
Optimizaton and Kalman-Bucy Smoothing

Aleksandr Y. Aravkin Bradley Bell
University of Washington University of Washington
sasha.aravkin@gmail.com bradbell@uw.edu

James V. Burke Gianluigi Pillonetto
University of Washington University of Padova

jvburke@uw.edu giapi@dei.unipd.it

The Chinese University of Hong Kong,
March 4, 2016

Kalman Smoothing Framework

x1 = g1(x0) + w1, (Initialization)

xk = gk(xk−1) + wk k = 2, . . . ,N, (State Transition Dynamics)

zk = hk(xk) + vk k = 1, . . . ,N , (Observations)

I gk , hk known (nonlinear) process and measurement functions

I wk ∼ N(0,Qk), vk ∼ N(0,Rk) mutually independent

I Qk ∈ Sn++, Rk ∈ Sm(k)
++ known covariance matrices

I xk ∈ Rn unknown states

I zk ∈ Rm(k) observed measurements (known)

Kalman Smoothing Framework: Graphical Illustration

X0

Z1 Z2

XN

ZN

hN

X1

h1

X2g1 g2

h2

gN

Modeling and Estimation of Dynamics under Uncertainty

- Navigation

- tracking

- healthcare

- finance

- weather

- imaging

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk
Joint Distr. P(xk|k−1, zk|k−1)
Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk
Joint Distr. P(xk|k−1, zk|k−1)
Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk
Joint Distr. P(xk|k−1, zk|k−1)
Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk

Joint Distr. P(xk|k−1, zk|k−1)
Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk
Joint Distr. P(xk|k−1, zk|k−1)

Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk
Joint Distr. P(xk|k−1, zk|k−1)
Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

x1 = G1x0 + w1, w1 ∼ N(0,Q1)

xk = Gkxk−1 + wk k = 2, . . . ,N, wk ∼ N(0,Qk)

zk = Hkxk + vk k = 1, . . . ,N , vk ∼ N(0,Rk)


mutually

independent

Kalman Filter

Time Update xk|k−1 = Gkxk−1|k−1 + wk

Measurement Update zk|k−1 = Hkxk|k−1 + vk
Joint Distr. P(xk|k−1, zk|k−1)
Cond. Distr. P(xk|k|zk|k−1 = zk)

Compute the maximum likelihood estimator xk|k at time k .

Classical Approach for Linear Systems

Maximum Likelihood Computation under Gaussian Assumptions

Time Update: x̂0|0 = x0 and P0|0 = 0

x̂k|k−1 = Gk x̂k−1|k−1

Pk|k−1 = GkPk−1|k−1G
T
k + Qk

Measurment Update:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1

x̂k|k = x̂k|k−1 + Kk(zk − Hk x̂k|k−1)

Pk|k = Pk|k−1 − KkHkPk|k−1

An Optimization Approach
Maximum a posteriori Formulation

P
(
{xk}

∣∣{zk}) ∝ P
(
{zk}

∣∣{xk})P ({xk}) =
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp
(
− 1

2
(zk−hk(xk))TR−1k (zk−hk(xk))− 1

2
(xk−gk(xk−1))TQ−1k (xk−gk(xk−1))

)
.

The maximum likelihood problem for the MAP estimate is

min
{xk}

N∑
k=1

1

2
(zk−hk(xk))>R−1k (zk−hk(xk))+

1

2
(xk−gk(xk−1))>Q−1k (xk−gk(xk−1))

which can be written as

min
{xk}

1

2

N∑
k=1

‖zk−hk(xk)‖2
R−1
k

+ ‖xk−gk(xk−1)‖2
Q−1

k

.

An Optimization Approach
Maximum a posteriori Formulation

P
(
{xk}

∣∣{zk}) ∝ P
(
{zk}

∣∣{xk})P ({xk}) =
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp
(
− 1

2
(zk−hk(xk))TR−1k (zk−hk(xk))− 1

2
(xk−gk(xk−1))TQ−1k (xk−gk(xk−1))

)
.

The maximum likelihood problem for the MAP estimate is

min
{xk}

N∑
k=1

1

2
(zk−hk(xk))>R−1k (zk−hk(xk))+

1

2
(xk−gk(xk−1))>Q−1k (xk−gk(xk−1))

which can be written as

min
{xk}

1

2

N∑
k=1

‖zk−hk(xk)‖2
R−1
k

+ ‖xk−gk(xk−1)‖2
Q−1

k

.

An Optimization Approach
Maximum a posteriori Formulation

P
(
{xk}

∣∣{zk}) ∝ P
(
{zk}

∣∣{xk})P ({xk}) =
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp
(
− 1

2
(zk−hk(xk))TR−1k (zk−hk(xk))− 1

2
(xk−gk(xk−1))TQ−1k (xk−gk(xk−1))

)
.

The maximum likelihood problem for the MAP estimate is

min
{xk}

N∑
k=1

1

2
(zk−hk(xk))>R−1k (zk−hk(xk))+

1

2
(xk−gk(xk−1))>Q−1k (xk−gk(xk−1))

which can be written as

min
{xk}

1

2

N∑
k=1

‖zk−hk(xk)‖2
R−1
k

+ ‖xk−gk(xk−1)‖2
Q−1

k

.

Notational Simplification

g(x) =


x1

x2 − g2(x1)
...

xN − gN(xN−1)

 h(x) =


h1(x1)
h2(x2)

...
hN(xN)


R = diag({Rk})
Q = diag({Qk})

x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN})

With this notation, the MAP problem becomes

min
x

f (x) = 1
2‖g(x)− w‖2Q−1 + 1

2‖h(x)− z‖2R−1 .

Tri-Diagonal Structure in the Linear Case

Consider the linear case: gk(xk−1) = Gkxk−1 hk(xk) = Hkxk

Then set H := diag({Hk}) and G :=


I 0

−G2 I
. . .

. . .
. . . 0
−GN I

 .
The MAP problem becomes

min
x

f (x) = 1
2‖Hx − z‖2R−1 + 1

2‖Gx − w‖2Q−1 .

The (smoothing) estimate for x is the solution of the linear system

(H>R−1H + G>Q−1G) x = H>R−1z + G>Q−1w .

The Tri-Diagonal Structure

C = (H>R−1H + G>Q−1G) =


C1 AT

2 0
A2 C2 AT

3 0

0
. . .

. . .
. . .

0 AN CN

 ,
with Ak ∈ Rn×n and Ck ∈ Rn×n defined as follows:

Ak = −Q−1k Gk ,

Ck = Q−1k + G>k+1Q
−1
k+1Gk+1 + H>k R−1k Hk .

Note that one forward solve gives the optimal estimate for x̂N|N .

The back solve gives the MAP estimates for xN−1, xN−2,

The single forward solve to obtain x̂N|N is the Kalman Filter.

The back solve is the Kalman-Bucy smoother.

Block Tri-Diagonal Solvers

Block Tri-Diagonal Solvers:

- Rauch-Tung-Striebel = forward-backward block tridiagonal
(FBT) algorithm = Thomas algorithm

- Mayne-Fraser = forward/backward block tridiagonal (FBT)
algorithm

- Mayne’s algorithm A = backward-forward block tridiagonal
(FBT) algorithm

- Burn at both ends solver

- Divide and Conquer

- Twisted

Block Tri-Diagonal Solvers

Block Tri-Diagonal Solvers:

- Rauch-Tung-Striebel = forward-backward block tridiagonal
(FBT) algorithm = Thomas algorithm

- Mayne-Fraser = forward/backward block tridiagonal (FBT)
algorithm

- Mayne’s algorithm A = backward-forward block tridiagonal
(FBT) algorithm

- Burn at both ends solver

- Divide and Conquer

- Twisted

Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: ẋk+1 = ẋk + ẇk

Euler approximation: xk+1 = xk + ẋk∆t + wk .

Linear Process model:

[
ẋk+1

xk+1

]
=

[
I 0

∆t I

] [
ẋk
xk

]
+

[
ẇk

wk

]
Stochastic calculus gives Qk = σ2

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
(σ2 = 1)

Observation model: zk = Hkxk + vk , Hk =
[
0 1

]
(Rk = .352)

0 1 2 3 4 5 6 7
2

1.5

1

0.5

0

0.5

1

1.5

2

Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: ẋk+1 = ẋk + ẇk

Euler approximation: xk+1 = xk + ẋk∆t + wk .

Linear Process model:

[
ẋk+1

xk+1

]
=

[
I 0

∆t I

] [
ẋk
xk

]
+

[
ẇk

wk

]
Stochastic calculus gives Qk = σ2

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
(σ2 = 1)

Observation model: zk = Hkxk + vk , Hk =
[
0 1

]
(Rk = .352)

0 1 2 3 4 5 6 7
2

1.5

1

0.5

0

0.5

1

1.5

2

Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: ẋk+1 = ẋk + ẇk

Euler approximation: xk+1 = xk + ẋk∆t + wk .

Linear Process model:

[
ẋk+1

xk+1

]
=

[
I 0

∆t I

] [
ẋk
xk

]
+

[
ẇk

wk

]

Stochastic calculus gives Qk = σ2
[

∆t ∆t2/2
∆t2/2 ∆t3/3

]
(σ2 = 1)

Observation model: zk = Hkxk + vk , Hk =
[
0 1

]
(Rk = .352)

0 1 2 3 4 5 6 7
2

1.5

1

0.5

0

0.5

1

1.5

2

Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: ẋk+1 = ẋk + ẇk

Euler approximation: xk+1 = xk + ẋk∆t + wk .

Linear Process model:

[
ẋk+1

xk+1

]
=

[
I 0

∆t I

] [
ẋk
xk

]
+

[
ẇk

wk

]
Stochastic calculus gives Qk = σ2

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
(σ2 = 1)

Observation model: zk = Hkxk + vk , Hk =
[
0 1

]
(Rk = .352)

0 1 2 3 4 5 6 7
2

1.5

1

0.5

0

0.5

1

1.5

2

Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: ẋk+1 = ẋk + ẇk

Euler approximation: xk+1 = xk + ẋk∆t + wk .

Linear Process model:

[
ẋk+1

xk+1

]
=

[
I 0

∆t I

] [
ẋk
xk

]
+

[
ẇk

wk

]
Stochastic calculus gives Qk = σ2

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
(σ2 = 1)

Observation model: zk = Hkxk + vk , Hk =
[
0 1

]
(Rk = .352)

0 1 2 3 4 5 6 7
2

1.5

1

0.5

0

0.5

1

1.5

2

Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: ẋk+1 = ẋk + ẇk

Euler approximation: xk+1 = xk + ẋk∆t + wk .

Linear Process model:

[
ẋk+1

xk+1

]
=

[
I 0

∆t I

] [
ẋk
xk

]
+

[
ẇk

wk

]
Stochastic calculus gives Qk = σ2

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
(σ2 = 1)

Observation model: zk = Hkxk + vk , Hk =
[
0 1

]
(Rk = .352)

0 1 2 3 4 5 6 7
2

1.5

1

0.5

0

0.5

1

1.5

2

Application Motivated Model Extensions

• Inclusion of state constraints, especially, inequalities and bounds

• Non-Gaussian densities:

- in observations for robustness

- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

• State dependent covariance matrices

• learning parameters for hyperpriors

Application Motivated Model Extensions

• Inclusion of state constraints, especially, inequalities and bounds

• Non-Gaussian densities:

- in observations for robustness

- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

• State dependent covariance matrices

• learning parameters for hyperpriors

Application Motivated Model Extensions

• Inclusion of state constraints, especially, inequalities and bounds

• Non-Gaussian densities:

- in observations for robustness

- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

• State dependent covariance matrices

• learning parameters for hyperpriors

Application Motivated Model Extensions

• Inclusion of state constraints, especially, inequalities and bounds

• Non-Gaussian densities:

- in observations for robustness

- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

• State dependent covariance matrices

• learning parameters for hyperpriors

Application Motivated Model Extensions

• Inclusion of state constraints, especially, inequalities and bounds

• Non-Gaussian densities:

- in observations for robustness

- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

• State dependent covariance matrices

• learning parameters for hyperpriors

Alternative Approaches

Bayesian methods based on simulation and sampling

- unscented filters

- sigma-point methods

- ensemble filters

- particle filters

Example: Outliers in the observations

Robust Smoothing Process for x(t) = −sin(t)

0 2 4 6 8 10 12
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time

F
un

ct
io

n
un

its

Simulation: measurements (+), outliers (o) (absolute residuals more than

three standard deviations), true function (thick line), `1-Laplace estimate

(thin line), Gaussian estimate (dashed line), Gaussian outlier removal

estimate (dotted line)

Robust Smoothers for Observations with Outliers

Classical Smoother:

min
x

f (x) = 1
2‖Hx − z‖2R−1 + 1

2‖Gx − w‖2Q−1 .

Robust smoother with Laplace density on the observations:

minimize
x∈RNn

f (x) =
√

2
∥∥∥R−1/2(h(x)− z)

∥∥∥
1

+ 1
2 ‖g(x)− w‖Q−1

Robust Smoothers

Laplace density on the observations:

minimize
x∈RNn

f (x) =
√

2
∥∥∥R−1/2(h(x)− z)

∥∥∥
1

+ 1
2 ‖g(x)− w‖2Q−1

Convex piecewise linear-quadratic (PLQ) penalties:

minimize
x∈RNn

N∑
k=1

Vk (h(xk)− zk ;Rk) + Jk (xk − g(xk−1);Qk) ,

where the penalties Vk and Jk are associated with log-concave
densities of the form

pv ,k(z) ∝ exp (−Vk(z : Rk))) and pw ,k(x) ∝ exp (−Jk(x ;Qk))

Robust Smoothers

Laplace density on the observations:

minimize
x∈RNn

f (x) =
√

2
∥∥∥R−1/2(h(x)− z)

∥∥∥
1

+ 1
2 ‖g(x)− w‖2Q−1

Convex piecewise linear-quadratic (PLQ) penalties:

minimize
x∈RNn

N∑
k=1

Vk (h(xk)− zk ;Rk) + Jk (xk − g(xk−1);Qk) ,

where the penalties Vk and Jk are associated with log-concave
densities of the form

pv ,k(z) ∝ exp (−Vk(z : Rk))) and pw ,k(x) ∝ exp (−Jk(x ;Qk))

Quadratic Support (QS) Functionals and PLQ Densities

Huber Vapnik

−K K

y

x

V (x) = −Kx− 1
2
K2; x < −K

V (x) = 1
2
x2; −K ≤ x ≤ K

V (x) = Kx− 1
2
K2; K < x

−ε ε

y

x

V (x) = −x− ε; x < −ε
V (x) = 0; −ε ≤ x ≤ ε

V (x) = x− ε; ε ≤ x

ρ(U,M, b,B; y) = sup
u∈U

{
〈u, b + By〉 − 1

2
〈u,Mu〉

}
U convex polyhedron, M psd, B injective, [BTcone(U)]◦ = {0}

Other QS Functions: ρ(U ,M , b,B ; ·)

1. Norms, Gauges and Support Functions.

2. The Huber function.
Take M = I , B = I , and b = 0.
Given κ > 0 set U = κB∞.
Then ρ is the multivariate Huber function.

3. Generalized Huber functions.
Let M ∈ Sn++, B = I , and b = 0.

Let ‖y‖M =
√

yTMy and ‖y‖M−1 =
√

yTM−1y .
Set U = κBM = {κu | ‖u‖M ≤ 1}.
Then,

ρ(y) =

{
1
2‖y‖2M−1 , if ‖y‖M−1 ≤ κ
κ‖y‖M−1 − κ2

2 , if ‖y‖M−1 > κ .

Other QS Densities: ρ(U ,M , b,B ; ·)
3 Order intervals and Vapnik loss functions. Let ‖ · ‖ be a norm

with closed unit ball B, let K ⊂ Rn be a non-empty symmetric
convex cone (K ◦ = −K), and let w <K v (v − w ∈ intr(K)).
Set

U = (B◦∩K)×(B◦∩K◦), M =

[
0 0
0 0

]
, b = −

(
v
w

)
, and B =

[
I
I

]
.

Then ρ(y) = dist (y |w ≤K z ≤K v) .

{y |w ≤K y ≤K v } is an “order interval”.

If we take w = −v , then {y | −v ≤K y ≤K v } is a symmetric
neighborhood of the origin.

By taking ‖ · ‖ = ‖ · ‖1, K = Rn
+, and v = ε1=-w, we recover the

multivariate Vapnik loss function. Further examples of symmetric

cones are Sn+ and the Lorentz “ice cream” cone (`2-cone).

Optimization with PLQ Penalties

QS Functions closed wrt addition, pointwise max, infimal
convolution, and affine composition

min
y∈Rn

ρ(U,M, b,B; y) = min
y∈Rn

sup
u∈U

{
〈u, b + By〉 − 1

2〈u,Mu〉
}
,

where U = {u : ATu ≤ a}.

The KKT conditions are

0 = BTu

0 = b + By −Mu − Aq

0 = ATu + s − a

0 = qi si , i = 1, . . . , ` , q, s ≥ 0 ,

In the case of Kalman smoothing, IP algorithms yield tridiagonal
systems at each iteration.

Optimization with PLQ Penalties

QS Functions closed wrt addition, pointwise max, infimal
convolution, and affine composition

min
y∈Rn

ρ(U,M, b,B; y) = min
y∈Rn

sup
u∈U

{
〈u, b + By〉 − 1

2〈u,Mu〉
}
,

where U = {u : ATu ≤ a}.

The KKT conditions are

0 = BTu

0 = b + By −Mu − Aq

0 = ATu + s − a

0 = qi si , i = 1, . . . , ` , q, s ≥ 0 ,

In the case of Kalman smoothing, IP algorithms yield tridiagonal
systems at each iteration.

Optimization with PLQ Penalties

QS Functions closed wrt addition, pointwise max, infimal
convolution, and affine composition

min
y∈Rn

ρ(U,M, b,B; y) = min
y∈Rn

sup
u∈U

{
〈u, b + By〉 − 1

2〈u,Mu〉
}
,

where U = {u : ATu ≤ a}.

The KKT conditions are

0 = BTu

0 = b + By −Mu − Aq

0 = ATu + s − a

0 = qi si , i = 1, . . . , ` , q, s ≥ 0 ,

In the case of Kalman smoothing, IP algorithms yield tridiagonal
systems at each iteration.

Example: Outliers in the observations

Robust Smoothing Process for x(t) = sin(t)

0 2 4 6 8 10 12
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time

F
un

ct
io

n
un

its

Simulation: measurements (+), outliers (o) (absolute residuals more than

three standard deviations), true function (thick line), `1-Laplace estimate

(thin line), Gaussian estimate (dashed line), Gaussian outlier removal

estimate (dotted line)

Example: Trend Filtering

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gaussian Laplace Student T

Nominal conditions

0

1

2

3

4

5

Gaussian Laplace Student T

Perturbed conditions

1 2 3 4 5 6
1.5

1

0.5

0

0.5

1

1.5

2
Nominal conditions

Fu
nc

tio
n

un
its

1 2 3 4 5 6
2

0

2

4

6

8

10

12
Perturbed conditions

Time
Fu

nc
tio

n
un

its

Reconstruction of a sudden change in state obtained by `2, `1, and

T-Trend smoothers. Left: Boxplot of reconstruction errors under

nominal (top) and perturbed (bottom) conditions. Right:

Reconstructions obtained using `2 (dashed), `1 (dashdot) and T-Trend

(thin line) smoother. The thick line is the true state.

Nonlinearities: Convex-Composite Optimization

minimize
x∈RNn

f (x) =
N∑

k=1

Vk (h(xk)− zk ;Rk) + Jk (xk − g(xk−1);Qk) ,

f (x) = ρ(F (x)) , where

ρ

(
y1
y2

)
=

N∑
k=1

Vk (y1k ;Rk) + Jk (y2k ;Qk) , F (x) =

[
g(x)− w
h(x)− z

]
.

ρ is convex (PLQ) and F is smooth.

Gauss-Newton Method for Convex-Composite Optimization

Gauss-Newton Search Direction:

dν = arg min
d

f̃ (d) := ρ
(
F (xν) +∇F (xν)>d

)

Update: xν+1 := xν + γνdν

Sufficient Decrease: 0 < κ < 1

f (xν + γνdν) ≤ f (xν) + κγν∆̃f (xν),

where ∆̃f (xν) = f̃ (dν)− f (xν)

Example: Nonlinear Processes

Van der Pol oscillator:
Ẋ1(t) = X2(t) and Ẋ2(t) = µ[1− X1(t)2]X2(t)− X1(t)

0 5 10 15 20 25 305

0

5

Time (s)

X 1
co

m
po

ne
nt

0 5 10 15 20 25 305

0

5

Time(s)
X 2

co
m
po
ne
nt

Example: Robust Smoothing Process for Van der Pol

0 5 10 15
5

0

5

20% of measurement errors are N(0, 100)

0 5 10 15
5

0

5

Time(s)

0 5 10 15
5

0

5

Nominal Measurement Errors

x 1
co

m
po

ne
nt

0 5 10 15
5

0

5

Time(s)

x 2
co

m
po

ne
nt

stochastic realization
Gaussian Smoother
L1 Smoother
Data

The left two panels show estimation of x1, (top) and x2 (bottom) with errors from the nominal model. The

stochastic realization is represented by a thick black line; the Gaussian smoother is the blue dashed line, and the

`1-smoother is the magenta dash-dotted line. Right two panels show the same stochastic realization but with large

measurement errors. Outliers appear on the top and bottom boundary in the top right panel.

Example: State Bounds

x(y) = sin t

0 2 4 6 8 10 12 14
2

1.5

1

0.5

0

0.5

1

1.5

2
x(t) = exp(−αt) sin(βt) + .1t

0 2 4 6 8 10 12
2

1.5

1

0.5

0

0.5

1

1.5

2

Black solid line is true signal, magenta dash-dot line is unconstrained

Kalman smoother, and blue dashed line is the constrained Kalman

smoother. Measurements are displayed as circles, and bounds are shown

as green lines.

Covariance State Dependence

x1 = g1(x0) + w1, (Initialization)

xk = gk(xk−1) + wk k = 2, . . . ,N, (State Transition Dynamics)

zk = hk(xk) + vk k = 1, . . . ,N , (Observations)

I gk , hk known (nonlinear) process and measurement functions

I wk ∼ N(0,Qk(xk)), vk ∼ N(0,Rk(xk)) mutually independent

I Qk(xk) ∈ Sn++, Rk(xk) ∈ Sm(k)
++ covariance matrices

I xk ∈ Rn unknown states

I zk ∈ Rm(k) observed measurements

Applications

Tracer Kinetics

p0 plasma injection

q1 plasma compartment mass

q2 urine compartment mass

x1 plasma volume

x2 transfer rate from q1 to q2

x3 transfer rate out of system

&%
'$

q1

�
�

id1

@�

p0

-x2

?

x3

&%
'$

q2

�
�

id2

Compartmental model.

1

(
q1
q2

)
k+1

= (1 + wk)

(
q1
q2

)
k

=

(
q1
q2

)
k

+ wk

(
q1
q2

)
k

Other Applications

I Radar position errors and aspect angle and turning rate

I Optical wavefront reconstruction from diversity images

Applications

Tracer Kinetics

p0 plasma injection

q1 plasma compartment mass

q2 urine compartment mass

x1 plasma volume

x2 transfer rate from q1 to q2

x3 transfer rate out of system

&%
'$

q1

�
�

id1

@�

p0

-x2

?

x3

&%
'$

q2

�
�

id2

Compartmental model.

1

(
q1
q2

)
k+1

= (1 + wk)

(
q1
q2

)
k

=

(
q1
q2

)
k

+ wk

(
q1
q2

)
k

Other Applications

I Radar position errors and aspect angle and turning rate

I Optical wavefront reconstruction from diversity images

Applications

Tracer Kinetics

p0 plasma injection

q1 plasma compartment mass

q2 urine compartment mass

x1 plasma volume

x2 transfer rate from q1 to q2

x3 transfer rate out of system

&%
'$

q1

�
�

id1

@�

p0

-x2

?

x3

&%
'$

q2

�
�

id2

Compartmental model.

1

(
q1
q2

)
k+1

= (1 + wk)

(
q1
q2

)
k

=

(
q1
q2

)
k

+ wk

(
q1
q2

)
k

Other Applications

I Radar position errors and aspect angle and turning rate

I Optical wavefront reconstruction from diversity images

The MAP Objective J

The MAP object for the Kalman smoother is

J(x) = − log det
(
Q−1/2(x)

)
− log det

(
R−1/2(x)

)
+ 1

2‖Q−1/2(x)(g(x)− w)‖22 + 1
2‖R−1/2(x)(h(x)− z)‖22

= 1
2 log det(W (x)) + 1

2c(x)TW (x)−1c(x),

where c : RnN → RM+nN and W : RnN → SM+nN
++ .

J as a Composition with a DC Function

J(x) := 1
2c(x)TW (x)−1c(x) + 1

2 log det(W (x))

Then J = ρ̂ ◦ F̂ with

ρ̂(c ,W) := 1
2c

TW−1c −
(
− 1

2 log det(W)
)

and
F̂ (x) = (c(x),W (x)).

ρ̂ is the difference of two convex functions (DC function),
the matrix-fractional function and the negative log-determinant.

A Convex-Composite Reformulation

Change of variables: V = W−1/2

J(x) = 1
2c(x)TW (x)−1c(x) + 1

2 log det(W (x)) = ρ̂ ◦ F̂ (x)

K (x) = 1
2‖V (x)c(x)‖22 − log ◦ det[V (x)] = ρ ◦ F (x) ,

where

ρ(u, v) = 1
2u

Tu −
∑
i

log[vi] , F (x) =

[
F1(x)
F2(x)

]
=

[
V (x)c(x)

vec[{Vii (x)}]

]
.

Modeling Assumption:
The Cholesky factors for Q−1k (xk) and R−1k (xk) are given to us as
explicit functions of the state.

A Convex-Composite Reformulation

Change of variables: V = W−1/2

J(x) = 1
2c(x)TW (x)−1c(x) + 1

2 log det(W (x)) = ρ̂ ◦ F̂ (x)

K (x) = 1
2‖V (x)c(x)‖22 − log ◦ det[V (x)] = ρ ◦ F (x) ,

where

ρ(u, v) = 1
2u

Tu −
∑
i

log[vi] , F (x) =

[
F1(x)
F2(x)

]
=

[
V (x)c(x)

vec[{Vii (x)}]

]
.

Modeling Assumption:
The Cholesky factors for Q−1k (xk) and R−1k (xk) are given to us as
explicit functions of the state.

Numerical Example: Gauss-Newton ρ (F (xν) + F ′(xν)d)

“Ground Truth” x(t) =

[
1− 2 cos(t)
t − 2 sin(t)

]

Dynamics gk(xk−1) =

[
1 0

∆t 1

]
xk−1, Qk =

[
∆t ∆t2/2

∆t2/2 ∆t3/3

]
Observations hk(xk) = x2,k

Measurement Variance Rk(xk) = (3− x1,k)−2

Data
Two full periods of the time series x(t), with N = 100 discrete
time points equally spaced over the interval [0, 4π], and with noise
sampled from N(0,Rk(xk)).

A Numerical Example

0 5 10 15 20 25
!5

0

5

10

15

20

25

30

Measurement = diamond

Student Version of MATLAB

Figure : True state x1 (black curve), Extended Smoother estimate (thick
red dash-dot), Kalman filter estimate (blue dash-dot) and Kalman
Smoother estimate (green dashed curve). Measurements are diamonds,
and those outside the axis range are displayed on the figure boundary.

An Underwater Tracking Application

In this experiment, an object was tracked using ocean floor
transponders. The object was hung on a steel cable approximately
200 meters below a ship. The ship was pitching and rolling on the
surface of the ocean and the pilot of the ship was attempting to
‘hold station’; i.e., stay at a specific latitude and longitude. A
pressure sensor was mounted on the object and it recorded pressure
measurements at an approximate rate of once per second. Four
acoustic transponders were mounted on the bottom of the ocean
and their locations were determined to sub-meter accuracy prior to
this experiment. The acoustic travel time between these bottom
mounted transponders and the object at the end of the cable was
measured at approximately sixteen second intervals. The acoustic
travel times, and the pressure measurements, were used to
estimate the location of the object at the end of the cable.
The goal is to track the object.

An Underwater Tracking Application: The State

N is the total number of time points at which we have tracking
data.

The state vector at time tk is defined by

xk = (ek , nk , dk , ėk , ṅk , ḋk)T

where
(ek , nk , dk) = (east, north, depth)

the location of the object (in meters from the origin), and
(ėk , ṅk , ḋk) is the time derivative of this location.

An Underwater Tracking Application: The Measurement

The the first 4 components of the measurement vector, zk ∈ R5, at
time tk are the range measurements to the 4 corresponding bottom
mounted transponders and the last measurement component is the
depth corresponding to the pressure measurement.
For j = 1, . . . , 4, the model for the mean of the corresponding
range measurements was

hj ,k(xk) = ‖(ek , nk , dk)− bj‖2 −∆rj .

The functions hj ,k are nonlinear due to the presence of the norm.
These measurements were modeled as independent and having a
standard deviation of 3 meters. The model for the mean of the
pressure measurement was h5,k(xk) = dk . These measurements
were modeled as having a standard deviation of 0.05 meters (the
pressure sensor was much more accurate than the range
measurements).

An Underwater Tracking Application: GPS Validation

7 7.05 7.1 7.15 7.2 7.25
−100

−50

0

50

positioning: Hour of Day

ea
st

 (
m

)

7 7.05 7.1 7.15 7.2 7.25
−50

0

50

100

positioning: Hour of Day

no
rth

 (m
)

2.52 2.522 2.524 2.526 2.528 2.53
x 104

185

190

195

200

Cnav=+ , Pressure=diamond: Second of Day

de
pt

h
(m

)

Student Version of MATLAB

Figure : Track: Independent GPS verification (thick line and +),
Iterated Gaussian smoother estimate (thin line).

An Underwater Tracking: Smoother Comparison

7 7.05 7.1 7.15 7.2 7.25
−5

0

5

10

positioning: Hour of Day

ea
st

 (
m

)

7 7.05 7.1 7.15 7.2 7.25
−5

0

5

10

positioning: Hour of Day

no
rth

 (m
)

2.52 2.522 2.524 2.526 2.528 2.53
x 104

185

190

195

200

Cnav=+ , Pressure=diamond: Second of Day

de
pt

h
(m

)

Student Version of MATLAB

7 7.05 7.1 7.15 7.2 7.25
−5

0

5

10

positioning: Hour of Day

ea
st

 (
m

)

7 7.05 7.1 7.15 7.2 7.25
−5

0

5

10

positioning: Hour of Day

no
rth

 (m
)

2.52 2.522 2.524 2.526 2.528 2.53
x 104

185

190

195

200

Cnav=+ , Pressure=diamond: Second of Day

de
pt

h
(m

)

Student Version of MATLAB

Track: Independent GPS verification (thick line and +)
Left: Gaussian smoother with outlier removal (thin line)
Right: `1-Laplace smoother (thin line).

An Underwater Tracking: Residuals Comparison

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 1

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 2

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 3

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 4

7 7.05 7.1 7.15 7.2 7.25
0.2

0

0.2

Residuals: Hour of Day

pr
es

su
re

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 1

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 2

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 3

7 7.05 7.1 7.15 7.2 7.25
4
0
4

residuals: Hour of Day

F 4

7 7.05 7.1 7.15 7.2 7.25
0.2

0

0.2

Residuals: Hour of Day

pr
es

su
re

Left: Gaussian smoother with outlier removal
Right: `1-Laplace smoother.
In these plots, transponders are labeled by their frequencies in
KHz; F1 = 11.25, F2 = 11.75, F3 = 12.25, and F4 = 12.75. All
residuals are in meters.

Thank You!

-“An Inequality Constrained Kalman-Bucy Smoother by Interior Point Likelihood
Maximization”, with Bradley Bell and Gianluigi Pillonetto,Automatica, 45(2009)25-33.

-“An `1-Laplace Robust Kalman Smoother”, IEEETransactions onAutomatic Control,
56(2011) 2898–2911, with Aleksandr Aravkin, Bradley Bell and Gianluigi Pillonetto.

-“Sparse/Robust Estimation and Kalman Smoothing with Nonsmooth Log-Concave
Densities: Modeling, Computation, and Theory.” with A.Y.Aravkin and G.Pillonetto.
Journal of Machine Learning Research, 14(2013) 2689-2728.

-“Optimization viewpoint on Kalman smoothing, with applications to robust and sparse
estimation.” with A.Y.Aravkin and G.Pillonetto. In Compressed Sensing & Sparse
Filtering, eds., A. Carmi, L. Mihaylova, and S. Godsill. Springer. pp. 237-281, 2014.

-“Robust and Trend-following Student’s t-Kalman Smoothers.”
with A.Y. Aravkin and G. Pillonetto. SIAM J. Control Optim. 52(2014): 2891-2916.

-“Smoothing dynamical systems with state-dependent covariance matrices.”
with A.Y. Aravkin. (CDC), 2014.

