Pollicott–Ruelle resonances via kinetic Brownian motion.

Alexis Drouot

September 20th 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let (M, g) be a smooth compact Riemannian manifold, T^{*}M its cotangent bundle, S^{*}M its cosphere bundle.

(ロ)、(型)、(E)、(E)、 E) の(の)

- Let (M, g) be a smooth compact Riemannian manifold, T^{*}M its cotangent bundle, S^{*}M its cosphere bundle.
- ▶ The Hamiltonian vector field H_1 of $p(x,\xi) = \frac{1}{2} |\xi|_g^2$, given by

$$H_{1} = \sum_{i} \frac{\partial p}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}} - \frac{\partial p}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}$$

is tangent to $S^*\mathbb{M}$ the cosphere bundle of \mathbb{M} .

- Let (M, g) be a smooth compact Riemannian manifold, T^{*}M its cotangent bundle, S^{*}M its cosphere bundle.
- The Hamiltonian vector field H_1 of $p(x,\xi) = \frac{1}{2} |\xi|_g^2$, given by

$$H_{1} = \sum_{i} \frac{\partial p}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}} - \frac{\partial p}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}$$

is tangent to $S^*\mathbb{M}$ the cosphere bundle of \mathbb{M} . Its integral curves project to geodesics on \mathbb{M} . It is called the generator of the geodesic flow.

To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- ▶ Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M.

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M. It models the motion of a particle with a fixed speed norm, submitted to collisions.

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_ε of the KBM is given as follows: first fix x ∈ M and see S^{*}_xM as a Riemannian manifold;

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_ε of the KBM is given as follows: first fix x ∈ M and see S^{*}_xM as a Riemannian manifold; let Δ_S(x) ≤ 0 be its Laplace–Beltrami operator.

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- The infinitesimal generator L_ε of the KBM is given as follows: first fix x ∈ M and see S^{*}_xM as a Riemannian manifold; let Δ_S(x) ≤ 0 be its Laplace–Beltrami operator. Varying x yields an operator Δ_S on C[∞](S^{*}M) and

$$L_{\varepsilon} \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} H_1 - \varepsilon \Delta_{\mathbb{S}} : C^{\infty}(S^*\mathbb{M}) \to C^{\infty}(S^*\mathbb{M}), \quad \varepsilon \in (0,\infty).$$

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- ▶ The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_x^*\mathbb{M}$ as a Riemannian manifold; let $\Delta_{\mathbb{S}}(x) \leq 0$ be its Laplace–Beltrami operator. Varying x yields an operator $\Delta_{\mathbb{S}}$ on $C^{\infty}(S^*\mathbb{M})$ and

$$L_{\varepsilon} \stackrel{\text{\tiny def}}{=} \frac{H_1 - \varepsilon \Delta_{\mathbb{S}} : C^{\infty}(S^*\mathbb{M}) \to C^{\infty}(S^*\mathbb{M}), \quad \varepsilon \in (0,\infty).$$

• In the proofs we focus on the case \mathbb{M} orientable surface;

- To model interaction of photons in Schwarzschild or Minkowski geometries, Franchi–Le Jan introduced constant-speed diffusion processes.
- Grothaus-Stilgenbauer, Li, Angst-Bailleul-Tardif extended these to the Riemannian setting, defining the kinetic Brownian motion on S*M. It models the motion of a particle with a fixed speed norm, submitted to collisions.
- ▶ The infinitesimal generator L_{ε} of the KBM is given as follows: first fix $x \in \mathbb{M}$ and see $S_x^*\mathbb{M}$ as a Riemannian manifold; let $\Delta_{\mathbb{S}}(x) \leq 0$ be its Laplace–Beltrami operator. Varying x yields an operator $\Delta_{\mathbb{S}}$ on $C^{\infty}(S^*\mathbb{M})$ and

$$L_{\varepsilon} \stackrel{\text{\tiny def}}{=} \frac{H_1 - \varepsilon \Delta_{\mathbb{S}} : C^{\infty}(S^*\mathbb{M}) \to C^{\infty}(S^*\mathbb{M}), \quad \varepsilon \in (0,\infty).$$

▶ In the proofs we focus on the case \mathbb{M} orientable surface; hence $L_{\varepsilon} = H_1 - \varepsilon V^2$, V generator of the circle action on the fibers of $S^*\mathbb{M}$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Recall $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$, H_1 generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recall $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$, H_1 generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst–Bailleuil–Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion.

Recall $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$, H_1 generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t) : \mathbb{R} \to S^*\mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

Recall $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$, H_1 generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t) : \mathbb{R} \to S^*\mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

 $\dot{z}(t) = \frac{H_1(z(t)) + \sqrt{2\varepsilon}\dot{B}(t)}{B(t)}, \quad z(0) \text{ independent of } \varepsilon,$ B(t) spherical vertical Brownian motion.

Recall $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$, H_1 generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t) : \mathbb{R} \to S^*\mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

 $\dot{z}(t) = \frac{H_1(z(t)) + \sqrt{2\varepsilon}\dot{B}(t)}{B(t)}, \quad z(0) \text{ independent of } \varepsilon,$ B(t) spherical vertical Brownian motion.

When ε → 0, the projection of z(t) to M converges to the geodesic starting at z(0).

Recall $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$, H_1 generator of the geodesic flow, $\Delta_{\mathbb{S}}$ vertical spherical Laplacian.

Li '14, Angst-Bailleuil-Tardif '15: L_{ε} interpolates between the geodesic flow and the Brownian motion. Let $z(t) : \mathbb{R} \to S^*\mathbb{M}$ be the solution of the stochastic process with generator L_{ε} :

 $\dot{z}(t) = \frac{H_1(z(t)) + \sqrt{2\varepsilon}\dot{B}(t)}{B(t)}, \quad z(0) \text{ independent of } \varepsilon,$ B(t) spherical vertical Brownian motion.

- When ε → 0, the projection of z(t) to M converges to the geodesic starting at z(0).
- When ε → ∞, the projection of z(ε²t) to M converges in law to a Brownian motion on M.

Figure: Projection of the kinetic Brownian motion on a 2-torus with $\varepsilon = 1/10$. The trajectories are locally close to geodesics – but not globally. **Simulation** from Angst–Bailleul–Tardif.

Figure: Projection of the kinetic Brownian motion on a 2-torus with $\varepsilon = 1$. The trajectories become random. Simulation from Angst–Bailleul–Tardif.

Figure: Projection of the kinetic Brownian motion on a 2-torus with $\varepsilon = 10$. The trajectories look completely random. Simulation from Angst–Bailleul–Tardif.

If $\mathbb M$ has negative curvature, geodesics on $\mathbb M$ tend to repel each other, and the geodesic flow is chaotic.

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations**:

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \Rightarrow \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \;\Rightarrow\; \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The a_k are bilinear forms of f, g and the λ_k , called Pollicott–Ruelle resonances, have positive real parts.

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \Rightarrow \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The a_k are bilinear forms of f, g and the λ_k , called Pollicott–Ruelle resonances, have positive real parts. They depend only on \mathbb{M} .

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \Rightarrow \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

The a_k are bilinear forms of f, g and the λ_k , called Pollicott–Ruelle resonances, have positive real parts. They depend only on \mathbb{M} .

On certain anisotropic Sobolev spaces \mathcal{H} ,

 $H_1: \mathcal{H} \to \mathcal{H}$ is Fredholm of index 0,

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \Rightarrow \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

The a_k are bilinear forms of f, g and the λ_k , called Pollicott–Ruelle resonances, have positive real parts. They depend only on \mathbb{M} .

On certain anisotropic Sobolev spaces \mathcal{H} ,

 $H_1: \mathcal{H} \to \mathcal{H}$ is Fredholm of index 0,

with discrete spectrum given by $\{\lambda_k\}$.

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \Rightarrow \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

The a_k are bilinear forms of f, g and the λ_k , called Pollicott–Ruelle resonances, have positive real parts. They depend only on \mathbb{M} .

On certain anisotropic Sobolev spaces \mathcal{H} ,

 $H_1: \mathcal{H} \to \mathcal{H}$ is Fredholm of index 0,

with discrete spectrum given by $\{\lambda_k\}$. Equivalently, the λ_k 's are the poles of the meromorphic continuation of $(H_1 - \lambda)^{-1}$.

If \mathbb{M} has **negative curvature**, geodesics on \mathbb{M} tend to repel each other, and the geodesic flow is **chaotic**. This is expressed through the **exponential decay of correlations:** formally,

$$f,g \in C^{\infty}(S^*\mathbb{M}) \Rightarrow \langle f,(e^{-tH_1})^*g \rangle \sim \int_{S^*\mathbb{M}} fg + \sum_k e^{-\lambda_k t} a_k(f,g).$$

The a_k are bilinear forms of f, g and the λ_k , called Pollicott–Ruelle resonances, have positive real parts. They depend only on \mathbb{M} .

On certain anisotropic Sobolev spaces \mathcal{H} ,

 $H_1: \mathcal{H} \to \mathcal{H}$ is Fredholm of index 0,

with discrete spectrum given by $\{\lambda_k\}$. Equivalently, the λ_k 's are the poles of the meromorphic continuation of $(H_1 - \lambda)^{-1}$. It relies on work of Baladi, Liverani, Gouëzel–Liverani, Baladi–Tsujii, Faure–Sjöstrand, Dyatlov–Zworski.

Pollicott–Ruelle resonances

・ロト・(型ト・モト・モー・ モー のへぐ
Pollicott–Ruelle resonances

Pollicott-Ruelle resonances

Pollicott–Ruelle resonances

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Pollicott–Ruelle resonances

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

<ロ> <@> < E> < E> E のQの

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion.

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

If $\mathbb M$ is negatively curved and $\varepsilon \to 0^+$

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks:

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks:

• The L^2 -spectrum of H_1 is $i\mathbb{R}$

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

Remarks:

► The *L*²-spectrum of H_1 is $i\mathbb{R}$ but the accumulation points of the spectrum of $H_1 - \varepsilon \Delta_{\mathbb{S}}$ form a discrete set!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

Remarks:

- ► The *L*²-spectrum of H_1 is $i\mathbb{R}$ but the accumulation points of the spectrum of $H_1 \varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- \blacktriangleright Dyatlov–Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

Remarks:

- ► The *L*²-spectrum of H_1 is $i\mathbb{R}$ but the accumulation points of the spectrum of $H_1 \varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- Dyatlov–Zworski proved the theorem when Δ_S is replaced by an elliptic operator. Here H₁ − εΔ_S is only hypoelliptic.

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

Remarks:

- ► The *L*²-spectrum of H_1 is $i\mathbb{R}$ but the accumulation points of the spectrum of $H_1 \varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- ▶ Dyatlov–Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_1 \varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.
- The convergence is in fact stronger: spectral projections are smooth; eigenvalues of L_ε admit complete expansions in powers of ε; convergence to complex conjugates as ε → 0⁻.

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

Remarks:

- ► The *L*²-spectrum of H_1 is $i\mathbb{R}$ but the accumulation points of the spectrum of $H_1 \varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- ▶ Dyatlov–Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_1 \varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.
- The convergence is in fact stronger: spectral projections are smooth; eigenvalues of L_ε admit complete expansions in powers of ε; convergence to complex conjugates as ε → 0⁻.
- The Po-Ru resonances were intially defined as dynamical objects: they quantify the decay of correlations.

Recall that $L_{\varepsilon} = H_1 - \varepsilon \Delta_{\mathbb{S}}$ generates the kinetic Brownian motion. It is hypoelliptic operator with discrete spectrum.

Theorem

If \mathbb{M} is negatively curved and $\varepsilon \to 0^+$ the L²-eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 on compact sets.

Remarks:

- ► The *L*²-spectrum of H_1 is $i\mathbb{R}$ but the accumulation points of the spectrum of $H_1 \varepsilon \Delta_{\mathbb{S}}$ form a discrete set!
- ▶ Dyatlov–Zworski proved the theorem when $\Delta_{\mathbb{S}}$ is replaced by an elliptic operator. Here $H_1 \varepsilon \Delta_{\mathbb{S}}$ is only hypoelliptic.
- The convergence is in fact stronger: spectral projections are smooth; eigenvalues of L_ε admit complete expansions in powers of ε; convergence to complex conjugates as ε → 0⁻.
- ► The Po-Ru resonances were intially defined as **dynamical objects**: they quantify the decay of correlations. We interpret them here as **spectral and probabilistic objects**.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Po-Ru resonances λ of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces H.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Po-Ru resonances λ of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces H.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Po–Ru resonances λ of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces H.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski). Thus resonances are zeros of the Fredholm determinant

$$\det(\mathrm{Id}-Q(H_1+Q-\lambda)^{-1})^{"}="\frac{\det(H_1-\lambda)}{\det(H_1+Q-\lambda)}.$$

- Po-Ru resonances \u03c0 of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces \u03c0.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski). Thus resonances are zeros of the Fredholm determinant

$$\det(\mathrm{Id}-Q(H_1+Q-\lambda)^{-1})^{"}="\frac{\det(H_1-\lambda)}{\det(H_1+Q-\lambda)}.$$

L_ε is hypoelliptic: its L² and H-spectrum are equal, given by the zero set of det(Id − Q(L_ε + Q − λ)⁻¹).

- Po-Ru resonances \u03c0 of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces \u03c0.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski). Thus resonances are zeros of the Fredholm determinant

$$\det(\mathrm{Id}-Q(H_1+Q-\lambda)^{-1})^{"}="\frac{\det(H_1-\lambda)}{\det(H_1+Q-\lambda)}.$$

- L_ε is hypoelliptic: its L² and H-spectrum are equal, given by the zero set of det(Id − Q(L_ε + Q − λ)⁻¹).
- ▶ Thus it should be enough to show that as $\varepsilon \to 0^+$,

$$(L_{\varepsilon}+Q-\lambda)^{-1} \rightarrow (H_1+Q-\lambda)^{-1}.$$

- Po-Ru resonances \u03c0 of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces \u03c0.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski). Thus resonances are zeros of the Fredholm determinant

$$\det(\mathrm{Id}-Q(H_1+Q-\lambda)^{-1})^{"}="\frac{\det(H_1-\lambda)}{\det(H_1+Q-\lambda)}.$$

- L_ε is hypoelliptic: its L² and H-spectrum are equal, given by the zero set of det(Id − Q(L_ε + Q − λ)⁻¹).
- ▶ Thus it should be enough to show that as $\varepsilon \to 0^+$,

$$(L_{\varepsilon}+Q-\lambda)^{-1} \rightarrow (H_1+Q-\lambda)^{-1}.$$

• Easy by resolvent identity if we know $L_{\varepsilon} + Q - \lambda$ invertible on \mathcal{H} .

- Po-Ru resonances \u03c0 of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces \u03c0.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski). Thus resonances are zeros of the Fredholm determinant

$$\det(\mathrm{Id}-Q(H_1+Q-\lambda)^{-1})^{"}="\frac{\det(H_1-\lambda)}{\det(H_1+Q-\lambda)}.$$

- L_ε is hypoelliptic: its L² and H-spectrum are equal, given by the zero set of det(Id − Q(L_ε + Q − λ)⁻¹).
- ▶ Thus it should be enough to show that as $\varepsilon \to 0^+$,

$$(L_{\varepsilon}+Q-\lambda)^{-1} \rightarrow (H_1+Q-\lambda)^{-1}.$$

► Easy by resolvent identity if we know $L_{\varepsilon} + Q - \lambda$ invertible on \mathcal{H} . Goal: show that the perturbation term $-\varepsilon \Delta_{\mathbb{S}} \ge 0$ is small enough compared to $H_1 - \varepsilon \Delta_{\mathbb{S}}$

- Po-Ru resonances \u03c0 of H₁ in a compact set are eigenvalues of H₁ on specifically designed spaces \u03c0.
- If Q is a (real) absorbing potential near the zero section and λ ∈ K, then H₁ + Q − λ is invertible on H (Dyatlov–Zworski). Thus resonances are zeros of the Fredholm determinant

$$\det(\mathrm{Id}-Q(H_1+Q-\lambda)^{-1})^{"}="\frac{\det(H_1-\lambda)}{\det(H_1+Q-\lambda)}.$$

L_ε is hypoelliptic: its L² and H-spectrum are equal, given by the zero set of det(Id − Q(L_ε + Q − λ)⁻¹).

▶ Thus it should be enough to show that as $\varepsilon \to 0^+$,

$$(L_{\varepsilon}+Q-\lambda)^{-1} \rightarrow (H_1+Q-\lambda)^{-1}.$$

• Easy by resolvent identity if we know $L_{\varepsilon} + Q - \lambda$ invertible on \mathcal{H} . Goal: show that the perturbation term $-\varepsilon \Delta_{\mathbb{S}} \ge 0$ is small enough compared to $H_1 - \varepsilon \Delta_{\mathbb{S}}$ so that the method of Dyatlov–Zworski for invertibility of $H_1 + Q - \lambda$ applies to $L_{\varepsilon} - Q - \lambda$.

<□ > < @ > < E > < E > E のQ @

Starting now $\ensuremath{\mathbb{M}}$ is an orientable surface.

・ロト・日本・モト・モート ヨー うへで

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}} = V^2$, V generator of the circle action on the fibers of $S^*\mathbb{M}$ and $L_{\varepsilon} = H_1 - \varepsilon V^2$.

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}} = V^2$, V generator of the circle action on the fibers of $S^*\mathbb{M}$ and $L_{\varepsilon} = H_1 - \varepsilon V^2$.

Computations in normal coordinates show

 $V, H_1, H_2 \stackrel{\text{\tiny def}}{=} [V, H_1]$ linearly independent at every point: L_{ε} is hypoelliptic.

Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}} = V^2$, V generator of the circle action on the fibers of $S^*\mathbb{M}$ and $L_{\varepsilon} = H_1 - \varepsilon V^2$.

Computations in normal coordinates show

 $V, H_1, H_2 \stackrel{\text{\tiny def}}{=} [V, H_1]$ linearly independent at every point: L_{ε} is hypoelliptic.

 L_{ε} satisfies the optimal subelliptic inequality (Rothschild–Stein)

 $|u|_{H^{2/3}} + |\varepsilon V^2 u|_{L^2} + |H_1 u|_{L^2} \le C_{\varepsilon} |L_{\varepsilon} u|_{L^2} + O(|u|_{H^{-N}}).$
Starting now \mathbb{M} is an orientable surface. Hence $\Delta_{\mathbb{S}} = V^2$, V generator of the circle action on the fibers of $S^*\mathbb{M}$ and $L_{\varepsilon} = H_1 - \varepsilon V^2$.

Computations in normal coordinates show

 $V, H_1, H_2 \stackrel{\text{\tiny def}}{=} [V, H_1]$ linearly independent at every point: L_{ε} is hypoelliptic.

 L_{ε} satisfies the optimal subelliptic inequality (Rothschild–Stein)

$$|u|_{H^{2/3}} + |\varepsilon V^2 u|_{L^2} + |H_1 u|_{L^2} \le C_{\varepsilon} |L_{\varepsilon} u|_{L^2} + O(|u|_{H^{-N}}).$$

To compare $\varepsilon V^2 u$ with $L_{\varepsilon} u$ for small ε we need to study the behavior of C_{ε} as $\varepsilon \to 0$.

<□ > < @ > < E > < E > E のQ @

Let $\Delta \stackrel{\text{\tiny def}}{=} V^2 + \frac{H_1^2}{1} + \frac{H_2^2}{2}$; H_{ε}^s be the semiclassical Sobolev spaces with norm $|(1 - \varepsilon^2 \Delta)^{s/2} u|_{L^2}$;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\Delta \stackrel{\text{def}}{=} V^2 + H_1^2 + H_2^2$; H_{ε}^s be the semiclassical Sobolev spaces with norm $|(1 - \varepsilon^2 \Delta)^{s/2} u|_{L^2}$; $\rho_1 = 1$ near ∞ and 0 near 0; ρ_2 equal to 1 on $\operatorname{supp}(\rho_1)$.

Let $\Delta \stackrel{\text{def}}{=} V^2 + H_1^2 + H_2^2$; H_{ε}^s be the semiclassical Sobolev spaces with norm $|(1 - \varepsilon^2 \Delta)^{s/2} u|_{L^2}$; $\rho_1 = 1$ near ∞ and 0 near 0; ρ_2 equal to 1 on $\operatorname{supp}(\rho_1)$.

Theorem

There exists C such that for ε small enough,

$$\varepsilon^{2/3}|\rho_1(\varepsilon^2\Delta)u|_{H^{2/3}_{\varepsilon}} \leq C|\rho_2(\varepsilon^2\Delta)\varepsilon L_{\varepsilon}u|_{L^2} + O(\varepsilon^{\infty})|u|_{L^2}.$$

Let $\Delta \stackrel{\text{\tiny def}}{=} V^2 + H_1^2 + H_2^2$; H_{ε}^s be the semiclassical Sobolev spaces with norm $|(1 - \varepsilon^2 \Delta)^{s/2} u|_{L^2}$; $\rho_1 = 1$ near ∞ and 0 near 0; ρ_2 equal to 1 on $\operatorname{supp}(\rho_1)$.

Theorem

There exists C such that for ε small enough,

$$\varepsilon^{2/3}|\rho_1(\varepsilon^2\Delta)u|_{H^{2/3}_{\varepsilon}} \leq C|\rho_2(\varepsilon^2\Delta)\varepsilon L_{\varepsilon}u|_{L^2} + O(\varepsilon^{\infty})|u|_{L^2}.$$

Remark: this applies to more general hypoelliptic operators, as long as only one commutator is needed to span the tangent space.

Let $\Delta \stackrel{\text{\tiny def}}{=} V^2 + H_1^2 + H_2^2$; H_{ε}^s be the semiclassical Sobolev spaces with norm $|(1 - \varepsilon^2 \Delta)^{s/2} u|_{L^2}$; $\rho_1 = 1$ near ∞ and 0 near 0; ρ_2 equal to 1 on $\operatorname{supp}(\rho_1)$.

Theorem

There exists C such that for ε small enough,

$$|arepsilon^{2/3}|
ho_1(arepsilon^2\Delta)u|_{H^{2/3}_arepsilon}\leq C|
ho_2(arepsilon^2\Delta)arepsilon L_arepsilon u|_{L^2}+O(arepsilon^\infty)|u|_{L^2}.$$

Remark: this applies to more general hypoelliptic operators, as long as only one commutator is needed to span the tangent space.

Corollary

There exists C such that for ε small enough, λ in compact sets,

$$|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{L^2} \leq C |\rho_2(\varepsilon^2 \Delta) (L_{\varepsilon} - \lambda) u|_{L^2} + O(\varepsilon^{\infty}) |u|_{L^2}.$$

Let $\Delta \stackrel{\text{\tiny def}}{=} V^2 + H_1^2 + H_2^2$; H_{ε}^s be the semiclassical Sobolev spaces with norm $|(1 - \varepsilon^2 \Delta)^{s/2} u|_{L^2}$; $\rho_1 = 1$ near ∞ and 0 near 0; ρ_2 equal to 1 on $\operatorname{supp}(\rho_1)$.

Theorem

There exists C such that for ε small enough,

$$\varepsilon^{2/3}|\rho_1(\varepsilon^2\Delta)u|_{H^{2/3}_{\varepsilon}} \leq C|\rho_2(\varepsilon^2\Delta)\varepsilon L_{\varepsilon}u|_{L^2} + O(\varepsilon^{\infty})|u|_{L^2}.$$

Remark: this applies to more general hypoelliptic operators, as long as only one commutator is needed to span the tangent space.

Corollary

There exists C such that for ε small enough, λ in compact sets,

$$|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{L^2} \leq C |\rho_2(\varepsilon^2 \Delta) (L_{\varepsilon} - \lambda) u|_{L^2} + O(\varepsilon^{\infty}) |u|_{L^2}.$$

Conclusion: the term εV^2 cannot be too big compared to L_{ε} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Rough goal: $\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$

Rough goal: $\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$

The operator $P \stackrel{\text{\tiny def}}{=} \varepsilon L_{\varepsilon} = -(\varepsilon V)^2 + \varepsilon H_1$ is a semiclassical operator in Ψ_{ε}^2 .

Rough goal:
$$\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$$

The operator $P \stackrel{\text{def}}{=} \varepsilon L_{\varepsilon} = -(\varepsilon V)^2 + \varepsilon H_1$ is a semiclassical operator in Ψ_{ε}^2 . We partition $|\rho_1(\varepsilon^2 \Delta) u|_{H_{\varepsilon}^{2/3}}$ in finitely many microlocalized pieces of the form $|Au|_{L^2}$, $A \in \Psi_{\varepsilon}^{2/3}$ with $WF_{\varepsilon}(A)$ close to $(x_0, \xi_0) \in \overline{T}^* S^* \mathbb{M}$,

Rough goal:
$$\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$$

The operator $P \stackrel{\text{def}}{=} \varepsilon L_{\varepsilon} = -(\varepsilon V)^2 + \varepsilon H_1$ is a semiclassical operator in Ψ_{ε}^2 . We partition $|\rho_1(\varepsilon^2 \Delta)u|_{H_{\varepsilon}^{2/3}}$ in finitely many microlocalized pieces of the form $|Au|_{L^2}$, $A \in \Psi_{\varepsilon}^{2/3}$ with $WF_{\varepsilon}(A)$ close to $(x_0, \xi_0) \in \overline{T}^*S^*\mathbb{M}$, and we show estimates for each parts:

$$\varepsilon^{2/3}|Au|_{L^2} \leq C|Pu|_{L^2} + \dots$$

Rough goal:
$$\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$$

The operator $P \stackrel{\text{def}}{=} \varepsilon L_{\varepsilon} = -(\varepsilon V)^2 + \varepsilon H_1$ is a semiclassical operator in Ψ_{ε}^2 . We partition $|\rho_1(\varepsilon^2 \Delta) u|_{H_{\varepsilon}^{2/3}}$ in finitely many microlocalized pieces of the form $|Au|_{L^2}$, $A \in \Psi_{\varepsilon}^{2/3}$ with $WF_{\varepsilon}(A)$ close to $(x_0, \xi_0) \in \overline{T}^*S^*\mathbb{M}$, and we show estimates for each parts:

$$\varepsilon^{2/3}|Au|_{L^2} \leq C|Pu|_{L^2} + \dots$$

The hardest part occurs when $(x_0, \xi_0) \notin \text{Ell}_{\varepsilon}(\varepsilon V) \cup \text{Ell}_{\varepsilon}(\varepsilon H_1)$.

Rough goal:
$$\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$$

The operator $P \stackrel{\text{def}}{=} \varepsilon L_{\varepsilon} = -(\varepsilon V)^2 + \varepsilon H_1$ is a semiclassical operator in Ψ_{ε}^2 . We partition $|\rho_1(\varepsilon^2 \Delta) u|_{H_{\varepsilon}^{2/3}}$ in finitely many microlocalized pieces of the form $|Au|_{L^2}$, $A \in \Psi_{\varepsilon}^{2/3}$ with $WF_{\varepsilon}(A)$ close to $(x_0, \xi_0) \in \overline{T}^*S^*\mathbb{M}$, and we show estimates for each parts:

$$\varepsilon^{2/3}|Au|_{L^2} \le C|Pu|_{L^2} + \dots$$

The hardest part occurs when $(x_0, \xi_0) \notin \text{Ell}_{\varepsilon}(\varepsilon V) \cup \text{Ell}_{\varepsilon}(\varepsilon H_1)$. Hence:

$$(x_0,\xi_0) \in \mathsf{Ell}_{\varepsilon}(\varepsilon H_2) = \mathsf{Ell}_{\varepsilon}(\varepsilon^{-1}[\varepsilon V,\varepsilon H_1]).$$

A toy model for $P = \varepsilon H_1 - (\varepsilon V)^2$ near (x_0, ξ_0) is $\mathcal{P} \stackrel{\text{def}}{=} \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, e_2)$.

Rough goal:
$$\varepsilon^{2/3}|u|_{H^{2/3}_{\varepsilon}} \leq C|\varepsilon L_{\varepsilon}u|_{L^2} + \dots$$

The operator $P \stackrel{\text{def}}{=} \varepsilon L_{\varepsilon} = -(\varepsilon V)^2 + \varepsilon H_1$ is a semiclassical operator in Ψ_{ε}^2 . We partition $|\rho_1(\varepsilon^2 \Delta) u|_{H_{\varepsilon}^{2/3}}$ in finitely many microlocalized pieces of the form $|Au|_{L^2}$, $A \in \Psi_{\varepsilon}^{2/3}$ with $WF_{\varepsilon}(A)$ close to $(x_0, \xi_0) \in \overline{T}^*S^*\mathbb{M}$, and we show estimates for each parts:

$$\varepsilon^{2/3}|Au|_{L^2} \leq C|Pu|_{L^2} + \dots$$

The hardest part occurs when $(x_0, \xi_0) \notin \text{Ell}_{\varepsilon}(\varepsilon V) \cup \text{Ell}_{\varepsilon}(\varepsilon H_1)$. Hence:

$$(x_0,\xi_0) \in \mathsf{Ell}_{\varepsilon}(\varepsilon H_2) = \mathsf{Ell}_{\varepsilon}(\varepsilon^{-1}[\varepsilon V,\varepsilon H_1]).$$

A toy model for $P = \varepsilon H_1 - (\varepsilon V)^2$ near (x_0, ξ_0) is $\mathcal{P} \stackrel{\text{def}}{=} \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, e_2)$. The semiclassical Fourier transform of \mathcal{P} in x_2 is $\widehat{\mathcal{P}} \stackrel{\text{def}}{=} \varepsilon \partial_{x_1} + (x_1 \xi_2)^2$.

Below we show estimates for $\widehat{\mathcal{P}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Control for small values of *x*₁:

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\mathsf{Re}\langle \widehat{\mathcal{P}} \boldsymbol{v}, \varphi^2 \boldsymbol{v} \rangle = |\varphi_{X_1} \xi_2 \boldsymbol{v}|_{L^2}^2 + \mathsf{Re}\langle \varphi \boldsymbol{\varepsilon} \partial_{\mathbf{x}_1} \boldsymbol{v}, \varphi \boldsymbol{v} \rangle \geq \varepsilon \int (\varphi^2)' |\boldsymbol{v}|^2;$$

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\begin{split} \mathsf{Re} \langle \widehat{\mathcal{P}} \mathbf{v}, \varphi^2 \mathbf{v} \rangle &= |\varphi x_1 \xi_2 \mathbf{v}|_{L^2}^2 + \mathsf{Re} \langle \varphi \varepsilon \partial_{\mathbf{x}_1} \mathbf{v}, \varphi \mathbf{v} \rangle \geq \varepsilon \int (\varphi^2)' |\mathbf{v}|^2; \\ \varphi^2 &= O(t) \Rightarrow \int_{|\mathbf{x}_1| \leq t} |\mathbf{v}|^2 \leq C \varepsilon^{-1} t |\widehat{\mathcal{P}} \mathbf{v}|_{L^2} |\mathbf{v}|_{L^2}. \end{split}$$

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\mathsf{Re}\langle \widehat{\mathcal{P}} v, \varphi^2 v
angle = | arphi x_1 \xi_2 v |_{L^2}^2 + \mathsf{Re}\langle arphi arepsilon \partial_{\mathbf{x}_1} v, arphi v
angle \ge arepsilon \int_{|arphi_1| \le t} |v|^2 \le C arepsilon^{-1} t | \widehat{\mathcal{P}} v |_{L^2} |v|_{L^2}.$$

Control for large values of x₁:

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\operatorname{\mathsf{Re}}\langle \widehat{\mathcal{P}} \mathbf{v}, \varphi^2 \mathbf{v} \rangle = |\varphi x_1 \xi_2 \mathbf{v}|_{L^2}^2 + \operatorname{\mathsf{Re}}\langle \varphi \varepsilon \partial_{\mathbf{x}_1} \mathbf{v}, \varphi \mathbf{v} \rangle \ge \varepsilon \int (\varphi^2)' |\mathbf{v}|^2;$$

$$\varphi^2 = O(t) \Rightarrow \int_{|x_1| \le t} |\mathbf{v}|^2 \le C \varepsilon^{-1} t |\widehat{\mathcal{P}} \mathbf{v}|_{L^2} |\mathbf{v}|_{L^2}.$$

► Control for large values of *x*₁:

$$\int_{|x_1| \ge t} |v|^2 \le \int_{|x_1| \ge t} \frac{x_1^2}{t^2} |v|^2 = \frac{1}{(t\xi_2)^2} \int_{|x_1| \ge t} (x_1\xi_2)^2 |v|^2 \le \frac{1}{(t\xi_2)^2} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2}.$$

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\begin{split} \mathsf{Re}\langle \widehat{\mathcal{P}} \mathsf{v}, \varphi^2 \mathsf{v} \rangle &= |\varphi \mathsf{x}_1 \xi_2 \mathsf{v}|_{L^2}^2 + \mathsf{Re}\langle \varphi \varepsilon \partial_{\mathsf{x}_1} \mathsf{v}, \varphi \mathsf{v} \rangle \geq \varepsilon \int (\varphi^2)' |\mathsf{v}|^2; \\ \varphi^2 &= O(t) \Rightarrow \int_{|\mathsf{x}_1| \leq t} |\mathsf{v}|^2 \leq C \varepsilon^{-1} t |\widehat{\mathcal{P}} \mathsf{v}|_{L^2} |\mathsf{v}|_{L^2}. \end{split}$$

► Control for large values of *x*₁:

$$\int_{|x_1| \ge t} |v|^2 \le \int_{|x_1| \ge t} \frac{x_1^2}{t^2} |v|^2 = \frac{1}{(t\xi_2)^2} \int_{|x_1| \ge t} (x_1\xi_2)^2 |v|^2 \le \frac{1}{(t\xi_2)^2} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2}.$$

• Optimize these estimates with $t = \varepsilon^{1/3} |\xi_2|^{-2/3}$ to get

$$\int |v|^2 \le C \varepsilon^{-2/3} |\xi_2|^{-2/3} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2}$$

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\begin{aligned} \mathsf{Re}\langle \widehat{\mathcal{P}} \mathsf{v}, \varphi^2 \mathsf{v} \rangle &= |\varphi \mathsf{x}_1 \xi_2 \mathsf{v}|_{L^2}^2 + \mathsf{Re}\langle \varphi \varepsilon \partial_{\mathsf{x}_1} \mathsf{v}, \varphi \mathsf{v} \rangle \geq \varepsilon \int (\varphi^2)' |\mathsf{v}|^2; \\ \varphi^2 &= O(t) \Rightarrow \int_{|\mathsf{x}_1| \leq t} |\mathsf{v}|^2 \leq C \varepsilon^{-1} t |\widehat{\mathcal{P}} \mathsf{v}|_{L^2} |\mathsf{v}|_{L^2}. \end{aligned}$$

► Control for large values of *x*₁:

$$\int_{|x_1| \ge t} |v|^2 \le \int_{|x_1| \ge t} \frac{x_1^2}{t^2} |v|^2 = \frac{1}{(t\xi_2)^2} \int_{|x_1| \ge t} (x_1\xi_2)^2 |v|^2 \le \frac{1}{(t\xi_2)^2} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2}.$$

• Optimize these estimates with $t = \varepsilon^{1/3} |\xi_2|^{-2/3}$ to get

$$\int |v|^2 \leq C \varepsilon^{-2/3} |\xi_2|^{-2/3} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2} \quad \Rightarrow \quad C \varepsilon^{2/3} |\xi_2|^{2/3} |v|_{L^2} \leq |\widehat{\mathcal{P}}v|_{L^2}.$$

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\begin{aligned} \mathsf{Re}\langle \widehat{\mathcal{P}} \mathbf{v}, \varphi^2 \mathbf{v} \rangle &= |\varphi_{X_1} \xi_2 \mathbf{v}|_{L^2}^2 + \mathsf{Re}\langle \varphi \varepsilon \partial_{X_1} \mathbf{v}, \varphi \mathbf{v} \rangle \geq \varepsilon \int (\varphi^2)' |\mathbf{v}|^2; \\ \varphi^2 &= O(t) \Rightarrow \int_{|x_1| \leq t} |\mathbf{v}|^2 \leq C \varepsilon^{-1} t |\widehat{\mathcal{P}} \mathbf{v}|_{L^2} |\mathbf{v}|_{L^2}. \end{aligned}$$

► Control for large values of *x*₁:

$$\int_{|x_1| \ge t} |v|^2 \le \int_{|x_1| \ge t} \frac{x_1^2}{t^2} |v|^2 = \frac{1}{(t\xi_2)^2} \int_{|x_1| \ge t} (x_1\xi_2)^2 |v|^2 \le \frac{1}{(t\xi_2)^2} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2}.$$

• Optimize these estimates with $t = \varepsilon^{1/3} |\xi_2|^{-2/3}$ to get

$$\int |v|^2 \leq C \varepsilon^{-2/3} |\xi_2|^{-2/3} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2} \quad \Rightarrow \quad C \varepsilon^{2/3} |\xi_2|^{2/3} |v|_{L^2} \leq |\widehat{\mathcal{P}}v|_{L^2}.$$

Back to $\mathcal{P} = \varepsilon \partial_{\mathbf{x}_1} - (\varepsilon x_1 \partial_{\mathbf{x}_2})^2$:

Control for small values of x₁: take φ such that (φ²)' is a bump function with value 1 on [-t, t].

$$\begin{split} \mathsf{Re} \langle \widehat{\mathcal{P}} \mathbf{v}, \varphi^2 \mathbf{v} \rangle &= |\varphi \mathsf{x}_1 \xi_2 \mathbf{v}|_{L^2}^2 + \mathsf{Re} \langle \varphi \varepsilon \partial_{\mathsf{x}_1} \mathbf{v}, \varphi \mathbf{v} \rangle \geq \varepsilon \int (\varphi^2)' |\mathbf{v}|^2; \\ \varphi^2 &= O(t) \Rightarrow \int_{|\mathsf{x}_1| \leq t} |\mathbf{v}|^2 \leq C \varepsilon^{-1} t |\widehat{\mathcal{P}} \mathbf{v}|_{L^2} |\mathbf{v}|_{L^2}. \end{split}$$

► Control for large values of *x*₁:

$$\int_{|x_1| \ge t} |v|^2 \le \int_{|x_1| \ge t} \frac{x_1^2}{t^2} |v|^2 = \frac{1}{(t\xi_2)^2} \int_{|x_1| \ge t} (x_1\xi_2)^2 |v|^2 \le \frac{1}{(t\xi_2)^2} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2}.$$

• Optimize these estimates with $t = \varepsilon^{1/3} |\xi_2|^{-2/3}$ to get

$$\int |v|^2 \leq C \varepsilon^{-2/3} |\xi_2|^{-2/3} |\widehat{\mathcal{P}}v|_{L^2} |v|_{L^2} \quad \Rightarrow \quad C \varepsilon^{2/3} |\xi_2|^{2/3} |v|_{L^2} \leq |\widehat{\mathcal{P}}v|_{L^2}.$$

Back to $\mathcal{P} = \varepsilon \partial_{\mathbf{x}_1} - (\varepsilon x_1 \partial_{x_2})^2$: $\varepsilon^{2/3} ||\varepsilon \partial_{\mathbf{x}_2}|^{2/3} u|_{L^2} \le C |\mathcal{P}u|_{L^2}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We have the estimate $\varepsilon^{2/3} ||\varepsilon \partial_{x_2}|^{2/3} u|_{L^2} \leq C |\mathcal{P}u|_{L^2}$ for \mathcal{P} .

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

 $\mathcal{P} = \varepsilon \partial_{\mathbf{x}_1} - (\varepsilon x_1 \partial_{\mathbf{x}_2})^2 \text{ near } (\mathbf{0}, \mathbf{e}_2). \qquad \mathcal{P} = \varepsilon \mathcal{H}_1 - (\varepsilon V)^2 \text{ near } \mathsf{Ell}_{\varepsilon}(\varepsilon \mathcal{H}_2).$

We have the estimate $\varepsilon^{2/3} ||\varepsilon \partial_{x_2}|^{2/3} u|_{L^2} \leq C |\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

 $\mathcal{P} = \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2 \text{ near } (0, e_2). \qquad \mathcal{P} = \varepsilon H_1 - (\varepsilon V)^2 \text{ near } \text{Ell}_{\varepsilon} (\varepsilon H_2).$

Fourier transform to work at fixed ξ_2 .

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{x_1}$	$-(\varepsilon x_1\partial_{x_2})^2$	near	· (0, <mark>e</mark> 2)).	$P = \varepsilon H_1$	$-(\varepsilon V)^2$ near $Ell_{\varepsilon}(\varepsilon F)$	<mark>/</mark> 2).
Fourier	transform	to	work	at	Further	microlocalization	on
fixed ξ_2 .					dyadic fre	equency intervals.	

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{x_1}$	$-(\varepsilon x_1\partial_{x_2})^2$	near	· (0, <mark>e</mark> 2)).	$P = \varepsilon H_1$	$-(\varepsilon V)^2$ near $Ell_{\varepsilon}(\varepsilon F)$	<mark>/</mark> 2).
Fourier	transform	to	work	at	Further	microlocalization	on
fixed ξ_2 .					dyadic fre	equency intervals.	

Use $[\varepsilon \partial_{\mathbf{x}_1}, \varphi^2] > 0$ where $x_1 \xi_2 \ll \xi_2$.

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, e_2)$.	$P = \varepsilon H_1 - (\varepsilon V)^2 \text{ near Ell}_{\varepsilon} (\varepsilon H_2).$		
Fourier transform to work at	Further microlocalization on		
fixed ξ_2 .	dyadic frequency intervals.		
	Gårding inequality to $[\varepsilon V, \varepsilon H_1]$		
Use $[\varepsilon \partial_{x_1}, \varphi^2] > 0$ where $x_1 \xi_2 \ll \xi_2$.	where $arepsilon V$ is "strongly character-		
	isitic", i.e. " $\varepsilon V \ll \varepsilon H_2$ ".		

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{\mathbf{x}_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, \mathbf{e}_2)$.	$P = \varepsilon H_1 - (\varepsilon V)^2$ near $Ell_{\varepsilon}(\varepsilon H_2)$.	
Fourier transform to work at	Further microlocalization on	
fixed ξ_2 .	dyadic frequency intervals.	
Use $[\varepsilon \partial_{x_1}, \varphi^2] > 0$ where $x_1 \xi_2 \ll \xi_2$.	Gårding inequality to $[\varepsilon V, \varepsilon H_1]$ where εV is "strongly character- isitic", i.e. " $\varepsilon V \ll \varepsilon H_2$ ".	
Use $x_1 = x_1\xi_2/\xi_2$ where $x_1\xi_2$ is not		

too small.

We have the estimate $\varepsilon^{2/3}||\varepsilon\partial_{x_2}|^{2/3}u|_{L^2} \leq C|\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, e_2)$.	$P = \varepsilon H_1 - (\varepsilon V)^2 \text{ near Ell}_{\varepsilon} (\varepsilon H_2).$	
Fourier transform to work at	Further microlocalization on	
fixed ξ_2 .	dyadic frequency intervals.	
	Gårding inequality to $[\varepsilon V, \varepsilon H_1]$	
Use $[\varepsilon \partial_{x_1}, \varphi^2] > 0$ where $x_1 \xi_2 \ll \xi_2$.	where $arepsilon V$ is "strongly character-	
	isitic", i.e. " $\varepsilon V \ll \varepsilon H_2$ ".	
Use $x_1 = x_1 \xi_2 / \xi_2$ where $x_1 \xi_2$ is not	Spectral theorem where εV is	
too small.	"not too characteristic".	
From $\mathcal{P} = \varepsilon \partial_{x_1} + (\varepsilon x_1 \partial_{x_2})^2$ to $P = \varepsilon H_1 - (\varepsilon V)^2$

We have the estimate $\varepsilon^{2/3} || \varepsilon \partial_{x_2} |^{2/3} u|_{L^2} \leq C |\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, e_2)$.	$P = \varepsilon H_1 - (\varepsilon V)^2$ near $Ell_{\varepsilon}(\varepsilon H_2)$.
Fourier transform to work at	Further microlocalization on
fixed ξ_2 .	dyadic frequency intervals.
	Garding inequality to $[\varepsilon V, \varepsilon H_1]$
Use $[\varepsilon \partial_{\mathbf{x}_1}, \varphi^2] > 0$ where $x_1 \xi_2 \ll \xi_2$.	where $arepsilon V$ is "strongly character-
	isitic", i.e. " $arepsilon V \ll arepsilon H_2$ ".
Use $x_1 = x_1\xi_2/\xi_2$ where $x_1\xi_2$ is not	Spectral theorem where εV is
too small.	"not too characteristic".

Conclusion: $\varepsilon^{2/3} ||\varepsilon H_2|^{2/3} u|_{L^2} \leq C |Pu|_{L^2}$,

From $\mathcal{P} = \varepsilon \partial_{x_1} + (\varepsilon x_1 \partial_{x_2})^2$ to $P = \varepsilon H_1 - (\varepsilon V)^2$

We have the estimate $\varepsilon^{2/3} ||\varepsilon \partial_{x_2}|^{2/3} u|_{L^2} \leq C |\mathcal{P}u|_{L^2}$ for \mathcal{P} . The semiclassical version of the arguments presented above show a similar estimate for P:

$\mathcal{P} = \varepsilon \partial_{x_1} - (\varepsilon x_1 \partial_{x_2})^2$ near $(0, e_2)$.	$P = \varepsilon H_1 - (\varepsilon V)^2$ near $Ell_{\varepsilon}(\varepsilon H_2)$.
Fourier transform to work at	Further microlocalization on
fixed ξ_2 .	dyadic frequency intervals.
Use $[\varepsilon \partial_{x_1}, \varphi^2] > 0$ where $x_1 \xi_2 \ll \xi_2$.	Gårding inequality to $[\varepsilon V, \varepsilon H_1]$ where εV is "strongly character- isitic", i.e. " $\varepsilon V \ll \varepsilon H_2$ ".
Use $x_1 = x_1\xi_2/\xi_2$ where $x_1\xi_2$ is not too small.	Spectral theorem where εV is "not too characteristic".

Conclusion: $\varepsilon^{2/3} ||\varepsilon H_2|^{2/3} u|_{L^2} \leq C |Pu|_{L^2}$, which implies the **optimal** subelliptic estimate $\varepsilon^{2/3} |u|_{H^{2/3}} \leq C |\varepsilon L_{\varepsilon} u|_{L^2} + \dots$

The subelliptic estimate $\varepsilon^{2/3}|u|_{H_{\varepsilon}^{2/3}} \leq C|Pu|_{L^2} + ...$ and standard manipulations yields the hypoelliptic estimate

$$\begin{aligned} &|\rho_1(\varepsilon^2 \Delta)\varepsilon V^2 u|_{L^2} \le C |\rho_2(\varepsilon^2 \Delta)(L_{\varepsilon} - \lambda)u|_{L^2} + O(\varepsilon^{\infty})|u|_{L^2}, \\ &0 \notin \operatorname{supp}(\rho_1), \ \rho_2 = 1 \text{ on } \operatorname{supp}(\rho_1), \ \rho_1 = \rho_2 = 1 \text{ near } \infty. \end{aligned}$$
(1)

The subelliptic estimate $\varepsilon^{2/3}|u|_{H_{\varepsilon}^{2/3}} \leq C|Pu|_{L^2} + ...$ and standard manipulations yields the hypoelliptic estimate

$$\begin{aligned} &|\rho_1(\varepsilon^2 \Delta)\varepsilon V^2 u|_{L^2} \leq C |\rho_2(\varepsilon^2 \Delta)(L_{\varepsilon} - \lambda)u|_{L^2} + O(\varepsilon^{\infty})|u|_{L^2}, \\ &0 \notin \operatorname{supp}(\rho_1), \ \rho_2 = 1 \text{ on } \operatorname{supp}(\rho_1), \ \rho_1 = \rho_2 = 1 \text{ near } \infty. \end{aligned}$$
(1)

Remark: (1) could possibly be proved by different approaches:

The subelliptic estimate $\varepsilon^{2/3}|u|_{H_{\varepsilon}^{2/3}} \leq C|Pu|_{L^2} + ...$ and standard manipulations yields the hypoelliptic estimate

$$\begin{aligned} &|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{L^2} \le C |\rho_2(\varepsilon^2 \Delta) (L_{\varepsilon} - \lambda) u|_{L^2} + O(\varepsilon^{\infty}) |u|_{L^2}, \\ &0 \notin \operatorname{supp}(\rho_1), \ \rho_2 = 1 \text{ on } \operatorname{supp}(\rho_1), \ \rho_1 = \rho_2 = 1 \text{ near } \infty. \end{aligned}$$
(1)

Remark: (1) could possibly be proved by different approaches:

► Reducing P = εH₁ + (εV)² to ε∂_{x1} · A₀(x', ∂_x) + (εx₁∂_{x2})², A₀ ∈ Ψ⁰_ε by means of a semiclassical FIO, as in Lebeau.

The subelliptic estimate $\varepsilon^{2/3}|u|_{H_{\varepsilon}^{2/3}} \leq C|Pu|_{L^2} + ...$ and standard manipulations yields the hypoelliptic estimate

$$\begin{aligned} &|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{L^2} \leq C |\rho_2(\varepsilon^2 \Delta) (L_{\varepsilon} - \lambda) u|_{L^2} + O(\varepsilon^{\infty}) |u|_{L^2}, \\ &0 \notin \operatorname{supp}(\rho_1), \ \rho_2 = 1 \text{ on } \operatorname{supp}(\rho_1), \ \rho_1 = \rho_2 = 1 \text{ near } \infty. \end{aligned}$$
(1)

Remark: (1) could possibly be proved by different approaches:

- ► Reducing P = εH₁ + (εV)² to ε∂_{x1} · A₀(x', ∂_x) + (εx₁∂_{x2})², A₀ ∈ Ψ⁰_ε by means of a semiclassical FIO, as in Lebeau.
- ► Comparing P to εX + (εY)², X, Y, [X, Y] generators of the Heisenberg group, and apply the Rothschild–Stein theory.

The subelliptic estimate $\varepsilon^{2/3}|u|_{H_{\varepsilon}^{2/3}} \leq C|Pu|_{L^2} + ...$ and standard manipulations yields the hypoelliptic estimate

$$\begin{aligned} &|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{L^2} \leq C |\rho_2(\varepsilon^2 \Delta) (L_{\varepsilon} - \lambda) u|_{L^2} + O(\varepsilon^{\infty}) |u|_{L^2}, \\ &0 \notin \operatorname{supp}(\rho_1), \ \rho_2 = 1 \text{ on } \operatorname{supp}(\rho_1), \ \rho_1 = \rho_2 = 1 \text{ near } \infty. \end{aligned}$$
(1)

Remark: (1) could possibly be proved by different approaches:

- Reducing P = εH₁ + (εV)² to ε∂_{x1} · A₀(x', ∂_x) + (εx₁∂_{x2})², A₀ ∈ Ψ⁰_ε by means of a semiclassical FIO, as in Lebeau.
- Comparing P to εX + (εY)², X, Y, [X, Y] generators of the Heisenberg group, and apply the Rothschild–Stein theory. In a work in progress Smith uses this approach to construct a semiclassical parametrix for L_ε.

The subelliptic estimate $\varepsilon^{2/3}|u|_{H_{\varepsilon}^{2/3}} \leq C|Pu|_{L^2} + ...$ and standard manipulations yields the hypoelliptic estimate

$$\begin{aligned} &|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{L^2} \le C |\rho_2(\varepsilon^2 \Delta) (L_{\varepsilon} - \lambda) u|_{L^2} + O(\varepsilon^{\infty}) |u|_{L^2}, \\ &0 \notin \operatorname{supp}(\rho_1), \ \rho_2 = 1 \text{ on } \operatorname{supp}(\rho_1), \ \rho_1 = \rho_2 = 1 \text{ near } \infty. \end{aligned}$$
(1)

Remark: (1) could possibly be proved by different approaches:

- ► Reducing P = εH₁ + (εV)² to ε∂_{x1} · A₀(x', ∂_x) + (εx₁∂_{x2})², A₀ ∈ Ψ⁰_ε by means of a semiclassical FIO, as in Lebeau.
- Comparing P to εX + (εY)², X, Y, [X, Y] generators of the Heisenberg group, and apply the Rothschild–Stein theory. In a work in progress Smith uses this approach to construct a semiclassical parametrix for L_ε.

It remains to show that $(L_{\varepsilon} - \lambda)^{-1}$ continues meromorphically on the same spaces as $(H_1 - \lambda)^{-1}$.

If \mathbb{M} has negative curvature then $\phi_t(x,\xi) \stackrel{\text{\tiny def}}{=} e^{tH_1}(x,\xi)$ is an Anosov flow on $S^*\mathbb{M}$:

If \mathbb{M} has **negative curvature** then $\phi_t(x,\xi) \stackrel{\text{def}}{=} e^{tH_1}(x,\xi)$ is an Anosov flow on $S^*\mathbb{M}$: for every $z \in S^*\mathbb{M}$ there exists a splitting of $T_zS^*\mathbb{M}$ in unstable, invariant and stable directions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If \mathbb{M} has **negative curvature** then $\phi_t(x,\xi) \stackrel{\text{def}}{=} e^{tH_1}(x,\xi)$ is an Anosov flow on $S^*\mathbb{M}$: for every $z \in S^*\mathbb{M}$ there exists a splitting of $T_zS^*\mathbb{M}$ in unstable, invariant and stable directions:

$$T_{z}S^{*}\mathbb{M} = E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z),$$

$$d\phi_{t}(E_{\pm}) \subset E_{\pm}, \quad v \in E_{\pm} \Rightarrow |d\phi_{t}v| \leq Ce^{-|t|}|v|, \quad \pm t > 0.$$
 (2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If \mathbb{M} has **negative curvature** then $\phi_t(x,\xi) \stackrel{\text{def}}{=} e^{tH_1}(x,\xi)$ is an Anosov flow on $S^*\mathbb{M}$: for every $z \in S^*\mathbb{M}$ there exists a splitting of $T_zS^*\mathbb{M}$ in unstable, invariant and stable directions:

$$T_{z}S^{*}\mathbb{M} = E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z),$$

$$d\phi_{t}(E_{\pm}) \subset E_{\pm}, \quad v \in E_{\pm} \Rightarrow |d\phi_{t}v| \leq Ce^{-|t|}|v|, \quad \pm t > 0.$$
 (2)

Based on the splitting (2), Faure–Sjöstrand and Dyatlov–Zworski constructed **semiclassical weighted Sobolev spaces** \mathcal{H} such that if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$,

If \mathbb{M} has **negative curvature** then $\phi_t(x,\xi) \stackrel{\text{def}}{=} e^{tH_1}(x,\xi)$ is an Anosov flow on $S^*\mathbb{M}$: for every $z \in S^*\mathbb{M}$ there exists a splitting of $T_zS^*\mathbb{M}$ in unstable, invariant and stable directions:

$$T_{z}S^{*}\mathbb{M} = E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z),$$

$$d\phi_{t}(E_{\pm}) \subset E_{\pm}, \quad v \in E_{\pm} \Rightarrow |d\phi_{t}v| \leq Ce^{-|t|}|v|, \quad \pm t > 0.$$
 (2)

Based on the splitting (2), Faure–Sjöstrand and Dyatlov–Zworski constructed **semiclassical weighted Sobolev spaces** \mathcal{H} such that if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$,

$$u \in \mathcal{H} \; \Rightarrow \; |u|_{\mathcal{H}} \leq C |(H_1 + Q - \lambda)u|_{\mathcal{H}}, \; \; 0 < Q \in \Psi_h^0, 0 \in \mathsf{Ell}_h(Q).$$

If \mathbb{M} has **negative curvature** then $\phi_t(x,\xi) \stackrel{\text{def}}{=} e^{tH_1}(x,\xi)$ is an Anosov flow on $S^*\mathbb{M}$: for every $z \in S^*\mathbb{M}$ there exists a splitting of $T_zS^*\mathbb{M}$ in unstable, invariant and stable directions:

$$T_{z}S^{*}\mathbb{M} = E_{-}(z) \oplus \mathbb{R} \cdot H_{1}(z) \oplus E_{+}(z),$$

$$d\phi_{t}(E_{\pm}) \subset E_{\pm}, \quad v \in E_{\pm} \Rightarrow |d\phi_{t}v| \leq Ce^{-|t|}|v|, \quad \pm t > 0.$$
 (2)

Based on the splitting (2), Faure–Sjöstrand and Dyatlov–Zworski constructed **semiclassical weighted Sobolev spaces** \mathcal{H} such that if $0 \leq Q$ is a suitable absorbing potential near the zero section, $|\lambda| \leq R$,

$$u \in \mathcal{H} \; \Rightarrow \; |u|_{\mathcal{H}} \leq C |(H_1 + Q - \lambda)u|_{\mathcal{H}}, \;\; 0 < Q \in \Psi_h^0, 0 \in \mathsf{Ell}_h(Q).$$

This and an adjoint inequality implies that $(H_1 - \lambda)^{-1} : \mathcal{H} \to \mathcal{H}$, holomorphic and well defined for $\operatorname{Re} \lambda < 0$, extends meromorphically to $\{|\lambda| \leq R\}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = = -の��

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

(日) (日) (日) (日) (日) (日) (日) (日)

For frequencies up to ε^{-1} the term $0 \le -\varepsilon V^2$ in L_{ε} can be treated as an additional absorbing potential.

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

For frequencies up to ε^{-1} the term $0 \le -\varepsilon V^2$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov–Zworski technology shows

$$|u|_{\mathcal{H}} \leq |(\mathcal{H}_{1} + Q - \chi_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2} - \lambda)u|_{\mathcal{H}}$$

$$\leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}} + |\rho_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2}u|_{\mathcal{H}}.$$
(4)

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

For frequencies up to ε^{-1} the term $0 \le -\varepsilon V^2$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov–Zworski technology shows

$$|u|_{\mathcal{H}} \leq |(H_{1} + Q - \chi_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2} - \lambda)u|_{\mathcal{H}} \\ \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}} + |\rho_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2}u|_{\mathcal{H}}.$$
(4)

For frequencies $\geq \varepsilon^{-1}$ the term $|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

For frequencies up to ε^{-1} the term $0 \le -\varepsilon V^2$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov–Zworski technology shows

$$|u|_{\mathcal{H}} \leq |(\mathcal{H}_{1} + Q - \chi_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2} - \lambda)u|_{\mathcal{H}} \\ \leq C|(\mathcal{L}_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}} + |\rho_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2}u|_{\mathcal{H}}.$$

$$\tag{4}$$

For frequencies $\geq \varepsilon^{-1}$ the term $|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

$$|
ho_1(arepsilon^2\Delta)arepsilon V^2u|_{\mathcal{H}}\leq C|(L_arepsilon+Q-\lambda)u|_{\mathcal{H}}+O(arepsilon^\infty)|u|_{\mathcal{H}}.$$

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

For frequencies up to ε^{-1} the term $0 \le -\varepsilon V^2$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov–Zworski technology shows

$$|u|_{\mathcal{H}} \leq |(\mathcal{H}_{1} + Q - \chi_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2} - \lambda)u|_{\mathcal{H}}$$

$$\leq C|(\mathcal{L}_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}} + |\rho_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2}u|_{\mathcal{H}}.$$
(4)

For frequencies $\geq \varepsilon^{-1}$ the term $|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

$$|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{\mathcal{H}} \leq C |(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}} + O(\varepsilon^{\infty})|u|_{\mathcal{H}}.$$

This shows (3).

Goal: Fredhom estimate: if $0 \le Q$ is a suitable absorbing potential near the zero section, $|\lambda| \le R$ then

$$|u|_{\mathcal{H}} \leq C|(L_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}}.$$
(3)

For frequencies up to ε^{-1} the term $0 \le -\varepsilon V^2$ in L_{ε} can be treated as an additional absorbing potential. The Dyatlov–Zworski technology shows

$$|u|_{\mathcal{H}} \leq |(\mathcal{H}_{1} + Q - \chi_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2} - \lambda)u|_{\mathcal{H}} \\ \leq C|(\mathcal{L}_{\varepsilon} + Q - \lambda)u|_{\mathcal{H}} + |\rho_{1}(\varepsilon^{2}\Delta)\varepsilon V^{2}u|_{\mathcal{H}}.$$

$$\tag{4}$$

For frequencies $\geq \varepsilon^{-1}$ the term $|\rho_1(\varepsilon^2 \Delta) \varepsilon V^2 u|_{\mathcal{H}}$ in the RHS of (4) is controlled by the anisotropic version of our subelliptic estimate:

$$|
ho_1(arepsilon^2\Delta)arepsilon V^2u|_{\mathcal{H}} \leq C|(L_arepsilon+Q-\lambda)u|_{\mathcal{H}}+O(arepsilon^\infty)|u|_{\mathcal{H}}.$$

This shows (3). The adjoint estimate shows that $L_{\varepsilon} + Q - \lambda$ is invertible, hence $(L_{\varepsilon} - \lambda)^{-1} : \mathcal{H} \to \mathcal{H}$ continues meromorphically.

(日) (個) (目) (日) (日) (の)

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces.

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense.

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^2 -eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 as $\varepsilon \to 0$.

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^2 -eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 as $\varepsilon \to 0$.

Remaining questions:

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^2 -eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 as $\varepsilon \to 0$.

Remaining questions:

*H*₁ admits a spectral gap: it has no resonances in {Re λ ≤ δ}, for some δ > 0. What about L_ε?

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^2 -eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 as $\varepsilon \to 0$.

Remaining questions:

- *H*₁ admits a spectral gap: it has no resonances in {Re λ ≤ δ}, for some δ > 0. What about L_ε?
- If M = T² (0 curvature) then the accumulation set of the (discrete) spectrum of L_ε does not seem to be discrete!

 $(L_{\varepsilon} - \lambda)^{-1}$ and $(H_1 - \lambda)^{-1}$ exist on the same spaces. We can consider $(L_{\varepsilon} - \lambda)^{-1} - (H_1 - \lambda)^{-1} = \varepsilon \cdot (H_1 - \lambda)^{-1} V^2 (L - \lambda)^{-1}.$

It converges to 0 away from poles in a strong sense. Fredholm determinant theory implies

Theorem

If \mathbb{M} is a negatively curved surface then the L^2 -eigenvalues of L_{ε} converge to the Pollicott–Ruelle resonances of H_1 as $\varepsilon \to 0$.

Remaining questions:

- *H*₁ admits a spectral gap: it has no resonances in {Re λ ≤ δ}, for some δ > 0. What about L_ε?
- If M = T² (0 curvature) then the accumulation set of the (discrete) spectrum of L_ε does not seem to be discrete! What can be the meaning of this continuum?

Spectrum of a slightly different L_{ε} for $\mathbb{M} = \mathbb{T}^2$ (Dyatlov–Zworski)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spectrum of a slightly different L_{ε} for $\mathbb{M} = \mathbb{T}^2$ (Dyatlov–Zworski)

Limit set in $\{\operatorname{Re} \lambda \geq 0\}$ of the spectrum of $H_1 - \varepsilon \Delta$ on $S^* \mathbb{T}^2$.
Spectrum of a slightly different L_{ε} for $\mathbb{M} = \mathbb{T}^2$ (Dyatlov–Zworski)

Limit set in {Re $\lambda \ge 0$ } of the spectrum of $H_1 - \varepsilon \Delta$ on $S^* \mathbb{T}^2$. Thanks for your attention!