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Connections
What do the following topics have in common?

» Quadratic Optimization Problem with Equality Constraints
» The Matrix Fractional Function and its Generalization

> Ky Fan p-k Norms

» K-means Clustering

> Best Affine Unbiased Estimator

» Supervised Representation Learning

» Multi-task Learning

» Variational Gram Functions
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Answer: They can all be represented using a matrix support
function that is smooth on the interior of its domain.



A Matrix Support Functional (B-Hoheisel (2015))

Given A € RPX" and B € RP*M get

D(A, B) := {(Y,—%YYT> ER™M X S| Y € R™M: AY = B}



A Matrix Support Functional (B-Hoheisel (2015))

Given A € RPX" and B € RP*M get

D(A, B) := {(Y,—%YYT> ER™M X S| Y € R™M: AY = B}

We consider the support functional for D(A, B).

o (X, V) I D(A B)) = sup {(X, V) (Y, =37



A Matrix Support Functional (B-Hoheisel (2015))

Given A € RPX" and B € RP*M get

D(A, B) := {(Y,—%YYT> ER™M X S| Y € R™M: AY = B}

We consider the support functional for D(A, B).

o (X, V) I D(A B)) = sup {(X, V) (Y, =37

— — 1 T _
Jnf e (YTVY) = (X, Y)
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Support Functions

os(x):=0(x | S) :=sup(x,y)
yes

Szﬂx{)"<><,}/>§0(x|5)} 0S = 0¢lS = OconvS = Oconv S
When S is a closed convex set, then

Jos(x) = arg max (x, y).
yeSs



Epigraph

epif = {(x,p) [ f(x) < p}

F(y) = o ((y,—1) [epif)
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Let AeRP*" and B € RP*™ such that rge B c rge A. Then

7 ((X.V) | D(A.B)) = {étr(()’;)TM(Vﬁ(g)) if rge (3) C ree M(V), V Ziera O

+0o0 else.

M(V) = <Z AOT )

where

In particular,
domo (- | D(A,B)) =domdo (- | D(A, B))

— {()(7 V) GRnxm 1% Sn

X
rge (B) Crge M(V)a V Zkera 0} )
with int (doma (- | D(A, B))) = {(X, V) € R"™™ x §" | V >iera 0} .

The inverse M(V)~! exists when V =4 0 and A is surjective.
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Relationship to Equality Constrained QP

Consider a equality constrained QP:

v(x,V):= inf {luT™Vu—xTu|Au=b}.
ueRrn L2

The Lagrangian is L(u,A) = 3u” Vu — xTu+ AT (Au — b).

Optimality conditions are

Vu+ATA—x =0
Au =b

This is equivalent to
vV AT\ (u X
m= (2% ) (0)-6)

v(x,V)=—o((x,V) | D(A,b)).

Hence
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The Matrix Fractional Function:Take A =0 and B = 0, and set

(X, V)= ((x, V) | D(0,0))

_ {;xvax if rge X C rge V, V = 0,

+0o0 else.
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Recall Joc(x)={yeconv C | (x,y) =0oc(x)}.
For do ((X, V) | D(A, B)) we need conv (D(A, B)).
Set

ST (ker A) := {W eS" | u"TWu>0Vue kerA} ={W >yera 0}.

Then S’ (ker A) is a closed convex cone whose polar is given by
S” (ker A)° = {W € S" | W = PWP < 0},

where P is the orthogonal projection onto ker A.
For D(A,B) := {(Y,-LYYT) € R™M x §" | Y ¢ R™™ . AY = B},

conv D(A,B) = Q(A, B)

= {(Y7 W) eR™™ xS" | AY =B and LYY + W ¢ Sﬁ’r(kerA)"}.
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Motivating Examples
Recall the matrix fractional function

V(X V) =0 ((X,V) | D(0,0))
400 else.

:{ r(XTVIX) if rgeX ergeV,V =0,

We have the following two representations of the nuclear norm:

. 1
Xl = min v(X, V) + Etr %

1
SIXIE = miny (X, V) +8(V | (V) <1),
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When h is an indicator of a closed convex set V,

Pv(X) = inf 7 ((X.V) | D(AB)).

then

(V) =30 (YYT [{VEV |V mea0}) +6(Y | AY = B)

_y (YYT | VmSi(kerA)) +o(Y |AY = B)

Note that when B = 0, both ¢y and ¢, are positively
homogeneous of degree 2.

When A =0 and B =0, ¢y, is called a

variational Gram functionin Jalali-Xiao-Fazel (20167).
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Corollary

1
~ X%, . = inf ~(X, V).
2” ”%’m'"{’"’”} IIVHp,n::{m,n}g (X, V)



Ky Fan (p,k) norm

Corollary

”XH 2P ,min{m, n} Hva miir:{m ,,}Slry(X? V)

WX V) =0 (X, V) [D(0,0)),  pul(X) = inf o (X, V) | D(A B))

and - (X) := inf o (X, V) [ D(0,0))

Proof.

i , — 1 T .
(lewm.:(fmjn}qw(x, v>) = o (X7 [ {V 20 IV ity <1})

= 31XXT e,

7.min{m,n} — 2||XH 2" ,min{m,n}"



Ky Fan (p,k) norm
As a special case when p =1,

Corollary
LIX12 = ming v<1 (X, V).

Lemma
Let V to be the set of rank-k orthogonal projection matrices

V={UUT |UeR™k  UTU = I}, then 3|IX|]3, =ov (3XXT).
Proof.
A consequence of the following fact [Fillmore-Williams 1971]:

conv {UUT |[U€R™  UTU =1} ={VeS"|I=V=0,trV=k}.



K-means Clustering [Zha-He-Ding-Gu-Simon 2001]

Consider X € R"™ the k-means objective is

A . 2
K(X) := min 3|IX — EC]3,

where C € R¥*™ represents the k centers, and E is a n x k matrix
where each row is one of elT, e e,;r which correspond to the k
cluster assignments.

The optimal C is given by C = (ETE)™1ET X,
Define P = E(ETE)™*ET, then P is an orthogonal projection.
K(X) = min (1 = Pe)X|3 = L mintx ((/ - PE)XXT>

= LIXI3 = o, (3XXT) = 3 (IXI3 = IXIB.4)



Best Affine Unbiased Estimator

For a linear regression model y = AT 3 + € where € ~ N(0,52V),
and a given matrix B, an affine unbiased estimator of BT 3 is an
estimator of the form 6 = X7y + ¢ satisfying E§ = BT 3.

Best: Var(#*) < Var(d), V0




Best Affine Unbiased Estimator

For a linear regression model y = AT 3 + € where € ~ N(0,52V),
and a given matrix B, an affine unbiased estimator of BT 3 is an
estimator of the form 6 = X7y + ¢ satisfying E§ = BT 3.

Best: Var(#*) < Var(d), V0

If a solution to

v(A,B,V) = i Lr XTVIX.

exists and unique, then §* = (X*)Ty.
V(Aa B, V) = _GD(A,B)(Oa V)

The optimal solution X* satisfies

w(s)- ()



Supervised Representation Learning

Consider a binary classification problem where we are given the
training data: (x1,y1),. .., (X, ¥n) € R™ x {—1,1}, and test data:
Xn41y -+« Xntt € R™.

Representation learning aims to learn a feature mapping
® : R™ — H that maps the data points to a feature space where
points between the two classes are well separated.

Kernel Methods: Instead of specifying the function ® explicitly,
kernel methods consider mapping the data points to a reproducing
kernel Hilbert space H so that the kernel matrix K € Sft, where
Kij = (®(x), ®(x;)), implicitly determines the mapping ®.



Supervised Representation Learning

Let K C S”jt be a set of candidate kernels. The best K € K can
be selected by maximizing its alignment with the kernel specified
by the training labels:

;
oy(y) = ygg{;% <K1:n,1:na yy > ,

where

V=KnNB,NS}, A= [O”X" 0 } ; and B = 0(pqp)x1-
0 lixe



Multi-task Learning

In multi-task learning, T sets of labelled training data

(Xe1, Ye1)s - - - (Xen, Yen) € R™ x R are given, representing T
learning tasks.

Assumption: A linear feature map hj(x) = (uj,x), i =1,...,m,
where U = (u1,...,un) is an m X m orthogonal matrix, and the

predictor for each task is fy(x) := (a¢, h(x)).
The multi-task learning problem is then

minau Sy 7 Le (veis (e, UTxe)) + | All3

where A= (a1,...,ar), HA”§1 is the square of the sum of the
2-norm of the rows of A, and L; is a loss function for each task.
Denote W = UA, then the nonconvex problem is equivalent to the
following convex problem [Argyriou-Evgeniou-Pontil 2006]:

minw o 0y 7 L (e, (we, X)) + 2uy(W, D) st. trD <1.
It is equivalent to

minw 01 ST L (v, (Wey xei)) + ul| W



Thank you !
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