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Kalman Smoothing Framework

x1 = gi(xo)+wi, (Initialization)
xx = 8k(xk-1)+wx k=2,...,N, (State Transition Dynamics)
zx = he(xk) + vk k=1,...,N, (Observations)

> gk, hx known (nonlinear) process and measurement functions

v

wg ~ N(0, Qk), vk ~ N(0, Rx) mutually independent

K : .
Qe STy, Ree Sfi) known covariance matrices

v

> xx € R” unknown states

v

z, € R™(k) observed measurements (known)



Kalman Smoothing Framework: Graphical lllustration

Xo =091 X1 —go—» Xp |-----o--- N> XN




Modeling and Estimation of Dynamics under Uncertainty

- Navigation
- tracking

- healthcare
- finance

- weather

- imaging



Classical Approach for Linear Systems

X1

Xk

Zi

Gixo + wi,
GiXk—1 -+ Wk

Hixk + vi

k=2, ...

k=1,...

wiy ~ N(0, Q1)

mutually

N, wi ~ N(O, Q) independent

7N7 VkNN(O)Rk)
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Time Update
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Classical Approach for Linear Systems

x1 = Gixo+wiy, wy ~ N(0, Qq)

mutually

xx = Gxk—1+we k=2,...,N, wg~ N, Q) independent

zxy = Hixe+ vk k=1,....N, VkNN(O,Rk)

Kalman Filter

Time Update Xklk—1 = Gka,1|k,1 + Wy
Measurement Update Zy -1 = HiXg—1 + vk



Classical Approach for Linear Systems

x1 = Gixp+wy,
Xk = Grxp1+wg k=2,...
zZk = Hixg + vy k=1,...

Kalman Filter

Time Update
Measurement Update
Joint Distr.

wiy ~ N(0, Q1)

mutually

N, wi ~ N(O, Q) independent

7N7 VkNN(O)Rk)

Xkjk—1 = GrXk—1jk—1 + Wk
Zy -1 = HiXg—1 + vk
P(Xk\kflv Zk|k71)



Classical Approach for Linear Systems

x1 = Gixp+wy,
Xk = Grxp1+wg k=2,...
zZk = Hixg + vy k=1,...

Kalman Filter

Time Update
Measurement Update
Joint Distr.

Cond. Distr.

wiy ~ N(0, Q1)

mutually

N, wi ~ N(O, Q) independent

7N7 VkNN(O)Rk)

Xkjk—1 = GrXk—1jk—1 + Wk
Zy -1 = HiXg—1 + vk
P(Xk\kflv Zk|k71)

P x|kl Zkjk—1 = k)



Classical Approach for Linear Systems

x1 = Gixo+wiy, wy ~ N(0, Qq)

mutually

xx = Gxk—1+we k=2,...,N, wg~ N, Q) independent

zxy = Hixe+ vk k=1,....N, VkNN(O,Rk)

Kalman Filter

Time Update Xkjk—1 = GrXk—1jk—1 + Wk
Measurement Update Zy -1 = HiXg—1 + vk
Joint Distr. P(Xkk—15 Zkjk—1)

Cond. Distr. P(Xkjk|Zkk—-1 = k)

Compute the maximum likelihood estimator x|, at time k.



Classical Approach for Linear Systems

Maximum Likelihood Computation under Gaussian Assumptions
Time Update: X0 = xo and Pgjg =0

Rk=1 = GrXp—1jk—1
;
Prk—1 = GkPr_qjk—1Gx + Q«k

Measurment Update:

Ki = Puke1Hid (HiPre—1Hi + Ri) ™!
Rk = Rupk—1 + Kie(zk — HRyjk—1)
Pk = Prk—1 — KeHkPrji-1



An Optimization Approach

Maximum a posteriori Formulation

=

P ({x}[{z}) o< P ({2} {xi}) P ({x}) = H ({vi})P({wk})

N

O(H exp (f %(Zk* hie(xi)) TR Mz — hie(xi)) — %(Xk*gk(Xk—l))TQ;Tl(Xk*gk(Xk—l)))-

k=1



An Optimization Approach

Maximum a posteriori Formulation

=

P ({x}[{z}) o< P ({2} {xi}) P ({x}) = H ({vi})P({wk})

N
O(H exp (f %(Zk* hie(xi)) "R Nz — hue(xic)) — %(Xk*gk(Xk—l))TQ;Tl(Xk*gk(Xk—l)))-

k=1

The maximum likelihood problem for the MAP estimate is
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An Optimization Approach

Maximum a posteriori Formulation

=

P ({x}[{z}) o< P ({2} {xi}) P ({x}) = H ({vi})P({wk})

N

O(H exp (f %(Zk* hie(xi)) "R Nz — hue(xic)) — %(Xk*gk(Xk—l))TQ;Tl(Xk*gk(Xk—l)))-

k=1

The maximum likelihood problem for the MAP estimate is

N

f{T;'kf]] 5 (zi—hi (i) " Ry 1(Zk—hk(Xk))Jr%(Xk—gk(Xk—l))TQEI(Xk—gk(kal))

|_n

which can be written as

N

1
in = —h 2 - IR,
min 2;\4 k(Xk)\IRk1+HXk 8k (xk 1)||Qk1



Notational Simplification

x1 hi(x1)
£(x) = X2 — g2(x1) hx) = ha(x2)
XN — g/;/(XN—1) hN(.XN)

x = vec({xx})
w = vec({go,0,...,0})
z=vec({z1,22,...,2n})

With this notation, the MAP problem becomes

R = diag({Rk})
Q = diag({Q«})

min f(x) = 3llg(x) = wl[g-1 + 311A(x) = zl[z--



Tri-Diagonal Structure in the Linear Case

Consider the linear case: gk(kal) = GgXp—1 hk(Xk) = Hixy
I 0
. -Gy 1
Then set H := diag({Hx}) and G :=
.0
-Gy 1
The MAP problem becomes

min £(x) = 3| Hx — 2|[% 1 + 3 Gx — w|Z .

The (smoothing) estimate for x is the solution of the linear system

(HHRMH+GTQ 16 x=H"R1z+6"Q w.



The Tri-Diagonal Structure

G AT 0
C=(H'R'M+G6"Q7'G) = "2 _C2 .Ag |
0 Ay C
with A, € R™" and C, € R"™*" defined as follows:
A = —Q Gk,
Co = Q'+ Gl Qs Gier + He R Hic

Note that one forward solve gives the optimal estimate for Xyy-
The back solve gives the MAP estimates for xy_1, xy_2, ...

The single forward solve to obtain Xy is the Kalman Filter.

The back solve is the Kalman-Bucy smoother.



Block Tri-Diagonal Solvers

Block Tri-Diagonal Solvers:

- Rauch-Tung-Striebel = forward-backward block tridiagonal
(FBT) algorithm = Thomas algorithm

- Mayne-Fraser = forward/backward block tridiagonal (FBT)
algorithm

- Mayne's algorithm A = backward-forward block tridiagonal
(FBT) algorithm



Block Tri-Diagonal Solvers

Block Tri-Diagonal Solvers:

Rauch-Tung-Striebel = forward-backward block tridiagonal
(FBT) algorithm = Thomas algorithm

Mayne-Fraser = forward/backward block tridiagonal (FBT)
algorithm

Mayne's algorithm A = backward-forward block tridiagonal
(FBT) algorithm

Burn at both ends solver
Divide and Conquer
Twisted
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Example: Smoothing Processes
Model a smooth signal as integrated Brownian motion.
Smooth process: Xxi11 = Xk + Wi
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Example: Smoothing Processes

Model a smooth signal as integrated Brownian motion.
Smooth process: Xxi11 = Xk + Wi

Euler approximation: Xxyy1 = Xk + Xk At + wy .

Linear Process model: | ¥*1| = 0 + |

Xk+1 At 1| | x Wi
. : At At?)2
_ 2 2 _
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Observation model: zx = Hyxx + vie , Hk = [0 1] (Rx = .35?)



Example: Smoothing Processes

Model a smooth signal as integrated Brownian motion.

Smooth process: Xxi11 = Xk + Wi

Euler approximation: Xxyy1 = Xk + Xk At + wy .

Linear Process model: [XkH] = [ / 0} [Xk] + [Wk}

Xk+1 At 1| | x Wi
At t2/2] , ,

{At2/2 At3/3] (0" =1)
Observation model: zx = Hyxx + vie , Hk = [0 1] (Rx = .35?)

Stochastic calculus gives Q) =

o0




Application Motivated Model Extensions



Application Motivated Model Extensions

e Inclusion of state constraints, especially, inequalities and bounds



Application Motivated Model Extensions

e Inclusion of state constraints, especially, inequalities and bounds

e Non-Gaussian densities:
- in observations for robustness
- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness



Application Motivated Model Extensions

e Inclusion of state constraints, especially, inequalities and bounds

e Non-Gaussian densities:
- in observations for robustness
- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

e State dependent covariance matrices



Application Motivated Model Extensions

e Inclusion of state constraints, especially, inequalities and bounds
e Non-Gaussian densities:
- in observations for robustness

- in states for rapid trend shifts

- in priors on the state for sparseness and/or roughness

e State dependent covariance matrices

e learning parameters for hyperpriors



Alternative Approaches

Bayesian methods based on simulation and sampling

unscented filters

sigma-point methods

ensemble filters

particle filters



Example: Outliers in the observations

Robust Smoothing Process for x(t) = —sin(t)

Function units

-5E L 00 L Lo o L L
0 2 4 6 8 10 12
Time

Simulation: measurements (+), outliers (o) (absolute residuals more than

three standard deviations), true function (thick line), ¢1-Laplace estimate
(thin line), Gaussian estimate (dashed line), Gaussian outlier removal
estimate (dotted line)



Robust Smoothers for Observations with Outliers

Classical Smoother:

min £(x) = §[Hx — 21 + 316x — wl} .

Robust smoother with Laplace density on the observations:

minimize f(x \fHR 1/2 H 5 lle(x) — wl|g-1

xERNn



Robust Smoothers

Laplace density on the observations:

— 2
minimize f(x \[HR 2(p(x) - z H 5 lg(x) — wllg-
x€R



Robust Smoothers

Laplace density on the observations:

_12 2
minimize (x) = V2 [R7Y2(h(x) ~ 2)|| +3 llg() - wllp-+

Convex piecewise linear-quadratic (PLQ) penalties:

Vi ( —zi R J — )
m;rélén!]ze Z « (h(xk) — zk; Ri) + Ik (xk — g(xk—1); Qk)

where the penalties Vi and Jy are associated with log-concave
densities of the form

pvk(z) occexp (= Vi(z - Ri))) and  py k(x) oc exp (—Jk(x; Qk))



Quadratic Support (QS) Functionals and PLQ Densities

Huber Vapnik

N
N
N
~
N
~
\\

K K

— — — -V(z)=—Kz—{K* < -K

V(z)=42% —-K<z<K

V(r)=Kr—3K% K <u

1
o(Us M, b, B: y) — sup {<u,b+ By) - L(u, Mu>}
uel 2

U convex polyhedron, M psd, B injective, [BTcone(U)]° = {0}



Other QS Functions: p(U, M, b, B; -)
1. Norms, Gauges and Support Functions.

2. The Huber function.

Take M =1, B=1, and b=0.

Given k > 0 set U = kB.

Then p is the multivariate Huber function.

3. Generalized Huber functions.
Let MeST,, B=1, and b=0.

Let lyllm = Vy"My and |lylly-1 = v/ yTM~1y.
Set U =kBy = {ru |||ul|lm < 1}.
Then,
i E104 = -1 < w
- ,

kllyllv-1 =% if llylly-—2 > & .



Other QS Densities: p(U, M, b, B; -)

3 Order intervals and Vapnik loss functions. Let || - || be a norm
with closed unit ball B, let K C R" be a non-empty symmetric
convex cone (K° = —K), and let w <k v (v — w € intr(K)).
Set

U = (B°NK)x(B°NK°), M = [8 8} . b=-— (V"V> , and B= m .

Then p(y) =dist (y |w <k z <k v).

{y |w <k y <k v} is an “order interval”.

If we take w = —v, then {y | —v <k y <k v} is a symmetric
neighborhood of the origin.
By taking || - || = || - |l;, K =R, and v = el=-w, we recover the

multivariate Vapnik loss function. Further examples of symmetric
cones are S and the Lorentz “ice cream” cone (£2-cone).



Optimization with PLQ Penalties

QS Functions closed wrt addition, pointwise max, infimal
convolution, and affine composition

in p(U, M, b, B;y) = mi b+ By) — L{u, M)},
min p( y) yn;gnigg{w + By) — 3(u, Mu)}

where U = {u: ATu < a}.
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Optimization with PLQ Penalties

QS Functions closed wrt addition, pointwise max, infimal
convolution, and affine composition

in p(U, M, b, B;y) = mi b+ By) — L(u, Mu)},
min p( y) yn;gnigg{w + By) — 3(u, Mu)}

where U = {u: ATu < a}.

The KKT conditions are
0=B"y
0=b+ By — Mu— Aq
0=ATu+s—a
qu,-s,-, I':].,...,E, q,sZO,

In the case of Kalman smoothing, IP algorithms yield tridiagonal
systems at each iteration.



Example: Outliers in the observations

Robust Smoothing Process for x(t) = sin(t)

Function units

-5E L 00 L Lo o L L
0 2 4 6 8 10 12
Time

Simulation: measurements (+), outliers (o) (absolute residuals more than

three standard deviations), true function (thick line), ¢1-Laplace estimate
(thin line), Gaussian estimate (dashed line), Gaussian outlier removal
estimate (dotted line)



Example: Trend Filtering

Nominal conditions Nominal conditions

all
all
i
| <>

GaussEn Tapacs Togent T

Reconstruction of a sudden change in state obtained by ¢», 1, and
T-Trend smoothers. Left: Boxplot of reconstruction errors under
nominal (top) and perturbed (bottom) conditions. Right:
Reconstructions obtained using ¢, (dashed), ¢; (dashdot) and T-Trend
(thin line) smoother. The thick line is the true state.



Nonlinearities: Convex-Composite Optimization

N

miréiRmNLze f(x) = Z Vie (h(xx) — z&; R) + Ik (xk — g(xk—1); Qk)
x k=1

f(x) =p(F(x)), where

P<y2> ZVk yiki Ri) + Ik (voki Q) F(x) = [gh(())(()):\;v] :

p is convex (PLQ) and F is smooth.



Gauss-Newton Method for Convex-Composite Optimization
Gauss-Newton Search Direction:
d” = arg mdin f(d):=p (F(x”) + VF(X”)Td)
Update: x¥*1:=x¥ + 4¥d"

Sufficient Decrease: 0 < kK < 1
f(x" ++7d") < f(x") + fw”Af(x”),

where Af(x¥) = f(d") — f(x¥)



Example: Nonlinear Processes

Van der Pol oscillator:
Xl(t) = Xz(t) and Xg(t) = ,u[l — Xl(t)2]X2(t) — Xl(t)

5r 5r

X 1 —component
Xz—component
o

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time(s)



Example: Robust Smoothing Process for Van der Pol

Nominal Measurement Errors 20% of measurement errors are N(0, 100)
°

5 5r0
00® o °
o stochastc renizaion o 0n o
]
§
2
8
£ 0
S
8
-
<
RN o0 0® °
°
0° o

) 5 10 15 0 5 10 15

5 5
H
g
2
g
£ 0 0
S
8
T
<

o 10 15 0 10 15

Time(s) Time(s)

The left two panels show estimation of x;, (top) and x3 (bottom) with errors from the nominal model. The
stochastic realization is represented by a thick black line; the Gaussian smoother is the blue dashed line, and the
£1-smoother is the magenta dash-dotted line. Right two panels show the same stochastic realization but with large

measurement errors. Outliers appear on the top and bottom boundary in the top right panel.



Example: State Bounds

x(t) = exp(—at)sin(ft) + .1t

0 2 4 6 8 10 12

Black solid line is true signal, magenta dash-dot line is unconstrained
Kalman smoother, and blue dashed line is the constrained Kalman
smoother. Measurements are displayed as circles, and bounds are shown

as green lines.



Covariance State Dependence

x1 = gi(xo)+ wi, (Initialization)
xx = 8k(xk—1)+wx k=2,...,N, (State Transition Dynamics)
zxk = he(xk) + vk k=1,...,N, (Observations)

> gk, hx known (nonlinear) process and measurement functions

v

wi ~ N(0, Qx(xk)), vk ~ N(O, Ri(xx)) mutually independent

Qu(xk) € ST, Ri(xk) € STJ(Fk) covariance matrices

v

> xx € R” unknown states

z € R™K) observed measurements

v



Applications
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po plasma injection
g1 plasma compartment mass

go urine compartment mass

x1 plasma volume

Compartmental model.

Xxp transfer rate from q; to go

x3 transfer rate out of system
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Applications

Tracer Kinetics
po plasma injection
g1 plasma compartment mass

go urine compartment mass

x1 plasma volume

Compartmental model.

Xxp transfer rate from q; to go

x3 transfer rate out of system

(o) =avw(2) =(2) vw(2)

Other Applications
» Radar position errors and aspect angle and turning rate

» Optical wavefront reconstruction from diversity images



The MAP Objective J

The MAP object for the Kalman smoother is

J(x) = —logdet (Qfl/z(x)> — log det (Rfl/z(x)>
+31Q7Y2(x)(g(x) — w)l3 + FIR2(x)(h(x) — 2)|3

= Llogdet(W(x)) + Le(x)TW(x)"te(x),

where ¢ : R™ — RM+nN 5pd W . RN —>Si/’f”N.



J as a Composition with a DC Function

J(x) == 3c(x)TW(x)"te(x) + L log det(W(x))

Then J = po F with
plc, W) == 1cTWlc — (—1logdet(W))

and

p is the difference of two convex functions (DC function),
the matrix-fractional function and the negative log-determinant.



A Convex-Composite Reformulation

Change of variables: V = W~1/2

J(x) = Le(x)TW(x)te(x) + Llogdet(W(x)) = po F(x)
K(x) = HIV(x)c(x) |3 — logo det[V/(x) — poF(x).
where

e = e S, o= [55] -[ J]



A Convex-Composite Reformulation

Change of variables: V = W~1/2

J(x) = Le(x)TW(x)te(x) + Llogdet(W(x)) = po F(x)
K(x) = HIVO)eG)IE —logodet V()] = poF(x).
where
LT _ RG] _ | V(¥)e(x)
plu,v) = su U_Zbg[vi]a F(x) = |:F;(X):| = |:VGC[{V;,'(X)}]:| .

Modeling Assumption:
The Cholesky factors for Q;l(xk) and R, '(x) are given to us as
explicit functions of the state.



Numerical Example: Gauss-Newton p (F(x") + F'(x")d)

“Ground Truth”

Dynamics

Observations

Measurement Variance

Data

X(t) = [1 - 2cos(t)}

t — 2sin(t)

1 0 At At?2)2
8k(Xk—1) = [At 1} X1, Qi = [At2/2 At3§3]

hi(xk) = xo,k

Re(xk) = (B3 — x14) 2

Two full periods of the time series x(t), with N = 100 discrete

time points equally spaced over the interval [0, 47|, and with noise
sampled from N(0, Ri(xk)).



A Numerical Example

30;
25)
20}
15}

10+

Figure : True state x; (black curve), Extended Smoother estimate (thick
red dash-dot), Kalman filter estimate (blue dash-dot) and Kalman
Smoother estimate (green dashed curve). Measurements are diamonds,
and those outside the axis range are displayed on the figure boundary.



An Underwater Tracking Application

In this experiment, an object was tracked using ocean floor
transponders. The object was hung on a steel cable approximately
200 meters below a ship. The ship was pitching and rolling on the
surface of the ocean and the pilot of the ship was attempting to
‘hold station’; i.e., stay at a specific latitude and longitude. A
pressure sensor was mounted on the object and it recorded pressure
measurements at an approximate rate of once per second. Four
acoustic transponders were mounted on the bottom of the ocean
and their locations were determined to sub-meter accuracy prior to
this experiment. The acoustic travel time between these bottom
mounted transponders and the object at the end of the cable was
measured at approximately sixteen second intervals. The acoustic
travel times, and the pressure measurements, were used to
estimate the location of the object at the end of the cable.

The goal is to track the object.



An Underwater Tracking Application: The State

N is the total number of time points at which we have tracking
data.

The state vector at time ty is defined by
. .. 7 \T
Xk = (e, N, di, €k, Nk, dk)
where
(e, nk,dx) = ( east, north, depth )

the location of the object (in meters from the origin), and
(ék, Nk, di) is the time derivative of this location.



An Underwater Tracking Application: The Measurement

The the first 4 components of the measurement vector, z, € R>, at
time t are the range measurements to the 4 corresponding bottom
mounted transponders and the last measurement component is the
depth corresponding to the pressure measurement.

For j=1,...,4, the model for the mean of the corresponding
range measurements was

hjk(xx) = ll(ek, nk, di) — bjlla — Ar;.

The functions h; , are nonlinear due to the presence of the norm.
These measurements were modeled as independent and having a
standard deviation of 3 meters. The model for the mean of the
pressure measurement was hs x(xx) = di. These measurements
were modeled as having a standard deviation of 0.05 meters (the
pressure sensor was much more accurate than the range
measurements).



An Underwater Tracking Application: GPS Validation

50
E o
% _507 \/ v i
Q
~10 1 1 1 1
7 7.05 71 7.15 7.2 7.25
positioning: Hour of Day
100 T T
E 50t 1
£
s 0
f=
_5 1 1 1 1
7 7.05 71 7.15 7.2 7.25
200 positioning: Hour of Day
. Ly + . ++‘H++++”++H—¢»+FH’++H+++++¢»+++++++ ety +++“t¢_¢f++ - +++++ oy ++++++L+++++++ﬂ+#++ﬂ+#
£ 195+ 4
£
£ 1906, °<> 0000000 000065, °°<>oo<>°<>oo<>°<>%<>°%%QO%W%W%&"‘
185 I I I I
2.52 2.522 2.524 2.526 2.528 2.58

Cnav=+, Pressure=diamond: Second of Day x10*

Figure : Track: Independent GPS verification (thick line and +),
Iterated Gaussian smoother estimate (thin line).



An Underwater Tracking: Smoother Comparison

10 T 10 T T T T
E 5W £ sl 4
3 I
g0 g o0
- _ . . . .
705 25 7 7.05 7.1 7.15 7.2 7.25
o posmomng Hour of Day 0 positioning: Hour of Day
€5 G
= =
£ £
Y 2
~ . . . . ~ . . . .
7 7.05 7.1 7.15 7.2 7.25 7 7.05 7.4 7.15 72 7.25
200 pOSl"O"mg Hour of Day o posmomng Hour of Day
[, +++++++**+++mwm+ﬂ+**+ o ***#*J'ﬁ##ﬁ +“++++MH*++HW% 00 e +++++++++ﬂ+w+ﬂ++ﬂ+**+ Py ++++ﬂ+ R, +H+++m++,*u++wﬁ
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Track: Independent GPS verification (thick line and +)
Left: Gaussian smoother with outlier removal (thin line)
Right: ¢1-Laplace smoother (thin line).
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Left: Gaussian smoother with outlier removal

Right: ¢1-Laplace smoother.

In these plots, transponders are labeled by their frequencies in
KHz; F; =11.25, F, = 11.75, F3 = 12.25, and F, = 12.75. All

residuals are in meters.
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