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Floquet–Bloch theory

We consider periodic operators:

P = f (Dx) + V (x), x ∈ R, f ,V ∈ C∞(R,R),

V (x + 1) = V (x), f (ξ) ≥ |ξ|2 for |ξ| � 1.

By periodicity, spaces of quasi-periodic functions

L2ξ(R)
def
= {u ∈ L2loc(R) : u(x + 1) = e iξu(x)}

are invariant. Hence L2ξ(R) admits a basis of eigenvectors of P with
eigenvalues

λ0(ξ) ≤ λ1(ξ) ≤ ...
The spectrum of P on L2(R) is absolutely continuous, equal to

{λj(ξ) : ξ ∈ [0, 2π), j ∈ N}.



Example 1: V ≡ 0, P = f (Dx)

In the case V ≡ 0, the eigenvalues of P on L2ξ(R) are

{f (ξ + 2π`) : ` ∈ Z}.

We can then plot dispersion curves of P using the multi-valued function
ξ 7→ f (ξ mod 2π).
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Example 2: dimer models

Assume that f and V admit additional symmetries:

f (ξ) = f (−ξ), V (x + 1/2) = V (x).

Basic example: f (ξ) = ξ2, V ≡ 0.
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There is a linear crossing: a Dirac point appears. Dirac points correspond
to conical intersections of dispersion surfaces.



Dirac points

Mathematically, Dirac points are pairs (ξ?,E?) such that there exists j , ν
with

λj(ξ) = E? + ν|ξ − ξ?|+ O(ξ − ξ?)2

λj+1(ξ) = E? − ν|ξ − ξ?|+ O(ξ − ξ?)2.
(1)

Their theoretical existence was postulated by Hamilton. Solutions of
Dtu = Pu supported at t = 0 near ξ? are expected to approximately
evolve according to

Dtu = (E? + ν|Dx |)u. (2)

Tremendous amount of work in the physics litterature.

Mathematical work: [Berry ’80s], [Gérard ’90], [Colin de Verdière ’91],
[Fefferman–Weinstein ’12] (genericity of Dirac points, rigorous
formulation of (??) as a matrix Dirac equation), [Lee ’14] (point
scatterers), [Fefferman–Lee-Thorp–Weinstein ’16, ’17] (perturbative
results, tight binding regimes), [Berkolaiko–Comech ’16]
(symmetry-theoretic approach), [Kuchment ’16] (survey),...



Physical motivation

Mathematically speaking a material is an insulator at energy ≤ E if the
corresponding operator has a spectral gap around E .
In dimer models Dirac points come from the existence of two symmetries:

x 7→ −x , x 7→ x + 1/2

Break the second symmetry by adding δ cos(2πx): P = f (Dx) becomes

f (Dx) + δ cos(2πx).

An energy gap of size δ opens near the Dirac energy. The material
becomes an insulator at energy ≤ E?.
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Introducing phase defects

We study periodic structures with a phase defect. The typical potential is

δκ(δx) cos(2πx) : κ(x) = ±1 for x near ±∞.

The potential ”behaves” like cos(2πx) at both ends but acquires a phase
defect when going from −∞ to +∞. The periodic structure is
”stretched” in the middle.

x

κ(x) cos(2πx)

− cos(2πx)

We set P = f (Dx) + δκ(δx) cos(2πx). The essential spectrum is
characterized by the asymptotic operators:

P±δ = f (Dx)± δ cos(2πx), x near ±∞

Hence P has spectral gaps near Dirac energies of f (Dx).



Existing results

Recall that D2
x has a Dirac point at (π, π2).

Theorem [Fefferman–Lee-Thorp–Weinstein ’14]
For δ sufficiently small, the operator D2

x + δκ(δx) cos(2πx) has an
eigenvalue of energy π2 + O(δ2).
The corresponding eigenstate takes the form

u(x) = α+(δx)e iπx + α−(δx)e−iπx + ...

where the vector α = (α−, α+) solves the Dirac equation

Dα = 0, D def
=

[
1 0
0 −1

]
Dy +

[
0 1
1 0

]
κ(y)

Comments:

I u ∈ L2 because (−1, 1) is an essential spectrum gap of D.

I This mode is topologically protected: it persists under arbitrarily
large perturbations of κ on compact sets.

I This supports the bulk/edge correspondence.
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Comments:

I The theorem still holds when D2
x is replaced by D2

x plus an even
cosine series and cos(2πx) is replaced by an odd cosine series.

I This theorem is the basis for deeper results on topologically
protected modes in honeycomb lattices.



The multiscale analysis of [F–L-T–W ’14, ’16]

We derive formally this result with multiscale analysis. We look for an
”linear” combination of Dirac eigenstates with slowly varying coefficients:

u(x , y) = α+(y)e iπx + α−(y)e−iπx + δv(x , y) + ..., y = δx .

In the variables (x , y) ∈ S1 × R:

D2
x + δκ(δx) cos(2πx) 7→ (Dx + δDy )2 + δκ(y) cos(2πx).

Plug u in RHS and group terms of order 1, δ, ...:∑
±
α±(y)(D2

x − π2)e±iπx = 0

(D2
x − π2)v +

∑
±

2Dyα±(y) · Dxe
±iπx + α±(y)κ(y) cos(2πx)e±iπx = 0.

The second equation has a solution iff the second term is
L2x(S1)-orthogonal to e±iπx . Thus we must have〈∑
±

2Dyα±(y) · Dxe
±iπx + α±(y)κ(y) cos(2πx)e±iπx , e±iπx

〉
L2
x (S1)

= 0



The multiscale analysis of [F–L-T–W ’14, ’16]

This yields the Dirac equation[
1 0
0 −1

] [
Dyα+

Dyα−

]
+ κ(y)

[
0 1
1 0

] [
α+

α−

]
= 0.

This way we construct a quasimode with energy in a spectral gap, hence
there is an eigenvector with energy nearby. It is quite hard to show that

α+(δx)e iπx + α−(δx)e−iπx + ... (3)

is indeed an eigenstate. Selfadjoint principles only show that (??) is near
a linear combination of eigenstates of P with energy near π2.



Honeycomb lattices

The model is a potential well at each vertex of a hexagonal lattice

Such structures generically admit Dirac points ([Fefferman–Weinstein
’12], [Lee ’14], [Berkolaiko–Comech ’16], [Fefferman–Lee-Thorp–
Weinstein ’17]).



Perturbation along an edge

An edge perturbation of honeycomb lattices is obtained by fixing (say) a
rational edge and stretching adiabatically the system along this edge

[Fefferman–Lee-Thorp–Weinstein ’16] studies the existence of states
located along the edge with energy Dirac energies.



Perturbation along an edge

An edge perturbation of honeycomb lattices is obtained by fixing (say) a
rational edge and stretching adiabatically the system along this edge

Such states accounts for the insulator/conductor characteristics of the
material, depending on the direction of propagation.



The no-fold condition of [F–L-T–W ’16]

The existence of an eigenstate depends whether ”stretching” the periodic
structure along the edge opens a spectral gap ”in the edge direction”.
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The no-fold condition of [F–L-T–W ’16]

The existence of an eigenstate depends whether ”stretching” the periodic
structure along the edge opens a spectral gap ”in the edge direction”.
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In the right picture, dispersion surfaces ”fold over” the energy E?.
[Fefferman–Lee-Thorp–Weinstein ’16] conjectured that if the no-fold
condition fails topologically protected resonances appear.

We will study 1D operators modeling the picture on the right. We first
define resonances.



Resonances of periodic systems [Gérard ’90]

Resonances are poles of the meromorphic continuation of the resolvent.
If T is periodic, we write

T (ξ) = T : L2ξ(R)→ L2ξ(R).

T (ξ) has compact resolvent. By Floquet–Bloch theory,

T =

∫ ⊕2π
0

T (ξ)dξ, =λ > 0 ⇒ (T − λ)−1 =

∫ ⊕2π
0

(T (ξ)− λ)−1dξ.

Since (T (ξ)− λ)−1 is periodic we can change the contour [0, 2π] to the
unit circle:

=λ > 0 ⇒ (T − λ)−1 =

∮
S1

(T (z)− λ)−1
dz

iz
, T (e iξ) = T (ξ).



Resonances of periodic systems [Gérard ’90]

=λ > 0 ⇒ (T − λ)−1 =

∮
S1

(T (z)− λ)−1
dz

iz
, T (e iξ) = T (ξ).

z 7→ (T (z)− λ)−1 has complex poles; as λ approaches R, these poles
converge to points on S1. Except when poles end up pinching S1, we can
deform S1 to avoid them. Pinching points correspond to extrema of
dispersion hypersurfaces and induce resonances.
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Edge-perturbed periodic systems

The black-box approach of Sjöstrand–Zworski provides a meromorphic
continuation of the resolvent of P = f (Dx) + δκ(δx) cos(2πx).
Asymptotic operators: P±δ = f (Dx)± δ cos(2πx) for x near ±∞.

This motivates an ad-hoc parametrix for P − λ:

Q(λ) =
1− κ

2
(P−δ − λ)−1 +

1 + κ

2
(Pδ − λ)−1.

We observe that (P − λ)Q(λ) = Id + K (λ) with

K (λ)
def
= δAδ

(
(P−δ − λ)−1 − (Pδ − λ)−1

)
, Aδ of lower order.

This provides the meromorphic continuation of (P − λ)−1:

(P − λ)−1 = Q(λ)(Id + K (λ))−1.

At distance ∼ δ from Dirac energies, resonances are poles of
(Id + K (λ))−1; the key operator is the resolvent difference
(P−δ − λ)−1 − (Pδ − λ)−1.



Assumptions

Let P be of the form

P = f (Dx) + δκ(δx) cos(2πx), f analytic and even.

Set f ′(π) = E?; WLOG f ′(π) = 1. We assume that

1. f (ξ) = E? implies f ′(ξ) 6= 0;

2. The only Dirac point of P at energy E? is (π,E?).
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Result (P = f (Dx) + δκ(δx) cos(2πx))

The spectrum of the Dirac operator D is (−∞,−1] ∪ [1,∞) ∪ {µj}
where −1 < −µn ≤ ... ≤ −µ1 < µ0 = 0 < µ1 ≤ ... ≤ µn < 1.

Theorem [Drouot–Fefferman–Weinstein, in progress]
Fix µn < µ < 1. For δ sufficiently small, P continues meromorphically to
D(E?, µδ) and has exactly 2n + 1 resonances in this disk, given by

λj = E? + δµj + o(δ).

If in addition the no-fold condition is satisfied (f (ξ) = 0 iff ξ = ±π) then
these resonances are eigenvalues and the corresponding eigenstates are

α+,j(δx)e iπx + α−,j(δx)e−iπx + ...

where (α+,j , α−,j) are the eigenvectors of D at energy µj .

Comments

I This is some progress towards the F–L-T–W conjecture.
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where (α+,j , α−,j) are the eigenvectors of D at energy µj .

Comments

I When the no-fold condition is satisfied, it characterizes all the
eigenstates of P in the gap. When f (Dx) = D2

x this improves the
F–L-T–W theorem; and it proves the bulk-edge correspondence.



Result (P = f (Dx) + δκ(δx) cos(2πx))

The spectrum of the Dirac operator D is (−∞,−1] ∪ [1,∞) ∪ {µj}
where −1 < −µn ≤ ... ≤ −µ1 < µ0 = 0 < µ1 ≤ ... ≤ µn < 1.

Theorem [Drouot–Fefferman–Weinstein, in progress]
Fix µn < µ < 1. For δ sufficiently small, P continues meromorphically to
D(E?, µδ) and has exactly 2n + 1 resonances in this disk, given by

λj = E? + δµj + o(δ).

If in addition the no-fold condition is satisfied (f (ξ) = 0 iff ξ = ±π) then
these resonances are eigenvalues and the corresponding eigenstates are

α+,j(δx)e iπx + α−,j(δx)e−iπx + ...

where (α+,j , α−,j) are the eigenvectors of D at energy µj .

Comments

I However when the no-fold condition fails we cannot show that the
resonances in D(E?, µδ) are ”true” resonances (=λj < 0). Classical
perturbation theory seems to give only =λj = O(δ∞)!



Pictorial representation
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Spectrum of P without the no-fold condition



Highly oscillatory potentials

Theorem [Drouot–Fefferman–Weinstein, in progress]
E? +µδ+ o(δ) is a resonance of P if and only if µ2− 1 is an eigenvalue of

D2
x + V

(
x ,

x

δ

)
(4)

where V ∈ C∞0 (R× S1) is a 2× 2 matrix potential with

V
(
x ,

x

δ

)
⇀ V def

=

[
κ2 − 1 −iκ′
iκ′ κ2 − 1

]
.

The resonances of V (x , x/δ) were completely described in [Drouot ’15]
(full expansion, derivation of effective potentials, ...) following work of
[Duchêne–Vukićević–Weinstein ’14]. They converge to those of V.

The Dirac operator comes from

D2
x + V(x)− (µ2 − 1) = (D − µ)(D + µ).



Principle of proof (WLOG E? = 0)

Goal: study the resolvent difference (Pδ(ξ)− λ)−1 − (P−δ(ξ)− λ)−1

after projection in energy/momenta in three cases:

ξ
E? • •?

(whole dispersion curves)
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Case I: Away from problems.
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Case II: Near resonant momenta.



Principle of proof (WLOG E? = 0)

Goal: study the resolvent difference (Pδ(ξ)− λ)−1 − (P−δ(ξ)− λ)−1

after projection in energy/momenta in three cases:

ξ
E? • •?

Case III: Near Dirac momenta.



I. Momenta with energies away from 0

ξ
E? • •?

Look at the resolvent difference:

(Pδ(ξ)− λ)−1 − (P−δ(ξ)− λ)−1

= −2
∞∑
k=0

(P0(ξ)− λ)−1
(
δ cos(2πx)(P0(ξ)− λ)−1

)2k+1
= O(δ)

because (P0(ξ)− λ)−1 is sufficiently small when λ ∈ D(0, δ) and
momenta/energy are in that range. Integrate over such ξ to deduce that
this terms have negligible contributions.



II. Near resonant momenta/energy

ξ
E? • •?

Use a Cauchy formula, then the resolvent difference formula:

πδ(ξ)

λj,δ(ξ)− λ −
π−δ(ξ)

λj,−δ(ξ)− λ

=

∮
0

(
(Pδ(ξ)− z)−1 − (P−δ(ξ)− z)−1

) dz

2πi(z − λ)

= −2
∞∑
k=0

∮
0

(P0(ξ)− λ)−1
(
δ cos(2πx)(P0(ξ)− λ)−1

)2k+1 dz

2πi(z − λ)
.

Absence of resonances implies good bounds for complex-valued ξ.
Integrate over such ξ to obtain negligible (complex) terms.



III. Near Dirac momentum/energy

ξ
E? • •?

These terms contribute. In fact look at

πδ(ξ)Pδ(ξ)πδ(ξ) ∼ π0(ξ)Pδ(ξ)π0(ξ).

In the above, πδ(ξ) project onto the 2D vector space of Bloch modes and
π0(ξ) projects on Ce i(ξ−2π)x ⊕ Ce iξx . The matrix of π0(ξ)Pδ(ξ)π0(ξ) is[

f (ξ − 2π) δ
δ f (ξ)

]
∼
[
−(ξ − π) δ

δ ξ − π

]
(WLOG f ′(π) = 1)



III. Near Dirac momentum/energy

ξ
E? • •?

Hence (Pδ(ξ)− λ)−1 − (P−δ(ξ)− λ)−1

∼
[
−(ξ − π)− λ δ

δ ξ − π − λ

]−1
−
[
−(ξ − π)− λ −δ

δ ξ − π − λ

]−1
=

2δ

(ξ − π)2 − λ2 + δ2

[
0 1
1 0

]
.



III. Near Dirac momentum/energy

ξ
E? • •?

We deduce

(Pδ(ξ)− λ)−1 − (P−δ(ξ)− λ)−1 ∼ 2δe i(ξ−2π)x ⊗ e iξx

(ξ − π)2 − λ2 + δ2
+ s.t.



Connection to the Laplacian resolvent

We showed: (Pδ(ξ)−λ)−1− (P−δ(ξ)−λ)−1 ∼ 2δe i(ξ−2π)x ⊗ e iξx

(ξ − π)2 − λ2 + δ2
+ s.t.

Hence using −λ2 + δ2 = −z2δ2 we get

(Pδ − λ)−1 − (P−δ − λ)−1 ∼
∫
|ξ−π|≤δ1/3

2δe i(ξ−2π)x ⊗ e iξx

(ξ − π)2 − δ2z2 + s.t.

The RHS has kernel

(x , x ′) 7→
∫
|ξ−π|≤δ1/3

2δe i(ξ−2π)x−iξx
′

(ξ − π)2 − δ2z2 dξ.

Rescale using ξ − π 7→ δξ, x 7→ x/δ, x ′ 7→ x ′/δ to get

e iπx/δ ·
∫
|ξ|≤δ−2/3

2e iξ·(x−x
′)

ξ2 − z2
dξ · e iπx′/δ.

This is how the resolvent of the Laplacian appears. Further algebraic
manipulations show that the problem reduces to the analysis of
D2

x + V (x , x/δ). [Drouot ’15] yields the Theorem.



Remaining problems/projects

I Show that these resonances have generically non-zero imaginary part.

I Study the dynamics of near-resonant states.

I Extend the analysis to the hexagonal lattice, Lieb lattice,...

Thanks for your attention!


