Convex-Composite Optimization

Convex-Composite Model

We now consider problems of the form

$$\min f(x) := h(F(x))$$

where $h: \mathbf{E} \to \overline{\mathbf{R}}$ is a closed proper convex function and $F: \mathbf{E} \to \mathbf{Y}$ is continuously differentiable.

In general, the functions $h \circ F$ are *neither* differentiable or convex. However, the nonsmoothness is of a familiar form since it arises from the convex function h.

Convex-Composite Model

We now consider problems of the form

$$\min f(x) := h(F(x))$$

where $h: \mathbf{E} \to \overline{\mathbf{R}}$ is a closed proper convex function and $F: \mathbf{E} \to \mathbf{Y}$ is continuously differentiable.

In general, the functions $h \circ F$ are neither differentiable or convex. However, the nonsmoothness is of a familiar form since it arises from the convex function h.

Most problems from nonlinear programming can be cast in this framework.

Nonlinear least squares

Let $F: \mathbf{E} \to \mathbf{Y}$ with $m = \dim Y >> \dim \mathbf{E} = n$ and consider the equation F(x) = 0.

Since m > n it is highly unlikely that a solution to this equation exists. However, one might try to obtain a *best* approximate solution by solving the problem

$$\min\{\|F(x)\| : x \in \mathbf{E}\}.$$

This is a convex composite optimization problem since the norm is a convex function.

Nonlinear convex inclusions

Let $F: \mathbf{E} \to \mathbf{Y}$ with $m = \dim Y >> \dim \mathbf{E} = n$ and consider the inclusion $F(x) \in C$ where $C \subset \mathbf{Y}$ is nonempty closed cvx.

Since m > n it is again highly unlikely that a solution to this equation exists. However, one might try to obtain a *best* approximate solution by solving the problem

$$\min\{\operatorname{dist}\left(F(x)\mid C\right)\,:\,x\in\mathbf{E}\}.$$

This is a convex composite optimization problem since the distance to a convex set is cvx.

The set C is often a cone such as \mathbf{S}^{n}_{+} or $\mathbf{R}^{k} \times \{0\}^{m-k}$.

Nonlinear Programming (NLP)

Let $F : \mathbf{E} \to \mathbf{Y}$, $C \subset \mathbf{Y}$ a non-empty closed convex set, and $f_0 : \mathbf{E} \to \mathbf{R}$, and consider the constrained optimization problem

$$\min\{f_0(x) : F(x) \in C\} = \min f_0(x) + \delta_C(F(x)).$$

This is a convex composite optimization problem since $h(\mu, y) := \mu + \delta_C(y)$ is cvx.

Exact Penalization

Again consider the NLP

$$\min \{f_0(x) | F(x) \in C\} = \min f_0(x) + \delta_C(F(x)).$$

One can approximate this problem by the unconstrained optimization problem

$$\min\{f_0(x) + \alpha \operatorname{dist}(f(x) | C) : x \in \mathbf{E}\}.$$

This is a convex composite optimization problem where $h(\eta, y) = \eta + \alpha \text{dist}(y \mid C)$ is a convex function.

Exact Penalization

Again consider the NLP

$$\min \{ f_0(x) \, | \, F(x) \in C \} = \min f_0(x) + \delta_C(F(x)).$$

One can approximate this problem by the unconstrained optimization problem

$$\min\{f_0(x) + \alpha \operatorname{dist}(f(x) | C) : x \in \mathbf{E}\}.$$

This is a convex composite optimization problem where $h(\eta, y) = \eta + \alpha \text{dist}(y \mid C)$ is a convex function.

The function $f_0(x) + \alpha \operatorname{dist}(f(x) | C)$ is called an *exact penalty function* for the problem $\min\{f_0(x) : F(x) \in C\}$.

First-Order theory for CVX-Comp

Consider the cvx-comp objective $h \circ F$. If h is finite-valued, we know it is locally Lipschitz. Consequently,

$$f(y) = h(F(y)) = h(F(x) + F'(x)(y - x)) + o(||y - x||).$$

First-Order theory for CVX-Comp

Consider the cvx-comp objective $h \circ F$. If h is finite-valued, we know it is locally Lipschitz. Consequently,

$$f(y) = h(F(y)) = h(F(x) + F'(x)(y - x)) + o(||y - x||).$$

Given $d \in \mathbf{E}$, we can rewrite this equation as

$$h(F(x+d)) = h(F(x)) + \Delta f(x;d) + o(||d||)$$
 where $\Delta f(x;d) := h(F(x) + F'(x)d) - h(F(x)).$

First-Order theory for CVX-Comp

Consider the cvx-comp objective $h \circ F$. If h is finite-valued, we know it is locally Lipschitz. Consequently,

$$f(y) = h(F(y)) = h(F(x) + F'(x)(y - x)) + o(||y - x||).$$

Given $d \in \mathbf{E}$, we can rewrite this equation as

$$h(F(x+d)) = h(F(x)) + \Delta f(x;d) + o(||d||)$$
 where $\Delta f(x;d) := h(F(x) + F'(x)d) - h(F(x)).$

Then, for every $d \in \mathbf{E}$,

$$f'(x;d) = \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$
$$= \lim_{t \downarrow 0} \frac{\Delta f(x;td)}{t} + \frac{o(t)}{t}$$
$$= h'(F(x); F'(x)d).$$

That is, f is directionally differentiable on **E** in all directions.

$$\partial f(x)$$

Recall the notion of *regular* subdifferential defined earlier for potentially non-convex functions:

$$\hat{\partial} f(x) := \{ v \mid f(x) + \langle v, y - x \rangle \le f(y) + o(\|y - x\|) \quad \forall y \in \mathbf{E} \}.$$

We showed that $\hat{\partial} f(x)$ is a closed convex set that coincides with $\partial f(x)$ when f is convex.

$$\partial f(x)$$

Recall the notion of *regular* subdifferential defined earlier for potentially non-convex functions:

$$\hat{\partial} f(x) := \{ v \mid f(x) + \langle v, y - x \rangle \le f(y) + o(\|y - x\|) \quad \forall y \in \mathbf{E} \}.$$

We showed that $\hat{\partial} f(x)$ is a closed convex set that coincides with $\partial f(x)$ when f is convex.

When f is cvx-comp, for every $v \in \hat{\partial} f(x)$, we have

$$\langle v, d \rangle \le \frac{f(x+td) - f(x)}{t} = \frac{\Delta f(x; td)}{t} + \frac{o(t)}{t} \quad \forall t > 0.$$

Hence

$$\langle v,d\rangle \leq h'(F(x);F'(x)d) = \delta^*(F'(x)d|\,\partial h(F(x))) = \delta^*(d|\,F'(x)^*\partial h(F(x))).$$
 So that

$$\delta^*(d|\,\hat{\partial}f(x)) \leq \delta^*(d|\,F'(x)^*\partial h(F(x))) \implies \hat{\partial}f(x) \subset F'(x)^*\partial h(F(x)).$$

$$\partial f(x) = F'(x)^* \partial h(F(x))$$

On the other hand, we have

$$f(y) = h(F(x) + F'(x)(y - x)) + o(\|y - x\|)$$

$$\geq h(F(x)) + \langle v, F'(x)(y - x) \rangle + o(\|y - x\|) \quad \forall v \in \partial h(F(x))$$

$$= f(x) + \langle F'(x)^* v, (y - x) \rangle + o(\|y - x\|) \quad \forall v \in \partial h(F(x)).$$

Hence,

$$F'(x)^* \partial h(F(x)) \subset \hat{\partial} f(x)$$
.

Consequently,

$$\hat{\partial}f(x) = F'(x)^* \partial h(F(x))$$
 and $f'(x;d) = \delta^*(d|\hat{\partial}f(x)).$

For this reason, when f is finite-valued cvx-comp, we write $\partial f(x)$ instead of $\hat{\partial} f(x)$ and call $\partial f(x)$ the subdifferential of f at x.

Directional Derivative Approximation

In our development of numerical methods for minimizing convex composite functions, we make extensive use of the difference function

$$\Delta f(x;d) := h(F(x) + F'(x)d) - h(F(x)).$$

In particular, it is often used as a surrogate for the for the directional derivative f'(x;d). In this respect, recall that

$$\lambda_1^{-1} \Delta f(x; \lambda_1 d) \le \lambda_2^{-1} \Delta f(x; \lambda_2 d)$$
 for $0 < \lambda_1 \le \lambda_2$,

due to the non–decreasing nature of the difference quotients. An important consequence of this inequality is that

$$f'(x;d) = \inf_{t>0} t^{-1} \Delta f(x;td) \le \Delta f(x;d),$$

which also implies that

$$\Delta f(x;td) \le t\Delta f(x;d) \quad \forall t > 0.$$

Optimality Conditions for Cvx Comp Optimization

Theorem: Let $h: \mathbf{Y} \to \mathbf{R}$ be convex and $F: \mathbf{E} \to \mathbf{Y}$ be continuously differentiable. If \bar{x} is a local solution to the problem $\min\{h(F(x))\}$, then $0 \in \partial f(\bar{x})$. Moreover, the following conditions are equivalent:

- (a) $0 \in \partial f(x)$.
- (b) d = 0 is a global solution to $\min_{d \in \mathbf{E}} h(F(\bar{x}) + F'(\bar{x})d)$.
- (c) $0 \le h'(F(x); F'(x)d)$ for all $d \in \mathbf{E}$.
- (d) $0 \le \Delta f(x; d)$ for all $d \in \mathbf{E}$.

Optimality Conditions for Cvx Comp Optimization

Proof: Let \bar{x} be a local solution to $\min\{h(F(x))\}$ and set $\Psi(d) := h(F(\bar{x}) + F'(\bar{x})d)$. Then $0 \le f'(\bar{x};d)$ for all $d \in \mathbf{E}$. Since $f'(\bar{x};\cdot) = \delta^*_{\partial f(\bar{x})}$, it must be the case that $0 \in \partial f(x)$.

- [(a) \iff (b)] Since Ψ is convex and $\partial \Psi(0) = F'(\bar{x})^* \partial h(F(\bar{x})) = \partial f(\bar{x})$, we have $0 \in \partial \Psi(0)$ so d = 0 is a global solution to $\min_d \Psi(d)$.
- [(a) \iff (c)] This follows from the fact that $f'(\bar{x};d) = h'(F(x);F'(\bar{x})d)$.
- [(c) \Longrightarrow (d)] Due to the convexity of Ψ , $h'(F(x); F'(\bar{x})d) \leq \Delta f(x; d)$ for all $d \in \mathbf{E}$ so (c) implies (d).
- [(d) \Longrightarrow (b)] (d) implies that $h(F(\bar{x})) \leq h(F(\bar{x}) + F'(\bar{x})d)$ for all $d \in \mathbf{E}$ so that (b) holds.

Line-Search Methods

Let $f: \mathbf{E} \to \mathbf{R}$ and consider the problem $\min_x f(x)$.

We consider iterative schemes of the form

$$x_{k+1} := x_k + \lambda_k d_k,$$

where it is intended that $f(x_{k+1}) < f(x_k)$.

Such methods are called descent methods. The scalar $\lambda_k > 0$ is called the *step length* and the vector d_k is called the *search direction*.

Observe that

$$\{d: f'(x;d) < 0\} \subset \{d: \exists \bar{\lambda} > 0, \text{ s.t. } f(x+\lambda d) < f(x) \,\forall \, \lambda \in (0,\bar{\lambda})\}.$$

Thus, one way to achieve descent is to choose the search direction from the set $\{d: f'(x_0; d) < 0\}$.

Cauchy and Gauss-Newton search directions

The search direction d_k obtained by solving

$$\min\{f'(x_k; d) : ||d|| \le 1\}.$$

is called the direction of steepest descent, or the Cauchy direction.

The search direction d_k obtained by solving

$$\min_{\|d\| \le \beta} \Delta f(x_k; d) + \frac{1}{2\alpha} \|d\|^2$$

is called the prox-Newton or Gauss-Newton search direction. Here $0 < \alpha, \beta \le \infty$ with infinite values allowed.

The Backtracking line search

Consider the finite-valued cvx-comp framework $f = h \circ F$. Let $c, \gamma \in (0, 1)$ and let $x_k, d_k \in \mathbf{E}$ be such that $\Delta f(x_k; d) < 0$.

Backtracking Line Search:

$$\lambda_k := \max \gamma^s$$
 subject to $s \in \{0,1,2,\ldots\}$ and
$$h(F(x+\gamma^s d)) \le h(F(x)) + c\gamma^s \Delta f(x_k d_k).$$

The value λ_k is called the backtracking step size.

Backtracking Descent Algorithm

Algorithm: Backtracking Descent

Input: Initial point $x_0 \in \mathbf{E}$ and line search parameters $c, \gamma \in (0, 1)$.

For: k = 1, 2, ...

Search Direction: Let $D_k \subset \{d : \Delta f(x_k; d) < 0\}$.

If $D_k = \emptyset$ stop; otherwise choose $d_k \in D_k$.

Backtracking line search:

$$\lambda_k := \max \gamma^s$$
 subject to $s \in \{0, 1, 2, ...\}$ and
$$h(F(x + \gamma^s d)) \le h(F(x)) + c\gamma^s \Delta f(x_k d_k).$$

Update: Set $x_{k+1} := x_k + \lambda_k d_k$ and k := k + 1.

Theorem: Let $f: \mathbf{E} \to \mathbf{R}$ be given by f(x) = h(F(x)) where $h: \mathbf{Y} \to \mathbf{R}$ is convex and $F: \mathbf{E} \to \mathbf{Y}$ is differentiable. Let $x_0 \in \mathbf{R}^n$ and assume that

- (a) h is Lip. cont. on the set $\{y: h(y) \le h(F(x_0))\}$, and
- (b) F' is uniformly continuous on the set $\overline{co}\{x:h(F(x))\leq h(F(x_0))\}.$

If $\{x_k\}$ is the sequence generated by the algorithm initiated at x_0 , then one of the following must occur:

- (i) There is a k_0 such that $D_{k_0} = \emptyset$.
- (ii) $f(x_k) \downarrow -\infty$.
- (iii) The sequence $\{\|d_k\|\}$ diverges to $+\infty$.
- (iv) For every subsequence $J \subset \mathbb{N}$ for which $\{d_k\}_J$ is bounded, we have

$$\lim_{J} \Delta f(x_k; d_k) = 0.$$

Proof: Spps to the contrary that none of (i) – (iv) occur. Then $\exists J \subset \mathbb{N}$ such that $\{d_j\}_J$ is bounded and there is a $\beta > 0$ with $\sup_J \Delta f(x_j; d_j) \leq -\beta < 0$.

Since $\{f(x_j)\}$ is a decr. seq. that is bounded below, $f(x_j) \to f^*$ for some $f^* \in \mathbf{R}$. Consequently, $(f(x_{j+1}) - f(x_j)) \to 0$.

Proof: Spps to the contrary that none of (i) – (iv) occur. Then $\exists J \subset \mathbb{N}$ such that $\{d_j\}_J$ is bounded and there is a $\beta > 0$ with $\sup_J \Delta f(x_j; d_j) \leq -\beta < 0$.

Since $\{f(x_j)\}$ is a decr. seq. that is bounded below, $f(x_j) \to f^*$ for some $f^* \in \mathbf{R}$. Consequently, $(f(x_{j+1}) - f(x_j)) \to 0$.

The choice of λ_k implies that $\lambda_j \Delta f(x_j; d_j) \to 0$. Therefore, $\lambda_j \stackrel{J}{\to} 0$ so WLOG $\lambda_j < 1$ for all $j \in J$. Again, the choice of λ_j implies that $c\lambda_j \gamma^{-1} \Delta f(x_j; d_j) \leq f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \quad \forall j \in J$.

Proof: Spps to the contrary that none of (i) – (iv) occur. Then $\exists J \subset \mathbb{N}$ such that $\{d_j\}_J$ is bounded and there is a $\beta > 0$ with $\sup_J \Delta f(x_j; d_j) \leq -\beta < 0$.

Since $\{f(x_j)\}$ is a decr. seq. that is bounded below, $f(x_j) \to f^*$ for some $f^* \in \mathbf{R}$. Consequently, $(f(x_{j+1}) - f(x_j)) \to 0$.

The choice of λ_k implies that $\lambda_j \Delta f(x_j; d_j) \to 0$. Therefore, $\lambda_j \stackrel{J}{\to} 0$ so WLOG $\lambda_j < 1$ for all $j \in J$. Again, the choice of λ_j implies that $c\lambda_j \gamma^{-1} \Delta f(x_j; d_j) \le f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \quad \forall j \in J$.

But,
$$f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j)$$

$$\leq \lambda_{j} \gamma^{-1} \Delta f(x_{j}; d_{j}) + K \|F(x_{j} + \lambda_{j} \gamma^{-1} d_{j}) - (F(x_{j}) + \lambda_{j} \gamma^{-1} F'(x_{j}) d_{j})\|$$

$$\leq \lambda_{j}\gamma^{-1}\Delta f(x_{j};d_{j}) + K\lambda_{j}\gamma^{-1}\|d_{j}\|\int_{0}^{1}\|F'(x_{j}+\tau\gamma^{-1}\lambda_{j}d_{j}) - F'(x_{j})\|d\tau\|_{0}^{2} + C(x_{j})\|d\tau\|_{0}^{2}$$

$$\leq \lambda_j \gamma^{-1} \{ \Delta f(x_j; d_j) + K \| d_j \| \omega(\gamma^{-1} \lambda_j \| d_j \|) \}$$

for all $j \in J$, where K is a Lipschitz constant for h and ω is the modulus of continuity for F'.

Proof: Spps to the contrary that none of (i) – (iv) occur. Then $\exists J \subset \mathbb{N}$ such that $\{d_j\}_J$ is bounded and there is a $\beta > 0$ with $\sup_J \Delta f(x_j; d_j) \leq -\beta < 0$.

Since $\{f(x_j)\}$ is a decr. seq. that is bounded below, $f(x_j) \to f^*$ for some $f^* \in \mathbf{R}$. Consequently, $(f(x_{j+1}) - f(x_j)) \to 0$.

The choice of λ_k implies that $\lambda_j \Delta f(x_j; d_j) \to 0$. Therefore, $\lambda_j \stackrel{J}{\to} 0$ so WLOG $\lambda_j < 1$ for all $j \in J$. Again, the choice of λ_j implies that $c\lambda_j \gamma^{-1} \Delta f(x_j; d_j) \leq f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \quad \forall j \in J$.

But,
$$f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j)$$

$$\leq \lambda_j \gamma^{-1} \Delta f(x_j; d_j) + K \| F(x_j + \lambda_j \gamma^{-1} d_j) - (F(x_j) + \lambda_j \gamma^{-1} F'(x_j) d_j) \|$$

$$\leq \lambda_{j}\gamma^{-1}\Delta f(x_{j};d_{j}) + K\lambda_{j}\gamma^{-1}\|d_{j}\|\int_{0}^{1}\|F'(x_{j}+\tau\gamma^{-1}\lambda_{j}d_{j}) - F'(x_{j})\|d\tau\|$$

$$\leq \lambda_j \gamma^{-1} \{ \Delta f(x_j; d_j) + K \| d_j \| \omega(\gamma^{-1} \lambda_j \| d_j \|) \}$$

for all $j \in J$, where K is a Lipschitz constant for h and ω is the modulus of continuity for F'.

Therefore,

$$0 < (1-c)\Delta f(x_j; d_j) + K\omega(\lambda_j \gamma^{-1} || d_j ||) || d_j || \leq (c-1)\beta + K\omega(\lambda_j \gamma^{-1} || d_j ||) || d_j ||$$

for all $j \in J$. Letting $j \in J$ go to ∞ , we obtain the contradiction $0 < (c-1)\beta < 0$.

Corollary: Let f and $\{x_k\}$ be as in the statement of Theorem and let $\tau \in (0,1)$ and $\{\delta_k\} \subset (\underline{\delta}, \overline{\delta})$ for some $\overline{\delta} \geq \underline{\delta} > 0$. Suppose that

- (a) f is bounded below, and
- (b) $D_k := \{ d \in \delta_k \mathbb{B} \mid \Delta f(x_k; d) \le \tau \Delta_k f(x_k) \}, \text{ where }$

$$\Delta_k f(x_k) := \min \left\{ \Delta f(x_k; d) \mid ||d|| \le \delta_k \right\}.$$

Then every cluster, \overline{x} , point of the sequence $\{x_j\}$ satisfies $0 \in \partial f(\overline{x})$.

Proof: By the Theorem, $\Delta f(x_j; d_j) \to 0 \implies \Delta_k f(x_k) \to 0$. For $j \in \mathbb{N}$, let $\mathrm{bd}_j \in \mathrm{argmin} \{ \Delta f(x_k; d) \mid ||d|| \leq \delta_k \}$. If $J \subset \mathbb{N}$ is such that $x_j \xrightarrow{J} \overline{x}$ we can always refine J if necessary to get that $(d_j, \bar{d}_j, \delta_j) \xrightarrow{J} (\bar{d}, \tilde{d}_j, \tilde{\delta})$ for some $\bar{d}, \tilde{d} \in \tilde{\delta} \mathbb{B}$ and $\tilde{\delta} \in (\underline{\delta}, \bar{\delta})$. But then $\Delta f(\overline{x}; \bar{d}) = \Delta f(\overline{x}; \tilde{d}) = 0$ which implies that

$$h(F(\overline{x}) + F'(\overline{x})\overline{d}) = h(F(\overline{x}) + F'(\overline{x})\widetilde{d}) = h(F(\overline{x})).$$

Note that

$$h(F(x_j) + F'(x_j)\bar{d}_j) \le h(F(x_j) + F'(x_j)d) \quad \forall d \in \bar{\delta}_j \mathbb{B}.$$

Hence, in the limit over J,

$$h(F(\overline{x}) + F'(\overline{x})\tilde{d}) \le h(F(\overline{x}) + F'(\overline{x})d) \ \forall d \in \tilde{\delta}\mathbb{B}.$$

Consequently,

$$\tilde{d} \in \arg\min\{h(F(\overline{x}) + F'(\overline{x})d) : ||d|| \le \tilde{\delta}\}.$$

But
$$h(F(\overline{x})) = h(F(\overline{x}) + F'(\overline{x})\overline{d})$$
 so that $0 \in \arg\min\{h(F(\overline{x}) + F'(\overline{x})d) : ||d|| \leq \tilde{\delta}\}.$

Since $h(F(\overline{x}) + F'(\overline{x})d)$ is convex, d = 0 is a global solution to the problem $\min\{h(F(\overline{x}) + F'(\overline{x})d)\}$. Therefore, by the optimality condition theorem,

$$0 \in \partial f(\bar{x}).$$