Perspectives on Duality in Convex Optimization

 $\begin{array}{c} {\bf James~V~Burke} \\ {\bf Mathematics,~University~of~Washington} \end{array}$

Joint work with Aleksandr Aravkin (UW), Michael Friedlander (UBC), Dmitriy Drusvyatskiy (UW) and Kellie MacPhee (UW)

McGill University
Discrete Mathematics and Optimization Seminar
February 20, 2017

Dual pairs of problems

A prototype problem: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

$$\mathcal{P} \qquad \begin{array}{c} \min \ \|x\|_1 \\ \text{s.t. } \|b - Ax\|_2 \le \tau \end{array}$$

Dual pairs of problems

A prototype problem: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

$$\mathcal{P} \qquad \begin{array}{c} \min \ \|x\|_1 \\ \text{s.t. } \|b - Ax\|_2 \le \tau \end{array}$$

The (Fenchel-Rockafellar) dual problem:

$$\mathcal{D}_{L} \qquad \sup_{s.t.} \left\| A^{T} z \right\|_{\infty} \leq 1.$$

Dual pairs of problems

A prototype problem: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

$$\mathcal{P} \qquad \begin{array}{c} \min \ \|x\|_1 \\ \text{s.t. } \|b - Ax\|_2 \le \tau \end{array}$$

The (Fenchel-Rockafellar) dual problem:

$$\mathcal{D}_{L} \qquad \sup_{z \in \mathbb{R}} |\langle b, z \rangle - \tau ||z||_{2} \\ \text{s.t. } ||A^{T}z||_{\infty} \leq 1.$$

The gauge dual problem:

$$\mathcal{D}_{\mathrm{G}} \qquad \begin{array}{l} \inf \; \left\| A^T z \right\|_{\infty} \\ \mathrm{s.t.} \; \langle b, z \rangle - \tau \|z\|_2 \geq 1. \end{array}$$

Piecewise Linear-Quadratic Penalties

$$\phi(x) := \sup_{u \in U} \left[\langle x, u \rangle - \frac{1}{2} u^T B u \right]$$

 $U \subset \mathbb{R}^n$ is nonempty, closed and convex with $0 \in U$. $B \in \mathbb{R}^{n \times n}$ is symmetric positive semi-definite.

Examples:

Norms, gauges, support functions, least-squares, Huber density

PLQ Densities: Gauss, Laplace, Huber, Vapnik

Convex Sets

Convex Sets

A subset C of \mathbb{R}^n is convex if

$$[x,y] \subset C \quad \forall \ x,y \in C,$$

where

$$[x, y] := \{(1 - \lambda x) + \lambda y \mid 0 \le \lambda \le 1\}$$

is the line segment connecting x and y.

Convex Sets

Convex Sets

A subset C of \mathbb{R}^n is convex if

$$[x,y] \subset C \quad \forall \ x,y \in C,$$

where

$$[x, y] := \{(1 - \lambda x) + \lambda y \mid 0 \le \lambda \le 1\}$$

is the line segment connecting x and y.

Convex Cones

A subset K of \mathbb{R}^n is convex if

$$\lambda K \subset K \ \forall \lambda > 0 \ \text{ and } K + K \subset K.$$

Convex functions and the epigraphical perspective

A function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is said to be convex if

$$\operatorname{epi} f := \{ (x, \mu) \mid f(x) \le \mu \},\$$

is convex.

Convex functions and the epigraphical perspective

A function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is said to be convex if

$$\operatorname{epi} f := \{ (x, \mu) \mid f(x) \le \mu \},\$$

is convex.

f is lower semi-continuous (lsc) \iff epi (f) is closed

If $A, B^T \in \mathbb{R}^{m \times n}$, then both

$$AC := \{Ax \mid x \in C\} \subset \mathbb{R}^m \text{ and } B^{-1}C := \{y \mid By \in C\} \subset \mathbb{R}^m$$

are convex.

If $A, B^T \in \mathbb{R}^{m \times n}$, then both

$$AC := \{Ax \mid x \in C\} \subset \mathbb{R}^m \text{ and }$$
$$B^{-1}C := \{y \mid By \in C\} \subset \mathbb{R}^m$$

are convex.

For example, the projection of a convex set onto an affine set is convex, where the affine sets are translates of subspaces.

If $A, B^T \in \mathbb{R}^{m \times n}$, then both

$$AC := \{Ax \mid x \in C\} \subset \mathbb{R}^m \text{ and }$$

$$B^{-1}C := \{y \mid By \in C\} \subset \mathbb{R}^m$$

are convex.

For example, the projection of a convex set onto an affine set is convex, where the affine sets are translates of subspaces.

Caution:

The linear image of a closed convex set may not be closed.

Figure: The graph of 1/x

If $A, B^T \in \mathbb{R}^{m \times n}$, then both

$$AC := \{Ax \mid x \in C\} \subset \mathbb{R}^m \text{ and } B^{-1}C := \{y \mid By \in C\} \subset \mathbb{R}^m$$

are convex.

For example, the projection of a convex set onto an affine set is convex, where the affine sets are translates of subspaces.

Caution:

The linear image of a closed convex set may not be closed.

Figure: The graph of 1/x

Convex hull: The convex hull of $S \subset \mathbb{R}^n$ is the intersection of all convex sets in \mathbb{R}^n containing S, denoted conv(S).

Affine sets: Any set of the form $x^0 + S$ where $x^0 \in \mathbb{R}^n$ and $S \subset \mathbb{R}^n$ is a subspace.

Affine sets: Any set of the form $x^0 + S$ where $x^0 \in \mathbb{R}^n$ and $S \subset \mathbb{R}^n$ is a subspace.

Affine hull: The affine hull of a set $S \subset \mathbb{R}^n$ is the intersection of all affine sets that contain S, denoted aff (S).

Affine sets: Any set of the form $x^0 + S$ where $x^0 \in \mathbb{R}^n$ and $S \subset \mathbb{R}^n$ is a subspace.

Affine hull: The affine hull of a set $S \subset \mathbb{R}^n$ is the intersection of all affine sets that contain S, denoted aff (S).

Relative interior: The relative interior of a convex set is the interior relative to its affine hull:

ri
$$C := \{ x \in C \mid \exists \epsilon > 0 \text{ s.t. } (x + \epsilon \mathbb{B}) \cap \text{aff } (C) \subset C \}$$

Affine sets: Any set of the form $x^0 + S$ where $x^0 \in \mathbb{R}^n$ and $S \subset \mathbb{R}^n$ is a subspace.

Affine hull: The affine hull of a set $S \subset \mathbb{R}^n$ is the intersection of all affine sets that contain S, denoted aff (S).

Relative interior: The relative interior of a convex set is the interior relative to its affine hull:

ri
$$C := \{ x \in C \mid \exists \epsilon > 0 \text{ s.t. } (x + \epsilon \mathbb{B}) \cap \text{aff } (C) \subset C \}$$

Properties: Let $C \subset \mathbb{R}^n$ be convex and $A, B^T \in \mathbb{R}^{m \times n}$, then

$$A \operatorname{ri}(C) = \operatorname{ri}(AC)$$
 and $B^{-1}\operatorname{ri}(C) = \operatorname{ri}(B^{-1}C)$, whenever $B^{-1}\operatorname{ri}(C) \neq \emptyset$.

The Hahn-Banach Theorem

Hyperplanes: Affine sets of co-dimension 1, or equivalently, any set of the form

$$\{x \mid \langle z, x \rangle = \beta \}$$

for some $\beta \in \mathbb{R}$ and non-zero $z \in \mathcal{L}$.

The Hahn-Banach Theorem: Let M be a nonempty affine set such that

$$M \cap \operatorname{ri} C = \emptyset$$
.

Then there is a hyperplane H such that

$$M \subset H$$
 and $H \cap \operatorname{ri} C = \emptyset$.

If $\overline{x} \in \operatorname{rbdry}(C) := \operatorname{cl} C \setminus \operatorname{ri} C$, then there is a hyperplane H containing \overline{x} that does not meet the relative interior of C, or equivalently,

$$\exists z \text{ s.t. } \langle z, x \rangle < \langle z, \overline{x} \rangle \quad \forall x \in \text{ri } C.$$
 (1)

If $\overline{x} \in \operatorname{rbdry}(C) := \operatorname{cl} C \setminus \operatorname{ri} C$, then there is a hyperplane H containing \overline{x} that does not meet the relative interior of C, or equivalently,

$$\exists z \text{ s.t. } \langle z, x \rangle < \langle z, \overline{x} \rangle \quad \forall x \in \text{ri } C.$$
 (1)

In this case, H is said to be a supporting hyperplane to C at \overline{x} .

If $\overline{x} \in \operatorname{rbdry}(C) := \operatorname{cl} C \setminus \operatorname{ri} C$, then there is a hyperplane H containing \overline{x} that does not meet the relative interior of C, or equivalently,

$$\exists z \text{ s.t. } \langle z, x \rangle < \langle z, \overline{x} \rangle \quad \forall x \in \text{ri } C.$$
 (1)

In this case, H is said to be a supporting hyperplane to C at \overline{x} .

If $\overline{x} \in \operatorname{rbdry}(C) := \operatorname{cl} C \setminus \operatorname{ri} C$, then there is a hyperplane H containing \overline{x} that does not meet the relative interior of C, or equivalently,

$$\exists z \text{ s.t. } \langle z, x \rangle < \langle z, \overline{x} \rangle \quad \forall x \in \text{ri } C. \tag{1}$$

In this case, H is said to be a supporting hyperplane to C at \overline{x} .

Question: Given $z \in \mathbb{R}^n$, does it define a supporting hyperplane to C and what are the associated support points.

The support function for a set $S \subset \mathbb{R}^n$ is given by

$$\sigma_S(z) := \sup_{x \in S} \langle z, x \rangle.$$

It is straightforward to show that

$$\sigma_{S}(z) = \sigma_{C}(z)$$
, where $C := \overline{\operatorname{conv}}(S)$.

The support function for a set $S \subset \mathbb{R}^n$ is given by

$$\sigma_S(z) := \sup_{x \in S} \langle z, x \rangle.$$

It is straightforward to show that

$$\sigma_{S}(z) = \sigma_{C}(z)$$
, where $C := \overline{\operatorname{conv}}(S)$.

Fact: Support functions are sublinear:

The support function for a set $S \subset \mathbb{R}^n$ is given by

$$\sigma_S(z) := \sup_{x \in S} \langle z, x \rangle.$$

It is straightforward to show that

$$\sigma_S(z) = \sigma_C(z)$$
, where $C := \overline{\text{conv}}(S)$.

Fact: Support functions are sublinear:

1. (positively homogeneous) $\sigma(\lambda x) = \lambda \sigma(x) \ \forall \lambda \geq 0$,

The support function for a set $S \subset \mathbb{R}^n$ is given by

$$\sigma_S(z) := \sup_{x \in S} \langle z, x \rangle.$$

It is straightforward to show that

$$\sigma_S(z) = \sigma_C(z)$$
, where $C := \overline{\text{conv}}(S)$.

Fact: Support functions are sublinear:

- 1. (positively homogeneous) $\sigma(\lambda x) = \lambda \sigma(x) \ \forall \lambda \geq 0$,
- 2. (subadditive) $\sigma(x+y) \leq \sigma(x) + \sigma(y)$.

The support function for a set $S \subset \mathbb{R}^n$ is given by

$$\sigma_S(z) := \sup_{x \in S} \langle z, x \rangle.$$

It is straightforward to show that

$$\sigma_S(z) = \sigma_C(z)$$
, where $C := \overline{\text{conv}}(S)$.

Fact: Support functions are sublinear:

- 1. (positively homogeneous) $\sigma(\lambda x) = \lambda \sigma(x) \ \forall \lambda \geq 0$,
- 2. (subadditive) $\sigma(x+y) \leq \sigma(x) + \sigma(y)$.

Hörmander's Theorem: $\sigma : \mathbb{R}^n \to \mathbb{R}_+ := \mathbb{R}_+ \cup \{+\infty\} \text{ lsc.}$

 σ is subadditive \iff epi (σ) is a closed cvx cone \iff $\sigma = \sigma_C$,

where
$$C := \{ z \mid \langle z, x \rangle \leq f(x) \ \forall x \} = \{ z \mid \langle z, x \rangle \leq 1 \ \forall f(x) \leq 1 \}.$$

Convex functions and the epigraphical perspective

A function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is said to be convex if epi $f:=\{(x,\mu)\mid f(x)\leq \mu\},\$

is convex.

 $\operatorname{epi}\left(f\right)$

Convex functions and the epigraphical perspective

A function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is said to be convex if epi $f:=\{(x,\mu)\mid f(x)\leq \mu\},\$

is convex.

$$f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)f(x_1) + \lambda f(x_2)$$

$$\forall x_1, x_2 \in \text{dom } f \text{ and } \lambda \in [0, 1]$$

$$dom f := \{x \mid f(x) < \infty\}$$

Coordinate inf-projection of a convex set

Let $C \subset \mathbb{R}^{m+1}$ be a convex set such that the projection of C onto its last coordinate is bounded below. Define $f: \mathbb{R}^m \to \overline{\mathbb{R}}$ by

$$f(x) := \inf \{ \overline{x}_{m+1} \mid \exists \ \overline{x} \in C \text{ s.t. } \overline{x} = (x, \overline{x}_{m+1}) \},$$

where, again, the infimum over the empty set is $+\infty$.

Coordinate inf-projection of a convex set

Let $C \subset \mathbb{R}^{m+1}$ be a convex set such that the projection of C onto its last coordinate is bounded below. Define $f: \mathbb{R}^m \to \overline{\mathbb{R}}$ by

$$f(x) := \inf \{ \overline{x}_{m+1} \mid \exists \ \overline{x} \in C \text{ s.t. } \overline{x} = (x, \overline{x}_{m+1}) \},$$

where, again, the infimum over the empty set is $+\infty$.

$$\operatorname{epi}(f) = C + (\{0\}^m \times \mathbb{R}_+)$$

Coordinate inf-projection of a convex set

Let $C \subset \mathbb{R}^{m+1}$ be a convex set such that the projection of C onto its last coordinate is bounded below. Define $f: \mathbb{R}^m \to \bar{\mathbb{R}}$ } by

$$f(x) := \inf \{ \overline{x}_{m+1} \mid \exists \ \overline{x} \in C \text{ s.t. } \overline{x} = (x, \overline{x}_{m+1}) \},$$

where, again, the infimum over the empty set is $+\infty$.

$$\operatorname{epi}(f) = C + (\{0\}^m \times \mathbb{R}_+)$$

Example:
$$f(x) := \inf_{(x,\mu) \in \text{epi}(f)} \mu$$

Inf-projection: $h(x) := \inf_{y} f(y, x)$

Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and consider the projection

$$P(y,x,\mu)=(x,\mu).$$

Inf-projection: $h(x) := \inf_{y} f(y, x)$

Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \bar{\mathbb{R}}$ be convex and consider the projection

$$P(y, x, \mu) = (x, \mu).$$

Since the set Pepi (f) is convex, the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ given by epi (h) := Pepi (f) is also convex:

Inf-projection: $h(x) := \inf_{y} f(y, x)$

Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and consider the projection

$$P(y, x, \mu) = (x, \mu).$$

Since the set Pepi (f) is convex, the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ given by epi (h) := Pepi (f) is also convex:

$$h(x) := \inf_{(x,\mu) \in P_{\mathrm{epi}}(f)} \mu$$

Inf-projection: $h(x) := \inf_{y} f(y, x)$

Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and consider the projection

$$P(y, x, \mu) = (x, \mu).$$

Since the set Pepi (f) is convex, the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ given by epi (h) := Pepi (f) is also convex:

$$\begin{split} h(x) &:= \inf_{(x,\mu) \in P_{\operatorname{epi}}(f)} \mu \\ &= \inf \left\{ \mu \mid \exists \, y \in \mathbb{R}^m \text{ s.t. } f(y,x) \leq \mu \right\} \end{split}$$

Inf-projection: $h(x) := \inf_{y} f(y, x)$

Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \bar{\mathbb{R}}$ be convex and consider the projection

$$P(y, x, \mu) = (x, \mu).$$

Since the set Pepi(f) is convex, the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ given by epi(h) := Pepi(f) is also convex:

$$h(x) := \inf_{(x,\mu) \in P_{\text{epi}}(f)} \mu$$

$$= \inf \left\{ \mu \mid \exists y \in \mathbb{R}^m \text{ s.t. } f(y,x) \le \mu \right\}$$

$$= \inf \left\{ \mu \mid \inf_y f(y,x) < \mu \right\}$$

Inf-projection: $h(x) := \inf_{y} f(y, x)$

Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \bar{\mathbb{R}}$ be convex and consider the projection

$$P(y, x, \mu) = (x, \mu).$$

Since the set Pepi(f) is convex, the function $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ given by epi(h) := Pepi(f) is also convex:

$$\begin{split} h(x) &:= \inf_{(x,\mu) \in P_{\operatorname{epi}}(f)} \mu \\ &= \inf \left\{ \mu \mid \exists \, y \in \mathbb{R}^m \text{ s.t. } f(y,x) \leq \mu \right\} \\ &= \inf \left\{ \mu \mid \inf_y f(y,x) < \mu \right\} \\ &= \inf_y f(y,x). \end{split}$$

The support function for epi (f): the convex conjugate

$$\sigma_{\text{epi }f}\left((z,-1)\right) = \sup_{f(x) \le \mu} \langle (z,-1), (x,\mu) \rangle$$

$$= \sup_{f(x) \le \mu} \left[\langle z, x \rangle - \mu \right]$$

$$= \sup_{x} \left[\langle z, x \rangle - f(x) \right]$$

$$=: f^*(z)$$

The support function for epi(f): the convex conjugate

$$\sigma_{\text{epi}\,f}\left((z,-1)\right) = \sup_{f(x) \le \mu} \langle (z,-1), (x,\mu) \rangle$$

$$= \sup_{f(x) \le \mu} \left[\langle z, x \rangle - \mu \right]$$

$$= \sup_{x} \left[\langle z, x \rangle - f(x) \right]$$

$$=: f^*(z)$$

$$\overline{x} \in \operatorname*{argmax}_{x}[\langle z, x \rangle - f(x)] \iff (z, -1) \text{ supports epi}\,(f) \text{ at } (\overline{x}, f(\overline{x})).$$

The support function for epi(f): the convex conjugate

$$\sigma_{\text{epi}\,f}\left((z,-1)\right) = \sup_{f(x) \le \mu} \langle (z,-1), (x,\mu) \rangle$$

$$= \sup_{f(x) \le \mu} \left[\langle z, x \rangle - \mu \right]$$

$$= \sup_{x} \left[\langle z, x \rangle - f(x) \right]$$

$$=: f^*(z)$$

$$\overline{x} \in \operatorname*{argmax}_{x}[\langle z, x \rangle - f(x)] \iff (z, -1) \text{ supports epi}\,(f) \text{ at } (\overline{x}, f(\overline{x})).$$

$$\iff \langle (z, -1), (\overline{x}, f(\overline{x})) \rangle \geq \langle (z, -1), (x, f(x)) \rangle \ \forall x \in \text{dom } f,$$

The support function for epi(f): the convex conjugate

$$\sigma_{\text{epi}\,f}\left((z,-1)\right) = \sup_{f(x) \le \mu} \langle (z,-1), (x,\mu) \rangle$$

$$= \sup_{f(x) \le \mu} \left[\langle z, x \rangle - \mu \right]$$

$$= \sup_{x} \left[\langle z, x \rangle - f(x) \right]$$

$$=: f^*(z)$$

$$\overline{x} \in \operatorname*{argmax}_{x}[\langle z, x \rangle - f(x)] \iff (z, -1) \text{ supports epi}\,(f) \text{ at } (\overline{x}, f(\overline{x})).$$

$$\iff \langle (z, -1), (\overline{x}, f(\overline{x})) \rangle \geq \langle (z, -1), (x, f(x)) \rangle \ \forall \, x \in \mathrm{dom}\, f,$$

$$\iff f(x) \geq f(\overline{x}) + \langle z, x - \overline{x} \rangle \quad \forall \, x \in \mathbb{R}^{n}$$

The support function for epi (f): the convex conjugate

$$\sigma_{\text{epi}\,f}\left((z,-1)\right) = \sup_{f(x) \le \mu} \langle (z,-1), (x,\mu) \rangle$$

$$= \sup_{f(x) \le \mu} \left[\langle z, x \rangle - \mu \right]$$

$$= \sup_{x} \left[\langle z, x \rangle - f(x) \right]$$

$$=: f^*(z)$$

$$\overline{x} \in \underset{x}{\operatorname{argmax}}[\langle z, x \rangle - f(x)] \iff (z, -1) \text{ supports epi } (f) \text{ at } (\overline{x}, f(\overline{x})).$$

$$\iff \langle (z, -1), (\overline{x}, f(\overline{x})) \rangle \geq \langle (z, -1), (x, f(x)) \rangle \ \forall \, x \in \text{dom } f,$$

$$\iff f(x) \geq f(\overline{x}) + \langle z, x - \overline{x} \rangle \quad \forall \, x \in \mathbb{R}^n$$

$$z \in \partial f(\overline{x})$$
, the subdifferential of f at \overline{x} .

$$\partial f(\overline{x})$$
 is a singleton \iff $\partial f(\overline{x}) = {\nabla f(\overline{x})}.$

$$f^*(z) \ge \langle z, x \rangle - f(x) \quad \forall \ x \in \text{dom}(f) \text{ and } z \in \mathbb{R}^n$$

$$\iff f(x) \ge \langle z, x \rangle - f^*(z) \quad \forall \ z \in \text{dom}(f^*) \text{ and } x \in \mathbb{R}^n$$

$$\implies f(x) \ge f^{**}(x) \quad \forall x \in \mathbb{R}^n$$

$$f^*(z) \ge \langle z, x \rangle - f(x) \quad \forall \ x \in \text{dom}(f) \text{ and } z \in \mathbb{R}^n$$

$$\iff f(x) \ge \langle z, x \rangle - f^*(z) \qquad \forall \ z \in \text{dom}(f^*) \text{ and } x \in \mathbb{R}^n$$

$$\implies f(x) \ge f^{**}(x) \qquad \forall x \in \mathbb{R}^n$$

But
$$z \in \partial f(x) \iff \langle z, x \rangle \ge f(x) + f^*(z),$$
 so $\forall x \in \text{dom } (\partial f) := \{x \mid \partial f(x) \neq \emptyset\} \text{ and } z \in \partial f(x),$
$$f(x) \le \langle z, x \rangle - f^*(z) \le \sup_{w} [\langle w, x \rangle - f^*(w)] = f^{**}(x) \le f(x).$$

$$f^*(z) \ge \langle z, x \rangle - f(x) \quad \forall \quad x \in \text{dom}(f) \text{ and } z \in \mathbb{R}^n$$

$$\iff f(x) \ge \langle z, x \rangle - f^*(z) \qquad \forall \quad z \in \text{dom}(f^*) \text{ and } x \in \mathbb{R}^n$$

$$\iff f(x) \ge f^{**}(x) \qquad \forall x \in \mathbb{R}^n$$
But
$$z \in \partial f(x) \iff \langle z, x \rangle \ge f(x) + f^*(z),$$
so $\forall x \in \text{dom}(\partial f) := \{x \mid \partial f(x) \ne \emptyset\} \text{ and } z \in \partial f(x),$

$$f(x) \le \langle z, x \rangle - f^*(z) \le \sup_{x \in \mathbb{R}^n} [\langle w, x \rangle - f^*(w)] = f^{**}(x) \le f(x).$$

So $f(x) = f^{**}(x)$ on dom (∂f) , where ri dom $(f) \subset \text{dom } (\partial f)$. Consequently $f^{**} = \text{cl } f$, so if f = cl f, $\partial f^* = (\partial f)^{-1}$.

The convex indicator function

 $C \subset \mathbb{R}^n$ non-empty closed convex

$$\delta_{C}(x) := \begin{cases} 0 & , x \in C, \\ +\infty & , x \notin C \end{cases}$$

$$\delta_{\scriptscriptstyle C}^*(z) = \sigma_{\scriptscriptstyle C}\left(z\right)$$

$$\begin{split} \partial \delta_{C} \left(x \right) &= \left\{ z \mid \left\langle z, y - x \right\rangle \leq 0 \ \ \, \forall \, y \in C \right\} \quad \left(x \in C \right) \\ &=: N \left(x \mid C \right) \quad \text{ the normal cone to } C \text{ at } x \\ &= \text{set of supporting vectors to } C \text{ at } x \end{split}$$

The conjugate under inf-projection

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$ and define the following optimal value function by inf-projection:

$$p(y) := \inf_{x} F(x, y).$$

Then

$$\begin{split} p^*(z) &= \sup_y [\langle z, y \rangle - p(y)] \\ &= \sup_y [\langle z, y \rangle - \inf_x F(x, y)] \\ &= \sup_y \sup_x [\langle z, y \rangle - F(x, y)] \\ &= \sup_{(x, y)} [\langle (0, z), (x, y) \rangle - F(x, y)] \\ &= F^*(0, z) \end{split}$$

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$ and define the following optimal value function by inf-projection: $p(y) := \inf_x F(x, y)$. Then

 $z \in \partial p(y)$ and $\overline{x} \in \underset{x}{\operatorname{argmin}} F(x, y)$.

$$z \in \partial p(y) \text{ and } \overline{x} \in \operatorname*{argmin}_{x} F(x,y).$$

$$\iff$$

$$F(\overline{x},y) + F^{*}(0,z) = p(y) + p^{*}(z) \leq \langle z,y \rangle = \langle (0,z), (\overline{x},y) \rangle$$

$$z \in \partial p(y) \text{ and } \overline{x} \in \operatorname*{argmin} F(x,y).$$

$$\iff$$

$$F(\overline{x},y) + F^*(0,z) = p(y) + p^*(z) \le \langle z,y \rangle = \langle (0,z), (\overline{x},y) \rangle$$

$$\implies$$

$$(0,z) \in \partial F(\overline{x},y) \text{ or equivalently } (\overline{x},y) \in \partial F^*(0,z)$$

$$z \in \partial p(y) \text{ and } \overline{x} \in \operatorname*{argmin} F(x,y).$$

$$\iff$$

$$F(\overline{x},y) + F^*(0,z) = p(y) + p^*(z) \le \langle z,y \rangle = \langle (0,z), (\overline{x},y) \rangle$$

$$\implies$$

$$(0,z) \in \partial F(\overline{x},y) \text{ or equivalently } (\overline{x},y) \in \partial F^*(0,z)$$

$$\iff$$

$$p(y) + p^*(z) \le F(\overline{x},y) + F^*(0,z) \le \langle (0,z), (\overline{x},y) \rangle = \langle z,y \rangle$$

$$z \in \partial p(y) \text{ and } \overline{x} \in \operatorname*{argmin} F(x,y).$$

$$\iff$$

$$F(\overline{x},y) + F^*(0,z) = p(y) + p^*(z) \leq \langle z,y \rangle = \langle (0,z), (\overline{x},y) \rangle$$

$$\Longrightarrow$$

$$(0,z) \in \partial F(\overline{x},y) \text{ or equivalently } (\overline{x},y) \in \partial F^*(0,z)$$

$$\iff$$

$$p(y) + p^*(z) \leq F(\overline{x},y) + F^*(0,z) \leq \langle (0,z), (\overline{x},y) \rangle = \langle z,y \rangle$$

$$\iff$$

$$z \in \partial p(y) \text{ and } \overline{x} \in \operatorname*{argmin} F(x,y).$$

Let $F\colon \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$ and define the following optimal value functions by inf-projection:

$$p(y) := \inf_{x} F(x, y)$$
 and $q(w) := \inf_{z} F^{*}(w, z)$.

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$ and define the following optimal value functions by inf-projection:

$$p(y) := \inf_x \ F(x,y) \ \ \text{and} \ \ q(w) := \inf_z \ F^*(w,z).$$

This set-up yields the primal-dual pair

$$p(0) = \inf_{x} F(x,0)$$
 and $p^{**}(0) = \sup_{z} -F^{*}(0,z) = -q(0)$.

Let $F: \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$ and define the following optimal value functions by inf-projection:

$$p(y) := \inf_x \ F(x,y) \ \ \text{and} \ \ q(w) := \inf_z \ F^*(w,z).$$

This set-up yields the primal-dual pair

$$p(0) = \inf_{x} F(x,0)$$
 and $p^{**}(0) = \sup_{z} -F^{*}(0,z) = -q(0)$.

$$p(0) \geq p^{**}(0) = -q(0)$$
 always holds

 $p(y):=\inf_x\,F(x,y)\ \ \text{and}\ \ q(w):=\inf_z\,F^*(w,z).$

$$p(y) := \inf_x F(x, y) \text{ and } q(w) := \inf_z F^*(w, z).$$

1. If $0 \in \text{ri}(\text{dom } p)$, then p(0) = -q(0) and the infimum q(0) is attained, if finite.

Similarly, if $0 \in \text{ri}(\text{dom } q)$, then p(0) = -q(0) and the infimum p(0) is attained, if finite.

$$p(y):=\inf_x\,F(x,y)\ \ \text{and}\ \ q(w):=\inf_z\,F^*(w,z).$$

- 1. If $0 \in \text{ri}(\text{dom } p)$, then p(0) = -q(0) and the infimum q(0) is attained, if finite.
 - Similarly, if $0 \in \text{ri}(\text{dom } q)$, then p(0) = -q(0) and the infimum p(0) is attained, if finite.
- 2. The set $\operatorname{argmax}_z F^*(0,z)$ is nonempty and bounded if and only if $0 \in \operatorname{int}(\operatorname{dom} p)$ and p(0) is finite, in which case $\partial p(0) = \operatorname{argmax}_z F^*(0,z)$.

$$p(y) := \inf_x F(x, y) \text{ and } q(w) := \inf_z F^*(w, z).$$

- 1. If $0 \in \text{ri}(\text{dom } p)$, then p(0) = -q(0) and the infimum q(0) is attained, if finite.
 - Similarly, if $0 \in \text{ri}(\text{dom } q)$, then p(0) = -q(0) and the infimum p(0) is attained, if finite.
- 2. The set $\operatorname{argmax}_z F^*(0, z)$ is nonempty and bounded if and only if $0 \in \operatorname{int} (\operatorname{dom} p)$ and p(0) is finite, in which case $\partial p(0) = \operatorname{argmax}_z F^*(0, z)$.
- 3. $\operatorname{argmin}_x F(x,0)$ is nonempty and bounded if and only if $0 \in \operatorname{int} (\operatorname{dom} q)$ and q(0) is finite, in which case $\partial q(0) = \operatorname{argmin}_x F(x,0)$.

$$p(y) := \inf_x \, F(x,y) \ \text{ and } \ q(w) := \inf_z \, F^*(w,z).$$

- 1. If $0 \in \text{ri}(\text{dom}\,p)$, then p(0) = -q(0) and the infimum q(0) is attained, if finite.
 - Similarly, if $0 \in \text{ri}(\text{dom } q)$, then p(0) = -q(0) and the infimum p(0) is attained, if finite.
- 2. The set $\operatorname{argmax}_z F^*(0, z)$ is nonempty and bounded if and only if $0 \in \operatorname{int} (\operatorname{dom} p)$ and p(0) is finite, in which case $\partial p(0) = \operatorname{argmax}_z F^*(0, z)$.
- 3. $\operatorname{argmin}_x F(x,0)$ is nonempty and bounded if and only if $0 \in \operatorname{int} (\operatorname{dom} q)$ and q(0) is finite, in which case $\partial q(0) = \operatorname{argmin}_x F(x,0)$.
- 4. Optimal solutions are characterized by

$$\begin{array}{l} \bar{x} \in \operatorname{argmin}_x \ F(x,0) \\ \bar{y} \in \operatorname{argmax}_z \ -F^*(0,z) \\ F(\bar{x},0) = -F^*(0,\bar{z}) \end{array} \right\} \iff (0,\bar{z}) \in \partial F(\bar{x},0) \iff (\bar{x},0) \in \partial F^*(0,\bar{z}).$$

$$L(x,z) := \inf_y [F(x,y) - \langle z,y\rangle] \ = \ -\sup_y [\langle z,y\rangle - F(x,y)]$$

$$L(x,z) := \inf_{y} [F(x,y) - \langle z,y\rangle] \ = \ -\sup_{y} [\langle z,y\rangle - F(x,y)]$$

Example:
$$F(x, (u, v)) := h(Ax + u) + g(x + v)$$

$$L(x,z) := \inf_y [F(x,y) - \langle z,y\rangle] \ = \ -\sup_y [\langle z,y\rangle - F(x,y)]$$

Example:
$$F(x,(u,v)) := h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2$$

$$L(x,z) := \inf_{y} [F(x,y) - \langle z,y \rangle] \ = \ -\sup_{y} [\langle z,y \rangle - F(x,y)]$$

Example:
$$F(x,(u,v)) := h(Ax + u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2$$

$$L(x,(z,w)) = \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle$$

$$\begin{split} L(x,z) := \inf_{y} [F(x,y) - \langle z,y \rangle] &= -\sup_{y} [\langle z,y \rangle - F(x,y)] \\ \textbf{Example:} \ F(x,(u,v)) := h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2 \\ L(x,(z,w)) &= \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle \\ &= - \{ \sup_{x} [\langle z,u \rangle - h(Ax+u)] + \sup_{x} [\langle w,v \rangle - g(x+v)] \} \end{split}$$

$$L(x,z) := \inf_{y} [F(x,y) - \langle z,y \rangle] = -\sup_{y} [\langle z,y \rangle - F(x,y)]$$

 Example: $F(x,(u,v)) := h(Ax+u) + g(x+v) + \frac{1}{2} ||u||_{2}^{2} + ||v||_{2}^{2}$
 $L(x,(z,w)) = \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle$
 $= -\{\sup_{u} [\langle z,u \rangle - h(Ax+u)] + \sup_{v} [\langle w,v \rangle - g(x+v)] \}$
 $(r := Ax+u)$
 $(s := x+v)$

$$\begin{split} L(x,z) := & \inf_y [F(x,y) - \langle z,y \rangle] \ = \ -\sup_y [\langle z,y \rangle - F(x,y)] \\ \textbf{Example:} \ & F(x,(u,v)) := h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2 \\ L(x,(z,w)) & = \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle \\ & = - \{ \sup_u [\langle z,u \rangle - h(Ax+u)] \ + \ \sup_v [\langle w,v \rangle - g(x+v)] \} \\ & \qquad \qquad (r := Ax+u) \\ & = - \{ \sup_r [\langle z,r - Ax \rangle - h(r)] \ + \ \sup_s [\langle w,s-x \rangle - g(s)] \} \end{split}$$

$$\begin{split} L(x,z) &:= \inf_y [F(x,y) - \langle z,y \rangle] \ = \ -\sup_y [\langle z,y \rangle - F(x,y)] \\ \textbf{Example:} \ F(x,(u,v)) &:= h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2 \\ L(x,(z,w)) &= \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle \\ &= - \{ \sup_u [\langle z,u \rangle - h(Ax+u)] \ + \ \sup_v [\langle w,v \rangle - g(x+v)] \ \} \\ &\qquad \qquad (r := Ax+u) \qquad \qquad (s := x+v) \\ &= - \{ \sup_v [\langle z,r - Ax \rangle - h(r)] \ + \ \sup_v [\langle w,s - x \rangle - g(s)] \ \} \\ &= [\langle z,Ax \rangle - h^*(z)] \ + \ [\langle w,x \rangle - g^*(w)] \end{split}$$

Lagrangian Duality

The Lagrangian function:

$$\begin{split} L(x,z) &:= \inf_y [F(x,y) - \langle z,y \rangle] \ = \ -\sup_y [\langle z,y \rangle - F(x,y)] \\ \textbf{Example:} \ F(x,(u,v)) &:= h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2 \\ L(x,(z,w)) &= \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle \\ &= - \{ \sup_u [\langle z,u \rangle - h(Ax+u)] \ + \ \sup_v [\langle w,v \rangle - g(x+v)] \} \\ &\qquad \qquad (r := Ax+u) \qquad \qquad (s := x+v) \\ &= - \{ \sup_r [\langle z,r - Ax \rangle - h(r)] \ + \ \sup_s [\langle w,s - x \rangle - g(s)] \} \\ &= [\langle z,Ax \rangle - h^*(z)] \ + \ [\langle w,x \rangle - g^*(w)] \\ &= \langle A^Tz + w,x \rangle - [h^*(z) + g^*(w)] \end{split}$$

Lagrangian Duality

The Lagrangian function:

$$\begin{split} L(x,z) &:= \inf_y [F(x,y) - \langle z,y \rangle] \ = \ -\sup_y [\langle z,y \rangle - F(x,y)] \\ \textbf{Example:} \ F(x,(u,v)) &:= h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2 \\ L(x,(z,w)) &= \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle \\ &= - \{ \sup_u [\langle z,u \rangle - h(Ax+u)] \ + \ \sup_v [\langle w,v \rangle - g(x+v)] \ \} \\ &\qquad \qquad (r := Ax+u) \qquad \qquad (s := x+v) \\ &= - \{ \sup_r [\langle z,r-Ax \rangle - h(r)] \ + \ \sup_s [\langle w,s-x \rangle - g(s)] \ \} \\ &= [\langle z,Ax \rangle - h^*(z)] \ + \ [\langle w,x \rangle - g^*(w)] \\ &= \langle A^Tz + w,x \rangle - [h^*(z) + g^*(w)] \\ &p(0) = \inf_x \sup_{(z,w)} L(x,z,w) = \inf_x [h(Ax) + g(x)] \end{split}$$

Lagrangian Duality

The Lagrangian function:

$$\begin{split} L(x,z) &:= \inf_y [F(x,y) - \langle z,y \rangle] \ = \ -\sup_y [\langle z,y \rangle - F(x,y)] \\ \textbf{Example:} \ F(x,(u,v)) &:= h(Ax+u) + g(x+v) + \frac{1}{2} \|u\|_2^2 + \|v\|_2^2 \\ L(x,(z,w)) &= \inf_{(u,v)} h(Ax+u) + g(x+v) - \langle (z,w),(u,v) \rangle \\ &= - \{ \sup_u [\langle z,u \rangle - h(Ax+u)] \ + \ \sup_v [\langle w,v \rangle - g(x+v)] \ \} \\ &\qquad \qquad (r := Ax+u) \qquad \qquad (s := x+v) \\ &= - \{ \sup_r [\langle z,r-Ax \rangle - h(r)] \ + \ \sup_s [\langle w,s-x \rangle - g(s)] \ \} \\ &= [\langle z,Ax \rangle - h^*(z)] \ + \ [\langle w,x \rangle - g^*(w)] \\ &= \langle A^Tz + w,x \rangle - [h^*(z) + g^*(w)] \\ &p(0) = \inf_x \sup_{(z,w)} L(x,z,w) = \inf_x [h(Ax) + g(x)] \end{split}$$

 $p^{**}(0) = \sup_{(z,w)} \inf_{x} L(x,z,w) = \sup_{z} -[h^{*}(z) + g^{*}(-A^{T}z)]$

Fenchel-Rockafellar Duality: F(x,y) = h(Ax + y) + g(x)

$$p(0) = \inf_{x} \{ h(Ax) + g(x) \}$$
 and $p^{\star\star}(0) = \sup_{z} \{ -h^{*}(z) - g^{*}(-A^{*}z) \}$

Fenchel-Rockafellar Duality: F(x,y) = h(Ax + y) + g(x)

$$p(0) = \inf_{x} \left\{ h(Ax) + g(x) \right\} \text{ and } p^{\star\star}(0) = \sup_{z} \left\{ -h^{*}(z) - g^{*}(-A^{*}z) \right\}$$

A prototype problem:

$$\mathcal{P} \qquad \frac{\min \|x\|_1}{\text{s.t. } \|Ax - b\|_2 \le \tau}$$

Fenchel-Rockafellar Duality: F(x,y) = h(Ax + y) + g(x)

$$p(0) = \inf_{x} \left\{ h(Ax) + g(x) \right\} \text{ and } p^{\star\star}(0) = \sup_{z} \left\{ -h^{\star}(z) - g^{\star}(-A^{\star}z) \right\}$$

A prototype problem:

$$\mathcal{P} \qquad \begin{array}{c} \min \ \|x\|_1 \\ \text{s.t. } \|Ax - b\|_2 \le \tau \end{array}$$

$$g(x) = \|x\|_1 = \delta^* (x \mid \mathbb{B}_{\infty}) \qquad g^*(w) = \delta (w \mid \mathbb{B}_{\infty})$$
$$h(y) = \delta (y - b \mid \tau \mathbb{B}_2) \qquad h^*(z) = -\langle z, b \rangle + \delta^* (z \mid \tau \mathbb{B}_2) = -\langle z, b \rangle + \tau \|z\|_2$$

Fenchel-Rockafellar Duality: F(x,y) = h(Ax + y) + g(x)

$$p(0) = \inf_{x} \{ h(Ax) + g(x) \}$$
 and $p^{\star\star}(0) = \sup_{z} \{ -h^{\star}(z) - g^{\star}(-A^{\star}z) \}$

A prototype problem:

 $g(x) = ||x||_1 = \delta^* (x \mid \mathbb{B}_{\infty})$ $g^*(w) = \delta (w \mid \mathbb{B}_{\infty})$

$$\mathcal{P} \qquad \frac{\min \|x\|_1}{\text{s.t. } \|Ax - b\|_2 \le \tau}$$

$$h(y) = \delta \left(y - b \mid \tau \mathbb{B}_2 \right) \qquad h^*(z) = -\langle z, b \rangle + \delta^* \left(z \mid \tau \mathbb{B}_2 \right) = -\langle z, b \rangle + \tau \|z\|_2$$

$$\mathcal{D}_{L} \qquad \sup_{z \in \mathbb{R}} |\langle b, z \rangle - \tau ||z||_{2} \\ \text{s.t. } ||A^{T}z||_{\infty} \leq 1.$$

Gauge Duality

 $\mathbb{B}:=\{x\mid \|x\|\leq 1\}\text{ is the closed unit ball of norm }\|\cdot\|.$

The norm dual to $\|\cdot\|$ is defined to be $\|z\|_{\circ} := \sigma_{\mathbb{B}}\left(z\right) = \sup\left\{\left\langle z,x\right\rangle \mid \|x\| \leq 1\right\}.$

 $\mathbb{B}:=\{x\mid \|x\|\leq 1\} \text{ is the closed unit ball of norm } \|\cdot\|.$

The norm dual to $\|\cdot\|$ is defined to be $\|z\|_{\circ} := \sigma_{\mathbb{B}}(z) = \sup \{\langle z, x \rangle \mid \|x\| \leq 1\}.$

Hence,

$$\langle z,x\rangle \leq \|z\|_{\circ}\, \|x\| \quad \forall\, z,x \in \mathbb{R}^n.$$

 $\mathbb{B}:=\{x\mid \|x\|\leq 1\} \text{ is the closed unit ball of norm } \|\cdot\|.$

The norm dual to $\|\cdot\|$ is defined to be

$$||z||_{\circ} := \sigma_{\mathbb{B}}(z) = \sup \{\langle z, x \rangle \mid ||x|| \le 1\}.$$

Hence,

$$\langle z, x \rangle \le ||z||_{\circ} ||x|| \quad \forall z, x \in \mathbb{R}^n.$$

For $S \subset \mathbb{R}^n$, the *polar* of S is

$$S^{\circ} := \{z \mid \langle z, x \rangle \leq 1 \; \forall \, x \in S \}.$$

 $\mathbb{B}:=\{x\mid \|x\|\leq 1\} \text{ is the closed unit ball of norm } \|\cdot\|.$

The norm dual to $\|\cdot\|$ is defined to be $\|z\|_{\circ} := \sigma_{\mathbb{B}}(z) = \sup \{\langle z, x \rangle \mid \|x\| \leq 1\}.$

Hence,

$$\langle z, x \rangle \le ||z||_{\circ} ||x|| \quad \forall z, x \in \mathbb{R}^n.$$

For $S \subset \mathbb{R}^n$, the *polar* of S is

$$S^{\circ} := \{z \mid \langle z, x \rangle \leq 1 \; \forall \, x \in S \,\}.$$

Since $\mathbb{B}^{\circ} = \{z \mid \langle z, x \rangle \leq 1 \ \forall x \in \mathbb{B}\} = \{z \mid ||z||_{\circ} \leq 1\}$, we have $||x|| = \sigma_{\mathbb{B}^{\circ}}(x)$.

 $\mathbb{B}:=\{x\mid \|x\|\leq 1\} \text{ is the closed unit ball of norm } \|\cdot\|.$

The norm dual to $\|\cdot\|$ is defined to be $\|z\|_{\circ} := \sigma_{\mathbb{B}}(z) = \sup \{\langle z, x \rangle \mid \|x\| \leq 1\}.$

Hence,

$$\langle z, x \rangle \le ||z||_{\circ} ||x|| \quad \forall z, x \in \mathbb{R}^n.$$

For $S \subset \mathbb{R}^n$, the *polar* of S is

$$S^{\circ} := \{z \mid \langle z, x \rangle \leq 1 \; \forall \, x \in S \}.$$

Since $\mathbb{B}^{\circ} = \{z \mid \langle z, x \rangle \leq 1 \ \forall x \in \mathbb{B}\} = \{z \mid ||z||_{\circ} \leq 1\}$, we have $||x|| = \sigma_{\mathbb{B}^{\circ}}(x)$.

Properties:

1.
$$(S^{\circ})^{\circ} = \overline{\operatorname{conv}}(S \cup \{0\})$$

 $\mathbb{B}:=\{x\mid \|x\|\leq 1\} \text{ is the closed unit ball of norm } \|\cdot\|.$

The norm dual to $\|\cdot\|$ is defined to be $\|z\|_{\circ} := \sigma_{\mathbb{R}}(z) = \sup \{\langle z, x \rangle \mid \|x\| \leq 1\}.$

Hence,

$$\langle z, x \rangle \le ||z||_{\circ} ||x|| \quad \forall z, x \in \mathbb{R}^n.$$

For $S \subset \mathbb{R}^n$, the *polar* of S is

$$S^{\circ} := \{ z \mid \langle z, x \rangle \leq 1 \; \forall \, x \in S \}.$$

Since $\mathbb{B}^{\circ} = \{z \mid \langle z, x \rangle \leq 1 \ \forall x \in \mathbb{B}\} = \{z \mid ||z||_{\circ} \leq 1\}$, we have $||x|| = \sigma_{\mathbb{B}^{\circ}}(x)$.

Properties:

- 1. $(S^{\circ})^{\circ} = \overline{\operatorname{conv}}(S \cup \{0\})$
- 2. K is a close convex cone $(\lambda K \subset K \ \forall \lambda > 0, \ K + K \subset K)$, then

$$K^{\circ} = \{ z \mid \langle z, x \rangle \le 0 \ \forall x \in K \}.$$

Minkowski (gauge) functionals and polarity

 $0 \in C \subset \mathbb{R}^n$ nonempty closed convex $\gamma_C\left(x\right) := \inf\left\{t \mid 0 \leq t, \ x \in tC\right\},$ where the infimum over the empty set is $+\infty$.

Minkowski (gauge) functionals and polarity

 $0 \in C \subset \mathbb{R}^n$ nonempty closed convex

$$\gamma_C(x) := \inf \{ t \mid 0 \le t, \ x \in tC \},\$$

where the infimum over the empty set is $+\infty$.

Example: $||x|| = \gamma_{\mathbb{B}}(x)$ for any norm with unit ball \mathbb{B} .

Minkowski (gauge) functionals and polarity

 $0 \in C \subset \mathbb{R}^n$ nonempty closed convex

$$\gamma_C(x) := \inf \{ t \mid 0 \le t, \ x \in tC \},\$$

where the infimum over the empty set is $+\infty$.

Example: $||x|| = \gamma_{\mathbb{B}}(x)$ for any norm with unit ball \mathbb{B} .

Gauge functions are sublinear, and so by Hörmander,

$$\gamma_{C}\left(x\right) =\sigma_{D}\left(x\right) ,$$

where

$$D = \{ z \mid \langle z, x \rangle \le 1 \ \forall \ x \in C \} = C^{\circ}.$$

$$\kappa^{\circ}(y) = \sup \left\{ \left\langle y, x \right\rangle \mid \kappa(x) \leq 1 \right\} = \sigma_{\mathbb{U}_{\kappa}}\left(y\right),$$
 where $\mathbb{U}_{\kappa} := \left\{ x \mid \kappa(x) \leq 1 \right\}.$

$$\kappa^{\circ}(y) = \sup \left\{ \, \langle y, x \rangle \mid \kappa(x) \leq 1 \, \right\} = \sigma_{\mathbb{U}_{\kappa}} \left(y \right),$$
 where $\mathbb{U}_{\kappa} := \{ x \mid \kappa(x) \leq 1 \, \}.$

If κ is a norm then κ° is the corresponding dual norm.

$$\kappa^{\circ}(y) = \sup \left\{ \left. \langle y, x \rangle \mid \kappa(x) \leq 1 \right. \right\} = \sigma_{\mathbb{U}_{\kappa}}\left(y\right),$$
 where $\mathbb{U}_{\kappa} := \left\{ x \mid \kappa(x) \leq 1 \right. \right\}$.

If κ is a norm then κ° is the corresponding dual norm.

$$\operatorname{epi} \kappa^{\circ} = \{(y, -\lambda) : (y, \lambda) \in (\operatorname{epi} \kappa)^{\circ}\}.$$

$$\kappa^{\circ}(y) = \sup \{ \langle y, x \rangle \mid \kappa(x) \leq 1 \} = \sigma_{\mathbb{U}_{\kappa}}(y),$$
 where $\mathbb{U}_{\kappa} := \{ x \mid \kappa(x) \leq 1 \}.$

If κ is a norm then κ° is the corresponding dual norm.

$$\operatorname{epi} \kappa^{\circ} = \{(y, -\lambda) : (y, \lambda) \in (\operatorname{epi} \kappa)^{\circ}\}.$$

The generalized Hölder inequality

$$\langle x,y\rangle \leq \kappa(x) \cdot \kappa^{\circ}(y) \quad \forall x \in \operatorname{dom} \kappa, \ \forall y \in \operatorname{dom} \kappa^{\circ},$$

is known as the polar-gauge inequality.

Gauge Duality

 κ and ρ are gauges.

$$\min_{x} \quad \kappa(x) \qquad \text{s.t.} \quad \rho(b - Ax) \le \tau, \tag{G_p}$$

$$\max_{y} \langle b, y \rangle - \tau \rho^{\circ}(y) \quad \text{s.t.} \quad \kappa^{\circ}(A^{T}y) \leq 1,$$
 (L_d)

$$\min_{y} \quad \kappa^{\circ}(A^{T}y) \qquad \text{s.t.} \quad \langle b, y \rangle - \tau \rho^{\circ}(y) \ge 1. \quad (G_{d})$$

Example: In \mathcal{P} we set $\kappa(x) = ||x||_1$ and $\rho(y) = ||y||_2$

Gauge Duality

 κ and ρ are gauges.

$$v_p := \min_{x} \quad \kappa(x)$$
 s.t. $\rho(b - Ax) \le \tau$, (G_p)

$$\max_{y} \langle b, y \rangle - \tau \rho^{\circ}(y) \quad \text{s.t.} \quad \kappa^{\circ}(A^{T}y) \leq 1,$$
 (L_d)

$$v_d := \min_{y} \quad \kappa^{\circ}(A^T y)$$
 s.t. $\langle b, y \rangle - \tau \rho^{\circ}(y) \ge 1$. (G_d)

Example: In \mathcal{P} we set $\kappa(x) = ||x||_1$ and $\rho(y) = ||y||_2$

Feasibility

Primal, Dual Domains:

$$\mathcal{F}_p := \{ x \mid \rho(b - Ax) \le \tau \}$$
 and $\mathcal{F}_d := \{ y \mid \langle b, y \rangle - \tau \rho^{\circ}(y) \ge 1 \}.$

Feasibilty:
$$\begin{array}{c} \operatorname{Primal} \ \mathcal{F}_p \cap (\operatorname{dom} \kappa) \\ \operatorname{Dual} \ A^T \mathcal{F}_d \cap (\operatorname{dom} \kappa^{\circ}) \end{array}$$

Relative Strict Feasibilty:
$$\begin{array}{c} \operatorname{Primal} & \operatorname{ri} \mathcal{F}_p \cap (\operatorname{ri} \operatorname{dom} \kappa) \\ \operatorname{Dual} & A^T \operatorname{ri} \mathcal{F}_d \cap (\operatorname{ri} \operatorname{dom} \kappa^{\circ}) \end{array}$$

Strict Feasibilty:
$$\frac{\operatorname{Primal } \operatorname{int} (\mathcal{F})_p \cap (\operatorname{ridom} \kappa)}{\operatorname{Dual } A^T \operatorname{int} (\mathcal{F})_d \cap (\operatorname{ridom} \kappa^{\circ})}$$

Gauge Duality

$$v_p = \min_{\rho(b-AX) \le \tau} \kappa(x)$$
 $v_d = \min_{\langle b, y \rangle - \tau \rho^{\circ}(y) \ge 1} \kappa^{\circ}(A^T y)$

Theorem: (2014)

1. (Weak duality)

If x and y are P-D feasible, then

$$1 \le v_p v_d \le \kappa(x) \cdot \kappa^{\circ}(A^T y).$$

2. (Strong duality)

If the dual (resp. primal) is feasible and the primal (resp. dual) is relatively strictly feasible, then $\nu_p\nu_d=1$ and the gauge dual (resp. primal) attains its optimal value.

Freund (1987), Friedlander-Macedo-Pong (2014)

$$v_p(y) := \inf_{\mu > 0, x} \{ \mu \mid \rho (b - Ax + \mu y) \le \tau, \ \kappa(x) \le \mu \}$$

$$v_p(y) := \inf_{\mu > 0, x} \left\{ \mu \mid \rho \left(b - Ax + \mu y \right) \le \tau, \ \kappa(x) \le \mu \right\}$$
$$\lambda := 1/\mu \text{ and } w := x/\mu$$

$$\begin{aligned} v_p(y) &:= \inf_{\mu > 0, \, x} \left\{ \mu \mid \rho \left(b - Ax + \mu y \right) \le \tau, \ \kappa(x) \le \mu \right\} \\ &\lambda := 1/\mu \text{ and } w := x/\mu \\ &= \inf_{\lambda > 0, \, w} \left\{ 1/\lambda \mid \rho(\lambda b - Aw + y) \le \tau \lambda, \ w \in \mathbb{U}_\kappa \right\}, \end{aligned}$$

$$\begin{split} v_p(y) &:= \inf_{\mu > 0, \, x} \left\{ \mu \mid \rho \left(b - Ax + \mu y \right) \leq \tau, \ \kappa(x) \leq \mu \right\} \\ &\lambda := 1/\mu \text{ and } w := x/\mu \end{split}$$
$$= \inf_{\lambda > 0, \, w} \left\{ 1/\lambda \mid \rho(\lambda b - Aw + y) \leq \tau \lambda, \ w \in \mathbb{U}_{\kappa} \right\},$$

Variational framework:

$$F(w,\lambda,y) := -\lambda + \delta_{(\operatorname{epi}\rho) \times \mathbb{U}_\kappa} \left(W \begin{pmatrix} w \\ \lambda \\ y \end{pmatrix} \right), \quad W := \begin{pmatrix} -A & b & I \\ 0 & \tau & 0 \\ I & 0 & 0 \end{pmatrix}$$

$$F^*(w, \lambda, y) = \delta_{\text{epi}\,\rho^{\circ}} \begin{pmatrix} y \\ -\sigma^{-1}(1 + \lambda - \langle b, y \rangle) \end{pmatrix} + \kappa^{\circ}(w + A^{\scriptscriptstyle T}y)$$

$$p(y) := \inf_{w,\lambda} F(w,\lambda,y)$$

$$v_p(y) := \inf_{x} \mu \qquad v_d(w, \lambda) := \inf_{z} \kappa^{\circ} (A^T z + w)$$

s.t. $\rho(b - Ax + \mu y) \le \tau$ s.t. $\langle b, y \rangle - \tau \rho^{\circ}(z) \ge 1 + \lambda$
 $\kappa(x) \le \mu$

$$p(y) := \inf_{w,\lambda} F(w,\lambda,y)$$

$$v_p(y) := \inf_{x} \mu \qquad v_d(w, \lambda) := \inf_{z} \kappa^{\circ} (A^T z + w)$$

s.t. $\rho(b - Ax + \mu y) \le \tau$ s.t. $\langle b, y \rangle - \tau \rho^{\circ}(z) \ge 1 + \lambda$
 $\kappa(x) \le \mu$

1. If the primal is strictly feasible and the dual is feasible, then the set of optimal solutions for the dual is nonempty and bounded, and coincides with

$$\partial p(0) = \partial (-1/v_p)(0) = \frac{1}{v_p^2(0)} \partial v_p(0).$$

$$p(y) := \inf_{w,\lambda} F(w,\lambda,y)$$

$$v_p(y) := \inf_{x} \mu \qquad v_d(w, \lambda) := \inf_{z} \kappa^{\circ}(A^T z + w)$$

s.t. $\rho(b - Ax + \mu y) \le \tau$ s.t. $\langle b, y \rangle - \tau \rho^{\circ}(z) \ge 1 + \lambda$
 $\kappa(x) \le \mu$

1. If the primal is strictly feasible and the dual is feasible, then the set of optimal solutions for the dual is nonempty and bounded, and coincides with

$$\partial p(0) = \partial (-1/v_p)(0) = \frac{1}{v_p^2(0)} \partial v_p(0).$$

2. If the dual is strictly feasible and the primal is feasible, then the set of optimal solutions for the primal is nonempty and bounded with solutions given by $x^* = w^*/\lambda^*$, where

$$(w^*, \lambda^*) \in \partial v_d(0, 0)$$
 and $\lambda^* > 0$.

Gauge Duality and Optimality Conditions

Suppose both the gauge primal and dual are strictly feasible. Then the pair (x^*, y^*) is primal-dual optimal if and only

$$\sigma = \rho(b - Ax^*) \qquad \text{(primal activity)}$$

$$1 = \langle b, y^* \rangle - \sigma \rho^{\circ}(y^*) \qquad \text{(dual activity)}$$

$$\langle x^*, A^T y^* \rangle = \kappa(x^*) \cdot \kappa^{\circ}(A^T y^*) \qquad \text{(objective alignment)}$$

$$\langle b - Ax^*, y^* \rangle = \rho(b - Ax^*) \cdot \rho^{\circ}(y^*). \quad \text{(constraint alignment)}$$

Gauge primal-dual recovery

Suppose that the gauge primal and dual are strictly feasible. If y is optimal for G_d , then for any $x \in \mathbb{R}^n$ the following conditions are equivalent:

- (a) x is optimal for G_p ;
- (b) $\langle x, A^T y \rangle = \kappa(x) \cdot \kappa^{\circ}(A^T y)$ and $b Ax \in \sigma \partial \rho^{\circ}(y)$;
- (c) $A^T y \in \kappa^{\circ}(A^T y) \cdot \partial \kappa(x)$ and $b Ax \in \sigma \partial \rho^{\circ}(y)$.

Gauge primal-dual recovery from the Lagrange dual

Suppose that the gauge dual G_d is strictly feasible and the primal G_p is feasible.

Let $\mathcal{L}G_d$ denote the Lagrange dual of G_d , and let ν_L denote its optimal value.

Then

 z^* is optimal for $\mathcal{L}G_d \iff z^*/\nu_L$ is optimal for G_p .

Perspective Duality

The Perspective-Polar Transform

$$f^{\sharp}(x,\xi) := (f^{\pi})^{\circ}(x,\xi)$$

$$= \sigma_{\operatorname{epi}(f^{*})^{\circ}}(x,-\xi)$$

$$= \gamma_{\operatorname{epi}(f^{*})}(x,-\xi)$$

$$= \inf \{ \mu > 0 \mid \xi + \langle z, x \rangle \le \mu f(z), \forall z \}$$

The Perspective-Polar Transform

$$\begin{split} f^{\sharp}(x,\xi) &:= (f^{\pi})^{\circ}(x,\xi) \\ &= \sigma_{\mathrm{epi}\,(f^{*})^{\circ}}(x,-\xi) \\ &= \gamma_{\mathrm{epi}\,(f^{*})}(x,-\xi) \\ &= \inf\left\{\mu > 0 \mid \xi + \langle z,x \rangle \leq \mu f(z), \, \forall z\right\} \end{split}$$

 f^{\sharp} is a gauge.

The Perspective-Polar Transform

$$\begin{split} f^{\sharp}(x,\xi) &:= (f^{\pi})^{\circ}(x,\xi) \\ &= \sigma_{\mathrm{epi}\,(f^{*})^{\circ}}(x,-\xi) \\ &= \gamma_{\mathrm{epi}\,(f^{*})}(x,-\xi) \\ &= \inf\left\{\mu > 0 \mid \xi + \langle z,x \rangle \leq \mu f(z), \, \forall z \right\} \end{split}$$

 f^{\sharp} is a gauge.

If f is a gauge, then $f^{\sharp}(x,\xi) = f^{\circ}(x) + \delta_{\mathbb{R}_{-}}(\xi)$.

The Perspective-Polar of a PLQ

Piecewise linear-quadratic (PLQ) functons:

$$g(y):=\sup_{u\in U}\big\{\,\langle u,y\rangle-\tfrac{1}{2}\|Lu\|_2^2\,\big\}\,,\quad U:=\Big\{u\in\mathbb{R}^l\,\,|\,Wu\leq w\,\Big\},$$

$$g^{\sharp}(y,\mu) = \delta_{\mathbb{R}_{-}}(\mu) + \max\left\{\gamma_{U}(y), -(1/2\mu)\|Ly\|^{2}\right\}$$
$$= \delta_{\mathbb{R}_{-}}(\mu) + \max\left\{-(1/2\mu)\|Ly\|^{2}, \max_{i=1,\dots,k}\left\{W_{i}^{T}y/w_{i}\right\}\right\},$$

where W_1^T, \ldots, W_k^T are the rows of W.

Perspective duality

Suppose $f: \mathbb{R}^n \to_+$ and $g: \mathbb{R}^m \to_+$ are closed, convex and nonnegative over their domains.

$$N_p \quad \min_{x} \quad f(x)$$
 s.t. $g(b - Ax) \le \sigma$,

$$N_d = \min_{y, \alpha, \mu} f^{\sharp}(A^T y, \alpha) \quad \text{s.t.} \quad \langle b, y \rangle - \sigma \cdot g^{\sharp}(y, \mu) \ge 1 - (\alpha + \mu)$$

The Perspective Duality for PLQ

Assume f is a gauge and g is PLQ, then

$$\begin{aligned} \min_{(y,\mu,\xi)} & & f^{\circ}(A^{T}y) \\ \text{s.t.} & & \langle b,y \rangle + \mu - \sigma \xi = 1 \\ & & Wy \leq \xi w, \ \left\| \begin{bmatrix} 2Ly \\ \xi + 2\mu \end{bmatrix} \right\|_{2} \leq \xi - 2\mu \end{aligned}$$

Perspective Duality Numerics

$$\min_{x} \quad \|x\|_{1}$$
s.t.
$$\sum_{i=1}^{m} V((Ax - b)_{i}) \le \sigma,$$

where V is the Huber function

Experiment:

 $m=120, n=512, \sigma=0.2, \eta=1,$ and A is a Gaussian matrix. The true solution $x_{\text{true}} \in \{-1,0,1\}$ is a spike train which has been constructed to have 20 nonzero entries, and the true noise $b-Ax_{\text{true}}$ has been constructed to have 5 outliers.

Perspective Duality Numerics

Chambolle- Pock (CP) algorithm

The Perspective Transform

$$\begin{split} f^\pi(x,\mu) &:= \text{cl inf } \tau \\ &\quad \text{s.t. } (x,\tau,\mu) \in \mathbb{R}_+[\text{epi}\,(f) \times \{1\}] \end{split}$$

$$= \begin{cases} \mu f(\mu^{-1}x), & \mu > 0 \\ f^\infty(x), & \mu = 0 \\ +\infty, & \mu < 0 \end{cases}$$

where

$$f^{\infty}(x) := \sup_{z \in \text{dom}(f)} [f(x+z) - f(x)]$$

is the horizon function of f.

The Subdifferential of the Perspective

$$(f^{\pi})^*(y,\xi) = \delta_{\operatorname{epi} f^*}((y,-\xi))$$

$$\partial f^\pi(x,\mu) = \begin{cases} \{(z,-f^*(z)) \mid z \in \partial f(x/\mu)\} & \text{if } \mu > 0 \\ \\ \{(z,-\gamma) \mid (z,\gamma) \in \operatorname{epi} f^*, \ z \in \partial f^\infty(x)\} & \text{if } \mu = 0. \end{cases}$$

Properties of the Perspective

$$\sigma_{\text{epi}\,h}\left((y,\mu)\right) = (h^*)^\pi(y,-\mu)$$

$$\sigma_{\mathrm{lev}_h(\tau)}\left(y\right) = \mathrm{cl}\inf_{\mu \geq 0} \left[\tau \mu + (h^*)^\pi(y,\mu)\right]$$