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Dual pairs of problems
A prototype problem: A € R™*" ph e R™
min_ |[z]|,
st [[b—Ax|, <1
The (Fenchel-Rockafellar) dual problem:

sup (b, z) — 7|z,

st AT <L

The gauge dual problem:

inf HATZHOO
s.t. (b,z) — 7]]2]l, > 1.



Piecewise Linear-Quadratic Penalties

é(x) := sup [(z,u) — %uTBu]
uelU

U C R” is nonempty, closed and convex with 0 € U.
B € R™ ™ is symmetric positive semi-definite.

Examples:
Norms, gauges, support functions, least-squares, Huber density



PLQ Densities: Gauss, Laplace, Huber, Vapnik
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Convex Sets
A subset C of R" is convex if

[z,y]CC Ya,yel,

where

[,y ={(1—Az)+ Ay |[0< A< 1}

is the line segment connecting x and y.

Convex Cones
A subset K of R" is convex if
MM CK VA>0 and K + K C K.
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A function f : R® — R is said to be convex if

epi f = {(z,p) [ f(z) < p},

is convex.




Convex functions and the epigraphical perspective

A function f : R® — R is said to be convex if

epi f = {(z,p) | f(z) < p},

is convex.

f is lower semi-continuous (lsc) <= epi(f) is closed
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Convex hull: The convex hull of S C R" is the intersection of
all convex sets in R™ containing S, denoted conv (S).
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Affine sets and relative interior

Affine sets: Any set of the form 2% + S where z° € R” and
S C R" is a subspace.

Affine hull: The affine hull of a set S C R" is the intersection
of all affine sets that contain S, denoted aff (5).

Relative interior: The relative interior of a convex set is the
interior relative to its affine hull:

riC:={zxeC|3e>0st. (z+eB)naff (C)c C}

Properties: Let C C R be convex and A, BT € R™*" then

Ari(C) =r1i(AC) and
B71i(C) =i (B7'C), whenever B~'1i (C) # 0.



The Hahn-Banach Theorem

Hyperplanes: Affine sets of co-dimension 1, or equivalently,
any set of the form

{z [(z,2) = B}

for some 8 € R and non-zero z € L.

The Hahn-Banach Theorem: Let M be a nonempty affine
set such that
MnriC = (.

Then there is a hyperplane H such that

McCH and HnNriC = 0.



Supporting hyperplanes

If Z € rbdry (C) := clC \ ri C, then there is a hyperplane H
containing ¥ that does not meet the relative interior of C', or
equivalently,

dz st (z,2) < (2,T) VzeriC. (1)
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Supporting hyperplanes

If Z € rbdry (C) := clC \ ri C, then there is a hyperplane H
containing ¥ that does not meet the relative interior of C', or
equivalently,

dz st (z,2) < (2,T) VzeriC. (1)

In this case, H is said to be a supporting hyperplane to C' at .

| | | | | | |
-5 -1 =05 0 05 1 15

Question: Given z € R", does it define a supporting
hyperplane to C' and what are the associated support points.
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Support functions
The support function for a set S C R" is given by

os (z) :==sup (z, ).
zesS

It is straightforward to show that
0s(z) =0c(z), where C :=conv(S).

Fact: Support functions are sublinear:
1. (positively homogeneous) o(Az) = Ao (z) YA > 0,
2. (subadditive) o(x +y) < o(x) + o(y).

Hoérmander’s Theorem: o : R” — R, := R, U {+oco} Isc.

o is subadditive <= epi(0o) is a closed cvx cone <= o = o,

where C:={z |(z,z) < f(z)Va}={z]|(z,2) <1V f(z) <1}
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Convex functions and the epigraphical perspective

A function f : R” — R is said to be convex if

epi f = {(z,p) [ f(z) < p},

is convex.
¥(x2,f(x2))
| f(xl.f(xl)) 3
-3 -2 -1 0 1 2 3 );1 hxy+ (1-Nx o );2
epi (f) (1 =N+ Azz) < (1= N f(@1) +Af (22)

V z1,22 € dom f and A € [0, 1]

dom f:={z | f(z) <o}



Coordinate inf-projection of a convex set

Let C C R™*! be a convex set such that the projection of C
onto its last coordinate is bounded below. Define f : R™ — R}
by

flz) =inf{Zp41 |[TT € Cst. T=(2,Tm+1)},

where, again, the infimum over the empty set is 4oc0.
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Let C' C R™*! be a convex set such that the projection of C
onto its last coordinate is bounded below. Define f : R™ — R}
by

flz) =inf{Zp41 |[TT € Cst. T=(2,Tm+1)},

where, again, the infimum over the empty set is 4oc0.

epi (f) = C+ ({0} x Ry) of
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Coordinate inf-projection of a convex set

Let C' C R™*! be a convex set such that the projection of C
onto its last coordinate is bounded below. Define f : R™ — R}
by

flz) =inf{Zp41 |[TT € Cst. T=(2,Tm+1)},

where, again, the infimum over the empty set is 4oc0.

epi (f) = C+ ({0} x Ry) of

S5 o1 <05 0 05 1 15
Example: f(x):= inf  p
(@) (1) €epi (f)
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Inf-projection: h(x) := inf, f(y, z)
Let f : R™ x R" — R be convex and consider the projection

P(y,z,p) = (x, ).

Since the set Pepi (f) is convex, the function h : R — R given
by epi (h) := Pepi(f) is also convex:

h(x) := inf
(@) (2,1) € Pepi (f)'u
=inf{u Iy eR™ s.t. fly,z) <p}
= inf {,u inf f(y,z) < ,LL}
y

— inf f(y,2).
Y




The support function for epi(f): the convex conjugate

Oepi f ((Z’ _1)) = Sup ((Zv _1>7 ($7H)>
flx)<p

= sup [(2,2) —
f@)<p

= Stxlp[(%@ — f()]
=: f*(2)
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The support function for epi(f): the convex conjugate

O-epif((za_l)) = Sup ((Zv—l)v(xvu»

f@)<p
— sup [(,2) — 4]
f@)<p
= SL;p[(Z?@ — f()]
=: f*(2)

Subgradients:

T € argmax[(z,z) — f(x)] <= (z,—1) supports epi(f) at (Z, f(T)).

x

— <(Za _1)’ (jv f(f» > <(Z7 _1)’ (li,f(.i?))> Vx e domf,
= f(z)> f@)+ (2,2 —T) VeeR"

z € Of(T), the subdifferential of f at .



The conjugate and subgradients

I I I |
-3 -2 —1 0 1 2 3

Of(Z) is a singleton <— 0f(z) = {Vf(Z)}.



The conjugate and subgradients
ff(z) > (z,x) — f(x) V z€dom(f)and zeR"
— f(x) > (z,2) — f"(2) V z € dom(f*) and x € R"
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The conjugate and subgradients

f*(z) > (z,x) — f(x) V z€dom(f)and z € R"
— f(x) > (z,2) — f"(2) V z € dom(f*) and x € R"

— @) ") VeeR"

But
z€0f(x) <= (za) = f(2)+ [(2),

soVz € dom (9f) :={z |0f(z) #0} and z € Of(x),

f(z) < {z,2) = £7(2) < supl{w, ) — [1(w)] = f7(2) < f(@).



The conjugate and subgradients

f*(z) > (z,x) — f(x) V z€dom(f)and z € R"
— f(x) > (z,2) — f"(2) V z € dom(f*) and x € R"

— @) ") VeeR"

But
z€0f(x) <= (za) = f(2)+ [(2),

soVz € dom (9f) :={z |0f(z) #0} and z € Of(x),

f(z) < {z,2) = £7(2) < supl{w, ) — [1(w)] = f7(2) < f(@).

So f(z) = f**(x) on dom (9f), where ridom (f) C dom (9f).
Consequently f** =clf, soif f =clf, 0f* = (0f)~ .



The convex indicator function

C C R™ non-empty closed convex

0 , e,
b (%) = {—i—oo x¢C

dc(z) = 0c (2)

D¢ () ={2z|{z,y—2) <0 Vyel} (zel)
= N(z|C) the normal cone to C' at x

= set of supporting vectors to C' at x



The conjugate under inf-projection

Let F : R® x R™ — R and define the following optimal value
function by inf-projection:

ply) = inf F(z,y).

Then
p*(2) = sgp[<z,y> —p(y)]
- sgp[(Z,y> —inf F(z,y)]
= supsup((z, ) — F(z, )
= ?;715[«07 z), (z,y)) — F(z,y)]

= F*(0, 2)
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The subdifferential under inf-projection

Let F : R® x R™ — R and define the following optimal value
function by inf-projection: p(y) := inf, F(x,y). Then

z € Op(y) and T € argmin F(z,y).
x

<~
F(z,y) + F7(0,2) = p(y) +p"(2) < (z,9) = ((0,2), (T, p))
N
(0,2) € OF (z,y) or equivalently (T,y) € dF*(0, z)
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The subdifferential under inf-projection

Let F : R® x R™ — R and define the following optimal value
function by inf-projection: p(y) := inf, F(x,y). Then

z € Op(y) and T € argmin F(z,y).
x

<~

F(z,y) + F*(0,2) = ply) +p"(2) < (z,9) = ((0,2), (7, v))
.

(0,2) € OF (z,y) or equivalently (T,y) € dF*(0, z)

<~

p(y) +p°(2) < F(T,y) + F7(0,2) < ((0,2), (7, y)) = (2,v)
<~

z€0p(y) and T € arg;nin F(z,y).
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Duality Theory

Let F: R” x R™ — R and define the following optimal value
functions by inf-projection:

p(y) :==inf F(z,y) and ¢(w):=inf F*(w,2).
This set-up yields the primal-dual pair

p(0) = igf F(x,0) and p**(0) = sgp —F*(0,2) = —q(0).

p(0) > p*™*(0) = —q(0) always holds
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Duality Theory
p(y) :=inf, F(z,y) and ¢(w):=inf, F*(w,z).

1. If 0 € ri (domp), then p(0) = —¢(0) and the infimum ¢(0) is
attained, if finite.

Similarly, if 0 € ri (dom g), then p(0) = —¢(0) and the infimum
p(0) is attained, if finite.

2. The set argmax, —F*(0, z) is nonempty and bounded if and only
if 0 € int (dom p) and p(0) is finite, in which case
Op(0) = argmax, —F*(0, z).

3. argmin, F(x,0) is nonempty and bounded if and only if
0 € int (dom ¢) and ¢(0) is finite, in which case
0q(0) = argmin,, F(z,0).

4. Optimal solutions are characterized by
Z € argmin, F(x,0)

g € argmax, —F™*(0, 2) <~ (0,z) € 9F(z,0) < (z,0) € OF*(0,2).
F(E,O) = *F*(O,Z)
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Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]

Example: F(z, (u,0)) = h(Azx +u) + g(z + 0)+5 [u]] + o]
L(z, (z,w)) = (inf) h(Az + u) + g(z + v) — {(z,w), (u,v))

= —{sup({z,u) —h(Az +w)] + sup[(w,v) —g(z +v)] }

u



Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]

Example: F(z,(u,v)) := h(Az +u) + g(x + v)—l—%”qu + [vl2
Lz, (z,w)) = inf A(Az+u) + (@ +v) = {(z,w), (u,v))
= —{supl(z, ) — A4z + )]+ suplfw, o) oo +2)] )

u

(r:= Az +u) (s:=x+0)
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Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]

Example: F(z, (u,0)) := h(Az + u) + g(@ + v)+5 [u]5 + [[v]3
L(@, (2, w)) = inf h(Az +u) + g(z +v) = {(z,w), (w,0))
= —{supl(z,u) — h(Az +w)] + supl(w,v) - g( + )] }
(r:= Az +u) (s:=z+v)
= —{supl(z,r — Az) = h(r)] + supl{w,s —x)—g(s)] }
}

= [(z Az) = 1" (2)] + [(w,2) - g"(w)
= (ATz +w,z) — [17(2) + g™ (w)]

p(0) = inf, SUD(; ) L(z,z,w) = inf [h(Az) + g(z)]

p**(O) = Sup(z,w) Hlfm L(Z, Z, U)) = sup, 7[h*(2) + g*(iATz)]



Example
Fenchel-Rockafellar Duality: F(z,y) = h(Az + y) + g(x)

p(0) =inf {h(Az) +g(x) } and p™(0) =sup{—h"(z) —g"(-A%2) }



Example
Fenchel-Rockafellar Duality: F(z,y) = h(Az + y) + g(x)

p(0) = inf { A(Az) + g(2) } and p™(0) = sup { —h*(2) — g"(-A"2) }
A prototype problem:

min_ x|,
st [J[Az —b||, <7



Example
Fenchel-Rockafellar Duality: F(z,y) = h(Az + y) + g(x)

p(0) =inf {h(Az) +g(x) } and p™(0) =sup{—h"(z) —g"(-A%2) }

A prototype problem:

min_ x|,
st [J[Az —b||, <7

g(x) = |lzll; = 6" (z [Bo)  ¢"(w) =6 (w |Beo)

hy) =0(y—b[7B2)  h7(2) = =(2,0) + 67 (2 [1B2) = —(2,0) + 7|2,



Example
Fenchel-Rockafellar Duality: F(z,y) = h(Az + y) + g(x)

p(0) = inf { A(Az) + g(2) } and p™(0) = sup { —h*(2) — g"(-A"2) }
A prototype problem:

min_ x|,
st [J[Az —b||, <7

g(x) = |lzll; = 6" (z [Bo)  ¢"(w) =6 (w |Beo)

hy) =0(y—b[7B2)  h7(2) = =(2,0) + 67 (2 [1B2) = —(2,0) + 7|2,

sup (b, 2) = 7|zl
st ||ATz]| <1

L



Gauge Duality



Dual Norms and Polars

B :={z |||z|| <1} is the closed unit ball of norm |||

The norm dual to ||| is defined to be
12[lo 7= o3 (2) = sup {(z,z) [[l=| < 1}.
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B:={x ||z]| <1} is the closed unit ball of norm |||

The norm dual to ||| is defined to be
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Dual Norms and Polars

B:={x ||z]| <1} is the closed unit ball of norm |||
The norm dual to ||| is defined to be
12llo == o8 (2) = sup {{z,2) [||=]| <1}
Hence,
(z,2) <llzll =]l V2,2 € R™
For S C R"™, the polar of S is
Se:={z|(z,z) <1VzeS}.
Since B® = {2 [(z,2) <1Vz € B} = {z [ 2], < 1}, we have
]| = oz ().
Properties:
1. (8°)° =conv (S U{0})
2. K is a close convex cone (AK C K VA >0, K+ K C K),

then
K°={z|(z,2)<0Vze K}



Minkowski (gauge) functionals and polarity

0 € C C R™ nonempty closed convex
Yo (z) :==1inf{t |0 < t, x € tC'},

where the infimum over the empty set is 4o0.
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Minkowski (gauge) functionals and polarity

0 € C C R™ nonempty closed convex
Yo (z) :==1inf{t |0 < t, x € tC'},
where the infimum over the empty set is 4o0.

Example: ||z|| = vz (z) for any norm with unit ball B.

Gauge functions are sublinear, and so by Hormander,

Yo (z) = op (),

where
D={z|(z,z) <1VzeC}=C"



Polar Gauges

r(y) =sup{(y,z) | w(z) <1} =ou, (y),
where Uy, := {z |k(z) <1}.
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Polar Gauges

£°(y) =sup{(y,z) | K(z) <1} =0y, (y),
where Uy, := {z |k(z) <1}.

If x is a norm then k° is the corresponding dual norm.

epin® = {(y, =) : (,A) € (epir)7}.

The generalized Holder inequality
(x,y) < k(x)-k°(y) VYo € domk, Yy € domk®,

is known as the polar-gauge inequality.



Gauge Duality
k and p are gauges.
mxin k(z)
max  (b,y) — 7p°(y)

min  £°(ATy)
Y

s.t.

s.t.

s.t.

Example: In P we set x(z) = ||z||; and p(y) = ||ly|l5



Gauge Duality
k and p are gauges.

vy :=min  K(z) st. p(b— Az) < T,

vgi=min  k°(ATy) st (by) —7p°(y) = 1.

Example: In P we set x(z) = ||z||; and p(y) = ||ly|l5



Feasibility

Primal, Dual Domains:

Fp={alpb—Azr) <7} and  Fy:={y|(by) —7p°(y) >1}.

Primal F, N (dom k)
Feasibilty : T
Dual A" F4 N (domk®)
Primal riF, N (ridom k)
Relative Strict Feasibilty : T
Dual A riFyN (ridomk®)
Primal int (F), N (ridom k)

Strict Feasibilty : T
Dual A" int (F), N (ridom )



Gauge Duality

v, = min  k(z Vg = min k(AT
b p(b—AX)<T (@) ¢ (byy)—Tp°(y)>1 (A7)
Theorem: (2014)

1. (Weak duality)
If x and y are P-D feasible, then

1 < wpug < k() - K2(ATy).

2. (Strong duality)
If the dual (resp. primal) is feasible and the primal (resp.
dual) is relatively strictly feasible, then 1,14 = 1 and the
gauge dual (resp. primal) attains its optimal value.

Freund (1987), Friedlander-Macedo-Pong (2014)
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Gauge Duality and Sensitivity

vp(y) = Inf {plp(b—Avtpy) <7 nlx) < p}

Ai=1/pand w:=zx/p

:Ai%f {1/A | p(Nb — Aw +y) < 7, w e Uy},
>0,w



Gauge Duality and Sensitivity

vp(y) := inf {plp(b— Az +py)

<7, K(z) <p}

Ai=1/pand w:=zx/p

= inf {1/A|p(A\b— Aw+y) <
A>0,w

Variational framework:

A, we Uy},

w —A
F(w,)\,y) = _)\+5(epip) x Uy WA y W .= 0
Y I

F (0, A,9) = 0 e <_al<1 RPNy

) + K°%(w + A"y)



Gauge Duality and Sensitivity
p(y) :=infy, » Flw, A\, y)

vp(y) ::igf w vg(w, \) :=inf x°(ATz + w)
st. p(b—Ax+py) <7 st (byy) —7p°(2) > 1+ A
k() < p



Gauge Duality and Sensitivity
p(y) :=infy, » Flw, A\, y)
vp(y) ::igf w vg(w, \) :=inf x°(ATz + w)
st. p(b—Ax+py) <7 s.t
k() < p
1. If the primal is strictly feasible and the dual is feasible,

then the set of optimal solutions for the dual is nonempty
and bounded, and coincides with

Abyyy —Tp°(2) > 14+ A

1
09(0) = O(=1L/)(0) = 157500 (0)



Gauge Duality and Sensitivity
p(y) :=infy, » Flw, A\, y)

vp(y) ::igf w vg(w, \) :=inf x°(ATz + w)
st. p(b—Ar+py) <7 st (byy) —7p°(2) > 1+ A
k() < p

1. If the primal is strictly feasible and the dual is feasible,
then the set of optimal solutions for the dual is nonempty
and bounded, and coincides with

1
09(0) = O(=1L/)(0) = 157500 (0)

2. If the dual is strictly feasible and the primal is feasible,
then the set of optimal solutions for the primal is nonempty
and bounded with solutions given by z* = w*/\*, where

(w*, \*) € 9vg(0,0) and X* > 0.



Gauge Duality and Optimality Conditions

Suppose both the gauge primal and dual are strictly feasible.
Then the pair (z*,y*) is primal-dual optimal if and only

= p(b— Az™) (primal activity)
1= (b,y*y —op°(y") (dual activity)
(x*, ATy*) = k(z*) - k°(ATy") (objective alignment)

(b— Az*,y*) = p(b— Az™) - p°(y*). (constraint alignment)



Gauge primal-dual recovery

Suppose that the gauge primal and dual are strictly feasible.
If y is optimal for G4, then for any € R™ the following
conditions are equivalent:

(a) z is optimal for G;
(b) (@, ATy) = () - K°(ATy) and b — Az € 00p°(y);

(c) ATy € k°(ATy) - Ok(z) and b — Az € 00p°(y).



Gauge primal-dual recovery from the Lagrange dual

Suppose that the gauge dual G is strictly feasible and the
primal G, is feasible.

Let LG4 denote the Lagrange dual of G4, and
let v;, denote its optimal value.

Then

z* is optimal for LGy <= 2" /vy, is optimal for G,



Perspective Duality



The Perspective-Polar Transform

(@, €) = (1) (x,€)
= Oepi(£%)° (l‘, _5)
= Yepi (£*) (xv _g)

=inf{p >0 |{+ (z,2) < pf(z), Vz}



The Perspective-Polar Transform

(@, €) = (1) (x,€)
= Oepi(£%)° (l‘, _5)
= Yepi (£*) (xv _5)

=inf{p >0 |{+ (z,2) < pf(z), Vz}

f%is a gauge.



The Perspective-Polar Transform

i, &) = (f7)°(@,€)
= Oepi(5y° (T, —E)
= Yepi (5 (2, =€)
=inf{u>0|¢+ (z,3) < pf(z), ¥z}
f* is a gauge.

If f is a gauge, then fﬁ(:c,ﬁ) = f°(x) + d_ (&).



The Perspective-Polar of a PLQ

Piecewise linear-quadratic (PLQ) functons:

9y) == sup { (u.y) — 3ILul3}, U={uecR [Wu<w},
uelU

g (y, 1) = 6 () + max {7 (), —(1/2)|| Ly}

= 6e_ 0+ e {1/ 20 |2, o {7/} |

where Wi, ..., W,;F are the rows of W.



Perspective duality

Suppose f: R™ —, and g : R™ —_ are closed, convex and
nonnegative over their domains.

N, min  f(z) st.  g(b— Azx) <o,

xT

. f
Na min  f(ATy.0) st (by)—o g (y.p) =1~ (a+p)



The Perspective Duality for PLQ

Assume f is a gauge and ¢ is PLQ, then

ming, .,¢) f°(A"y)
s.t. (byy) + p—oc& =1

2Ly
Wy < &w, H§+2M]

2

<e-

2



Perspective Duality Numerics

min |z}, N
m \\\
st Y _V((Az—b)) <o, .
=1

where V is the Huber
function

— — —-V(z)=—-Kz— %I\’J: r<—K

V(zg)=32% —K<z<K
— V(z) = Kz — %I\“”: K<z

Experiment:

m =120, n =512, 0 =0.2, n =1, and A is a Gaussian matrix.
The true solution xe € {—1,0, 1} is a spike train which has
been constructed to have 20 nonzero entries, and the true noise
b — Axirue has been constructed to have 5 outliers.



Perspective Duality Numerics

Convergence of objective values to optimum False zeros

0.50

— CPon primal

I =GP on prmal
| P on dual with recovery

— CP on dual, with recovery

Number of false zeros

(objective - optimum)/optimum

-0.50
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iteration iteration
. Feasibility violations False nonzeros
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(b) (d)
Chambolle- Pock (CP) algorithm



The Perspective Transform

f™(x,pu) :==clinf 7
st (2,7,) € Ry[epi (£) x {1]

foo(x)’ p=0
+00, ©w<0

{uﬂulw% p>0

where

f2(@) = sup [f(z+2)— f(z)]
zedom (f)

is the horizon function of f.



The Subdifferential of the Perspective

(™) (Y, ) = Oepi s~ (4, —8))

{(z,=f"(2) |z € 0f(z/n) } if p>0
8f7r(x7:u) =

{(z,=7) | (z,7) €epif*, z€df*(x)} if p=0.



Properties of the Perspective

Tepin (4, 1)) = (B7)"(y, —p1)

Olevy, (1) (y) = clinf [Tlu’ + (h*)ﬂ—(ya ,M)]
©=>0



