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The first model is an idealized version of the second one: perfectly
alternated oscillations play the role of randomness.
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k2
. (3)

I [DW’11]: asymptotics of the transmission coefficient of Vε for
regular and discontinuous Wk ’s, when W0 = 0.

I [DVW’14]: Derivation of an effective potential W0 − ε2Λ0, whose
scattering quantities are O(ε3)-distant from those of Vε.
Rediscovery of (3).
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Because of the form of the effective potential W0 − ε2Λ0 and of a famous
result of Simon about eigenvalues of small potentials, [DVW’14]
conjectured that for W0 = 0, ε� 1,

I if d = 3, −∆ + Vε has no eigenvalue – proved in [Dr’15], in a more
detailed version described here.

I if d = 2, −∆ + Vε has a unique eigenvalue Eε, that is
exponentially close to 0:

Eε = − exp

(
− 4π

ε2
∫
R2 Λ0(x)dx + o(ε2)

)
, Λ0(x) =

∑
k

|Wk(x)|2

|k|2
.

– proved in [Dr’16], no details here.



Results: resonance-free strips when W0 = 0

Vε(x) =
∑

k∈Zd\0

Wk(x)e ikx/ε, W0 = 0, d odd.

Theorem [Dr’15]
There exist C , ε0 > 0 such that for every 0 < ε < ε0, Vε has no
resonances above the line Imλ = −A ln(ε−1) – except for the
Borisov–Gadyl’shin and Duchêne–Vukićević–Weinstein
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eigenvalue/resonance when d = 1.

Comments:

I Proves the D–V–W conjecture for d = 3.

I Resonance-free strip of width A ln(ε−1) ⇒ waves scattered by Vε
decay locally like εAt if d ≥ 3.

I A one-dimensional example shows that the width A ln(ε−1) of the
resonance-free strip is optimal.

I The result generalizes to stochastic potentials.



Results: resonance-free strips when W0 = 0

Vε(x) =
∑

k∈Zd\0

Wk(x)e ikx/ε, W0 = 0, d odd.

Theorem [Dr’15]
There exist C , ε0 > 0 such that for every 0 < ε < ε0, Vε has no
resonances above the line Imλ = −A ln(ε−1) – except for the
Borisov–Gadyl’shin and Duchêne–Vukićević–Weinstein
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This would show that for such λ’s, Id + VεR0(λ)ρ is invertible by a
Neumann series and conclude the proof.
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If Imλ ≥ −A ln(ε−1), the RHS of (5) is < 1 and (3) holds, hence Vε has
no resonance above the line Imλ = −A ln(ε−1).



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0.



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We estimate E[|V ω
ε |2H−2 ]:



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We estimate E[|V ω
ε |2H−2 ]:

1. the off-diagonal terms vanish because E[uju`] = 0 for j 6= `.

2. there are ε−3 diagonal terms, each equal to:

E
[
ε3u2j

∫
R3

(ε−2|ξ|2 + 1)−2|q̂(ξ)|2dξ
]

= O(ε6)



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We estimate E[|V ω
ε |2H−2 ]:

1. the off-diagonal terms vanish because E[uju`] = 0 for j 6= `.

2. there are ε−3 diagonal terms, each equal to:

E
[
ε3u2j

∫
R3

(ε−2|ξ|2 + 1)−2|q̂(ξ)|2dξ
]

= O(ε6)



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We estimate E[|V ω
ε |2H−2 ]:

1. the off-diagonal terms vanish because E[uju`] = 0 for j 6= `.

2. there are ε−3 diagonal terms, each equal to:

E
[
ε3u2j

∫
R3

(ε−2|ξ|2 + 1)−2|q̂(ξ)|2dξ
]

= O(ε6)

⇒ E[|V ω
ε |2H−2 ] = O(ε3).



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We showed that E[|V ω
ε |2H−2 ] = O(ε3).



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We showed that E[|V ω
ε |2H−2 ] = O(ε3). Hence |V ω

ε |H−2 cannot be too
big, with high probability.



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We showed that E[|V ω
ε |2H−2 ] = O(ε3). Hence |V ω

ε |H−2 cannot be too
big, with high probability. The Hanson–Wright inequality (a large
deviation estimate for bilinear sums) shows

P(|V ω
ε |H−2 ≥ εδ) = O(e−c/ε

3−δ
).



Stochastic potentials

Important remark: When d = 3 the proof works for any family {Vε}
that satisfies |Vε|H−2 ≤ εδ for some δ > 0. What about

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), uj i.i.d, E(uj) = 0 ?

|V ω
ε |2H−2 =

∑
j,`

uju`

∫
R3

1

(|ξ|2 + 1)2

∫
e ixξq(x/ε−j)dx

∫
e−iyξq(y/ε−`)dydξ

= ε3
∑
j,`

uju`

∫
R3

e iξ(j−`)|q̂(ξ)|2

(ε−2|ξ|2 + 1)2
dξ (after substitutions).

We showed that E[|V ω
ε |2H−2 ] = O(ε3). Hence |V ω

ε |H−2 cannot be too
big, with high probability. The Hanson–Wright inequality (a large
deviation estimate for bilinear sums) shows

P(|V ω
ε |H−2 ≥ εδ) = O(e−c/ε

3−δ
).

This implies that with probability 1− O(e−c/ε
3−δ

), |V ω
ε |H−2 ≤ εδ and

V ω
ε has no resonances above the line Imλ = −A ln(ε−1).



No diffusion for random oscillatory potentials

Recall that q ∈ C∞0 (Rd ,R), uj are i.i.d, with E[uj ] = 0 and compactly
supported distributions, and

V ω
ε (x) =

∑
|j|≤ε−1

uj(ω)q(x/ε− j), d=3.

Theorem [Dr’16]
For all δ > 0, there exists C , c ,A, ε0 such that for all ε ∈ (0, ε0), with

probability 1− Ce−c/ε
3−δ

, V ω
ε has no resonances above the line

Imλ = −A ln(ε−1).

Comments:

I With large probability, resonance-free strip of width A ln(ε−1) ⇒
with large probability, waves scattered by V ω

ε decay like εAt .

I The result generalizes to all odd dimensions.

I The result cannot hold with probability much larger than

1− Ce−c/ε
3−δ

.
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“Almost optimality”

The theorem cannot hold with probability much larger than

1− Ce−c/ε
3−δ

.

Take q with
∫
R3 q(x)dx = 2 and uj i.i.d Bernouilli:

P(uj = 1) = 1/2 and P(uj = −1) = 1/2.

The event ωε = {j : |j1|+ |j2|+ |j3| ≤ ε−1, uj = 1} has probability

2−1/ε
3

, and
V ωε
ε (x) =

∑
|j|≤ε−1

q(x/ε− j).

I V ωε
ε is oscillatory, with mean 1 on [−1, 1]3 ⇒ V ωε

ε ⇀ 1[−1,1]3 .

I This implies that resonances of V ωε
ε converge to resonances of

1[−1,1]3 on compact sets.

I 1[−1,1]3 has resonances – independently of ε.

I Hence V ωε
ε cannot have a spectral gap with width growing infinitely

as ε→ 0.

The theorem does not hold with probability higher than 1− 2−1/ε
3

.
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The case W0 6= 0, Vε highly oscillatory

We go back to the periodic case, with W0 6= 0 this time:

Vε(x) = W (x , x/ε) = W0(x) +
∑

k∈Zd\0

Wk(x)e ikx/ε,

W (x , y) =
∑
k∈Zd

Wk(x)e iky ∈ C∞0 (Rd × (R/(2πZ))d).

Vε converges weakly to W0 and one can ask:

I Do eigenvalues/resonances of Vε converge to resonances of W0?

– Yes.

I How fast is the convergence? – O(ε2).

I How finely do resonances of Vε depend on ε? – Smooth.

I Can one derive effective potentials in the spirit of
Duchêne–Vukićević–Weinstein? – Yes.
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Results for W0 6= 0, Vε highly oscillatory

Theorem [Dr’15] Uniformly in compact sets:

I Each resonance λε of Vε converge to a resonance λ0 of W0.

I If λ0 is simple, then

λε ∼ λ0 + a2ε
2 + a3ε

3 + a4ε
4..., a2 =

∫
Λ0uv ,

a3 =

∫
Λ1uv , Λ0 =

∑
k 6=0

|Wk |2

|k|2
, Λ1 = 2

∑
k 6=0

Wk(k · D)W−k
|k|4

.

where u, v are the resonant states of W0 at λ0.

I Resonances of Vε and V eff
ε = W0 − ε2Λ0 − ε3Λ1 differ from O(ε4).
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where u, v are the resonant states of W0 at λ0.

I Resonances of Vε and V eff
ε = W0 − ε2Λ0 − ε3Λ1 differ from O(ε4).

Comments:

I This theorem refines the effective potential W0 − ε2Λ0 of
Duchêne–Vukićević–Weinstein and generalizes it to all odd
dimensions. Further refinements are possible with non-linear
resonances and an effective potential depending on λ.
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Numerical results (Thanks to D–V–W)
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Figure: Oscillatory potential and errors in approximating the transmission
coefficient of Vε by the transmission coefficient of the
Duchêne–Vukićević–Weinstein effective potential W0 − ε2Λ0 and by the
refined one W0 − ε2 − ε3Λ1. Here ε = 1/25.
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This formally explains how the effective potential −ε2Λ0− ε3Λ1 appears:
it is produced by the constructive interference of oscillatory terms.
The actual proof of the theorem contains similar ideas, but is more
complicated. It uses expansion of modified Fredholm determinants,
combinatorics, oscillatory integrals, operator-valued expansions,...
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With high probability, resonances of V ω
ε are near resonances of W0.

Their finer behavior is more subtle and depend on d and on∫
Rd q(x)dx . For instance,

Theorem [Dr’16] Assume d = 1, that
∫
R q(x)dx 6= 0, and that λ0 is a

simple resonance of W0. With probability 1− O(e−c/ε), V ω
ε has a

unique resonance near λ0. In addition, knowing that λε exists,

ε−1/2(λε−λ0)
law−→ N (0, σ2), σ2 = E

(
u2j
)(∫

R
q(x)dx

)2 ∫ 1

−1
u(x)2v(x)2dx ,

where u and v are the left/right resonant states of W0 at λ0.
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λε = λ0 + iε2
∫
R3

|q̂(ξ)|2

|ξ|2

∫
[−1,1]3

u(x)v(x)dx + o(ε2),

where u and v are the left/right resonant states of W0 at λ0.



Resonances for random oscillatory potentials

Recall that q ∈ C∞0 (R3), uj are i.i.d, with E[uj ] = 0 and compactly
supported distributions, and

V ω
ε (x) = W0(x) +

∑
|j|≤ε−1

uj(ω)q(x/ε− j).

Comments:

I We can show similar results for any value of d . When d ≥ 5, the
convergence of resonance is always almost sure. When d = 1 or 3,
it is almost sure if q̂(ξ) vanishes at sufficiently high order at
ξ = 0.

I It is natural that the convergence rate of λε to λ0 depend on the
value of

∫
Rd q(x)dx : if this vanishes, q is inherently oscillatory and

V ω
ε is always rapidly oscillatory, even if ∀j , uj(ω) = 1.

I It is also expected that the convergence rate of λε to λ0 depend on
d . The number of sites ε−d grows with d , which makes large
deviation effects smaller and less likely, and the
homogenization effect highlighted in the case of highly oscillatory
potentials takes over.
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Open questions/current projects

I Study scattering resonances of large oscillatory potentials: ε−βVε,
ε−βV ω

ε , β ∈ (0, 2] – interesting work of Duchêne–Raymond,
Dimassi, Dimassi–Duong in this direction.

I Push further the study of random potentials to deal with the case

V ω
ε (x) = W0(x) +

∑
|j|≤ε−1

uj(ω)q(x/ε− j),

uj correlated – for instance, uj sationary random process.

I Prove uniform dispersive estimates as ε→ 0 for the Schrödinger
equation i∂t −∆R2 + Vε in dimension d = 2, in the spirit of
Duchêne–Vukićević–Weinstein in dimension 1.

I Approximate the dynamics of ∂2t −∆Rd + Vε by the one of
∂2t −∆Rd + V eff

ε , away from the discrete spectrum.
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Dimassi, Dimassi–Duong in this direction.

I Push further the study of random potentials to deal with the case

V ω
ε (x) = W0(x) +

∑
|j|≤ε−1

uj(ω)q(x/ε− j),

uj correlated – for instance, uj sationary random process.

I Prove uniform dispersive estimates as ε→ 0 for the Schrödinger
equation i∂t −∆R2 + Vε in dimension d = 2, in the spirit of
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Thanks for your attention!


