x0, u0, α0) ∈ Rn × Rm × R+ stop if |∇L(xi, ui, αi)| < ε. Having (xi, ui, αi) determine
(xi+1, ui+1, αi+1) as follows

1. Let xi+1 solve
L(xi+1, ui, αi) = min

x∈Rn
L(x, ui, αi)

or
∇xL(xi+1, ui, αi) = 0.

2. Set ui+1 = ui + αi∇uL(xi+1, ui, αi) or equivalently

ui+1
j = (αifj(x

i+1) + ui)+ for j = 1, . . . , s

and
ui+1
j = (αifj(x

i+1) + ui) for j = s+ 1, . . . ,m.
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3. Set

αi+1 :=
{
αi if ‖ui+1 − ui‖∞ ≤ 1

4
‖ui − ui−1‖∞

10αi else

In the following theorem we provide a sample of the type of convergence result that can
be obtained for this method.

Theorem 9.2.5 Let the assumptions (a), (b), and (c) of Theorem 9.2.4 hold and let α ≥
α. Let f0 and f be C2 near the Kuhn-Tucker point x. Then for α sufficiently large, but
finite, there is an open neighborhood Vα of u such that for u0 ∈ Vα there is an x0 such that
∇xL(x0, u0, α) = 0 and the iterates (xi, ui) generated by algorithm 9.2.1 exist and converge
to (x, u) at the linear root rate

‖xi − x, ui − u‖ ≤ δ(ε/α)i

for some positive constants ε and δ.


