Eigenvalues and resonances of highly oscillatory potentials

Alexis Drouot, UC Berkeley

Columbia University, November 18th 2016

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{d}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u_{0}=0
$$

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{d}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u_{0}=0
$$

Then we can construct a solution $u(x, t)=e^{i \lambda t} u_{0}(x)$ to (1).

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{d}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u_{0}=0 .
$$

Then we can construct a solution $u(x, t)=e^{i \lambda t} u_{0}(x)$ to (1).
Problem: since the domain is unbounded, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

Suppose that $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ is an eigenvector of $-\Delta_{\mathbb{R}^{d}}+V$, for an eigenvalue λ^{2} :

$$
\left(-\lambda^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u_{0}=0 .
$$

Then we can construct a solution $u(x, t)=e^{i \lambda t} u_{0}(x)$ to (1).
Problem: since the domain is unbounded, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.

This is reflected in the fact that the spectrum of $-\Delta_{\mathbb{R}_{x}^{d}}+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ is the union of a discrete set (eigenvalues) with the continuous spectrum $[0, \infty)$.

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves:

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L,, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded.

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L,, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the poles of the meromorphic continuation of

$$
R_{V}(\lambda)=\left(-\Delta_{\mathbb{R}^{d}}+V-\lambda^{2}\right)^{-1}: C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the poles of the meromorphic continuation of

$$
R_{V}(\lambda)=\left(-\Delta_{\mathbb{R}^{d}}+V-\lambda^{2}\right)^{-1}: C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Eigenvalues μ are poles of $\left(-\Delta_{\mathbb{R}^{d}}+V-\mu\right)^{-1}$, hence (squares of) resonances. Conversely, resonances inducing eigenvalues are the one lying on the complex half-line $i[0, \infty)$.

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L,, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$
u=\int_{\mathbb{R}} e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{1} d \lambda-\int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{0} d \lambda .
$$

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L,, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$
u=\int_{\mathbb{R}} e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{1} d \lambda-\int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{0} d \lambda .
$$

The poles λ_{j} of $R_{V}(\lambda)$ generate residues $u_{j}(x) e^{-i \lambda_{j} t}$ in (2).

Waves and resonances in odd dimension d

Waves scattered by a potential $V \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{d}\right)$ are the solutions u of

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta_{\mathbb{R}_{x}^{d}}+V\right) u=0, \quad\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)=\left(f_{0}, f_{1}\right) \tag{1}
\end{equation*}
$$

To overcome this difficulty, we use resonances, complex numbers $\left\{\lambda_{j}\right\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$
\begin{equation*}
\exists u_{j}, \forall A, L,, \sup _{|x| \leq L}\left|u(x, t)-\sum_{\operatorname{Im} \lambda_{j}>-A} u_{j}(x) e^{-i \lambda_{j} t}\right|=O\left(e^{-A t}\right) . \tag{2}
\end{equation*}
$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$
u=\int_{\mathbb{R}} e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{1} d \lambda-\int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_{V}(\lambda)-R_{V}(-\lambda)}{2 \pi} f_{0} d \lambda
$$

The poles λ_{j} of $R_{V}(\lambda)$ generate residues $u_{j}(x) e^{-i \lambda_{j} t}$ in (2). In particular, if $R_{V}(\lambda)$ has no poles above $\operatorname{Im} \lambda \geq-A$ - resonance-free strip - waves scattered by V decay locally like $e^{-A t}$.

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

$R_{V}(\lambda)$ holomorphic

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

$*^{2}$ eigenvalues of $-\Delta_{\mathbb{R}^{d}}+V$

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

$*^{2}$ eigenvalues of $-\Delta_{\mathbb{R}^{d}}+V$

Resonances as poles of $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$

Waves in heterogeneous media

Models for the diffusion of waves in disordered media with scale of heterogeneity $\varepsilon \ll 1: \quad\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{d}}+V_{\varepsilon}\right) u=0$,

Waves in heterogeneous media

Models for the diffusion of waves in disordered media with scale of heterogeneity $\varepsilon \ll 1$: $\quad\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{d}}+V_{\varepsilon}\right) u=0$, where:

$$
\begin{aligned}
V_{\varepsilon}(x) & =W(x, x / \varepsilon), \quad W(x, y)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k y} \\
W & \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}, \mathbb{R}\right) \quad \text { - idealized disorder, }
\end{aligned}
$$

Waves in heterogeneous media

Models for the diffusion of waves in disordered media with scale of heterogeneity $\varepsilon \ll 1$: $\quad\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{d}}+V_{\varepsilon}\right) u=0$, where:

$$
\begin{aligned}
V_{\varepsilon}(x) & =W(x, x / \varepsilon), \quad W(x, y)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k y}, \\
W & \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}, \mathbb{R}\right) \quad \text { - idealized disorder, }
\end{aligned}
$$

or

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{j \in \mathbb{Z}^{d},|j| \leq 1 / \varepsilon} u_{j}(\omega) q(x / \varepsilon-j), \quad q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

u_{j} i.i.d, $\mathbb{E}\left(u_{j}\right)=0, \mathbb{E}\left(u_{j}^{2}\right)=1, \mathbb{P}\left(\left|u_{j}\right| \geq M\right)=0$ - actual disorder.

Waves in heterogeneous media

Models for the diffusion of waves in disordered media with scale of heterogeneity $\varepsilon \ll 1: \quad\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{d}}+V_{\varepsilon}\right) u=0$, where:

$$
\begin{aligned}
V_{\varepsilon}(x) & =W(x, x / \varepsilon), \quad W(x, y)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k y} \\
W & \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}, \mathbb{R}\right) \quad \text { - idealized disorder, }
\end{aligned}
$$

or

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{j \in \mathbb{Z}^{d},|j| \leq 1 / \varepsilon} u_{j}(\omega) q(x / \varepsilon-j), \quad q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

u_{j} i.i.d, $\mathbb{E}\left(u_{j}\right)=0, \mathbb{E}\left(u_{j}^{2}\right)=1, \mathbb{P}\left(\left|u_{j}\right| \geq M\right)=0$ - actual disorder.
The first model is an idealized version of the second one: perfectly alternated oscillations play the role of randomness.

Waves in heterogeneous media

$V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Waves in heterogeneous media

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)
$$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Note $V_{\varepsilon} \rightharpoonup W_{0}$.

Waves in heterogeneous media

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)
$$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Note $V_{\varepsilon} \rightharpoonup W_{0}$. Also, $V_{\varepsilon}^{\omega} \rightharpoonup W_{0}$, \mathbb{P}-a.s.:

Waves in heterogeneous media

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)
$$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Note $V_{\varepsilon} \rightharpoonup W_{0}$. Also, $V_{\varepsilon}^{\omega} \rightharpoonup W_{0}, \mathbb{P}$-a.s.: $\forall \varphi \in C_{0}^{\infty},\left\langle V_{\varepsilon}^{\omega}-W_{0}, \varphi\right\rangle=$

$$
\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) \int q\left(\varepsilon^{-1} x-j\right) \varphi(x) d x=\varepsilon^{d} \sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) \int q(x) \varphi(\varepsilon(x+j)) d x
$$

Waves in heterogeneous media

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)
$$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Note $V_{\varepsilon} \rightharpoonup W_{0}$. Also, $V_{\varepsilon}^{\omega} \rightharpoonup W_{0}$, \mathbb{P}-a.s.: $\forall \varphi \in C_{0}^{\infty},\left\langle V_{\varepsilon}^{\omega}-W_{0}, \varphi\right\rangle=$

$$
\begin{align*}
& \sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) \int q\left(\varepsilon^{-1} x-j\right) \varphi(x) d x=\varepsilon^{d} \sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) \int q(x) \varphi(\varepsilon(x+j)) d x \\
= & \varepsilon^{d} \sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) \varphi(\varepsilon j) \cdot \int q(x) d x+O\left(\varepsilon^{d+1}\right) \sum_{|j| \leq \varepsilon^{-1}}\left|u_{j}(\omega)\right| \xrightarrow{\mathbb{P - a . s}} 0 \quad \text { (K.S.L.L.N) } \tag{K.S.L.L.N}
\end{align*}
$$

Waves in heterogeneous media

$V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Waves in heterogeneous media

$V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Objectives:

Waves in heterogeneous media

$V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Objectives:

- Localize resonance-free strips of $V_{\varepsilon}, V_{\varepsilon}^{\omega}$.

Waves in heterogeneous media

$V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Objectives:

- Localize resonance-free strips of $V_{\varepsilon}, V_{\varepsilon}^{\omega}$.
- Construct effective potentials approximating eigenvalues/resonances of $-\Delta+V_{\varepsilon},-\Delta+V_{\varepsilon}^{\omega}$.

Waves in heterogeneous media

$V_{\varepsilon}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}}(-1)^{j} q(x / \varepsilon-j)$

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Objectives:

- Localize resonance-free strips of $V_{\varepsilon}, V_{\varepsilon}^{\omega}$.
- Construct effective potentials approximating eigenvalues/resonances of $-\Delta+V_{\varepsilon},-\Delta+V_{\varepsilon}^{\omega}$.
- Study convergence of eigenvalues/resonances of $V_{\varepsilon}, V_{\varepsilon}^{\omega}$ to the resonances of their average/weak limit W_{0} as $\varepsilon \rightarrow 0$.

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

- [B'06], [BG'07]: for $W_{0}=0,-\partial_{x}^{2}+V_{\varepsilon}$ has an eigenvalue given by

$$
\begin{equation*}
E_{\varepsilon}=-\frac{\varepsilon^{4}}{4} \int_{\mathbb{R}} \Lambda_{0}(x) d x+O\left(\varepsilon^{5}\right), \quad \Lambda_{0}(x)=\sum_{k} \frac{\left|W_{k}(x)\right|^{2}}{k^{2}} \tag{3}
\end{equation*}
$$

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

- [B'06], [BG'07]: for $W_{0}=0,-\partial_{x}^{2}+V_{\varepsilon}$ has an eigenvalue given by

$$
\begin{equation*}
E_{\varepsilon}=-\frac{\varepsilon^{4}}{4} \int_{\mathbb{R}} \Lambda_{0}(x) d x+O\left(\varepsilon^{5}\right), \quad \Lambda_{0}(x)=\sum_{k} \frac{\left|W_{k}(x)\right|^{2}}{k^{2}} \tag{3}
\end{equation*}
$$

- [DW'11]: asymptotics of the transmission coefficient of V_{ε} for regular and discontinuous W_{k} 's, when $W_{0}=0$.

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

- [B'06], [BG'07]: for $W_{0}=0,-\partial_{x}^{2}+V_{\varepsilon}$ has an eigenvalue given by

$$
\begin{equation*}
E_{\varepsilon}=-\frac{\varepsilon^{4}}{4} \int_{\mathbb{R}} \Lambda_{0}(x) d x+O\left(\varepsilon^{5}\right), \quad \Lambda_{0}(x)=\sum_{k} \frac{\left|W_{k}(x)\right|^{2}}{k^{2}} \tag{3}
\end{equation*}
$$

- [DW'11]: asymptotics of the transmission coefficient of V_{ε} for regular and discontinuous W_{k} 's, when $W_{0}=0$.
- [DVW'14]: Derivation of an effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$, whose scattering quantities are $O\left(\varepsilon^{3}\right)$-distant from those of V_{ε}. Rediscovery of (3).

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

- [B'06], [BG'07]: for $W_{0}=0,-\partial_{x}^{2}+V_{\varepsilon}$ has an eigenvalue given by

$$
\begin{equation*}
E_{\varepsilon}=-\frac{\varepsilon^{4}}{4} \int_{\mathbb{R}} \Lambda_{0}(x) d x+O\left(\varepsilon^{5}\right), \quad \Lambda_{0}(x)=\sum_{k} \frac{\left|W_{k}(x)\right|^{2}}{k^{2}} \tag{3}
\end{equation*}
$$

- [DW'11]: asymptotics of the transmission coefficient of V_{ε} for regular and discontinuous W_{k} 's, when $W_{0}=0$.
- [DVW'14]: Derivation of an effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$, whose scattering quantities are $O\left(\varepsilon^{3}\right)$-distant from those of V_{ε}. Rediscovery of (3). Dispersive estimates when $W_{0}=0$ for

$$
i \partial_{t} u-\partial_{x}^{2} u+V_{\varepsilon} u=0
$$

uniform as $\varepsilon \rightarrow 0$ despite the presence of an eigenvalue near 0 .

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

Because of the form of the effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$ and of a famous result of Simon about eigenvalues of small potentials, [DVW'14] conjectured that for $W_{0}=0, \varepsilon \ll 1$,

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

Because of the form of the effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$ and of a famous result of Simon about eigenvalues of small potentials, [DVW'14] conjectured that for $W_{0}=0, \varepsilon \ll 1$,

- if $d=3,-\Delta+V_{\varepsilon}$ has no eigenvalue - proved in [Dr'15], in a more detailed version described here.

Existing results for V_{ε}

$$
V_{\varepsilon}(x)=W_{0}(x)+\sum_{k \in \mathbb{Z} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \quad(\mathbf{d}=\mathbf{1})
$$

Studied by Borisov, Borisov-Gadyl'shin, Duchêne-Weinstein, Duchêne-Vukićević-Weinstein.

Because of the form of the effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$ and of a famous result of Simon about eigenvalues of small potentials, [DVW'14] conjectured that for $W_{0}=0, \varepsilon \ll 1$,

- if $d=3,-\Delta+V_{\varepsilon}$ has no eigenvalue - proved in [Dr'15], in a more detailed version described here.
- if $d=2,-\Delta+V_{\varepsilon}$ has a unique eigenvalue E_{ε}, that is exponentially close to 0 :

$$
E_{\varepsilon}=-\exp \left(-\frac{4 \pi}{\varepsilon^{2} \int_{\mathbb{R}^{2}} \Lambda_{0}(x) d x+o\left(\varepsilon^{2}\right)}\right), \quad \Lambda_{0}(x)=\sum_{k} \frac{\left|W_{k}(x)\right|^{2}}{|k|^{2}}
$$

- proved in [Dr'16], no details here.

Results: resonance-free strips when $W_{0}=0$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d \text { odd }
$$

Results: resonance-free strips when $W_{0}=0$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d \text { odd. }
$$

Theorem [Dr'15]

There exist $C, \varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}, V_{\varepsilon}$ has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$ - except for the Borisov-Gadyl'shin and Duchêne-Vukićević-Weinstein eigenvalue/resonance when $d=1$.

Results: resonance-free strips when $W_{0}=0$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d \text { odd. }
$$

Theorem [Dr'15]

There exist $C, \varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}, V_{\varepsilon}$ has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)-$ except for the Borisov-Gadyl'shin and Duchêne-Vukićević-Weinstein eigenvalue/resonance when $d=1$.

Comments:

- Proves the D-V-W conjecture for $d=3$.

Results: resonance-free strips when $W_{0}=0$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d \text { odd } .
$$

Theorem [Dr'15]

There exist $C, \varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}, V_{\varepsilon}$ has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)-$ except for the Borisov-Gadyl'shin and Duchêne-Vukićević-Weinstein eigenvalue/resonance when $d=1$.

Comments:

- Proves the D-V-W conjecture for $d=3$.
- Resonance-free strip of width $A \ln \left(\varepsilon^{-1}\right) \Rightarrow$ waves scattered by V_{ε} decay locally like $\varepsilon^{A t}$ if $d \geq 3$.

Results: resonance-free strips when $W_{0}=0$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d \text { odd } .
$$

Theorem [Dr'15]

There exist $C, \varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}, V_{\varepsilon}$ has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$ - except for the Borisov-Gadyl'shin and Duchêne-Vukićević-Weinstein eigenvalue/resonance when $d=1$.

Comments:

- Proves the $\mathrm{D}-\mathrm{V}-\mathrm{W}$ conjecture for $d=3$.
- Resonance-free strip of width $A \ln \left(\varepsilon^{-1}\right) \Rightarrow$ waves scattered by V_{ε} decay locally like $\varepsilon^{A t}$ if $d \geq 3$.
- A one-dimensional example shows that the width $A \ln \left(\varepsilon^{-1}\right)$ of the resonance-free strip is optimal.

Results: resonance-free strips when $W_{0}=0$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d \text { odd } .
$$

Theorem [Dr'15]

There exist $C, \varepsilon_{0}>0$ such that for every $0<\varepsilon<\varepsilon_{0}, V_{\varepsilon}$ has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$ - except for the Borisov-Gadyl'shin and Duchêne-Vukićević-Weinstein eigenvalue/resonance when $d=1$.

Comments:

- Proves the $\mathrm{D}-\mathrm{V}-\mathrm{W}$ conjecture for $d=3$.
- Resonance-free strip of width $A \ln \left(\varepsilon^{-1}\right) \Rightarrow$ waves scattered by V_{ε} decay locally like $\varepsilon^{A t}$ if $d \geq 3$.
- A one-dimensional example shows that the width $A \ln \left(\varepsilon^{-1}\right)$ of the resonance-free strip is optimal.
- The result generalizes to stochastic potentials.

Results: resonance-free strips when $W_{0}=0$

Results: resonance-free strips when $W_{0}=0$

$R_{V_{\varepsilon}}(\lambda)$ holomorphic

Results: resonance-free strips when $W_{0}=0$

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3
$$

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3
$$

Goal: $\quad \varepsilon \ll 1 \Rightarrow V_{\varepsilon}$ has no resonance above $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$.

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3
$$

Goal: $\quad \varepsilon \ll 1 \Rightarrow V_{\varepsilon}$ has no resonance above $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$. Resonances are poles of $R_{V_{\varepsilon}}(\lambda)$;

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3
$$

Goal: $\quad \varepsilon \ll 1 \Rightarrow V_{\varepsilon}$ has no resonance above $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$. Resonances are poles of $R_{V_{\varepsilon}}(\lambda)$; and if $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \rho=1$ near $\operatorname{supp}\left(V_{\varepsilon}\right)$, then

$$
R_{V_{\varepsilon}}(\lambda)=R_{0}(\lambda)\left(\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho\right)^{-1}\left(\operatorname{Id}-V_{\varepsilon} R_{0}(\lambda)(1-\rho)\right)
$$

(this formula holds for $\operatorname{Im} \lambda \gg 1$ and continues meromorphically for all $\lambda \in \mathbb{C})$.

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 .
$$

Goal: $\quad \varepsilon \ll 1 \Rightarrow V_{\varepsilon}$ has no resonance above $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$. Resonances are poles of $R_{V_{\varepsilon}}(\lambda)$; and if $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \rho=1$ near $\operatorname{supp}\left(V_{\varepsilon}\right)$, then

$$
R_{V_{\varepsilon}}(\lambda)=R_{0}(\lambda)\left(\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho\right)^{-1}\left(\operatorname{Id}-V_{\varepsilon} R_{0}(\lambda)(1-\rho)\right)
$$

(this formula holds for $\operatorname{Im} \lambda \gg 1$ and continues meromorphically for all $\lambda \in \mathbb{C}$). Hence resonances of V_{ε} are the λ 's such that $\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho$ is not invertible (Birman-Schwinger principle).

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 .
$$

Goal: $\quad \varepsilon \ll 1 \Rightarrow V_{\varepsilon}$ has no resonance above $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$. Resonances are poles of $R_{V_{\varepsilon}}(\lambda)$; and if $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \rho=1$ near $\operatorname{supp}\left(V_{\varepsilon}\right)$, then

$$
R_{V_{\varepsilon}}(\lambda)=R_{0}(\lambda)\left(\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho\right)^{-1}\left(\operatorname{Id}-V_{\varepsilon} R_{0}(\lambda)(1-\rho)\right)
$$

(this formula holds for $\operatorname{Im} \lambda \gg 1$ and continues meromorphically for all $\lambda \in \mathbb{C})$. Hence resonances of V_{ε} are the λ 's such that $\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho$ is not invertible (Birman-Schwinger principle). We now show:

$$
\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1
$$

Proof of the theorem when $d=3$

$$
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 .
$$

Goal: $\quad \varepsilon \ll 1 \Rightarrow V_{\varepsilon}$ has no resonance above $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$.
Resonances are poles of $R_{V_{\varepsilon}}(\lambda)$; and if $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, $\rho=1$ near $\operatorname{supp}\left(V_{\varepsilon}\right)$, then

$$
R_{V_{\varepsilon}}(\lambda)=R_{0}(\lambda)\left(\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho\right)^{-1}\left(\operatorname{Id}-V_{\varepsilon} R_{0}(\lambda)(1-\rho)\right)
$$

(this formula holds for $\operatorname{Im} \lambda \gg 1$ and continues meromorphically for all $\lambda \in \mathbb{C}$). Hence resonances of V_{ε} are the λ 's such that $\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho$ is not invertible (Birman-Schwinger principle). We now show:

$$
\operatorname{Im} \lambda \geq-A \operatorname{In}\left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1
$$

This would show that for such λ 's, $\operatorname{Id}+V_{\varepsilon} R_{0}(\lambda) \rho$ is invertible by a Neumann series and conclude the proof.

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{Im} \lambda)-}\right)$.

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{lm} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} . \tag{4}
\end{equation*}
$$

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{lm} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} . \tag{4}
\end{equation*}
$$

The term $\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}}$ is small:

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 . \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{Im} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} . \tag{4}
\end{equation*}
$$

The term $\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}}$ is small: $\quad H^{2}$ is an algebra when $d=3$:
$\forall f, g,|f g|_{H^{2}} \leq|f|_{H^{2}}|g|_{H^{2}}, \quad$ dual inequality: $|f g|_{H^{-2}} \leq|f|_{H^{-2}}| |_{H^{2}}$

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 . \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{Im} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} . \tag{4}
\end{equation*}
$$

The term $\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}}$ is small: $\quad H^{2}$ is an algebra when $d=3$:
$\forall f, g,|f g|_{H^{2}} \leq|f|_{H^{2}}|g|_{H^{2}}, \quad$ dual inequality: $|f g|_{H^{-2}} \leq|f|_{H^{-2}}|g|_{H^{2}}$
$\Rightarrow\left(f=V_{\varepsilon}\right) \forall g,\left|V_{\varepsilon} g\right|_{H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}|g|_{H^{2}} \Rightarrow\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}$.

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 . \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{lm} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} \tag{4}
\end{equation*}
$$

The term $\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}}$ is small: $\quad H^{2}$ is an algebra when $d=3$:

$$
\begin{aligned}
& \forall f, g,|f g|_{H^{2}} \leq|f|_{H^{2}}|g|_{H^{2}}, \quad \text { dual inequality: }|f g|_{H^{-2}} \leq|f|_{H^{-2}}|g|_{H^{2}} \\
& \Rightarrow\left(f=V_{\varepsilon}\right) \forall g,\left|V_{\varepsilon} g\right|_{H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}|g|_{H^{2}} \Rightarrow\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}
\end{aligned}
$$

A computation shows that $\left|V_{\varepsilon}\right|_{H^{-2}}=O\left(\varepsilon^{2}\right)$.

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 . \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{lm} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} \tag{4}
\end{equation*}
$$

The term $\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}}$ is small: $\quad H^{2}$ is an algebra when $d=3$:

$$
\begin{aligned}
& \forall f, g,|f g|_{H^{2}} \leq|f|_{H^{2}}|g|_{H^{2}}, \quad \text { dual inequality: }|f g|_{H^{-2}} \leq|f|_{H^{-2}}|g|_{H^{2}} \\
& \Rightarrow\left(f=V_{\varepsilon}\right) \forall g,\left|V_{\varepsilon} g\right|_{H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}|g|_{H^{2}} \Rightarrow\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}
\end{aligned}
$$

A computation shows that $\left|V_{\varepsilon}\right|_{H^{-2}}=O\left(\varepsilon^{2}\right)$. Combine with (4) to get

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(\varepsilon^{2} e^{2 C(\operatorname{Im} \lambda)-}\right) \tag{5}
\end{equation*}
$$

Proof of the theorem when $d=3$

$$
\begin{equation*}
V_{\varepsilon}(x)=\sum_{k \in \mathbb{Z}^{3} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \quad W_{0}=0, d=3 . \tag{3}
\end{equation*}
$$

Goal: $\quad \operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right) \Rightarrow\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}<1$.
Fact: $\left|\rho R_{0}(\lambda) \rho\right|_{L^{2} \rightarrow H^{2}}=O\left(e^{C(\operatorname{lm} \lambda)-}\right)$. Hence

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(e^{2 C(\operatorname{lm} \lambda)_{-}}\right)\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} . \tag{4}
\end{equation*}
$$

The term $\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}}$ is small: $\quad H^{2}$ is an algebra when $d=3$:

$$
\begin{aligned}
& \forall f, g,|f g|_{H^{2}} \leq|f|_{H^{2}}|g|_{H^{2}}, \quad \text { dual inequality: }|f g|_{H^{-2}} \leq\left.\left.|f|_{H^{-2}}\right|_{g}\right|_{H^{2}} \\
& \Rightarrow\left(f=V_{\varepsilon}\right) \forall g,\left|V_{\varepsilon} g\right|_{H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}}|g|_{H^{2}} \Rightarrow\left|V_{\varepsilon}\right|_{H^{2} \rightarrow H^{-2}} \leq\left|V_{\varepsilon}\right|_{H^{-2}} .
\end{aligned}
$$

A computation shows that $\left|V_{\varepsilon}\right|_{H^{-2}}=O\left(\varepsilon^{2}\right)$. Combine with (4) to get

$$
\begin{equation*}
\left|\left(V_{\varepsilon} R_{0}(\lambda) \rho\right)^{2}\right|_{L^{2} \rightarrow L^{2}}=O\left(\varepsilon^{2} e^{2 C(\operatorname{lm} \lambda)-}\right) \tag{5}
\end{equation*}
$$

If $\operatorname{Im} \lambda \geq-A \ln \left(\varepsilon^{-1}\right)$, the RHS of (5) is <1 and (3) holds, hence V_{ε} has no resonance above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$.

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$.

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ?
$$

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi
\end{gathered}
$$

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We estimate $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-}}^{2}\right]$:

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We estimate $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]$:

1. the off-diagonal terms vanish because $\mathbb{E}\left[u_{j} u_{\ell}\right]=0$ for $j \neq \ell$.

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We estimate $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]$:

1. the off-diagonal terms vanish because $\mathbb{E}\left[u_{j} u_{\ell}\right]=0$ for $j \neq \ell$.
2. there are ε^{-3} diagonal terms, each equal to:

$$
\mathbb{E}\left[\varepsilon^{3} u_{j}^{2} \int_{\mathbb{R}^{3}}\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{-2}|\hat{q}(\xi)|^{2} d \xi\right]=O\left(\varepsilon^{6}\right)
$$

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We estimate $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]$:

1. the off-diagonal terms vanish because $\mathbb{E}\left[u_{j} u_{\ell}\right]=0$ for $j \neq \ell$.
2. there are ε^{-3} diagonal terms, each equal to:

$$
\begin{gathered}
\mathbb{E}\left[\varepsilon^{3} u_{j}^{2} \int_{\mathbb{R}^{3}}\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{-2}|\hat{q}(\xi)|^{2} d \xi\right]=O\left(\varepsilon^{6}\right) \\
\Rightarrow \mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]=O\left(\varepsilon^{3}\right) .
\end{gathered}
$$

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We showed that $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]=O\left(\varepsilon^{3}\right)$.

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We showed that $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]=O\left(\varepsilon^{3}\right)$. Hence $\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}$ cannot be too big, with high probability.

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We showed that $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]=O\left(\varepsilon^{3}\right)$. Hence $\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}$ cannot be too big, with high probability. The Hanson-Wright inequality (a large deviation estimate for bilinear sums) shows

$$
\mathbb{P}\left(\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}} \geq \varepsilon^{\delta}\right)=O\left(e^{-c / \varepsilon^{3-\delta}}\right)
$$

Stochastic potentials

Important remark: When $d=3$ the proof works for any family $\left\{V_{\varepsilon}\right\}$ that satisfies $\left|V_{\varepsilon}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ for some $\delta>0$. What about

$$
\begin{gathered}
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad u_{j} \text { i.i.d, } \quad \mathbb{E}\left(u_{j}\right)=0 ? \\
\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}=\sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{1}{\left(|\xi|^{2}+1\right)^{2}} \int e^{i x \xi} q(x / \varepsilon-j) d x \int e^{-i y \xi} q(y / \varepsilon-\ell) d y d \xi \\
=\varepsilon^{3} \sum_{j, \ell} u_{j} u_{\ell} \int_{\mathbb{R}^{3}} \frac{e^{i \xi(j-\ell)}|\hat{q}(\xi)|^{2}}{\left(\varepsilon^{-2}|\xi|^{2}+1\right)^{2}} d \xi \quad \text { (after substitutions). }
\end{gathered}
$$

We showed that $\mathbb{E}\left[\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}^{2}\right]=O\left(\varepsilon^{3}\right)$. Hence $\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}}$ cannot be too big, with high probability. The Hanson-Wright inequality (a large deviation estimate for bilinear sums) shows

$$
\mathbb{P}\left(\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}} \geq \varepsilon^{\delta}\right)=O\left(e^{-c / \varepsilon^{3-\delta}}\right) .
$$

This implies that with probability $1-O\left(e^{-c / \varepsilon^{3-\delta}}\right),\left|V_{\varepsilon}^{\omega}\right|_{H^{-2}} \leq \varepsilon^{\delta}$ and V_{ε}^{ω} has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$.

No diffusion for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad \mathbf{d}=3 .
$$

No diffusion for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad \mathbf{d}=\mathbf{3} .
$$

Theorem [Dr'16]
For all $\delta>0$, there exists C, c, A, ε_{0} such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$, with probability $1-C e^{-c / \varepsilon^{3-\delta}}$, V_{ε}^{ω} has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$.

No diffusion for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad \mathbf{d}=\mathbf{3} .
$$

Theorem [Dr'16]
For all $\delta>0$, there exists C, c, A, ε_{0} such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$, with probability $1-C e^{-c / \varepsilon^{3-\delta}}$, V_{ε}^{ω} has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$.

Comments:

- With large probability, resonance-free strip of width $A \ln \left(\varepsilon^{-1}\right) \Rightarrow$ with large probability, waves scattered by V_{ε}^{ω} decay like $\varepsilon^{A t}$.

No diffusion for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad \mathbf{d}=\mathbf{3} .
$$

Theorem [Dr'16]
For all $\delta>0$, there exists C, c, A, ε_{0} such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$, with probability $1-C e^{-c / \varepsilon^{3-\delta}}$, V_{ε}^{ω} has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$.

Comments:

- With large probability, resonance-free strip of width $A \ln \left(\varepsilon^{-1}\right) \Rightarrow$ with large probability, waves scattered by V_{ε}^{ω} decay like $\varepsilon^{A t}$.
- The result generalizes to all odd dimensions.

No diffusion for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j), \quad \mathbf{d}=\mathbf{3} .
$$

Theorem [Dr'16]
For all $\delta>0$, there exists C, c, A, ε_{0} such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$, with probability $1-C e^{-c / \varepsilon^{3-\delta}}$, V_{ε}^{ω} has no resonances above the line $\operatorname{Im} \lambda=-A \ln \left(\varepsilon^{-1}\right)$.

Comments:

- With large probability, resonance-free strip of width $A \ln \left(\varepsilon^{-1}\right) \Rightarrow$ with large probability, waves scattered by V_{ε}^{ω} decay like $\varepsilon^{A t}$.
- The result generalizes to all odd dimensions.
- The result cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

The event $\omega_{\varepsilon}=\left\{j:\left|j_{1}\right|+\left|j_{2}\right|+\left|j_{3}\right| \leq \varepsilon^{-1}, u_{j}=1\right\}$ has probability $2^{-1 / \varepsilon^{3}}$, and

$$
V_{\varepsilon}^{\omega_{\varepsilon}}(x)=\sum_{|j| \leq \varepsilon^{-1}} q(x / \varepsilon-j) .
$$

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

The event $\omega_{\varepsilon}=\left\{j:\left|j_{1}\right|+\left|j_{2}\right|+\left|j_{3}\right| \leq \varepsilon^{-1}, u_{j}=1\right\}$ has probability $2^{-1 / \varepsilon^{3}}$, and

$$
V_{\varepsilon}^{\omega_{\varepsilon}}(x)=\sum_{|j| \leq \varepsilon^{-1}} q(x / \varepsilon-j) .
$$

- $V_{\varepsilon}^{\omega_{\varepsilon}}$ is oscillatory, with mean 1 on $[-1,1]^{3} \Rightarrow V_{\varepsilon}^{\omega_{\varepsilon}} \rightharpoonup 1_{[-1,1]^{3}}$.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

The event $\omega_{\varepsilon}=\left\{j:\left|j_{1}\right|+\left|j_{2}\right|+\left|j_{3}\right| \leq \varepsilon^{-1}, u_{j}=1\right\}$ has probability $2^{-1 / \varepsilon^{3}}$, and

$$
V_{\varepsilon}^{\omega_{\varepsilon}}(x)=\sum_{|j| \leq \varepsilon^{-1}} q(x / \varepsilon-j) .
$$

- $V_{\varepsilon}^{\omega_{\varepsilon}}$ is oscillatory, with mean 1 on $[-1,1]^{3} \Rightarrow V_{\varepsilon}^{\omega_{\varepsilon}} \rightharpoonup 1_{[-1,1]]^{3}}$.
- This implies that resonances of $V_{\varepsilon}^{\omega_{\varepsilon}}$ converge to resonances of $1_{[-1,1]^{3}}$ on compact sets.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

The event $\omega_{\varepsilon}=\left\{j:\left|j_{1}\right|+\left|j_{2}\right|+\left|j_{3}\right| \leq \varepsilon^{-1}, u_{j}=1\right\}$ has probability $2^{-1 / \varepsilon^{3}}$, and

$$
V_{\varepsilon}^{\omega_{\varepsilon}}(x)=\sum_{|j| \leq \varepsilon^{-1}} q(x / \varepsilon-j) .
$$

- $V_{\varepsilon}^{\omega_{\varepsilon}}$ is oscillatory, with mean 1 on $[-1,1]^{3} \Rightarrow V_{\varepsilon}^{\omega_{\varepsilon}} \rightharpoonup 1_{[-1,1]]^{3}}$.
- This implies that resonances of $V_{\varepsilon}^{\omega_{\varepsilon}}$ converge to resonances of $1_{[-1,1]^{3}}$ on compact sets.
- $1_{[-1,1]^{3}}$ has resonances - independently of ε.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

The event $\omega_{\varepsilon}=\left\{j:\left|j_{1}\right|+\left|j_{2}\right|+\left|j_{3}\right| \leq \varepsilon^{-1}, u_{j}=1\right\}$ has probability $2^{-1 / \varepsilon^{3}}$, and

$$
V_{\varepsilon}^{\omega_{\varepsilon}}(x)=\sum_{|j| \leq \varepsilon^{-1}} q(x / \varepsilon-j) .
$$

- $V_{\varepsilon}^{\omega_{\varepsilon}}$ is oscillatory, with mean 1 on $[-1,1]^{3} \Rightarrow V_{\varepsilon}^{\omega_{\varepsilon}} \rightharpoonup 1_{[-1,1]^{3}}$.
- This implies that resonances of $V_{\varepsilon}^{\omega_{\varepsilon}}$ converge to resonances of $1_{[-1,1]^{3}}$ on compact sets.
- $1_{[-1,1]^{3}}$ has resonances - independently of ε.
- Hence $V_{\varepsilon}^{\omega_{\varepsilon}}$ cannot have a spectral gap with width growing infinitely as $\varepsilon \rightarrow 0$.

"Almost optimality"

The theorem cannot hold with probability much larger than $1-C e^{-c / \varepsilon^{3-\delta}}$. Take q with $\int_{\mathbb{R}^{3}} q(x) d x=2$ and u_{j} i.i.d Bernouilli: $\mathbb{P}\left(u_{j}=1\right)=1 / 2$ and $\mathbb{P}\left(u_{j}=-1\right)=1 / 2$.

The event $\omega_{\varepsilon}=\left\{j:\left|j_{1}\right|+\left|j_{2}\right|+\left|j_{3}\right| \leq \varepsilon^{-1}, u_{j}=1\right\}$ has probability $2^{-1 / \varepsilon^{3}}$, and

$$
V_{\varepsilon}^{\omega_{\varepsilon}}(x)=\sum_{|j| \leq \varepsilon^{-1}} q(x / \varepsilon-j) .
$$

- $V_{\varepsilon}^{\omega_{\varepsilon}}$ is oscillatory, with mean 1 on $[-1,1]^{3} \Rightarrow V_{\varepsilon}^{\omega_{\varepsilon}} \rightharpoonup 1_{[-1,1]]^{3}}$.
- This implies that resonances of $V_{\varepsilon}^{\omega_{\varepsilon}}$ converge to resonances of $1_{[-1,1]^{3}}$ on compact sets.
- $1_{[-1,1]^{3}}$ has resonances - independently of ε.
- Hence $V_{\varepsilon}^{\omega_{\varepsilon}}$ cannot have a spectral gap with width growing infinitely as $\varepsilon \rightarrow 0$.
The theorem does not hold with probability higher than $1-2^{-1 / \varepsilon^{3}}$.

"Almost optimality"

"Almost optimality"

$R_{1_{[-1,1]^{3}}}(\lambda)$ meromorphic

* resonances of $1_{[-1,1]^{3}}$

"Almost optimality"

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{gathered}
V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right)
\end{gathered}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ?

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{aligned}
& V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
& W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right)
\end{aligned}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{aligned}
& V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
& W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right)
\end{aligned}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.
- How fast is the convergence?

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{aligned}
& V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
& W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right)
\end{aligned}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.
- How fast is the convergence? $-O\left(\varepsilon^{2}\right)$.

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{gathered}
V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right)
\end{gathered}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.
- How fast is the convergence? $-O\left(\varepsilon^{2}\right)$.
- How finely do resonances of V_{ε} depend on ε ?

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{aligned}
& V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
& W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right)
\end{aligned}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.
- How fast is the convergence? $-O\left(\varepsilon^{2}\right)$.
- How finely do resonances of V_{ε} depend on ε ? - Smooth.

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{aligned}
& V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon}, \\
& W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right) .
\end{aligned}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.
- How fast is the convergence? $-O\left(\varepsilon^{2}\right)$.
- How finely do resonances of V_{ε} depend on ε ? - Smooth.
- Can one derive effective potentials in the spirit of Duchêne-Vukićević-Weinstein?

The case $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

We go back to the periodic case, with $W_{0} \neq 0$ this time:

$$
\begin{aligned}
& V_{\varepsilon}(x)=W(x, x / \varepsilon)=W_{0}(x)+\sum_{k \in \mathbb{Z}^{d} \backslash 0} W_{k}(x) e^{i k x / \varepsilon} \\
& W(x, y)=\sum_{k \in \mathbb{Z}^{d}} W_{k}(x) e^{i k y} \in C_{0}^{\infty}\left(\mathbb{R}^{d} \times(\mathbb{R} /(2 \pi \mathbb{Z}))^{d}\right) .
\end{aligned}
$$

V_{ε} converges weakly to W_{0} and one can ask:

- Do eigenvalues/resonances of V_{ε} converge to resonances of W_{0} ? - Yes.
- How fast is the convergence? $-O\left(\varepsilon^{2}\right)$.
- How finely do resonances of V_{ε} depend on ε ? - Smooth.
- Can one derive effective potentials in the spirit of Duchêne-Vukićević-Weinstein? - Yes.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}}
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v, \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}} .
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

- Resonances of V_{ε} and $V_{\varepsilon}^{\text {eff }}=W_{0}-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ differ from $O\left(\varepsilon^{4}\right)$.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v, \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}} .
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

- Resonances of V_{ε} and $V_{\varepsilon}^{\text {eff }}=W_{0}-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ differ from $O\left(\varepsilon^{4}\right)$.

Comments:

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v, \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}} .
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

- Resonances of V_{ε} and $V_{\varepsilon}^{\text {eff }}=W_{0}-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ differ from $O\left(\varepsilon^{4}\right)$.

Comments:

- Simple resonances of V_{ε} in compact sets depend smoothly on ε, despite the singular dependence of V_{ε}.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v, \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}} .
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

- Resonances of V_{ε} and $V_{\varepsilon}^{\text {eff }}=W_{0}-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ differ from $O\left(\varepsilon^{4}\right)$.

Comments:

- Simple resonances of V_{ε} in compact sets depend smoothly on ε, despite the singular dependence of V_{ε}.
- The coefficients a_{4}, a_{5}, \ldots are computable.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v, \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}} .
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

- Resonances of V_{ε} and $V_{\varepsilon}^{\text {eff }}=W_{0}-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ differ from $O\left(\varepsilon^{4}\right)$.

Comments:

- Simple resonances of V_{ε} in compact sets depend smoothly on ε, despite the singular dependence of V_{ε}.
- The coefficients a_{4}, a_{5}, \ldots are computable.
- More complicated statements hold for non-simple resonances.

Results for $W_{0} \neq 0, V_{\varepsilon}$ highly oscillatory

Theorem [Dr'15] Uniformly in compact sets:

- Each resonance λ_{ε} of V_{ε} converge to a resonance λ_{0} of W_{0}.
- If λ_{0} is simple, then

$$
\begin{gathered}
\lambda_{\varepsilon} \sim \lambda_{0}+a_{2} \varepsilon^{2}+a_{3} \varepsilon^{3}+a_{4} \varepsilon^{4} \ldots, \quad a_{2}=\int \Lambda_{0} u v, \\
a_{3}=\int \Lambda_{1} u v, \quad \Lambda_{0}=\sum_{k \neq 0} \frac{\left|W_{k}\right|^{2}}{|k|^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k}(k \cdot D) W_{-k}}{|k|^{4}} .
\end{gathered}
$$

where u, v are the resonant states of W_{0} at λ_{0}.

- Resonances of V_{ε} and $V_{\varepsilon}^{\text {eff }}=W_{0}-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ differ from $O\left(\varepsilon^{4}\right)$.

Comments:

- This theorem refines the effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$ of Duchêne-Vukićević-Weinstein and generalizes it to all odd dimensions. Further refinements are possible with non-linear resonances and an effective potential depending on λ.

Convergence of resonances

Convergence of resonances

Convergence of resonances

Convergence of resonances

Numerical results (Thanks to $\mathrm{D}-\mathrm{V}-\mathrm{W}$)

Figure: Oscillatory potential and errors in approximating the transmission coefficient of V_{ε} by the transmission coefficient of the Duchêne-Vukićević-Weinstein effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$ and by the refined one $W_{0}-\varepsilon^{2}-\varepsilon^{3} \Lambda_{1}$. Here $\varepsilon=1 / 25$.

Numerical results (Thanks to $\mathrm{D}-\mathrm{V}-\mathrm{W}$)

Figure: Oscillatory potential and errors in approximating the transmission coefficient of V_{ε} by the transmission coefficient of the Duchêne-Vukićević-Weinstein effective potential $W_{0}-\varepsilon^{2} \Lambda_{0}$ and by the refined one $W_{0}-\varepsilon^{2}-\varepsilon^{3} \Lambda_{1}$. Here $\varepsilon=1 / 250$.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.

Origin of the effective potential...

Assume $d=1, V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\operatorname{Tr}\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)-\frac{1}{2} \operatorname{Tr}\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right) \ldots
$$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:
$D_{V_{\varepsilon}}(\lambda) \sim 1+\operatorname{Tr}\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)-\frac{1}{2} \operatorname{Tr}\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right) \ldots$

Note $\operatorname{Tr}\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)=\frac{i}{2 \lambda} \int_{\mathbb{R}} V_{\varepsilon}(x) d x=O\left(\varepsilon^{\infty}\right)$.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)+\ldots
$$

Note $\operatorname{Tr}\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)=\frac{i}{2 \lambda} \int_{\mathbb{R}} V_{\varepsilon}(x) d x=O\left(\varepsilon^{\infty}\right)$.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)+\ldots
$$

Since $D e^{i \ell x / \varepsilon}=e^{i \ell x / \varepsilon}(D+\ell / \varepsilon)$:

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)+\ldots
$$

Since $D e^{i \ell x / \varepsilon}=e^{i \ell x / \varepsilon}(D+\ell / \varepsilon)$:
$\operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i k x / \varepsilon}\left(D^{2}-\lambda^{2}\right)^{-1} W_{\ell} e^{i \ell x / \varepsilon}\right)$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)+\ldots
$$

Since $D e^{i \ell x / \varepsilon}=e^{i \ell x / \varepsilon}(D+\ell / \varepsilon)$:

$$
\begin{gathered}
\operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i k x / \varepsilon}\left(D^{2}-\lambda^{2}\right)^{-1} W_{\ell} e^{i \ell x / \varepsilon}\right) \\
=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i(k+\ell) x / \varepsilon}\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} W_{\ell}\right)
\end{gathered}
$$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{\varepsilon}(\lambda) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)+\ldots
$$

Since $D e^{i \ell x / \varepsilon}=e^{i \ell x / \varepsilon}(D+\ell / \varepsilon)$:

$$
\begin{gathered}
\operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i k x / \varepsilon}\left(D^{2}-\lambda^{2}\right)^{-1} W_{\ell} e^{i \ell x / \varepsilon}\right) \\
\quad=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i(k+\ell) x / \varepsilon}\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} W_{\ell}\right)
\end{gathered}
$$

If $k+\ell \neq 0$, the term $e^{i(k+\ell) \times / \varepsilon}$ oscillates and yields negligible terms;

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)+\ldots
$$

Since $D e^{i \ell x / \varepsilon}=e^{i \ell x / \varepsilon}(D+\ell / \varepsilon)$:

$$
\begin{gathered}
\operatorname{Tr}\left(\left(\rho R_{0}(\lambda) V_{\varepsilon}\right)^{2}\right)=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i k x / \varepsilon}\left(D^{2}-\lambda^{2}\right)^{-1} W_{\ell} e^{i \ell x / \varepsilon}\right) \\
\quad=\sum_{k, \ell} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k} e^{i(k+\ell) x / \varepsilon}\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} W_{\ell}\right)
\end{gathered}
$$

If $k+\ell \neq 0$, the term $e^{i(k+\ell) \times / \varepsilon}$ oscillates and yields negligible terms; hence the above sum can be seen over k, ℓ with $k+\ell=0$, and the oscillatory term disappears.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k}\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} W_{\ell}\right)+\ldots
$$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k}\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} W_{\ell}\right)+\ldots
$$

The operator $\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1}$ formally expands in powers of ε :

$$
\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} \sim \frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D+\ldots
$$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1} W_{k}\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} W_{\ell}\right)+\ldots
$$

The operator $\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1}$ formally expands in powers of ε :

$$
\left((D+\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} \sim \frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D+\ldots
$$

Plug this in the expansion for $D_{V_{\varepsilon}}(\lambda)$.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1}\left(\frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D\right) W_{k} W_{\ell}\right)+\ldots
$$

The operator $\left((D-\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1}$ formally expands in powers of ε :

$$
\left((D-\ell / \varepsilon)^{2}-\lambda^{2}\right)^{-1} \sim \frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D+\ldots
$$

Plug this in the expansion for $D_{V_{\varepsilon}}(\lambda)$.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1}\left(\frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D\right) W_{k} W_{\ell}\right)+\ldots
$$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\text { def }}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
\begin{aligned}
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} & \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1}\left(\frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D\right) W_{k} W_{\ell}\right)+\ldots \\
& \sim 1+\frac{1}{2} \operatorname{Tr}\left(\rho R_{0}(\lambda)\left(\varepsilon^{2} \Lambda_{0}+\varepsilon^{3} \Lambda_{1}\right)\right), \\
\Lambda_{0}= & \sum_{k \neq 0} \frac{W_{k} W_{-k}}{k^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k} D W_{-k}}{k^{3}} .
\end{aligned}
$$

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
\begin{aligned}
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} & \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1}\left(\frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D\right) W_{k} W_{\ell}\right)+\ldots \\
& \sim 1+\frac{1}{2} \operatorname{Tr}\left(\rho R_{0}(\lambda)\left(\varepsilon^{2} \Lambda_{0}+\varepsilon^{3} \Lambda_{1}\right)\right) \\
\Lambda_{0}= & \sum_{k \neq 0} \frac{W_{k} W_{-k}}{k^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k} D W_{-k}}{k^{3}} .
\end{aligned}
$$

This formally explains how the effective potential $-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ appears: it is produced by the constructive interference of oscillatory terms.

Origin of the effective potential...

Assume $d=1, \quad V_{\varepsilon}(x) \stackrel{\text { def }}{=} \sum_{k \neq 0} W_{k}(x) e^{i k x / \varepsilon}, \quad D_{V_{\varepsilon}}(\lambda) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\operatorname{Id}+\rho R_{0}(\lambda) V_{\varepsilon}\right)$.
Resonances of V_{ε} are zeroes of $D_{V_{\varepsilon}}(\lambda)$. Expand $D_{V_{\varepsilon}}(\lambda)$ formally:

$$
\begin{aligned}
D_{V_{\varepsilon}}(\lambda) \sim 1+\frac{1}{2} & \sum_{k+\ell=0} \operatorname{Tr}\left(\rho\left(D^{2}-\lambda^{2}\right)^{-1}\left(\frac{\varepsilon^{2}}{\ell^{2}} \operatorname{Id}-\frac{2 \varepsilon^{3}}{\ell^{3}} D\right) W_{k} W_{\ell}\right)+\ldots \\
& \sim 1+\frac{1}{2} \operatorname{Tr}\left(\rho R_{0}(\lambda)\left(\varepsilon^{2} \Lambda_{0}+\varepsilon^{3} \Lambda_{1}\right)\right) \\
\Lambda_{0}= & \sum_{k \neq 0} \frac{W_{k} W_{-k}}{k^{2}}, \quad \Lambda_{1}=2 \sum_{k \neq 0} \frac{W_{k} D W_{-k}}{k^{3}} .
\end{aligned}
$$

This formally explains how the effective potential $-\varepsilon^{2} \Lambda_{0}-\varepsilon^{3} \Lambda_{1}$ appears: it is produced by the constructive interference of oscillatory terms. The actual proof of the theorem contains similar ideas, but is more complicated. It uses expansion of modified Fredholm determinants, combinatorics, oscillatory integrals, operator-valued expansions,...

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, u_{j} are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

With high probability, resonances of V_{ε}^{ω} are near resonances of W_{0}. Their finer behavior is more subtle and depend on d and on $\int_{\mathbb{R}^{d}} q(x) d x$. For instance,

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

With high probability, resonances of V_{ε}^{ω} are near resonances of W_{0}. Their finer behavior is more subtle and depend on d and on $\int_{\mathbb{R}^{d}} q(x) d x$. For instance,

Theorem [Dr'16] Assume $d=1$, that $\int_{\mathbb{R}} q(x) d x \neq 0$, and that λ_{0} is a simple resonance of W_{0}. With probability $1-O\left(e^{-c / \varepsilon}\right), V_{\varepsilon}^{\omega}$ has a unique resonance near λ_{0}.

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

With high probability, resonances of V_{ε}^{ω} are near resonances of W_{0}. Their finer behavior is more subtle and depend on d and on $\int_{\mathbb{R}^{d}} q(x) d x$. For instance,

Theorem [Dr'16] Assume $d=1$, that $\int_{\mathbb{R}} q(x) d x \neq 0$, and that λ_{0} is a simple resonance of W_{0}. With probability $1-O\left(e^{-c / \varepsilon}\right), V_{\varepsilon}^{\omega}$ has a unique resonance near λ_{0}. In addition, knowing that λ_{ε} exists,

$$
\varepsilon^{-1 / 2}\left(\lambda_{\varepsilon}-\lambda_{0}\right) \xrightarrow{\text { law }} \mathcal{N}\left(0, \sigma^{2}\right), \quad \sigma^{2}=\mathbb{E}\left(u_{j}^{2}\right)\left(\int_{\mathbb{R}} q(x) d x\right)^{2} \int_{-1}^{1} u(x)^{2} v(x)^{2} d x
$$

where u and v are the left/right resonant states of W_{0} at λ_{0}.

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, u_{j} are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

With high probability, resonances of V_{ε}^{ω} are near resonances of W_{0}. Their finer behavior is more subtle and depend on d and on $\int_{\mathbb{R}^{d}} q(x) d x$. For instance,

Theorem [Dr'16] Assume $d=3$ and $\int_{\mathbb{R}^{3}} q(x) d x=0$, and that λ_{0} is a simple resonance of W_{0}. For almost every ω, there exists $\varepsilon_{0}=\varepsilon_{0}(\omega)>0$ such that for every $\varepsilon \in\left(0, \varepsilon_{0}\right), V_{\varepsilon}^{\omega}$ has a unique resonance λ_{ε} near λ_{0}.

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

With high probability, resonances of V_{ε}^{ω} are near resonances of W_{0}. Their finer behavior is more subtle and depend on d and on $\int_{\mathbb{R}^{d}} q(x) d x$. For instance,

Theorem [Dr'16] Assume $d=3$ and $\int_{\mathbb{R}^{3}} q(x) d x=0$, and that λ_{0} is a simple resonance of W_{0}. For almost every ω, there exists $\varepsilon_{0}=\varepsilon_{0}(\omega)>0$ such that for every $\varepsilon \in\left(0, \varepsilon_{0}\right), V_{\varepsilon}^{\omega}$ has a unique resonance λ_{ε} near λ_{0}. In addition,

$$
\lambda_{\varepsilon}=\lambda_{0}+i \varepsilon^{2} \int_{\mathbb{R}^{3}} \frac{|\hat{q}(\xi)|^{2}}{|\xi|^{2}} \int_{[-1,1]^{3}} u(x) v(x) d x+o\left(\varepsilon^{2}\right)
$$

where u and v are the left/right resonant states of W_{0} at λ_{0}.

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, u_{j} are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

Comments:

- We can show similar results for any value of d. When $d \geq 5$, the convergence of resonance is always almost sure. When $d=1$ or 3 , it is almost sure if $\hat{q}(\xi)$ vanishes at sufficiently high order at $\xi=0$.

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

Comments:

- We can show similar results for any value of d. When $d \geq 5$, the convergence of resonance is always almost sure. When $d=1$ or 3 , it is almost sure if $\hat{q}(\xi)$ vanishes at sufficiently high order at $\xi=0$.
- It is natural that the convergence rate of λ_{ε} to λ_{0} depend on the value of $\int_{\mathbb{R}^{d}} q(x) d x$: if this vanishes, q is inherently oscillatory and V_{ε}^{ω} is always rapidly oscillatory, even if $\forall j, u_{j}(\omega)=1$.

Resonances for random oscillatory potentials

Recall that $q \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), u_{j}$ are i.i.d, with $\mathbb{E}\left[u_{j}\right]=0$ and compactly supported distributions, and

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j) .
$$

Comments:

- We can show similar results for any value of d. When $d \geq 5$, the convergence of resonance is always almost sure. When $d=1$ or 3 , it is almost sure if $\hat{q}(\xi)$ vanishes at sufficiently high order at $\xi=0$.
- It is natural that the convergence rate of λ_{ε} to λ_{0} depend on the value of $\int_{\mathbb{R}^{d}} q(x) d x$: if this vanishes, q is inherently oscillatory and V_{ε}^{ω} is always rapidly oscillatory, even if $\forall j, u_{j}(\omega)=1$.
- It is also expected that the convergence rate of λ_{ε} to λ_{0} depend on d. The number of sites ε^{-d} grows with d, which makes large deviation effects smaller and less likely, and the homogenization effect highlighted in the case of highly oscillatory potentials takes over.

Open questions/current projects

- Study scattering resonances of large oscillatory potentials: $\varepsilon^{-\beta} V_{\varepsilon}$, $\varepsilon^{-\beta} V_{\varepsilon}^{\omega}, \beta \in(0,2]$ - interesting work of Duchêne-Raymond, Dimassi, Dimassi-Duong in this direction.

Open questions/current projects

- Study scattering resonances of large oscillatory potentials: $\varepsilon^{-\beta} V_{\varepsilon}$, $\varepsilon^{-\beta} V_{\varepsilon}^{\omega}, \beta \in(0,2]$ - interesting work of Duchêne-Raymond, Dimassi, Dimassi-Duong in this direction.
- Push further the study of random potentials to deal with the case

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

u_{j} correlated - for instance, u_{j} sationary random process.

Open questions/current projects

- Study scattering resonances of large oscillatory potentials: $\varepsilon^{-\beta} V_{\varepsilon}$, $\varepsilon^{-\beta} V_{\varepsilon}^{\omega}, \beta \in(0,2]$ - interesting work of Duchêne-Raymond, Dimassi, Dimassi-Duong in this direction.
- Push further the study of random potentials to deal with the case

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

u_{j} correlated - for instance, u_{j} sationary random process.

- Prove uniform dispersive estimates as $\varepsilon \rightarrow 0$ for the Schrödinger equation $i \partial_{t}-\Delta_{\mathbb{R}^{2}}+V_{\varepsilon}$ in dimension $d=2$, in the spirit of Duchêne-Vukićević-Weinstein in dimension 1.

Open questions/current projects

- Study scattering resonances of large oscillatory potentials: $\varepsilon^{-\beta} V_{\varepsilon}$, $\varepsilon^{-\beta} V_{\varepsilon}^{\omega}, \beta \in(0,2]$ - interesting work of Duchêne-Raymond, Dimassi, Dimassi-Duong in this direction.
- Push further the study of random potentials to deal with the case

$$
V_{\varepsilon}^{\omega}(x)=W_{0}(x)+\sum_{|j| \leq \varepsilon^{-1}} u_{j}(\omega) q(x / \varepsilon-j)
$$

u_{j} correlated - for instance, u_{j} sationary random process.

- Prove uniform dispersive estimates as $\varepsilon \rightarrow 0$ for the Schrödinger equation $i \partial_{t}-\Delta_{\mathbb{R}^{2}}+V_{\varepsilon}$ in dimension $d=2$, in the spirit of Duchêne-Vukićević-Weinstein in dimension 1.
- Approximate the dynamics of $\partial_{t}^{2}-\Delta_{\mathbb{R}^{d}}+V_{\varepsilon}$ by the one of $\partial_{t}^{2}-\Delta_{\mathbb{R}^{d}}+V_{\varepsilon}^{\text {eff. }}$, away from the discrete spectrum.

Thanks for your attention!

