Convex-Composite Optimization



Convex-Composite Model

We now consider problems of the form
min f(x) := h(F(x))

where h : E — R is a closed proper convex function and
F: E =Y is continuously differentiable.

In general, the functions h o F' are neither differentiable or
convex. However, the nonsmoothness is of a familiar form since
it arises from the convex function h.



Convex-Composite Model

We now consider problems of the form
min f(x) := h(F(x))

where h : E — R is a closed proper convex function and
F: E =Y is continuously differentiable.

In general, the functions h o F' are neither differentiable or
convex. However, the nonsmoothness is of a familiar form since
it arises from the convex function h.

Most problems from nonlinear programming can be cast in this
framework.



Nonlinear least squares

Let F: E—Y with m =dimY >> dimE = n and consider
the equation F'(x) = 0.

Since m > n it is highly unlikely that a solution to this equation
exists. However, one might try to obtain a best approximate
solution by solving the problem

min{||F(z)|| : z € E}.

This is a convex composite optimization problem since the norm
is a convex function.



Nonlinear convex inclusions

Let I': E =Y with m =dimY >> dimE = n and consider
the iinclusion F(z) € C' where C' C Y is nonempty closed cvx.

Since m > n it is again highly unlikely that a solution to this
equation exists. However, one might try to obtain a best
approximate solution by solving the problem

min{dist (F(z) |C) : z € E}.

This is a convex composite optimization problem since the
distance to a convex set is cvx.

The set C is often a cone such as S” or R* x {0}™F.



Nonlinear Programming (NLP)

Let FF: E— Y, C CY anon-empty closed convex set, and
fo: E — R, and consider the constrained optimization problem

min{ fo(z) : F(z) € C} = min fy(z) + dc(F(z)).

This is a convex composite optimization problem since
h(p,y) :==p + dc(y) is cvx.



Exact Penalization

Again consider the NLP
min { fo(x) | F(z) € C} = min fy(z) + 6c(F(z)).

One can approximate this problem by the unconstrained
optimization problem

min{ fo(z) + adist (f(z) |C) : z € E}.

This is a convex composite optimization problem where
h(n,y) =n+ adist (y |C') is a convex function.



Exact Penalization

Again consider the NLP
min { fo(x) | F(z) € C} = min fy(z) + 6c(F(z)).

One can approximate this problem by the unconstrained
optimization problem

min{ fo(z) + adist (f(z) |C) : z € E}.

This is a convex composite optimization problem where
h(n,y) =n+ adist (y |C') is a convex function.

The function fo(x) + adist (f(z) |C) is called an ezact penalty
function for the problem min{fo(z) : F(x) € C}.



First-Order theory for CVX-Comp

Consider the cvx-comp objective h o F. If h is finite-valued, we
know it is locally Lipschitz. Consequently,

h(F(z) + F'(z)(y — =) + o(lly — z[)).
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Given d € E, we can rewrite this equation as

hF(x+d)) =h(F(x))+ Af(z;d) + o(]|d]|) where
Af(z;d) = h(F(z) + F'(z)d) — h(F(z)).
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Given d € E, we can rewrite this equation as

hF(x+d)) =h(F(x))+ Af(z;d) + o(]|d]|) where
Af(z;d) = h(F(z) + F'(z)d) — h(F(z)).

Then, for every d € E,
[z +td) — f(x)

/ . s
J'(a; d) = Tim .
_ i Bf itd) | o(t)
t10 t t

= W (F(z); F'(z)d).

That is, f is directionally differentiable on E in all directions.



of(x)

Recall the notion of reqular subdifferential defined earlier for
potentially non-convex functions:

0f(x) = {v| f(2) + (v,y — ) < f(y) +o(|ly —|) VyeE}.

We showed that O f (x) is a closed convex set that coincides with
Of(z) when f is convex.



of(x)

Recall the notion of reqular subdifferential defined earlier for
potentially non-convex functions:

0f(x) = {v| f(2) + (v,y — ) < f(y) +o(|ly —|) VyeE}.

We showed that O f (x) is a closed convex set that coincides with
Of(z) when f is convex.
When f is cvx-comp, for every v € df(x), we have

fo+td) — f(x) _ Af(estd) | of)

(v,d) < p S V>0
Hence
(v, d>S§ h};(F(:L"); F'(z)d) = 6*(F'(z)d| Oh(F(z))) = 0*(d| F'(x)*Oh(F (z))).
o that

6%(d| 0f (x)) < &*(d| F'(2)*0h(F (x))) = Of(x) C F'(x)*0h(F(x)).



Of(x) = F'(x)*0h(F(z))
On the other hand, we have

fly ) h(F(z) + F'(z)(y — z)) + o([ly — z))
h(F(z)) + (v, F'(z)(y — 2)) + ollly — z[]) Vv € Oh(F(z))
—f(fr) (F'(z)",(y —2)) +o(lly — zl) Vv e Oh(F(x)).
Hence,
F'(z)*0h(F(z)) C 9f(z).
Consequently,

0f(x) = F'()*0h(F(x)) and f'(z;d) = 6"(d| 0f (x)).

For this reason, when f is finite-valued cvx-comp, we write
Of(z) instead of Jf(z) and call Jf(z) the subdifferential of f at
x.



Directional Derivative Approximation

In our development of numerical methods for minimizing convex
composite functions, we make extensive use of the difference
function

Af(z;d) = WF(x) + F'(x)d) — h(F(z)).

In particular, it is often used as a surrogate for the for the
directional derivative f’(x;d). In this respect, recall that

A IAf (e d) S A TAf(w3hed)  for 0 < Ay < Ag,

due to the non—decreasing nature of the difference quotients. An
important consequence of this inequality is that

flw;d) = inf 7 Af(wstd) < Af(x3d),
which also implies that

Af(x;td) <tAf(x;d) V> 0.



Optimality Conditions for Cvx Comp Optimization

Theorem: Let o : Y — R be convex and F': E — Y be
continuously differentiable. If Z is a local solution to the
problem min{h(F(z))}, then 0 € df(z). Moreover, the following
conditions are equivalent:

(a) 0 € 0f(x).

(b) d =0 1is a global solution to mingeg h(F(Z) + F'(Z)d).

() 0 <K(F(x); F'(x)d) for all d € E.

(d) 0 < Af(z;d) for all d € E.



Optimality Conditions for Cvx Comp Optimization

Proof: Let Z be a local solution to min{h(F(x))} and set
U(d) := h(F(z) + F'(z)d). Then 0 < f/(z;d) for all d € E.
Since f'(z;-) = 077z it must be the case that 0 € of (x).

[(a) <= (b)| Since ¥ is convex and
0V(0) = F'(z)*0Oh(F(z)) = 0f(Z), we have 0 € 9¥(0) so d =0
is a global solution to ming ¥(d).

[(a) <= (c)| This follows from the fact that
f1(@;d) = W(F(2); F'(z)d).

[(c) = (d)] Due to the convexity of ¥,
W (F(x); F'(z)d) < Af(z;d) for all d € E so (c) implies (d).

[(d) = (b)] (d) implies that h(F(z)) < h(F(z)+ F'(z)d) for all
d € E so that (b) holds.



Line—Search Methods
Let f: E — R and consider the problem min, f(z).
We consider iterative schemes of the form
Tpy1 = Tp + Apdg,
where it is intended that f(zg41) < f(zk).

Such methods are called descent methods. The scalar A, > 0 is
called the step length and the vector dj is called the search
direction.

Observe that
{d: f'(x;d) <0} C {d : IX>0, st f(z+Md) < f(x) VA € (0,/_\)}.

Thus, one way to achieve descent is to choose the search
direction from the set {d : f'(zo;d) < 0}.



Cauchy and Gauss-Newton search directions

The search direction dy obtained by solving
min{f(ey;d) : d] < 1}.

is called the direction of steepest descent, or the Cauchy
direction.

The search direction dj obtained by solving

1 2
in Af(zy:d) 4+ — |d
in f (g )+2a ]|

is called the prox-Newton or Gauss-Newton search direction.
Here 0 < a, B < oo with infinite values allowed.



The Backtracking line search

Consider the finite-valued cvx-comp framework f = ho F. Let
¢,y € (0,1) and let zy, d; € E be such that Af(zx;d) < 0.

Backtracking Line Search:
Ap = maxy®
subject to s € {0,1,2,...} and

W(F(x+7°d)) < h(F(x)) + ey Af (erdy).

The value Ay is called the backtracking step size.



Backtracking Descent Algorithm

Algorithm: Backtracking Descent
Input: Initial point g € E and line search parameters
c,v € (0,1).

For: k=1,2,...

Search Direction: Let Dy C {d: Af(xy;d) < 0}.
If D), = 0 stop; otherwise choose dj, € Dj,.

Backtracking line search:
A = max~y®
subject to s € {0,1,2,...} and

h(F(x 4+ ~°d)) < h(F(z)) + ¢y Af(xpdy).

Update: Set xy11 := 2 + A\pdg and k:=Fk + 1.



Convergence of Backtracking Descent Algorithm

Theorem: Let f: E — R be given by f(x) = h(F(z)) where
h:Y — Ris convex and F': E — Y is differentiable. Let
zo € R™ and assume that
(a) his Lip. cont. on the set {y : h(y) < h(F(x0))}, and
(b) F’ is uniformly continuous on the set
co{z : h(F(z)) < h(F(z0))}-
If {x1} is the sequence generated by the algorithm initiated at
xg, then one of the following must occur:

(i) There is a ko such that Dy, = 0.
(ii) f(zg) 4 —oo.

(iii) The sequence {||dg||} diverges to +oc.

For every subsequence J C N for which {dj}; is bounded,
we have

~— — ~—

(iv

li§n Af(zg;dy) = 0.



Convergence of Backtracking Descent Algorithm

Proof: Spps to the contrary that none of (i) — (iv) occur. Then
3J C N such that {d;}; is bounded and there is a 8 > 0 with

sup; Af(z;;d;) < -8 <0.
Since {f(x;)} is a decr. seq. that is bounded below, f(z;) — f* for
some f* € R. Consequently, (f(z;j4+1)— f(z;)) = 0.
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for all j € J, where K is a Lipschitz constant for h and w is the

modulus of continuity for F”.
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Since {f(x;)} is a decr. seq. that is bounded below, f(z;) — f* for
some f* € R. Consequently, (f(z;j4+1)— f(z;)) = 0.

The choice of Ay implies that A\;Af(z;;d;) — 0. Therefore, A; 2,0 s0

WLOG A; < 1 for all j € J. Again, the choice of \; implies that
c)\j’y_lAf(xj;dj) < f(a:] + )\jv_ldj) — f(.%']) Vjed

But, f(x; + Xy~ dy) — f(zy)

< MY TIASf(wgidy) + K F(zj + Xy~ hdy) — (Fxg) + Ay~ F (25)d;) |
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<
<

Therefore,
0 < (I—o)Af(xjids) + KwyHd;)ld; |
< (e—=1)B+ KwM\yHld;])ld; ]l
for all 7 € J. Letting j € J go to co, we obtain the contradiction
0<(c—-1)8<0.



Convergence of Backtracking Descent Algorithm

Corollary: Let f and {z)} be as in the statement of Theorem
and let 7 € (0,1) and {0x} C (J,0) for some § > 0 > 0.
Suppose that

(a) f is bounded below, and
(b) Dy :={d € 0;B| Af(zk;d) < TAf(xp) }, where

Apf(ax) = min {Af(zx; d) | [|d]| < 0 }-

Then every cluster, T, point of the sequence {x;} satisfies

0 € df(x).



Convergence of Backtracking Descent Algorithm

Proof: By the Theorem, Af(z;;d;) =0 = Apf(xr) — 0.
For j € N, let bd ; € argmin {Af(xy;d)|||d]| <o }. If J C Nis
such that x

Tj 2% we can always refine J if necessary to get that
(d;.d;, ;) (d, d
d) =

s S) for some d, d € 6B and ¢ € (8,6). But
then Af(7; Af(z;d) = 0 which implies that
h(F (%) + F'(z)d) = h(F(T) + F'(z)d) = h(F(T)).
Note that

h(F(:L‘J) + F’(.I‘j)CZj) < h(F(IBJ) + F'(acj)d) Vde SjE.
Hence, in the limit over J,

h(F () + F'(Z)d) < h(F(Z) + F'(T)d) Yd € 0B.



Convergence of Backtracking Descent Algorithm

Consequently,

d € argmin{h(F(Z) + F'(z)d) : ||d| < §}.

But h(F(z)) = h(F(z) + F'(z)d) so that
0 € argmin{h(F(z) + F'(z)d) : ||d| < §}.

Since h(F(Z) + F'(T)d) is convex, d = 0 is a global solution to
the problem min{h(F(z) + F'(z)d)}. Therefore, by the
optimality condition theorem,

0 € df(x).



