Pollicott-Ruelle resonances via kinetic Brownian motion.

Alexis Drouot

September 20th 2016

Geometric setting

Geometric setting

- Let (\mathbb{M}, g) be a smooth compact Riemannian manifold, $T^{*} \mathbb{M}$ its cotangent bundle, $S^{*} \mathbb{M}$ its cosphere bundle.

Geometric setting

- Let (\mathbb{M}, g) be a smooth compact Riemannian manifold, $T^{*} \mathbb{M}$ its cotangent bundle, $S^{*} \mathbb{M}$ its cosphere bundle.
- The Hamiltonian vector field H_{1} of $p(x, \xi)=\frac{1}{2}|\xi|_{g}^{2}$, given by

$$
H_{1}=\sum_{i} \frac{\partial p}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial p}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}
$$

is tangent to $S^{*} \mathbb{M}$ the cosphere bundle of \mathbb{M}.

Geometric setting

- Let (\mathbb{M}, g) be a smooth compact Riemannian manifold, $T^{*} \mathbb{M}$ its cotangent bundle, $S^{*} \mathbb{M}$ its cosphere bundle.
- The Hamiltonian vector field H_{1} of $p(x, \xi)=\frac{1}{2}|\xi|_{g}^{2}$, given by

$$
H_{1}=\sum_{i} \frac{\partial p}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial p}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}
$$

is tangent to $S^{*} \mathbb{M}$ the cosphere bundle of \mathbb{M}. Its integral curves project to geodesics on \mathbb{M}. It is called the generator of the geodesic flow.

The kinetic Brownian motion (KBM)

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S^{*} \mathbb{M}$.

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S * \mathbb{M}$. It models the motion of a particle with a fixed speed norm, submitted to collisions.

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S * \mathbb{M}$. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_{x}^{*} \mathbb{M}$ as a Riemannian manifold;

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S * \mathbb{M}$. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_{x}^{*} \mathbb{M}$ as a Riemannian manifold; let $\Delta_{\mathbb{S}}(x) \leq 0$ be its Laplace-Beltrami operator.

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S * \mathbb{M}$. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_{x}^{*} \mathbb{M}$ as a Riemannian manifold; let $\Delta_{\mathbb{S}}(x) \leq 0$ be its Laplace-Beltrami operator. Varying x yields an operator $\Delta_{\mathbb{S}}$ on $C^{\infty}\left(S^{*} \mathbb{M}\right)$ and

$$
L_{\varepsilon} \stackrel{\text { def }}{=} H_{1}-\varepsilon \Delta_{\mathbb{S}}: C^{\infty}\left(S^{*} \mathbb{M}\right) \rightarrow C^{\infty}\left(S^{*} \mathbb{M}\right), \quad \varepsilon \in(0, \infty)
$$

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S * \mathbb{M}$. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_{x}^{*} \mathbb{M}$ as a Riemannian manifold; let $\Delta_{\mathbb{S}}(x) \leq 0$ be its Laplace-Beltrami operator. Varying x yields an operator $\Delta_{\mathbb{S}}$ on $C^{\infty}\left(S^{*} \mathbb{M}\right)$ and

$$
L_{\varepsilon} \stackrel{\text { def }}{=} H_{1}-\varepsilon \Delta_{\mathbb{S}}: C^{\infty}\left(S^{*} \mathbb{M}\right) \rightarrow C^{\infty}\left(S^{*} \mathbb{M}\right), \quad \varepsilon \in(0, \infty)
$$

- In the proofs we focus on the case \mathbb{M} orientable surface;

The kinetic Brownian motion (KBM)

- To model interaction of photons in Schwarzchild or Minkowski geometries, Franchi-Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on $S * \mathbb{M}$. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_{x}^{*} \mathbb{M}$ as a Riemannian manifold; let $\Delta_{\mathbb{S}}(x) \leq 0$ be its Laplace-Beltrami operator. Varying x yields an operator $\Delta_{\mathbb{S}}$ on $C^{\infty}\left(S^{*} \mathbb{M}\right)$ and

$$
L_{\varepsilon} \stackrel{\text { def }}{=} H_{1}-\varepsilon \Delta_{\mathbb{S}}: C^{\infty}\left(S^{*} \mathbb{M}\right) \rightarrow C^{\infty}\left(S^{*} \mathbb{M}\right), \quad \varepsilon \in(0, \infty)
$$

- In the proofs we focus on the case \mathbb{M} orientable surface; hence $L_{\varepsilon}=H_{1}-\varepsilon V^{2}, V$ generator of the circle action on the fibers of $S^{*} \mathbb{M}$.

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

Recall $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}, \quad H_{1}$ generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

$$
\text { Recall } L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}, \quad \begin{aligned}
& H_{1} \text { generator of the geodesic flow, } \Delta_{\mathbb{S}} \text { vertical } \\
& \text { spherical Laplacian. }
\end{aligned}
$$

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion.

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

$$
\begin{array}{ll}
\text { Recall } L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}, & H_{1} \text { generator of the geodesic flow, } \Delta_{\mathbb{S}} \text { vertical } \\
\text { spherical Laplacian. }
\end{array}
$$

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t): \mathbb{R} \rightarrow S^{*} \mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

$$
\begin{array}{ll}
\text { Recall } L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}, \quad & H_{1} \text { generator of the geodesic flow, } \Delta_{\mathbb{S}} \text { vertical } \\
& \text { spherical Laplacian. }
\end{array}
$$

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t): \mathbb{R} \rightarrow S^{*} \mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

$$
\begin{gathered}
\dot{z}(t)=H_{1}(z(t))+\sqrt{2 \varepsilon} \dot{B}(t), \quad z(0) \text { independent of } \varepsilon, \\
\\
B(t) \text { spherical vertical Brownian motion. }
\end{gathered}
$$

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

> Recall $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}, \quad H_{1}$ generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t): \mathbb{R} \rightarrow S^{*} \mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

$$
\begin{aligned}
\dot{z}(t)= & H_{1}(z(t))+\sqrt{2 \varepsilon} \dot{B}(t), \quad z(0) \text { independent of } \varepsilon, \\
& B(t) \text { spherical vertical Brownian motion. }
\end{aligned}
$$

- When $\varepsilon \rightarrow 0$, the projection of $z(t)$ to \mathbb{M} converges to the geodesic starting at $z(0)$.

Recent results on L_{ε} in the limits $\varepsilon \rightarrow 0, \infty$

Recall $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}, \quad H_{1}$ generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t): \mathbb{R} \rightarrow S^{*} \mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

$$
\dot{z}(t)=H_{1}(z(t))+\sqrt{2 \varepsilon} \dot{B}(t), \quad z(0) \text { independent of } \varepsilon
$$ $B(t)$ spherical vertical Brownian motion.

- When $\varepsilon \rightarrow 0$, the projection of $z(t)$ to \mathbb{M} converges to the geodesic starting at $z(0)$.
- When $\varepsilon \rightarrow \infty$, the projection of $z\left(\varepsilon^{2} t\right)$ to \mathbb{M} converges in law to a Brownian motion on \mathbb{M}.

Numerical simulation

Numerical simulation

Figure: Projection of the kinetic Brownian motion on a 2-torus with $\varepsilon=1 / 10$. The trajectories are locally close to geodesics - but not globally. Simulation from Angst-Bailleul-Tardif.

Numerical simulation

Figure: Projection of the kinetic Brownian motion on a 2-torus with $\varepsilon=1$. The trajectories become random. Simulation from Angst-Bailleul-Tardif.

Numerical simulation

Figure: Projection of the kinetic Brownian motion on a 2-torus with $\varepsilon=10$. The trajectories look completely random. Simulation from Angst-Bailleul-Tardif.

The case of \mathbb{M} with negative curvature

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic.

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations:

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g)
$$

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g) .
$$

The a_{k} are bilinear forms of f, g and the λ_{k}, called Pollicott-Ruelle resonances, have positive real parts.

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g) .
$$

The a_{k} are bilinear forms of f, g and the λ_{k}, called Pollicott-Ruelle resonances, have positive real parts. They depend only on \mathbb{M}.

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g) .
$$

The a_{k} are bilinear forms of f, g and the λ_{k}, called Pollicott-Ruelle resonances, have positive real parts. They depend only on \mathbb{M}.

On certain anisotropic Sobolev spaces \mathcal{H},

$$
H_{1}: \mathcal{H} \rightarrow \mathcal{H} \text { is Fredholm of index } 0,
$$

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g) .
$$

The a_{k} are bilinear forms of f, g and the λ_{k}, called Pollicott-Ruelle resonances, have positive real parts. They depend only on \mathbb{M}.

On certain anisotropic Sobolev spaces \mathcal{H},

$$
H_{1}: \mathcal{H} \rightarrow \mathcal{H} \text { is Fredholm of index } 0,
$$

with discrete spectrum given by $\left\{\lambda_{k}\right\}$.

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g)
$$

The a_{k} are bilinear forms of f, g and the λ_{k}, called Pollicott-Ruelle resonances, have positive real parts. They depend only on \mathbb{M}.

On certain anisotropic Sobolev spaces \mathcal{H},

$$
H_{1}: \mathcal{H} \rightarrow \mathcal{H} \text { is Fredholm of index } 0,
$$

with discrete spectrum given by $\left\{\lambda_{k}\right\}$. Equivalently, the λ_{k} 's are the poles of the meromorphic continuation of $\left(H_{1}-\lambda\right)^{-1}$.

The case of \mathbb{M} with negative curvature

If \mathbb{M} has negative curvature, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is chaotic. This is expressed through the exponential decay of correlations: formally,

$$
f, g \in C^{\infty}\left(S^{*} \mathbb{M}\right) \Rightarrow\left\langle f,\left(e^{-t H_{1}}\right)^{*} g\right\rangle \sim \int_{S^{*} \mathbb{M}} f g+\sum_{k} e^{-\lambda_{k} t} a_{k}(f, g)
$$

The a_{k} are bilinear forms of f, g and the λ_{k}, called Pollicott-Ruelle resonances, have positive real parts. They depend only on \mathbb{M}.

On certain anisotropic Sobolev spaces \mathcal{H},

$$
H_{1}: \mathcal{H} \rightarrow \mathcal{H} \text { is Fredholm of index } 0,
$$

with discrete spectrum given by $\left\{\lambda_{k}\right\}$. Equivalently, the λ_{k} 's are the poles of the meromorphic continuation of $\left(H_{1}-\lambda\right)^{-1}$. It relies on work of Baladi, Liverani, Gouëzel-Liverani, Baladi-Tsujii, Faure-Sjöstrand, Dyatlov-Zworski.

Pollicott-Ruelle resonances

Pollicott-Ruelle resonances

Pollicott-Ruelle resonances

Pollicott-Ruelle resonances

Pollicott-Ruelle resonances

Main result

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\text {S }}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$ but the accumulation points of the spectrum of $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ form a discrete set!

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\text {S }}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$ but the accumulation points of the spectrum of $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- Dyatlov-Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\text {S }}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$ but the accumulation points of the spectrum of $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- Dyatlov-Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\text {S }}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$ but the accumulation points of the spectrum of $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- Dyatlov-Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.
- The convergence is in fact stronger: spectral projections are smooth; eigenvalues of L_{ε} admit complete expansions in powers of ε; convergence to complex conjugates as $\varepsilon \rightarrow 0^{-}$.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\text {S }}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$ but the accumulation points of the spectrum of $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- Dyatlov-Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.
- The convergence is in fact stronger: spectral projections are smooth; eigenvalues of L_{ε} admit complete expansions in powers of ε; convergence to complex conjugates as $\varepsilon \rightarrow 0^{-}$.
- The Po-Ru resonances were intially defined as dynamical objects: they quantify the decay of correlations.

Main result

Recall that $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \rightarrow 0^{+}$the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} on compact sets.

Remarks:

- The L^{2}-spectrum of H_{1} is $i \mathbb{R}$ but the accumulation points of the spectrum of $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- Dyatlov-Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.
- The convergence is in fact stronger: spectral projections are smooth; eigenvalues of L_{ε} admit complete expansions in powers of ε; convergence to complex conjugates as $\varepsilon \rightarrow 0^{-}$.
- The Po-Ru resonances were intially defined as dynamical objects: they quantify the decay of correlations. We interpret them here as spectral and probabilistic objects.

Convergence of eigenvalues of L_{ε}

Convergence of eigenvalues of L_{ε}

$\operatorname{Re\lambda }<0 \quad \operatorname{lm} \lambda \uparrow \quad \operatorname{Re\lambda }>0$

Convergence of eigenvalues of L_{ε}

Convergence of eigenvalues of L_{ε}

Convergence of eigenvalues of L_{ε}

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski).

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski). Thus resonances are zeros of the Fredholm determinant

$$
\operatorname{det}\left(\operatorname{Id}-Q\left(H_{1}+Q-\lambda\right)^{-1}\right)^{"}=" \frac{\operatorname{det}\left(H_{1}-\lambda\right)}{\operatorname{det}\left(H_{1}+Q-\lambda\right)} .
$$

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski). Thus resonances are zeros of the Fredholm determinant

$$
\operatorname{det}\left(\operatorname{Id}-Q\left(H_{1}+Q-\lambda\right)^{-1}\right) "=" \frac{\operatorname{det}\left(H_{1}-\lambda\right)}{\operatorname{det}\left(H_{1}+Q-\lambda\right)} .
$$

- L_{ε} is hypoelliptic: its L^{2} and \mathcal{H}-spectrum are equal, given by the zero set of $\operatorname{det}\left(\operatorname{Id}-Q\left(L_{\varepsilon}+Q-\lambda\right)^{-1}\right)$.

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski). Thus resonances are zeros of the Fredholm determinant

$$
\operatorname{det}\left(\operatorname{Id}-Q\left(H_{1}+Q-\lambda\right)^{-1}\right)^{\prime}=" \frac{\operatorname{det}\left(H_{1}-\lambda\right)}{\operatorname{det}\left(H_{1}+Q-\lambda\right)} .
$$

- L_{ε} is hypoelliptic: its L^{2} and \mathcal{H}-spectrum are equal, given by the zero set of $\operatorname{det}\left(\operatorname{Id}-Q\left(L_{\varepsilon}+Q-\lambda\right)^{-1}\right)$.
- Thus it should be enough to show that as $\varepsilon \rightarrow 0^{+}$,

$$
\left(L_{\varepsilon}+Q-\lambda\right)^{-1} \rightarrow\left(H_{1}+Q-\lambda\right)^{-1} .
$$

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski). Thus resonances are zeros of the Fredholm determinant

$$
\operatorname{det}\left(\operatorname{Id}-Q\left(H_{1}+Q-\lambda\right)^{-1}\right) "=" \frac{\operatorname{det}\left(H_{1}-\lambda\right)}{\operatorname{det}\left(H_{1}+Q-\lambda\right)} .
$$

- L_{ε} is hypoelliptic: its L^{2} and \mathcal{H}-spectrum are equal, given by the zero set of $\operatorname{det}\left(\operatorname{Id}-Q\left(L_{\varepsilon}+Q-\lambda\right)^{-1}\right)$.
- Thus it should be enough to show that as $\varepsilon \rightarrow 0^{+}$,

$$
\left(L_{\varepsilon}+Q-\lambda\right)^{-1} \rightarrow\left(H_{1}+Q-\lambda\right)^{-1} .
$$

- Easy by resolvent identity if we know $L_{\varepsilon}+Q-\lambda$ invertible on \mathcal{H}.

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski). Thus resonances are zeros of the Fredholm determinant

$$
\operatorname{det}\left(\operatorname{Id}-Q\left(H_{1}+Q-\lambda\right)^{-1}\right) "=" \frac{\operatorname{det}\left(H_{1}-\lambda\right)}{\operatorname{det}\left(H_{1}+Q-\lambda\right)} .
$$

- L_{ε} is hypoelliptic: its L^{2} and \mathcal{H}-spectrum are equal, given by the zero set of $\operatorname{det}\left(\operatorname{Id}-Q\left(L_{\varepsilon}+Q-\lambda\right)^{-1}\right)$.
- Thus it should be enough to show that as $\varepsilon \rightarrow 0^{+}$,

$$
\left(L_{\varepsilon}+Q-\lambda\right)^{-1} \rightarrow\left(H_{1}+Q-\lambda\right)^{-1} .
$$

- Easy by resolvent identity if we know $L_{\varepsilon}+Q-\lambda$ invertible on \mathcal{H}.

Goal: show that the perturbation term $-\varepsilon \Delta_{\mathbb{S}} \geq 0$ is small enough compared to $H_{1}-\varepsilon \Delta_{\mathbb{S}}$

Convergence of $L_{\varepsilon}=H_{1}-\varepsilon \Delta_{\mathbb{S}}$ in the resolvent sense

- Po-Ru resonances λ of H_{1} in a compact set are eigenvalues of H_{1} on specifically designed spaces \mathcal{H}.
- If Q is a (real) absorbing potential near the zero section and $\lambda \in K$, then $H_{1}+Q-\lambda$ is invertible on \mathcal{H} (Dyatlov-Zworski). Thus resonances are zeros of the Fredholm determinant

$$
\operatorname{det}\left(\operatorname{Id}-Q\left(H_{1}+Q-\lambda\right)^{-1}\right) "=" \frac{\operatorname{det}\left(H_{1}-\lambda\right)}{\operatorname{det}\left(H_{1}+Q-\lambda\right)} .
$$

- L_{ε} is hypoelliptic: its L^{2} and \mathcal{H}-spectrum are equal, given by the zero set of $\operatorname{det}\left(\operatorname{Id}-Q\left(L_{\varepsilon}+Q-\lambda\right)^{-1}\right)$.
- Thus it should be enough to show that as $\varepsilon \rightarrow 0^{+}$,

$$
\left(L_{\varepsilon}+Q-\lambda\right)^{-1} \rightarrow\left(H_{1}+Q-\lambda\right)^{-1} .
$$

- Easy by resolvent identity if we know $L_{\varepsilon}+Q-\lambda$ invertible on \mathcal{H}.

Goal: show that the perturbation term $-\varepsilon \Delta_{\mathbb{S}} \geq 0$ is small enough compared to $H_{1}-\varepsilon \Delta_{\mathbb{S}}$ so that the method of Dyatlov-Zworski for invertibility of $H_{1}+Q-\lambda$ applies to $L_{\varepsilon}-Q-\lambda$.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Starting now \mathbb{M} is an orientable surface.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}}=V^{2}, V$ generator of the circle action on the fibers of $S^{*} \mathbb{M}$ and $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}}=V^{2}, V$ generator of the circle action on the fibers of $S^{*} \mathbb{M}$ and $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$.

Computations in normal coordinates show
$V, H_{1}, H_{2} \stackrel{\text { def }}{=}\left[V, H_{1}\right]$ linearly independent at every point: L_{ε} is hypoelliptic.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}}=V^{2}, V$ generator of the circle action on the fibers of $S^{*} \mathbb{M}$ and $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$.

Computations in normal coordinates show
$V, H_{1}, H_{2} \stackrel{\text { def }}{=}\left[V, H_{1}\right]$ linearly independent at every point: L_{ε} is hypoelliptic.
L_{ε} satisfies the optimal subelliptic inequality (Rothschild-Stein)

$$
|u|_{H^{2 / 3}}+\left|\varepsilon V^{2} u\right|_{L^{2}}+\left|H_{1} u\right|_{L^{2}} \leq C_{\varepsilon}\left|L_{\varepsilon} u\right|_{L^{2}}+O\left(|u|_{H^{-N}}\right) .
$$

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}}=V^{2}, V$ generator of the circle action on the fibers of $S^{*} \mathbb{M}$ and $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$.

Computations in normal coordinates show
$V, H_{1}, H_{2} \stackrel{\text { def }}{=}\left[V, H_{1}\right]$ linearly independent at every point: L_{ε} is hypoelliptic.
L_{ε} satisfies the optimal subelliptic inequality (Rothschild-Stein)

$$
|u|_{H^{2} / 3}+\left|\varepsilon V^{2} u\right|_{L^{2}}+\left|H_{1} u\right|_{L^{2}} \leq C_{\varepsilon}\left|L_{\varepsilon} u\right|_{L^{2}}+O\left(|u|_{H^{-N}}\right) .
$$

To compare $\varepsilon V^{2} u$ with $L_{\varepsilon} u$ for small ε we need to study the behavior of C_{ε} as $\varepsilon \rightarrow 0$.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Let $\Delta \stackrel{\text { def }}{=} V^{2}+H_{1}^{2}+H_{2}^{2} ; H_{\varepsilon}^{s}$ be the semiclassical Sobolev spaces with norm $\left|\left(1-\varepsilon^{2} \Delta\right)^{s / 2} u\right|_{L^{2}}$;

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Let $\Delta \stackrel{\text { def }}{=} V^{2}+H_{1}^{2}+H_{2}^{2} ; H_{\varepsilon}^{s}$ be the semiclassical Sobolev spaces with norm $\left|\left(1-\varepsilon^{2} \Delta\right)^{5 / 2} u\right|_{L^{2}} ; \rho_{1}=1$ near ∞ and 0 near $0 ; \rho_{2}$ equal to 1 on $\operatorname{supp}\left(\rho_{1}\right)$.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Let $\Delta \stackrel{\text { def }}{=} V^{2}+H_{1}^{2}+H_{2}^{2} ; H_{\varepsilon}^{s}$ be the semiclassical Sobolev spaces with norm $\left|\left(1-\varepsilon^{2} \Delta\right)^{s / 2} u\right|_{L^{2}} ; \rho_{1}=1$ near ∞ and 0 near $0 ; \rho_{2}$ equal to 1 on $\operatorname{supp}\left(\rho_{1}\right)$.
Theorem
There exists C such that for ε small enough,

$$
\varepsilon^{2 / 3}\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right) \varepsilon L_{\varepsilon} u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}} .
$$

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Let $\Delta \stackrel{\text { def }}{=} V^{2}+H_{1}^{2}+H_{2}^{2} ; H_{\varepsilon}^{s}$ be the semiclassical Sobolev spaces with norm $\left|\left(1-\varepsilon^{2} \Delta\right)^{s / 2} u\right|_{L^{2}} ; \rho_{1}=1$ near ∞ and 0 near $0 ; \rho_{2}$ equal to 1 on $\operatorname{supp}\left(\rho_{1}\right)$.
Theorem
There exists C such that for ε small enough,

$$
\varepsilon^{2 / 3}\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right) \varepsilon L_{\varepsilon} u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}
$$

Remark: this applies to more general hypoelliptic operators, as long as only one commutator is needed to span the tangent space.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Let $\Delta \stackrel{\text { def }}{=} V^{2}+H_{1}^{2}+H_{2}^{2} ; H_{\varepsilon}^{s}$ be the semiclassical Sobolev spaces with norm $\left|\left(1-\varepsilon^{2} \Delta\right)^{s / 2} u\right|_{L^{2}} ; \rho_{1}=1$ near ∞ and 0 near $0 ; \rho_{2}$ equal to 1 on $\operatorname{supp}\left(\rho_{1}\right)$.

Theorem

There exists C such that for ε small enough,

$$
\varepsilon^{2 / 3}\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right) \varepsilon L_{\varepsilon} u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}} .
$$

Remark: this applies to more general hypoelliptic operators, as long as only one commutator is needed to span the tangent space.

Corollary

There exists C such that for ε small enough, λ in compact sets,

$$
\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}} .
$$

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

Let $\Delta \stackrel{\text { def }}{=} V^{2}+H_{1}^{2}+H_{2}^{2} ; H_{\varepsilon}^{s}$ be the semiclassical Sobolev spaces with norm $\left|\left(1-\varepsilon^{2} \Delta\right)^{s / 2} u\right|_{L^{2}} ; \rho_{1}=1$ near ∞ and 0 near $0 ; \rho_{2}$ equal to 1 on $\operatorname{supp}\left(\rho_{1}\right)$.

Theorem

There exists C such that for ε small enough,

$$
\varepsilon^{2 / 3}\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right) \varepsilon L_{\varepsilon} u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}} .
$$

Remark: this applies to more general hypoelliptic operators, as long as only one commutator is needed to span the tangent space.

Corollary

There exists C such that for ε small enough, λ in compact sets,

$$
\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}} .
$$

Conclusion: the term εV^{2} cannot be too big compared to L_{ε}.

Principle of proof: semiclassical analysis

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.
The operator $P \stackrel{\text { def }}{=} \varepsilon L_{\varepsilon}=-(\varepsilon V)^{2}+\varepsilon H_{1}$ is a semiclassical operator in Ψ_{ε}^{2}.

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.
The operator $P \stackrel{\text { def }}{=} \varepsilon L_{\varepsilon}=-(\varepsilon V)^{2}+\varepsilon H_{1}$ is a semiclassical operator in Ψ_{ε}^{2}. We partition $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}}$ in finitely many microlocalized pieces of the form $|A u|_{L^{2}}, A \in \Psi_{\varepsilon}^{2 / 3}$ with $\mathrm{WF}_{\varepsilon}(A)$ close to $\left(x_{0}, \xi_{0}\right) \in$ $\bar{T}^{*} S^{*} \mathbb{M}$,

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.
The operator $P \stackrel{\text { def }}{=} \varepsilon L_{\varepsilon}=-(\varepsilon V)^{2}+\varepsilon H_{1}$ is a semiclassical operator in Ψ_{ε}^{2}. We partition $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}}$ in finitely many microlocalized pieces of the form $|A u|_{L^{2}}, A \in \Psi_{\varepsilon}^{2 / 3}$ with $\mathrm{WF}_{\varepsilon}(A)$ close to $\left(x_{0}, \xi_{0}\right) \in$ $\bar{T}^{*} S^{*} \mathbb{M}$, and we show estimates for each parts:

$$
\varepsilon^{2 / 3}|A u|_{L^{2}} \leq C|P u|_{L^{2}}+\ldots
$$

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.
The operator $P \stackrel{\text { def }}{=} \varepsilon L_{\varepsilon}=-(\varepsilon V)^{2}+\varepsilon H_{1}$ is a semiclassical operator in Ψ_{ε}^{2}. We partition $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}}$ in finitely many microlocalized pieces of the form $|A u|_{L^{2}}, A \in \Psi_{\varepsilon}^{2 / 3}$ with $\mathrm{WF}_{\varepsilon}(A)$ close to $\left(x_{0}, \xi_{0}\right) \in$ $\bar{T}^{*} S^{*} \mathbb{M}$, and we show estimates for each parts:

$$
\varepsilon^{2 / 3}|A u|_{L^{2}} \leq C|P u|_{L^{2}}+\ldots
$$

The hardest part occurs when $\left(x_{0}, \xi_{0}\right) \notin E\left\|_{\varepsilon}(\varepsilon V) \cup E\right\|_{\varepsilon}\left(\varepsilon H_{1}\right)$.

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.
The operator $P \stackrel{\text { def }}{=} \varepsilon L_{\varepsilon}=-(\varepsilon V)^{2}+\varepsilon H_{1}$ is a semiclassical operator in Ψ_{ε}^{2}. We partition $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}}$ in finitely many microlocalized pieces of the form $|A u|_{L^{2}}, A \in \Psi_{\varepsilon}^{2 / 3}$ with $\mathrm{WF}_{\varepsilon}(A)$ close to $\left(x_{0}, \xi_{0}\right) \in$ $\bar{T}^{*} S^{*} \mathbb{M}$, and we show estimates for each parts:

$$
\varepsilon^{2 / 3}|A u|_{L^{2}} \leq C|P u|_{L^{2}}+\ldots
$$

The hardest part occurs when $\left(x_{0}, \xi_{0}\right) \notin \operatorname{Ell}_{\varepsilon}(\varepsilon V) \cup \operatorname{Ell}_{\varepsilon}\left(\varepsilon H_{1}\right)$. Hence:

$$
\left(x_{0}, \xi_{0}\right) \in \operatorname{Ell}_{\varepsilon}\left(\varepsilon H_{2}\right)=\operatorname{Ell}_{\varepsilon}\left(\varepsilon^{-1}\left[\varepsilon V, \varepsilon H_{1}\right]\right) .
$$

A toy model for $P=\varepsilon H_{1}-(\varepsilon V)^{2}$ near $\left(x_{0}, \xi_{0}\right)$ is $\mathcal{P} \stackrel{\text { def }}{=} \varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.

Principle of proof: semiclassical analysis

Rough goal: $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.
The operator $P \stackrel{\text { def }}{=} \varepsilon L_{\varepsilon}=-(\varepsilon V)^{2}+\varepsilon H_{1}$ is a semiclassical operator in Ψ_{ε}^{2}. We partition $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) u\right|_{H_{\varepsilon}^{2 / 3}}$ in finitely many microlocalized pieces of the form $|A u|_{L^{2}}, A \in \Psi_{\varepsilon}^{2 / 3}$ with $\mathrm{WF}_{\varepsilon}(A)$ close to $\left(x_{0}, \xi_{0}\right) \in$ $\bar{T}^{*} S^{*} \mathbb{M}$, and we show estimates for each parts:

$$
\varepsilon^{2 / 3}|A u|_{L^{2}} \leq C|P u|_{L^{2}}+\ldots
$$

The hardest part occurs when $\left(x_{0}, \xi_{0}\right) \notin \operatorname{Ell}_{\varepsilon}(\varepsilon V) \cup \operatorname{Ell}_{\varepsilon}\left(\varepsilon H_{1}\right)$. Hence:

$$
\left(x_{0}, \xi_{0}\right) \in \operatorname{Ell}_{\varepsilon}\left(\varepsilon H_{2}\right)=\operatorname{Ell}_{\varepsilon}\left(\varepsilon^{-1}\left[\varepsilon V, \varepsilon H_{1}\right]\right)
$$

A toy model for $P=\varepsilon H_{1}-(\varepsilon V)^{2}$ near $\left(x_{0}, \xi_{0}\right)$ is $\mathcal{P} \stackrel{\text { def }}{=} \varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$. The semiclassical Fourier transform of \mathcal{P} in x_{2} is $\widehat{\mathcal{P}} \stackrel{\text { def }}{=} \varepsilon \partial_{x_{1}}+\left(x_{1} \xi_{2}\right)^{2}$.

Below we show estimates for $\widehat{\mathcal{P}}$.

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

- Control for small values of x_{1} :

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{X_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2}
$$

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}}
\end{gathered}
$$

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} ; \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
\end{gathered}
$$

- Control for large values of x_{1} :

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} ; \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
\end{gathered}
$$

- Control for large values of x_{1} :

$$
\int_{\left|x_{1}\right| \geq t}|v|^{2} \leq \int_{\left|x_{1}\right| \geq t} \frac{x_{1}^{2}}{t^{2}}|v|^{2}=\frac{1}{\left(t \xi_{2}\right)^{2}} \int_{\left|x_{1}\right| \geq t}\left(x_{1} \xi_{2}\right)^{2}|v|^{2} \leq \frac{1}{\left(t \xi_{2}\right)^{2}}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}}
$$

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed ξ_{2} - after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} ; \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
\end{gathered}
$$

- Control for large values of x_{1} :

$$
\int_{\left|x_{1}\right| \geq t}|v|^{2} \leq \int_{\left|x_{1}\right| \geq t} \frac{x_{1}^{2}}{t^{2}}|v|^{2}=\frac{1}{\left(t \xi_{2}\right)^{2}} \int_{\left|x_{1}\right| \geq t}\left(x_{1} \xi_{2}\right)^{2}|v|^{2} \leq \frac{1}{\left(t \xi_{2}\right)^{2}}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}}
$$

- Optimize these estimates with $t=\varepsilon^{1 / 3}\left|\xi_{2}\right|^{-2 / 3}$ to get

$$
\int|v|^{2} \leq C \varepsilon^{-2 / 3}\left|\xi_{2}\right|^{-2 / 3}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}}
$$

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed $\xi_{2}-$ after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} ; \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
\end{gathered}
$$

- Control for large values of x_{1} :

$$
\left.\int_{\left|x_{1}\right| \geq t}|v|^{2} \leq \int_{\left|x_{1}\right| \geq t} \frac{x_{1}^{2}}{t^{2}}|v|^{2}=\frac{1}{\left(t \xi_{2}\right)^{2}} \int_{\left|x_{1}\right| \geq t}\left(x_{1} \xi_{2}\right)^{2}|v|^{2} \leq \frac{1}{\left(t \xi_{2}\right)^{2}} \right\rvert\,{\left.\widehat{\mathcal{P}} v\right|_{L^{2}}|v|_{L^{2}}}
$$

- Optimize these estimates with $t=\varepsilon^{1 / 3}\left|\xi_{2}\right|^{-2 / 3}$ to get

$$
\int|v|^{2} \leq C \varepsilon^{-2 / 3}\left|\xi_{2}\right|^{-2 / 3}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} \Rightarrow C \varepsilon^{2 / 3}\left|\xi_{2}\right|^{2 / 3}|v|_{L^{2}} \leq|\widehat{\mathcal{P}} v|_{L^{2}} .
$$

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{x_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed $\xi_{2}-$ after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} ; \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
\end{gathered}
$$

- Control for large values of x_{1} :

$$
\int_{\left|x_{1}\right| \geq t}|v|^{2} \leq \int_{\left|x_{1}\right| \geq t} \frac{x_{1}^{2}}{t^{2}}|v|^{2}=\frac{1}{\left(t \xi_{2}\right)^{2}} \int_{\left|x_{1}\right| \geq t}\left(x_{1} \xi_{2}\right)^{2}|v|^{2} \leq \frac{1}{\left(t \xi_{2}\right)^{2}}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
$$

- Optimize these estimates with $t=\varepsilon^{1 / 3}\left|\xi_{2}\right|^{-2 / 3}$ to get

$$
\int|v|^{2} \leq C \varepsilon^{-2 / 3}\left|\xi_{2}\right|^{-2 / 3}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} \Rightarrow C \varepsilon^{2 / 3}\left|\xi_{2}\right|^{2 / 3}|v|_{L^{2}} \leq|\widehat{\mathcal{P}} v|_{L^{2}}
$$

Back to $\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$:

Study of $\widehat{\mathcal{P}}=\varepsilon \partial_{X_{1}}-\left(x_{1} \xi_{2}\right)^{2}$ at fixed $\xi_{2}-$ after Lebeau

- Control for small values of x_{1} : take φ such that $\left(\varphi^{2}\right)^{\prime}$ is a bump function with value 1 on $[-t, t]$.

$$
\begin{gathered}
\operatorname{Re}\left\langle\widehat{\mathcal{P}} v, \varphi^{2} v\right\rangle=\left|\varphi x_{1} \xi_{2} v\right|_{L^{2}}^{2}+\operatorname{Re}\left\langle\varphi \varepsilon \partial_{x_{1}} v, \varphi v\right\rangle \geq \varepsilon \int\left(\varphi^{2}\right)^{\prime}|v|^{2} ; \\
\varphi^{2}=O(t) \Rightarrow \int_{\left|x_{1}\right| \leq t}|v|^{2} \leq C \varepsilon^{-1} t|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
\end{gathered}
$$

- Control for large values of x_{1} :

$$
\int_{\left|x_{1}\right| \geq t}|v|^{2} \leq \int_{\left|x_{1}\right| \geq t} \frac{x_{1}^{2}}{t^{2}}|v|^{2}=\frac{1}{\left(t \xi_{2}\right)^{2}} \int_{\left|x_{1}\right| \geq t}\left(x_{1} \xi_{2}\right)^{2}|v|^{2} \leq \frac{1}{\left(t \xi_{2}\right)^{2}}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} .
$$

- Optimize these estimates with $t=\varepsilon^{1 / 3}\left|\xi_{2}\right|^{-2 / 3}$ to get

$$
\int|v|^{2} \leq C \varepsilon^{-2 / 3}\left|\xi_{2}\right|^{-2 / 3}|\widehat{\mathcal{P}} v|_{L^{2}}|v|_{L^{2}} \Rightarrow C \varepsilon^{2 / 3}\left|\xi_{2}\right|^{2 / 3}|v|_{L^{2}} \leq|\widehat{\mathcal{P}} v|_{L^{2}} .
$$

Back to $\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}: \quad \varepsilon^{2 / 3} \|\left.\left.\varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon X_{1} \partial_{X_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

From $\mathcal{P}=\varepsilon \partial_{x_{1}}+\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$
We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{X_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{X_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{X_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$$
\begin{array}{l|l}
\hline \mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2} \text { near }\left(0, e_{2}\right) . & P=\varepsilon H_{1}-(\varepsilon V)^{2} \text { near } E \|_{\varepsilon}\left(\varepsilon H_{2}\right) . \\
\hline \hline
\end{array}
$$

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$$
\begin{array}{l|l}
\hline \mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2} \text { near }\left(0, e_{2}\right) . & P=\varepsilon H_{1}-(\varepsilon V)^{2} \text { near } E \|_{\varepsilon}\left(\varepsilon H_{2}\right) . \\
\hline \hline
\end{array}
$$

Fourier transform to work at fixed ξ_{2}.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{X_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.	$P=\varepsilon H_{1}-(\varepsilon V)^{2}$ near $E I_{\varepsilon}\left(\varepsilon H_{2}\right)$.
Fourier transform to work at fixed ξ_{2}.	Further microlocalization on dyadic frequency intervals.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.	$P=\varepsilon H_{1}-(\varepsilon V)^{2}$ near $E I_{\varepsilon}\left(\varepsilon H_{2}\right)$.
Fourier transform to work at fixed ξ_{2}.	Further microlocalization on dyadic frequency intervals.

Use $\left[\varepsilon \partial_{x_{1}}, \varphi^{2}\right]>0$ where $x_{1} \xi_{2} \ll \xi_{2}$.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.	$P=\varepsilon H_{1}-(\varepsilon V)^{2}$ near $E I_{\varepsilon}\left(\varepsilon H_{2}\right)$.
Fourier transform to work at fixed ξ_{2}.	Further microlocalization on dyadic frequency intervals.
Use $\left[\varepsilon \partial_{x_{1}}, \varphi^{2}\right]>0$ where $x_{1} \xi_{2} \ll \xi_{2}$.	Gårding inequality to $\left[\varepsilon V, \varepsilon H_{1}\right]$ where εV is "strongly character- isitic", i.e. " $\varepsilon V \ll H_{2} "$.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.
Fourier transform to work at
fixed ξ_{2}.
:---
dyadic frequency intervals.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.
Fourier transform to work at fixed ξ_{2}.
Use $\left[\varepsilon \partial_{x_{1}}, \varphi^{2}\right]>0$ where $x_{1} \xi_{2} \ll \xi_{2}$.
:---
dyadic frequency intervals.

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.
Fourier transform to work at fixed ξ_{2}.
Use $\left[\varepsilon \partial_{x_{1}}, \varphi^{2}\right]>0$ where $x_{1} \xi_{2} \ll \xi_{2}$.
:---
dyadic frequency intervals.

Conclusion: $\left.\left.\varepsilon^{2 / 3}| | \varepsilon H_{2}\right|^{2 / 3} u\right|_{L^{2}} \leq C|P u|_{L^{2}}$,

From $\mathcal{P}=\varepsilon \partial_{X_{1}}+\left(\varepsilon x_{1} \partial_{\chi_{2}}\right)^{2}$ to $P=\varepsilon H_{1}-(\varepsilon V)^{2}$

We have the estimate $\left.\left.\varepsilon^{2 / 3}| | \varepsilon \partial_{x_{2}}\right|^{2 / 3} u\right|_{L^{2}} \leq C|\mathcal{P} u|_{L^{2}}$ for \mathcal{P}. The semiclassical version of the arguments presented above show a similar estimate for P :

$\mathcal{P}=\varepsilon \partial_{x_{1}}-\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}$ near $\left(0, e_{2}\right)$.	$P=\varepsilon H_{1}-(\varepsilon V)^{2}$ near $E I_{\varepsilon}\left(\varepsilon H_{2}\right)$.
Fourier transform to work at fixed ξ_{2}.	Further microlocalization on dyadic frequency intervals.
Use $\left[\varepsilon \partial_{x_{1}}, \varphi^{2}\right]>0$ where $x_{1} \xi_{2} \ll \xi_{2}$.	Gårding inequality to $\left[\varepsilon V, \varepsilon H_{1}\right]$ where εV is "strongly character- isitic", i.e. " $\varepsilon V \ll H_{2}$ ".
Use $x_{1}=x_{1} \xi_{2} / \xi_{2}$ where $x_{1} \xi_{2}$ is not too small.Spectral theorem where εV is "not too characteristic".	

Conclusion: $\left.\left.\varepsilon^{2 / 3}| | \varepsilon H_{2}\right|^{2 / 3} u\right|_{L^{2}} \leq C|P u|_{L^{2}}$, which implies the optimal subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C\left|\varepsilon L_{\varepsilon} u\right|_{L^{2}}+\ldots$.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

The subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C|P u|_{L^{2}}+\ldots$ and standard manipulations yields the hypoelliptic estimate

$$
\begin{align*}
& \left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}, \\
& 0 \notin \operatorname{supp}\left(\rho_{1}\right), \rho_{2}=1 \text { on } \operatorname{supp}\left(\rho_{1}\right), \rho_{1}=\rho_{2}=1 \text { near } \infty . \tag{1}
\end{align*}
$$

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

The subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C|P u|_{L^{2}}+\ldots$ and standard manipulations yields the hypoelliptic estimate

$$
\begin{gather*}
\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}, \\
0 \notin \operatorname{supp}\left(\rho_{1}\right), \rho_{2}=1 \text { on } \operatorname{supp}\left(\rho_{1}\right), \rho_{1}=\rho_{2}=1 \text { near } \infty . \tag{1}
\end{gather*}
$$

Remark: (1) could possibly be proved by different approaches:

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

The subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C|P u|_{L^{2}}+\ldots$ and standard manipulations yields the hypoelliptic estimate

$$
\begin{align*}
& \left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}, \\
& 0 \notin \operatorname{supp}\left(\rho_{1}\right), \rho_{2}=1 \text { on } \operatorname{supp}\left(\rho_{1}\right), \rho_{1}=\rho_{2}=1 \text { near } \infty . \tag{1}
\end{align*}
$$

Remark: (1) could possibly be proved by different approaches:

- Reducing $P=\varepsilon H_{1}+(\varepsilon V)^{2}$ to $\varepsilon \partial_{X_{1}} \cdot A_{0}\left(x^{\prime}, \partial_{\chi}\right)+\left(\varepsilon x_{1} \partial_{X_{2}}\right)^{2}, A_{0} \in \Psi_{\varepsilon}^{0}$ by means of a semiclassical FIO, as in Lebeau.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

The subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C|P u|_{L^{2}}+\ldots$ and standard manipulations yields the hypoelliptic estimate

$$
\begin{align*}
& \left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}, \\
& 0 \notin \operatorname{supp}\left(\rho_{1}\right), \rho_{2}=1 \text { on } \operatorname{supp}\left(\rho_{1}\right), \rho_{1}=\rho_{2}=1 \text { near } \infty . \tag{1}
\end{align*}
$$

Remark: (1) could possibly be proved by different approaches:

- Reducing $P=\varepsilon H_{1}+(\varepsilon V)^{2}$ to $\varepsilon \partial_{X_{1}} \cdot A_{0}\left(x^{\prime}, \partial_{x}\right)+\left(\varepsilon x_{1} \partial_{X_{2}}\right)^{2}, A_{0} \in \Psi_{\varepsilon}^{0}$ by means of a semiclassical FIO, as in Lebeau.
- Comparing P to $\varepsilon X+(\varepsilon Y)^{2}, X, Y,[X, Y]$ generators of the Heisenberg group, and apply the Rothschild-Stein theory.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

The subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C|P u|_{L^{2}}+\ldots$ and standard manipulations yields the hypoelliptic estimate

$$
\begin{align*}
& \left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}, \tag{1}\\
& 0 \notin \operatorname{supp}\left(\rho_{1}\right), \rho_{2}=1 \text { on } \operatorname{supp}\left(\rho_{1}\right), \rho_{1}=\rho_{2}=1 \text { near } \infty .
\end{align*}
$$

Remark: (1) could possibly be proved by different approaches:

- Reducing $P=\varepsilon H_{1}+(\varepsilon V)^{2}$ to $\varepsilon \partial_{X_{1}} \cdot A_{0}\left(x^{\prime}, \partial_{\chi}\right)+\left(\varepsilon x_{1} \partial_{X_{2}}\right)^{2}, A_{0} \in \Psi_{\varepsilon}^{0}$ by means of a semiclassical FIO, as in Lebeau.
- Comparing P to $\varepsilon X+(\varepsilon Y)^{2}, X, Y,[X, Y]$ generators of the Heisenberg group, and apply the Rothschild-Stein theory. In a work in progress Smith uses this approach to construct a semiclassical parametrix for L_{ε}.

Maximal hypoellipticity for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$

The subelliptic estimate $\varepsilon^{2 / 3}|u|_{H_{\varepsilon}^{2 / 3}} \leq C|P u|_{L^{2}}+\ldots$ and standard manipulations yields the hypoelliptic estimate

$$
\begin{align*}
& \left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{L^{2}} \leq C\left|\rho_{2}\left(\varepsilon^{2} \Delta\right)\left(L_{\varepsilon}-\lambda\right) u\right|_{L^{2}}+O\left(\varepsilon^{\infty}\right)|u|_{L^{2}}, \tag{1}\\
& 0 \notin \operatorname{supp}\left(\rho_{1}\right), \rho_{2}=1 \text { on } \operatorname{supp}\left(\rho_{1}\right), \rho_{1}=\rho_{2}=1 \text { near } \infty .
\end{align*}
$$

Remark: (1) could possibly be proved by different approaches:

- Reducing $P=\varepsilon H_{1}+(\varepsilon V)^{2}$ to $\varepsilon \partial_{x_{1}} \cdot A_{0}\left(x^{\prime}, \partial_{x}\right)+\left(\varepsilon x_{1} \partial_{x_{2}}\right)^{2}, A_{0} \in \Psi_{\varepsilon}^{0}$ by means of a semiclassical FIO, as in Lebeau.
- Comparing P to $\varepsilon X+(\varepsilon Y)^{2}, X, Y,[X, Y]$ generators of the Heisenberg group, and apply the Rothschild-Stein theory. In a work in progress Smith uses this approach to construct a semiclassical parametrix for L_{ε}.

It remains to show that $\left(L_{\varepsilon}-\lambda\right)^{-1}$ continues meromorphically on the same spaces as $\left(H_{1}-\lambda\right)^{-1}$.

Reminders about Anosov flows

Reminders about Anosov flows

If \mathbb{M} has negative curvature then $\phi_{t}(x, \xi) \stackrel{\text { def }}{=} e^{t H_{1}}(x, \xi)$ is an Anosov flow on $S^{*} \mathbb{M}$:

Reminders about Anosov flows

If \mathbb{M} has negative curvature then $\phi_{t}(x, \xi) \xlongequal{\text { def }} e^{t H_{1}}(x, \xi)$ is an Anosov flow on $S^{*} \mathbb{M}$: for every $z \in S^{*} \mathbb{M}$ there exists a splitting of $T_{z} S^{*} \mathbb{M}$ in unstable, invariant and stable directions:

Reminders about Anosov flows

If \mathbb{M} has negative curvature then $\phi_{t}(x, \xi) \stackrel{\text { def }}{=} e^{t H_{1}}(x, \xi)$ is an Anosov flow on $S^{*} \mathbb{M}$: for every $z \in S^{*} \mathbb{M}$ there exists a splitting of $T_{z} S^{*} \mathbb{M}$ in unstable, invariant and stable directions:

$$
\begin{gather*}
T_{z} S^{*} \mathbb{M}=E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z), \\
d \phi_{t}\left(E_{ \pm}\right) \subset E_{ \pm}, \quad v \in E_{ \pm} \Rightarrow\left|d \phi_{t} v\right| \leq C e^{-|t|}|v|, \quad \pm t>0 . \tag{2}
\end{gather*}
$$

Reminders about Anosov flows

If \mathbb{M} has negative curvature then $\phi_{t}(x, \xi) \stackrel{\text { def }}{=} e^{t H_{1}}(x, \xi)$ is an Anosov flow on $S^{*} \mathbb{M}$: for every $z \in S^{*} \mathbb{M}$ there exists a splitting of $T_{z} S^{*} \mathbb{M}$ in unstable, invariant and stable directions:

$$
\begin{gather*}
T_{z} S^{*} \mathbb{M}=E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z), \\
d \phi_{t}\left(E_{ \pm}\right) \subset E_{ \pm}, \quad v \in E_{ \pm} \Rightarrow\left|d \phi_{t} v\right| \leq C e^{-|t|}|v|, \quad \pm t>0 . \tag{2}
\end{gather*}
$$

Based on the splitting (2), Faure-Sjöstrand and Dyatlov-Zworski constructed semiclassical weighted Sobolev spaces \mathcal{H} such that if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$,

Reminders about Anosov flows

If \mathbb{M} has negative curvature then $\phi_{t}(x, \xi) \stackrel{\text { def }}{=} e^{t H_{1}}(x, \xi)$ is an Anosov flow on $S^{*} \mathbb{M}$: for every $z \in S^{*} \mathbb{M}$ there exists a splitting of $T_{z} S^{*} \mathbb{M}$ in unstable, invariant and stable directions:

$$
\begin{gather*}
T_{z} S^{*} \mathbb{M}=E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z), \tag{2}\\
d \phi_{t}\left(E_{ \pm}\right) \subset E_{ \pm}, \quad v \in E_{ \pm} \Rightarrow\left|d \phi_{t} v\right| \leq C e^{-|t|}|v|, \quad \pm t>0 .
\end{gather*}
$$

Based on the splitting (2), Faure-Sjöstrand and Dyatlov-Zworski constructed semiclassical weighted Sobolev spaces \mathcal{H} such that if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$,

$$
u \in \mathcal{H} \Rightarrow|u|_{\mathcal{H}} \leq C\left|\left(H_{1}+Q-\lambda\right) u\right|_{\mathcal{H}}, \quad 0<Q \in \psi_{h}^{0}, 0 \in \operatorname{EII}_{h}(Q) .
$$

Reminders about Anosov flows

If \mathbb{M} has negative curvature then $\phi_{t}(x, \xi) \stackrel{\text { def }}{=} e^{t H_{1}}(x, \xi)$ is an Anosov flow on $S^{*} \mathbb{M}$: for every $z \in S^{*} \mathbb{M}$ there exists a splitting of $T_{z} S^{*} \mathbb{M}$ in unstable, invariant and stable directions:

$$
\begin{gather*}
T_{z} S^{*} \mathbb{M}=E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z), \tag{2}\\
d \phi_{t}\left(E_{ \pm}\right) \subset E_{ \pm}, \quad v \in E_{ \pm} \Rightarrow\left|d \phi_{t} v\right| \leq C e^{-|t|}|v|, \quad \pm t>0 .
\end{gather*}
$$

Based on the splitting (2), Faure-Sjöstrand and Dyatlov-Zworski constructed semiclassical weighted Sobolev spaces \mathcal{H} such that if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$,

$$
u \in \mathcal{H} \Rightarrow|u|_{\mathcal{H}} \leq C\left|\left(H_{1}+Q-\lambda\right) u\right|_{\mathcal{H}}, \quad 0<Q \in \Psi_{h}^{0}, 0 \in \mathrm{El}_{h}(Q) .
$$

This and an adjoint inequality implies that $\left(H_{1}-\lambda\right)^{-1}: \mathcal{H} \rightarrow \mathcal{H}$, holomorphic and well defined for $\operatorname{Re} \lambda<0$, extends meromorphically to $\{|\lambda| \leq R\}$.

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

For frequencies up to ε^{-1} the term $0 \leq-\varepsilon V^{2}$ in L_{ε} can be treated as an additional absorbing potential.

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

For frequencies up to ε^{-1} the term $0 \leq-\varepsilon V^{2}$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov-Zworski technology shows

$$
\begin{align*}
& |u|_{\mathcal{H}} \leq\left|\left(H_{1}+Q-\chi_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2}-\lambda\right) u\right|_{\mathcal{H}} \\
& \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} . \tag{4}
\end{align*}
$$

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

For frequencies up to ε^{-1} the term $0 \leq-\varepsilon V^{2}$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov-Zworski technology shows

$$
\begin{align*}
& |u|_{\mathcal{H}} \leq\left|\left(H_{1}+Q-\chi_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2}-\lambda\right) u\right|_{\mathcal{H}} \\
& \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} . \tag{4}
\end{align*}
$$

For frequencies $\geq \varepsilon^{-1}$ the term $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

For frequencies up to ε^{-1} the term $0 \leq-\varepsilon V^{2}$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov-Zworski technology shows

$$
\begin{align*}
& |u|_{\mathcal{H}} \leq\left|\left(H_{1}+Q-\chi_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2}-\lambda\right) u\right|_{\mathcal{H}} \\
& \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} . \tag{4}
\end{align*}
$$

For frequencies $\geq \varepsilon^{-1}$ the term $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

$$
\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+O\left(\varepsilon^{\infty}\right)|u|_{\mathcal{H}}
$$

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

For frequencies up to ε^{-1} the term $0 \leq-\varepsilon V^{2}$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov-Zworski technology shows

$$
\begin{align*}
& |u|_{\mathcal{H}} \leq\left|\left(H_{1}+Q-\chi_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2}-\lambda\right) u\right|_{\mathcal{H}} \\
& \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} . \tag{4}
\end{align*}
$$

For frequencies $\geq \varepsilon^{-1}$ the term $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

$$
\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+O\left(\varepsilon^{\infty}\right)|u|_{\mathcal{H}} .
$$

This shows (3).

Meromorphic continuation for $L_{\varepsilon}=H_{1}-\varepsilon V^{2}$ on \mathcal{H}

Goal: Fredhom estimate: if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$ then

$$
\begin{equation*}
|u|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}} . \tag{3}
\end{equation*}
$$

For frequencies up to ε^{-1} the term $0 \leq-\varepsilon V^{2}$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov-Zworski technology shows

$$
\begin{align*}
& |u|_{\mathcal{H}} \leq\left|\left(H_{1}+Q-\chi_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2}-\lambda\right) u\right|_{\mathcal{H}} \\
& \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} . \tag{4}
\end{align*}
$$

For frequencies $\geq \varepsilon^{-1}$ the term $\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

$$
\left|\rho_{1}\left(\varepsilon^{2} \Delta\right) \varepsilon V^{2} u\right|_{\mathcal{H}} \leq C\left|\left(L_{\varepsilon}+Q-\lambda\right) u\right|_{\mathcal{H}}+O\left(\varepsilon^{\infty}\right)|u|_{\mathcal{H}} .
$$

This shows (3). The adjoint estimate shows that $L_{\varepsilon}+Q-\lambda$ is invertible, hence $\left(L_{\varepsilon}-\lambda\right)^{-1}: \mathcal{H} \rightarrow \mathcal{H}$ continues meromorphically.

Conclusion

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces.

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense.

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies
Theorem
If \mathbb{M} is a negatively curved surface then

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} as $\varepsilon \rightarrow 0$.

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} as $\varepsilon \rightarrow 0$.

Remaining questions:

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} as $\varepsilon \rightarrow 0$.

Remaining questions:

- H_{1} admits a spectral gap: it has no resonances in $\{\operatorname{Re} \lambda \leq \delta\}$, for some $\delta>0$. What about L_{ε} ?

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} as $\varepsilon \rightarrow 0$.

Remaining questions:

- H_{1} admits a spectral gap: it has no resonances in $\{\operatorname{Re} \lambda \leq \delta\}$, for some $\delta>0$. What about L_{ε} ?
- If $\mathbb{M}=\mathbb{T}^{2}$ (0 curvature) then the accumulation set of the (discrete) spectrum of L_{ε} does not seem to be discrete!

Conclusion

$\left(L_{\varepsilon}-\lambda\right)^{-1}$ and $\left(H_{1}-\lambda\right)^{-1}$ exist on the same spaces. We can consider

$$
\left(L_{\varepsilon}-\lambda\right)^{-1}-\left(H_{1}-\lambda\right)^{-1}=\varepsilon \cdot\left(H_{1}-\lambda\right)^{-1} V^{2}(L-\lambda)^{-1} .
$$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^{2}-eigenvalues of L_{ε} converge to the Pollicott-Ruelle resonances of H_{1} as $\varepsilon \rightarrow 0$.

Remaining questions:

- H_{1} admits a spectral gap: it has no resonances in $\{\operatorname{Re} \lambda \leq \delta\}$, for some $\delta>0$. What about L_{ε} ?
- If $\mathbb{M}=\mathbb{T}^{2}$ (0 curvature) then the accumulation set of the (discrete) spectrum of L_{ε} does not seem to be discrete! What can be the meaning of this continuum?

Spectrum of a slightly different L_{ε} for $\mathbb{M}=\mathbb{T}^{2}$

 (Dyatlov-Zworski)
Spectrum of a slightly different L_{ε} for $\mathbb{M}=\mathbb{T}^{2}$ (Dyatlov-Zworski)

Limit set in $\{\operatorname{Re} \lambda \geq 0\}$ of the spectrum of $H_{1}-\varepsilon \Delta$ on $S^{*} \mathbb{T}^{2}$.

Spectrum of a slightly different L_{ε} for $\mathbb{M}=\mathbb{T}^{2}$ (Dyatlov-Zworski)

Limit set in $\{\operatorname{Re} \lambda \geq 0\}$ of the spectrum of $H_{1}-\varepsilon \Delta$ on $S^{*} \mathbb{T}^{2}$.
Thanks for your attention!

