First-order algorithms for black-box
convex optimization



The Condition Number
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The Condition Number

The ratio
k= f/a

is called the condition number of f.

Intuitively, x measures the “scaling” of the problem.
In particular, equality x = 1 holds if and only if f is a spherical
quadratic.

The condition number s strongly influences convergence
guarantees of numerical methods.

Throughout, we assume that f has at least one minimizer,
which is automatic if a > 0.

The symbols f and Z will denote the minimal value of f and an
arbitrary minimizer of f, respectively.



Gradient Descent

Lemma (Descent)
The gradient step x* = x — 0V f(x;) satisfies
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Proof.
Using
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we have
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as claimed.



Choice of n

Choosing 71 to be the maximizer of the concave quadratic
an(l—%) yieldsn:%.

This value of 7 in the Lemma shows that Gradient Descent
Algorithm satisfies

Flarsn) < flae) — ;Brwm)rﬁ for all ¢ > 0.

The Gradient Descent Algorithm (GDA):
Input: Starting point x¢ € E, parameter 5 > 0, iteration
T eN.
Stept=0,1,..., 7T —1:
Set x4411 = 14 — %Vf(xt)



Convergence of The Gradient Descent Algorithm

Theorem: Let f: E — R be -smooth cvx. Then the iterates
generated by GDA satisfy
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Convergence of The Gradient Descent Algorithm

We have
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Subtract f from both sides and sum for i = 0,...,¢ — 1, the
terms on the right side telescope, yielding
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Since the values {f(z;)}i>0 are nonincreasing, we deduce
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as claimed.
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Convergence of GCA under Strong Convexity
Theorem: Let f: E — R be a-strongly cvx and $-smooth.
Then the iterates generated by GDA satisfy
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Proof: To see (x), we combine the inequality
f(wen) < fla) — 3519 ()|

with

(0) flz)— f < Lv|? for all x € E, v € Of(x)
to deduce

F@ee) = fae) < =55V F(@)|? < =5 (f(ae) = f)-
Adding and subtracting f from the left-side yields

(fGeesa) = ) = (Fwn) = ) < =5 (Fw) = )

Rearranging completes the proof of (x).



Convergence of GCA under Strong Convexity

Next, observe

lze41 = z)* = |[(ze — 2) = BTV f(z0)||?
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where (?7) follows from strong convexity. (¢) shows the second
term in (?7) is nonpositive, and therefore the quantity
|lz¢4+1 — Z||? tends to zero at the linear rate 1 — k1.



Convergence of GCA under Strong Convexity

To obtain (xx) note that strong convexity and (¢) guarantees
that
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f+ %lliﬂm — & < f(w1) < fla) — %||Vf(:nt)||2,
and therefore
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Combining this estimate with (??) and rearranging yields ().



Accelerated gradient descent

Accelerated Gradient Descent Algorithm (AGDA)
Input: Starting point g € E. Set t =0 and a9 = a_1 =1,
r—1 =20
For:t=0,...,T
Set

up = Ty + at(at__ll — 1) (xy — m—1)

1
Ty = up — =V f(ug)
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a1 = (extrapolation sequence)



AGDA convergence rate

Theorem: Let f: E — R be a convex and S-smooth function.
Then the iterates {x;} generated by AGDA satisfy
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Subgradient method for nonsmooth convex minimization

min f(x)

where f: E — R is cvx and L-Lipschitz on an neighborhood of
a closed convex set Q C E.



Subgradient method for nonsmooth convex minimization

min f(x)

where f: E — R is cvx and L-Lipschitz on an neighborhood of
a closed convex set Q C E.

Algorithm: The Projected Subgradient Algorithm (PSGA)
Input: Initial 2y € E, iteration 7' € N, sequence {n;} C (0,00).
Step t=0,1,...,T —1:

Choose v € Of(xt)

Set 11 = projg(zs — mvr)



PSGA Convergence

Let f: E — R be cvx and L-Lipschitz continuous on a
neighborhood of a closed convex set () C E. Then the iterates
generated by PSGA satisfy
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In particular, when using the constant parameter 7, = T/
for a fixed R > ||xg — ||, the efficiency estimate becomes
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PSGA Convergence

Proof: ) ) ) )
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Iterating the recursion yields
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PSGA Convergence under strong convexity

Theorem: Let f: E — R be an a-strongly convex function
that is L-Lipschitz continuous on a neighborhood of a closed
convex set @ C E. Then the iterates generated by PSGA with
N = a(t+1) satisfy
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PSGA Convergence under strong convexity
Proof: We have already shown that
241 = Z|* < llwe — 21 — 2nme(vr, 2 — T) + 07 o]
Applying L=Lip. cont. and a-strong cvxity gives
|21 = 2|° < [z — 2| + 2000, & — 20) + 0 ]|

< Nae — 2| + 200 (F — f (@) = § 17— e®) + 0P L%
Rearrange and divide by 27 to get
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Plug in n; := ) and multiply by ¢,

(t+1
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Sum fori=1... ,t, the first two terms on the rlght-side
telescope, yielding
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Divide by Zﬁzli = @ and use cvxity to conclude

i 212

=1

2.

t
+ S




