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Suppose that up € L?(R3) is an eigenvector of —Ags + V, for an
eigenvalue A%
(=2 — Ags + V)ug = 0.

Then we can construct a solution u(x, t) = e tuy(x) to (1).

Problem: since the domain is unbounded, we cannot obtain
expansions for all solutions of (1) as linear combinations of functions of
the above form.

This is reflected in the spectrum of —Ags + V on L?(R3): it is the union
of a discrete set (eigenvalues) with the continuous spectrum [0, o0).
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To overcome this difficulty, we use resonances, complex numbers {\;}
depending only on V/, that quantize local decay of waves: if u solves (1),

Juj, VAL, sup u(x,t) — D ui(x)e NV =0(eM).  (2)
Ix|<L

ImA;>—A

In particular, when using resonances instead of eigenvalues, every
solution of (1) can be locally expanded. Resonances are realized as
the poles of the meromorphic continuation of

Ry(\) = (—Aps + V — X)L C°(R?) — D' (R3).

Eigenvalues p are poles of (—Ags + V — 1)~ !, hence (squares of)
resonances. Conversely, resonances inducing eigenvalues are the one
lying on the complex half-line /[0, c0).
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The poles \; of Ry()\) generate residues uj(x)e "V in (2). In
particular, if Ry()\) has no poles above ImA > —A — resonance-free

strip — waves scattered by V' decay locally like e,
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typical function that varies randomly on a scale N1,

Stochastic disordered potential Vi
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Waves scattered by disordered media with scale of heterogeneity
N~! < 1 are modeled by (92 — Ags + Vy)u =0, where

Vi(x) = qo(x) + > wui(w)qg(Nx—J), g, q € C5°(R*R)
JE[-N,NP?

upiid, E(u)=0, E(u})=1, uj€L>®.

Note that V) is in average equal to go. In addition, Viy — qo, P-a.s.:
Vo € G5° (W — qo, ) =

Z uj / q(Nx — j)e(x)dx = ¢ Z uj / q(x)e(N(x + j))dx

[i]oo <N liloo <N
= uj<p(N*1j)-/q(X)dX+0(N*4)Z ] 2250 (K.S.L.L.N).
liloo <N lilo <N

We observe a weak averaging effect on V).
Does this transfer to resonances of V), i.e. are resonances of V)
well approximated by resonances of ¢?
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Result |: convergence of resonances

Recall that Viv(x) = qo(x) + >_; ujq(Nx — j). Let Res(V/) denote the set
of resonances of V.

Theorem [Dr’17]

P-almost surely, the set of accumulation points of Res(Vy) is equal
to Res(qo).

In other words, P-a.s., resonances of V) converge to resonances of
go; and there exists a sequence of resonances of V) converging to each
resonance of qo.

Remark: If g9 = 0, then gy has no resonances. This implies that
P-a.s., Viy has no resonances in any arbitrary large set, provided that N
is sufficiently large. “Pure” high disorder has generally little impact
on the propagation of waves.

In fact, after removing a set of probability O(e*C’\P/Z), forgo =0
resonances of Vjy lie below the logarithmic line 3\ = —AIn(N); and
waves scattered by V) decay like N4,
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Result Il: remainder estimate for eigenvalues
Recall that Viv(x) = qo(x) + >_; ujq(Nx — j).
Theorem [Dr’17]

If =)\3 < 0 is a simple eigenvalue of —Ags + qo, with normalized
eigenvector f, then there exists A\ a random variable such that

Ce_CN1/4

P(—)% is an eigenvalue of Viy) > 1 — , and

> If [os q(x)dx #0,
N2(\y — Xo)
Jas a(x)dx
> If [s q(x)dx =0,

= N(0,0?), Uzd:ef/ | (x)|*dx.

[_171]3

v 1[G o
N (/\N >‘0) — (27’1’)3 /]R3 ‘£|2 d€ C11p |f( )l dx.

Remark: a similar, more complicated result holds for resonances. The
convergence is faster when [,; g(x)dx = 0, because Vjy is systematically
highly oscillatory.
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» Put the problem in a general framework due to
[Golowich—Weinstein '05]. This allows to treat Vx = Viy — qo as
a small perturbation of qg, in the sense that

|VN_q0‘H*2 —0as N — .

» Show a local characteristic equation for resonances of V) near
Ao € Res(qo), of the form

A=do =3 ar(Vi, N).
k=1

The coefficients ax(Vx, \) depend k-multilinearly on V., are
holomorphic in \; and the sum converges for N sufficiently large and
A near \g. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

> Estimate the ax( Vi, A).
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Recall A — A\g = Z ak(V, A), where ay is k-linear in V.
k=1

» ai(V, \) depends linearly on V., hence on the u;. An application
of the CLT shows that N3/2a;(V/4, \) converges to a Gaussian.

» ay( V., \) depends bilinearly on V.. Since V. is highly oscillatory,
this yields deterministic contributions (constructive
interference): a(Vy, \) ~ N~2.

» When k > 3, ax(Vx, \) is negligible w.r.t. a;( Vi, \) + az( Vi, A).

To conclude we compare a;(V, A) and ap(Vy, A):

> When [;, g(x)dx # 0, a1(V4, \) dominates, and N3/2(\y — \o)
converges in distribution to a Gaussian.

» When [, g(x)dx =0, ax(V, \) dominates, and N*(Ay — Ao)
converges almost surely to a term resulting from constructive
interference.
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Thanks for your attention!



