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Geometric setting

I Let (M, g) be a smooth compact Riemannian manifold, T ∗M its
cotangent bundle, S∗M its cosphere bundle.

I The Hamiltonian vector field H1 of p(x , ξ) = 1
2 |ξ|2g , given by

H1 =
∑

i
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∂ξi

is tangent to S∗M the cosphere bundle of M. Its integral curves
project to geodesics on M. It is called the generator of the
geodesic flow.
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The kinetic Brownian motion (KBM)

I To model interaction of photons in Schwarzchild or Minkowski
geometries, Franchi–Le Jan introduced constant-speed diffusion
processes.

I Grothaus–Stilgenbauer, Li, Angst–Bailleul–Tardif extended these to
the Riemannian setting, defining the kinetic Brownian motion on
S∗M. It models the motion of a particle with a fixed speed
norm, submitted to collisions.

I The infinitesimal generator Lε of the KBM is given as follows:
first fix x ∈M and see S∗xM as a Riemannian manifold; let
∆S(x) ≤ 0 be its Laplace–Beltrami operator. Varying x yields an
operator ∆S on C∞(S∗M) and

Lε
def
= H1 − ε∆S : C∞(S∗M)→ C∞(S∗M), ε ∈ (0,∞).

I In the proofs we focus on the case M orientable surface; hence
Lε = H1 − εV 2, V generator of the circle action on the fibers of
S∗M.
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Recent results on Lε in the limits ε→ 0,∞

Recall Lε = H1 − ε∆S, H1 generator of the geodesic flow, ∆S vertical
spherical Laplacian.

Li ’14, Angst–Bailleuil–Tardif ’15: Lε interpolates between the
geodesic flow and the Brownian motion. Let z(t) : R→ S∗M be the
solution of the stochastic process with generator Lε:

ż(t) = H1(z(t)) +
√

2εḂ(t), z(0) independent of ε,

B(t) spherical vertical Brownian motion.

I When ε→ 0, the projection of z(t) to M converges to the
geodesic starting at z(0).

I When ε→∞, the projection of z(ε2t) to M converges in law to a
Brownian motion on M.
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Numerical simulation

6 J. ANGST, I. BAILLEUL, AND C. TARDIF

Figure 3. Kinetic Brownian motion on the flat torus for σ = 10−2, 10−1, 1, 2, 4, 10.

2.1. Statement of the results. To fix the setting, add a cemetary point ∂ toM, and endow
the unionMt{∂} with its usual one-point compactification topology. That being done, denote
by Ω0 the set of continuous paths γ : [0, 1]→Mt {∂}, that start at some reference point x0
and that stay at point ∂ if they exit the manifold M. Let F :=

∨
t∈[0,1]Ft where (Ft)0≤t≤1

stands for the filtration generated by the canonical coordinate process. Denote by BR the
geodesic open ball with center x0 and radius R, for any R > 0. The first exit time from BR is
denoted by τR, and used to define a measurable map

TR : Ω0 → C
(
[0, 1], B̄R

)
,

which associates to any path (γt)0≤t≤1 ∈ Ω0 the path which coincides with γ on the time
interval

[
0, τR

]
, and which is constant, equal to γτR , on the time interval

[
τR, 1

]
. The following

definition then provides a convenient setting for dealing with sequences of random process
whose limit may explode.

Definition 2.1.1. A sequence (Pn)n≥0 of probability measures on
(
Ω0,F

)
is said to converge

locally weakly to some limit probability P on
(
Ω0,F

)
if the sequence Pn ◦ T−1R of probability

measures on C([0, 1], B̄R) converges weakly to P ◦ T−1R , for every R > 0.

Equipped with this definition, we can give a precise sense to the above interpolation between
geodesic and Brownian motions provided by kinetic Brownian motion.

Theorem 2.1.2 (Interpolation). Assume the Riemannian manifold (M, g) is complete. Given
z0 =

(
x0, e0

)
∈ OM we have the two following asymptotics behaviours.

• The law of the rescaled process
(
xσσ2t

)
0≤t≤1 converges locally weakly under Pz0 to Brow-

nian motion onM, run at speed 4
d(d−1) over the time interval [0, 1], as σ goes to infinity.

• The law of the non-rescaled process
(
xσt
)
0≤t≤1 converges locally weakly under Pz0, as

σ goes to zero, to a Dirac mass on the geodesic started from x0 in the direction of the
first vector of the basis e0.

Figure: Projection of the kinetic Brownian motion on a 2-torus with ε = 1/10.
The trajectories are locally close to geodesics – but not globally. Simulation
from Angst–Bailleul–Tardif.
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2.1. Statement of the results. To fix the setting, add a cemetary point ∂ toM, and endow
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(
Ω0,F

)
is said to converge

locally weakly to some limit probability P on
(
Ω0,F

)
if the sequence Pn ◦ T−1R of probability
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Equipped with this definition, we can give a precise sense to the above interpolation between
geodesic and Brownian motions provided by kinetic Brownian motion.

Theorem 2.1.2 (Interpolation). Assume the Riemannian manifold (M, g) is complete. Given
z0 =

(
x0, e0

)
∈ OM we have the two following asymptotics behaviours.

• The law of the rescaled process
(
xσσ2t

)
0≤t≤1 converges locally weakly under Pz0 to Brow-

nian motion onM, run at speed 4
d(d−1) over the time interval [0, 1], as σ goes to infinity.

• The law of the non-rescaled process
(
xσt
)
0≤t≤1 converges locally weakly under Pz0, as

σ goes to zero, to a Dirac mass on the geodesic started from x0 in the direction of the
first vector of the basis e0.

Figure: Projection of the kinetic Brownian motion on a 2-torus with ε = 1. The
trajectories become random. Simulation from Angst–Bailleul–Tardif.
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2.1. Statement of the results. To fix the setting, add a cemetary point ∂ toM, and endow
the unionMt{∂} with its usual one-point compactification topology. That being done, denote
by Ω0 the set of continuous paths γ : [0, 1]→Mt {∂}, that start at some reference point x0
and that stay at point ∂ if they exit the manifold M. Let F :=
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]
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Definition 2.1.1. A sequence (Pn)n≥0 of probability measures on
(
Ω0,F

)
is said to converge

locally weakly to some limit probability P on
(
Ω0,F

)
if the sequence Pn ◦ T−1R of probability

measures on C([0, 1], B̄R) converges weakly to P ◦ T−1R , for every R > 0.

Equipped with this definition, we can give a precise sense to the above interpolation between
geodesic and Brownian motions provided by kinetic Brownian motion.

Theorem 2.1.2 (Interpolation). Assume the Riemannian manifold (M, g) is complete. Given
z0 =

(
x0, e0

)
∈ OM we have the two following asymptotics behaviours.

• The law of the rescaled process
(
xσσ2t

)
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nian motion onM, run at speed 4
d(d−1) over the time interval [0, 1], as σ goes to infinity.

• The law of the non-rescaled process
(
xσt
)
0≤t≤1 converges locally weakly under Pz0, as

σ goes to zero, to a Dirac mass on the geodesic started from x0 in the direction of the
first vector of the basis e0.

Figure: Projection of the kinetic Brownian motion on a 2-torus with ε = 10.
The trajectories look completely random. Simulation from
Angst–Bailleul–Tardif.



The case of M with negative curvature

If M has negative curvature, geodesics on M tend to repel each other,
and the geodesic flow is chaotic. This is expressed through the
exponential decay of correlations: formally,

f , g ∈ C∞(S∗M) ⇒ 〈f , (e−tH1)∗g〉 ∼
∫

S∗M
fg +

∑

k

e−λk tak(f , g).

The ak are bilinear forms of f , g and the λk , called Pollicott–Ruelle
resonances, have positive real parts. They depend only on M.

On certain anisotropic Sobolev spaces H,

H1 : H → H is Fredholm of index 0,

with discrete spectrum given by {λk}. Equivalently, the λk ’s are the
poles of the meromorphic continuation of (H1 − λ)−1. It relies on
work of Baladi, Liverani, Gouëzel–Liverani, Baladi–Tsujii,
Faure–Sjöstrand, Dyatlov–Zworski.
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work of Baladi, Liverani, Gouëzel–Liverani, Baladi–Tsujii,
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Main result

Recall that Lε = H1 − ε∆S generates the kinetic Brownian motion. It
is hypoelliptic operator with discrete spectrum.

Theorem
If M is negatively curved and ε→ 0+ the L2-eigenvalues of Lε
converge to the Pollicott–Ruelle resonances of H1 on compact sets.

Remarks:

I The L2-spectrum of H1 is iR but the accumulation points of the
spectrum of H1 − ε∆S form a discrete set!

I Dyatlov–Zworski proved the theorem when ∆S is replaced by an
elliptic operator. Here H1 − ε∆S is only hypoelliptic.

I The convergence is in fact stronger: spectral projections are
smooth; eigenvalues of Lε admit complete expansions in powers
of ε; convergence to complex conjugates as ε→ 0−.

I The Po–Ru resonances were intially defined as dynamical objects:
they quantify the decay of correlations. We interpret them here as
spectral and probabilistic objects.
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Convergence of Lε = H1 − ε∆S in the resolvent sense

I Po–Ru resonances λ of H1 in a compact set are eigenvalues of
H1 on specifically designed spaces H.

I If Q is a (real) absorbing potential near the zero section and λ ∈ K ,
then H1 + Q − λ is invertible on H (Dyatlov–Zworski). Thus
resonances are zeros of the Fredholm determinant

det(Id− Q(H1 + Q − λ)−1)“ = ”
det(H1 − λ)

det(H1 + Q − λ)
.

I Lε is hypoelliptic: its L2 and H-spectrum are equal, given by the
zero set of det(Id− Q(Lε + Q − λ)−1).

I Thus it should be enough to show that as ε→ 0+,

(Lε + Q − λ)−1 → (H1 + Q − λ)−1.

I Easy by resolvent identity if we know Lε + Q − λ invertible on H.

Goal: show that the perturbation term −ε∆S ≥ 0 is small enough
compared to H1 − ε∆S so that the method of Dyatlov–Zworski for
invertibility of H1 + Q − λ applies to Lε − Q − λ.
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Maximal hypoellipticity for Lε = H1 − εV 2

Starting now M is an orientable surface. Hence ∆S = V 2, V
generator of the circle action on the fibers of S∗M and Lε = H1− εV 2.

Computations in normal coordinates show

V , H1, H2
def
= [V ,H1] linearly independent at every point: Lε is hypoelliptic.

Lε satisfies the optimal subelliptic inequality (Rothschild–Stein)

|u|H2/3 + |εV 2u|L2 + |H1u|L2 ≤ Cε|Lεu|L2 + O(|u|H−N ).

To compare εV 2u with Lεu for small ε we need to study the behavior of
Cε as ε→ 0.
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Maximal hypoellipticity for Lε = H1 − εV 2

Let ∆
def
= V 2 + H2

1 + H2
2 ; Hs

ε be the semiclassical Sobolev spaces with
norm |(1− ε2∆)s/2u|L2 ; ρ1 = 1 near ∞ and 0 near 0; ρ2 equal to 1 on
supp(ρ1).

Theorem
There exists C such that for ε small enough,

ε2/3|ρ1(ε2∆)u|
H

2/3
ε
≤ C |ρ2(ε2∆)εLεu|L2 + O(ε∞)|u|L2 .

Remark: this applies to more general hypoelliptic operators, as long
as only one commutator is needed to span the tangent space.

Corollary
There exists C such that for ε small enough, λ in compact sets,

|ρ1(ε2∆)εV 2u|L2 ≤ C |ρ2(ε2∆)(Lε − λ)u|L2 + O(ε∞)|u|L2 .

Conclusion: the term εV 2 cannot be too big compared to Lε.
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Principle of proof: semiclassical analysis

Rough goal: ε2/3|u|
H

2/3
ε
≤ C |εLεu|L2 + ....

The operator P
def
= εLε = −(εV )2 + εH1 is a semiclassical operator in

Ψ2
ε. We partition |ρ1(ε2∆)u|

H
2/3
ε

in finitely many microlocalized

pieces of the form |Au|L2 , A ∈ Ψ
2/3
ε with WFε(A) close to (x0, ξ0) ∈

T
∗
S∗M, and we show estimates for each parts:

ε2/3|Au|L2 ≤ C |Pu|L2 + ...

The hardest part occurs when (x0, ξ0) /∈ Ellε(εV ) ∪ Ellε(εH1). Hence:

(x0, ξ0) ∈ Ellε(εH2) = Ellε(ε
−1[εV , εH1]).

A toy model for P = εH1 − (εV )2 near (x0, ξ0) is P def
= ε∂x1 − (εx1∂x2)2

near (0, e2). The semiclassical Fourier transform of P in x2 is

P̂ def
= ε∂x1 + (x1ξ2)2.

Below we show estimates for P̂.
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Study of P̂ = ε∂x1 − (x1ξ2)2 at fixed ξ2 – after Lebeau

I Control for small values of x1: take ϕ such that (ϕ2)′ is a bump
function with value 1 on [−t, t].

Re〈P̂v , ϕ2v〉 = |ϕx1ξ2v |2L2 + Re〈ϕε∂x1v , ϕv〉 ≥ ε
∫

(ϕ2)′|v |2;

ϕ2 = O(t)⇒
∫

|x1|≤t
|v |2 ≤ Cε−1t|P̂v |L2 |v |L2 .

I Control for large values of x1:
∫

|x1|≥t
|v |2 ≤

∫

|x1|≥t

x21
t2
|v |2 =
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From P = ε∂x1 + (εx1∂x2)
2 to P = εH1 − (εV )2

We have the estimate ε2/3||ε∂x2 |2/3u|L2 ≤ C |Pu|L2 for P. The
semiclassical version of the arguments presented above show a
similar estimate for P:

P = ε∂x1 − (εx1∂x2)2 near (0, e2). P = εH1 − (εV )2 near Ellε(εH2).

Fourier transform to work at
fixed ξ2.

Further microlocalization on
dyadic frequency intervals.

Use [ε∂x1 , ϕ
2] > 0 where x1ξ2 � ξ2.

Gårding inequality to [εV , εH1]
where εV is “strongly character-
isitic”, i.e. “εV � εH2”.

Use x1 = x1ξ2/ξ2 where x1ξ2 is not
too small.

Spectral theorem where εV is
“not too characteristic”.

Conclusion: ε2/3||εH2|2/3u|L2 ≤ C |Pu|L2 , which implies the optimal
subelliptic estimate ε2/3|u|

H
2/3
ε
≤ C |εLεu|L2 + ....
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The subelliptic estimate ε2/3|u|
H

2/3
ε
≤ C |Pu|L2 + ... and standard

manipulations yields the hypoelliptic estimate

|ρ1(ε2∆)εV 2u|L2 ≤ C |ρ2(ε2∆)(Lε − λ)u|L2 + O(ε∞)|u|L2 ,
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I Comparing P to εX + (εY )2, X ,Y , [X ,Y ] generators of the
Heisenberg group, and apply the Rothschild–Stein theory. In a
work in progress Smith uses this approach to construct a
semiclassical parametrix for Lε.

It remains to show that (Lε − λ)−1 continues meromorphically on the
same spaces as (H1 − λ)−1.
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Reminders about Anosov flows

If M has negative curvature then φt(x , ξ)
def
= etH1(x , ξ) is an Anosov

flow on S∗M: for every z ∈ S∗M there exists a splitting of TzS
∗M in

unstable, invariant and stable directions:

TzS
∗M = E−(z)⊕ R · H1(z)⊕ E+(z),

dφt(E±) ⊂ E±, v ∈ E± ⇒ |dφtv | ≤ Ce−|t||v |, ±t > 0.
(2)

Based on the splitting (2), Faure–Sjöstrand and Dyatlov–Zworski
constructed semiclassical weighted Sobolev spaces H such that if
0 ≤ Q is a suitable absorbing potential near the zero section, |λ| ≤ R,

u ∈ H ⇒ |u|H ≤ C |(H1 + Q − λ)u|H, 0 < Q ∈ Ψ0
h, 0 ∈ Ellh(Q).

This and an adjoint inequality implies that (H1 − λ)−1 : H → H,
holomorphic and well defined for Reλ < 0, extends
meromorphically to {|λ| ≤ R}.
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Meromorphic continuation for Lε = H1 − εV 2 on H

Goal: Fredhom estimate: if 0 ≤ Q is a suitable absorbing potential
near the zero section, |λ| ≤ R then

|u|H ≤ C |(Lε + Q − λ)u|H. (3)

For frequencies up to ε−1 the term 0 ≤ −εV 2 in Lε can be treated as
an additional absorbing potential. The Dyatlov–Zworski technology
shows

|u|H ≤ |(H1 + Q − χ1(ε2∆)εV 2 − λ)u|H
≤ C |(Lε + Q − λ)u|H + |ρ1(ε2∆)εV 2u|H.

(4)

For frequencies ≥ ε−1 the term |ρ1(ε2∆)εV 2u|H in the RHS of (4) is
controlled by the anisotropic version of our subelliptic estimate:

|ρ1(ε2∆)εV 2u|H ≤ C |(Lε + Q − λ)u|H + O(ε∞)|u|H.

This shows (3). The adjoint estimate shows that Lε + Q − λ is invertible,
hence (Lε − λ)−1 : H → H continues meromorphically.
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Conclusion

(Lε − λ)−1 and (H1 − λ)−1 exist on the same spaces. We can consider

(Lε − λ)−1 − (H1 − λ)−1 = ε · (H1 − λ)−1V 2(L− λ)−1.

It converges to 0 away from poles in a strong sense. Fredholm
determinant theory implies

Theorem
If M is a negatively curved surface then the L2-eigenvalues of Lε
converge to the Pollicott–Ruelle resonances of H1 as ε→ 0.

Remaining questions:

I H1 admits a spectral gap: it has no resonances in {Reλ ≤ δ}, for
some δ > 0. What about Lε?

I If M = T2 (0 curvature) then the accumulation set of the (discrete)
spectrum of Lε does not seem to be discrete! What can be the
meaning of this continuum?
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Spectrum of a slightly different Lε for M = T2

(Dyatlov–Zworski)
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Limit set in {Reλ ≥ 0} of the spectrum of H1 − ε∆ on S∗T2.
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