Existence and non-existence of extremizers for a k-plane transform inequality.

Alexis Drouot

May 18th 2016

The k-plane transform.

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

$$
\mathcal{R} f(\pi)=\int_{\pi} f .
$$

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

$$
\mathcal{R} f(\pi)=\int_{\pi} f
$$

- The operator \mathcal{R} is the k-plane transform.

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

$$
\mathcal{R} f(\pi)=\int_{\pi} f
$$

- The operator \mathcal{R} is the k-plane transform.
- If the space of k-planes \mathcal{G} is provided with its invariant measure μ

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

$$
\mathcal{R} f(\pi)=\int_{\pi} f
$$

- The operator \mathcal{R} is the k-plane transform.
- If the space of k-planes \mathcal{G} is provided with its invariant measure μ then \mathcal{R} extends to a continuous operator $L^{1}\left(\mathbb{R}^{d}, d x\right)$ to $L^{1}(\mathcal{G}, d \mu)$ (Fubini)

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

$$
\mathcal{R} f(\pi)=\int_{\pi} f
$$

- The operator \mathcal{R} is the k-plane transform.
- If the space of k-planes \mathcal{G} is provided with its invariant measure μ then \mathcal{R} extends to a continuous operator $L^{1}\left(\mathbb{R}^{d}, d x\right)$ to $L^{1}(\mathcal{G}, d \mu)$ (Fubini) and $L^{p}\left(\mathbb{R}^{d}, d x\right)$ to $L^{q}(\mathcal{G}, d \mu)$, where

$$
p=\frac{d+1}{k+1}, \quad q=d+1
$$

The k-plane transform.

- For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a smooth function and $\pi \subset \mathbb{R}^{d}$ is a k-plane we define

$$
\mathcal{R} f(\pi)=\int_{\pi} f
$$

- The operator \mathcal{R} is the k-plane transform.
- If the space of k-planes \mathcal{G} is provided with its invariant measure μ then \mathcal{R} extends to a continuous operator $L^{1}\left(\mathbb{R}^{d}, d x\right)$ to $L^{1}(\mathcal{G}, d \mu)$ (Fubini) and $L^{p}\left(\mathbb{R}^{d}, d x\right)$ to $L^{q}(\mathcal{G}, d \mu)$, where

$$
p=\frac{d+1}{k+1}, \quad q=d+1
$$

- Other L^{p} to L^{q} boundedness properties on Lebesgue spaces follow from interpolation theory between the L^{1} estimate and the endpoint case.

What are the extremizers for the inequality $|\mathcal{R} f|_{p} \leq A|f|_{q}$?

What are the extremizers for the inequality

$|\mathcal{R} f|_{p} \leq A|f|_{q}$?

- Extremizers are functions for which the ratio $|\mathcal{R} f|_{q} /|f|_{p}$ is maximal.

What are the extremizers for the inequality

 $|\mathcal{R} f|_{p} \leq A|f|_{q}$?- Extremizers are functions for which the ratio $|\mathcal{R} f|_{q} /|f|_{p}$ is maximal.
- Conjecture (Baernstein-Loss, '97): some extremizers take the form $\langle x\rangle^{-\alpha}$ for a certain exponent α depending on p, q, k, d. Here $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$.

What are the extremizers for the inequality

 $|\mathcal{R} f|_{p} \leq A|f|_{q}$?- Extremizers are functions for which the ratio $|\mathcal{R} f|_{q} /|f|_{p}$ is maximal.
- Conjecture (Baernstein-Loss, '97): some extremizers take the form $\langle x\rangle^{-\alpha}$ for a certain exponent α depending on p, q, k, d. Here $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$.
- They proved their conjecture in the cases of the 2-plane transform when q is an integer; and when $q=2$.

What are the extremizers for the inequality

 $|\mathcal{R} f|_{p} \leq A|f|_{q}$?- Extremizers are functions for which the ratio $|\mathcal{R} f|_{q} /|f|_{p}$ is maximal.
- Conjecture (Baernstein-Loss, '97): some extremizers take the form $\langle x\rangle^{-\alpha}$ for a certain exponent α depending on p, q, k, d. Here $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$.
- They proved their conjecture in the cases of the 2-plane transform when q is an integer; and when $q=2$.

Theorem (Christ '11, Drouot '11, Flock '13)
In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$

What are the extremizers for the inequality

 $|\mathcal{R} f|_{p} \leq A|f|_{q}$?- Extremizers are functions for which the ratio $|\mathcal{R} f|_{q} /|f|_{p}$ is maximal.
- Conjecture (Baernstein-Loss, '97): some extremizers take the form $\langle x\rangle^{-\alpha}$ for a certain exponent α depending on p, q, k, d. Here $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$.
- They proved their conjecture in the cases of the 2-plane transform when q is an integer; and when $q=2$.

Theorem (Christ '11, Drouot '11, Flock '13)
In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$ the extremizers are all given by $a\langle L x\rangle^{-k-1}$, where L is an affine map and a is a non-zero constant.

Non-increasing radial rearrangement.

Non-increasing radial rearrangement.

Non-increasing radial rearrangement.

Non-increasing radial rearrangement.

Non-increasing radial rearrangement.

Theorem (Christ '84)
If $q \leq d+1$ is an integer then $|\mathcal{R} f|_{q} \leq\left|\mathcal{R} f^{*}\right|_{q}$.

Non-increasing radial rearrangement.

Theorem (Christ '84)
If $q \leq d+1$ is an integer then $|\mathcal{R} f|_{q} \leq\left|\mathcal{R} f^{*}\right|_{q}$.
Hence (if one puts aside the uniqueness question) we can restrict ourselves to radial non-increasing extremizers.

Mapping the inequality on the sphere I.

Mapping the inequality on the sphere I.

Correspondance $x \in \mathbb{R}^{d} \longleftrightarrow \pm \omega \in \mathbb{S}^{d}, f(x) \longleftrightarrow F(\omega)$.

Mapping the inequality on the sphere I.

Correspondance $x \in \mathbb{R}^{d} \longleftrightarrow \pm \omega \in \mathbb{S}^{d}, f(x) \longleftrightarrow F(\omega)$. After insertion of a Jacobian factor,

$$
\text { if } p=\frac{d+1}{k+1} \text { then }|f|_{p}=|F|_{p} \text {. }
$$

Mapping the inequality on the sphere I.

Correspondance $x \in \mathbb{R}^{d} \longleftrightarrow \pm \omega \in \mathbb{S}^{d}, f(x) \longleftrightarrow F(\omega)$. After insertion of a Jacobian factor,

$$
\text { if } p=\frac{d+1}{k+1} \text { then }|f|_{p}=|F|_{p} \text {. }
$$

The radial nonincreasing rearrangement on \mathbb{R}^{d} transfers to an asymmetric notion of rearrangement on \mathbb{S}^{d} through $f \mapsto F$.

Mapping the inequality on the sphere II.

Mapping the inequality on the sphere II.

Mapping the inequality on the sphere II.

Mapping the inequality on the sphere II.

Mapping the inequality on the sphere II.

Mapping the inequality on the sphere II.

Correspondance $\pi \longleftrightarrow \mathcal{C}, g(\pi) \longleftrightarrow G(\mathcal{C})$. Let \mathcal{R}_{+}be the k-circle transform (on \mathbb{S}^{d}) and recall the correspondance $f(x) \longleftrightarrow F(\omega)$.

Mapping the inequality on the sphere II.

Correspondance $\pi \longleftrightarrow \mathcal{C}, g(\pi) \longleftrightarrow G(\mathcal{C})$. Let \mathcal{R}_{+}be the k-circle transform (on \mathbb{S}^{d}) and recall the correspondance $f(x) \longleftrightarrow F(\omega)$.
Theorem (Drury '89)
If $q=d+1$ then $\left|\mathcal{R}_{+} F\right|_{q}=|\mathcal{R} f|_{q}$.

Mapping the inequality on the sphere II.

Correspondance $\pi \longleftrightarrow \mathcal{C}, g(\pi) \longleftrightarrow G(\mathcal{C})$. Let \mathcal{R}_{+}be the k-circle transform (on \mathbb{S}^{d}) and recall the correspondance $f(x) \longleftrightarrow F(\omega)$.
Theorem (Drury '89)
If $q=d+1$ then $\left|\mathcal{R}_{+} F\right|_{q}=|\mathcal{R} f|_{q}$.
Hence we can consider the inequality on the sphere instead.

Mapping the inequality on the sphere II.

Correspondance $\pi \longleftrightarrow \mathcal{C}, g(\pi) \longleftrightarrow G(\mathcal{C})$. Let \mathcal{R}_{+}be the k-circle transform (on \mathbb{S}^{d}) and recall the correspondance $f(x) \longleftrightarrow F(\omega)$.
Theorem (Drury '89)
If $q=d+1$ then $\left|\mathcal{R}_{+} F\right|_{q}=|\mathcal{R} f|_{q}$.
Hence we can consider the inequality on the sphere instead.
We discover new symmetries: rotations about the e_{x}, e_{y} axis.

Competing symmetries (after Carlen and Loss).

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots.
Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$.
Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

We get F_{0}, F_{1}, \ldots with $\left|F_{0}\right|_{p}=\left|F_{1}\right|_{p}=\ldots$ and $\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} F_{1}\right|_{q} \leq \ldots$

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

We get F_{0}, F_{1}, \ldots with $\left|F_{0}\right|_{p}=\left|F_{1}\right|_{p}=\ldots$ and $\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} F_{1}\right|_{q} \leq \ldots$ It seems that $F_{n} \rightarrow 1$. True by general result of Carlen, Loss.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$.
Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

We get F_{0}, F_{1}, \ldots with $\left|F_{0}\right|_{p}=\left|F_{1}\right|_{p}=\ldots$ and $\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} F_{1}\right|_{q} \leq \ldots$ It seems that $F_{n} \rightarrow 1$. True by general result of Carlen, Loss.

Since F_{0} was arbitrary we have $\forall F_{0},\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} 1\right|_{q}$.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$. Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

We get F_{0}, F_{1}, \ldots with $\left|F_{0}\right|_{p}=\left|F_{1}\right|_{p}=\ldots$ and $\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} F_{1}\right|_{q} \leq \ldots$ It seems that $F_{n} \rightarrow 1$. True by general result of Carlen, Loss.

Since F_{0} was arbitrary we have $\forall F_{0},\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} 1\right|_{q}$.
Hence 1 is an extremizer. Back to $\mathbb{R}^{d}:\langle x\rangle^{-k-1}$ is extremizer.

Competing symmetries (after Carlen and Loss).

Function F_{0} localized near the black spots. Radialize; get F_{0}^{*}. Note $\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{0}\right|_{q}$. Rotate; get F_{1}. Note $\left|\mathcal{R}_{+} F_{1}\right|_{q}=\left|\mathcal{R}_{+} F_{0}^{*}\right|_{q}$. Radialize; get F_{1}^{*}. Note $\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q} \geq\left|\mathcal{R}_{+} F_{1}\right|_{q}$. Rotate; get F_{2}. Note $\left|\mathcal{R}_{+} F_{2}\right|_{q}=\left|\mathcal{R}_{+} F_{1}^{*}\right|_{q}$.

We get F_{0}, F_{1}, \ldots with $\left|F_{0}\right|_{p}=\left|F_{1}\right|_{p}=\ldots$ and $\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} F_{1}\right|_{q} \leq \ldots$ It seems that $F_{n} \rightarrow 1$. True by general result of Carlen, Loss.

Since F_{0} was arbitrary we have $\forall F_{0},\left|\mathcal{R}_{+} F_{0}\right|_{q} \leq\left|\mathcal{R}_{+} 1\right|_{q}$.
Hence 1 is an extremizer. Back to $\mathbb{R}^{d}:\langle x\rangle^{-k-1}$ is extremizer.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

No extremizers for the k-plane transform on \mathbb{H}^{d}. $\backslash \mathbb{H}^{2}$

No extremizers for the k-plane transform on \mathbb{H}^{d}.

The map $\zeta \in \mathbb{H}^{d} \mapsto x \in \mathbb{B}^{d}$ transfers to a L^{p}-isometry $\mathcal{F}(\zeta) \mapsto$ $\left.f\right|_{\mathbb{B}^{d}}(x)$.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

The map $\zeta \in \mathbb{H}^{d} \mapsto x \in \mathbb{B}^{d}$ transfers to a L^{p}-isometry $\mathcal{F}(\zeta) \mapsto$ $\left.f\right|_{\mathbb{B}^{d}}(x)$. The sharp constants for the k-plane transform \mathcal{R}_{-} on \mathbb{H}^{d} and \mathcal{R} are equal: as before $\left.|\mathcal{R} f|_{\mathcal{B}^{d}}\right|_{q}=\left|\mathcal{R}_{-} \mathcal{F}\right|_{q}$ and some extremizers for \mathcal{R} are essentially localized in \mathbb{B}^{d}.

No extremizers for the k-plane transform on \mathbb{H}^{d}.

The map $\zeta \in \mathbb{H}^{d} \mapsto x \in \mathbb{B}^{d}$ transfers to a L^{p}-isometry $\mathcal{F}(\zeta) \mapsto$ $\left.f\right|_{\mathbb{B}^{d}}(x)$. The sharp constants for the k-plane transform \mathcal{R}_{-} on \mathbb{H}^{d} and \mathcal{R} are equal: as before $\left.|\mathcal{R} f|_{\mathcal{B}^{d}}\right|_{q}=\left|\mathcal{R}_{-} \mathcal{F}\right|_{q}$ and some extremizers for \mathcal{R} are essentially localized in \mathbb{B}^{d}. But none have compact support: no extremizers for \mathcal{R}_{-}.

Conclusion.

Conclusion.

In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$:

Conclusion.

In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$:

1. $\langle x\rangle^{-k-1}$ is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{R}^{d}.

Conclusion.

In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$:

1. $\langle x\rangle^{-k-1}$ is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{R}^{d}.
2. 1 is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{S}^{d}.

Conclusion.

In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$:

1. $\langle x\rangle^{-k-1}$ is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{R}^{d}.
2. 1 is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{S}^{d}.
3. There are no extremizers for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{H}^{d}.

Conclusion.

In the endpoint case $p=\frac{d+1}{k+1}, q=d+1$:

1. $\langle x\rangle^{-k-1}$ is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{R}^{d}.
2. 1 is extremizer for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{S}^{d}.
3. There are no extremizers for the $L^{p} \rightarrow L^{q}$ inequality satisfied by the k-plane transform on \mathbb{H}^{d}.
Thanks for your attention!
