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We observe a weak averaging effect on VN .
Does this transfer to resonances of VN , i.e. are resonances of VN

well approximated by resonances of q0?
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In other words, P-a.s., resonances of VN converge to resonances of
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Remark: If q0 ≡ 0, then q0 has no resonances. This implies that
P-a.s., VN has no resonances in any arbitrary large set, provided that N
is sufficiently large. “Pure” high disorder has generally little impact
on the propagation of waves.

In fact, after removing a set of probability O(e−cN
3/2

), for q0 ≡ 0
resonances of VN lie below the logarithmic line =λ = −A ln(N); and
waves scattered by VN decay like N−At .
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Result II: remainder estimate for eigenvalues

Recall that VN(x) = q0(x) +
∑
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convergence is faster when
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R3 q(x)dx = 0, because VN is systematically
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Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05]. This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05].

This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05]. This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05]. This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05]. This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0.

Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05]. This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Principle of proof

I Put the problem in a general framework due to
[Golowich–Weinstein ’05]. This allows to treat V# = VN − q0 as
a small perturbation of q0, in the sense that

|VN − q0|H−2 → 0 as N →∞.

I Show a local characteristic equation for resonances of VN near
λ0 ∈ Res(q0), of the form

λ− λ0 =
∞∑
k=1

ak(V#, λ).

The coefficients ak(V#, λ) depend k-multilinearly on V#, are
holomorphic in λ; and the sum converges for N sufficiently large and
λ near λ0. Resonances/eigenvalues are thus the zeroes of a
random holomorphic function.

I Estimate the ak(V#, λ).



Estimates on the ak(V#, λ)

Recall λ− λ0 =
∞∑
k=1

ak(V#, λ), where ak is k-linear in V#.

I a1(V#, λ) depends linearly on V#, hence on the uj . An application
of the CLT shows that N3/2a1(V#, λ) converges to a Gaussian.

I a2(V#, λ) depends bilinearly on V#. Since V# is highly oscillatory,
this yields deterministic contributions (constructive
interference): a2(V#, λ) ∼ N−2.

I When k ≥ 3, ak(V#, λ) is negligible w.r.t. a1(V#, λ) + a2(V#, λ).

To conclude we compare a1(V#, λ) and a2(V#, λ):

I When
∫
R3 q(x)dx 6= 0, a1(V#, λ) dominates, and N3/2(λN − λ0)

converges in distribution to a Gaussian.

I When
∫
R3 q(x)dx = 0, a2(V#, λ) dominates, and N2(λN − λ0)

converges almost surely to a term resulting from constructive
interference.
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Conclusions

I We show stability of resonances under highly oscillatory
stochastic perturbations;

I We identify a stochastic and a deterministic regime for the speed
of convergence of resonances, depending on the value of∫
R3 q(x)dx .

Thanks for your attention!
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