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1. INTRODUCTION 

In this paper the intertwining number of representations of the symmetric 
group S, corresponding to arbitrary skew diagrams, is computed. The 
answer is obtained in terms of the combinatorial notion of a picture which is 
essentially contained in [l]. The proof is based on the combinatorial result 
on pictures generalizing the well-known Robinson-Schensted-Knuth 
correspondence. 

Let us give a more detailed account of the contents of this paper. In 
Section 2 we introduce the combinatorial terminology which will be used in 
the sequel. The main notions introduced here are those of a skew diagram 
(we call it simply a diagram), a partition diagram and a picture (i.e., a 
bijection between two diagrams satisfying some conditions). Our terminology 
is strongly influenced by [2]. 

In Section 3 the classical Littlewood-Richardson rule is formulated in 
terms of pictures (Proposition 1). This formulation, which I had learned from 
[ 11, is the cornerstone of the present paper. 

Section 4 contains the main results of the paper (Theorems 1 and 2). We 
assign to each diagram K with ]KJ = n the representation {K} of the 
symmetric group S,. Choose diagrams K, and Q. Theorem 1 claims that the 
intertwining number of representations {rcl} and {rcl} is equal to the number 
of pictures f:~r 2 rc2. With the account of the Littlewood-Richardson rule 
this Theorem follows immediately from combinatorial Theorem 2 which 
claims that there exists a natural bijection between pictures f: K, q IC* and 
pairs of pictures (fr : v 1 K,, 2 f : v 2 KJ, where v runs all partition diagrams. 

Theorem 2 is proved in Sections 5-8. In Section 5 we consider its 
particular case and show that in this case the bijection in Theorem 2 is a 
reformulation of the well-known Robinson-Schensted correspondence R. Its 
excellent exposition is given in [3] which will be our basic reference; the 
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more complete and modern exposition may be found in [2]. In Section 6 we 
reduce the general case of Theorem 2 to the certain statement on (roughly 
speaking one must verify that R maps pictures into pictures). The explicit 
construction of R, translating [3] into our termi~oiogy, is given in Section 9. 
The proof of Theorem 2 is completed in Section 8. 

In Sections 9-12 we give some applications of Theorems 1 and 2. I hope 
they clarify the relationships between combinatorics and the representation 
theory of symmetric groups. In Section 9 we give a simple combin~~o~~al 
proof of the well-known result expressing the Young product of represen- 
tations {KJ in terms of diagrams. In Section 10 we prove ~~o~ositi~~ 5 
allowing one to decompose the Young product of representations {K) into the 
direct sum of representations corresponding to connected diagrams; it seems 
to be new. As a corollary we obtain the amusing decomposition of the 
regular representation of S, . 

In Section 11 we discuss the well-known property of c~mm~tativity of the 
Young product. We show that this property follows im~~ediately from the 
equality {K} = (~~1, where ICY is obtained from PC by a central sy~rnet~~ 
about some center. We give the combinatorial proof of this equality wb 
of independent interest. It is based on Theorem 2 and one remar 
property of the Robinson-Schensted correspondence due to ~cb~tze~berge~. 

In conclusive Section 12 we show that the 
generalizing the Robinson-Schensted correspondence is in turn a particular 
case of Theorem 2. 

2. COMBINATORIAL TERMINOLOGY 

As usual, we denote by N the set of positive integer nu hers, by [ 1, H] the 
subset ( 1, 2,..., IZ 1 c N and by ) K] the number of elements of a finite set K. 

Define the partial ordering “&,” on N x N by 

(i, j) Gp (2, f) e i ,< i’, j <I. 

Call a diagram any finite subset K c N x N, which is convex witb respect to 
c‘<p’9, i.e. a, LJ E K and a GP c <, b imply c E K. A diagram containing the 
point (1, l), is called a partition diagram (some authors call our diagrams 
skew diagrams or skew Young diagrams; our partition diagrams are called 
Young or Ferrers diagrams). We identify the set of partition diagrams with 
the set of partitions A = (I, ,..., I,> (Zi E N, E, > i, > 0.. > I,); the diagram 
corresponding to A is {(i, j) E N X IN / i < r, j < Ii} and it is also denote 
1. It is easy to verify that if /z 2~ are two partition diagrams then their set- 
theoretic difference Ah is a diagram; conversely, each diagram may be 
represented in such a form. 
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Let K be a diagram. A subset K’ of K is called regular if x {, y for each 
x E K’, y E Ic\rc’; in particular, a point x E Ic is regular if it is a maximal 
element of K with respect to “$,“. Evidently, if K’ c IC is regular then 1~’ and 
K\K’ are diagrams. We say that K is connected if it cannot be divided into the 
disjoint union of two non-empty regular subsets. Clearly, each diagram K is 
uniquely up to an ordering represented as the disjoint union of connected 
diagrams; they are called the connected components of K. 

Let v be a partition diagram with (it / = II. Call a plane partition of shape v 
any morphism ~0: (v, <,) --+ (IN, <); this means that v, is a function v -+ N such 
that a, b E v, a & ZJ+ &a) <q(b). Let n= (pi, p2,...) be a sequence 
(pk E Z,); we say that q is of type 71, if Iyel(k)1 =pk for each k E N (we 
write also 7~ = ( p, ,..., p,) if pr+ i =P,.+~ = s.1 = 0). A plane partition a, is 
called row-strict, if it is strictly monotonous on each row of v (similarly for 
columns), a Young tableau if it is injective and a standard tableau if 
Im v, = [ 1, n]. 

Define the linear ordering “&” on N x N by 

(i, j) & (i’,p) o either i < i’ or i = i’, j >/. 

Let K be a diagram. We say that a map f: K -+ N X N satisfies (J) if f is a 
morphism of the relation “&” to the relation “G”, i.e., a, b E K, a Q, b 
imply that f(a) <,f(b). Call a picture any bijection f: K, z K, between two 
diagrams such that both f and the inverse bijection f -’ : K* z K~ satisfy (J). 
Trivially, the bijection inverse to a picture is a picture itself. Denote by 
Y(K, , K,) the set of pictures f: K, F 1~~. 

The notion of a picture in a less symmetric form is contained in [ 11. It 
plays the fundamental role in this work. 

3. LITTLEWOOD-RICHARDSON RULE 

It is well known that irreducible complex representations of S, are 
naturally numerated by the partition diagrams A with /A/ = n (see, e.g., [5]); 
denote by {d} the representation corresponding to I, For each partition 
diagrams d, ,u, v with 1,~ j + ] v] = )I ] = n denote by {,u} . {v} the induced 
representation 

w;@,xs,“, (IPI 0 {VI) 

of S, and by & = (PI, {PI . (~1) th e multiplicity of {d} in {p} e {v} (the 
representation {p } . {v} is called the Young product of {,u} and {v}). 

PROPOSITION 1. (Littlewood-Richardson rule). The coefficient dD may 
be non-zero only if A 1 p. In this case it is equal to the number of pictures 
f: v r Lb, i.e., g& = 19(v, Lb)\. 
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ne can easily deduce this proposition from the 
ittiewood-Richardson rule (see [5, Chap. VI, S 

appendix 2 to [6]; also obtained is the new proof of the rule just In the 
present formulation. 

Let us assign to each diagram K the representation {K) of the group Sisi. 
For this we represent IC as a\~, where /z X,LI are partition diagrams, and put 

according to Proposition 1 this assignment is well defined. Using the 
Frobenius recoprocity one may also define {iz\,u} by the formula 

(here k + I = n and E. is a partition diagram with 11; / = n>~ 
In these terms Proposition 1 means that the rnul~ip~i~~ty ({v13 {ICI) of the 

irreducible representation {v) in the representation {lc} equals iY(v. K>i* 
main result is the following generalization. 

(the sum runs ail partition diagrams v). So Theorem 1 follows from 
Proposition 1 and the combinatorial 

THEOREM 2. For every two diagrams K, i K, there exists a ~~t~~~~ 
bijection 

Denote the set in the right-hand side of (*> by LYh(2)(~1 9 IC& The proof of 
Theorem 2 is outlined in Sections 5-8. 
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5. THE CRUCIAL SPECIAL CASE 

At first consider the particular case of Theorem 2 when pi = K~ = I” = 
{(i, j) E n\l x N 1 i +j = yt + 1) (n E [N is fixed). Since any two points of P 
are incomparable with respect to “G,,” any map f: I” -+ n\i X N satisfies (J). It 
follows that any bijection f: I” 1 zn is a picture, so 9(zn, I”) is the set of 
permutations of zn. On the other hand, the set L@*)(z”, I”) consists of pairs 
(f, ,f2), where 4 is a bijection v 2 z” satisfying (J). Now consider the 
isomorphism I: (zn, <,) 3([ 1, n], <) ( more simply, I(i, j) = i). Identifying zn 
with [ 1, n] via this isomorphism, one identifies 9(zn, I”) with S, and 
9’*)(zn, 1”) with the set Sp’ of pairs (qr , q2) of standard tableaux of the 
same shape v (Iv] = n). So Theorem 2 in this case means that there exists a 
natural bijection 

R:S n 3 sf’. 

This bijection is well known; it is called the Robinson-Schensted 
correspondence. We see that Theorem2 gives a generalization of the Robin- 
son-Schensted correspondence. 

6. REFORMULATION OF THEOREM 2 

Now consider the general case of Theorem 2. Choose diagrams K, , IC* 
with JIG, / = ]u,] = n and denote by S(lc,, K*) the set of all bijections 
f: ICY r K* and by S@)(K,, K*) the set of pairs (f, : v 3 K,, f, : v z q), where v 
is a partition diagram and f, , f, satisfy (J). For each diagram K with I K I = IZ 
denote by I(K) the isomorphism of ordered sets ([ 1, n], <) -+ (K, <,). We 
identify S, with S(K,, q) via the map o +-+1(q) 0 o 0 I)‘; similarly, we 
identify Sr’ with S’*‘(IC,, K*) via the map (vr, (p2) t+ (1(x1) 0 qr, I&,) 0 p2). 
Using these identifications, the Robinson-Schensted correspondence 
R:S n 2; Sp’ gives rise to the bijection 

R : W,, K*) r s’*‘(q, x2). 

(more precisely, we use the correspondence S, 5 5’:’ differing from the one 
described in [3] by the transposition of Young tableaux). By definitions, 
9(‘c1, ICY) and 9(*)(1cr, IC*) are the subsets of S(rcl, KJ and S’*‘(K,, K,), 
respectively. To prove Theorem 2 it suffices to verify that R(Y(lc,, rc2)) = 
J@*)(K~, x2) so R gives the desired bijection. In other words, we must prove 
that R transforms the condition on f E S(IC~, IC*) that f and f -’ satisfy (J), 
into the condition on (f,, fJ E S”‘(rc,, K,) that f;' and f ;’ satisfy (J). 
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7. EXPLKIT DESCRIPTION OF 

Now we give the explicit description of the ~orres~~~de~~~ 
: S(Ki, KJ 5 P’(K, , K~), translating the statements from 131 into our 

notation. Let us introduce two algorithms. 

rihn I (Inserlion) 

ata. A partition diagram V, an injection f: v + b X n\i s&ltisfying CJj and 
a point a E N X li\i\Im_f Algorithm constructs the partition diagram W 
obtained from 1; by the addition of one point, and the injectiony: 9-+ IN x N 
satisfyying (J) and such that ImJ’= ImfU {a)- 

For each j E B let Cj = (X E v j pr,x =j{ be the jth column of v and 
nJ = maxXEc ,pr,x be its length. According to (J) one has 

Put a, = a and define successively the points xi, her, xzl az,..., xi, a, by the 
following rule. For j > 1 xj is the point of Cj with the minimal value ofpr, 
such that ~6~~~ cJf(xj); then aj is defined asf(xj). This process finishes when 
f(x) <J a, for all x E C,, , ; put also xi+ r = (n,, , + I, I-t I). 

Now put v= vu {xr+l } and define the map f: C-+ N X N, setting y=S on 
v\{x, ,..,, x,} and f(xj) = aj-! for j = 1, 2 ,...) I + 1. @learIy, p is injective and 
ImJ= Imf U (a}. It is easy to see that p~*rx, >pr,x, > --a >:pr,xi+, ; it 
follows that I is a partition diagram. The fact that 7 satisfies (J), is verified 
directly (cf. [?i 1). 

Data. A partition diagram V; an injectiony: U-t N x N satisfying (J) and 
a regular point x E V. Algorithm constructs the injection S: V\(X) --f N x N 
satisfying (J) and such that Imfc Imf: 

Let x E CI+ 1, i.e., pi-,x = I+ 1 (12 0). Put xlcl =x and define 
successively the points a,, xI, a,-, , xl- 1 ,.-.) a, by the foliowing rule: 
41j =S(.X~+ ?) and. xj is the point of Cj with the maximai value ofpr, such that 
f (xj) <J aj. It is easy to verify that this sequence is well defined, i.e., for 
1 <j ,< 1 there exists XJ E Cj such that &J) <J~i (one may nut 
-$ = (pr,-q+ 1) j>>. 

Define the map f: v’\{x] + N x N setting f = on !q{.x, )~~.> Xi+,) and 
j” (xj) = aj for I <j < 1. The properties off claimed ove are verified directly 
(cf. t311. 

Algorithms I and D are clearly inverse to each other in the obvious sense. 
Using them we define now the correspondence R : s(Kl, KZ) r S"'(K, p Kz): 

Let SE S(K~, K,), i.e., f is a bijection K, 3: x2. For each k = 1, 2,..., n put 
b, = gP(~~)(k) and ck =f(bJ (thus, {b, ,..., b,} = K, and b, cJ b, <J .-. <J 6,). 
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Define partition diagrams vi c v2 c a+- c v, with ]vkJ = k and bijections 
f (k’ . . vkr {C i,..., ck} by induction as follows: v, = ((1, l)}, f”‘((1, 1)) = c,, 
and fck) for k > 1 is obtained by Algorithm I applied to the map f’“-” and 
the point a = ck . Clearly, allfck’ satisfy (J). Put v = v, and fi =fcn) so v is a 
partition diagram and f, is a bijection v z ICY satisfying (J). Let {dk} = vk\vk-, 
(k = l,..., n). Define the bijection fi : v 3; pi by f,(d,) = b, (k = l,..., n). The 
properties of Algorithm I imply that d, is a regular point of vk ; it 
immediately results that f, satisfies (J). The correspondence R by definition 
assigns to f the pair (f, , f2) E S’2’(~, , x2). 

Let us describe now the inverse correspondence R - ‘: ,S’2’(~, , K,) z 
S(K,, q). Let (f, ,f2) E S’2’(~, , K,), i.e., f, :v r ICY and f2: v 2 ICY are 
bijections satisfying (J). Define points bl,..., b, E x1 as above and put 
d, =f;‘(b,), vk = Id,, 4 ,..., dk}. It is easy to see that all vk are partition 
diagrams and d, is a regular point of vk. Define the mapsfck’: vk-+ N X n\l by 
the downward induction: f (‘) =f2 and f (k’ for k < n is obtained by 
Algorithm D, applied to the map f (k+l) and the point x = dk+ i. Put 
{ck} = Im fck’\Im f (k- ‘) (k = l,..., n) and define the bijection f: lci 2; rc2 by 

f(h)= ck. Since Algorithms I and D are inverse to each other, it follows 
that the correspondence (fi, f2) k+ f is actually the inverse to R. 

We shall need the following important property of R, which is a refor- 
mulation of Theorem B from [3, 5.1.41. 

PROPOSITION 2 (Schiitzenberger). If R(f) = (fi, f2) then R(f-‘) = 
(f2YfJ 

8. END OF THE PROOF 

Now we are able to prove Theorem 2. 

BASIC LEMMA. (a) If in data of Algorithm I the map f is a picture, 
Im f U {a} is a diagram and a is its regular point then $ is a picture. 

(b) If in data of Algorithm D the map fis a picture then Im Aim f is 
the regular point of Im Sand f is a picture. 

Part (a) is proved in [6, Appendix 21; part (b) is proved similarly. 
The next Lemma follows immediately from definitions. 

LEMMA 1. Let f E S(?cc,, q). In notation of Section 7 f -’ satisfies (J) iff 
for each k = 1, 2,..., n the set {c 1 ,..., ck] is a diagram and ck is its regular 
point. 

Proof of .Theorem 2. We shall use the notation of Section 7. Let 
f E Y(lci, x2) and (fi ,f,) = R(f). Using Lemma 1 and Part (a) of the Basic 
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Lemma several times one obtains that all fCk” are pictures. IIn ~art~.~~~~~~ 
fL =S’*) is a picture. Now we apply this statement to the picture f -r instead 

oposition 2. Qne obtains that J$ is also a picture, hence, 

Conversely, let (f,, fi) E Td(*)(~r3 x2) and f= R-‘((fI, &)), i.e., f is the 
bijection K, r ICY corresponding to (&, fz) via the construction of Section 7. 
Using Part (b) of the Basic Lemma several times and then Lemma ? one 
obtains that f-r satisfies (J). Now we apply this statement to the pai: 
(fz, f,) instead of (f,, f2) and use Proposition 2, One obtains that $satisfies 
(I)‘), i.e., f is a picture. Therefore, R maps Y(K,, IC*) onto .YB(zf(~,, K~), and 
Theorem 2 is done. As indicated above, Theorem 1. is its immediate conse- 
quence. 

In the remainder of this paper we give some a eorems I 
and 2. 

9. YOUNG PRODUCT IN TERMS OF 

e shall give a simple combinatorial proof of the well-known fact that 
the representation {K} is isomorphic to the Young product of re~r~se~tatio 
corresponding to connected components of {K}. 

First of all note that according to Proposition 1 the ~e~rese~tat~o~ jlc j 
depends only on the shape of K, i.e., {K} = {K’} if K’ is a shift of K by some 
vector 2; E Z x Z. We shall write K - K’ if diagrams K a have the same 
shape and sometimes identify such diagrams. Let K, IC*, e diagrams; we 
say that K is a product of K, and I$ if K = K; ti K;, where 

and for each (ir, jr) E K{, (i2,j2) E K; one has t, < i,, j, > j,. 

determined uniquely by K, and K* ) we shall write lc E ICY 
K = K,K, (cf. [Ii?]). 

We deduce this proposition from the next ~ornb~~ato~~a~ 

PROPOSITION 4. Let ICI , Kz, K a?ld K” be ~~~~r~~§ aI2 

exists a natural bijection between the set Y(K”, K) oJr~~~t~~e§ f: K’ r K end 
the sei of triples (K’, fi, f,), where K’ is regular subset of Kg3 

j-1 E .YyKO\K',KJ andf, E Q(K', K*). 

ProoJ: Let IC = K’, U K; be the decomposition described above, and f, : 
K, ? K;, t,: K2 E$ K; be shifts. Assign to a triple (K’, 1; p f2) the mapf: ~8’ -a K 
which is equal to t, of, on K’\K’ and to t, 0 fz on K’; it foilows ~rnrned~a~e~~ 
from definitions that it is the desired bijection. 
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Proof of Proposition 3. It suffices to verify that ({A}, {ICY} s {x2}) = 
({{A}, {K}) for each partition diagram 1. The Frobenius reciprocity and 
definition of {3Lb} imply that 

(the sum is over partition diagrams y c A). By Theorem 1 the right-hand side 
of this equality is the number of triples (u, fi, f,), where iu is a partition 
diagram contained in II, fi E S@, xi), fi E S(Lb, K*). Clearly, regular 
subsets of ;1 are just nb so by Proposition 4 the number of triples @,f, , f2) 
is equal to the number of pictures f: J. 3 K. By Theorem 1, it equals 
(@I, {KJ). Q.E.D. 

COROLLARY. The representation {z”} (see Section 5) is regular represen- 
tation of S,. 

According to this Corollary and Theorem 1, for each diagram K with 
1 ICI = n the dimension of {K} equals the number of bijections f: K 1 zn 
satisfying (J). In particular, if I is a partition diagram then dim(A) is equal 
to the number of standard tableaux of shape A. 

10. DECOMPOSITION OF YOUNG PRODUCTS 

The next proposition allows one to decompose any representation {K} into 
the direct sum of representations corresponding to connected diagrams. 

PROPOSITION 5. Let u, and u2 be diagrams, x, be the maximal element 
of u1 and x2 be the minimal element of uz with respect to the relation “&“. 
Suppose x2=x1 + (1, - 1). Denote by ~1 and K; the shifts of K* by vectors 
(-1,O) and (0, l), respectively. Then 

hl * {G} = {KI u ICI?} = {XI u 410 {q u G} 

(see Fig. 1). . . j”) . . 
11 . . 

FIGURE 1 



LITTLEWOO~RICKARDSON RULE $1 

Proof: Let K be an arbitrary diagram. According to T eorem 1, me must 
verify that 

iy(% u K2, K)I = Ip% u ~4, K>/ + /~B(K~ u K;, K)/- (*I 

8ne has L?(K, U K,, K) = YT U ?', where yT (resp. 9”“) consists of ~~~t~~e~ 
f: K, u K2 r lc such that f(x2) <Jf(xI) (req. S(x,) <Jf(~2)). Let fE yT; 
define the bijectionf : icl U x2 CY K by T T 

ST I,%, =.A fT(x> =f(x + (Lq) r XEKj. 

It immediately follows from definition of a picture that the ~orres~o~den~e 
JT-+-tfT is a bijection between yT and 9(lcr U ~1, K), 
construct the bijection between 9”’ and 9'(~~ L' K;'? KY); it 

COROLLARY. Call a skew-hook of length n any subset ox N x N of t 
form ix, Y..., x,], where for k = 2,..., n either xk = xkeI 

1); clearly, each skew-hook is a diagram. 
representation of S, is the direct sum of representations {xj, where K mm ah! 

skew-hooks of various shape of leizgth n (it is easy to see that the ~~rnbe~ oj 
these skew-hooks is 2n-1). 

For the proof it suffices to apply (n - 1) times ~ro~osit~o~ 5, each time to 
the case when .rc2 consists of one point. 

11. ~~~~UTA~IV~TY OF YOUNG PRODUCT AND T E CENTRAL ~K~~~~ 

It is well known that Young product is commutative; one can easily prove 
it by means of the representation theory. We shall give the ~ornb~atori~~ 
proof of this fact which is of independent interest. The usual trick to prove 

the commutativity is to define some anti-involution, which in fact becomes 
identical. We apply this trick geometrically on the level of diagrams. 

For each Unite subset K c N X N denote by ~~ the set obtained fr 
the central symmetry s about some point (since we are intereste 
shape of ~2 only, the choice of the center does not matter). For each map 
f: x, 4 K* denote by f” the map s ofos: K; + ?c;* Clearly, (xS)S = lc and 
(f’)” =J The following properties are also trivial. 

fPRsPo§rTnoN 6. Let K, , K: be diagrams. 

(a) The correspondence f I-+ fs 
Y(K: ) K,) z 9(KS) K”2). 

(b) Iftc E K,K2 then KSE K;K;. 

induce§ 
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According to Part (b) of this Proposition and Proposition 3, the 
commutativity of the Young product follows from the next 

PROPOSITION 7. For each diagram TC one has {I?} = {K}. 

By Proposition 1, the combinatorial version of Proposition7 is the next 

PROPOSITION 8. For each diagram u and partition diagram v there 
exists the natural bijection 

s : 9(v, u) 7 9(v, KS) 

To define S we use the combinatorial algorithm which (as Algorithms I 
and D above) is the translation to our language of the algorithm S from [3]. 

Algorithm S 

Data. A partition diagram v and an injectionf: v--1 N X N satisfying (J). 
Algorithm constructs the regular point x E v and the injection 
f’ : v\(x) + N x N satisfying (J) and such that Imf’ = Imf\(b}, where b is 
the minimal point of Im f with respect to “<J)’ (notation b = min, Im f). 

Define the sequence xi, x2 ,..., x,, of points of v: set X, = (1, 1) and let xk 
for k > 1 be the point of {xkpl + (0, l), xk-, + (1,O)) with the minimal 
value off (with respect to “&“); the last point xp is the regular point of V. 
Put x = xp and define the injection f’ : v\(x) + n\i x n\l by f’ =f on 

V\lXl ,..., xp} and f/(x,) =f(x,+ ,) for k = 1,2 ,..., p - 1. The desired 
properties off’, i.e., that f’ satisfies (J) and Imf’ = Imf\{b}, are verified 
directly (cf. [3]). 

Now let v be a partition diagram and K a finite subset of n\i X N (not 
necessarily a diagram). Using Algorithm S and induction on IV] we shall 
define the map 

S : { bijections v 2 K satisfying (J)) 

+ {bijections v z IC’ satisfying (J)} 

Let f: v cvc be a bijection satisfying (J) and b = min, K. Let f' : v\{x} 5 Ic\{b} 
be the bijection obtained by applying Algorithm S to J By inductive 
assumption there is defined the bijection S(f’): v\(x) r (rc\{b})’ = rc”\{b”}. 
Define S(f): v r ~~ by S(f) = Scf’) on v\(x) and S(f)(x) = b”. One can 
easily verify that S(f) satisfies (J) as desired. 

We claim that S gives rise to the bijection desired in Proposition 8. It 
suffices to verify that S maps pictures into pictures and S2 = Id. The direct 
proof of these statements is rather difficult. We shall deduce them from 
Theorem 2 and the following remarkable result of Schiitzenberger, relating S 
with the Robinson-Schensted correspondence R (cf. [3, 5.1.4, Theorem D]). 
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s’*‘(K, , K2) R-’ s(K, , K2) - s(K; ) K;) -5 s(*yK; ) Kg7 

where the middle map is fhf”, acts by 

The equality S* = Id follows immediately from this ~r~~os~ti~~; to 
that S maps pictures into pictures if suffices to apply Theorem 2 and 
Proposition 6(a). This completes the proof of ~ro~o~~t~o~ 8. 

12. NUTH eORRESPONDENCE 

In conclusio we shall show that the nuth correspondence j4 17 
generalizing the obinson-Schensted correspon rice, is in turn a ~art~6ular 
case of Theorem 2. 

Denote by “I,, (s,,) the diagram consisting of a single row (co~~rn~) of 
length 12. For each partition A = (li ,..., 2,) denote by iA (E.~) any diagram such 
that 1.1 E :/ I’. E,, (&I E E[ . E,, ... 1 _ cfr)-see Section 9; a~tb~~gh t 
and t‘-,, is not determined uniquely, it does not matter in the sequel. We shall 
consider the particular case of Theorem 2 when each of AT] and K, is either of 
the form l.l or of the form sA . 

(a) There exists the natural bijection between the set 9(i1T lu) (reqx 
9(r,, Ed)) md the set of r x s-matrices K = (k,) with ~~t~ge~ ~~~~e~~t~~e 
entries (resp. with entries 0 and 1) such that JJzi klj = Eifor i = I,..., Y and 

IEi k, = mjjYor j= I,..., s. 

(b) There exists the natural bijection betweelt the set 9(v, iA) (resp. 
.B(v, En)) and the set of all column-strict (resp. row-strict) piane ~a~tit~~~~ of 
shape v and type A. 

In case (a) assign to each picture f: I.A 3 I, (resp. J”: EA -+ su) t 
= (k,) defined by k, = 1 f(z[i> CT E,~/ (resp. k, 

case (b) assign to each picture f: v --f zA (resp. S: v + CA) 
defined by 

qqx) = i when f(x) E z,, (resp. f(x) E cl,). 

e claim that these correspondences f E-S K and Si- v 
bijections. The direct proof of these facts is left to the re 
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According to this Proposition, one can rewrite Theorem 2 in case IC, = zl, 
lc2 = I, as follows: there exists the natural bijection between the set of 
matrices K = (k,), where k, E Z + , z k, = Zi and Ci k, = mj, and the set of 
pairs (qi , qQ of column-strict plane partitions of the same shape, q1 being of 
type I and q2 of type ,u. Similarly, in case IC, = Ed, ICY = a, one obtains the 
natural bijection between the set of matrices K = (k,) with entries 0 and 1 
such that Cj kij= li , Ci k, = mj, and the set of pairs (cp,, pp2) of plane 
partitions of the same shape, q~i being column-strict of type L and qz row- 
strict of type ,B. These correspondences are due to Knuth [4]. 

Theorem 1 and Proposition 10 allow one to compute the intertwining 
numbers ((~~1, (~~1) and ({znl, &,I). It is well known that {z,,} is the identity 
representation of S, and {sn} is the Signum character of S,. Hence by 
Proposition 3 {I~} is the representation of S,,, induced by the identity 
representation of the subgroup S,l x B.. x S,? (similarly for {en}). 
Intertwining numbers between these representations play the crucial role in 
the classical approach to the representation theory of symmetric groups. 
Moreover, in the recent work by Stanley [7] the whole representation theory 
of S, is derived directly from the Knuth correspondence. 
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