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1. INTRODUCTION

In this paper the intertwining number of representations of the symmetric
group S, corresponding to arbitrary skew diagrams, is computed. The
answer is obtained in terms of the combinatorial notion of a picture which is
essentially contained in [1]. The proof is based on the combinatorial result
on pictures generalizing the well-known Robinson—Schensted-Knuth
correspondence.

Let us give a more detailed account of the contents of this paper. In
Section 2 we introduce the combinatorial terminology which will be used in
the sequel. The main notions introduced here are those of a skew diagram
(we call it simply a diagram), a partition diagram and a picture (i.e., a
bijection between two diagrams satisfying some conditions). Our terminology
is strongly influenced by {2].

In Section 3 the classical Littlewood-Richardson rule is formulated in
terms of pictures (Proposition 1). This formulation, which I had learned from
[1], is the cornerstone of the present paper.

Section 4 contains the main results of the paper (Theorems 1 and 2). We
assign to each diagram x with |k|=n the representation {k} of the
symmetric group S,. Choose diagrams x, and «,. Theorem 1 claims that the
intertwining number of representations {k,} and {x,} is equal to the number
of pictures fix, ~ k,. With the account of the Littlewood~Richardson rule
this Theorem follows immediately from combinatorial Theorem 2 which
claims that there exists a natural bijection between pictures f: k, = k, and
pairs of pictures (f: v~ x, f3: v~ K,), where v runs all partition diagrams.

Theorem 2 is proved in Sections 5-8. In Section5 we consider its
particular case and show that in this case the bijection in Theorem 2 is a
reformulation of the well-known Robinson—Schensted correspondence R. Its
excellent exposition is given in [3] which will be our basic reference; the
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more complete and modern exposition may be found in [2]. In Section 6 we
reduce the general case of Theorem 2 to the certain statement on R (roughly
speaking one must verify that R maps pictures into pictures). The explicit
construction of R, translating [3] into our terminology, is given in Section 7.
The proof of Theorem 2 is completed in Section 8.

In Sections 9-12 we give some applications of Theorems ! and 2. I hope
they clarify the relationships between combinatorics and the representation
theory of symmetric groups. In Section 9 we give a simple combinatorial
proof of the well-known result expressing the Young product of represen-
tations {x} in terms of diagrams. In Section 10 we prove Proposition 5
allowing one to decompose the Young product of representations {x} into the
direct sum of representations corresponding to connected diagrams; it seems
to be new. As a corollary we obtain the amusing decomposition of the
regular representation of .S,,.

In Section 11 we discuss the well-known property of commutativity of the
Young product. We show that this property follows immediately from the
equality {x} = {x°}, where k° is obtained from x by a central symmetry
about some center. We give the combinatorial proof of this equality which is
of independent interest. It is based on Theorem 2 and one remarkable
property of the Robinson—Schensted correspondence due to Schiitzenberger.

In conclusive Section 12 we show that the Knuth correspondence [4]
generalizing the Robinson—Schensted correspondence is in turn & particular
case of Theorem 2.

2. COMBINATORIAL TERMINGLOGY

As usual, we denote by N the set of positive integer numbers, by [1, ] the
subset {1,2,...,n} =N and by |x| the number of elements of a finite set .
Define the partial ordering “<,” on N X N by

LGN =i<lJ<T-

Call a diagram any finite subset ¥ © N X N, which is convex with respect to
“L e a,bEx and a, ¢, b imply c€ k. A diagram containing the
point {1, 1), is called a partition diagram (some authors call our diagrams
skew diagrams or skew Young diagrams; our partition diagrams are called
Young or Ferrers diagrams). We identify the set of partition diagrams with
the set of partitions A= (l;,...0.) ((EN, ,>21,>--->1); the diagram
corresponding to 4 is {(i, Y ENXN|i<r, j</;} and it is also denoted by
A. It is easy to verify that if A D u are two partition diagrams then their set-
theoretic difference A\u is a diagram; conversely, each diagram may be
represented in such a form.
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Let x be a diagram. A subset k¥’ of x is called regular if x {p y for each
X €K', y € k\K'; in particular, a point x € k is regular if it is a maximal
element of x with respect to “<,”. Evidently, if ' < k is regular then x’ and
K\x' are diagrams. We say that x is connected if it cannot be divided into the
disjoint union of two non-empty regular subsets. Clearly, each diagram x is
uniquely up to an ordering represented as the disjoint union of connected
diagrams; they are called the connected components of x.

Let v be a partition diagram with |v| = n. Call a plane partition of shape v
any morphism ¢: (v, ,) = (N, <); this means that ¢ is a function v— N such
that a,b€v, a<,b=¢(a)<ob). Let n=(p,.p,...) be a sequence
(P € Z,); we say that ¢ is of type 7, if @~ '(k)| =p, for each k €N (we
write also 7=(p,,.. p,) if p,.1=p,,,=---=0). A plane partition ¢ is
called row-strict, if it is strictly monotonous on each row of v (similarly for
columns), a Young tableau if it is injective and a standard tableau if
Im g =[1,n].

Define the linear ordering “<;” on N X N by

i, )N, ])either i< ori=1i, j>Jj.

Let x be a diagram. We say that a map /: k- N X N satisfies (J) if fis a
morphism of the relation “g,” to the relation “g,”, ie., a,bE kK, a<,b
imply that f(a) <, f(b). Call a picture any bijection f: k, = k, between two
diagrams such that both f and the inverse bijection f~': k, ~ k, satisfy (J).
Trivially, the bijection inverse to a picture is a picture itself. Denote by
F(ky,K,) the set of pictures f: k| ¥ K,.

The notion of a picture in a less symmetric form is contained in [1]. It
plays the fundamental role in this work.

3. LITTLEWOOD—RICHARDSON RULE

It is well known that irreducible complex representations of S, are
naturally numerated by the partition diagrams A with [A[=n (see, e.g., [5]);
denote by {A} the representation corresponding to A. For each partition
diagrams A, g, v with |u|+|v|=|A|=n denote by {u}- {v} the induced
representation

Ind3n

S|yl X Siy| ({u} @ {v})

of S, and by gt = ({A}, {u} - {v}) the multiplicity of {A} in {u} - {v} (the
representation {u} - {v} is called the Young product of {u} and {v}).

ProrosITION 1. (Littlewood-Richardson rule). The coefficient g\, may
be non-zero only if A > u. In this case it is equal to the number of pictures

v A\ ie, gr, =21, A\l
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One can easily deduce this proposition from the classical formulation of
the Littlewood-Richardson rule (see [5, Chap. VI, Theorem V). It is done in
Appendix 2 to [6]; also obtained is the new proof of the rule just in the
present formulation,

4. MAN RESULTS

Let us assign to each diagram « the representation {x} of the group §,,,.
For this we represent k as A\u, where A > u are partition diagrams, and put

Kh=> gr, - v

v

according to Proposition 1 this assignment is well defined. Using the
Frobenius recoprocity one may also define {A\u} by the formula

Resgrosfdl= Y @ {A\u
lul =k

(here k +/=n and 1 is a partition diagram with {A|=n).

In these terms Proposition 1 means that the multiplicity {{v}, {x}) of the
irreducible representation {v} in the representation {x} equals [7(v, ). Our
main result is the following generalization.

THEOREM 1. For every two diagrams x, and x, the intertwining number
({reehs ey} equals |7 (k1. K5)l-
By definition,

b iy =2 (b i) - (vl diah)

v

{(the sum runs all partition diagrams v). So Theorem 1 follows from
Proposition 1 and the combinatorial

THEGREM 2. For every two diagrams K,, k, there exists a natural
bijection

R: Pk, k) U (2@, 1) X P, K3)) ()

between pictures fix,~k, and the ordered pairs of pictures
(fi:v~K,,[,:vXK,), where v runs over all partition diagrams.

Denote the set in the right-hand side of (*) by .#¥(x,, x,). The proof of
Theorem 2 is outlined in Sections 5-8.
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5. THE CruciAL SpecIAL CASE

At first consider the particular case of Theorem 2 when x, =k, =1"=
{GHENXN|i+j=n+1} (n€N is fixed). Since any two points of "
are incomparable with respect to “<,” any map f: 1" — N X N satisfies (/). It
follows that any bijection f:1" ~ 1" is a picture, so .Z°(1",1") is the set of
permutations of 1”. On the other hand, the set .#*(1",1") consists of pairs
(f1,/2), where f; is a bijection v~ " satisfying (J). Now consider the
isomorphism 7: (", <) ~([1, n], <) (more simply, I(i, /) = i). Identifying 1"
with [1,n] via this isomorphism, one identifies .#°(:",1") with S, and
Y"1 with the set S of pairs (¢, ,0,) of standard tableaux of the
same shape v (|v{ =n). So Theorem 2 in this case means that there exists a
natural bijection

R:S,~S2.

This bijection is well known; it is called the Robinson-Schensted
correspondence. We see that Theorem2 gives a generalization of the Robin-
son-Schensted correspondence.

6. REFORMULATION OF THEOREM 2

Now consider the general case of Theorem 2. Choose diagrams x, , k,
with |x,|=]|k,|=n and denote by S(x,,x,) the set of all bijections
Sk, ~ kK, and by SP(k,, k,) the set of pairs (f,:v~k,,fo:v~K,), where v
is a partition diagram and f}, f, satisfy (J). For each diagram x with |x|=n
denote by I(x) the isomorphism of ordered sets ({1, r], <)— (k,<,). We
identify S, with S(x,, k,) via the map o — I(x,) o 6 o I(x;) " '; similarly, we
identify S with S®(x,, x,) via the map (@,, 9,) > (I(x,) 0 @,, I(x,) © @,).
Using these identifications, the Robinson—Schensted correspondence
R:S,3 S gives rise to the bijection

R:S(k, k)~ ;S"z’(xl JKa).

(more precisely, we use the correspondence S, S differing from the one
described in [3] by the transposition of Young tableaux). By definitions,
P(k,,Kk,)-and P P(k,,k,) are the subsets of S(x,,x,) and SP(k,, k,),
respectively. To prove Theorem 2 it suffices to verify that R(Z(x,, k,)) =
FP(k,,K,) so R gives the desired bijection. In other words, we must prove
that R transforms the condition on f€ S(k,, k,) that f and ' satisfy (J),
into the condition on (f}, f5) € SP(k,, k,) that f7! and £, ! satisfy (J).



LITTLEWOOD—RICHARDSON RULE 87
7. ExpLiciT DESCRIPTION OF R

Now we give the explicit description of the correspondence
R:S(x;, k)~ §¥(k,, x,), translating the statements from [3] into our
notation. Let us introduce two algorithms.

Algorithm I (Insertion)

Data. A partition diagram v, an injection /: v — N X N satisfying (J} and
a point @ € N X N\Im/. Algorithm constructs the partition diagram ¥
obtained from v by the addition of one point, and the injection /: §— N X N
satisfying (J) and such that Im f= Im fU {g}.

For each jEN let C;={x€v|pr,x=j} be the jth column of v and
;= max,.c, prx be its length. According to (/) one has

UL <G S (2 7)) <o <, S (g )

Put a, =a and define successively the points x,, a,, x;, 2,,..., X;, &; by the

following rule. For j > 1 x; is the point of C; with the minimal value of pr,

such that a; | <, f(x;); then a; is defined as f (x;}. This process finishes when
Sx) <, a for all x € C,H, put also x; = (n;,  + 1,1+ 1)

Now put 7=vU {x,,,} and define the map f: 7= N X N, setting f=/f on
W{X o, x,} and f(x)=a;_, for j=1,2,.,1+ L. Clearly,fls injective and
Im f=ImfU {a}. It is easy to see that pix, >prx,> - ZprX, s it
follows that ¥ is a partition diagram. The fact that f satisfies (J), is verified
directly (cf. [3]).

Algorithm D (Deletion).

Data. A partition diagram 7, an injection /: 7— N X N satisfying (/) and
a regular point x € y. Algorithm constructs the injection f: P\{x} >N X N
satisfying (J) and such that Imfc Im f.

Let x&€C,,,, ie, prox=I1+1 (i20). Put x,.,=x and define
successively the points a;,Xx;,a;_;sX;_s-s Gy by the following rule:
a;=f(x;, ) and x; is the point of C; with the maximal value of pr, such that
f (x;) <ya;. It is easy to verify that this sequence is well defined, i.e., for
1</ there exists xj€C; such that f{(x})<,a; (one may put
xj=(priX; 1, J))- -

Define the map f:7\{x}> N XN setting f=f on #\{xyy...x;.,} and
S(x;)=a; for 1 <j< I The properties of f claimed above are verified directly
(cf. [3]).

Algt])rithms I and D are clearly inverse to each other in the obvious sense.
Using them we define now the correspondence R :8(x;, k)~ Pk, «,).
Let /€ S(kx,, x,), l.e.,, f is a bijection x,x k,. For each k=1, 2,.,n put
by = Ik, )(k) and ¢, =f(b,) (thus, {b;,.. b, } =, and b, <, b, <; - <, b,)



88 A. V. ZELEVINSKY

Define partition diagrams v, <v,c-..- < v, with |v,|=k and bijections
S® v, x (e} i} by induction as follows: v, = {(1, )}, fV((1,1)) =¢,,
and f® for k > 1 is obtained by Algorithm I applied to the map f*~" and
the point a = ¢, . Clearly, all f* satisfy (J). Put v=v, and f, =/ " sovis a
partition diagram and f, is a bijection v ~ k, satisfying (J). Let {d,} = v,\v,_,
(k= 1,..., n). Define the bijection f:v~«, by fi(d,)=b, (k= 1....,n). The
properties of Algorithm1 imply that d, is a regular point of v,; it
immediately results that f; satisfies (J). The correspondence R by definition
assigns to f the pair (f, f;) € SP(k,, k,).

Let us describe now the inverse correspondence R ': S@(x,, x,)~
S(ky,k,). Let (fi,f,)€8P(k,,x,), ie, fivxk, and fy:v~k, are
bijections satisfying (J). Define points b,,..,b, E K, as above and put
dy=f1"(by), vi=1d,d,ss d). 1t is easy to see that all v, are partition
diagrams and d, is a regular point of v,. Define the maps f®:v, = N X N by
the downward induction: f™ =f, and f* for k <n is obtained by
Algorithm D, applied to the map f**" and the point x=d,,,. Put
legd =TIm f¥N\Im f*=Y (k=1,..,n) and define the bijection fix, ~ Kk, by

- f(by)=c,. Since Algorithms1 and D are inverse to each other, it follows
that the correspondence (f, f,) — f is actually the inverse to R.

We shall need the following important property of R, which is a refor-

mulation of Theorem B from [3, 5.1.4].

PROPOSITION 2 (Schiitzenberger). If R(f)=(f.f,) then R(f )=
(/25 f1)-

8. END OF THE PROOF
Now we are able to prove Theorem 2.

Basic LEmmA. (a) If in data of Algorithm1 the map f is a picture,
Im fU {a} is a diagram and a is its regular point then f is a picture.
(b) Ifin data of Algorithm D the map [ is a picture then Im f\lm f is
the regular point of Im f and f is a picture.
Part (a) is proved in [6, Appendix 2]; part (b) is proved similarly.
The next Lemma follows immediately from definitions.

LemMmA 1. Let f€ S(k,, x,). In notation of Section 7 f~" satisfies (J) iff
Jor each k=1,2,..,n the set {cy,..,c,} is a diagram and ¢, is its regular
point.

Proof of Theorem 2. We shall use the notation of Section 7. Let
SE€ Pk, k,) and (f}, f5) = R(f). Using Lemma 1 and Part (a) of the Basic
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Lemma several times one obtains that all /¥ are pictures. In particular,
fo=/F" is a picture. Now we apply this statement to the picture /' instead
of /" and use Proposition 2. One obtains that f; is alsc a picture, hence,
(f1:/2) € 7P (K, k).

Conversely, let (f1,/,) € ZPk,,k,) and f=R™Y(f,, f»)), i.e, [ is the
bijection x, ~ k, corresponding to {f,, f;) via the construction of Section 7.
Using Part (b) of the Basic Lemma several times and then Lemma I one
obtains that /™' satisfies (J). Now we apply this statement to the pair
(/3. /1) instead of (f,, f;) and use Proposition 2. One obtains that f satisfies
(J), i.e, f is a picture. Therefore, R maps .#(x,, ,) onto 7Pk, x,), and
Theorem 2 is done. As indicated above, Theorem 1 is its immediate conse-
quence.

In the remainder of this paper we give some applications of Theorems 1
and 2.

9. YoUuNnG ProbuCT IN TERMS OF DIAGRAMS

We shall give a simple combinatorial proof of the weil-known fact that
the representation [k} is isomorphic to the Young product of representations
corresponding to connected components of {k}.

First of all note that according to Proposition 1 the representation {x}
depends only on the shape of k, ie., {k} = {x'} if ¥’ is a shift of x by some
vector v € Z X Z. We shall write k ~ k' if diagrams x and ' have the same
shape and sometimes identify such diagrams. Let x, x,, x, be diagrams; we
say that x is a product of x; and «, if k = x| U x}, where x| ~x,, K} ~x,
and for each (i, j,) € ki, (iy, j;) € x} one has i, <i,, f, > j,. Since x is not
determined uniquely by x, and x,, we shall write x € x,x, instead of
K=k, (cf. [2]).

ProposITION 3. If kK €Ek,x, then the Young product {x,} - {x,} (see
Section 3) is isomorphic to {k}.

We deduce this proposition from the next combinatorial

ProOPOSITION 4. Let Kk, ,k,,k and k° be diagrams and x € ki,. There
exists a natural bijection between the set 7(x°, k) of pictures [+ k°~ x and
the set of triples («',f,,f,), where ' is regular subset of K°,
Fi € PN\, k) and f, € P(K', K,).

Proof. Let k=rx Uk, be the decomposition described above, and 7;:
Ky~ K}, t,: K, K} be shifts. Assign to a triple (x’, /| , f3) the map f: kK
which is equal to ¢, o f; on k°\x’ and to 7, o f, on «’; it follows immediately
from definitions that it is the desired bijection.
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Proof of Proposition 3. Tt suffices to verify that ({i}, {x,} - {x,})=
({{A}, {x}) for each partition diagram A. The Frobenius reciprocity and
definition of {A\u} imply that

(AL e} - i) =20 Qs {ra ) - (A, {21)

(the sum is over partition diagrams ¢ < A). By Theorem 1 the right-hand side
of this equality is the number of triples (u, f;,/f,), where 4 is a partition
diagram contained in A, f; € P, k), [, € Z(A\y, k,). Clearly, regular
subsets of 1 are just A\u so by Proposition 4 the number of triples (u,f,, f3)
is equal to the number of pictures f:1~x. By Theorem 1, it equals

(A KD, QED.
COROLLARY. The representation {1"} (see Section 5) is regular represen-
tation of S,,.

According to this Corollary and Theorem 1, for each diagram x with
|| =n the dimension of {k} equals the number of bijections f:x~ "
satisfying (J). In particular, if 4 is a partition diagram then dim{4} is equal
to the number of standard tableaux of shape A.

10. DECoOMPOSITION OF YOUNG PrRODUCTS

The next proposition allows one to decompose any representation {x} into
the direct sum of representations corresponding to connected diagrams.

PROPOSITION 5. Let x, and k, be diagrams, x, be the maximal element
of K, and x, be the minimal element of k, with respect to the relation “<,”.
Suppose x,=x; + (1, — 1). Denote by K; and k, the shifts of k, by vectors
(—1,0) and (0, 1), respectively. Then

{’ey} - {0} = i, Uty = (i, U]} @ (K, Uiy}

=
)

(see Fig. 1).

FIGURE 1
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Progf. Let k be an arbitrary diagram. According to Theorem 1, one must
verify that

[T, Ik, 1) = | P, U k], k)| + [P, Uiy, k) *)

One has P(x, Uk,, k) =2 U.9", where #! (resp. #~) consists of pictures
Sir, Uk, ~ i such that f(x,) <, f(x,) (resp. f(x,) <, f{x,). Let f€.#!;
define the bijection fT: k, U k] ~ x by

fMe=rf [1@)=fx+(1,0) for x€x].

It immediately follows from definition of a picture that the correspondence
S—=fT is a bijection between 2! and P, Uk}, k). Similarly, one can
construct the bijection between .%°” and P(k;, U K3, k}); it proves (*). Q.E.D.

CoroLLARY. Call a skew-hook of length n any subset of N X N of the
Jorm  {x,,...x,}, where for k=2,..,n either x,=x,._,+(1,0) or
x,=x,_, + (0, — 1); clearly, each skew-hook is a diagram. Then regular
representation of S, is the direct sum of representations ik}, where K runs ail
skew-hooks of various shape of length n (it is easy to see that the number of
these skew-hooks is 2" 1),

For the proof it suffices to apply (n — 1) times Proposition 5, each time 1o
the case when x, consists of one point.

11. COMMUTATIVITY OF YOUNG PRODUCT AND THE CENTRAL SYMMETRY

It is well known that Young product is commutative; one can easily prove
it by means of the representation theory. We shall give the combinatorial
proof of this fact which is of independent interest. The usual trick to prove
the commutativity is to define some anti-involution, which in fact becomes
identical. We apply this trick geometrically on the level of diagrams.

For each finite subset x <N X N denote by x° the set obtained from x by
the central symmetry s about some point (since we are interested in the
shape of x° only, the choice of the center does not matter). For each map
Six = x, denote by f° the map sofos: xj—kj. Clearly, (') =k and
(/) =/ The following properties are also trivial.

PROPOSITION 6. Let k,, K, be diagrams.

(a) The correspondence  fi— f° induces the  bijection
Py, k2 PR, ).

(b) If k € Kk, then k° € K3k .



92 A. V. ZELEVINSKY

According to Part (b) of this Proposition and Proposition3, the
commutativity of the Young product follows from the next

ProOPOSITION 7. For each diagram x one has {k’} = {k}.

By Proposition 1, the combinatorial version of Proposition7 is the next

ProPOSITION 8. For each diagram x and partition diagram v there
exists the natural bijection

S PV Kk)x P, K)

To define S we use the combinatorial algorithm which (as Algorithms I
and D above) is the translation to our language of the algorithm S from [3].

Algorithm S

Data. A partition diagram v and an injection f: v— N X N satisfying (J).
Algorithm constructs the regular point x&v and the injection
S iv\{x} > N X N satisfying (J) and such that Im f/ = Im f\{b}, where b is
the minimal point of Im f with respect to “<,” (notation b = min, Im f).

Define the sequence x,, X;,..., x, of points of v: set x, = (1, 1) and let x,
for k> 1 be the point of {x,_,+(0,1),x,_,+ (1,0)} with the minimal
value of f (with respect to “<,”); the last point x, is the regular point of ».
Put x=x, and define the injection f’:W\{x}->NXN by f'=f on
W{xp,en X, and  f7(x,)=f(x,,) for k=1,2,.,p—1. The desired
properties of f7, i.e., that f* satisfies (/) and Imf’ =Im f\{b}, are verified
directly (cf. [3]).

Now let v be a partition diagram and k a finite subset of N X N (not
necessarily a diagram). Using Algorithm S and induction on |v| we shall
define the map

S': {bijections v ~ i satisfying (J)}}
- {bijections v = k* satisfying (/)}

Let f: vk be a bijection satisfying (J) and b = min, x. Let /7 : ¥\{x} ~ «\{b}
be the bijection obtained by applying Algorithm S to f. By inductive
assumption there is defined the bijection S(f"): v\{x} ~ (k\{b})’ = x*\{b°}.
Define S(f):v~«® by S(f)=S(f") on v\{x} and S(f)(x)= 5" One can
easily verify that S(f) satisfies (J) as desired.

We claim that S gives rise to the bijection desired in Proposition 8. It
suffices to verify that S maps pictures into pictures and §?=Id. The direct
proof of these statements is rather difficult. We shall deduce them from
Theorem 2 and the following remarkable result of Schiitzenberger, relating S
with the Robinson—Schensted correspondence R (cf. [3, 5.1.4, Theorem D).
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ProposiTION 9. Let Kk, k, be diagrams. Then the composition
8Py, 10,) 2D S(ic,, k) —— S(ic), 15) —2 S Pt 163),
where the middle map is f— [*, acts by

U ) (S, S(UL)).

The equality §? = Id follows immediately from this Proposition; to prove
that § maps pictures into pictures if suffices to apply Theorem 2 and
Proposition 6(a). This completes the proof of Proposition 8.

12. KNUTH CORRESPONDENCE

In conclusion we shall show that the Knuth correspondence [4],
generalizing the Robinson—Schensted correspondence, is in turn a particular
case of Theorem 2.

Denote by 1, (¢,) the diagram consisting of a single row (column) of
length n. For each partition A = (/,,..., [,) denote by ¢, {(¢,) any diagram such
thati; €1/ -1y (8, €&, - &, -+ & )—see Section 9; although the shape of 1,
and ¢, is not determined uniquely, it does not matter in the sequel. We shail
consider the particular case of Theorem 2 when each of x, and «, is either of
the form 1, or of the form ¢, .

Proposmmion 10, Let A=(I,..., ), g = (my ..., m,) be partitions, and v
be a partition diagram.

(a) There exists the natural bijection between the set F(i,,1,) (resp.
Py, 6,)) and the set of r X s-matrices K = (k;;) with integer nonnegative
entries (resp. with entries O and 1) such that )5, k; =1, for i=1,..,r and

o ky=m; for j=1,.,5s.

(b) There exists the natural bijection between the set F{(v,1,) (resp.

Py, &, )) and the set of all column-strict (resp. row-strict) plane partitions of

shape v and type A.

Proof. In case (a) assign to each picture f:1, =1, (resp. /21, ¢,) the
matrix K = (k;) defined by k;;=|f(z,) N1, | (resp. ky=1/(z) N e, ) In
case {b) assign to each picture f:v— 1, (resp. f1v—¢,) the map p:v— N
defined by

o(xy=1i when f(x) € 1, (resp. f(x)E¢;)

We claim that these correspondences f+— K and /- ¢ are just the desired
bijections. The direct proof of these facts is left to the reader.
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According to this Proposition, one can rewrite Theorem 2 in case x, =¢,,
k,=1, as follows: there exists the natural bijection between the set of
matrices K = (k;;), where k; €7, , Y k;;=[; and }; k;; = m;, and the set of
pairs (¢,, ¢,) of column-strict plane partitions of the same shape, ¢, being of
type A and ¢, of type . Similarly, in case x, =1,, k, = €, one obtains the
natural bijection between the set of matrices K = (k;;) with entries O and 1
such that )k, =1, 3’ k;=m;, and the set of pairs (p,,¢,) of plane
partitions of the same shape, ¢, being column-strict of type 4 and ¢, row-
strict of type . These correspondences are due to Knuth [4].

Theorem 1 and Proposition 10 allow one to compute the intertwining
numbers ({1,}, {z,}) and ({13}, {&,}). It is well known that {z,} is the identity
representation of S, and {g,} is the signum character of S,. Hence by
Proposition 3 {1,} is the representation of S, induced by the identity
representation of the subgroup S, X .-+ X §, (similarly for ({e;}).
Intertwining numbers between these representations play the crucial role in
the classical approach to the representation theory of symmetric groups.
Moreover, in the recent work by Stanley |7] the whole representation theory
of S, is derived directly from the Knuth correspondence.
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