MATH 408 FINAL EXAM SOLUTIONS March 16, 2020

(1) (20 points) Compute and classify all critical points of the function f(z1,z2) := (z1+x2)*>—8(z1+x2).

Solution:
(15 points) Compute critical points: V f(z) = (2(z1 +22) —8) (1 1). Hence V f(z) = 0 if and only
if 1 + x5 = 4, so the set of critical points is given by

C:={(z1,22) |1 + 22 =4}.

(5 points) Classification of critical points: The key is to show that C is the set for global mini-
mizers for f. There are many ways to do this. Here are 5.

(a)
(b)

()

()

(e)

f(z) = ((x1 + 22) — 4)* — 16. Hence the set of global minima of f is C.
g(z) = 22 — 8z has ¢/(z) = 2z — 8 and ¢"(z) = 2 so g is strictly convex with unique global
minimizer z = 4. Consequently, C is the set for global minimizers for f since f(z) = g(x; + ).

As above, g(z) = 22 — 8z is a strictly convex function and f(z) = g ([1 1] <§1>), that is, f
1

is of the form h(Az + b) where h is convex. Therefore, Part (2) of Theorem 5.16 on page 65
of the course notes, f is convex so that the set of global minimizers coincides with its critical
points C.

V2f(z) = 2 [1

1 1 with principal minors 1 and 0 so that V2 f(z) is positive semidefinite. At

this point we can either use our knowledge of quadratic functions or convex functions to assert
that the set of global minimizers coincides with its critical points C.

2
fl@)+8=1111] (2) — 4|l . Hence minimizing f is the same as solving a linear least-
squares problem whose solution set is given by C. Therefore, the set of global minimizers

2
coincides with its critical points C.

(2) (30 points) Show that the function f : R™ — R given by f(z) = exp(3 |z]|2) is convex.

Solution: Again, there are many ways to do this. Here are two.

(a)

(b)

Let h(z) = exp(z) and g(z) = 3 ||| Since h(z) = I'(2) = h"(2), h is a nondecreasing convex
function of z. We also have V2g(x) = I so that g is a strictly convex function that maps into
the domain of g. Hence, by Part (1) of Theorem 5.16 on page 65 of the course notes, f is
convex.

V(@) =af(x) and V?f(z) = f(2)[] + 22"}, and " V2 f(x)u = f(2)[|ul; + ((z,u))?] > 0 for
u # 0. Hence f is a strictly convex function.



(3) Consider the problem min {z? — zo |23 + 25 < 0}.
(a) (5 points) Graph the constraint region {(xy, xs) |23 + 29 < 0}.
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(b) (20 points) Compute a KKT pair for this problem.

KKT conditions:
(i) 0 < A
(iii) Mz 4+ 22) =0
(iv) 0 = Vo L(z,\) = (Qx_l(llj_)\)\)>, where L(x,\) = 22 — 2o + M(2? + 23). (10 poiints)
Hence, by (iv), A = 1 and z; = 0. By (iii), o = 0. Therefore, since (i) and (ii) are also
satisfied, (z1, z2) = (0, 0) and A = 1 is a KKT pair for this problem. (10 points)

(c) (5 points) Compute the tangent cone to the constraint region at the solution to this problem.

00
c is convex. Also, since ¢(0,—1) = —1 < 0, the Slater constraint qualification is satisfied.
Hence, by the Theorem 5.18 page 66, the MFCQ is satisfied and so € is regular at (0, 0) giving

7((0,0)|Q) = {d [Ve(0,0)Td <0} = {(2;) 0> ((1)>T (gzl;) _ dQ} :

Now return to the graph and see that the tangent cone at the origin is everything on or below
the z; axis.

(d) (10 points) Show that the second-order sufficiency condition for this problem is satisfied at the
KKT pair computed above.

Set ¢1 (1, T9) = x3419 and Q := {z |c(z) < 0}. Since Vic(x) = [2 0] is positive semidefinite,

Solution: First observe that V2 _L((0,0),1) = {g 8] and Vf(0,0) = (_01), where
f(x1,29) = 2% — x5, Hence d € T((0,0)|92) \ {(0,0)} satisfies 0 = Vf(0,0)Td = —ds
if and only if do = 0 (5 points). Consequently, for every such d # 0 (i.e. d; # 0),
d"V2L((0,0),1)d = 4d? > 0, which shows that the second-order sufficiency condition in The-
orem 4.9 on page 55 of the notes is satisfied (5 points).



(4)

(30 points) Let f : R™ — R be continuously differentiable and let e € R™ denote the vector of all
ones. Show that if Z is a local solution to the problem min {f(z) |0 < x < e}, then

of o

> =
&Ei(I)_O if z; =0,
of .\ o - _
axi(:v)—() if 0 <z; <1,
of

Hint: KKT conditions and {z [0 <z <e}={z |0<2; <1, i=1,2,....,n}.

Solution: Let Q := {z € R" |0 <z < e}. Since 2 is convex and the Slater condition is satisfied (0
is in the interior of ), the MFCQ is satisfied at every point of © (Theorem 5.8 page 66). Therefore
the local solution Z is a KKT point by Theorem 4.6 page 53 and Theorem 4.22 page 50 (5 points).
The KKT conditions tell us that that there exist u,v € R™ such that

Ho<z;<1,i=1,...,n

i)0<u, 0<w;,i=1,...,n

iv) 0 = V,L(z,u,v), or equivalently, agg) =u;—0;, i=1,...,n,since L(z,u,v) = f(x) —ulz+

vT(z —e). (15 points)

Hence, we have the following:

(a) if Z; = 0, then, by (iii), 7 = 0, and so by (iv) and (ii), 2% =@, > 0
(b) if 0 < & < 1, then by (iii),5; = 0 = @, and so by (iv), 2 =0,

(c) if Z; = 1, then, by (iii), @; = 0, and so by (iv) and (i), Z& = —5, < 0.
The condition (a)-(c) establish the result. (10 points)

Consider the problem

minimize (7, + 22)? — 8(x1 + )

subject to l‘% <2z and 2z + 215 <4,

and note that this objective function occurs in problem 1.
(a) (10 points) Graph the constraint region and compare it to the graph of the set of critical points
in problem 1. After thinking about the geometry of the setting, guess that one of the two dual
variables takes the value zero.

Solution:



The graph of the objective is a parabolic valley whose bottom lies along the line 1 + x5 = 4.
The function ascends uniformly away from this line. Hence (an educated guess) the solution
set must be the line segment above the curve z? = 2x5 and on the line z; + z, = 2 with
—1—+5 < 27 < —1++/5 where the endpoints are the intersection points of the line x1+x5 = 2
and the curve 22 = 2x,. For the points with —1 — V5 < 11 < —14+/5 the constraint 1?2 < 219
is inactive, and so we guess that it’s multiplier is zero at these points, i.e. y; = 0.

(b) (30 points) Describe the set of all KKT pairs for this problem.
Solution: The Lagrangian for this problem is
L((z1,m2), (y1,42)) = (21 4 22)* = 8(w1 + @2) + p1 (2] — 222) + y2(221 + 235 — 4),

and the KKT conditions are

(i) 22 <2z and 2x; + 215 < 4

(i) 0 < y1, 10

(iii) y1 (3 — 229) = 0 and yo (221 + 229 — 4) =0
(

. 2(z1 4 x2) — 84 2y121 + 2y
iv) 0 =V, L(z1, 22,11, 92) = [ g(;l 4_;25)2) —8— 231/1l~|— Qy;}'

From part (a), we guess that y3 = 0 and 21 + 22 = 2. Then (iv) tells us that <O> =

484+ QyJ , or yo = 2. Hence the set of KKT pairs is given by

{(@2=2). 0.2 |-1-VE<a < -14 V5],

Since the problem is convex, Theorem 5.19 page 66 tells us that the set of optimal solutions is

given by
{(1‘1,2—.171) ‘—1—\/g<.f131 < —1+\/5}



(6) (40 points) Let A € R™™ b€ R™, ¢ € R"\ {0}, and v € R. Show that the Lagrangian dual for
the problem

1
minimize 5 | Az — b][;
subject to ¢z =~ and 0 <z,
is the problem
. 1 2 L2
maximize o ly -+ bl3 Ay + o]

subject to 0 < ATy + Ac,

where the maximization occurs over the dual variables y € R™ and A € R.

Step 1: Rewrite the problem by introducing a new variable w that simplifies the objective.
Don’t forget to write the definition of the new variable as one of the constraints.

Step 2: Write the Lagrangian.

Step 3: Write the condition 0 = V ;) L.

Step 4: Use this condition to eliminate the primal variables from L and obtain the dual objective
as a function of the dual variables only.

Step 5: Clean up the dual problem a bit so that it corresponds to the one give above.

Solution: Introduce the new variable w = Az — b and rewrite the problem as

1
minimize 5 | Az — b][;

T

subject to Ar —b=w, ccx=v and 0<zx.

(10 points)
The Lagrangian for this problem is

1
L((w,2), (y,u,v)) = 5 [wll; + " (Ar = b —w) + u(c"x —7) —v'a

where v > 0. The dual objective is ¥ (y, u,v) := %nir;L((w,x), (y,u,v)). By convexity, (w, z) attains

the minimum in the definition of ¢ if and only if

w —
0= V(W@)L((’LU,SE), <y7uav)) = |:ATy + u:lc/_ ’U:| ’

or equivalently, w =y and 0 = ATy + uc — v.
(10 points)
Using these identities, we eliminate the primal variables from L:

(Y, u,v) = L{(w, ), (y, u, v))

1
= 2wl — 7w+ (ATy +ue — )T = ¥y — u

1
= §||y||§_yTy_bTy—’7U (Sincew:y a]_’ld OZATy+UC—U)
1
=3 lyll3 — b7y — yu
1 9 1
= 5 Iy bl = v+ 5 bl

(10 points)
Hence we may write the dual problem as

. 1 1
maximize — 5 lly + ng —yu+ 5 10]]

subject to ATy +uc=v and 0<w,



or alternatively,
. 1 1
maximize — 5 lly + b||§ —yu + 3 116/
subject to ATy +uc >0 .
(10 points)

Note that the constant term 3 [/b]|, does not change the optimal solution to the dual. For this
reason it is often dropped and the dual is written as

1
maximize — 3 ly + b2 — yu

subject to 0 < ATy + uc .



