Eigenvalues for highly disordered potentials

Alexis Drouot, UC Berkeley

AMS meeting on Spectral theory and Microlocal analysis, April 23 2017

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \ (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$
 (1)

(ロ)、(型)、(E)、(E)、 E) の(の)

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

Suppose that $u_0 \in L^2(\mathbb{R}^3)$ is an **eigenvector** of $-\Delta_{\mathbb{R}^3} + V$, for an eigenvalue λ^2 :

$$(-\lambda^2 - \Delta_{\mathbb{R}^3} + \mathbf{V})u_0 = 0.$$

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$
 (1)

Suppose that $u_0 \in L^2(\mathbb{R}^3)$ is an **eigenvector** of $-\Delta_{\mathbb{R}^3} + V$, for an eigenvalue λ^2 :

$$(-\lambda^2 - \Delta_{\mathbb{R}^3} + V)u_0 = 0.$$

Then we can construct a **solution** $u(x, t) = e^{i\lambda t}u_0(x)$ to (1).

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$
 (1)

Suppose that $u_0 \in L^2(\mathbb{R}^3)$ is an **eigenvector** of $-\Delta_{\mathbb{R}^3} + V$, for an eigenvalue λ^2 :

$$(-\lambda^2 - \Delta_{\mathbb{R}^3} + V)u_0 = 0.$$

Then we can construct a **solution** $u(x, t) = e^{i\lambda t}u_0(x)$ to (1).

Problem: since the domain is **unbounded**, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$
 (1)

Suppose that $u_0 \in L^2(\mathbb{R}^3)$ is an **eigenvector** of $-\Delta_{\mathbb{R}^3} + V$, for an eigenvalue λ^2 :

$$(-\lambda^2-\Delta_{\mathbb{R}^3}+V)u_0=0.$$

Then we can construct a **solution** $u(x, t) = e^{i\lambda t}u_0(x)$ to (1).

Problem: since the domain is **unbounded**, we cannot obtain **expansions** for all solutions of (1) as linear combinations of functions of the above form.

This is reflected in the spectrum of $-\Delta_{\mathbb{R}^3} + V$ on $L^2(\mathbb{R}^3)$: it is the union of a **discrete set** (eigenvalues) with the **continuous spectrum** $[0, \infty)$.

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \ (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$
 (1)

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves:

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on *V*, that quantize local decay of waves: if *u* solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on *V*, that quantize local decay of waves: if *u* solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded.

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the **poles** of the meromorphic continuation of

$$R_V(\lambda) = (-\Delta_{\mathbb{R}^3} + V - \lambda^2)^{-1} : C_0^\infty(\mathbb{R}^3) o \mathcal{D}'(\mathbb{R}^3).$$

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the **poles** of the meromorphic continuation of

$$R_V(\lambda) = (-\Delta_{\mathbb{R}^3} + V - \lambda^2)^{-1} : C_0^\infty(\mathbb{R}^3) o \mathcal{D}'(\mathbb{R}^3).$$

Eigenvalues μ are poles of $(-\Delta_{\mathbb{R}^3} + V - \mu)^{-1}$, hence (squares of) resonances. Conversely, resonances inducing eigenvalues are the one lying on the complex half-line $i[0,\infty)$.

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

The expansion (2) comes from a **contour deformation** in the representation of u given by the spectral theorem:

$$u = \int_{\mathbb{R}} e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_1 d\lambda - \int_{\mathbb{R}} \lambda e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_0 d\lambda.$$

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

The expansion (2) comes from a **contour deformation** in the representation of u given by the spectral theorem:

$$u = \int_{\mathbb{R}} e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_1 d\lambda - \int_{\mathbb{R}} \lambda e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_0 d\lambda.$$

The poles λ_j of $R_V(\lambda)$ generate **residues** $u_j(x)e^{-i\lambda_j t}$ in (2).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Waves scattered by a **potential** $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions *u* of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \tag{1}$$

To overcome this difficulty, we use **resonances**, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} \left| u(x,t) - \sum_{\mathrm{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).$$
(2)

The expansion (2) comes from a **contour deformation** in the representation of u given by the spectral theorem:

$$u = \int_{\mathbb{R}} e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_1 d\lambda - \int_{\mathbb{R}} \lambda e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_0 d\lambda.$$

The poles λ_j of $R_V(\lambda)$ generate **residues** $u_j(x)e^{-i\lambda_j t}$ in (2). In particular, if $R_V(\lambda)$ has no poles above $\text{Im}\lambda \ge -A$ – **resonance-free** strip – waves scattered by V decay locally like e^{-At} .

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$\begin{aligned} \mathcal{V}_{\mathsf{N}}(x) &= q_0(x) + \sum_{j \in [-\mathsf{N},\mathsf{N}]^3} u_j(\omega) q(\mathsf{N} x - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R}) \\ u_j \text{ i.i.d}, \quad \mathbb{E}(u_j) &= 0, \quad \mathbb{E}(u_j^2) = 1, \quad u_j \in L^\infty. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$\begin{aligned} V_{\mathsf{N}}(x) &= q_0(x) + \sum_{j \in [-\mathsf{N},\mathsf{N}]^3} u_j(\omega) q(\mathsf{N}x - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R}) \\ u_j \text{ i.i.d}, \quad \mathbb{E}(u_j) &= 0, \quad \mathbb{E}(u_j^2) = 1, \quad u_j \in L^\infty. \end{aligned}$$

Model for disordered crystals plunged in a field q_0 , whose sites j/N come with a random charge u_j and the potential $u_jq(Nx-j)$. V_N is a typical function that varies randomly on a scale N^{-1} .

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$\begin{aligned} \mathcal{V}_{\mathsf{N}}(\mathsf{x}) &= q_0(\mathsf{x}) + \sum_{j \in [-\mathsf{N},\mathsf{N}]^3} u_j(\omega) q(\mathsf{N}\mathsf{x} - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R}) \\ u_j \text{ i.i.d}, \quad \mathbb{E}(u_j) &= 0, \quad \mathbb{E}(u_j^2) = 1, \quad u_j \in L^\infty. \end{aligned}$$

Model for disordered crystals plunged in a field q_0 , whose sites j/N come with a random charge u_j and the potential $u_jq(Nx-j)$. V_N is a typical function that varies randomly on a scale N^{-1} .

Example of potential V_N with N = 20 in blue, with q_0 in red.

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_{N}(x) = q_{0}(x) + \sum_{j \in [-N,N]^{3}} u_{j}(\omega)q(Nx-j), \quad q, \quad q_{0} \in C_{0}^{\infty}(\mathbb{R}^{3},\mathbb{R})$$
$$u_{j} \text{ i.i.d}, \quad \mathbb{E}(u_{j}) = 0, \quad \mathbb{E}(u_{j}^{2}) = 1, \quad u_{j} \in L^{\infty}.$$

Note that V_N is in average equal to q_0 . In addition, $V_N \rightharpoonup q_0$, \mathbb{P} -a.s.:

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_{N}(x) = q_{0}(x) + \sum_{j \in [-N,N]^{3}} u_{j}(\omega)q(Nx-j), \quad q, \ q_{0} \in C_{0}^{\infty}(\mathbb{R}^{3},\mathbb{R})$$
$$u_{j} \text{ i.i.d}, \quad \mathbb{E}(u_{j}) = 0, \quad \mathbb{E}(u_{j}^{2}) = 1, \quad u_{j} \in L^{\infty}.$$

Note that V_N is in average equal to q_0 . In addition, $V_N \rightharpoonup q_0$, \mathbb{P} -a.s.: $\forall \varphi \in C_0^{\infty}, \langle V_N - q_0, \varphi \rangle =$

$$\sum_{|j|_{\infty} \leq N} u_j \int q(Nx-j)\varphi(x)dx = \varepsilon^d \sum_{|j|_{\infty} \leq N} u_j \int q(x)\varphi(N(x+j))dx$$

(日) (日) (日) (日) (日) (日) (日) (日)

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_{N}(x) = q_{0}(x) + \sum_{j \in [-N,N]^{3}} u_{j}(\omega)q(Nx-j), \quad q, \ q_{0} \in C_{0}^{\infty}(\mathbb{R}^{3},\mathbb{R})$$
$$u_{j} \text{ i.i.d}, \quad \mathbb{E}(u_{j}) = 0, \quad \mathbb{E}(u_{j}^{2}) = 1, \quad u_{j} \in L^{\infty}.$$

Note that V_N is in average equal to q_0 . In addition, $V_N \rightharpoonup q_0$, \mathbb{P} -a.s.: $\forall \varphi \in C_0^{\infty}, \langle V_N - q_0, \varphi \rangle =$

$$\sum_{|j|_{\infty} \leq N} u_{j} \int q(Nx - j)\varphi(x)dx = \varepsilon^{d} \sum_{|j|_{\infty} \leq N} u_{j} \int q(x)\varphi(N(x + j))dx$$
$$= N^{-3} \sum_{|j|_{\infty} \leq N} u_{j}\varphi(N^{-1}j) \cdot \int q(x)dx + O(N^{-4}) \sum_{|j|_{\infty} \leq N} |u_{j}| \xrightarrow{\mathbb{P}\text{-a.s.}} 0 \quad (K.S.L.L.N).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Waves scattered by **disordered media** with scale of **heterogeneity** $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_{N}(x) = q_{0}(x) + \sum_{j \in [-N,N]^{3}} u_{j}(\omega)q(Nx-j), \quad q, \ q_{0} \in C_{0}^{\infty}(\mathbb{R}^{3},\mathbb{R})$$
$$u_{j} \text{ i.i.d}, \quad \mathbb{E}(u_{j}) = 0, \quad \mathbb{E}(u_{j}^{2}) = 1, \quad u_{j} \in L^{\infty}.$$

Note that V_N is in average equal to q_0 . In addition, $V_N \rightharpoonup q_0$, \mathbb{P} -a.s.: $\forall \varphi \in C_0^{\infty}, \langle V_N - q_0, \varphi \rangle =$

$$\sum_{|j|_{\infty} \leq N} u_j \int q(Nx - j)\varphi(x) dx = \varepsilon^d \sum_{|j|_{\infty} \leq N} u_j \int q(x)\varphi(N(x + j)) dx$$
$$= N^{-3} \sum_{|j|_{\infty} \leq N} u_j \varphi(N^{-1}j) \cdot \int q(x) dx + O(N^{-4}) \sum_{|j|_{\infty} \leq N} |u_j| \xrightarrow{\mathbb{P}\text{-a.s.}} 0 \quad (K.S.L.L.N).$$

We observe a weak averaging effect on V_N . Does this transfer to resonances of V_N , i.e. are resonances of V_N well approximated by resonances of q_0 ?

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res(V) denote the set of resonances of V.

・ロト・日本・モト・モート ヨー うへで

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res(V) denote the set of resonances of V.

Theorem [Dr'17]

 \mathbb{P} -almost surely, the set of accumulation points of $\operatorname{Res}(V_N)$ is equal to $\operatorname{Res}(q_0)$.

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res(V) denote the set of resonances of V.

Theorem [Dr'17]

P-almost surely, the set of accumulation points of $\text{Res}(V_N)$ is equal to $\text{Res}(q_0)$.

In other words, \mathbb{P} -a.s., resonances of V_N converge to resonances of q_0 ; and there exists a sequence of resonances of V_N converging to each resonance of q_0 .

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res(V) denote the set of resonances of V.

Theorem [Dr'17]

P-almost surely, the set of accumulation points of $\text{Res}(V_N)$ is equal to $\text{Res}(q_0)$.

In other words, \mathbb{P} -a.s., resonances of V_N converge to resonances of q_0 ; and there exists a sequence of resonances of V_N converging to each resonance of q_0 .

Remark: If $q_0 \equiv 0$, then q_0 has no resonances. This implies that \mathbb{P} -a.s., V_N has no resonances in any arbitrary large set, provided that N is sufficiently large.

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res(V) denote the set of resonances of V.

Theorem [Dr'17]

P-almost surely, the set of accumulation points of $\text{Res}(V_N)$ is equal to $\text{Res}(q_0)$.

In other words, \mathbb{P} -a.s., resonances of V_N converge to resonances of q_0 ; and there exists a sequence of resonances of V_N converging to each resonance of q_0 .

Remark: If $q_0 \equiv 0$, then q_0 has no resonances. This implies that \mathbb{P} -a.s., V_N has no resonances in any arbitrary large set, provided that N is sufficiently large. "Pure" high disorder has generally little impact on the propagation of waves.

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res(V) denote the set of resonances of V.

Theorem [Dr'17]

P-almost surely, the set of accumulation points of $\text{Res}(V_N)$ is equal to $\text{Res}(q_0)$.

In other words, \mathbb{P} -a.s., resonances of V_N converge to resonances of q_0 ; and there exists a sequence of resonances of V_N converging to each resonance of q_0 .

Remark: If $q_0 \equiv 0$, then q_0 has no resonances. This implies that \mathbb{P} -a.s., V_N has no resonances in any arbitrary large set, provided that N is sufficiently large. "Pure" high disorder has generally little impact on the propagation of waves.

In fact, after removing a set of probability $O(e^{-cN^{3/2}})$, for $q_0 \equiv 0$ resonances of V_N lie below the logarithmic line $\Im \lambda = -A \ln(N)$; and waves scattered by V_N decay like N^{-At} .

Convergence of resonances

Convergence of resonances

Convergence of resonances

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへで

・ロト・日本・モト・モート ヨー うへで

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr'17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr'17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

 $\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}},$

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr'17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

1 / 4

$$\mathbb{P}(-\lambda_{N}^{2} \text{ is an eigenvalue of } V_{N}) \geq 1 - Ce^{-cN^{1/4}}, \text{ and}$$

$$If \int_{\mathbb{R}^{3}} q(x)dx \neq 0,$$

$$\frac{N^{d/2}(\lambda_{N} - \lambda_{0})}{\int_{\mathbb{R}^{3}} q(x)dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^{2}), \quad \sigma^{2} \stackrel{\text{def}}{=} \int_{[-1,1]^{3}} |f(x)|^{4}dx$$

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr'17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

$$\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \ge 1 - Ce^{-cN^{1/4}}, \text{ and}$$

$$If \int_{\mathbb{R}^3} q(x)dx \neq 0,$$

$$\frac{N^{d/2}(\lambda_N - \lambda_0)}{\int_{\mathbb{R}^3} q(x)dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^2), \quad \sigma^2 \stackrel{\text{def}}{=} \int_{[-1,1]^3} |f(x)|^4 dx.$$

$$If \int_{\mathbb{R}^3} q(x)dx = 0,$$

$$N^2(\lambda_N - \lambda_0) \stackrel{\mathbb{P}\text{-a.s.}}{\longrightarrow} \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{|\hat{q}(\xi)|^2}{|\xi|^2} d\xi \cdot \int_{[-1,1]^3} |f(x)|^2 dx.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

1 / 4

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr'17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

1 / 4

$$\mathbb{P}(-\lambda_{N}^{2} \text{ is an eigenvalue of } V_{N}) \geq 1 - Ce^{-cN^{1/4}}, \text{ and}$$

$$\downarrow If \int_{\mathbb{R}^{3}} q(x)dx \neq 0,$$

$$\frac{N^{d/2}(\lambda_{N} - \lambda_{0})}{\int_{\mathbb{R}^{3}} q(x)dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^{2}), \quad \sigma^{2} \stackrel{\text{def}}{=} \int_{[-1,1]^{3}} |f(x)|^{4}dx.$$

$$\downarrow If \int_{\mathbb{R}^{3}} q(x)dx = 0,$$

$$N^{2}(\lambda_{N} - \lambda_{0}) \xrightarrow{\mathbb{P}\text{-a.s.}} \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^{3}} \frac{|\hat{q}(\xi)|^{2}}{|\xi|^{2}} d\xi \cdot \int_{[-1,1]^{3}} |f(x)|^{2}dx.$$

Remark: a similar, more complicated result holds for resonances.

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr'17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

. 1 / 4

$$\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \ge 1 - Ce^{-cN^{1/4}}, \text{ and}$$

$$\downarrow If \int_{\mathbb{R}^3} q(x)dx \neq 0,$$

$$\frac{N^{d/2}(\lambda_N - \lambda_0)}{\int_{\mathbb{R}^3} q(x)dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^2), \quad \sigma^2 \stackrel{\text{def}}{=} \int_{[-1,1]^3} |f(x)|^4 dx.$$

$$\downarrow If \int_{\mathbb{R}^3} q(x)dx = 0,$$

$$N^2(\lambda_N - \lambda_0) \stackrel{\mathbb{P}\text{-a.s.}}{\longrightarrow} \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{|\hat{q}(\xi)|^2}{|\xi|^2} d\xi \cdot \int_{[-1,1]^3} |f(x)|^2 dx.$$

Remark: a similar, more complicated result holds for resonances. The convergence is faster when $\int_{\mathbb{R}^3} q(x) dx = 0$, because V_N is systematically highly oscillatory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Put the problem in a general framework due to [Golowich–Weinstein '05].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Put the problem in a general framework due to [Golowich–Weinstein '05]. This allows to treat $V_{\#} = V_N - q_0$ as a small perturbation of q_0 , in the sense that

 $|V_N - q_0|_{H^{-2}}
ightarrow 0$ as $N
ightarrow \infty$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ Put the problem in a general framework due to [Golowich–Weinstein '05]. This allows to treat $V_{\#} = V_N - q_0$ as a small perturbation of q_0 , in the sense that

$$|V_N - q_0|_{H^{-2}}
ightarrow 0$$
 as $N
ightarrow \infty$.

Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda).$$

▶ Put the problem in a general framework due to [Golowich–Weinstein '05]. This allows to treat $V_{\#} = V_N - q_0$ as a small perturbation of q_0 , in the sense that

$$|V_N - q_0|_{H^{-2}} \rightarrow 0$$
 as $N \rightarrow \infty$.

Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda).$$

The coefficients $a_k(V_{\#}, \lambda)$ depend *k*-multilinearly on $V_{\#}$, are holomorphic in λ ; and the sum converges for *N* sufficiently large and λ near λ_0 .

▶ Put the problem in a general framework due to [Golowich–Weinstein '05]. This allows to treat $V_{\#} = V_N - q_0$ as a small perturbation of q_0 , in the sense that

$$|V_N - q_0|_{H^{-2}} \rightarrow 0$$
 as $N \rightarrow \infty$.

Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda).$$

The coefficients $a_k(V_{\#}, \lambda)$ depend *k*-multilinearly on $V_{\#}$, are holomorphic in λ ; and the sum converges for N sufficiently large and λ near λ_0 . Resonances/eigenvalues are thus the zeroes of a random holomorphic function.

▶ Put the problem in a general framework due to [Golowich–Weinstein '05]. This allows to treat $V_{\#} = V_N - q_0$ as a small perturbation of q_0 , in the sense that

$$|V_N - q_0|_{H^{-2}} \rightarrow 0$$
 as $N \rightarrow \infty$.

Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda).$$

The coefficients $a_k(V_{\#}, \lambda)$ depend *k*-multilinearly on $V_{\#}$, are holomorphic in λ ; and the sum converges for N sufficiently large and λ near λ_0 . Resonances/eigenvalues are thus the zeroes of a random holomorphic function.

• Estimate the $a_k(V_{\#}, \lambda)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

▶ $a_1(V_{\#}, \lambda)$ depends linearly on $V_{\#}$, hence on the u_j .

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

• a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

• a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $a_2(V_{\#}, \lambda)$ depends bilinearly on $V_{\#}$.

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

- ▶ a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.
- a₂(V_#, λ) depends bilinearly on V_#. Since V_# is highly oscillatory, this yields deterministic contributions (constructive interference): a₂(V_#, λ) ~ N⁻².

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

- ▶ a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.
- a₂(V_#, λ) depends bilinearly on V_#. Since V_# is highly oscillatory, this yields deterministic contributions (constructive interference): a₂(V_#, λ) ~ N⁻².

▶ When $k \ge 3$, $a_k(V_{\#}, \lambda)$ is **negligible** w.r.t. $a_1(V_{\#}, \lambda) + a_2(V_{\#}, \lambda)$.

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

- ▶ a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.
- a₂(V_#, λ) depends bilinearly on V_#. Since V_# is highly oscillatory, this yields deterministic contributions (constructive interference): a₂(V_#, λ) ~ N⁻².

▶ When $k \ge 3$, $a_k(V_{\#}, \lambda)$ is **negligible** w.r.t. $a_1(V_{\#}, \lambda) + a_2(V_{\#}, \lambda)$. To conclude we compare $a_1(V_{\#}, \lambda)$ and $a_2(V_{\#}, \lambda)$:

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

- ▶ a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.
- a₂(V_#, λ) depends bilinearly on V_#. Since V_# is highly oscillatory, this yields deterministic contributions (constructive interference): a₂(V_#, λ) ~ N⁻².

▶ When $k \ge 3$, $a_k(V_{\#}, \lambda)$ is **negligible** w.r.t. $a_1(V_{\#}, \lambda) + a_2(V_{\#}, \lambda)$. To conclude we compare $a_1(V_{\#}, \lambda)$ and $a_2(V_{\#}, \lambda)$:

▶ When $\int_{\mathbb{R}^3} q(x) dx \neq 0$, $a_1(V_{\#}, \lambda)$ dominates, and $N^{3/2}(\lambda_N - \lambda_0)$ converges in distribution to a Gaussian.

Recall
$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_{\#}, \lambda)$$
, where a_k is k-linear in $V_{\#}$.

- ▶ a₁(V_#, λ) depends linearly on V_#, hence on the u_j. An application of the CLT shows that N^{3/2}a₁(V_#, λ) converges to a Gaussian.
- a₂(V_#, λ) depends bilinearly on V_#. Since V_# is highly oscillatory, this yields deterministic contributions (constructive interference): a₂(V_#, λ) ~ N⁻².

▶ When $k \ge 3$, $a_k(V_{\#}, \lambda)$ is **negligible** w.r.t. $a_1(V_{\#}, \lambda) + a_2(V_{\#}, \lambda)$. To conclude we compare $a_1(V_{\#}, \lambda)$ and $a_2(V_{\#}, \lambda)$:

- ▶ When $\int_{\mathbb{R}^3} q(x) dx \neq 0$, $a_1(V_{\#}, \lambda)$ dominates, and $N^{3/2}(\lambda_N \lambda_0)$ converges in distribution to a Gaussian.
- When ∫_{ℝ³} q(x)dx = 0, a₂(V_#, λ) dominates, and N²(λ_N − λ₀) converges almost surely to a term resulting from constructive interference.

We show stability of resonances under highly oscillatory stochastic perturbations;

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- We show stability of resonances under highly oscillatory stochastic perturbations;
- ▶ We identify a stochastic and a deterministic regime for the speed of convergence of resonances, depending on the value of $\int_{\mathbb{R}^3} q(x) dx$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- We show stability of resonances under highly oscillatory stochastic perturbations;
- ▶ We identify a stochastic and a deterministic regime for the speed of convergence of resonances, depending on the value of $\int_{\mathbb{R}^3} q(x) dx$.

Thanks for your attention!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <