First-order algorithms for black-box convex optimization

The Condition Number

$$\min_{x \in \mathbf{E}} f(x),$$

where f is a β -smooth and α -strongly convex with $\alpha, \beta \geq 0$. This implies f satisfies

$$\frac{\alpha}{2}\|y-x\|^2 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{\beta}{2}\|y-x\|^2 \ \forall x, y \in \mathbf{E}.$$

Geometrically, f is sandwiched between the two quadratics

$$Q_x(y) := f(x) + \langle \nabla f(x), y - x \rangle + \frac{\beta}{2} ||y - x||^2,$$

$$q_x(y) := f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2.$$

The Condition Number

The ratio

$$\kappa := \beta/\alpha$$

is called the *condition number* of f.

Intuitively, κ measures the "scaling" of the problem. In particular, equality $\kappa=1$ holds if and only if f is a spherical quadratic.

The condition number κ strongly influences convergence guarantees of numerical methods.

Throughout, we assume that f has at least one minimizer, which is automatic if $\alpha > 0$.

The symbols \bar{f} and \bar{x} will denote the minimal value of f and an arbitrary minimizer of f, respectively.

Gradient Descent

Lemma (Descent)

The gradient step $x^+ = x - \eta \nabla f(x_t)$ satisfies

$$f(x^{+}) \le f(x) - \eta \left(1 - \frac{\eta \beta}{2}\right) \|\nabla f(x)\|^{2}.$$

Proof.

Using

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{\beta}{2} ||y - x||^2,$$

we have

$$f(x - \eta \nabla f(x)) \le f(x) - \langle \nabla f(x), \eta \nabla f(x) \rangle + \frac{\beta}{2} \|\eta \nabla f(x)\|^2$$
$$= f(x) - \eta \left(1 - \frac{\eta \beta}{2}\right) \|\nabla f(x)\|^2,$$

as claimed.

Choice of η

Choosing η to be the maximizer of the concave quadratic $\eta \mapsto \eta \left(1 - \frac{\eta \beta}{2}\right)$ yields $\eta = \frac{1}{\beta}$.

This value of η in the Lemma shows that Gradient Descent Algorithm satisfies

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2\beta} \|\nabla f(x_t)\|^2$$
 for all $t \ge 0$.

The Gradient Descent Algorithm (GDA):

Input: Starting point $x_0 \in \mathbf{E}$, parameter $\beta > 0$, iteration $T \in \mathbb{N}$.

Step
$$t = 0, 1, \dots, T - 1$$
:
Set $x_{t+1} = x_t - \frac{1}{\beta} \nabla f(x_t)$

Convergence of The Gradient Descent Algorithm

Theorem: Let $f: \mathbf{E} \to \mathbf{R}$ be β -smooth cvx. Then the iterates generated by GDA satisfy

$$f(x_t) - \bar{f} \le \frac{\beta \|x_0 - \bar{x}\|^2}{2t}.$$

Proof:

$$f(x_{t+1}) \leq f(x_t) + \langle \nabla f(x_t), x_{t+1} - x_t \rangle + \frac{\beta}{2} \|x_{t+1} - x_t\|^2$$

$$= f(x_t) + \langle \nabla f(x_t), \bar{x} - x_t \rangle + \frac{\beta}{2} \|x_{t+1} - x_t\|^2 + \langle \nabla f(x_t), x_{t+1} - \bar{x} \rangle$$

$$\leq \bar{f} + \frac{\beta}{2} \|x_{t+1} - x_t\|^2 + \langle \nabla f(x_t), x_{t+1} - \bar{x} \rangle$$

$$= \bar{f} + \frac{\beta}{2} \left(\|x_{t+1} - x_t\|^2 - 2\langle x_{t+1} - x_t, x_{t+1} - \bar{x} \rangle \right)$$

$$= \bar{f} + \frac{\beta}{2} \left(\|x_t - \bar{x}\|^2 - \|x_{t+1} - \bar{x}\|^2 \right).$$

Convergence of The Gradient Descent Algorithm

We have

$$f(x_{t+1}) \le \bar{f} + \frac{\beta}{2} (\|x_t - \bar{x}\|^2 - \|x_{t+1} - \bar{x}\|^2).$$

Subtract \bar{f} from both sides and sum for $i = 0, \dots, t - 1$, the terms on the right side telescope, yielding

$$\sum_{i=0}^{t-1} (f(x_{i+1}) - \bar{f}) \le \frac{\beta}{2} \sum_{i=0}^{t-1} (\|x_i - \bar{x}\|^2 - \|x_{i+1} - \bar{x}\|^2) \le \frac{\beta}{2} \|x_0 - \bar{x}\|^2.$$

Since the values $\{f(x_i)\}_{i\geq 0}$ are nonincreasing, we deduce

$$f(x_t) - \bar{f} \le \frac{1}{t} \sum_{i=0}^{t-1} (f(x_{i+1}) - \bar{f}) \le \frac{\beta ||x_0 - \bar{x}||^2}{2t},$$

as claimed.

Convergence of GCA under Strong Convexity

Theorem: Let $f: \mathbf{E} \to \mathbf{R}$ be α -strongly cvx and β -smooth. Then the iterates generated by GDA satisfy

$$(\star) \qquad f(x_{t+1}) - \bar{f} \le \left(1 - \frac{1}{2\kappa}\right) (f(x_t) - \bar{f}),$$
$$(\star\star) \qquad \|x_{t+1} - \bar{x}\|^2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right) \|x_t - \bar{x}\|^2.$$

Proof: To see (\star) , we combine the inequality

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2\beta} \|\nabla f(x_t)\|^2$$

with

$$(\diamond) \qquad f(x) - \bar{f} \le \frac{1}{\alpha} \|v\|^2 \qquad \text{for all } x \in \mathbf{E}, \, v \in \partial f(x)$$

to deduce

$$f(x_{t+1}) - f(x_t) \le -\frac{1}{2\beta} \|\nabla f(x_t)\|^2 \le -\frac{1}{2\kappa} (f(x_t) - \bar{f}).$$

Adding and subtracting f from the left-side yields

$$(f(x_{t+1}) - \bar{f}) - (f(x_t) - \bar{f}) \le -\frac{1}{2\kappa} (f(x_t) - \bar{f}).$$

Rearranging completes the proof of (\star) .

Convergence of GCA under Strong Convexity

Next, observe

$$||x_{t+1} - \bar{x}||^{2} = ||(x_{t} - \bar{x}) - \beta^{-1} \nabla f(x_{t})||^{2}$$

$$= ||x_{t} - \bar{x}||^{2} + \frac{2}{\beta} \langle \nabla f(x_{t}), \bar{x} - x_{t} \rangle + \frac{1}{\beta^{2}} ||\nabla f(x_{t})||^{2}$$

$$\leq ||x_{t} - \bar{x}||^{2} + \frac{2}{\beta} \left(\bar{f} - f(x_{t}) - \frac{\alpha}{2} ||x_{t} - \bar{x}||^{2} \right) + \frac{1}{\beta^{2}} ||\nabla f(x_{t})||^{2}$$

$$= \left(1 - \frac{\alpha}{\beta} \right) ||x_{t} - \bar{x}||^{2} + \frac{2}{\beta} \left(\bar{f} - f(x_{t}) + \frac{1}{2\beta} ||\nabla f(x_{t})||^{2} \right),$$
(2)

where (??) follows from strong convexity. (\diamond) shows the second term in (??) is nonpositive, and therefore the quantity $||x_{t+1} - \bar{x}||^2$ tends to zero at the linear rate $1 - \kappa^{-1}$.

Convergence of GCA under Strong Convexity

To obtain $(\star\star)$ note that strong convexity and (\diamond) guarantees that

$$|\bar{f} + \frac{\alpha}{2} ||x_{t+1} - \bar{x}||^2 \le f(x_{t+1}) \le f(x_t) - \frac{1}{2\beta} ||\nabla f(x_t)||^2,$$

and therefore

$$\bar{f} - f(x_t) + \frac{1}{2\beta} \|\nabla f(x_t)\|^2 \le -\frac{\alpha}{2} \|x_{t+1} - \bar{x}\|^2.$$

Combining this estimate with (??) and rearranging yields $(\star\star)$.

Accelerated gradient descent

Accelerated Gradient Descent Algorithm (AGDA) Input: Starting point $x_0 \in \mathbf{E}$. Set t = 0 and $a_0 = a_{-1} = 1$, $x_{-1} = x_0$ For: $t = 0, \ldots, T$ Set $u_t = x_t + a_t(a_t^{-1} - 1)(x_t - x_{t-1})$ $x_{t+1} = u_t - \frac{1}{\beta} \nabla f(u_t)$ $a_{t+1} = \frac{\sqrt{a_t^4 + 4a_t^2} - a_t^2}{2}$. (extrapolation sequence)

AGDA convergence rate

Theorem: Let $f: \mathbf{E} \to \mathbf{R}$ be a convex and β -smooth function. Then the iterates $\{x_t\}$ generated by AGDA satisfy

$$f(x_t) - \bar{f} \le \frac{2\beta \|\bar{x} - y_0\|^2}{(t+1)^2}.$$

Subgradient method for nonsmooth convex minimization

$$\min_{x \in Q} \ f(x)$$

where $f \colon \mathbf{E} \to \mathbf{R}$ is cvx and L-Lipschitz on an neighborhood of a closed convex set $Q \subset \mathbf{E}$.

Subgradient method for nonsmooth convex minimization

$$\min_{x \in Q} \ f(x)$$

where $f \colon \mathbf{E} \to \mathbf{R}$ is cvx and L-Lipschitz on an neighborhood of a closed convex set $Q \subset \mathbf{E}$.

```
Algorithm: The Projected Subgradient Algorithm (PSGA)

Input: Initial x_0 \in \mathbf{E}, iteration T \in \mathbb{N}, sequence \{\eta_t\} \subset (0, \infty).

Step t = 0, 1, \dots, T - 1:

Choose v_t \in \partial f(x_t)

Set x_{t+1} = \operatorname{proj}_Q(x_t - \eta_t v_t)
```

PSGA Convergence

Let $f: \mathbf{E} \to \mathbf{R}$ be cvx and L-Lipschitz continuous on a neighborhood of a closed convex set $Q \subset \mathbf{E}$. Then the iterates generated by PSGA satisfy

$$f\left(\frac{1}{\sum_{i=0}^{t} \eta_i} \sum_{i=0}^{t} \eta_i x_i\right) - \bar{f} \le \frac{\|x_0 - \bar{x}\|^2 + L^2 \sum_{i=0}^{t} \eta_i^2}{2 \sum_{i=0}^{t} \eta_i}.$$

In particular, when using the constant parameter $\eta_t = \frac{R}{L\sqrt{T+1}}$ for a fixed $R \geq ||x_0 - \bar{x}||$, the efficiency estimate becomes

$$f\left(\frac{1}{T+1}\sum_{t=0}^{T}x_t\right) - \bar{f} \le \frac{RL}{\sqrt{T+1}}.$$

PSGA Convergence

Proof:

$$||x_{t+1} - \bar{x}||^2 = ||\operatorname{proj}_Q(x_t - \eta_t v_t) - \operatorname{proj}_Q(\bar{x})||^2$$

$$\leq ||(x_t - \bar{x}) - \eta_t v_t||^2$$

$$= ||x_t - \bar{x}||^2 - 2\eta_t \langle v_t, x_t - \bar{x} \rangle + \eta_t^2 ||v_t||^2,$$

$$\leq ||x_t - \bar{x}||^2 - 2\eta_t (f(x_t) - \bar{f}) + \eta_t^2 L^2,$$

Iterating the recursion yields

$$||x_{T+1} - \bar{x}||^2 \le ||x_0 - \bar{x}||^2 - 2\sum_{t=0}^T \eta_t(f(x_t) - \bar{f}) + L^2 \sum_{t=0}^T \eta_t^2$$
 implying

$$\sum_{t=0}^{T} \eta_t(f(x_t) - \bar{f}) \le \frac{\|x_0 - \bar{x}\|^2 + L^2 \sum_{t=0}^{T} \eta_t^2}{2}.$$

Convexity gives

$$f\left(\frac{1}{\sum_{t=0}^{T} \eta_t} \sum_{t=0}^{T} \eta_t x_t\right) - \bar{f} \le \frac{\sum_{t=0}^{T} \eta_t (f(x_t) - \bar{f})}{\sum_{t=0}^{t} \eta_t}.$$

and combining gives

$$f\left(\frac{1}{\sum_{i=0}^{t} \eta_i} \sum_{i=0}^{t} \eta_i x_i\right) - \bar{f} \le \frac{\|x_0 - \bar{x}\|^2 + L^2 \sum_{i=0}^{t} \eta_i^2}{2 \sum_{i=0}^{t} \eta_i}.$$

PSGA Convergence under strong convexity

Theorem: Let $f: \mathbf{E} \to \mathbf{R}$ be an α -strongly convex function that is L-Lipschitz continuous on a neighborhood of a closed convex set $Q \subset \mathbf{E}$. Then the iterates generated by PSGA with $\eta_t = \frac{2}{\alpha(t+1)}$ satisfy

$$f\left(\frac{2}{t(t+1)}\sum_{i=1}^{t}ix_i\right) - \bar{f} \le \frac{2L^2}{\alpha(t+1)}.$$

PSGA Convergence under strong convexity

Proof: We have already shown that

$$||x_{t+1} - \bar{x}||^2 \le ||x_t - \bar{x}||^2 - 2\eta_t \langle v_t, x_t - \bar{x} \rangle + \eta_t^2 ||v_t||^2.$$

Applying L=Lip. cont. and α -strong cvxity gives

$$||x_{t+1} - \bar{x}||^2 \le ||x_t - \bar{x}||^2 + 2\eta_t \langle v_t, \bar{x} - x_t \rangle + \eta_t^2 ||v_t||^2$$

$$\leq ||x_t - \bar{x}||^2 + 2\eta_t (\bar{f} - f(x_t) - \frac{\alpha}{2} ||\bar{x} - x_t||^2) + \eta_t^2 L^2.$$

Rearrange and divide by $2\eta_t$ to get

$$f(x_t) - f^* \le \left(\frac{1 - \alpha \eta_t}{2\eta_t}\right) \|x_t - x^*\|_2^2 - \frac{1}{2\eta_t} \|x_{t+1} - x^*\|_2^2 + \frac{\eta_t}{2} L^2.$$

Plug in $\eta_t := \frac{2}{\alpha(t+1)}$ and multiply by t,

$$t(f(x_t) - f(x^*)) \le \frac{\alpha t(t-1)}{4} \|x_t - x^*\|^2 - \frac{\alpha t(t+1)}{4} \|x_{t+1} - x^*\|^2 + \frac{t}{\alpha(t+1)} L^2.$$

Sum for i = 1..., t, the first two terms on the right-side

telescope, yielding

$$\sum_{i=1}^{t} i(f(x_i) - f(x^*)) \le \sum_{i=1}^{t} \frac{i}{\alpha(i+1)} L^2 \le \frac{tL^2}{\alpha}.$$

Divide by $\sum_{i=1}^{t} i = \frac{t(t+1)}{2}$ and use conclude

$$f\left(\frac{2}{t(t+1)}\sum_{i=1}^{t}ix_{i}\right)-f^{*} \leq \left(\frac{1}{\sum_{i=1}^{t}i}\right)\cdot\sum_{i=1}^{t}i(f(x_{i})-f(x^{*})) \leq \frac{2L^{2}}{\alpha(t+1)}.$$