Convex-Composite Optimization
Convex-Composite Model

We now consider problems of the form

$$\min f(x) := h(F(x))$$

where \(h : \mathbb{E} \to \overline{\mathbb{R}} \) is a closed proper convex function and \(F : \mathbb{E} \to \mathbb{Y} \) is continuously differentiable.

In general, the functions \(h \circ F \) are neither differentiable or convex. However, the nonsmoothness is of a familiar form since it arises from the convex function \(h \).
Convex-Composite Model

We now consider problems of the form

$$\min f(x) := h(F(x))$$

where $h : \mathbb{E} \rightarrow \overline{\mathbb{R}}$ is a closed proper convex function and $F : \mathbb{E} \rightarrow \mathbb{Y}$ is continuously differentiable.

In general, the functions $h \circ F$ are neither differentiable or convex. However, the nonsmoothness is of a familiar form since it arises from the convex function h.

Most problems from nonlinear programming can be cast in this framework.
Nonlinear least squares

Let $F : \mathbf{E} \to \mathbf{Y}$ with $m = \dim \mathbf{Y} >> \dim \mathbf{E} = n$ and consider the equation $F(x) = 0$.

Since $m > n$ it is highly unlikely that a solution to this equation exists. However, one might try to obtain a best approximate solution by solving the problem

$$\min \{ \|F(x)\| : x \in \mathbf{E}\}.$$

This is a convex composite optimization problem since the norm is a convex function.
Nonlinear convex inclusions

Let $F : \mathbf{E} \to \mathbf{Y}$ with $m = \dim Y >> \dim \mathbf{E} = n$ and consider the inclusion $F(x) \in C$ where $C \subset \mathbf{Y}$ is nonempty closed cvx.

Since $m > n$ it is again highly unlikely that a solution to this equation exists. However, one might try to obtain a best approximate solution by solving the problem

$$\min \{ \text{dist} (F(x) | C) : x \in \mathbf{E} \}. $$

This is a convex composite optimization problem since the distance to a convex set is cvx.

The set C is often a cone such as \mathbf{S}^n_+ or $\mathbf{R}^k \times \{0\}^{m-k}$.
Nonlinear Programming (NLP)

Let $F : E \to Y$, $C \subset Y$ a non-empty closed convex set, and $f_0 : E \to \mathbb{R}$, and consider the constrained optimization problem

$$\min\{ f_0(x) : F(x) \in C \} = \min f_0(x) + \delta_C(F(x)).$$

This is a convex composite optimization problem since $h(\mu, y) := \mu + \delta_C(y)$ is cvx.
Exact Penalization

Again consider the NLP

$$\min \{ f_0(x) | F(x) \in C \} = \min f_0(x) + \delta_C(F(x)).$$

One can approximate this problem by the unconstrained optimization problem

$$\min \{ f_0(x) + \alpha \text{dist} (f(x) | C) : x \in E \}.$$

This is a convex composite optimization problem where

$$h(\eta, y) = \eta + \alpha \text{dist} (y | C)$$

is a convex function.
Exact Penalization

Again consider the NLP

\[
\min \{ f_0(x) \mid F(x) \in C \} = \min f_0(x) + \delta_C(F(x)).
\]

One can approximate this problem by the unconstrained optimization problem

\[
\min \{ f_0(x) + \alpha \text{dist} (f(x) \mid C) : x \in E \}.
\]

This is a convex composite optimization problem where

\[h(\eta, y) = \eta + \alpha \text{dist} (y \mid C) \]

is a convex function.

The function \(f_0(x) + \alpha \text{dist} (f(x) \mid C) \) is called an exact penalty function for the problem \(\min \{ f_0(x) : F(x) \in C \} \).
First-Order theory for CVX-Comp

Consider the cvx-comp objective $h \circ F$. If h is finite-valued, we know it is locally Lipschitz. Consequently,

$$f(y) = h(F(y)) = h(F(x) + F'(x)(y - x)) + o(\|y - x\|).$$
First-Order theory for CVX-Comp

Consider the cvx-comp objective $h \circ F$. If h is finite-valued, we know it is locally Lipschitz. Consequently,

$$f(y) = h(F(y)) = h(F(x) + F'(x)(y - x)) + o(\|y - x\|).$$

Given $d \in \mathbf{E}$, we can rewrite this equation as

$$h(F(x + d)) = h(F(x)) + \Delta f(x; d) + o(\|d\|) \quad \text{where}$$

$$\Delta f(x; d) := h(F(x) + F'(x)d) - h(F(x)).$$
First-Order theory for CVX-Comp

Consider the cvx-comp objective \(h \circ F \). If \(h \) is finite-valued, we know it is locally Lipschitz. Consequently,

\[
f(y) = h(F(y)) = h(F(x) + F'(x)(y - x)) + o(\|y - x\|).
\]

Given \(d \in \mathbf{E} \), we can rewrite this equation as

\[
h(F(x + d)) = h(F(x)) + \Delta f(x; d) + o(\|d\|) \quad \text{where} \quad \Delta f(x; d) := h(F(x) + F'(x)d) - h(F(x)).
\]

Then, for every \(d \in \mathbf{E} \),

\[
f'(x; d) = \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}
= \lim_{t \downarrow 0} \frac{\Delta f(x; td)}{t} + \frac{o(t)}{t}
= h'(F(x); F'(x)d).
\]

That is, \(f \) is directionally differentiable on \(\mathbf{E} \) in all directions.
Recall the notion of \textit{regular} subdifferential defined earlier for potentially non-convex functions:

\[
\hat{\partial} f(x) := \{ v \mid f(x) + \langle v, y - x \rangle \leq f(y) + o(\|y - x\|) \quad \forall y \in \mathbf{E} \}.
\]

We showed that \(\hat{\partial} f(x) \) is a closed convex set that coincides with \(\partial f(x) \) when \(f \) is convex.
Recall the notion of regular subdifferential defined earlier for potentially non-convex functions:

\[\hat{\partial} f(x) := \{ v \mid f(x) + \langle v, y - x \rangle \leq f(y) + o(\|y - x\|) \quad \forall y \in \mathbf{E} \}. \]

We showed that \(\hat{\partial} f(x) \) is a closed convex set that coincides with \(\partial f(x) \) when \(f \) is convex.

When \(f \) is cvx-comp, for every \(v \in \hat{\partial} f(x) \), we have

\[\langle v, d \rangle \leq \frac{f(x + td) - f(x)}{t} = \frac{\Delta f(x; td)}{t} + \frac{o(t)}{t} \quad \forall t > 0. \]

Hence

\[\langle v, d \rangle \leq h'(F(x); F'(x)d) = \delta^*(F'(x)d | \partial h(F(x))) = \delta^*(d | F'(x) \partial h(F(x))). \]

So that

\[\delta^*(d | \hat{\partial} f(x)) \leq \delta^*(d | F'(x) \partial h(F(x))) \quad \implies \quad \hat{\partial} f(x) \subset F'(x) \partial h(F(x)). \]
\[\partial f(x) = F'(x)^* \partial h(F(x)) \]

On the other hand, we have

\[
\begin{align*}
f(y) &= h(F(x) + F'(x)(y - x)) + o(\|y - x\|) \\
&\geq h(F(x)) + \langle v, F'(x)(y - x) \rangle + o(\|y - x\|) \quad \forall \ v \in \partial h(F(x)) \\
&= f(x) + \langle F'(x)^* v, (y - x) \rangle + o(\|y - x\|) \quad \forall \ v \in \partial h(F(x)).
\end{align*}
\]

Hence,

\[F'(x)^* \partial h(F(x)) \subset \hat{\partial} f(x). \]

Consequently,

\[\hat{\partial} f(x) = F'(x)^* \partial h(F(x)) \quad \text{and} \quad f'(x; d) = \delta^*(d| \hat{\partial} f(x)). \]

For this reason, when \(f \) is finite-valued cvx-comp, we write \(\partial f(x) \) instead of \(\hat{\partial} f(x) \) and call \(\partial f(x) \) the subdifferential of \(f \) at \(x \).
Directional Derivative Approximation

In our development of numerical methods for minimizing convex composite functions, we make extensive use of the difference function

$$\Delta f(x; d) := h(F(x) + F'(x)d) - h(F(x)).$$

In particular, it is often used as a surrogate for the directional derivative $f'(x; d)$. In this respect, recall that

$$\lambda_1^{-1} \Delta f(x; \lambda_1 d) \leq \lambda_2^{-1} \Delta f(x; \lambda_2 d) \quad \text{for } 0 < \lambda_1 \leq \lambda_2,$$

due to the non-decreasing nature of the difference quotients. An important consequence of this inequality is that

$$f'(x; d) = \inf_{t > 0} t^{-1} \Delta f(x; td) \leq \Delta f(x; d),$$

which also implies that

$$\Delta f(x; td) \leq t \Delta f(x; d) \quad \forall t > 0.$$
Theorem: Let $h : Y \to \mathbb{R}$ be convex and $F : E \to Y$ be continuously differentiable. If \bar{x} is a local solution to the problem $\min \{ h(F(x)) \}$, then $0 \in \partial f(\bar{x})$. Moreover, the following conditions are equivalent:

(a) $0 \in \partial f(x)$.

(b) $d = 0$ is a global solution to $\min_{d \in E} h(F(\bar{x}) + F'(\bar{x})d)$.

(c) $0 \leq h'(F(x); F'(x)d)$ for all $d \in E$.

(d) $0 \leq \Delta f(x; d)$ for all $d \in E$.

Optimality Conditions for Cvx Comp Optimization
Proof: Let \bar{x} be a local solution to $\min\{h(F(x))\}$ and set $\Psi(d) := h(F(\bar{x}) + F'(\bar{x})d)$. Then $0 \leq f'(\bar{x}; d)$ for all $d \in E$. Since $f'(\bar{x}; \cdot) = \delta^*_{\partial f(\bar{x})}$, it must be the case that $0 \in \partial f(x)$.

[(a) \iff (b)] Since Ψ is convex and $\partial \Psi(0) = F'(\bar{x})^* \partial h(F(\bar{x})) = \partial f(\bar{x})$, we have $0 \in \partial \Psi(0)$ so $d = 0$ is a global solution to $\min_d \Psi(d)$.

[(a) \iff (c)] This follows from the fact that $f'(\bar{x}; d) = h'(F(x); F'(\bar{x})d)$.

[(c) \implies (d)] Due to the convexity of Ψ, $h'(F(x); F'(\bar{x})d) \leq \Delta f(x; d)$ for all $d \in E$ so (c) implies (d).

[(d) \implies (b)] (d) implies that $h(F(\bar{x})) \leq h(F(\bar{x}) + F'(\bar{x})d)$ for all $d \in E$ so that (b) holds.
Line–Search Methods

Let \(f : \mathbb{E} \to \mathbb{R} \) and consider the problem \(\min_x f(x) \).

We consider iterative schemes of the form

\[
x_{k+1} := x_k + \lambda_k d_k,
\]

where it is intended that \(f(x_{k+1}) < f(x_k) \).

Such methods are called descent methods. The scalar \(\lambda_k > 0 \) is called the \textit{step length} and the vector \(d_k \) is called the \textit{search direction}.

Observe that

\[
\{ d : f'(x; d) < 0 \} \subset \{ d : \exists \bar{\lambda} > 0, \text{ s.t. } f(x + \lambda d) < f(x) \forall \lambda \in (0, \bar{\lambda}) \}.
\]

Thus, one way to achieve descent is to choose the search direction from the set \(\{ d : f'(x_0; d) < 0 \} \).
Cauchy and Gauss-Newton search directions

The search direction d_k obtained by solving

$$\min \{ f'(x_k; d) : \|d\| \leq 1 \}.$$

is called the direction of steepest descent, or the Cauchy direction.

The search direction d_k obtained by solving

$$\min_{\|d\| \leq \beta} \Delta f(x_k; d) + \frac{1}{2\alpha} \|d\|^2$$

is called the prox-Newton or Gauss-Newton search direction. Here $0 < \alpha, \beta \leq \infty$ with infinite values allowed.
The Backtracking line search

Consider the finite-valued cvx-comp framework $f = h \circ F$. Let $c, \gamma \in (0, 1)$ and let $x_k, d_k \in E$ be such that $\Delta f(x_k; d) < 0$.

Backtracking Line Search:

$$
\lambda_k := \max \gamma^s
$$

subject to $s \in \{0, 1, 2, \ldots\}$ and

$$
h(F(x + \gamma^s d)) \leq h(F(x)) + c\gamma^s \Delta f(x_kd_k).
$$

The value λ_k is called the backtracking step size.
Backtracking Descent Algorithm

Algorithm: Backtracking Descent

Input: Initial point \(x_0 \in \mathbb{E} \) and line search parameters \(c, \gamma \in (0, 1) \).

For: \(k = 1, 2, \ldots \)

Search Direction: Let \(D_k \subset \{ d : \Delta f(x_k; d) < 0 \} \). If \(D_k = \emptyset \) stop; otherwise choose \(d_k \in D_k \).

Backtracking line search:

\[\lambda_k := \max \gamma^s \]

subject to \(s \in \{0, 1, 2, \ldots \} \) and

\[h(F(x + \gamma^s d)) \leq h(F(x)) + c\gamma^s \Delta f(x_k d_k). \]

Update: Set \(x_{k+1} := x_k + \lambda_k d_k \) and \(k := k + 1 \).
Convergence of Backtracking Descent Algorithm

Theorem: Let $f : \mathbb{E} \to \mathbb{R}$ be given by $f(x) = h(F(x))$ where $h : \mathbb{Y} \to \mathbb{R}$ is convex and $F : \mathbb{E} \to \mathbb{Y}$ is differentiable. Let $x_0 \in \mathbb{R}^n$ and assume that

(a) h is Lip. cont. on the set $\{y : h(y) \leq h(F(x_0))\}$, and

(b) F' is uniformly continuous on the set $\overline{co}\{x : h(F(x)) \leq h(F(x_0))\}$.

If $\{x_k\}$ is the sequence generated by the algorithm initiated at x_0, then one of the following must occur:

(i) There is a k_0 such that $D_{k_0} = \emptyset$.

(ii) $f(x_k) \downarrow -\infty$.

(iii) The sequence $\{\|d_k\|\}$ diverges to $+\infty$.

(iv) For every subsequence $J \subset \mathbb{N}$ for which $\{d_k\}_J$ is bounded, we have

$$\lim_{J} \Delta f(x_k; d_k) = 0.$$
Proof: Spps to the contrary that none of (i) – (iv) occur. Then \(\exists J \subset \mathbb{N} \) such that \(\{d_j\}_J \) is bounded and there is a \(\beta > 0 \) with
\[
\sup_J \Delta f(x_j; d_j) \leq -\beta < 0.
\]

Since \(\{f(x_j)\} \) is a decr. seq. that is bounded below, \(f(x_j) \to f^* \) for some \(f^* \in \mathbb{R} \). Consequently, \((f(x_{j+1}) - f(x_j)) \to 0 \).
Convergence of Backtracking Descent Algorithm

Proof: Spps to the contrary that none of (i) – (iv) occur. Then \(\exists J \subset \mathbb{N} \) such that \(\{d_j\}_J \) is bounded and there is a \(\beta > 0 \) with
\[
\sup_J \Delta f(x_j; d_j) \leq -\beta < 0.
\]
Since \(\{f(x_j)\} \) is a decr. seq. that is bounded below, \(f(x_j) \to f^* \) for some \(f^* \in \mathbb{R} \). Consequently, \((f(x_{j+1}) - f(x_j)) \to 0 \).

The choice of \(\lambda_k \) implies that \(\lambda_j \Delta f(x_j; d_j) \to 0 \). Therefore, \(\lambda_j \to 0 \) so WLOG \(\lambda_j < 1 \) for all \(j \in J \). Again, the choice of \(\lambda_j \) implies that
\[
c\lambda_j \gamma^{-1} \Delta f(x_j; d_j) \leq f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \quad \forall j \in J.
\]
Convergence of Backtracking Descent Algorithm

Proof: Spps to the contrary that none of (i) – (iv) occur. Then \(\exists J \subset \mathbb{N} \) such that \(\{d_j\}_J \) is bounded and there is a \(\beta > 0 \) with
\[
\sup_J \Delta f(x_j; d_j) \leq -\beta < 0.
\]
Since \(\{f(x_j)\} \) is a decr. seq. that is bounded below, \(f(x_j) \to f^* \) for some \(f^* \in \mathbb{R} \). Consequently, \((f(x_{j+1}) - f(x_j)) \to 0 \).

The choice of \(\lambda_k \) implies that \(\lambda_j \Delta f(x_j; d_j) \to 0 \). Therefore, \(\lambda_j \to 0 \) so WLOG \(\lambda_j < 1 \) for all \(j \in J \). Again, the choice of \(\lambda_j \) implies that
\[
c\lambda_j \gamma^{-1} \Delta f(x_j; d_j) \leq f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \quad \forall j \in J.
\]
But,
\[
f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \leq \lambda_j \gamma^{-1} \Delta f(x_j; d_j) + K \|F(x_j + \lambda_j \gamma^{-1} d_j) - (F(x_j) + \lambda_j \gamma^{-1} F'(x_j) d_j)\|
\]
\[
\leq \lambda_j \gamma^{-1} \Delta f(x_j; d_j) + K \lambda_j \gamma^{-1} \|d_j\| \int_0^1 \|F'(x_j + \tau \gamma^{-1} \lambda_j d_j) - F'(x_j)\| d\tau
\]
\[
\leq \lambda_j \gamma^{-1} \{\Delta f(x_j; d_j) + K \|d_j\| \omega(\gamma^{-1} \lambda_j \|d_j\|)\}
\]
for all \(j \in J \), where \(K \) is a Lipschitz constant for \(h \) and \(\omega \) is the modulus of continuity for \(F' \).
Convergence of Backtracking Descent Algorithm

Proof: Spps to the contrary that none of (i) – (iv) occur. Then \(\exists J \subset \mathbb{N} \) such that \(\{d_j\}_J \) is bounded and there is a \(\beta > 0 \) with

\[
\sup_J \Delta f(x_j; d_j) \leq -\beta < 0.
\]

Since \(\{f(x_j)\} \) is a decr. seq. that is bounded below, \(f(x_j) \to f^* \) for some \(f^* \in \mathbb{R} \). Consequently, \((f(x_{j+1}) - f(x_j)) \to 0 \).

The choice of \(\lambda_k \) implies that \(\lambda_j \Delta f(x_j; d_j) \to 0 \). Therefore, \(\lambda_j \to 0 \) so WLOG \(\lambda_j < 1 \) for all \(j \in J \). Again, the choice of \(\lambda_j \) implies that

\[
c \lambda_j \gamma^{-1} \Delta f(x_j; d_j) \leq f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \quad \forall j \in J.
\]

But,

\[
f(x_j + \lambda_j \gamma^{-1} d_j) - f(x_j) \\
\leq \lambda_j \gamma^{-1} \Delta f(x_j; d_j) + K \|F(x_j + \lambda_j \gamma^{-1} d_j) - (F(x_j) + \lambda_j \gamma^{-1} F'(x_j) d_j)\| \\
\leq \lambda_j \gamma^{-1} \Delta f(x_j; d_j) + K \lambda_j \gamma^{-1} \|d_j\| \int_0^1 \|F'(x_j + \tau \gamma^{-1} \lambda_j d_j) - F'(x_j)\|d\tau \\
\leq \lambda_j \gamma^{-1} \{\Delta f(x_j; d_j) + K \|d_j\| \omega(\gamma^{-1} \lambda_j \|d_j\|)\}
\]

for all \(j \in J \), where \(K \) is a Lipschitz constant for \(h \) and \(\omega \) is the modulus of continuity for \(F' \).

Therefore,

\[
0 < (1 - c) \Delta f(x_j; d_j) + K \omega(\lambda_j \gamma^{-1} \|d_j\|) \|d_j\| \\
\leq (c - 1) \beta + K \omega(\lambda_j \gamma^{-1} \|d_j\|) \|d_j\|
\]

for all \(j \in J \). Letting \(j \in J \) go to \(\infty \), we obtain the contradiction \(0 \leq (c - 1) \beta < 0 \).
Corollary: Let f and $\{x_k\}$ be as in the statement of Theorem and let $\tau \in (0, 1)$ and $\{\delta_k\} \subset (\delta, \bar{\delta})$ for some $\bar{\delta} \geq \delta > 0$. Suppose that

(a) f is bounded below, and

(b) $D_k := \{d \in \delta_k \mathbb{B} | \Delta f(x_k; d) \leq \tau \Delta_k f(x_k)\}$, where

$$\Delta_k f(x_k) := \min \{\Delta f(x_k; d) | \|d\| \leq \delta_k\}.$$

Then every cluster, \bar{x}, point of the sequence $\{x_j\}$ satisfies $0 \in \partial f(\bar{x})$.

Convergence of Backtracking Descent Algorithm
Convergence of Backtracking Descent Algorithm

Proof: By the Theorem, $\Delta f(x_j; d_j) \to 0 \implies \Delta_k f(x_k) \to 0$. For $j \in \mathbb{N}$, let $bd_j \in \operatorname{argmin} \{\Delta f(x_k; d) \mid \|d\| \leq \delta_k\}$. If $J \subset \mathbb{N}$ is such that $x_j \rightarrow \bar{x}$ we can always refine J if necessary to get that $(d_j, \bar{d}_j, \delta_j) \rightarrow (\bar{d}, \tilde{d}_j, \tilde{\delta})$ for some $\bar{d}, \tilde{d} \in \delta \mathbb{B}$ and $\tilde{\delta} \in (\delta, \bar{\delta})$. But then $\Delta f(\bar{x}; \bar{d}) = \Delta f(\bar{x}; \tilde{d}) = 0$ which implies that

$$h(F(\bar{x}) + F'(\bar{x})\bar{d}) = h(F(\bar{x}) + F'(\bar{x})\tilde{d}) = h(F(\bar{x})).$$

Note that

$$h(F(x_j) + F'(x_j)\bar{d}_j) \leq h(F(x_j) + F'(x_j)d) \quad \forall d \in \delta_j \mathbb{B}.$$

Hence, in the limit over J,

$$h(F(\bar{x}) + F'(\bar{x})\tilde{d}) \leq h(F(\bar{x}) + F'(\bar{x})d) \quad \forall d \in \tilde{\delta} \mathbb{B}.$$
Convergence of Backtracking Descent Algorithm

Consequently,

\[\tilde{d} \in \arg\min \{ h(F(\bar{x}) + F'(\bar{x})d) : \|d\| \leq \tilde{\delta} \}. \]

But \(h(F(\bar{x})) = h(F(\bar{x}) + F'(\bar{x})\tilde{d}) \) so that
\[0 \in \arg\min \{ h(F(\bar{x}) + F'(\bar{x})d) : \|d\| \leq \tilde{\delta} \}. \]

Since \(h(F(\bar{x}) + F'(\bar{x})d) \) is convex, \(d = 0 \) is a global solution to the problem \(\min \{ h(F(\bar{x}) + F'(\bar{x})d) \} \). Therefore, by the optimality condition theorem,

\[0 \in \partial f(\bar{x}). \]