Convex Analysis



Functions Taking Infinite Values

We consider functions f mapping E to the extended-real-line
R =R U {£o0}.

Care must be taken when working with +oo. In particular, we
set 0 - +00 = 0 and will be careful to avoid the expressions
(+00) 4+ (—o0) throughout.

Since the primary focus of our discussion is convex functions,
there is a bias between +o00 and —oo.

Given f: E — R, the effective domain and epigraph of f are
dom f:={zx € E: f(x) < 400},
epi f:={(z,r) e ExXR: f(z) <r},
respectively.

A function f: E — R is called proper if it never takes the value
—oo and dom f # ().



Epigraphs
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Figure: Epigraph and effective domain of the function whose value is
max{—z, 1z%} for z € [~1,1] and +o0 elsewhere.
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Figure: Epigraph and effective domain of the function whose value is
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Lemma: A function f: E — R is closed (Isc) if and only if
epi f is a closed set.
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Convex Functions

We say that the function f: E — R is convex if epi f is a
convex set.

Lemma: f: E — R is convex if and only if

FOz+(1-Ny) < Mf(z)+(1=N)f(y) VYz,y € Eand A € (0,1).

epi f

f(z) + (1 = X)f(y)

" F(y)

X Az 4+ (1 4 Ny Y

Lemma: If f: E — R is convex, then, for all » € R the set
{z| f(z) <r} is convex.



3 Special Functions for () C E

The indicator function for Q:

The support function for Q:

66 () :=sup (v, ) .
vEQR

The gauge function for Q:

vo(z) =inf{Ae Ry |z e AQ} .
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3 Special Functions for () C E

The indicator function for Q:

The support function for Q:

66 () :=sup (v, ) .
vEQR

The gauge function for Q:
vo(z) =inf{Ae Ry |z e AQ} .

(1) If B C E is the closed unit ball for the norm ||-||, then
Il = 530 = 7.

(2) If K C E is a closed convex cone, then
0jco = 0K = VK.
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Epigraphical Perspective

In our study of functions f : E — R we take an epigraphical
perspective, that is, we study properties of a function by
studying properties of its epigraph.

For example, a function is closed (Isc) if its epigraph is a closed
set. Similarly, a function is convex if its epigraph is a convex set.

The primary advantages of this perspective is that it allows us
to discover properties of functions through properties of sets.

A key observation in this regard is the fact that for every
x € dom f,
f(z) = inf
(=) (w,p1)€epi f
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Epigraphs that are Cones
What are the functions whose epigraphs are cones?

For A > 0, Xepif =epif,ie., if (z,u) € epi f so is (Az, Au) for
all A > 0. Hence, we can relate the values of f(Ax) to those of
f(z) as follows: for A > 0,

Ax) = inf A
f( ) (Az,Ap)€epi f K

=\ inf
(z,u)EX"Tepi f a

=\ inf
(z,p)€epi f

= \f(x) .

From this, it is easy to show that epi f is a cone if and only if
f(Ax) = A\f(z) for all z € dom f and A > 0.

Such functions are called positively homogeneous.



Epigraphs that are Convex Cones

If epi f is a convex cone, what can be said about f7

We have already shown that f must be positively homogeneous. But
convexity tells us that epi f = epif + epif, i.e., for every pair
(z, 1), (y,7) € epi f we have
(@, 1) + (y,7) = (T +y,p+7) €Eepif.
Consequently,
{n+7|(@, ), (y,7) €epif} C{w|(z+y,w) epif},
and so, for all z,y € dom f,

T+y) = inf w < inf + T
U 2 (z+y,w)€epi f (@,1),(y,7)€epi f a

((z,#)GCpifM> ((y,T)GCpif ) f(x)+ f(y)

Since this inequality trivially holds if either « or y is not in dom f,
fle+y) < fl2)+fly) Vz,yek

Such functions are called subadditive. Hence functions whose

epigraphs are convex cones are both positively homogeneous and

subadditive. Such functions are called sublinear.



Exercise

1) Show that a the epigraph of a positively homogeneous
function is a cone.

2) Show that the epigraph of a sublinear function is a convex
cone.



Support Functions are Sublinear
Let S C E be nonempty and consider the support function
d6(x) = supyeg (v, ).

positive homogeneity: \ > 0,

d05(A\z) = sup {(Az, v) v e S} = Asup{(z, v)|ve S}
=X"(z]S) VYA>0.

subadditivity: z!, 2% € E,

5§(z' + 2%) = sup {(z' + 2%, v) [v € S}

=sup {(z', v') + (2%, v?) [o! =0? € 5}
Ssup{< ! 1>—|—<x,v>|v,v GS}
Ssup{< ! 1>‘vlGS}+Sup{<m2,v2>}v2€S}
=6"(z 1‘S)+5*(x2|5).



Support Functions are Sublinear
Let S C E be nonempty and consider the support function
d6(x) = supyeg (v, ).
positive homogeneity: \ > 0,

d05(A\z) = sup {(Az, v) v e S} = Asup{(z, v)|ve S}
=X"(z]S) VYA>0.

subadditivity: z!, 2% € E,

5§(z' + 2%) = sup {(z' + 2%, v) [v € S}

=sup {(z', v') + (2%, v?) [o! =0? € 5}
Ssup{< ! 1>—|—<x,v>|v,v GS}
Ssup{< ! 1>‘vlES}+Sup{<m2,v2>}v2€S}
=6"(z 1‘S)+5*(x2|5).

Are sublinear functions support functions?



Convexity and Optimization

Strict Convexity: A convex function f: E — R is said to be
strictly convex if
F(A=XNz+ M) <A =Nf(x)+Af(y) Vz,y€domf, A€ (0,1) with x #y.

Theorem: Let f: E — R be convex. If Z € dom f is a local
solution to the problem min f(z), then Z is a global optimal
solution. Moreover, if f is strictly convex, then the global
optimal solution is unique.



Convexity and Optimization

Proof: If f(Z) = —oo we are done, so assume that —oco < f(Z).
Suppose there is a T € R™ with f(Z) < f(Z). Let € > 0 be such
that f(Z) < f(x) whenever ||z —Z| <e.
Set A\ :=€(2||z — z||)~! and z) := T+ A\(Z — 7). Then
|lzx — Z|| < €/2 and

Fax) < (1= N (@) + M @) < f@).

This contradiction implies no such Z exists.



Convexity and Optimization

Proof: If f(Z) = —oo we are done, so assume that —oco < f(Z).
Suppose there is a T € R™ with f(Z) < f(Z). Let € > 0 be such
that f(Z) < f(x) whenever ||z —Z| <e.
Set A\ :=€(2||z — z||)~! and z) := T+ A\(Z — 7). Then
|lzx — Z|| < €/2 and

Fax) < (1= N (@) + M @) < f@).

This contradiction implies no such Z exists.

To see the second statement in the theorem, let ! and 22 be
distinct global minimizers of f. Then, for A € (0, 1),
F( =Nzt +22?) < (1= N f(a!) + Af(a?) = f(z)

which contradicts the assumption that ! is a global minimizer.



The Directional Derivative

Theorem: Let f: E — R be convex and let 2 € dom f.

(1) Given d € E the difference quotient
f(z+td)—f(x)

t
is a non-decreasing function of ¢ on (0, +00).
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The Directional Derivative

Theorem: Let f: E — R be convex and let 2 € dom f.

(1) Given d € E the difference quotient
f(z+td)—f(x)

¢
is a non-decreasing function of ¢ on (0, +00).

(2) For all d € E, f'(z;d) exists with
F!(@; d) = infysg LY=L,

(3) The “subdifferential inequality’ holds for all x € dom f:
f@)+f(z:y—z) < fly) VyekE

(4) The function f'(x;-) is sublinear. In particular, f'(z;-) is a
convex function for all € dom f.



t — (f(x +td) — f(x))/t nondecreasing for t > 0

Let x € dom f and d € E. If z +td ¢ dom f for all ¢t > 0, the
result follows. So assume that

0 <t=sup{t: z+td € dom f}.

Let 0 < t; < ty < t. Then

flz+td) = f(

Hence




f'(@;d) = infpso(f(x + td) — f(x))/t

(2) If © + td ¢ dom f for all ¢ > 0, then the result is obviously
true.

So assume there is a t > 0 such that z + td € dom f for all

t € (0,¢]. Since

Vo ) iy 4 & D) = ()
f(x,d).—l;fg ; :

and the difference quotient in the limit is non-decreasing in ¢ on
(0, +00), the limit is necessarily given by the infimum of the
difference quotient. This infimum always exists and so f’(x;d)
always exists and is given by the infimum.

(3) The subdifferential inequality follows from (2) by taking
d:=y—x and t = 1 in the infimum:

flzy —2) < fy) — f(2).



f'(x;-) is sublinear
Positive homogeneity:
f/(xa ad) = ahmtio W — af/(m; d)
Subadditivity:

' _ g fE et v) — ()
fllryu+v) = lt%l ;
T ) - 7@
tl0 t/2
f(g( +tw) + 5(z + tv)) — f(2)

= lim?2
t10

< lim
t10

/
2%f($+tU) + 1+ ) — f(2)
¢

_ gy St — f(2) n fla+t) — f(z)
10 t ;

= flzu) + fz;0) .



Convexity and Optimality

Theorem: Let f: E — RU {400} be convex, 2 C E convex,
Z € dom f N Q. Then z solves mingcq f(x) if and only if
f(Z;y—17) >0 for all y € Q.

Proof: (=) Let y € Q so that Z +t(y — z) € Q for all ¢t € [0, 1].
Then f(z) < f(z +t(y — z)) for all ¢t € [0, 1]. Therefore,

F1(@y —2) =limgo t ' (f(Z +t(y — 7)) - f(Z)) > 0.

(<) For y € Q,

xT —T xT (
0 < f'(Zy — &) = infys Lo @) "o f() (@)



Convexity and Optimality

Theorem: Let f: E — RU {400} be convex, 2 C E convex,
Z € dom f N Q. Then z solves mingcq f(x) if and only if
f(Z;y—17) >0 for all y € Q.

Proof: (=) Let y € Q so that Z +t(y — z) € Q for all ¢t € [0, 1].
Then f(z) < f(z +t(y — z)) for all ¢t € [0, 1]. Therefore,
F1(@y —2) =limgo t ' (f(Z +t(y — 7)) - f(Z)) > 0.

(<) For y € Q,

xT —T xT (
0 < f'(Zy — &) = infys Lo @) "o f() (@)

Corollary: If f is differentiable at z, & solves mingcq f(z) if
and only if —Vf(z) € Nq(z).

Proof: 0 < f/(z

Ty —2) = (Vf(x), y — ) for all y € Q iff
~Vf(z) € No(7).



Differential Tests for Convexity

The following are equivalent for a C''-smooth function
f: U — R defined on a convex open set U C E.

(a) (convexity) f is convex.

(b) (gradient inequality) f(y) > f(z) +(Vf(x),y —z) for all
z,y € U.

(¢) (monotonicity) (Vf(y) — Vf(x),y —z) > 0 for all
z,y e U.

If f is C2-smooth, then the following property can be added to
the list:

(d) The relation V2 f(z) = 0 holds for all x € U.



Examples of Convex Functions

(1) Given a self-adjoint linear operator A: E — E, a point

c € E, and b € R the quadratic function

f(z) = $(Az,x) + (c,z) + b is convex if and only if A is positive
semidefinite.

(2) (Boltzmann-Shannon entropy)

zlogx ifx>0
flx)=<X0 ifz=0
+00 ifz <0

(3) (Fermi-Dirac entropy)

zlog(z)+ (1 —z)log(l —z) ifxze (0,1)
f(z) =40 if v € {~1,1}
+00 otherwise



Examples of Convex Functions

(4) (Hellinger)

400 otherwise

Fa) = {—m if z € [~1,1]

(5) (Exponential) f(z) = e*

(6) (Log-exp) f(x) = log(1 + €”)



Bounds for #-Smooth Convex Functions
Let f: E — R. TFAE (the following are equivalent)
(1) f is B-smooth.
(2) 0 < f(y) = f(z) = (Vf(2),y —x) < Sz =y
(3) f(z) +(Vf(2),y — @) + 55V f(z) = VF)I* < f(y)
4) 5IVf(2) = VIW)I? < (Vf(2) = VI(y),z —y)

(5) 0 <(Vf(z) = VIQy),z —y) < Bllz —y|”



Epigraphical Operations

Recall that for a convex function f and x € dom f,

f(:L’) = inf(x,,u)eepif Mo
This construction fact can be extended to by defining the lower
envelope for any subset @ of E x R

Eq(z) == (xigfeQr .

epi EQ

N

Figure: Lower envelope of Q.

Hence epi Eg = @ + ({0} x R ) when the infimum is attained
when finite.



Example: Aepif, A >0

Epi-multiplication
inf  r=inf {r| A1z, \7) € epi
(z,r)ENepi f { ‘ ( ) P f}
= Xinf {A\7'r | (A2, A7) € epi f }

= Ainf {7 | (A\7'2,7) € epif}

= Af(z/N).



Example: epi fi + epi fo
Epi-addition or infimal convolution
inf r=inf {r|(z,r) = (z1,71) + (x2,72), (24,7;) € €pif;}
(z,r)€epi f1 +epi f2

=inf{r1 + 72| (y,r1) €epifi, (x —y,r2) Cepifa}

=inf inf {ry + 72| (y,r1) €epifi, (x —y,r2) €epifa}

Yy T1,7m2

=inf fi(y) + fo(z — )

=: (A0f2)(z) .



Inverse Linear Image

Let A € LY, E]. Recall

( ) = f(zr)GQr .
What is Fg when @ = [A x Ilepi f?

Eq(z) =inf {r|z = Ay, (y,r) cepif}

= inf inf r
r=Ay (y,r)€epi f

= inf f(y).

rz=Ay



Infimal Projection

Let g: E x Y — R and consider the projection
P e LIE xY x R] given by P(z,y) = x.

What 18 E[PXI]epig?

E[le]epig(‘r) = inf {M ’ T = P(Z’y)a (273/)/1’) € epig}

= inf z,
ot 9(2,y)

=inf g(z,y) .
Yy



The Perspective mapping
Let Q := Ry ({1} x epi f). What is Eg(\, z) for A > 07

It is straightforward to show that Eg(\, ) = 400 if A < 0 and
that Eg(0,z) = 0. So we suppose 0 < A.

EgM\ z)=inf {r|(\,z,r) € Ry ({1} x epif)}
=inf{r|37>0st. (A, z,r) € 7({1} xepif)}
=inf {r|(z,r) € Xepi f}
= inf {r | A lz, ) e epi f }
= Ainf {A7 | (A2, A ) €epif )
=Af(A ).



Relative interiors of sets in a product space

pic
Theorem: Let Q C X X Y. For each x € X set

Q: ={yeY|(r,y) €eQland D:={z e X|Q, #0}.
Then
(r,y) €riQQ < ze€riD and y €riQ,.

Proof: Let P(x,y) = x be the projection of X x Y onto X, and
set Ay :={xz} x Y. Then PQ = D, soriD =riPQ = PriQ.
Hence, (z,y) € ri@ iff x € ri D and

(x7y) €A, NriQ :ri(Aer) :I‘i({{B} X Qr) = {.%'} XTiQy -

So, (z,y) €ri@Q if and only if zx € ri D and y € ri Q.



riepi f

Lemma: Let f: E — R be convex. Then

riepi f = {(z,p) |z € ridom f and f(x) < p}.

Proof: Apply the previous result to epi f C E x R.

Then D =dom f and (epi f), ={p € R| f(z) < u}.

Clearly, ri(epi f)z = {p € R| f(x) < p}, which gives the result.



Local Boundedness of Cvx Func.s on ri dom

Theorem: Let f: E — R be convex. Then, VZ € ridom f, there is a
cvx nbhd U of z and an M > 0 s.t. U Naffdom f C ridom f and
flz) <M VzeUnaffdomf.

Proof: Let Z € ridom f and let uq,...,u, be an orthonormal basis
for E with uq,...,u; an orthonormal basis for par dom f. Then
By :=intrconv{tu;|i=1,...,n} is a sym. open nghd of the origin.
Let € > 0 be s.t.
Z 4+ eBy Npardom f = (Z + eBy) Naff dom f C ridom f.
Set U := T 4 eB;y. Then, for every x € T + ¢B; Npardom f,
I N > 0,0 =1,...,nwith Y5 (A + ) = 1
such that
T=T+ 6[2?:1 i + pi(—ug)] = Z?Zl Xi(Z + eu;) + pi (T — euy).
Therefore,

k
NS (T + ew) + Y i f(F — eu,)

j=1
<max{f(ZLtew)|i=1,....,k} =M.

-

fz) <

<
I
—



Local Lip. Cont. of Cvx Func.s on ridom

Theorem: Let f: E — R be convex. Then for every Z € ridom f
there is an € > 0 s.t. f is Lip. cont. on B.(Z) N aff dom f.

Proof: Set D := pardom f. Let € > 0 and M > 0 be such that
Bo.(Z) Naff dom f C ridom f with f(z) < M Vx € B (Z) Naff dom f.
Set h(x) := (2M)~'[f(z + Z) — f(Z)]. If h is Lip. cont. on D near 0,
then f is Lip. cont. on aff dom f near Z. Observe that h(0) = 0 and
h(z) <1 for all z € Bze(O) N D. Moreover, for every x € Ba.(0) N D,
0= h(0) = h(3z — 32) < $h(x) + $h(—z) so that
—1< —h(z) < h(- ) That is, —1 < h(z) <1 for all x € By N D.
For z,y € B.(0) N D with z # y set a := ||z — y|| and B := ¢/a.
Define w :=y + B(y — x) € Ba N D. Then

y=(1+8)""w+ fz] = ggw+ %x
The convexity of h implies that

1 B 1
T N R
2 2

< — =
“ 148 a+e

h(y) = h(z) < [h(w) = h(z)]

lz =yl < 2e7 o —y].

Symmetric in  and y implies the local Lip. cont. of h.



Supporting hyperplanes to epigraphs

We apply the following separation theorem to epi f.

Theorem: Let @) C E be convex with z € rb @. Then there
exists Z € E such that
(Z, ) < (z,T) Vx €clQ and (Z, ) < (Z, T) Va €1iQ.



Supporting hyperplanes to epigraphs
We apply the following separation theorem to epi f.

Theorem: Let @) C E be convex with z € rb @. Then there
exists Z € E such that
(Z, ) < (z,T) Vx €clQ and (Z, ) < (Z, T) Va €1iQ.

Theorem: Let f: E — R be proper convex and let
T € ridom f. Then there is a v € E such that

supl(v, @) = f(2)) < (v, ) ~ f(2),



Supporting hyperplanes to epigraphs

Proof: Since T € ridom f, f is cont. at T relative to dom f and
so cl f(Z) = f(Z). In particular, (Z, f(Z)) € rbepi f. Hence,
there exists (w,7) € E x R s.t.

((w, ), (x, 1)) < ((w,7), (T, f(Z))) V(x, ) € clepi f and
((w, ), (x, 1)) < ((w,7), (7, f(Z))) V(x,p) € riepif.
Hence,

(w,z—z)+7(p— f(z)) <0 Vzeridomf, u> f(z).

Taking x = Z, we see that 7 < 0. Dividing by |7| and setting
v=w/|r| and p = f(x), we obtain

(v, z) — f(z) < (v, z) — f(Z) VYV &domf.

The result follows since if € dom f then the above inequality
is trivially true.



The Subgradient Inequality

Theorem: Let f: E — R be proper convex and let
Z € ridom f. Then there is a v € E such that

f@) 4+ v, z—z) < f(r) VaxekE.



The Subgradient Inequality

Theorem: Let f: E — R be proper convex and let
Z € ridom f. Then there is a v € E such that

f@) 4+ v, z—z) < f(r) VaxekE.
Proof: The Theorem tells us that there exist v € E such that

<1),33'>—f($)§<'l),37>—f(§3) Va e E,

which gives the result.



The Subdifferential

Definition: Let f : E — R be convex and let z € dom f. We
say that f is subdifferentiable at Z if there exists v € E such that

f@)+ (v, z—z) < f(xr) VzekE.

We call v a subgradient for f at . The set of all subgradients at
T is called the subdifferential of f at T, denoted

Of(z) :==A{v[f(Z) + (v, 2 = 7) < f(zx) VzeE}

For z & dom f, we define df(x) = (). The domain of df is
domdf :={x|0f(x) #0}.



The Subdifferential

Definition: Let f: E — R be convex and let Z € dom f. We
say that f is subdifferentiable at Z if there exists v € E such that

f@)+ (v, z—z) < f(xr) VzekE.

We call v a subgradient for f at . The set of all subgradients at
T is called the subdifferential of f at T, denoted

Of(z) :==A{v[f(Z) + (v, 2 = 7) < f(zx) VzeE}

For z & dom f, we define df(x) = (). The domain of df is
domdf :={x|0f(x) #0}.

Properties:

(1) ridom f C domdf C dom f

(2) Of () is a nonempty closed convex set for all x € ridom f.
(3) If « € intrdom f, then Of(z) is compact.



Optimization and the Subdifferential

Theorem: Let f: E — R be proper convex. Then z € E is a
global solution to min f(x) if and only if 0 € df(Z).

Proof: Apply the subgradient inequality:

f(@)+ v,z —2) < f(xr) VzekE.



The Convex Conjugate

Recall that by applying the separation theorem to the epigraph
of a proper convex function f, we found that for every
T € ridom f there exists v € E such that

Oepi (v, =1) = sup [(v, ) — f(z)]

r€dom f
= sup[{v, z) — f(2)]
< (v, 7) — f(2).

This relationship indicates that f* : E — R given by
f*(v) := sup[(v, z) — f(z)]

plays a special in our study of convex functions.

We call f* the conver conjugate of f.



The Convex Conjugate

Recall that by applying the separation theorem to the epigraph
of a proper convex function f, we found that for every
T € ridom f there exists v € E such that

Oepi (v, =1) = sup [(v, ) — f(z)]

r€dom f
= sup[{v, z) — f(2)]
< (v, 7) — f(2).

This relationship indicates that f* : E — R given by
f*(v) := sup[(v, z) — f(z)]

plays a special in our study of convex functions.

We call f* the conver conjugate of f.

Note that f* = (Cl f) since 4 5:1 epi f

epi f —



The Bi-Conjugate and the Subdiffential

FH(w) = sup[(v, @) = ()] = dapi (v, =1) = depia s (v =1)

By definition, f* is a closed proper convex function whenever f
is a proper convex function.

Theorem: |Fenchel-Young Inequality] Let f: E — R be a
proper convex function. Then

f*) + f(z) > f*(v) + el f(z) > (v, z) Vz,veE

with equality throughout if and only if v € 9f(x).



The Bi-Conjugate and the Subdiffential
Consequently, for all x € E,

cdf(z) = sup [(v, z) = f*(v)]

vedom f*

= sgp[@, z) — f*(v)]
= (f")"(2).



The Bi-Conjugate and the Subdiffential
Consequently, for all x € E,

cdf(z)= sup [(v, z) = f*(v)]
vedom f*

= sgp[@, z) — f*(v)]
= (f")"(2).

Therefore,
clf(z)+ [ () =2 (f)"(2) + [*(v) = (v, z) Va,0EE

with equality throughout iff x € 9f*(v) iff v € dcl f(x).



The Bi-Conjugate and the Subdiffential
Consequently, for all x € E,

cdf(z) = sup [(v, z) = f*(v)]

vedom f*

= sup({v, z) — f*(v)]
= (/)" ().

Therefore,
clf(z)+ [ () =2 (f)"(2) + [*(v) = (v, z) Va,0EE

with equality throughout iff x € 9f*(v) iff v € dcl f(x).
Theorem: For every proper convex function f : E — R,

clf =(f) =r lf) =0f,

A(cl f)(x) = {v|cl f(z) + f*(v) < (v, )},
with d(cl f)(z) = 0f(z) whenever z € dom Jf.
Proof: cl f coincides with f on ridom f = ridom (cl f) and
ridom f C domdf.

and



Support Functions Revisited

Let @ C E be nonempty closed and convex. Then

(90@(+))"(v) = sup[(v, z) — dq(w)] = dg(x).



Support Functions Revisited

Let @ C E be nonempty closed and convex. Then

(90@(+))"(v) = sup[(v, z) — dq(w)] = dg(x).

Recall that support functions are subadditive. We now address
the question of whether a proper subadditive function can be
written as a support function.



Support Functions Revisited

Let f : E — R be proper subadditive. Then, for A > 0,

)= sup [(v, ) = f(x)]

z€dom f
= sup [(v, Ax) — f(Az)]
z€dom f
=X sup [(v,2) = f(z)] = Af7(v).
z€dom f

Therefore, f*(v) =0 for all v € dom f* and so f* = dgom f+-

Since f is proper convex, cl f = f** = &3, .



Support Functions Revisited

Theorem: The class closed proper subadditive functions on E
equals the class of support functions on E. In particular, if

f: E — R is closed proper subadditive, then f is the support
function of the set dom f* = {v| (v, x) < f(z) Vz € E}.



Support Functions Revisited

Theorem: The class closed proper subadditive functions on E
equals the class of support functions on E. In particular, if

f: E — R is closed proper subadditive, then f is the support
function of the set dom f* = {v| (v, x) < f(z) Vz € E}.

Proof: Since f is positively homogeneous,
dom f* ={v|3Ipu>0st. f(v)<p}

={v|Ip>0st. (v,z)— fz) <puVaxeE}
={v|Ip>0st. (v, \x)— f(Az) <puVzeE X>0}

= {o[3n> 05t (0,20 f@) < K Ve e B A> 0}
={v|(v, ) - f(z) <OVz e E}.

The result follows since we have shown that f = o3, ¢«



f'(x;-) and Of

Theorem: Let f: E — R be a proper convex function and let
Z € dom df. Then the closure of f'(F;-) is 6*(-|0f(Z)). Moreover, if
Z € ridom f, then f'(Z;-) is closed and proper.

Proof: Let v € f(Z) and let ¢ be the closure of f'(F;-). Then, for

t>0and d € E, (v, d) < w so (v, d) < f'(z;d). Hence

f'(z;-) is proper, and ¢ is closed proper and subadditive. Therefore,
 is the support function of the set

], d>w<d>weE}—{v (v, d) <
:{v|f(:f)+<v, d> Sf(j+d) V,dEE}
= (0] £(@) + 0. 2~ 7) < () V.2 € B}
=af(z).

f(@ +td) — f(%)
t

v,deE,t>O}

If z € ridom f, then dom f'(Z;-) = pardom f = ridom f'(Z;-) so that
f'(z;+) is locally Lip. on its domain and so closed and proper.



Of(x) = {v} implies differentiability

Corollary: Let f: E — R be a proper convex function. If
T € dom df, then (pardom f)* C 9f(z).

Proof: Let v € 9f(Z) and w € (pardom f). Then for every
y € dom f,
f@)+ wtw y—a)=f@)+ v,y —) < fy)

Corollary: Let f: E — R be a proper convex function. If

T € dom Jf is such that 0f(z) = {v} + (pardom f)*, then f is
differentiable relative to the affine manifold S := aff dom f with
gradient Vg f(Z) = v. In particular, if € intrdom f, then f is
differentiable at  with V f(z) = v.

Proof: For d € pardom f, f'(Z;d) = (v, d) is linear on the
subspace pardom f. Hence, f is Gateaux differentiable relative
to aff dom f with Gateaux derivative v.



Computing the Subdifferential

Proposition: Let Q C E be a nonempty closed convex set.
Then
0 , T ¢ Q,

Po() = {NQ(aj) , T E Q.



Computing the Subdifferential

Proposition: Let Q C E be a nonempty closed convex set.
Then

0 , T EQ,

NQ (a:) , T € Q.

Note that this result implies that Ng(x) = [par Q]+ when

x € ri( since dq is differentiable on ri @) relative to the affine
manifold aff @ with derivative V,ggdg(x) =0 for € 11 Q.

oot~ {



Computing the Subdifferential

Proposition: Let Q C E be a nonempty closed convex set.
Then

0 , T € Q,

No(z) , z€Q.

Note that this result implies that Ng(x) = [par Q]+ when

x € 1i @ since dg is differentiable on ri (@) relative to the affine
manifold aff @ with derivative V,ggdg(x) =0 for € 11 Q.

oot~ {

Proof: Given Z € Q and v € Ng(Z), we have

(v,z—Z) <0 Vzeq.



Computing the Subdifferential

Proposition: Let Q C E be a nonempty closed convex set.
Then

0 , T € Q,

No(z) , z€Q.

Note that this result implies that Ng(x) = [par Q]+ when

x € 1i @ since dg is differentiable on ri (@) relative to the affine
manifold aff @ with derivative V,ggdg(x) =0 for € 11 Q.

oot~ {

Proof: Given Z € Q and v € Ng(Z), we have

0Q(Z)+ (v, —7) < dg(z) Vz € E .



Computing the Subdifferential

Proposition: Let () C E be a nonempty closed convex set.
Then

00¢,(z) = argmax (v, z) .
vER

Proof: For any closed proper convex function f, we have shown
that

Of(x) ={v[f*(v) + f(z) < (v, 2) } .

Since both dg and (522 are closed proper convex, we have

964 (x) = {v|do) + 65(x) < (v, x) } = argenéax (v, z) .



The Subdifferential of a Norm

Corollary: Let ||-|| be any norm on E with closed unit ball B.
Then

9|l o B
€Tl =
{wlllvll, =1 and (v, z) = [|z[|} , = # 0.

Proof: The result follows since ||-|| = 050 () where |||, is the
dual norm for ||-|| whose closed unit ball is B.



Computing Conjugates

Computing the conjugate f* at v reduces to solving for x in the
equation v € 0f(x).

To see this, observe that

fr(v) = sup,[(v, z) — f(2)] = —infz[f () — (v, z)].
Since f(z) — (v, x) is convex, we need only solve
0 € 9[f — (v, ))(z) = 0f(x) — v for z, then plug this z back into
(v, ) — f(z) to find f*(v). This is especially useful when f is
differentiable on its domain.



Computing Conjugates

Computing the conjugate f* at v reduces to solving for x in the
equation v € 0f(x).

To see this, observe that

fr(v) = sup,[(v, z) — f(2)] = —infz[f () — (v, z)].
Since f(z) — (v, x) is convex, we need only solve
0 € 9[f — (v, ))(z) = 0f(x) — v for z, then plug this z back into
(v, ) — f(z) to find f*(v). This is especially useful when f is
differentiable on its domain.

Example: f(z) =¢e*. Then v =V f(z) =e” iff z =1Inv, in
which case

vlnv — v , v>0,
+0oo ,v<0.

F*(v) = (v, Inw) — f(Inv) = {



Computing Conjugates

Computing the conjugate f* at v reduces to solving for x in the
equation v € 0f(x).

To see this, observe that

fr(v) = sup,[(v, z) — f(2)] = —infz[f () — (v, z)].
Since f(z) — (v, x) is convex, we need only solve
0 € 9[f — (v, ))(z) = 0f(x) — v for z, then plug this z back into
(v, ) — f(z) to find f*(v). This is especially useful when f is
differentiable on its domain.

Example: f(z) =¢e*. Then v =V f(z) =e” iff z =1Inv, in
which case

vlnv — v , v>0,
+0oo ,v<0.

F*(v) = (v, Inw) — f(Inv) = {

Check f*™(x) = e€".



Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated
from other convex functions using convexity preserving
operations are very powerful tools in applications.
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Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated
from other convex functions using convexity preserving
operations are very powerful tools in applications.

Example: What is (Af)* when A > 0 and f proper convex?
(Af)*(v) = sup (v, 2) — Af(z)
= Asup <§ w> — f(z)
=A\f(3)

That is, the dual operation to multiplying a function by a
positive scalar is epi-multiplication.



What is (Af(-/A))* for A > 07

(AF(/A)"(v) = sup[(v, z) — Af(z/A)]
= Asup[{v, 2/A) = f(z/A)]
= Asup[(v, 2) — f(2)]

z

=\f"(v) .



What 1S (flmfg)*?

(flmfa)*(v)zsgp[@aw)— inf [fi(x1) + fa(x2)]]

T=x1+x2

=sup sup [(v,z) — (fi(z1) + fo(x2))]

T r=x1+T2

= sup [(v,z1 + x2) — fi(z1) — fa(z2)]

Z1,T2

= sup [({(v,z1) — fi(z1)) + ((v, 22) — f2(212))]

Z1,T2

= sup[(v, z1) — fi(z1)] + sup[(v,z2) — fa(z2)]

x1 T2

= fi(v) + f5(v)



What is (fl + fg)*?

The first point to consider By the bi-conjugacy theorm,

(clfi+clfa)” = ((fD)" + (f2)")°
= ((fiof2)*)

= cl(fiofy)



What is (fl + fg)*7

The first point to consider By the bi-conjugacy theorm,
(clfi+clfo)* = ((f1)" + (f2)")"
= ((fiof2))"

= cl(fiofy)

It can be shown that if (ridom f1) N (ridom f3) # 0, then the
closure operation can be removed from the above equivalence,
ie.

(fi+ f2)" = fiofs.



Application: Distance to a Convex Cone

Let K C E be a closed convex cone and let ||| be any norm on
E with closed unit ball B. Then

dist (z |[K) = inf ||z —
ist (2 |K) yngllz yll
= irylf llz —yll + 0k (y)

= inf 550 (2 — ) + 9fce () = (3horiiee)(2):



Application: Distance to a Convex Cone

Let K C E be a closed convex cone and let ||-|| be any norm on

E with closed unit ball B. Then
dist (z |K) = in}f{ Iz — vl
=

= irylf llz —yll + 0k (y)

= iI;f Opo(z —y) + 050 (y) = (dgondfo)(2).
Consequently,
dist (- |K)* = (6f00050)*
= Opo + 05
= 0go + 0o = OBonKe-



Application: Distance to a Convex Cone

Let K C E be a closed convex cone and let ||-|| be any norm on

E with closed unit ball B. Then
dist (z |K) = in}f{ Iz — vl
=

= irylf llz —yll + 0k (y)

= iI;f Opo(z —y) + 050 (y) = (dgondfo)(2).
Consequently,
dist (- |K)* = (6f00050)*
— 5*>g + 5;;0

= 0o + 0go = Oponke-
Therefore,

dlSt (Z ’K) == (5%001(0 (Z) .



An Alternative Approach to the Subdifferential

Eventually, we would like to extend the notion of subdifferential
beyond convex functions. One proposal is to define the (regular)
subdifferential by the inequality

Of () :={v] f(@)+ (v,y — ) < f(y) +o(lly —])} -

Proposition: Let f: E — R be proper convex. Then, for all
x € domOf(x), df(z) = df(z).

Proof: Clearly, df(z) C f(x), so let v € Of(z). Then, for all
de Eandt >0,

f(a+td) — f(x) |, o(t]dl)
t + t

(d). Therefore, vOf(x).

(v,d) <

and so (v,d) < f/(z;d) = 5:‘;]”(30)

For this reason, from now on we simply denote 9 f () by 0f(x)
and call 0f(z) even when f is not necessarily convex. Again,

domof :={x|0f(x) #0}



A simple subdifferential calculus rule

Proposition: Let h: E — R be proper convex and g : E — R be
convex and differentiable on the open set U. Then, for all
r € UNdomoh, 9(h + g)(w) = 0h(x) + Vg(z).

Proof: We have already shown that dg(z) = {Vg(z)} for all z € U.
Given z € U Ndom 0h and v € dh(x), we have
hz)+ (v,y—z) <h
() + (v,y — z) < h(y) VyeE.
9(x) +(Vg(z),y — ) < g(y)
Adding these inequalities shows that Oh(z) + Vg(z) C 9(h + g)(z).

Next let w € d(h + g)(x). Then

h(zx) + g(x) + (w,y — x) < h(y) + g(y)

" = h(y) +g(x) + (Vg(x),y — x) + o(|ly — zl]).
' h(2) + (w = Vg(a),y — ) < hiy) + oy — a]l) Vy € E,

which implies that w — Vg(z) € Oh(x).



Strong Convexity

Definition: A function f: E — R is called u-strongly convex
(with g > 0) if the perturbed function z +— f(z) — &|jz|? is
convex.

Theorem: Let f: E — R be a p-strongly convex function.
Then for any € E and v € 9f(z), the estimate holds:

J0) 2 f@) + vy o)+ Slly—al’  forally e E.

Proof: Apply the subdifferential inequality to the convex
function g := f — § (Bl



Strong Convexity

Definition: A function f: E — R is called u-strongly convex
(with g > 0) if the perturbed function z +— f(z) — &|jz|? is
convex.

Theorem: Let f: E — R be a p-strongly convex function.
Then for any € E and v € 9f(z), the estimate holds:

J0) 2 f@) + vy o)+ Slly—al’  forally e E.

Proof: Apply the subdifferential inequality to the convex
function g := f — § (Bl

Corollary: Any proper, closed, p-strongly convex function
f: E — R is coercive and has a unique minimizer x satisfying

fly) = f(z) > %Hy —z||®>  forally € E.



The Moreau Envelope

Definition: For any function f: E — R and real o > 0, define
the Moreau envelope and the proximal map, respectively:

fal) = (folam - 12)) (2) = min £() + o1z — ]
2c 2c

Y

_ 1
prox, s (x) = argmin f(y) + [z — y|*
y «

Recall that epi f, = epi f + epi (i“ -[1?).



The Huber Function and Soft-Threshholding

For f(x) = [z,
— ifz >«
12 £ 1ol < r—a ifz>
fulz) = {zalml if [z| <« }7 prox, ;(z) = {0 if |2 <o p.

|z| — 2o otherwise .
z+a ifz<-—-a



The Huber Function and Soft-Threshholding

For f(z) = |z|,
r—a ifz>a

1,2 .
5—|x if lz| <«
falz) = 2l |1 ] - ; ProX,p(w) =40 if || <«
|z| — 50 otherwise .
z+a ifz<-—-a

epi|-| I gph (prox, )
—Q « >
epi| |
(a) epi| - |o =epi|-|+epig|-|? (b) gph (prox,.|)

Figure: Moreau envelope and the proximal map of | - |.



The Distance Function

Let @ C E be closed convex. Then

(30)alr) = (Bamy - %))

= inf — ||l —
IGMH ol

_ L2
N QadQ(x)

and
Drox,s, (2) = projo ().



Prox is 1-Lipschitz

Theorem: Let f: E — R be proper, closed, cvx. Then the set
prox;(z) is a singleton for every point x € E. Moreover,

Ipros () — prox, (y)|2 < {prox(z) — prox,(y).z —y) Va.y € E.



Prox is 1-Lipschitz
Theorem: Let f: E — R be proper, closed, cvx. Then the set
prox;(z) is a singleton for every point x € E. Moreover,

Iprox; (z) — prox ()2 < (prox (x) — prox; (y), = —y) Y,y € E.
Proof: The map z — f(z)+1|z—=x|? is proper, closed, and
L-strongly cvx, and hence prox;(z) is the unique minimizer. Since
h(y) := f(y) + lly — =|? is 1-strongly cvx, for z,y € E,

1 1 1
ﬂﬁ>+2x+ﬂﬁs<ﬂw>+m+xw)2m+xﬂ2

1
=fly") + *Ily —yl* =5l -2
1 1
- + _ 2 - + 2
+ 2IIy x| 2IIy yll

s(ﬂxw+mﬁyw)uﬁx+P

1 1
+ 5 lyt =2l = S ly" - vl

1

3 (It = yll> = ly™ = yl* + ly* —=|* = [|=F — 2|?)

=zt -yt a—y) <|ly" —at[lz —yl.

SO

ly™ — 2|2

IN



The Moreau Decomposition

Theorem: For any proper, closed, convex function f: E — R,
prox¢(x) + prox . (r) = x Vz € E.

Proof Using the definition of the proximal map,
1
z =proxs(z) <= 0€0 (f + 5” . —:EH2> (2)

= ar—z€df(z)
=z € df*(z— 2)
= 0€df (xr—2)—=z

<:>O€a<f*+;H-—xH2> (x—2)

= 1 — 2 = prox; (7).



V f, is Lipschitz continuous with parameter o~

Theorem: Let f: E — Rbe closed proper convex. Then the
envelope f, is continuously differentiable on E with gradient

Vfa(z)=a l(z - prox, ()).
Consequently V f, is a~'-smooth.

Proof:Take o = 1, then
z € Ofa(x) zed(fog]- %)

zed (£ +G1-17)

r€If(2)+ 2

0€d(f*+ 3l - —z*)(2)

z = prox s (z)

[ A A

z =1z — proxs(z),
For o # 1, use the identity af, = (af);.



Baillon-Haddad Theorem

Theorem: A proper, closed, convex function f: E — R is
p-strongly convex if and only if the conjugate f* is p~!-smooth.

Proof: ( = ) Suppose that f is u-strongly convex and define
the convex function g(z) := f(z) — §||z||*. We may then write

*
Fr=la+5l- 1) =g o5l %

The right-hand-side is simply the Moreau envelope of g* with
parameter p, and is therefore p~!-smooth.



Baillon-Haddad Theorem

(<=) Suppose f* is yp~'-smooth, and set h:= f* and §:= pu~! so
that h is S-smooth. We know that h is S-smooth is equivalent to
0< (Vh(z) = Vh(y),z —y) < B lz —y|*.
Set g := g Il = A. Then
(Va(y) = Vg(z),y — z) = Blly — 2> = (Vh(y) — Vh(z),y — ) > 0.

Hence, g is cvx. Note that
W) = Sl = 9(y) = Sllyl* = 9 (v) = S lyll* = sup {{y. 2) - 9" (2)}
= inf [gllyl|* — (y,2) + 9" (@)],
BE) = sup {(.9) = ()}
= s [(z,9) — it {§9]* = (v:.2) +9" () ]

= supsup [(z,9) = Zllyll® + (y,2) — g*(2)]

= sup[sup {(z +a,y) - %IIyIIQ} — g (@) =sup g5lz+z|* - g (x).
Yy xT

x

So h*(2) = g5ll2l* = sup, [5(z,2) + g5ll=l* — g* ()] is cvx.



Subgradient Dominance Theorem

Theorem: Any proper, closed, a-strongly convex function
f: E — R satisfies the subgradient dominance condition:

1
f(ac)—mimj‘"ga||vH2 for all x € E, v € 0f(z).

Proof: Let  be a minimizer of f. Fix any x € E and
v € df(x). We compute

f(@) = f(@) < (v, = 7) < v]| - [z — 7]

1
= [[oll - IVF*() = VFO) < —[lo]*



The Normal Cone to the Epigraph

Proposition: Let f : E — R be proper convex. Then, for all
7 € domdf, 0f(7) = {v] (v, ~1) € Nepi (3, f(2) }.

Proof:
(v, —1) € Nepi f(, f(2)) <= ((v,-1),(z, f(z)) — (2, f(2))) <0 V2 € dom f

— f(Z)+ (v, —T) < f(x) Vo € dom f

— @)+ v,z —Z) < f(z)Vz e E.



Outer Semicontinuity of the Subdifferential

An important property of the subdifferential is that it is outer
semicontinuous.

Definition: A multivalued mapping T : X = Y is said to be outer
semicontinuous on its domain, dom T := {x | T(x) # 0}, if for every
point (Z,7) € (domT) x Y and every sequence {(z;,4;)} C X xY
with (z;,y:) = (Z,7) with y; € T'(x;) for all 4 it must be the case that
y €T (T).

Theorem: Let f: E — R be proper convex. Then 8f is outer
semicontinuous on dom df.

Proof: Let (Z,7) € (domdf) x E and {(z;,y;)} C (domdf) x E be
such that (x;,y;) = (Z,7) with y; € 9f(x;) for all i. We must show
y € 0f(Z). By construction,

cl f(xy) + i, z —x;) < f(x) VezeE.
Hence, given x € E, using the lower semicontinuity of cl f, we may
take the limit in this inequality to find that

cdf(@)+ @, z—z) < f(x) YVzeE.

Hence, § € 9(cl f)(Z) = 0f(Z), where the equality follows since
Z € domaf.



