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Floquet—Bloch theory
We consider periodic operators:
P=f(Ds)+ V(x), xeR, f,VeC®R,R),
V(x+1) = V(x), f(&) > [ for |¢] > 1.
By periodicity, spaces of quasi-periodic functions
LE(R) = {u € L{e(R) : u(x +1) = e*u(x)}

are invariant. Hence L%(R) admits a basis of eigenvectors of P with
eigenvalues

Mo(€) < Mi(€) <

The spectrum of P on L2(R) is absolutely continuous, equal to

{Ai(&) € €0,27), j € N},



Example 1: V =0, P = f(D,)
In the case V =0, the eigenvalues of P on LE(R) are
{f(§+2n0): ¢ € Z}.

We can then plot dispersion curves of P using the multi-valued function
& (¢ mod 2m).

Aj+1(8)
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Example 2: dimer models
Assume that f and V admit additional symmetries:
(&) = (=€), V(x+1/2)=V(x).
Basic example: f(¢) =¢2, V =0.

£ £

There is a linear crossing: a Dirac point appears. Dirac points correspond
to conical intersections of dispersion surfaces.



Dirac points

Mathematically, Dirac points are pairs (&, E;) such that there exists j, v

with
N(€) = Ex + [ — & + O(€ — &)?
Ait1(€) = Ev —v|€ — & ]+ O(€ — &)~

Their theoretical existence was postulated by Hamilton. Solutions of
Diu = Pu supported at t = 0 near £, are expected to approximately
evolve according to

(1)

Diu = (E, + v|Dy|)u. (2)

Tremendous amount of work in the physics litterature.

Mathematical work: [Berry '80s], [Gérard '90], [Colin de Verdiere '91],
[Fefferman—Weinstein '12] (genericity of Dirac points, rigorous
formulation of (??) as a matrix Dirac equation), [Lee '14] (point
scatterers), [Fefferman—Lee-Thorp—Weinstein '16, '17] (perturbative
results, tight binding regimes), [Berkolaiko—Comech '16]
(symmetry-theoretic approach), [Kuchment '16] (survey),...



Physical motivation

Mathematically speaking a material is an insulator at energy < E if the
corresponding operator has a spectral gap around E.
In dimer models Dirac points come from the existence of two symmetries:

X —x, x+—=x+1/2
Break the second symmetry by adding § cos(2wx): P = f(D,) becomes
f(Dy) + ¢ cos(2mx).

An energy gap of size § opens near the Dirac energy. The material
becomes an insulator at energy < E,.
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Introducing phase defects
We study periodic structures with a phase defect. The typical potential is
0k(dx)cos(2mx) :  k(x) = =1 for x near + oco.

The potential "behaves” like cos(27x) at both ends but acquires a phase
defect when going from —oo to +o00. The periodic structure is
"stretched” in the middle.

(z) cos(2mx)

- COS

We set P = f(Dy) + dx(dx) cos(2mx). The essential spectrum is
characterized by the asymptotic operators:

Pys = f(Dx) £ 6 cos(2mx), x near =+ oo

Hence P has spectral gaps near Dirac energies of (D).



Existing results
Recall that D? has a Dirac point at (m, 72).

Theorem [Fefferman—Lee-Thorp—Weinstein '14]

For ¢ sufficiently small, the operator D? + §r(6x) cos(2mx) has an
eigenvalue of energy w2 + 0(52).
The corresponding eigenstate takes the form

u(x) = oy (6x)e™ + a_(6x)e™ "™ 4 ...

where the vector « = (a—, ;) solves the Dirac equation
def ]. 0 0 1
Comments:
» u € L2 because (—1,1) is an essential spectrum gap of D.

» This mode is topologically protected: it persists under arbitrarily
large perturbations of x on compact sets.

» This supports the bulk/edge correspondence.
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Recall that D? has a Dirac point at (m, 72).

Theorem [Fefferman—Lee-Thorp—Weinstein '14]

For ¢ sufficiently small, the operator D? + §r(6x) cos(2mx) has an
eigenvalue of energy w2 + 0(52).
The corresponding eigenstate takes the form

u(x) = oy (6x)e™ + a_(6x)e™ "™ 4 ...

where the vector « = (a—, ;) solves the Dirac equation
def ]. 0 0 1
Comments:

» The theorem still holds when D? is replaced by D? plus an even
cosine series and cos(27x) is replaced by an odd cosine series.

» This theorem is the basis for deeper results on topologically
protected modes in honeycomb lattices.



The multiscale analysis of [F-L-T-W ’14, '16]

We derive formally this result with multiscale analysis. We look for an
"linear" combination of Dirac eigenstates with slowly varying coefficients:

U(x,y) = s (V)€™ + a_(y)e ™+ ov(x,y) + sy = dx.
In the variables (x,y) € S' x R:
D? + 6x(0x) cos(2mx) + (Dy + 8D,)? + dr(y) cos(2mx).
Plug v in RHS and group terms of order 1,6, ...

Zai D2_7T)e:ti7rx:0
(D? — 7°)v + Z 2D, a4 (y) - Dee™ + ag(y)s(y) cos(2mx)er ™ = 0.
+

The second equation has a solution iff the second term is
L2(S')-orthogonal to e*™. Thus we must have

<Z 2D, a4 (y) - Dee™ + ag(y)s(y) cos(2mx)e ™, eiiﬂx> =0
T 2(sY)



The multiscale analysis of [F-L-T-W ’14, '16]

This yields the Dirac equation

1 0| |[Day 0 1| |ag|
b A [oa] s g i) -0
This way we construct a quasimode with energy in a spectral gap, hence
there is an eigenvector with energy nearby. It is quite hard to show that
o (6x)e™ + a_(dx)e™ ™ + ... (3)

is indeed an eigenstate. Selfadjoint principles only show that (??) is near

a linear combination of eigenstates of P with energy near 72.



Honeycomb lattices

The model is a potential well at each vertex of a hexagonal lattice

Such structures generically admit Dirac points ([Fefferman—Weinstein
'12], [Lee '14], [Berkolaiko—Comech '16], [Fefferman—Lee-Thorp—
Weinstein '17]).



Perturbation along an edge

An edge perturbation of honeycomb lattices is obtained by fixing (say) a
rational edge and stretching adiabatically the system along this edge

[Fefferman—Lee-Thorp—Weinstein '16] studies the existence of states
located along the edge with energy Dirac energies.



Perturbation along an edge

An edge perturbation of honeycomb lattices is obtained by fixing (say) a
rational edge and stretching adiabatically the system along this edge

Such states accounts for the insulator/conductor characteristics of the
material, depending on the direction of propagation.



The no-fold condition of [F-L-T-W ’16]

The existence of an eigenstate depends whether "stretching” the periodic
structure along the edge opens a spectral gap "in the edge direction”.
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The no-fold condition of [F-L-T-W ’16]

The existence of an eigenstate depends whether "stretching” the periodic
structure along the edge opens a spectral gap "in the edge direction”.

In the right picture, dispersion surfaces "fold over” the energy E,.
[Fefferman—Lee-Thorp—Weinstein '16] conjectured that if the no-fold
condition fails topologically protected resonances appear.

We will study 1D operators modeling the picture on the right. We first
define resonances.



Resonances of periodic systems [Gérard '90]

Resonances are poles of the meromorphic continuation of the resolvent.
If T is periodic, we write

T(€) =T: LF(R) = LF(R).

T (&) has compact resolvent. By Floquet—Bloch theory,

@27 @27
T:/O T(€)de, IA>0 = (T—N) :/0 (T(€) = \)1de.

Since (T(¢) — A\)! is periodic we can change the contour [0,27] to the
unit circle:

N0 = (T-N)" = f (7() =1 E. T(e) = 7(0)

iz’



Resonances of periodic systems [Gérard '90]
SA>0 = (T-A)1 :f( (z2)—A) dzz T(e) = T(¢).

z+ (T(z) — A)~! has complex poles; as A approaches R, these poles
converge to points on S'. Except when poles end up pinching S, we can
deform S to avoid them. Pinching points correspond to extrema of
dispersion hypersurfaces and induce resonances.

zeC SA>1

*

*: pole of z+ (T(z) —A)~!
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Resonances of periodic systems [Gérard '90]
SA>0 = (T-A)1 :f( (z2)—A) dzz T(e) = T(¢).
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converge to points on S'. Except when poles end up pinching S, we can
deform S to avoid them. Pinching points correspond to extrema of
dispersion hypersurfaces and induce resonances.
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*: pole of z+ (T(z) —A)~!



Edge-perturbed periodic systems

The black-box approach of Sjostrand—Zworski provides a meromorphic
continuation of the resolvent of P = (D) + Jx(dx) cos(2mx).
Asymptotic operators: Pys = f(Dx) % ¢ cos(2mx) for x near £oo.

This motivates an ad-hoc parametrix for P — A:

1—k 1+k
P_s—N)t
5 (P-s = A"+ )

Q) = (Ps — M)t
We observe that (P — A)Q(A) = Id + K(\) with

K(X\) Z 6As (P—s —A) "' = (Ps —A)™), As of lower order.
This provides the meromorphic continuation of (P — \)~1:

(P—X)"1=QM\Id+K(\)

At distance ~ § from Dirac energies, resonances are poles of
(Id + K(X))~1; the key operator is the resolvent difference
(P,(; — /\)_1 — (P§ — )\)_1.



Assumptions
Let P be of the form
P = f(Dx) + dk(dx) cos(2mx), f analytic and even.

Set /() = E,; WLOG f'(7) = 1. We assume that

1. f(§) = E, implies f'(§) #0;
2. The only Dirac point of P at energy E, is (m, E,).
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Result (P = f(Dy) + dr(0x) cos(27x))

The spectrum of the Dirac operator D is (—oo, —1] U [1,00) U {p;}
where =1 < —pp, < .. < =3 < pp=0< p1 < ... <pp < 1.

Theorem [Drouot—Fefferman—Weinstein, in progress]

Fix p, < ;o < 1. For § sufficiently small, P continues meromorphically to
D(E,, 110) and has exactly 2n + 1 resonances in this disk, given by

)\J‘ =E + 5,LLJ' + 0(5)

If in addition the no-fold condition is satisfied (f(§) = 0 iff ¢ = +m) then
these resonances are eigenvalues and the corresponding eigenstates are

o j(0x)e™ + a_ j(6x)e™ "™ + ..

where (o j, o j) are the eigenvectors of D at energy [i;.
Comments

» This is some progress towards the F-L-T—W conjecture.
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these resonances are eigenvalues and the corresponding eigenstates are

o j(0x)e™ + a_ j(6x)e™ "™ + ..

where (o j, o j) are the eigenvectors of D at energy [i;.
Comments

» When the no-fold condition is satisfied, it characterizes all the
eigenstates of P in the gap. When f(D,) = D? this improves the
F-L-T-W theorem; and it proves the bulk-edge correspondence.



Result (P = f(Dy) + dr(0x) cos(27x))

The spectrum of the Dirac operator D is (—oo, —1] U [1,00) U {p;}
where =1 < —pp, < .. < =3 < pp=0< p1 < ... <pp < 1.
Theorem [Drouot—Fefferman—Weinstein, in progress]

Fix p, < ;o < 1. For § sufficiently small, P continues meromorphically to
D(E,, 110) and has exactly 2n + 1 resonances in this disk, given by

)\J‘ =E + 5,LLJ' + 0(5)

If in addition the no-fold condition is satisfied (f(§) = 0 iff ¢ = +m) then
these resonances are eigenvalues and the corresponding eigenstates are

o j(0x)e™ + a_ j(6x)e™ "™ + ..

where (o j, o j) are the eigenvectors of D at energy [i;.
Comments

» However when the no-fold condition fails we cannot show that the
resonances in D(E,, /16) are "true” resonances (3\; < 0). Classical
perturbation theory seems to give only \; = O(5*)!



Pictorial representation

Spectrum of the Dirac operator D

e — z — j——

-1 1

Spectrum of P under the no-fold condition

E,-¢ E.+9



Pictorial representation

Spectrum of the Dirac operator D

e — z — j——

-1 1

Spectrum of P without the no-fold condition

E,-¢ E.+9



Highly oscillatory potentials

Theorem [Drouot—Fefferman—Weinstein, in progress]
E, + ud+ o(d) is a resonance of P if and only if > — 1 is an eigenvalue of

D2+ V (x, %) (4)

where V € C§°(R x St) is a 2 x 2 matrix potential with
X def K/Q —1 _i:‘{//
V(X,g) V— |: I.K,l l§j2—1:| .

The resonances of V(x, x/d) were completely described in [Drouot '15]
(full expansion, derivation of effective potentials, ...) following work of
[Duché&ne-Vukiéevi¢-Weinstein '14]. They converge to those of V.

The Dirac operator comes from

DF +V(x) = (4* = 1) = (D — p)(D + p).



Principle of proof (WLOG E, = 0)

Goal: study the resolvent difference (P5(¢) — A\)~! — (P_s(£) — A) !
after projection in energy/momenta in three cases:

A AN

Vv

(whole dispersion curves)



Principle of proof (WLOG E, = 0)

Goal: study the resolvent difference (P5(¢) — A\)~! — (P_s(£) — A) !
after projection in energy/momenta in three cases:

A AN

Vv

B, —e———s

Case I: Away from problems.
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Principle of proof (WLOG E, = 0)

Goal: study the resolvent difference (P5(¢) — A\)~! — (P_s(£) — A) !
after projection in energy/momenta in three cases:

A AN

Vv

5 . ‘ .

Case lll: Near Dirac momenta.



. Momenta with energies away from 0

B, f—e—r—

Look at the resolvent difference:

(Ps(&) = A) Tt = (P_s(&) = N)
= =2 (Po(&) = A) 7" (6 cos(2mx)(Po(&) — A) 1)
k=0

2k+1

0(9)

because (Po(£) — A)~! is sufficiently small when A € (0, §) and
momenta/energy are in that range. Integrate over such £ to deduce that
this terms have negligible contributions.



Near resonant momenta/energy

Bt

Use a Cauchy formula, then the resolvent difference formula:

75(&) m_5(&)

Ais(€) =X Ajs(§) — A
1 1 dZ
= (P =27 = (Pl =) 5

2k+1 dz

=2 F(Po©) =N (beostam)(Pole) = 1)) 5.

Absence of resonances implies good bounds for complex-valued .
Integrate over such & to obtain negligible (complex) terms.



I1l. Near Dirac momentum/energy

E* Py e o

These terms contribute. In fact look at

m5(§)Ps(€)ms() ~ m0o(€) Ps(&)mo(§)-

In the above, 75(&) project onto the 2D vector space of Bloch modes and
mo(&) projects on Ce'6=2™x @ Ce'€*. The matrix of mo(&)Ps(&)mo(€) is

5 [ 2 onos



I1l. Near Dirac momentum/energy

¢ _67T) - {—i—)\]l B [_(€ _67T) - §—:r6— A]l

B 20 0 1
“emren o)



I1l. Near Dirac momentum/energy

We deduce

2(Sei(§—2ﬂ')x ® eifx
(s P e R

(Ps() =)t = (P=s() = A) ' ~

t.



Connection to the Laplacian resolvent

2561'(57271'))( ® eiéx N
€—mp-x+e

We showed: (Ps5(¢) —A)™1 — (P_s(€) = \) 71 ~ t.

Hence using —\? + 62 = —z262 we get

25 i(§—2m)x i&x
(Ps—A) ' —(P_s—A) "t~ / c we +s.t.

|£_ﬂ.|§51/3 (f — 7'(')2 — (5222
The RHS has kernel
25ei(£—27r)x—i£x'

le—n|<ors (§ = m)? — 6222

Rescale using £ — 7 — §¢, x — x/3, x' + x'/d to get

(x,x") —~ de.

) 2pi& (x—=x") .,
em—x/(S . / e2 5 d¢ - e/mx /6_
lel<s—23 €2 —2

This is how the resolvent of the Laplacian appears. Further algebraic
manipulations show that the problem reduces to the analysis of
D? + V/(x, x/d). [Drouot '15] yields the Theorem.



Remaining problems/projects

» Show that these resonances have generically non-zero imaginary part.
» Study the dynamics of near-resonant states.

> Extend the analysis to the hexagonal lattice, Lieb lattice,...

Thanks for your attention!



