
Subdifferential Calculus
and

Duality Theory



Subdifferential Calculus
For all x ∈ dom ∂f ,

∂f(x) = {v | f(x) + 〈v, y − x〉 ≤ f(y) ∀ y ∈ E}
= {v | f(x) + f∗(v) ≥ 〈v, x〉}
= argmax

v
[〈v, x〉 − f∗(v)] .

The subdifferential calculus is more subtle than differential
calculus due to issues with domains of functions under various
operations that preserve convexity.

For example, the sum rule for the subdifferential may fail:
∂(f1 + f2)(x) 6= ∂f1(x) + ∂f2(x).

For A := clB1(−1, 0), B := cl (1, 0),
∂δA∩B(0, 0) = ∂(δA + δB)(0, 0) 6= ∂δA(0, 0) + ∂δB(0, 0).

But for A := clB1(−3/4, 0), B := cl (3/4, 0),
∂δA∩B(0, 0) = ∂(δA + δB)(0, 0) = ∂δA(0, 0) + ∂δB(0, 0).
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Parametric Optimization Problems
Consider a convex function F : E×Y → R and the parametric
optimization problem:

p(y) := inf
x
F (x, y).

Think of y as a perturbation parameter and the problem
corresponding to p(0) as the original “primal” problem. The
assignment y 7→ p(y) is called the value function.

Recall that p as the infimal projection of F along the x
component.

We study the variational behavior of p(y) near y=0. In
particular, we compute ∂p(0) and examine when 0∈dom ∂p.

In conjunction with the “primal” function p, we define a
corresponding “dual” function

q(x) := supy − F ?(x, y).
We call q(0) the parametric dual to p(0).



p?, p∗∗(0), and Weak Duality

p∗(v) = sup
y

[〈v, y〉 − p(y)]

= sup
y

[〈v, y〉 − inf
x
F (x, y)]

= sup
(x,y)

[〈(0, v), (x, y)〉 − F (x, y)]

= F ∗(0, v).

Therefore,

p∗∗(0) = sup
v

[〈v, 0〉 − p∗(v)] = sup
v
−F ∗(0, v) = q(0),

so that
p(0) ≥ p∗∗(0) = q(0).



Parametric Optimization and Duality

Theorem: Suppose that F : E×Y → R is proper, closed, and
convex. Then the following are true.

(1) (Weak duality) The inequality p(0) ≥ q(0) always holds.

(2) (Subdifferential)If p(0) is finite, then

∂p(0) ⊂ argmax
y

− F ?(0, y).

If, in addition, the inclusion 0 ∈ ri (dom p) holds, then equality holds.

(3) (Strong duality) If the subdifferential ∂p(0) is nonempty, then
p(0) = q(0) and the supremum q(0) is attained.



Example: Linear Programming Duality

Consider the linear program min {〈b, x〉 |Ax ≥ c} and define
F (x, y) := 〈b, x〉+ δ(y + c−Ax|Rn

−).
Then, p(0) = min {〈b, x〉 |Ax ≥ c} and

F ∗(u, v) = sup
x,y

[〈(u, v), (x, y)〉 − 〈b, x〉 − δ(y + c−Ax|Rm
−)]

(use the substitution w := y + c−Ax so y = w − c+Ax)

= sup
x,w

[〈(u, v), (x,w +Ax− b)〉 − 〈c, x〉 − δ(w|Rn
−)]

= sup
x,w

[−〈v, c〉+(〈u−b+AT v, x〉−δRn(x))+(〈v, w〉−δ(w|Rm
− )]

= −〈v, c〉+ δ∗Rn(u−b+AT v)+δ∗Rm
−

(v)

= −〈v, c〉+ δ{0}(u− b+AT v) + δRm
+(v) ,

giving the dual
q(0) = supv −F ∗(x, y) = sup

{
〈c, v〉

∣∣ 0 ≤ v, AT v = b
}
.
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Parametric Optimization and Duality

Proof (2): Since p is proper, v ∈ ∂p(0) iff p(0) + p∗(v) = 〈0, v〉 = 0.
Hence,

q(0) = sup
w
−F ∗(0, w) = p∗∗(0) ≤ p(0) = −p∗(v) = −F ∗(0, v),

so that ∂p(0) ⊂ argmaxy − F ∗(0, y).

If 0 ∈ ri dom p, then
p(0) = cl p(0) = p∗∗(0),

and we have equality throughout the above inequality.

Proof (3): If v ∈ ∂p(0), then

p(0) = cl p(0) = −F ∗(0, v) = sup
w
−F ∗(0, w) = q(0) .



Fenchel-Rockafellar Duality

(P ) infx∈E h(Ax) + g(x)

We compute the dual to (P) using the inequality
f(x) ≥ f∗∗(x) ≥ 〈y, x〉 − f∗(x) ∀ y ∈ E.

This yields
val(P ) = inf

x
h??(Ax) + g(x),

≥ inf
x
〈ȳ,Ax〉 − h?(y) + g(x) ∀ y ∈ E

= −h?(y)− sup
x∈E

{〈−A∗y, x〉 − g(x)}

= −h?(y)− g?(−A∗y) ∀ y ∈ E.

Giving the dual
(D) supy −h?(y)− g?(−A∗y) ,

with val(P ) ≥ val(D).



Examples: Fenchel-Rockafellar Duality

Primal (P ) Dual (D)

min
x

1
2‖Ax− b‖

2
2 + ‖x‖1 maxy

{
−1

2‖y‖
2−〈b, y〉 :‖AT y‖∞≤1

}
min

x: ‖x‖q≤1
‖Ax− b‖p max

y:‖y‖p̄≤1
− ‖AT y‖q̄ − 〈b, y〉

min
x
{〈c, x〉 : Ax = b, x ∈ K} max

y
{〈b, y〉 : A∗y − c ∈ K◦}

min
x

{
1
2 〈Qx, x〉+〈c, x〉 :Ax≥b

}
max
y≥0
−1

2
〈Q−1(c−AT y), c−AT y〉+〈b, y〉

Table: Fenchel-Rockafellar dual pairs. The parameters are: K is a
convex cone, Q � 0, and p, p̄, q, q̄ ∈ [1,∞] satisfy
p−1 + p̄−1 = q−1 + q̄−1 = 1.



Fenchel-Rockafellar Duality

We now establish strong duality (P) and (D). Define
p(y) = infx F (x, y) := h(Ax+ y) + g(x)

so that the primal problem is p(0).

For the dual, observe that
F ∗(u, v) = sup

x,y
[〈(u, v), (x, y)〉 − h(Ax+ y) + g(x)]

(use the substitution w := Ax+ y so that y = w −Ax
= sup

x,w
[〈u, x〉+ 〈v, w −Ax〉 − h(w)− g(x)]

= sup
x,w

[(〈u−AT v, x〉 − g(x)) + (〈v, w〉 − h(w))]

= g∗(u−AT v) + h∗(v)

giving the dual
q(0) = supy −F ∗(0, y) = supy[−h∗(y)− g∗(−AT y)].



Fenchel-Rockafellar Duality: Strong Duality
Strong duality follows from the condition 0 ∈ ri dom p, where

p(y) = infx F (x, y) := h(Ax+ y) + g(x) .

Note that y ∈ dom p iff ∃x ∈ dom g such that Ax+ y ∈ domh,
or equivalently, x ∈ dom g and y ∈ domh−Ax. In other words,

dom p = domh − Adom g.

Therefore,

ri dom p = ri (domh − Adom g) = ri domh − A ri dom g.

Consequently, 0 ∈ ri dom p if and only

0 ∈ ri domh − A ri dom g,

or equivalently,

∃ x ∈ ri dom g such that Ax ∈ ri domh .



Fenchel-Rockafellar Duality: Strong Duality

Theorem: Consider the problems:

(P ) min
x

h(Ax) + g(x)

(D) max
y
− g?(−A∗y)− h?(y).

where g : E→ R and h : Y → R are proper, closed convex
functions, and A : E→ Y is a linear map. If the regularity
condition

0 ∈ ri (domh)−A(ri dom g) (1)

holds, then the primal and dual optimal values are equal and
the dual optimal value is attained, if finite.



Primal-dual optimality conditions

(P ) min
x

h(Ax) + g(x)

(D) max
y
− g?(−A∗y)− h?(y).

Note that the direct optimality conditions for F-R primal-dual
pair are {

0 ∈ A∗∂h(Ax) + ∂g(x)

0 ∈ −A∂g?(−A?y) + ∂h?(y)

}
.

Two disadvantages of this representation are

(1) The variables x and y appear unrelated, even though they
are closely related.

(2) The fact that the subdifferentials ∂h and ∂g are evaluated at
points in the image of A and A∗, respectively, is inconvenient
for computation.



Primal-Dual optimality conditions
Theorem: Consider the Fenchel-Rockafellar duality framework:

(P ) min
x

h(Ax) + g(x)

(D) max
y
− g?(−A∗y)− h?(y).

where g : E→ R and h : Y → R are proper, closed, convex
functions, and A ∈ L[E,Y]. Suppose that the optimal values of
(P ) and (D) are equal, as is implied, for example, by either of
the two regularity conditions:

0 ∈ ri (domh)−A(ri dom g)

0 ∈ ri (dom g?) +A∗(ri domh?).

Then x is the minimizer of (P ) and y is the maximizer of (D) if
and only if [

0
0

]
∈
[

0 A∗
−A 0

] [
x
y

]
+ ∂g(x)× ∂h?(y).



Primal-Dual Optimality Conditions: Proof

Since the primal and dual optimal values are equal, we deduce
that x is a minimizer of (P ) and y is a maximizer of (D) if and
only if equality holds:

0 = (h(Ax) + g(x)) + (g?(−A∗y) + h?(y)) . (2)

The F-Y ineq. guarantees

h(Ax) + h?(y) ≥ 〈Ax, y〉 and g?(−A∗y) + g(x) ≥ 〈−A∗y, x〉. (3)

Adding the two inequalities in (3), we see that the right side of
(2) is always lower-bounded by zero. We therefore deduce that
(2) holds if and only if the inequalities (3) hold as equalities.
This happens precisely when the inclusions, Ax ∈ ∂h?(y) and
−A∗y ∈ ∂g(x), hold. Again, by the F-Y ineq., these two
inclusions are exactly the system (3) which implies (2).



Subdifferential Calculus

Theorem: Let g : E→ R and h : Y → R be proper, closed
convex functions and A : E→ Y a linear map. Then for any
point x ∈ E,

∂g(x) +A∗∂h(Ax) ⊂ ∂(g + h ◦ A)(x) .

Moreover, equality holds if

0 ∈ ri (domh)−A(ri dom g).



Subdifferential Calculus

Proof: If v ∈ ∂g(x) and w ∈ ∂h(Ax), then

g(x) + 〈v, y − x〉 ≤ g(y)

h(Ax) + 〈A∗w, y − x〉 ≤ h(Ay)

}
∀ y ∈ E .

Adding these two inequalities yields

g(x) + h(Ax) + 〈v +A∗w, y − x〉 ≤ g(y) + h(Ay) ∀ y ∈ E.

Hence,
∂g(x) +A∗∂h(Ax) ⊂ ∂(g + h ◦ A)(x).

For the reverse inclusion we set f(x) := g(x) + h(Ax).



Subdifferential Calculus

Now assume 0 ∈ ri (domh)−A(ri dom g) and let v ∈ ∂f(x).
WLOG v = 0, else replace g by g − 〈v, ·〉.

Then x ∈ argmin f . The F-R Duality Theorem guarentees that
f(x) = maxy −g∗(−A∗y)− h∗(y) and
S := argmaxy[−g∗(−A∗y)− h∗(y)] 6= ∅. Then, for any y ∈ S,

0 = (g(x) + h(Ax)) + (g?(−A∗y) + h?(y))

= (g(x) + g?(−A∗y)) + (h(Ax) + h?(y))

≥ 〈x,−A∗y〉+ 〈Ax, y〉 = 0,
where the final inequality follows from the F-Y Ineq. Hence
equality holds throughout and, again by F-Y Ineq.

g(x) + g?(−A∗y) = 〈x,−A∗y〉 and h(Ax) + h?(y) = 〈Ax, y〉.
Hence

0 = −A∗y +A∗y ∈ ∂g(x) +A∗∂h(Ax),

as claimed.



NA∩B(x) = NA(x) +NB(x)

Corollary: Let A and B be close convex sets in E such that
riA ∩ riB 6= ∅. Then, for all x ∈ A ∩B,

NA∩B(x) = NA(x) +NB(x).

Proof: The theorem tells us that

∂δA∩B(x) = ∂(δA + δB)(x)

= ∂δA(x) + ∂δB(x)

= NA(x) +NB(x) ,

since ri dom δA = riA and ri dom δB = riB.



f(x) := max {fi(x) | i = 1, . . . , k}

Theorem: Let fi : E→ R be closed proper cvx, i = 1, 2, . . . , k, and
define f(x) := max {fi(x) | i = 1, . . . , k }. Then

∂f(x) = conv
(⋃

i∈I(x) ∂fi(x)
)
,

where I(x) := {i | fi(x) = f(x)}.

Proof:

v ∈ ∂f(x)⇐⇒ (v,−1) ∈ Nepi f (x, f(x))

⇐⇒ (v,−1) ∈ N((x, f(x))|
k⋂
i=1

epi fi)

⇐⇒ (v,−1) ∈
k∑
i=1

Nepi fi(x, f(x))

⇐⇒∃ (wi, νi) ∈ Nepi fi(x, f(x)) (i = 1, . . . , k) s.t. (v,−1) =

k∑
i=1

(wi, νi)



f(x) := max {fi(x) | i = 1, . . . , k}

⇐⇒


∃ (wi, νi) ∈ Nepi fi(x, f(x)), νi < 0 (i ∈ I(x))

s.t. (v,−1) =

k∑
i∈I(x)

(wi, νi),

where the final equivalence comes from the fact that if fi(x) < f(x)
then (x, f(x)) ∈ intr epi fi so Nepi fi(x, f(x)) = {(0, 0)}.

Set λi = −νi, λivi = wi (i ∈ I(x)). Then

v ∈ ∂f(x) ⇐⇒ (v,−1) =
∑
i∈I(x)

λi(vi,−1)

with
∑
i∈I(x) λi = 1 and 0 ≤ λi (i ∈ I(x)). Therefore,

∂f(x) = conv

 ⋃
i∈I(x)

∂fi(x)

 .



NA−1Q(x̄) = A∗NQ(Ax̄)

Corollary: Let A ∈ L[E,Y] and Q ⊂ Y be such that Q is
closed cvx and Im(A) ∩ riQ 6= ∅. Then, for all x ∈ Ω,
NA−1Q(x) = A∗NQ(Ax).

Proof: In the subdifferential calculus theorem take h = δQ and
g ≡ 0 = δE.

Then, by hypothesis, 0 ∈ ri domh−A ri dom g = riQ− Im(A).

Since δA−1Q(x) = δQ(Ax), for all x ∈ A−1Q,
NA−1Q(x) = ∂δA−1Q(x)

= ∂(δQ ◦ A)(x)

= A∗NQ(Ax) .



Level Sets

Let f : E→ R be closed proper cvx, and consider the lower
level sets

levf (r) := {x | f(x) ≤ r}.

If we let Mr be the affine set Mr := E× {r} and P be the
projection P (x, µ) := x, then

levf (r) = P (Mr ∩ epi f) = P ({(x, µ) |µ = r, (x, µ) ∈ epi f }).

Hence, if r > inf f ,

ri levf (r) = riP (Mr ∩ epi f) = P ri (Mr ∩ epi f) = P (Mr ∩ ri epi f)

= {x ∈ ri dom f | f(x) < r},
and
cl levf (r) = {x | cl f(x) ≤ r}.

Moreover, all these sets have the same closure.



Level Sets: Tangent and Normal Cones
Theorem: Let f : E→ R be closed proper cvx and x̄ ∈ dom ∂f be
such that f(x̄) > inf f . Then

T (x̄| levf (f(x̄)))={d | f ′(x̄; d) ≤ 0} and N(x̄| levf (f(x̄)))=R+∂f(x̄) .

Proof: Since x̄ ∈ dom ∂f , f ′(x̄; ·) = δ∗(x| ∂f(x̄)) is closed proper cvx.
Since f(x̄) > inf f , levf (f(x̄)) = cl {x ∈ ri dom f | f(x) < f(x̄)} so

T (x̄| levf (f(x̄))) = cl {λ(x− x̄) | f(x) < f(x̄), λ ≥ 0}
= cl {d | ∃ t > 0 s.t. f(x+ td)− f(x̄) < 0}
= cl {d | f ′(x; d) < 0}
= {d | f ′(x; d) ≤ 0}.

In addition,
N(x̄| levf (f(x̄))) = T (x̄| levf (f(x̄)))◦

= {d | δ∗(d| ∂f(x̄)) ≤ 0}◦

= {d | 〈v, d〉 ≤ 0 ∀ v ∈ ∂f(x̄)}◦

= {d | 〈v, d〉 ≤ 0 ∀ v ∈ R+∂f(x̄)}◦

= ((R+∂f(x̄))◦)◦

= R+∂f(x̄) (since 0 /∈ ∂f(x̄))
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Normal Cones to Constraint Regions
Theorem: Let fi : E→ R (i = 1, . . . , k), A ∈ L[E,Y], and Q ⊂ Y.
Define F : E→ Rk to have component functions fi, K := Rk

− ×Q,
and Ω := {x | (F (x),Ax) ∈ K }. If there exists x̂ ∈ E such that

fi(x̂) < 0 (i = 1, . . . , k) and Ax̂ ∈ riQ,
then, for every x̄ ∈ Ω,

NΩ(x̄) =
∑
i∈I(x̄) R+∂fi(x̄) + A∗NQ(Ax̄),

where I(x̄) = {i | fi(x) = 0}.

Proof: Let h = δQ and g :=
∑k
i=1 δlevfi

(0). The hypotheses imply
that f := h ◦ A+ g satisfied the regularity conditions of our theorem
on the subgradient calculus, hence

∂f(x̄) = A∗∂h(Ax̄) + ∂g(x̄)

= A∗NQ(Ax̄) +

k∑
i=1

N(x̄| levfi(0))

= A∗NQ(Ax̄) +
∑
i∈I(x̄)

R+∂fi(x̄) .

Slater Constraint Qualification:
∃ x̂ s.t. fi(x̂) < 0 (i = 1, . . . , k), Ax̂ ∈ riQ.
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Constrained Convex Optimization

Theorem: Let fi : E→ R (i = 1, . . . , k), A ∈ L[E,Y], and
Q ⊂ Y satisfy the conditions of the previous result including the
Slater CQ. In addition, let f0 : E→ R be closed proper convex
and ∃ x̂ ∈ ri dom f0 s.t. fi(x̂) < 0 (i = 1, . . . , k), Ax̂ ∈ riQ.
Then x̄ solves minx∈Ω f if and only if there exist multipliers
yi ≥ 0 (i ∈ I(x̄)) such that

0 ∈ ∂f0(x̄) +
∑
i∈I(x̄)

yi∂fi(x̄) + A∗NQ(Ax̄),

where I(x̄) = {i | fi(x) = 0}.

Proof: The hypotheses imply that the function
f = f0 +

∑k
i=1 δlevfi

(0) + δQ ◦ A is closed proper cvx with
x̂ ∈ ri dom f . Hence x̄ solves minx∈Ω f0 if and only if 0 ∈ ∂f(x̄).
The previous results show that the inclusion 0 ∈ ∂f0(x̄) is
equivalent to the statement given in the theorem.



Lagrangian Duality
Consider the constrained optimization problem

(P ) minimizex f0(x)

subject to fi(x) ≤ 0 (i = 1, . . . , k),

fi(x) = 0 (i = k + 1, . . . ,m),

where f0 : E→ R and fi : E→ R (i = 1, . . . , k) are closed proper
cvx and fi : E→ R (i = k + 1, . . . ,m) are affine.

We define the Lagrangian for (P) to be the mapping L : E×Rk → R
given by

L(x, y) := f0(x) + 〈y, F (x)〉 − δ∗K(y),

where K := Rk
− × {0}m−k. Since K is a closed convex cone, we have

δ∗K = δK◦ where K◦ = Rk
+ ×Rm−k.

For every x ∈ E,
supy L(x, y) = f0(x) + δK(F (x)),

hence the problem (P) can be written as
(P ) infx supy L(x, y).
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Lagrangian Duality

The Lagrangian dual to the problem
(P ) minx∈Ω f0(x) = infx supy L(x, y)

is the problem
(D) supy Φ(y) = supy infx L(x, y),

where dual objective function Φ is given by

Φ(y) := inf
x
L(x, y) = inf

x
f0(x) + 〈y, F (x)〉 − δ∗K(y).

We may write the dual as
sup
y∈K◦

inf
x

[f0(x) + 〈y, F (x)〉] .

The weak duality inequality is
Val(P ) = infx supy L(x, y) ≥ supy infx L(x, y) = Val(D) .



Strong Duality Theorem

(P ) min
x∈Ω

f0(x) = inf
x

sup
y
L(x, y)

(D) sup
y∈K◦

Φ(y) = sup
y

inf
x
L(x, y)

Ω = {x | fi(x) ≤ 0 (i = 1, . . . , k), fi(x) = 0 (i = k + 1, . . .m)} = {x |F (x) ∈ K }.

Theorem: Consider the problem (P) as defined above. If

∃x ∈ ri dom f0 s.t. fi(x) < 0 (i = 1, . . . , k) and fi(x) = 0 (i = k+1, . . .m),

then the primal and dual optimal values are equal and the dual
optimal value is attained.



Strong Duality Theorem: Proof

The proof follows from the perturbation framework given by

F(x, z) := f0(x) + δK(F (x) + z).

The strong duality assumptions are satisfied as the Slater condition
holds. To see the that we have computed the dual correctly, observe
that

F∗(0, y) = sup
(x,z)

[〈(0, y), (x, z)〉 − f0(x)− δK(F (x) + z)]

= sup
(x,w)

〈y, w − F (x)〉 − f0(x)− δK(w)

= sup
w

[〈y, w〉 − δK(w)] − inf
x

[f0(x) + 〈y, F (x)〉]

= δK◦(y) − inf
x

[f0(x) + 〈y, F (x)〉].
So the dual is

sup
y
−F∗(0, y) = sup

y∈K◦
inf
x

[f0(x) + 〈y, F (x)〉] = sup
y∈K◦

Φ(y).



Lagrangian Duality: Quadratic Programming

(QP ) minimize
1

2
xTQx+ cTx

subject to Ax ≤ b

where Q ∈ Sn+, c ∈ Rn, A ∈ Rm×n and b ∈ Rm.

Let Q have Cholesky factorization Q = LLT where L ∈ Rn×k

with k the rank of Q. Then rewrite (QP) as

(̂QP ) minimize
1

2
‖z‖2 + cTx

subject to Ax ≤ b, [LT ,−I]

(
x
z

)
= 0.
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Lagrangian Duality: Quadratic Programming

In this case, K = Rm
− × {0}k, and

f0(x, z) = 1
2 ‖z‖

2 + cTx and F (x, z) =

[
A 0
LT −I

](
x
z

)
−
(
b
0

)
.

Given (u, v) ∈ K◦ = Rm
+ ×Rk the dual objective is

Φ(u, v) = inf
(x,z)

1

2
‖z‖2 + cTx+ 〈(u, v), F (x, z)〉

= inf
(x,z)

1

2
‖z‖2 + cTx+ 〈u,Ax− b〉+ 〈v, LTx− z〉.

This optimization problem can be solved by solving the
equations

0 = c+ATu+ Lv

0 = z − v



Lagrangian Duality: Quadratic Programming

In this case, K = Rm
− × {0}k, and

f0(x, z) = 1
2 ‖z‖

2 + cTx and F (x, z) =

[
A 0
LT −I

](
x
z

)
−
(
b
0

)
.

Given (u, v) ∈ K◦ = Rm
+ ×Rk the dual objective is

Φ(u, v) = inf
(x,z)

1

2
‖z‖2 + cTx+ 〈(u, v), F (x, z)〉

= inf
(x,z)

1

2
‖z‖2 + cTx+ 〈u,Ax− b〉+ 〈v, LTx− z〉.

This optimization problem can be solved by solving the
equations

0 = c+ATu+ Lv

0 = z − v



Lagrangian Duality: Quadratic Programming

0 = c+ATu+ Lv

0 = z − v

Plugging this information into
Φ(u, v) = inf(x,z)

1
2 ‖z‖

2 + cTx+ 〈u,Ax− b〉+ 〈v, LTx− z〉
we find that

Φ(u, v) = 1
2 ‖v‖

2 − 〈u, b〉 − ‖v‖2 + δ{0}(c+ATu+ Lv).
Hence the dual problem becomes

sup
(u,v)
−[

1

2
‖v‖2 + 〈u, b〉] s.t. c+ATu+ Lv = 0, 0 ≤ u.



Lagrangian Duality: Quadratic Programming
Since kerL = {0}, (LTL)−1 exists, so we can multiply
c+ATu+ Lv = 0 by LT to find v = −(LTL)−1LT (c+ATu) allowing
us to remove v from the dual and obtain the dual

sup0≤u−[(c+ATu)TL(LTL)−2LT (c+ATu) + 〈u, b〉] .

Primal Solution Recovery: Suppose instead we use the compact
singular value decomposition of Q = UDUT , where D is the diagonal
matrix of the k nonzero singular values of Q and UTU = Ik.

In this case that L = UD1/2, where D1/2 is the diagonal matrix of the
square roots of the singular values. If u solves the dual, then the
optimal x satisfies

D1/2UTx = LTx = z = v

= −(LTL)−1LT (c+ATu)

= −(D1/2UTUD1/2)−1D1/2UT (c+ATu)

= −D−1/2UT (c+ATu).

So UTx = −D−1UT (c+ATu).
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Horizon Cones

Given S ⊂ E, we define the horizon cone of S to be

S∞ :=

{{
d
∣∣ ∃ {xk} ⊂ S, tk ↓ 0 s.t.

∥∥xk∥∥ ↑ ∞ and tkxk → d
}

, S 6= ∅,
{0} , S = ∅.

Clearly, S∞ is always a closed nonempty cone, and S is bounded iff
S∞ = {0}.

Lemma: If Q ⊂ E is convex, then Q∞ is a convex cone and
Q∞ = {d |x+ λd ∈ Q ∀x ∈ Q, λ ≥ 0}.
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Closedness of the linear image of sets

Theorem: Let C ⊂ E be closed and A ∈ L[E,Y]. If
kerA ∩ C∞ = {0}, then AC is closed and (AC)∞ = AC∞
although, in general, we only have AC∞ ⊂ (AC)∞.

Proof: First suppose that {xk} ⊂ C is unbounded. We show
that kerA ∩ C∞ = {0} implies that {Axk} is also unbounded.
Indeed, WLOG xk/ ‖xk‖ → d ∈ C∞ with ‖d‖ = 1. If {Axk} is
bounded, then 0 = A(xk/ ‖xk‖) = Ad giving the contradiction
d ∈ kerA ∩ C∞.
Next let y ∈ clAC so ∃ {xk} ⊂ C s.t. yk = Axk → y. By what
we have just shown, {xk} must be bounded so WLOG ∃, x ∈ C
such that xk → x so y = Ax ∈ AC.
Clearly, AC∞ ⊂ (AC)∞. The reverse inclusion uses
kerA ∩ C∞ = {0}. Let y ∈ (AC)∞,i.e.,
∃ {xk} ⊂ C, tk ↓ 0 s.t. tkAxk → y. We have shown that this
implies that {tkxk} is bounded, so WLOG tkxk → d ∈ C∞, i.e.,
y ∈ AC∞.
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Closure of the sum of sets

Corollary: Let Ci ⊂ E (i = 1, . . . , k) be closed. If

[0 =

k∑
i=1

di, di ∈ C∞i i = 1, . . . , k] =⇒ [di = 0 i = 1, . . . , k],

then
∑k

i=1Ci is closed.

Proof: Let X :=
∏k
i=1 E, C =

∏k
i=1Ci, and A ∈ L[X,E] be

given by A(x1, . . . , xk) =
∑k

i=1 xi. Then
kerA =

{
(d1, . . . , dk)

∣∣∣ 0 =
∑k

i=1 di

}
and C∞ =

∏k
i=1C

∞
i .

Hence, the result follows from the theorem.
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Horizon Functions

Given f : E→ R, we define the horizon function for f to be the
function f∞ : E→ R satisfying epi f∞ = (epi f)∞. An
exceptional case occurs when f ≡ +∞, in this case epi f = ∅ so
(epi f)∞ = {(0, 0} which is not the epigraph of a function.

Lemma: The proper lsc function f : E→ R is coercive iff
f∞(d) > 0 ∀ d ∈ E. If f is cvx, the requirement that f be
proper lsc can be omitted.



Horizon Functions and the Perspective map fπ

Theorem: For any f : E→ R with f 6≡ +∞, f∞ is positively
homogeneous with

(?) f∞(d) = lim inf
u→d
λ↓0

fπ(u, λ),

where fπ is the perspective map for f , i.e., fπ(u, λ) = λf(u/λ)
for λ > 0.

If f is convex, then f∞ is sublinear, and if f is closed proper
cvx, then, for every x̄ ∈ dom f ,

(??) f∞(d) = lim
τ↑∞

f(x̄+ τd)− f(x̄)

τ
= sup

τ>0

f(x̄+ τd)− f(x̄)

τ
.



Horizon Functions and the Perspective map fπ

Proof: By definition, f∞ is lsc and pos. homog. . Since

f∞(d) = inf {µ |λk ↓ 0, λk(xk, µk)→ (d, µ), (xk, µk) ∈ (epi f) ∀ k},

f∞(d) is the inf of the values µ for which

∃λk ↓ 0, uk → d s.t. λkf(uk/λk)→ µ

giving (?).

In the cvx case, we have shown that f(x̄+τd)−f(x̄)
τ is a

nondecreasing function of τ > 0 for all x ∈ dom f . Hence, the
supremum in (??) exists so that (??) follows from (?).



f∞ = δ∗dom f∗

Theorem: Let f : E→ R be closed proper cvx. Then

f∞ = δ∗dom f∗ and (f∗)∞ = δ∗dom f .

Proof: Since f∗∗ = f , we need only show (f∗)∞ = δ∗dom f .
Given v ∈ dom f∗, d ∈ E and τ > 0,

f∗(v + τd) = sup
x∈dom f

[〈v + τd, x〉 − f(x)]

≤ sup
x∈dom f

[〈v, x〉 − f(x)] + τ sup
x∈dom f

〈v, d〉 =f∗(v) + τδ∗dom f (d).

Hence,
(f∗)∞(d) = supτ>0[ f

∗(v+τd)−f∗(v)
τ ] ≤ δ∗dom f (d).

On the other hand, if (f∗)∞(d) ≤ β, then, for all v ∈ dom f∗,
f∗(v + τd) ≤ f∗(v) + τβ ∀ τ > 0. Hence, ∀x ∈ E,

f(x) ≥ 〈v + τd, x〉 − f∗(v + τd)

≥ 〈v, x〉 − f∗(v) + τ(〈d, x〉 − β) ∀ τ > 0 .

Hence, for all x ∈ dom f , 〈d, x〉 ≤ β so that δ∗dom f (d) ≤ β giving
δ∗dom f (d) ≤ (f∗)∞(d).



The horizon cone of f

Theorem: Let f : E→ R be closed proper cvx. Then there is a
nonempty cvx cone K ⊂ E such that K = (levf (α))∞ for all
α ≥ inf f .

Proof: Let inf f ≤ α1 ≤ α2. Cleary, levf (α1)∞ ⊂ levf (α2)∞, so we
show the reverse inclusion.
Let d ∈ levf (α2)∞, λ ∈ (0, 1), t > 0, xi ∈ levf (αi) i = 1, 2 and set
µ := λ

(1−λ) t. Then, f(λx1 + (1−λ)(x2 +µd)) ≤ λα1 + (1−λ)α2 and so

f(λ(x1 + td) + (1− λ)x2) = f(λx1 + (1− λ)(x2 +
λ

(1− λ)
td))

= f(λx1 + (1− λ)(x2 + µd))

≤ λα1 + (1− λ)α2.

Since f is lsc, we can take the limit as λ ↑ 1 to obtain f(x1 + td) ≤ α1.
Since t > 0 was arbitrarily chosen, we obtain the result.

We call K := hzn f the horizon cone of f .
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hzn (f ∗) = (R+dom f)◦

Lemma: Let f : E→ R be proper cvx. Then hzn f∗ = (R+dom f)◦

and (hzn f∗)◦ = clR+dom f .

Proof: Let α ≥ inf f∗ and w ∈ dom f∗. Then

hzn f∗ = {w | f∗(w) ≤ α}∞

= {v | f∗(w + tv) ≤ α ∀ t > 0}
= {v | 〈w + tv, x〉 − f(x) ≤ α ∀x ∈ dom f, t > 0}
=
{
v
∣∣ 〈v, x〉 ≤ t−1(α+ f(x)− 〈w, x〉) ∀x ∈ dom f, t > 0

}
= {v | 〈v, x〉 ≤ 0 ∀x ∈ dom f }
= {v | 〈v, x〉 ≤ 0 ∀x ∈ R+dom f }
= (R+dom f)◦.



Convexity of Compositions

Theorem: Let f : E→ R be closed proper cvx and
G : Y → E be concave with respect to hzn f , i.e.,

G(λy1+(1−λ)y2)−[λG(y1) + (1− λ)G(y2)] ∈ hzn f ∀ y1, y2 ∈ Y λ ∈ [0, 1].

Then f is non-increasing relative to hzn f , i.e.,

f(x+ w) ≤ f(x) whenever w ∈ hzn f,

and f ◦G is convex on dom f ◦G = {y |G(y) ∈ dom f }.



Convexity of Compositions
Proof: Let x ∈ E be such that w ∈ hzn f = (R+dom f∗)◦. Since
f = f∗∗,

f(x+ w) = sup
v∈dom f∗

〈x+ w, v〉 − f∗(v)

= sup
v∈dom f∗

〈x, v〉 − f∗(v) + 〈w, v〉

≤ sup
v∈dom f∗

[〈x, v〉 − f∗(v)] (since 〈w, v〉 ≤ 0)

= f(x),

so f is non-increasing relative to hzn f . Hence, for y1, y2 ∈ dom f ◦G,
λ ∈ [0, 1], x = λG(y1) + (1− λ)G(y2) and
w = G(λy1 + (1− λ)y2)− (λG(y1) + (1− λ)G(y2)),

(f ◦G)((1− λ)y1 + λy2) = f(x+ w)

≤ f(x)

= (1− λ)(f ◦G)(y1) + λ(f ◦G)(y2).



Closedness of the linear image of epigraphs

Lemma: Let f : E→ R be proper cvx and L ⊂ E a subspace.
Then

L ∩ ri dom f 6= ∅ ⇐⇒ L⊥ ∩ levδ∗domf
(0) = {0}

⇐⇒ L⊥ ∩ lev(f∗)∞(0) = {0}.

Proof: We prove the equivalence of the negation. Observe that
L ∩ ri dom f = ∅ iff 0 6∈ (ri dom f)− L = ri (dom f − L). The
separation theorem tells us that

0 6∈ ri (dom f − L) ⇐⇒ ∃ v s.t. 〈v, x− w〉 < 0 ∀x ∈ ri dom f, w ∈ L
⇐⇒ ∃ v s.t. 〈v, x〉 < 〈v, w〉 ∀x ∈ ri dom f, w ∈ L
⇐⇒ ∃ v ∈ L⊥ s.t. 〈v, x〉 < 0 ∀x ∈ ri dom f

⇐⇒ ∃ v ∈ L⊥, 0 6= v s.t. δ∗dom f (v) ≤ 0.


