Eigenvalues for highly disordered potentials

Alexis Drouot, UC Berkeley

AMS meeting on Spectral theory and Microlocal analysis, April 232017

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{3}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u_{0}=0
$$

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{3}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u_{0}=0 .
$$

Then we can construct a solution $u(x, t)=e^{i \lambda t} u_{0}(x)$ to (1).

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{3}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u_{0}=0 .
$$

Then we can construct a solution $u(x, t)=e^{i \lambda t} u_{0}(x)$ to (1).
Problem: since the domain is unbounded, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{3}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u_{0}=0 .
$$

Then we can construct a solution $u(x, t)=e^{i \lambda t} u_{0}(x)$ to (1).
Problem: since the domain is unbounded, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.

This is reflected in the spectrum of $-\Delta_{\mathbb{R}^{3}}+V$ on $L^{2}\left(\mathbb{R}^{3}\right)$: it is the union of a discrete set (eigenvalues) with the continuous spectrum $[0, \infty)$.

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves:

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded.

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the poles of the meromorphic continuation of

$$
R_{V}(\lambda)=\left(-\Delta_{\mathbb{R}^{3}}+V-\lambda^{2}\right)^{-1}: C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the poles of the meromorphic continuation of

$$
R_{V}(\lambda)=\left(-\Delta_{\mathbb{R}^{3}}+V-\lambda^{2}\right)^{-1}: C_{0}^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

Eigenvalues μ are poles of $\left(-\Delta_{\mathbb{R}^{3}}+V-\mu\right)^{-1}$, hence (squares of) resonances. Conversely, resonances inducing eigenvalues are the one lying on the complex half-line $i[0, \infty)$.

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$
u=\int_{\mathbb{R}} e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{1} d \lambda-\int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{0} d \lambda .
$$

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) . \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$
u=\int_{\mathbb{R}} e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{1} d \lambda-\int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{0} d \lambda .
$$

The poles λ_{j} of $R_{V}(\lambda)$ generate residues $u_{j}(x) e^{-i \lambda_{j} t}$ in (2).

Waves and resonances

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$
u=\int_{\mathbb{R}} e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{1} d \lambda-\int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{0} d \lambda .
$$

The poles λ_{j} of $R_{V}(\lambda)$ generate residues $u_{j}(x) e^{-i \lambda_{j} t}$ in (2). In particular, if $R_{V}(\lambda)$ has no poles above $\operatorname{Im} \lambda \geq-A$ - resonance-free strip - waves scattered by V decay locally like $e^{-A t}$.

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

$R_{V}(\lambda)$ holomorphic

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

$*^{2}$ eigenvalues of $-\Delta_{\mathbb{R}^{d}}+V$

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

$*^{2}$ eigenvalues of $-\Delta_{\mathbb{R}^{d}}+V$

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \mathbb{E}\left(u_{j}\right)=0, \quad \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \mathbb{E}\left(u_{j}\right)=0, \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Model for disordered crystals plunged in a field q_{0}, whose sites j / N come with a random charge u_{j} and the potential $u_{j} q\left(N_{x}-j\right) . V_{N}$ is a typical function that varies randomly on a scale N^{-1}.

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \mathbb{E}\left(u_{j}\right)=0, \quad \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Model for disordered crystals plunged in a field q_{0}, whose sites j / N come with a random charge u_{j} and the potential $u_{j} q\left(N_{x}-j\right) . V_{N}$ is a typical function that varies randomly on a scale N^{-1}.

Example of potential V_{N} with $N=20$ in blue, with q_{0} in red.

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \mathbb{E}\left(u_{j}\right)=0, \quad \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Note that V_{N} is in average equal to q_{0}. In addition, $V_{N} \rightharpoonup q_{0}$, \mathbb{P}-a.s.:

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \mathbb{E}\left(u_{j}\right)=0, \quad \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Note that V_{N} is in average equal to q_{0}. In addition, $V_{N} \rightharpoonup q_{0}, \mathbb{P}$-a.s.: $\forall \varphi \in C_{0}^{\infty},\left\langle V_{N}-q_{0}, \varphi\right\rangle=$

$$
\sum_{|j|_{\infty} \leq N} u_{j} \int q(N x-j) \varphi(x) d x=\varepsilon^{d} \sum_{|j|_{\infty} \leq N} u_{j} \int q(x) \varphi(N(x+j)) d x
$$

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0, \quad \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Note that V_{N} is in average equal to q_{0}. In addition, $V_{N} \rightharpoonup q_{0}, \mathbb{P}$-a.s.: $\forall \varphi \in C_{0}^{\infty},\left\langle V_{N}-q_{0}, \varphi\right\rangle=$

$$
\begin{aligned}
& \sum_{|j|_{\infty} \leq N} u_{j} \int q(N x-j) \varphi(x) d x=\varepsilon^{d} \sum_{|j|_{\infty} \leq N} u_{j} \int q(x) \varphi(N(x+j)) d x \\
= & N^{-3} \sum_{|j|_{\infty} \leq N} u_{j} \varphi\left(N^{-1} j\right) \cdot \int q(x) d x+O\left(N^{-4}\right) \sum_{|j|_{\infty} \leq N}\left|u_{j}\right| \xrightarrow{\text { P.a.s. }} 0 \quad \text { (K.S.L.L.N). }
\end{aligned}
$$

Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V_{N}\right) u=0$, where

$$
\begin{gathered}
V_{N}(x)=q_{0}(x)+\sum_{j \in[-N, N]^{3}} u_{j}(\omega) q(N x-j), \quad q, \quad q_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right) \\
u_{j} \text { i.i.d, } \mathbb{E}\left(u_{j}\right)=0, \quad \mathbb{E}\left(u_{j}^{2}\right)=1, \quad u_{j} \in L^{\infty} .
\end{gathered}
$$

Note that V_{N} is in average equal to q_{0}. In addition, $V_{N} \rightharpoonup q_{0}, \mathbb{P}$-a.s.: $\forall \varphi \in C_{0}^{\infty},\left\langle V_{N}-q_{0}, \varphi\right\rangle=$

$$
\begin{aligned}
& \sum_{|j|_{\infty} \leq N} u_{j} \int q(N x-j) \varphi(x) d x=\varepsilon^{d} \sum_{|j|_{\infty} \leq N} u_{j} \int q(x) \varphi(N(x+j)) d x \\
= & N^{-3} \sum_{|j|_{\infty} \leq N} u_{j} \varphi\left(N^{-1} j\right) \cdot \int q(x) d x+O\left(N^{-4}\right) \sum_{|j|_{\infty} \leq N}\left|u_{j}\right| \xrightarrow{\text { Pas.s }} 0 \quad \text { (K.S.L.L.N). }
\end{aligned}
$$

We observe a weak averaging effect on V_{N}.
Does this transfer to resonances of V_{N}, i.e. are resonances of V_{N} well approximated by resonances of q_{0} ?

Result I: convergence of resonances

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$. Let $\operatorname{Res}(V)$ denote the set of resonances of V.

Result I: convergence of resonances

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$. Let $\operatorname{Res}(V)$ denote the set of resonances of V.

Theorem [Dr'17]
\mathbb{P}-almost surely, the set of accumulation points of $\operatorname{Res}\left(V_{N}\right)$ is equal to $\operatorname{Res}\left(q_{0}\right)$.

Result I: convergence of resonances

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$. Let $\operatorname{Res}(V)$ denote the set of resonances of V.

Theorem [Dr'17]

\mathbb{P}-almost surely, the set of accumulation points of $\operatorname{Res}\left(V_{N}\right)$ is equal to $\operatorname{Res}\left(q_{0}\right)$.

In other words, \mathbb{P}-a.s., resonances of V_{N} converge to resonances of q_{0}; and there exists a sequence of resonances of V_{N} converging to each resonance of q_{0}.

Result I: convergence of resonances

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$. Let $\operatorname{Res}(V)$ denote the set of resonances of V.

Theorem [Dr'17]
\mathbb{P}-almost surely, the set of accumulation points of $\operatorname{Res}\left(V_{N}\right)$ is equal to $\operatorname{Res}\left(q_{0}\right)$.

In other words, \mathbb{P}-a.s., resonances of V_{N} converge to resonances of q_{0}; and there exists a sequence of resonances of V_{N} converging to each resonance of q_{0}.

Remark: If $q_{0} \equiv 0$, then q_{0} has no resonances. This implies that \mathbb{P}-a.s., V_{N} has no resonances in any arbitrary large set, provided that N is sufficiently large.

Result I: convergence of resonances

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$. Let $\operatorname{Res}(V)$ denote the set of resonances of V.

Theorem [Dr'17]
\mathbb{P}-almost surely, the set of accumulation points of $\operatorname{Res}\left(V_{N}\right)$ is equal to $\operatorname{Res}\left(q_{0}\right)$.

In other words, \mathbb{P}-a.s., resonances of V_{N} converge to resonances of q_{0}; and there exists a sequence of resonances of V_{N} converging to each resonance of q_{0}.

Remark: If $q_{0} \equiv 0$, then q_{0} has no resonances. This implies that \mathbb{P}-a.s., V_{N} has no resonances in any arbitrary large set, provided that N is sufficiently large. "Pure" high disorder has generally little impact on the propagation of waves.

Result I: convergence of resonances

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$. Let $\operatorname{Res}(V)$ denote the set of resonances of V.

Theorem [Dr'17]

\mathbb{P}-almost surely, the set of accumulation points of $\operatorname{Res}\left(V_{N}\right)$ is equal to $\operatorname{Res}\left(q_{0}\right)$.

In other words, \mathbb{P}-a.s., resonances of V_{N} converge to resonances of q_{0}; and there exists a sequence of resonances of V_{N} converging to each resonance of q_{0}.

Remark: If $q_{0} \equiv 0$, then q_{0} has no resonances. This implies that \mathbb{P}-a.s., V_{N} has no resonances in any arbitrary large set, provided that N is sufficiently large. "Pure" high disorder has generally little impact on the propagation of waves.
In fact, after removing a set of probability $O\left(e^{-c N^{3 / 2}}\right)$, for $q_{0} \equiv 0$ resonances of V_{N} lie below the logarithmic line $\Im \lambda=-A \ln (N)$; and waves scattered by V_{N} decay like $N^{-A t}$.

Convergence of resonances

Convergence of resonances

Convergence of resonances

Result II: remainder estimate for eigenvalues

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.
Theorem [Dr'17]
If $-\lambda_{0}^{2}<0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^{3}}+q_{0}$, with normalized eigenvector f, then there exists λ_{N} a random variable such that

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.
Theorem [Dr'17]
If $-\lambda_{0}^{2}<0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^{3}}+q_{0}$, with normalized eigenvector f, then there exists λ_{N} a random variable such that

$$
\mathbb{P}\left(-\lambda_{N}^{2} \text { is an eigenvalue of } V_{N}\right) \geq 1-C e^{-c N^{1 / 4}}
$$

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.
Theorem [Dr'17]
If $-\lambda_{0}^{2}<0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^{3}}+q_{0}$, with normalized eigenvector f, then there exists λ_{N} a random variable such that

$$
\mathbb{P}\left(-\lambda_{N}^{2} \text { is an eigenvalue of } V_{N}\right) \geq 1-C e^{-c N^{1 / 4}}, \quad \text { and }
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x \neq 0$,

$$
\frac{N^{d / 2}\left(\lambda_{N}-\lambda_{0}\right)}{\int_{\mathbb{R}^{3}} q(x) d x} \stackrel{\text { law }}{\longrightarrow} \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{2} \stackrel{\text { def }}{=} \int_{[-1,1]^{3}}|f(x)|^{4} d x
$$

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.
Theorem [Dr'17]
If $-\lambda_{0}^{2}<0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^{3}}+q_{0}$, with normalized eigenvector f, then there exists λ_{N} a random variable such that

$$
\mathbb{P}\left(-\lambda_{N}^{2} \text { is an eigenvalue of } V_{N}\right) \geq 1-C e^{-c N^{1 / 4}}, \quad \text { and }
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x \neq 0$,

$$
\frac{N^{d / 2}\left(\lambda_{N}-\lambda_{0}\right)}{\int_{\mathbb{R}^{3}} q(x) d x} \stackrel{\text { law }}{\longrightarrow} \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{2} \stackrel{\text { def }}{=} \int_{[-1,1]^{3}}|f(x)|^{4} d x
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x=0$,

$$
N^{2}\left(\lambda_{N}-\lambda_{0}\right) \xrightarrow{\text { PPa.s. }} \frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{|\hat{q}(\xi)|^{2}}{|\xi|^{2}} d \xi \cdot \int_{[-1,1]^{3}}|f(x)|^{2} d x
$$

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.
Theorem [Dr'17]
If $-\lambda_{0}^{2}<0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^{3}}+q_{0}$, with normalized eigenvector f, then there exists λ_{N} a random variable such that

$$
\mathbb{P}\left(-\lambda_{N}^{2} \text { is an eigenvalue of } V_{N}\right) \geq 1-C e^{-c N^{1 / 4}}, \quad \text { and }
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x \neq 0$,

$$
\frac{N^{d / 2}\left(\lambda_{N}-\lambda_{0}\right)}{\int_{\mathbb{R}^{3}} q(x) d x} \stackrel{\text { law }}{\longrightarrow} \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{2} \stackrel{\text { def }}{=} \int_{[-1,1]^{3}}|f(x)|^{4} d x
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x=0$,

$$
N^{2}\left(\lambda_{N}-\lambda_{0}\right) \xrightarrow{\text { P-a.s. }} \frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{|\hat{q}(\xi)|^{2}}{|\xi|^{2}} d \xi \cdot \int_{[-1,1]^{3}}|f(x)|^{2} d x
$$

Remark: a similar, more complicated result holds for resonances.

Result II: remainder estimate for eigenvalues

Recall that $V_{N}(x)=q_{0}(x)+\sum_{j} u_{j} q(N x-j)$.
Theorem [Dr'17]
If $-\lambda_{0}^{2}<0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^{3}}+q_{0}$, with normalized eigenvector f, then there exists λ_{N} a random variable such that

$$
\mathbb{P}\left(-\lambda_{N}^{2} \text { is an eigenvalue of } V_{N}\right) \geq 1-C e^{-c N^{1 / 4}}, \quad \text { and }
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x \neq 0$,

$$
\frac{N^{d / 2}\left(\lambda_{N}-\lambda_{0}\right)}{\int_{\mathbb{R}^{3}} q(x) d x} \stackrel{\text { law }}{\longrightarrow} \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{2} \stackrel{\text { def }}{=} \int_{[-1,1]^{3}}|f(x)|^{4} d x
$$

- If $\int_{\mathbb{R}^{3}} q(x) d x=0$,

$$
N^{2}\left(\lambda_{N}-\lambda_{0}\right) \xrightarrow{\text { P-a.s. }} \frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{|\hat{q}(\xi)|^{2}}{|\xi|^{2}} d \xi \cdot \int_{[-1,1]^{3}}|f(x)|^{2} d x
$$

Remark: a similar, more complicated result holds for resonances. The convergence is faster when $\int_{\mathbb{R}^{3}} q(x) d x=0$, because V_{N} is systematically highly oscillatory.

Principle of proof

Principle of proof

- Put the problem in a general framework due to [Golowich-Weinstein '05].

Principle of proof

- Put the problem in a general framework due to
[Golowich-Weinstein '05]. This allows to treat $V_{\#}=V_{N}-q_{0}$ as a small perturbation of q_{0}, in the sense that

$$
\left|V_{N}-q_{0}\right|_{H^{-2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Principle of proof

- Put the problem in a general framework due to
[Golowich-Weinstein '05]. This allows to treat $V_{\#}=V_{N}-q_{0}$ as a small perturbation of q_{0}, in the sense that

$$
\left|V_{N}-q_{0}\right|_{H^{-2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

- Show a local characteristic equation for resonances of V_{N} near $\lambda_{0} \in \operatorname{Res}\left(q_{0}\right)$, of the form

$$
\lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right)
$$

Principle of proof

- Put the problem in a general framework due to
[Golowich-Weinstein '05]. This allows to treat $V_{\#}=V_{N}-q_{0}$ as a small perturbation of q_{0}, in the sense that

$$
\left|V_{N}-q_{0}\right|_{H^{-2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

- Show a local characteristic equation for resonances of V_{N} near $\lambda_{0} \in \operatorname{Res}\left(q_{0}\right)$, of the form

$$
\lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right)
$$

The coefficients $a_{k}\left(V_{\#}, \lambda\right)$ depend k-multilinearly on $V_{\#}$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_{0}.

Principle of proof

- Put the problem in a general framework due to
[Golowich-Weinstein '05]. This allows to treat $V_{\#}=V_{N}-q_{0}$ as a small perturbation of q_{0}, in the sense that

$$
\left|V_{N}-q_{0}\right|_{H^{-2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

- Show a local characteristic equation for resonances of V_{N} near $\lambda_{0} \in \operatorname{Res}\left(q_{0}\right)$, of the form

$$
\lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right)
$$

The coefficients $a_{k}\left(V_{\#}, \lambda\right)$ depend k-multilinearly on $V_{\#}$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_{0}. Resonances/eigenvalues are thus the zeroes of a random holomorphic function.

Principle of proof

- Put the problem in a general framework due to
[Golowich-Weinstein '05]. This allows to treat $V_{\#}=V_{N}-q_{0}$ as
a small perturbation of q_{0}, in the sense that

$$
\left|V_{N}-q_{0}\right|_{H^{-2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

- Show a local characteristic equation for resonances of V_{N} near $\lambda_{0} \in \operatorname{Res}\left(q_{0}\right)$, of the form

$$
\lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right)
$$

The coefficients $a_{k}\left(V_{\#}, \lambda\right)$ depend k-multilinearly on $V_{\#}$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_{0}. Resonances/eigenvalues are thus the zeroes of a random holomorphic function.

- Estimate the $a_{k}\left(V_{\#}, \lambda\right)$.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right), \text { where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.
- $a_{2}\left(V_{\#}, \lambda\right)$ depends bilinearly on $V_{\#}$.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

Recall $\lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right)$, where a_{k} is k-linear in $V_{\#}$.

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.
- $a_{2}\left(V_{\#}, \lambda\right)$ depends bilinearly on $V_{\#}$. Since $V_{\#}$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_{2}\left(V_{\#}, \lambda\right) \sim N^{-2}$.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.
- $a_{2}\left(V_{\#}, \lambda\right)$ depends bilinearly on $V_{\#}$. Since $V_{\#}$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_{2}\left(V_{\#}, \lambda\right) \sim N^{-2}$.
- When $k \geq 3, a_{k}\left(V_{\#}, \lambda\right)$ is negligible w.r.t. $a_{1}\left(V_{\#}, \lambda\right)+a_{2}\left(V_{\#}, \lambda\right)$.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.
- $a_{2}\left(V_{\#}, \lambda\right)$ depends bilinearly on $V_{\#}$. Since $V_{\#}$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_{2}\left(V_{\#}, \lambda\right) \sim N^{-2}$.
- When $k \geq 3, a_{k}\left(V_{\#}, \lambda\right)$ is negligible w.r.t. $a_{1}\left(V_{\#}, \lambda\right)+a_{2}\left(V_{\#}, \lambda\right)$.

To conclude we compare $a_{1}\left(V_{\#}, \lambda\right)$ and $a_{2}\left(V_{\#}, \lambda\right)$:

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.
- $a_{2}\left(V_{\#}, \lambda\right)$ depends bilinearly on $V_{\#}$. Since $V_{\#}$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_{2}\left(V_{\#}, \lambda\right) \sim N^{-2}$.
- When $k \geq 3, a_{k}\left(V_{\#}, \lambda\right)$ is negligible w.r.t. $a_{1}\left(V_{\#}, \lambda\right)+a_{2}\left(V_{\#}, \lambda\right)$.

To conclude we compare $a_{1}\left(V_{\#}, \lambda\right)$ and $a_{2}\left(V_{\#}, \lambda\right)$:

- When $\int_{\mathbb{R}^{3}} q(x) d x \neq 0, a_{1}\left(V_{\#}, \lambda\right)$ dominates, and $N^{3 / 2}\left(\lambda_{N}-\lambda_{0}\right)$ converges in distribution to a Gaussian.

Estimates on the $a_{k}\left(V_{\#}, \lambda\right)$

$$
\text { Recall } \lambda-\lambda_{0}=\sum_{k=1}^{\infty} a_{k}\left(V_{\#}, \lambda\right) \text {, where } a_{k} \text { is } k \text {-linear in } V_{\#} \text {. }
$$

- $a_{1}\left(V_{\#}, \lambda\right)$ depends linearly on $V_{\#}$, hence on the u_{j}. An application of the CLT shows that $N^{3 / 2} a_{1}\left(V_{\#}, \lambda\right)$ converges to a Gaussian.
- $a_{2}\left(V_{\#}, \lambda\right)$ depends bilinearly on $V_{\#}$. Since $V_{\#}$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_{2}\left(V_{\#}, \lambda\right) \sim N^{-2}$.
- When $k \geq 3, a_{k}\left(V_{\#}, \lambda\right)$ is negligible w.r.t. $a_{1}\left(V_{\#}, \lambda\right)+a_{2}\left(V_{\#}, \lambda\right)$.

To conclude we compare $a_{1}\left(V_{\#}, \lambda\right)$ and $a_{2}\left(V_{\#}, \lambda\right)$:

- When $\int_{\mathbb{R}^{3}} q(x) d x \neq 0, a_{1}\left(V_{\#}, \lambda\right)$ dominates, and $N^{3 / 2}\left(\lambda_{N}-\lambda_{0}\right)$ converges in distribution to a Gaussian.
- When $\int_{\mathbb{R}^{3}} q(x) d x=0, a_{2}\left(V_{\#}, \lambda\right)$ dominates, and $N^{2}\left(\lambda_{N}-\lambda_{0}\right)$ converges almost surely to a term resulting from constructive interference.

Conclusions

Conclusions

- We show stability of resonances under highly oscillatory stochastic perturbations;

Conclusions

- We show stability of resonances under highly oscillatory stochastic perturbations;
- We identify a stochastic and a deterministic regime for the speed of convergence of resonances, depending on the value of $\int_{\mathbb{R}^{3}} q(x) d x$.

Conclusions

- We show stability of resonances under highly oscillatory stochastic perturbations;
- We identify a stochastic and a deterministic regime for the speed of convergence of resonances, depending on the value of $\int_{\mathbb{R}^{3}} q(x) d x$.

Thanks for your attention!

