Microlocal analysis of the bulk-edge correspondence.

Alexis Drouot, Columbia University

October 16th, MSRI

Plan of the talk

- Physical motivation
- Waves in 2D materials guided along 1D interfaces
- Robustness against defects
- Mathematical framework for the bulk-edge correspondence
- Spectral theory for periodic Schrödinger operators
- Bulk index: a Chern number [Thouless-Kohmoto-Nightingale-den Nijs '82]
- Edge index: a conductivity / trace formula [Kellendonk-Richter-Schulz-Baldes '02]
- Bulk-edge correspondence: a microlocal approach
- Edge index invariance
- Semiclassical deformation
- Trace asymptotics
- Future perspectives

Photonic experiments

[Haldane-Raghu '08, Wang-Chong-Joannopoulos-Soljacic '09] Periodic medium altered by a magnetic field, with a physical boundary. Waves are emitted from \star.

a. Source (A) emits a signal. It propagates rightward.
b. Source (A) emits a signal. It hits a defect (located to the right of A), moves around it, and keeps propagating rightward.
c. Source (B) emits a signal.

It propagates rightward.
The defect does not affect propagation.

Equatorial waves

Eastward-propagating currents, earth.nullschool.net, Feb. 20th 2019.
Theoretical analysis demonstrate their topological character [Delplace-Martson-Venaille '17, Tauber-Delplace-Venaille '18, Faure '19].

Also models quantum waves in molecules [Faure-Zhilinskii '00-'02].

Crash course in quantum mechanics

A particle evolving in \mathbb{R}^{2} is described by a probability density:

$$
|\psi(x)|^{2} d x, \quad \psi \in L^{2}\left(\mathbb{R}^{2}\right), \quad\|\psi\|_{L^{2}}=1
$$

Its time-evolution is unitary: there is a selfadjoint operator P with

$$
\psi(t)=e^{-i t P} \psi(0) \quad \Leftrightarrow \quad i \frac{\partial \psi(t)}{\partial t}=P \psi(t)
$$

Example: average position of the particle at time t :

$$
\begin{aligned}
& \mathbb{E}_{t}[\mathrm{x}]=\langle\psi(t), \mathrm{x} \cdot \psi(t)\rangle_{L^{2}}=\left\langle\psi(0), \mathrm{e}^{\mathrm{itP}} \mathrm{xe}^{-\mathrm{itP}} \cdot \psi(0)\right\rangle_{L^{2}} \\
& \Rightarrow \quad \frac{\partial \mathbb{E}_{t}[\mathrm{x}]}{\partial t}=\langle\psi(t), \mathrm{i}[\mathbf{P}, \mathrm{x}] \cdot \psi(t)\rangle_{L^{2}}=\mathbb{E}_{t}[\mathrm{i}[\mathbf{P}, \mathbf{x}]]
\end{aligned}
$$

This is the Heisenberg picture: the time-evolution of an observable is

$$
\frac{\partial \mathbf{A}(\mathrm{t})}{\partial t}=\mathrm{i}[\mathbf{P}, \mathbf{A}] .
$$

Perfect materials in condensed matter physics

Perfect materials are described by $\left(\mathbb{Z}^{2}\right.$ -) periodic operators acting on $L^{2}\left(\mathbb{R}^{2}\right)$.
Example: magnetic Schrödinger operators

$$
\begin{align*}
& P_{+} \stackrel{\text { def }}{=}\left(D_{x}+A_{+}(x)\right)^{2}+V_{+}(x) \quad \text { and } \tag{1}\\
& P_{-} \stackrel{\text { def }}{=}\left(D_{x}+A_{-}(x)\right)^{2}+V_{-}(x) .
\end{align*}
$$

In (1), $x \in \mathbb{R}^{2}$ and:
$-V_{+}, V_{-}, A_{+}, A_{-} \in C_{b}^{\infty}\left(\mathbb{R}^{2}\right)$ are periodic w.r.t \mathbb{Z}^{2}.

- Magnetic field: $\partial_{1} A_{ \pm, 2}-\partial_{2} A_{ \pm, 1}$, pointing in direction of e_{3}. It has vanishing flux across a unit cell.

From now on, we fix P_{+}and P_{-}in the form (1).

Periodic operators and Chern numbers

P_{+}is \mathbb{Z}^{2}-periodic. It acts on eigenspaces of \mathbb{Z}^{2}-translations:
$L_{\xi}^{2}\left(\mathbb{R}^{2}\right) \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right), u\left(x+e_{j}\right)=e^{i \xi_{j}} \cdot u(x)\right\}, \quad \xi \in\left(\mathbb{T}^{2}\right)^{*} \stackrel{\text { def }}{=} \mathbb{R}^{2} /(2 \pi \mathbb{Z})^{2}$.
One recovers L^{2}-spectrum from L_{ξ}^{2}-spectra: $\sigma_{L^{2}}\left(P_{+}\right)=\cup_{\xi \in\left(\mathbb{T}^{2}\right)^{*}} \sigma_{L_{\xi}^{2}}\left(P_{+}\right)$.

Assume $\lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right)$. Then $\lambda_{0} \notin \sigma_{L_{\xi}^{2}}\left(P_{+}\right)$for all $\xi \in\left(\mathbb{T}^{2}\right)^{*}$.

Physical interpretation: there are no solutions to

$$
\left\{\begin{array}{c}
\left(P_{+}-\lambda_{0}\right) u=0 \\
u\left(x+e_{j}\right)=e^{i \xi_{j}} \cdot u(x)
\end{array}\right.
$$

No plane-wave like propagation at energy $\lambda_{0} . P_{+}$models an insulator at energy λ_{0}.

Periodic operators and Chern numbers

P_{+}is \mathbb{Z}^{2}-periodic. It acts on eigenspaces of \mathbb{Z}^{2}-translations: $L_{\xi}^{2}\left(\mathbb{R}^{2}\right) \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right), u\left(x+e_{j}\right)=e^{i \xi_{j}} \cdot u(x)\right\}, \quad \xi \in\left(\mathbb{T}^{2}\right)^{*} \stackrel{\text { def }}{=} \mathbb{R}^{2} /(2 \pi \mathbb{Z})^{2}$.
One recovers L^{2}-spectrum from L_{ξ}^{2}-spectra: $\sigma_{L^{2}}\left(P_{+}\right)=\cup_{\xi \in\left(\mathbb{T}^{2}\right)^{*}} \sigma_{L_{\xi}^{2}}\left(P_{+}\right)$.

Assume $\lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right)$. Then $\lambda_{0} \notin \sigma_{L_{\xi}^{2}}\left(P_{+}\right)$for all $\xi \in\left(\mathbb{T}^{2}\right)^{*}$.
Set: $\left.\quad \Pi_{+, \xi} \stackrel{\text { def }}{=} \frac{1}{2 i \pi} \oint_{\gamma_{0}}\left(z-P_{+}\right)^{-1}\right|_{L_{\xi}^{2}} d z$
Eigenprojector of constant rank: it varies smoothly with $\xi \in\left(\mathbb{T}^{2}\right)^{*}$. It induces a bundle $\mathcal{E}_{+} \rightarrow\left(\mathbb{T}^{2}\right)^{*}$, with fibers Range $\left(\Pi_{+, \xi}\right)$.

Chern number: $\quad c_{1}\left(\mathcal{E}_{+}\right) \stackrel{\text { def }}{=} \frac{i}{2 \pi} \int_{\left(\mathbb{T}^{2}\right)^{*}} \operatorname{Tr}_{L_{\xi}^{2}}\left(\Pi_{+, \xi}\left[\partial_{\xi_{1}} \Pi_{+, \xi}, \partial_{\xi_{2}} \Pi_{\xi,+}\right]\right) d \xi$.
[Thouless-Kohmoto-Nightingale-den Nijs '82]

Periodic operators and Chern numbers

P_{+}is \mathbb{Z}^{2}-periodic. It acts on eigenspaces of \mathbb{Z}^{2}-translations: $L_{\xi}^{2}\left(\mathbb{R}^{2}\right) \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right), u\left(x+e_{j}\right)=e^{i \xi_{j}} \cdot u(x)\right\}, \quad \xi \in\left(\mathbb{T}^{2}\right)^{*} \stackrel{\text { def }}{=} \mathbb{R}^{2} /(2 \pi \mathbb{Z})^{2}$.
One recovers L^{2}-spectrum from L_{ξ}^{2}-spectra: $\sigma_{L^{2}}\left(P_{+}\right)=\cup_{\xi \in\left(\mathbb{T}^{2}\right)^{*}} \sigma_{L_{\xi}^{2}}\left(P_{+}\right)$.

If $c_{1}\left(\mathcal{E}_{+}\right) \neq 0, P_{+}$models a topological insulator at energy λ_{0}.

For the rest of the talk we fix

$$
\lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right) \bigcup \sigma_{L^{2}}\left(P_{-}\right) .
$$

Physically, P_{+}and P_{-}model (potentially topological) insulators with Chern numbers $c_{1}\left(\mathcal{E}_{+}\right)$and $c_{1}\left(\mathcal{E}_{-}\right)$.

Interface operator

Setting: $P_{ \pm}=\left(D_{x}+A_{ \pm}(x)\right)^{2}+V_{ \pm}(x)$ (potentially topological) insulators.
Goal: study interface effects between P_{+}and P_{-}.
Let $A, V \in C_{b}^{\infty}\left(\mathbb{R}^{2}\right)$ and introduce

$$
P=\left(D_{x}+A(x)\right)^{2}+V(x) \text { such that } \quad P=\left\{\begin{array}{lll}
P_{+} & \text {for } & x_{2} \geq 1 \\
P_{-} & \text {for } & x_{2} \leq-1
\end{array}\right. \text {. }
$$

The bulk, $\left|x_{2}\right| \geq 1$, insulates at energy λ_{0}. The interface may still support currents.

Conduction at the interface: the edge index

$$
\left\{f\left(x_{1}\right)=0\right\}
$$

$$
\left\{f\left(x_{1}\right)=1\right\}
$$

Fix $f\left(x_{1}\right) \in C^{\infty}(\mathbb{R}), g(\lambda) \in C^{\infty}(\mathbb{R})$ with:

$$
f\left(x_{1}\right)=\left\{\begin{array}{l}
1 \text { for } x_{1} \geq 1 \\
0
\end{array} \text { for } x_{1} \leq-1, \quad g(\lambda)= \begin{cases}1 & \text { for } \lambda \leq \lambda_{0}-\epsilon_{0} \\
0 & \text { for } \lambda \geq \lambda_{0}+\epsilon_{0}\end{cases}\right.
$$

Conduction at the interface: the edge index

$$
\left\{f\left(x_{1}\right)=0\right\}
$$

$$
\left\{f\left(x_{1}\right)=1\right\}
$$

Fix $f\left(x_{1}\right) \in C^{\infty}(\mathbb{R}), g(\lambda) \in C^{\infty}(\mathbb{R})$ with:

$$
f\left(x_{1}\right)=\left\{\begin{array}{l}
1 \text { for } x_{1} \geq 1 \\
0 \\
\text { for } x_{1} \leq-1
\end{array}, \quad g(\lambda)= \begin{cases}1 & \text { for } \lambda \leq \lambda_{0}-\epsilon_{0} \\
0 & \text { for } \lambda \geq \lambda_{0}+\epsilon_{0}\end{cases}\right.
$$

[Kellendonk-Richter-Schulz-Baldes '02]: $\mathcal{I}(P) \stackrel{\text { def }}{=} \operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] g^{\prime}(P)\right)$
Physically: At the quantum level:

- $i\left[P, f\left(x_{1}\right)\right] \sim \partial_{t} e^{i t P} f\left(x_{1}\right) e^{-i t P}$ is the particle number moving left to right, per unit time: the current.

Conduction at the interface: the edge index

$$
\left\{f\left(x_{1}\right)=0\right\}
$$

$$
\left\{f\left(x_{1}\right)=1\right\}
$$

Fix $f\left(x_{1}\right) \in C^{\infty}(\mathbb{R}), g(\lambda) \in C^{\infty}(\mathbb{R})$ with:

$$
f\left(x_{1}\right)=\left\{\begin{array}{l}
1 \text { for } x_{1} \geq 1 \\
0 \\
\text { for } x_{1} \leq-1
\end{array}, \quad g(\lambda)= \begin{cases}1 & \text { for } \lambda \leq \lambda_{0}-\epsilon_{0} \\
0 & \text { for } \lambda \geq \lambda_{0}+\epsilon_{0}\end{cases}\right.
$$

[Kellendonk-Richter-Schulz-Baldes '02]: $\mathcal{I}(P) \stackrel{\text { def }}{=} \operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] g^{\prime}(P)\right)$
Physically: At the quantum level:

- $g^{\prime}(P)$ is the density of states within the bulk spectral gap.

Conduction at the interface: the edge index

$$
\left\{f\left(x_{1}\right)=0\right\}
$$

$$
\left\{f\left(x_{1}\right)=1\right\}
$$

Fix $f\left(x_{1}\right) \in C^{\infty}(\mathbb{R}), g(\lambda) \in C^{\infty}(\mathbb{R})$ with:

$$
f\left(x_{1}\right)=\left\{\begin{array}{l}
1 \text { for } x_{1} \geq 1 \\
0 \\
\text { for } x_{1} \leq-1
\end{array}, \quad g(\lambda)= \begin{cases}1 & \text { for } \lambda \leq \lambda_{0}-\epsilon_{0} \\
0 & \text { for } \lambda \geq \lambda_{0}+\epsilon_{0}\end{cases}\right.
$$

[Kellendonk-Richter-Schulz-Baldes '02]: $\mathcal{I}(P) \stackrel{\text { def }}{=} \operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] g^{\prime}(P)\right)$
At the quantum level:
$\mathcal{I}(P)$ is the density of current, per unit energy (near λ_{0}), moving left to right: the quantum conductivity of the interface (Ohm's law).

Dynamical interpretation under $\mathbb{Z} e_{1}$-invariance

If P is $\mathbb{Z} e_{1}$-invariant, then $\mathcal{I}(P)$ is a spectral flow: signed number of \mathfrak{L}_{ζ}^{2}-eigenvalues of P crossing gap at λ_{0}, where

$$
\mathfrak{L}_{\zeta}^{2} \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}, \quad u\left(x+e_{1}\right)=e^{i \zeta} u(x), \quad \int_{[0,1] \times \mathbb{R}}|u|^{2}<\infty\right\} .
$$

[Avila-Schulz-Baldes-Villegas-Blas '13]

Dynamical interpretation under $\mathbb{Z} e_{1}$-invariance

If P is $\mathbb{Z} e_{1}$-invariant, then $\mathcal{I}(P)$ is a spectral flow: signed number of \mathfrak{L}_{ζ}^{2}-eigenvalues of P crossing gap at λ_{0}, where

$$
\mathfrak{L}_{\zeta}^{2} \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}, \quad u\left(x+e_{1}\right)=e^{i \zeta} u(x), \int_{[0,1] \times \mathbb{R}}|u|^{2}<\infty\right\} .
$$

[Avila-Schulz-Baldes-Villegas-Blas '13]

Dynamical interpretation under $\mathbb{Z} e_{1}$-invariance

If P is $\mathbb{Z} e_{1}$-invariant, then $\mathcal{I}(P)$ is a spectral flow: signed number of \mathfrak{L}_{ζ}^{2}-eigenvalues of P crossing gap at λ_{0}, where

$$
\mathfrak{L}_{\zeta}^{2} \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}, \quad u\left(x+e_{1}\right)=e^{i \zeta} u(x), \int_{[0,1] \times \mathbb{R}}|u|^{2}<\infty\right\} .
$$

[Avila-Schulz-Baldes-Villegas-Blas '13]

Dynamical interpretation under $\mathbb{Z} e_{1}$-invariance

If P is $\mathbb{Z} e_{1}$-invariant, then $\mathcal{I}(P)$ is a spectral flow: signed number of \mathfrak{L}_{ζ}^{2}-eigenvalues of P crossing gap at λ_{0}, where

$$
\mathfrak{L}_{\zeta}^{2} \stackrel{\text { def }}{=}\left\{u \in L_{\text {loc }}^{2}, \quad u\left(x+e_{1}\right)=e^{i \zeta} u(x), \int_{[0,1] \times \mathbb{R}}|u|^{2}<\infty\right\} .
$$

[Avila-Schulz-Baldes-Villegas-Blas '13]
Let $\zeta \mapsto \lambda(\zeta)$ be an eigenvalue curve. The eigenstate ψ_{ζ} decays in x_{2} but not in x_{1}. Take χ supported in $(-\delta, \delta)$ with $\chi^{\prime}=O\left(\delta^{-1}\right)$. Form

$$
u_{0}(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}} \chi\left(\zeta-\zeta_{0}\right) \cdot u_{\zeta}(x) d \zeta: \text { wavepacket in } L^{2}\left(\mathbb{R}^{2}\right)
$$

Schrödinger evolution of u_{0} :

$$
\begin{aligned}
u(t, x) & \stackrel{\text { def }}{=} e^{-i t P} u_{0}(x)=\int_{\mathbb{R}} \chi\left(\zeta-\zeta_{0}\right) e^{-i t P} u_{\zeta}(x) d \zeta=\ldots \\
& =\widehat{\chi}\left(\lambda^{\prime}\left(\zeta_{0}\right) t-x_{1}\right) \cdot e^{-i t \lambda\left(\zeta_{0}\right)} u_{\zeta_{0}}(x)+\mathcal{O}\left(\delta+\delta^{2} t\right)
\end{aligned}
$$

Wavepackets propagate balistically along $\mathbb{R} e_{1}$, at speed $\lambda^{\prime}\left(\zeta_{0}\right)$.

Bulk-edge correspondence

Recall:

- λ_{0} is insulating energy for $P_{ \pm}: \lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right) \cup \sigma_{L^{2}}\left(P_{-}\right)$;
- $\mathcal{E}_{ \pm}$are eigenbundles of $P_{ \pm}$below λ_{0} with Chern numbers $c_{1}\left(\mathcal{E}_{ \pm}\right)$;
- $\mathcal{I}(P)$ is the conductivity of an interface between P_{+}and P_{-}:

$$
\mathcal{I}(P)=\operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] \cdot g^{\prime}(P)\right)
$$

Theorem: [D. '19] With the above assumptions,

$$
\begin{equation*}
2 \pi \cdot \mathcal{I}(P)=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) \tag{2}
\end{equation*}
$$

Interpretation: If $c_{1}\left(\mathcal{E}_{+}\right) \neq c_{1}\left(\mathcal{E}_{-}\right)$then $g^{\prime}(P) \neq 0$, hence $\lambda_{0} \in \sigma_{L^{2}}(P)$. Interfaces between topologically distinct insulators are conductors.
Applications to engineering of very robust waveguides.

Bulk-edge correspondence

Recall:

- λ_{0} is insulating energy for $P_{ \pm}: \lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right) \cup \sigma_{L^{2}}\left(P_{-}\right)$;
- $\mathcal{E}_{ \pm}$are eigenbundles of $P_{ \pm}$below λ_{0} with Chern numbers $C_{1}\left(\mathcal{E}_{ \pm}\right)$;
- $\mathcal{I}(P)$ is the conductivity of an interface between P_{+}and P_{-}:

$$
\mathcal{I}(P)=\operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] \cdot g^{\prime}(P)\right) .
$$

Theorem: [D. '19] With the above assumptions,

$$
\begin{equation*}
2 \pi \cdot \mathcal{I}(P)=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) . \tag{2}
\end{equation*}
$$

Comment: (2) accounts for:

- quantization of $\mathcal{I}(P): \mathbf{2 \pi} \cdot \mathcal{I}(P) \in \mathbb{Z}$.
- Robustness of $\mathcal{I}(P)$: it depends only on \boldsymbol{P}_{+}and \boldsymbol{P}_{-}.

These are standard facts that can be shown a priori [Kellendonk-SchulzBaldes '05, Combes-Germinet '05, Avila-Schulz-Baldes-VillegasBlas '13, Bal '18]

Bulk-edge correspondence

Recall:

- λ_{0} is insulating energy for $P_{ \pm}: \lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right) \cup \sigma_{L^{2}}\left(P_{-}\right)$;
- $\mathcal{E}_{ \pm}$are eigenbundles of $P_{ \pm}$below λ_{0} with Chern numbers $c_{1}\left(\mathcal{E}_{ \pm}\right)$;
- $\mathcal{I}(P)$ is the conductivity of an interface between P_{+}and P_{-}:

$$
\mathcal{I}(P)=\operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] \cdot g^{\prime}(P)\right)
$$

Theorem: [D. '19] With the above assumptions,

$$
\begin{equation*}
2 \pi \cdot \mathcal{I}(P)=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) \tag{2}
\end{equation*}
$$

History of (2): Functional Analysis:

- [Hatsugai '93, Elbau-Graf '02, Graf-Porta '13]: discrete Landau-type Hamiltonians.
- [Elgart-Graf-Schenker '05, Taarabt '14]: addition of disorder.

Bulk-edge correspondence

Recall:

- λ_{0} is insulating energy for $P_{ \pm}: \lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right) \cup \sigma_{L^{2}}\left(P_{-}\right)$;
- $\mathcal{E}_{ \pm}$are eigenbundles of $P_{ \pm}$below λ_{0} with Chern numbers $c_{1}\left(\mathcal{E}_{ \pm}\right)$;
- $\mathcal{I}(P)$ is the conductivity of an interface between P_{+}and P_{-}:

$$
\mathcal{I}(P)=\operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] \cdot g^{\prime}(P)\right)
$$

Theorem: [D. '19] With the above assumptions,

$$
\begin{equation*}
2 \pi \cdot \mathcal{I}(P)=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) \tag{2}
\end{equation*}
$$

History of (2): K-theory:

- [Kellendonk-Richter-Schulz-Baldes '02, Kellendonk-Schulz-Baldes '04]: disordered Landau-type Hamiltonians.
- [Kubota '17, Bourne-Kellendonk-Rennie '17, Bourne-Rennie '18, Braverman '19]: general K- and KK-theoretic approaches.

Bulk-edge correspondence

Recall:

- λ_{0} is insulating energy for $P_{ \pm}: \lambda_{0} \notin \sigma_{L^{2}}\left(P_{+}\right) \cup \sigma_{L^{2}}\left(P_{-}\right)$;
- $\mathcal{E}_{ \pm}$are eigenbundles of $P_{ \pm}$below λ_{0} with Chern numbers $c_{1}\left(\mathcal{E}_{ \pm}\right)$;
- $\mathcal{I}(P)$ is the conductivity of an interface between P_{+}and P_{-}:

$$
\mathcal{I}(P)=\operatorname{Tr}_{L^{2}}\left(i\left[P, f\left(x_{1}\right)\right] \cdot g^{\prime}(P)\right)
$$

Theorem: [D. '19] With the above assumptions,

$$
\begin{equation*}
2 \pi \cdot \mathcal{I}(P)=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) \tag{2}
\end{equation*}
$$

History of (2): PDE side:

- [Bal '18, '19, Faure '19]: Quantitative forms of (2) for Dirac operators (non asymptotically periodic).
- [D. '18, D.-Weinstein '19]: Quantitative forms of (2) for weakly deformed graphene: indexes are ± 2.

Sketch of proof

$$
2 \pi \cdot \mathcal{I}(P)=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right)
$$

1. Deform P to a semiclassical operator \mathbb{P}_{h}, with $\mathcal{I}(P)=\mathcal{I}\left(\mathbb{P}_{h}\right)$.
2. Expand the semiclassical trace in powers of h :

$$
\mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right)\right) \sim \sum_{j \geq 0} a_{j} h^{j-2}
$$

3. Use that $\mathcal{I}\left(\mathbb{P}_{h}\right)$ is independent of h to justify $a_{2}=\mathcal{I}(P)$.
4. Use symbolic calculus to prove $a_{2}=c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right)$.

Inspiration for 1 comes from [Fedosov '70]: "semiclassical" proof of the index theorem. Technical aspects use [Gérard-Martinez-Sjöstrand '91].
Techniques of 2 adapt arguments of [Dimassi '93]: spectral asymptotics for two-scale operators.
Use of a calculation of [Elbau-Graf '02] to prove that a_{2} depends only on principal symbols in 4.

Sketch of proof: A. Index invariance

Prove a priori that $\mathcal{I}(P)$ depends only on P_{+}and P_{-}:

$$
\mathcal{I}(P)=\mathcal{I}\left(P_{+}, P_{-}\right)
$$

Standard fact; [D.'19] gives a pseudodifferential proof.
Then draw inspiration from [Fedosov '70]. Deform P to an operator P_{h} that transitions slowly from P_{+}to P_{-}: if

$$
\begin{aligned}
& \quad \chi_{+}\left(x_{2}\right)=\left\{\begin{array}{lll}
1 & \text { for } & x_{2} \geq 1 \\
0 & \text { for } & x_{2} \leq-1
\end{array}, \quad \chi_{-}=1-\chi_{+},\right. \\
& \text {and } \quad P_{h} \stackrel{\text { def }}{=} \chi\left(h x_{2}\right) P_{+}+\chi_{-}\left(h x_{2}\right) P_{-},
\end{aligned}
$$

then $\mathcal{I}\left(P_{h}\right)=\mathcal{I}\left(P_{+}, P_{-}\right)=\mathcal{I}(P)$.
P_{h} decouples a slow scale from a periodic scale. We write

$$
P_{h}=\sum_{\alpha} c_{\alpha}(h x, x) \cdot D_{x}^{\alpha}, \quad c_{\alpha}(x, y) \in C^{\infty}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right) .
$$

B. Semiclassical deformation

Justify that $P_{h}=\sum_{\alpha} c_{\alpha}(h x, x) \cdot D_{x}^{\alpha}$ is a semiclassical operator:

$$
\begin{gathered}
U(x, y) \in C^{\infty}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right), \quad u_{h}(x) \stackrel{\text { def }}{=} U(h x, x) \\
\Rightarrow\left(D_{x} u_{h}\right)(x)=\left(\left(h D_{x}+D_{y}\right) U\right)(h x, x), \\
\Rightarrow \quad\left(P_{h} u_{h}\right)(x)=\left(\mathbb{P}_{h} U\right)(h x, x), \quad \mathbb{P}_{h} \stackrel{\text { def }}{=} \sum_{\alpha} c_{\alpha}(x, y) \cdot\left(h D_{x}+D_{y}\right)^{\alpha} .
\end{gathered}
$$

Semiclassical operator in x with symbol acting on functions of $y \in \mathbb{T}^{2}$:

$$
\mathbb{P}(x, \xi)=\sum_{\alpha} c_{\alpha}(x, y) \cdot\left(\xi+D_{y}\right)^{\alpha}: L^{2}\left(\mathbb{T}^{2}\right) \rightarrow L^{2}\left(\mathbb{T}^{2}\right)
$$

P_{h} on $L^{2}\left(\mathbb{R}^{2}\right)$ and \mathbb{P}_{h} on $L^{2}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right)$ do not have the same spectra. [Gérard-Martinez-Sjöstrand '91]: construction of $\mathcal{H} \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right)$ such that P_{h} on $L^{2}\left(\mathbb{R}^{2}\right)$ and \mathbb{P}_{h} on \mathcal{H} are unitarily equivalent.

Elements in \mathcal{H} are (up to normalization) $L^{2}\left(\mathbb{R}^{2}\right)$ multiples of the Dirac mass on $\left\{(x, y)=(h \tilde{x}, \tilde{x}) \in \mathbb{R}^{2} \times \mathbb{T}^{2}\right\}$ i.e.

$$
\left\{(x, y) \in \mathbb{R}^{2} \times \mathbb{T}^{2}: x=h(y+m), m \in \mathbb{Z}^{2}\right\}
$$

B. Semiclassical deformation

Justify that $P_{h}=\sum_{\alpha} c_{\alpha}(h x, x) \cdot D_{x}^{\alpha}$ is a semiclassical operator:

$$
\begin{gathered}
U(x, y) \in C^{\infty}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right), u_{h}(x) \stackrel{\text { def }}{=} U(h x, x) \\
\Rightarrow\left(D_{x} u_{h}\right)(x)=\left(\left(h D_{x}+D_{y}\right) U\right)(h x, x), \\
\Rightarrow \quad\left(P_{h} u_{h}\right)(x)=\left(\mathbb{P}_{h} U\right)(h x, x), \quad \mathbb{P}_{h} \stackrel{\text { def }}{=} \sum_{\alpha} c_{\alpha}(x, y) \cdot\left(h D_{x}+D_{y}\right)^{\alpha} .
\end{gathered}
$$

Semiclassical operator in x with symbol acting on functions of $y \in \mathbb{T}^{2}$:

$$
\mathbb{P}(x, \xi)=\sum_{\alpha} c_{\alpha}(x, y) \cdot\left(\xi+D_{y}\right)^{\alpha}: L^{2}\left(\mathbb{T}^{2}\right) \rightarrow L^{2}\left(\mathbb{T}^{2}\right)
$$

P_{h} on $L^{2}\left(\mathbb{R}^{2}\right)$ and \mathbb{P}_{h} on $L^{2}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right)$ do not have the same spectra.
[Gérard-Martinez-Sjöstrand '91]: construction of $\mathcal{H} \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{2} \times \mathbb{T}^{2}\right)$ such that P_{h} on $L^{2}\left(\mathbb{R}^{2}\right)$ and \mathbb{P}_{h} on \mathcal{H} are unitarily equivalent.

$$
\mathcal{I}(P)=\mathcal{I}\left(P_{h}\right)=\mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right)\right) .
$$

C. Trace expansion

Recall $\mathcal{I}(P)=\mathcal{I}\left(\mathbb{P}_{h}\right)$: a semiclassical trace. Expect:

$$
\begin{equation*}
\mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right)\right) \sim \sum_{j \geq 0} a_{j} h^{j-2} \tag{3}
\end{equation*}
$$

But $\mathcal{I}(P)$ is h-independent: for all $j \neq 2, a_{j}=0$; and $a_{2}=\mathcal{I}(P)$.
Using symbolic calculus and ideas from [Dimassi '93, Elgart-GrafSchenker '05], one can compute a_{2} :

$$
\begin{aligned}
\mathcal{I}(P) & =a_{2}=\sum_{ \pm} \pm \frac{i}{2 \pi} \int_{\left(\mathbb{T}^{2}\right)^{*}} \operatorname{Tr}_{L^{2}\left(\mathbb{T}^{2}\right)}\left(\Pi_{ \pm, \xi}\left[\partial_{\xi_{1}} \Pi_{ \pm, \xi}, \partial_{\xi_{2}} \Pi_{ \pm, \xi}\right]\right) d \xi \\
& =c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) .
\end{aligned}
$$

See the appendix for the details...

Future perspectives

Reminder: Spectrum of P_{+}:

The eigenspace $1_{\left(-\infty, \lambda_{0}\right]}\left(P_{+}\right) \subset L^{2}\left(\mathbb{R}^{2}\right)$ identifies with a bundle $\mathcal{E}_{+} \rightarrow$ $\left(\mathbb{T}^{2}\right)^{*}$: the fibers are

$$
\begin{aligned}
\mathcal{E}_{+}(\xi) & \simeq \operatorname{Range}\left(\Pi_{+}(\xi)\right) \\
\Pi_{+}(\xi) & \simeq \frac{1}{2 i \pi} \oint_{\gamma_{0}}(z-\mathbb{P}(x, \xi))^{-1} d z \quad \text { with } \quad x_{2} \gg 1 \\
\mathbb{P}(x, \xi) & =\sum_{\alpha} c_{\alpha}(x, y)\left(D_{y}+\xi\right)^{\alpha}: L^{2}\left(\mathbb{T}^{2}\right) \rightarrow L^{2}\left(\mathbb{T}^{2}\right) .
\end{aligned}
$$

Assume now that $\operatorname{rk}\left(\mathcal{E}_{+}\right)=\operatorname{rk}\left(\mathcal{E}_{-}\right)=n$.

Future perspectives

Write $\left\{\lambda_{j}(x, \xi)\right\}=\sigma_{L^{2}\left(\mathbb{T}^{2}\right)}(\mathbb{P}(x, \xi))$. If

$$
\begin{equation*}
\forall(x, \xi), \quad \lambda_{n}(x, \xi)<\lambda_{n+1}(x, \xi) \tag{4}
\end{equation*}
$$

then the projector

$$
\Pi(x, \xi) \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \oint(z-\mathbb{P}(x, \xi))^{-1} d z
$$

interpolates smoothly from $\Pi_{-}(\xi)$ to $\Pi_{+}(\xi)$ as x_{2} runs from $-\infty$ to $+\infty$.
This provides a continuous deformation from $\mathcal{E}_{-}(\xi)$ to $\mathcal{E}_{+}(\xi)$. Hence if (4) holds, $c_{1}\left(\mathcal{E}_{-}\right)=c_{1}\left(\mathcal{E}_{+}\right)$.

In other words:

$$
\mathcal{I}(P) \neq 0 \Leftrightarrow c_{1}\left(\mathcal{E}_{-}\right) \neq c_{1}\left(\mathcal{E}_{+}\right) \quad \Rightarrow \quad \exists(x, \xi), \quad \lambda_{n}(x, \xi)=\lambda_{n+1}(x, \xi) .
$$

Non-zero conductivity \Rightarrow semiclassical eigenvalue crossing.

Future perspectives

Define a subset of singularities in the Bloch variety:

$$
\mathcal{Z} \stackrel{\text { def }}{=}\left\{(x, \xi): \lambda_{n}(x, \xi)=\lambda_{n+1}(x, \xi)\right\}
$$

If $\mathcal{I}(P) \neq 0$ then $\mathcal{Z} \neq \emptyset$. Microlocally, everything should happen near \mathcal{Z}.
Fix $\varepsilon_{0}>0$ small enough and define:
$G(x, \xi, \lambda)=\left\{\begin{array}{ll}1 & \text { if } \quad \lambda<\mu(x, \xi)-\varepsilon_{0} \\ 0 & \text { if } \quad \lambda>\mu(x, \xi)+\varepsilon_{0}\end{array}, \quad \mu(x, \xi) \stackrel{\text { def }}{=} \frac{\lambda_{n}(x, \xi)+\lambda_{n+1}(x, \xi)}{2}\right.$.

Future perspectives

Future perspectives

$\mathbb{W}(x, \xi) \stackrel{\text { def }}{=} \partial_{\lambda} G(x, \xi, \mathbb{P}(x, \xi))$.

Future perspectives

$$
\mathcal{Z}=\left\{(x, \xi): \lambda_{n}(x, \xi)=\lambda_{n+1}(x, \xi)\right\} .
$$

$G(x, \xi, \lambda)=\left\{\begin{array}{lll}1 & \text { if } & \lambda<\mu(x, \xi)-\varepsilon_{0} \\ 0 & \text { if } & \lambda>\mu(x, \xi)+\varepsilon_{0}\end{array}, \quad \mu(x, \xi) \stackrel{\text { def }}{=} \frac{\lambda_{n}(x, \xi)+\lambda_{n+1}(x, \xi)}{2}\right.$.
$\mathbb{W}(x, \xi)=\partial_{\lambda} G(x, \xi, \mathbb{P}(x, \xi))$: Operator valued-symbol.
Quantize: $\mathbb{W}_{h}=\mathbb{W}\left(x, h D_{x}\right)$. It acts on \mathcal{H} and microlocalizes near \mathcal{Z}.
Conjecture:

$$
\mathcal{I}(P)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \mathbb{W}_{h}\right)+\mathcal{O}\left(h^{\infty}\right)
$$

Comments:

- $\mathbb{W}(x, \xi)=0$ if $\mathcal{Z}=\emptyset$ (and ε_{0} is small enough).

Thus conjecture is true if $\mathcal{Z}=\emptyset$:

$$
\begin{equation*}
\mathcal{Z}=\emptyset \Rightarrow c_{1}\left(\mathcal{E}_{+}\right)=c_{1}\left(\mathcal{E}_{-}\right) \Rightarrow \mathcal{I}(P)=0 ; \tag{1}
\end{equation*}
$$

and $\mathbb{W}_{h}=0$.

Future perspectives

$$
\mathcal{Z}=\left\{(x, \xi): \lambda_{n}(x, \xi)=\lambda_{n+1}(x, \xi)\right\} .
$$

$G(x, \xi, \lambda)=\left\{\begin{array}{lll}1 & \text { if } & \lambda<\mu(x, \xi)-\varepsilon_{0} \\ 0 & \text { if } & \lambda>\mu(x, \xi)+\varepsilon_{0}\end{array}, \quad \mu(x, \xi) \stackrel{\text { def }}{=} \frac{\lambda_{n}(x, \xi)+\lambda_{n+1}(x, \xi)}{2}\right.$.
$\mathbb{W}(x, \xi)=\partial_{\lambda} G(x, \xi, \mathbb{P}(x, \xi))$: Operator valued-symbol.
Quantize: $\mathbb{W}_{h}=\mathbb{W}\left(x, h D_{x}\right)$. It acts on \mathcal{H} and microlocalizes near \mathcal{Z}.
Conjecture:

$$
\mathcal{I}(P)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \mathbb{W}_{h}\right)+\mathcal{O}\left(h^{\infty}\right)
$$

Comments:

- [D. '18, D.-Weinstein'19] supports the conjecture in the context of Dirac points (simplest eigenvalue crossings).

Future perspectives

$$
\mathcal{Z}=\left\{(x, \xi): \lambda_{n}(x, \xi)=\lambda_{n+1}(x, \xi)\right\} .
$$

$G(x, \xi, \lambda)=\left\{\begin{array}{lll}1 & \text { if } & \lambda<\mu(x, \xi)-\varepsilon_{0} \\ 0 & \text { if } & \lambda>\mu(x, \xi)+\varepsilon_{0}\end{array}, \quad \mu(x, \xi) \stackrel{\text { def }}{=} \frac{\lambda_{n}(x, \xi)+\lambda_{n+1}(x, \xi)}{2}\right.$.
$\mathbb{W}(x, \xi)=\partial_{\lambda} G(x, \xi, \mathbb{P}(x, \xi))$: Operator valued-symbol.
Quantize: $\mathbb{W}_{h}=\mathbb{W}\left(x, h D_{x}\right)$. It acts on \mathcal{H} and microlocalizes near \mathcal{Z}.
Conjecture:

$$
\mathcal{I}(P)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \mathbb{W}_{h}\right)+\mathcal{O}\left(h^{\infty}\right)
$$

Comments:

- Dynamical analog: a normal form for \mathbb{P}_{h} should govern the transport along the edge.
- Dynamical work without crossings (no topology!): [Buslaev '87, Dimassi-Guillot-Ralston '02, Panati-Spohn-Teufel '02, ...]

Future perspectives

- Conjecture!
- Semiclassical propagation of edge states for Dirac point crossings in the presence of gaps of width 1 ? See
[Fefferman-Lee-Thorp-Weinstein '16, D.'18, D.-Weinstein '19] for small gaps (homogenization scaling).
- Semiclassical propagation along bended edges?
- Lieb lattice-type crossings: explain nonlinear phenomena [Marzuola-Rechtsman-Osting-Brandes '19]?

Thank you for your attention!

Appendix... C. Trace expansion

Recall $\mathcal{I}(P)=\mathcal{I}\left(\mathbb{P}_{h}\right)$: a semiclassical trace. Expect:

$$
\begin{equation*}
\mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right)\right) \sim \sum_{j \geq 0} a_{j} h^{j-2} \tag{3}
\end{equation*}
$$

But $\mathcal{I}(P)$ is h-independent: for all $j \neq 2, a_{j}=0$; and $a_{2}=\mathcal{I}(P)$.
Theorem [Dimassi '93]. Let $\mathbb{Q}(x, \xi): L^{2}\left(\mathbb{T}^{2}\right) \rightarrow L^{2}\left(\mathbb{T}^{2}\right), I \subset \mathbb{R}$ s.t.:

$$
\exists M>0 \text { such that } \forall|x| \geq M, \quad \sigma_{L^{2}\left(\mathbb{T}^{2}\right)}(\mathbb{Q}(x, \xi)) \cap I=\emptyset .
$$

Then for all $\psi(\lambda) \in C_{0}^{\infty}(I)$,
$\operatorname{Tr}_{\mathcal{H}}\left(\psi\left(\mathbb{Q}_{h}\right)\right) \sim \sum_{j \geq 0} b_{j} h^{j-2}, \quad b_{0} \stackrel{\text { def }}{=} \frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2} \times\left(\mathbb{T}^{2}\right)^{*}} \operatorname{Tr}_{L^{2}\left(\mathbb{T}^{2}\right)}(\psi(\mathbb{Q}(x, \xi))) d x d \xi$.
Need to go beyond [Dimassi '93]: we want a_{2} in (3).
Quite different mechanism between [Dimassi '93] and [D. '19]:

- [D.' 19] shows that a_{2} depends only on eigenprojectors. And $a_{2}=O(1)$. For the spectral flow: lots of cancellations.

D. Localization

Calculation:

$$
\begin{aligned}
& \mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right)\right) \\
& \quad=\operatorname{Tr}_{\mathcal{H}}\left(i\left[g\left(\mathbb{P}_{h}\right), f\left(x_{1}\right)\right]\right)=0 .
\end{aligned}
$$

Wrong! The trace-class property fails.
Need: (frequency and) spatial localization.
If $\left|x_{2}\right| \geq 2$ then $\mathbb{P}(x, \xi)=\mathbb{P}_{ \pm}(\xi)$ and

$$
g^{\prime}(\mathbb{P}(x, \xi))=g^{\prime}\left(\mathbb{P}_{ \pm}(\xi)\right)=0 \quad \text { (because } P_{ \pm} \text {are insulators). }
$$

For $\left|x_{1}\right| \geq 2, f^{\prime}\left(x_{1}\right)=0$. Thus if $\phi(x)=1$ on $[-2,2]^{2}$,

$$
\mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right) \cdot \phi(x)\right)+\mathcal{O}\left(h^{\infty}\right)
$$

E. Double commutator

Goal: adapt an idea of [Elgart-Graf-Schenker '05] to write

$$
\mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}}\left(i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot g^{\prime}\left(\mathbb{P}_{h}\right) \cdot \phi(x)\right)+\mathcal{O}\left(h^{\infty}\right)
$$

as a double commutator. Modulo $\mathcal{O}\left(h^{\infty}\right)$:

$$
\begin{aligned}
& \mathcal{I}\left(\mathbb{P}_{h}\right)=\operatorname{Tr}_{\mathcal{H}} \int \frac{\partial^{2} \tilde{g}(z, \bar{z})}{\partial z \partial \bar{z}} i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right]\left(\mathbb{P}_{h}-z\right)^{-1} \phi(x) \frac{d m(z)}{\pi}=\ldots \\
&=\int \frac{\partial \tilde{g}(z, \bar{z})}{\partial \bar{z}} \cdot \underbrace{\operatorname{Tr}_{\mathcal{H}}\left(i\left[\left(\mathbb{P}_{h}-z\right)^{-1} \phi(x), f\left(x_{1}\right)\right]\right)}_{=0} \frac{d m(z)}{\pi} \\
&+\operatorname{Tr}_{\mathcal{H}} \int \frac{\partial \tilde{g}(z, \bar{z})}{\partial \bar{z}} \operatorname{Tr}_{\mathcal{H}}(\underbrace{i\left[\mathbb{P}_{h}, f\left(x_{1}\right)\right] \cdot\left(\mathbb{P}_{h}-z\right)^{-1} \cdot \underbrace{\left[\left(\mathbb{P}_{h}-z\right)^{-1}, \phi(x)\right]}_{\text {commutator }}) \frac{d m(z)}{\pi} .}_{\text {commutator }}
\end{aligned}
$$

Rest of the proof: leading-order symbolic calculus - in a Grushin framework [Gérard-Martinez-Sjöstrand '91, Dimassi '93]. Eventually:

$$
\begin{aligned}
\mathcal{I}(P) & =a_{2}=\sum_{ \pm} \pm \frac{i}{2 \pi} \int_{\left(\mathbb{T}^{2}\right)^{*}} \operatorname{Tr}_{L^{2}\left(\mathbb{T}^{2}\right)}\left(\Pi_{ \pm, \xi}\left[\partial_{\xi_{1}} \Pi_{ \pm, \xi}, \partial_{\xi_{2}} \Pi_{ \pm, \xi}\right]\right) d \xi \\
& =c_{1}\left(\mathcal{E}_{+}\right)-c_{1}\left(\mathcal{E}_{-}\right) .
\end{aligned}
$$

