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Motivation

Optimization in Large-Scale Inference
• A range of large-scale data science applications can be
modeled using optimization:

- Inverse problems (medical and seismic imaging )
- High dimensional inference (compressive sensing, LASSO,
quantile regression)

- Machine learning (classification, matrix completion, robust
PCA, time series)

• These applications are often solved using side information:
- Sparsity or low rank of solution
- Constraints (topography, non-negativity)
- Regularization (priors, total variation, “dirty” data)

• We need efficient large-scale solvers for nonsmooth
programs.
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The Prototypical Problem
Sparse Data Fitting:

Find sparse x with Ax ≈ b

Example: Model Selection

y = aTx where y ∈ Rk is an observation and a ∈ Rn are covariates.

Suppose y is a disease classifier and a is micro-array data (n ≥ 104).
Given data {(yi , ai)}m

i=1, find x so that yi ≈ aT
i x.

Since m << n, one can “always” find x such that
yi = aT

i x, i = 1, . . . ,m.
This x gives little insight into the role of the covariates a in
determining the observations y. We prefer the most parsimonious
subset of covariates that can be used to explain the observations.
That is, we prefer the sparsest model from the 2n possible models.
Such models are used to further our knowledge of disease mechanisms
and to develop efficient disease assays.
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The Prototypical Problem

Sparse Data Fitting:

Find sparse x with Ax ≈ b

There are numerous other applications;
• system identification
• image segmentation
• compressed sensing
• grouped sparsity for remote sensor location
• ...
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The Prototypical Problem
Sparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate
(Candes-Tao-Donaho)

BPDN LASSO Lagrangian (Penalty)

min
x

‖x‖1

s.t. 1
2 ‖Ax − b‖2

2 ≤ σ

min
x

1
2 ‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τ

min
x

1
2 ‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.
(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.
(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)
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Optimal Value or Level Set Framework

Problem class: Solve

min
x∈X

φ(x)

s.t. ρ(Ax − b) ≤ σ
P(σ)

Strategy: Consider the “flipped” problem

v(τ) := min
x∈X

ρ(Ax − b)

s.t. φ(x) ≤ τ
Q(τ)

Then opt-val(P(σ)) is the minimal root of the equation

v(τ) = σ
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Queen Dido’s Problem

The intuition behind the proposed framework has a
distinguished history, appearing even in antiquity. Perhaps the
earliest instance is Queen Dido’s problem and the fabled origins
of Carthage.

In short, the problem is to find the maximum area that can be
enclosed by an arc of fixed length and a given line. The
converse problem is to find an arc of least length that traps a
fixed area between a line and the arc. Although these two
problems reverse the objective and the constraint, the solution
in each case is a semi-circle.

Other historical examples abound. More recently, these
observations provide the basis for the Markowitz
Mean-Variance Portfolio Theory.
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The Role of Convexity
Convex Sets
Let C ⊂ Rn . We say that C is convex if

(1− λ)x + λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Convex Functions
Let f : Rn → R̄ := R ∪ {+∞}. We say that f is convex if the
set

epi (f ) := { (x, µ) : f (x) ≤ µ }
is a convex set.

x  x  + (1 -   )x 2x

2
1(x  , f (x  ))1

2(x  , f (x   ))

λ 1 λ 21

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1) + λf (x2)
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Convex Functions
Convex indicator functions
Let C ⊂ Rn . Then the function

δC (x) :=
{
0 , if x ∈ C ,
+∞ , if x /∈ C ,

is a convex function.

Addition
Non-negative linear combinations of convex functions are
convex: fi convex and λi ≥ 0, i = 1, . . . , k

f (x) :=
∑k

i=1 λi fi(x).

Infimal Projection
If f : Rn × Rm → R̄ is convex, then so is

v(x) := infy f (x, y),
since

epi (v) = { (x, µ) : ∃ y ∈ s.t. f (x, y) ≤ µ }.
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Convexity of v

When X , ρ, and φ are convex, the optimal value function v is a
non-increasing convex function by infimal projection:

v(τ) := min
x∈X

ρ(Ax − b) s.t. φ(x) ≤ τ

= min
x

ρ(Ax − b) + δepi (φ)(x, τ) + δX (x)

10/36



Newton and Secant Methods

For f convex and non-increasing, solve f (τ) = 0.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Problem: f is often not differentiable.

Use the convex subdifferential
∂f (x) := { z : f (y) ≥ f (x) + zT (y − x) ∀ y ∈ Rn }
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Superlinear Convergence
τ∗ := inf{τ : f (τ) ≤ 0} and g∗ := inf { g : g ∈ ∂f (τ∗) } < 0 (non-degeneracy)

Initialization: τ−1 < τ0 < τ∗

τk+1 :=
{
τk if f (τk) = 0,
τk − f (τk)

gk
[for gk ∈ ∂f (τk)] otherwise;

(Newton)

and

τk+1 :=
{
τk if f (τk) = 0,
τk − τk−τk−1

f (τk)−f (τk−1) f (τk) otherwise.
(Secant)

If either sequence terminates finitely at some τk , then τk = τ∗;
otherwise,

|τ∗ − τk+1| ≤ (1− g∗
γk

)|τ∗ − τk |, k = 1, 2, . . . ,

where γk = gk (Newton) and γk ∈ ∂f (τk−1) (secant). In either case,
γk ↑ g∗ and τk ↑ τ∗ globally q-superlinearly.
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Inexact Root Finding

• Problem: Find root of the inexactly known convex function

v(·)− σ.

• Bisection is one approach
• nonmonotone iterates (bad for warmstarts)
• at best linear convergence (with perfect information)

• Solution:
• modified secant
• approximate Newton methods
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Inexact Root Finding: Secant
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Inexact Root Finding: Newton
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Inexact Root Finding: Newton
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Inexact Root Finding: Convergence
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Inexact Root Finding: Convergence

Key observation: C = C (τ0) is independent of v′(τ∗).
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Minorants from Duality
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Robustness: 1 ≤ u/l ≤ α, where α ∈ [1, 2) and ε = 10−2
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(a) k = 13, α = 1.3 (b) k = 770, α = 1.99 (c) k = 18, α = 1.3
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(d) k = 9, α = 1.3 (e) k = 15, α = 1.99 (f) k = 10, α = 1.3

Figure : Inexact secant (top) and Newton (bottom) for
f1(τ) = (τ − 1)2 − 10 (first two columns) and f2(τ) = τ2 (last column).
Below each panel, α is the oracle accuracy, and k is the number of
iterations needed to converge, i.e., to reach fi(τk) ≤ ε = 10−2.

17/36



Sensor Network Localization (SNL)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Given a weighted graph G = (V ,E , d) find a realization:

p1, . . . , pn ∈ R2 with dij = ‖pi − pj‖2 for all ij ∈ E .
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Sensor Network Localization (SNL)
SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr (X)
s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1
n + 1

n∑
i,j=1
‖pi − pj‖2

with pi the ith row of P.
Flipped problem:

min ‖PEK(X)− d‖22
s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.
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Key point: Slater failing (always the case) is irrelevant.
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max tr (X)
s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1
n + 1

n∑
i,j=1
‖pi − pj‖2

with pi the ith row of P.
Flipped problem:

min ‖PEK(X)− d‖22
s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.
19/36



Approximate Newton
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Observations

• Simple strategy for optimizing over complex domains
• Rigorous convergence guarantees
• Insensitivity to ill-conditioning
• Many applications

• Sensor Network Localization
(Drusvyatskiy-Krislock-Voronin-Wolkowicz ’15)

• Sparse/Robust Estimation and Kalman Smoothing
(Aravkin-B-Pillonetto ’13)

• Large scale SDP and LP (cf. Renegar ’14)
• Chromosome reconstruction

(Aravkin-Becker-Drusvyatskiy-Lozano ’15)
• Phase retrieval (Aravkin-B-Drusvyatskiy-Friedlander-Roy

’16)
• Generalized linear models

(Aravkin-B-Drusvyatskiy-Friedlander-Roy ’16)
• . . .
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Conjugate Functions and Duality
Convex Indicator
For any convex set C , the convex indicator function for C is

δ (x |C ) :=
{
0, x ∈ C ,
+∞, x /∈ C .

Support Functionals
For any set C , the support functional for C is

δ∗ (x |C ) := sup
z∈C
〈x, z〉 .

Convex Conjugates
For any convex function g(x), the convex conjugate is given by

g∗(y) := δ∗ ((y,−1) | epi (g)) = sup
x

[〈x, y〉 − g(x)] .
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Conjugate’s and the Subdifferential

g∗(y) = sup
x

[〈x, y〉 − g(x)] .

The Bi-Conjugate Theorem
If epi (g) is closed and dom (g) 6= ∅, then (g∗)∗ = g.

The Young-Fenchel Inequality
g(x) + g∗(z) ≥ 〈z, x〉 for all x, y ∈ Rn with equality if and only if

z ∈ ∂g(x) and x ∈ ∂g∗(z).
In particular, ∂g(x) = argmaxz [〈z, x〉 − g∗(z)].

Maximal Montone Operator
If epi (g) is closed and dom (g) 6= ∅, then ∂g is a maximal
monotone operator with ∂g−1 = ∂g∗.

Note:The lsc hull of g is cl g := g∗∗.
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The perspective function

epi (gπ) := cl cone (epi (g)) = cl (
⋃
λ>0 λepi (g))

gπ(z, λ) :=


λg(λ−1z) if λ > 0,
g∞(z) if λ = 0,
+∞ if λ < 0,

where g∞ is the horizon function of g:

g∞(z) := sup
x∈dom g

[g(x + z)− g(x)] .
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Support Functions for epi (g) and levg(τ)

g : Rn → R be closed proper and convex.
Then

δ∗ ((y, µ) | epi (g)) = (g∗)π(y,−µ)

and

δ∗ (y | [g ≤ τ ] ) = cl inf
µ≥0

[τµ+ (g∗)π(y, µ)],

where
epi (g) := {(x, µ) | g(x) ≤ µ}

[g ≤ τ ] := {x | g(x) ≤ τ }

δ∗ (z |C ) := sup
w∈C
〈z,w〉
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Perturbation Framework and Duality (Rockafellar (1970))

The perturbation function
f (x, b, τ) := ρ(b −Ax) + δ ((x, τ) | epi (φ))

Its conjugate
f ∗(y, u, µ) = (φ∗)π(y + AT u,−µ) + ρ∗(u) .

The Primal Problem infimal projection in x
P(b, τ) : v(b, τ) := min

x
f (x, b, τ) .

The Dual Problem
D(b, τ) : v̂(b, τ) := sup

u,µ
〈b, u〉+ τµ− f ∗(0, u, µ)

(reduced dual) = sup
u
〈b, u〉 − ρ∗(u)− δ∗

(
ATu | [φ ≤ τ ]

)
.

The Subdifferential: If (b, τ) ∈ int (dom v), then v(b, τ) = v̂(b, τ)
and

∅ 6= ∂v(b, τ) = argmax
u,µ

D(b, τ)
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Piecewise Linear-Quadratic Penalties

φ(x) := sup
u∈U

[〈x, u〉 − 1
2uT Bu]

U ⊂ Rn is nonempty, closed and convex with 0 ∈ U (not nec. poly.)
B ∈ Rn×n is symmetric positive semi-definite.
Examples:
1. Support functionals: B = 0

2. Gauge functionals: γ (· |U ◦ ) = δ∗ (· |U )

3. Norms: B = closed unit ball, ‖·‖ = γ (· |B)

4. Least-squares: U = Rn , B = I

5. Huber: U = [−ε, ε]n , B = I
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PLQ Densities: Gauss, Laplace, Huber, Vapnik
y

x

V (x) = 1
2
x2

y

x

V (x) = |x|

Gauss `1

−K K

y

x

V (x) = −Kx− 1
2
K2; x < −K

V (x) = 1
2
x2; −K ≤ x ≤ K

V (x) = Kx− 1
2
K2; K < x

−ε ε

y

x

V (x) = −x− ε; x < −ε
V (x) = 0; −ε ≤ x ≤ ε

V (x) = x− ε; ε ≤ x

Huber Vapnik 29/36



Computing v ′ for PLQ Penalties φ

φ(x) := sup
u∈U

[〈x, u〉 − 1
2uT Bu]

P(b, τ) : v(b, τ) := min ρ(b −Ax) st φ(x) ≤ τ

∂v(b, τ) =


(

u
−µ

) ∣∣∣∣∣∣∣
∃ x s.t. 0 ∈ −AT∂ρ(b −Ax) + µ+∂φ(x) and

µ = max
{
γ
(
AT u |U

)
,
√

uT ABAT u/
√
2τ
}
 .
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A Few Special Cases
v(τ) := min 1

2‖b −Ax‖2
2 st φ(x) ≤ τ

Optimal Solution: x Optimal Residual: r := Ax − b

1. Support functionals: φ(x) = δ∗ (x |U ) , 0 ∈ U =⇒
v′(τ) = −δ∗

(
ATr |U ◦

)
= −γ

(
ATr |U

)
2. Gauge functionals: φ(x) = γ (x |U ) , 0 ∈ U =⇒

v′(τ) = −γ
(
ATr |U ◦

)
= −δ∗

(
ATr |U

)
3. Norms: φ(x) = ‖x‖ =⇒ v′(τ) = −‖ATr‖∗

4. Huber: φ(x) = sup
u∈[−ε,ε]n

[〈x, u〉 − 1
2uTu] =⇒

v′(τ) = −max{ε
∥∥ATr

∥∥
∞,

∥∥ATr
∥∥

2/
√
2τ}

5. Vapnik: φ(x) = ‖(x − ε)+‖1 + ‖(−x − ε)+‖1 =⇒
v′(τ) = −(‖AT r̄‖∞ + ε‖AT r̄‖2) 31/36



Basis Pursuit with Outliers

BPσ: min ‖x‖1 st ρ(b −Ax) ≤ σ

Standard least-squares: ρ(z) = ‖z‖2 or ρ(z) = ‖z‖22.

Quantile Huber:

ρκ,τ (r) =


τ |r | − κτ2

2 if r < −τκ,
1

2κr2 if r ∈ [−κτ, (1− τ)κ],
(1− τ)|r | − κ(1−τ)2

2 , if r > (1− τ)κ.

Standard Huber when τ = 0.5.
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Huber
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Sparse and Robust Formulation

HBPσ: min ‖x‖1 st ρ(b −Ax) ≤ σ

Problem Specification

x 20-sparse spike train in R512

b measurements in R120

A Measurement matrix satisfying RIP
ρ Huber function
σ error level set at .01
5 outliers

Results
In the presence of outliers, the robust
formulation recovers the spike train,
while the standard formulation does not.
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Sparse and Robust Formulation

HBPσ: min
0≤x

‖x‖1 st ρ(b −Ax) ≤ σ

Problem Specification

x 20-sparse spike train in R512
+

b measurements in R120

A Measurement matrix satisfying RIP
ρ Huber function
σ error level set at .01
5 outliers

Results
In the presence of outliers, the robust
formulation recovers the spike train,
while the standard formulation does not.
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