On The Twists of Graded Poisson Algebras

Xin Tang

Fayetteville State University

Joint with Xingting Wang and James J. Zhang

https://arxiv.org/pdf/2206.05639.pdf

Seattle Noncommutative Algebra Day

March 17-18, 2023

Table of Contents

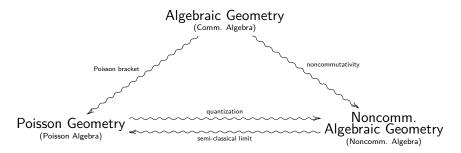
1 Examples of Poisson Algebras

- 2 Twists of Graded Poisson Brackets
- 3 Rigidity of Poisson Structures
- 4 H-ozoness and PH¹-minimality

• The notion of Poisson brackets was introduced by Siméon Denis Poisson in the search for integrals of motion in Hamiltonian mechanics.

- The notion of Poisson brackets was introduced by Siméon Denis Poisson in the search for integrals of motion in Hamiltonian mechanics.
- Poisson geometry is closely related to algebraic geometry and noncommutative algebraic geometry as depicted below:

- The notion of Poisson brackets was introduced by Siméon Denis Poisson in the search for integrals of motion in Hamiltonian mechanics.
- Poisson geometry is closely related to algebraic geometry and noncommutative algebraic geometry as depicted below:



• \Bbbk : base field

글 🕨 🔺 글 🕨

3

• k: base field of char. zero

∃ ⇒

< □ > < 同 >

3

Setup

• k: base field of char. zero

• Poisson algebra A: commutative k-algebra with Poisson bracket

$$\pi := \{-, -\} : A \times A \to A$$

that is (1) Lie bracket and (2) biderivation.

Setup

- k: base field of char. zero
- Poisson algebra A: commutative k-algebra with Poisson bracket

$$\pi := \{-,-\} : A \times A \to A$$

that is (1) Lie bracket and (2) biderivation.

• graded Poisson algebra $A = \Bbbk[x_1, \dots, x_n]$: multiplication and bracket both graded.

Let $A = \Bbbk[x, y]$. Then A is a Poisson algebra under one of the following brackets:

• $\{x, y\} = 0;$

Let $A = \Bbbk[x, y]$. Then A is a Poisson algebra under one of the following brackets:

- $\{x, y\} = 0;$
- $\{x, y\} = x^2;$

Let $A = \Bbbk[x, y]$. Then A is a Poisson algebra under one of the following brackets:

- $\{x, y\} = 0;$
- $\{x, y\} = x^2;$
- $\{x, y\} = 2xy$.

Poisson Structures on $\Bbbk[x, y, z]$

• Let $\Omega \in \Bbbk[x, y, z]$. One can define the following Poisson structure on $A = \Bbbk[x, y, z]$

$$\{f,g\} = \det(\frac{\partial(\Omega, f,g)}{\partial(x,y,z)})$$

for any $f, g \in \mathbb{k}[x, y, z]$.

Poisson Structures on $\Bbbk[x, y, z]$

• Let $\Omega \in \Bbbk[x, y, z]$. One can define the following Poisson structure on $A = \Bbbk[x, y, z]$

$$\{f,g\} = \det(\frac{\partial(\Omega, f,g)}{\partial(x,y,z)})$$

for any $f, g \in \Bbbk[x, y, z]$.

• If $\Omega = xyz$, then

$$\{x, y\} = xy;$$

 $\{y, z\} = yz;$
 $\{z, x\} = zx.$

Lecoutre-Sierra's Poisson algebra A(n, a)

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

Lecoutre-Sierra's Poisson algebra A(n, a)

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$A(1, a) = \Bbbk[x_0, x_1]$$
 with $\{x_0, x_1\} = -ax_0^2$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$A(1, a) = \mathbb{k}[x_0, x_1]$$
 with $\{x_0, x_1\} = -ax_0^2$

• $A(2,a) = \Bbbk[x_0, x_1, x_2]$ such that

$$\{x_0, x_1\} = -ax_0^2, \{x_0, x_2\} = -ax_0x_1, \{x_1, x_2\} = (a+2)x_0x_2 - (a+1)x_1^2.$$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$A(1, a) = \mathbb{k}[x_0, x_1]$$
 with $\{x_0, x_1\} = -ax_0^2$

• $A(2,a) = \Bbbk[x_0, x_1, x_2]$ such that

$$\{x_0, x_1\} = -ax_0^2, \\ \{x_0, x_2\} = -ax_0x_1, \\ \{x_1, x_2\} = (a+2)x_0x_2 - (a+1)x_1^2. \end{cases}$$

• $A(3, -\frac{5}{4})$ is Pym's exceptional Poisson algebra E(3)

Table of Contents

2 Twists of Graded Poisson Brackets

- 3 Rigidity of Poisson Structures
- 4 H-ozoness and PH¹-minimality

 Let (A, {, }) be a Poisson algebra. A derivation δ of A is called a Poisson derivation if

$$\delta(\{a,b\}) = \{\delta(a),b\} + \{a,\delta(b)\}$$

for any $a, b \in A$.

 Let (A, {, }) be a Poisson algebra. A derivation δ of A is called a Poisson derivation if

$$\delta(\{a,b\}) = \{\delta(a),b\} + \{a,\delta(b)\}$$

for any $a, b \in A$.

• Let $A = \Bbbk[x_1, \ldots, x_n]$ and $\delta \in Der_{\Bbbk}(A)$ be a derivation of A.

Definition (Wang-Zhang-T. 22)

 δ is called semi-Poisson derivation if $p(\{-,-\},\delta,a,b,c) = 0$, where

 Let (A, {, }) be a Poisson algebra. A derivation δ of A is called a Poisson derivation if

$$\delta(\{a,b\}) = \{\delta(a),b\} + \{a,\delta(b)\}$$

for any $a, b \in A$.

• Let $A = \Bbbk[x_1, \ldots, x_n]$ and $\delta \in Der_{\Bbbk}(A)$ be a derivation of A.

Definition (Wang-Zhang-T. 22)

 δ is called semi-Poisson derivation if $p(\{-,-\},\delta,a,b,c) = 0$, where

$$p(\{-,-\},\delta;a,b,c) := |a|a[\delta(\{b,c\}) - \{\delta(b),c\} - \{b,\delta(c)\}] - |b|b[\delta(\{a,c\}) - \{\delta(a),c\} - \{a,\delta(c)\}] + |c|c[\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\}].$$

9/26

 Let (A, {, }) be a Poisson algebra. A derivation δ of A is called a Poisson derivation if

$$\delta(\{a,b\}) = \{\delta(a),b\} + \{a,\delta(b)\}$$

for any $a, b \in A$.

• Let $A = \Bbbk[x_1, \ldots, x_n]$ and $\delta \in Der_{\Bbbk}(A)$ be a derivation of A.

Definition (Wang-Zhang-T. 22)

 δ is called semi-Poisson derivation if $p(\{-,-\},\delta,a,b,c) = 0$, where

$$p(\{-,-\},\delta;a,b,c) := |a|a[\delta(\{b,c\}) - \{\delta(b),c\} - \{b,\delta(c)\}] - |b|b[\delta(\{a,c\}) - \{\delta(a),c\} - \{a,\delta(c)\}] + |c|c[\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\}].$$

 $\mbox{Poisson derivation} \Rightarrow \mbox{ semi-Poisson derivation} \Rightarrow \mbox{ derivation}$

Let A be a G-graded Poisson algebra where G is an abelian group.

• E: Euler derivation defined by

 $E(a) = \deg(a)a$

for any homogeneous element $a \in A$.

Let A be a G-graded Poisson algebra where G is an abelian group.

• E: Euler derivation defined by

 $E(a) = \deg(a)a$

for any homogeneous element $a \in A$.

• $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Let A be a G-graded Poisson algebra where G is an abelian group.

• E: Euler derivation defined by

 $E(a) = \deg(a)a$

for any homogeneous element $a \in A$.

• $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Definition (Wang-Zhang-T. 22)

The twist of (A, π) is (A^{δ}, π_{new}) such that

Let A be a G-graded Poisson algebra where G is an abelian group.

• E: Euler derivation defined by

 $E(a) = \deg(a)a$

for any homogeneous element $a \in A$.

• $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Definition (Wang-Zhang-T. 22)

The twist of (A, π) is (A^{δ}, π_{new}) such that

• $A = A^{\delta}$ as commutative algebras

Let A be a G-graded Poisson algebra where G is an abelian group.

• E: Euler derivation defined by

 $E(a) = \deg(a)a$

for any homogeneous element $a \in A$.

• $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Definition (Wang-Zhang-T. 22)

The twist of (A, π) is (A^{δ}, π_{new}) such that

• $A = A^{\delta}$ as commutative algebras

•
$$\pi_{new} = \pi + E \wedge \delta$$
 or

$$\{a,b\}_{new} = \{a,b\} + E(a)\delta(b) - \delta(a)E(b)$$

10 / 26

Twists for L.-S. Poisson Algebras A(n, a)

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \ldots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$$
: downward Poisson derivation

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$$
: downward Poisson derivation

•
$$A(n,a)^{b\Delta} \cong A(n,a-b)$$

Table of Contents

- 1 Examples of Poisson Algebras
- 2 Twists of Graded Poisson Brackets
- 3 Rigidity of Poisson Structures
- 4 H-ozoness and PH¹-minimality

Rigidity of Graded Poisson Algebras

Definition (Wang-Zhang-T. 22)

Let A be a G-graded Poisson algebra where G is cyclic.

• G(s)pd(A):={graded (semi)-Poisson derivations of degree 0}

Rigidity of Graded Poisson Algebras

Definition (Wang-Zhang-T. 22)

Let A be a G-graded Poisson algebra where G is cyclic.

- G(s)pd(A):={graded (semi)-Poisson derivations of degree 0}
- The rigidity of A is

$$rgt(A) := 1 - \dim_{\Bbbk} Gspd(A).$$

Rigidity of Graded Poisson Algebras

Definition (Wang-Zhang-T. 22)

Let A be a G-graded Poisson algebra where G is cyclic.

- G(s)pd(A):={graded (semi)-Poisson derivations of degree 0}
- The rigidity of A is

$$rgt(A) := 1 - \dim_{\Bbbk} Gspd(A).$$

• A is rigid if rgt(A) = 0 and -1 rigid if rgt(A) = -1

13/26

Modular Derivations and Unimodularity

Let $A = \Bbbk[x_1, \cdots, x_n]$ be a Poisson algebra. • $\delta \in \text{Der}_{\Bbbk}(A)$

- Let $A = \Bbbk[x_1, \cdots, x_n]$ be a Poisson algebra. • $\delta \in \text{Der}_{\Bbbk}(A)$
 - $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence

- Let $A = \Bbbk[x_1, \cdots, x_n]$ be a Poisson algebra. • $\delta \in \text{Der}_{\Bbbk}(A)$
 - $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence
 - $H_a := \{a, -\}$: Hamiltonian derivation

- Let $A = \Bbbk[x_1, \cdots, x_n]$ be a Poisson algebra. • $\delta \in \text{Der}_{\Bbbk}(A)$
 - $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence
 - $H_a := \{a, -\}$: Hamiltonian derivation
 - $PH^1(A) := \frac{Pder(A)}{Ham(A)}$

- Let $A = \Bbbk[x_1, \cdots, x_n]$ be a Poisson algebra. • $\delta \in \text{Der}_{\Bbbk}(A)$
 - $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence
 - $H_a := \{a, -\}$: Hamiltonian derivation

•
$$PH^1(A) := \frac{Pder(A)}{Ham(A)}$$

Definition

The modular derivation \mathfrak{m} of A is

$$\mathfrak{m}(a) := -\mathrm{Div}(H_a).$$

A is called unimodular if $\mathfrak{m} = 0$.

Remark

$$\mathfrak{m} \in Pder(A)$$
 and $\operatorname{Div}(\mathfrak{m}) = 0$

Xin Tang

March 17-18, 2023

Examples of Modular Derivations

• $A = \Bbbk[x, y]$ is unimodular under the bracket $\{x, y\} = 0$.

Examples of Modular Derivations

- $A = \Bbbk[x, y]$ is unimodular under the bracket $\{x, y\} = 0$.
- The modular derivation of $A = \Bbbk[x, y]$ under the bracket

$$\{x,y\} = x^2$$

is

$$\mathfrak{m}(x)=0, \quad \mathfrak{m}(y)=2x.$$

The derivation ϕ defined by $\phi(x) = -x, \phi(y) = y - x$ is a semi-Poisson derivation of A under the bracket $\{x, y\} = x^2$.

Examples of Modular Derivations

- $A = \Bbbk[x, y]$ is unimodular under the bracket $\{x, y\} = 0$.
- The modular derivation of $A = \Bbbk[x, y]$ under the bracket

$$\{x,y\} = x^2$$

is

$$\mathfrak{m}(x)=0, \quad \mathfrak{m}(y)=2x.$$

The derivation ϕ defined by $\phi(x) = -x, \phi(y) = y - x$ is a semi-Poisson derivation of A under the bracket $\{x, y\} = x^2$.

• The modular derivation of $A = \Bbbk[x, y]$ under the bracket

$$\{x,y\}=2xy$$

is

$$\mathfrak{m}(x) = -2y, \quad \mathfrak{m}(y) = 2x.$$

Lemma (Wang-Zhang-T. 22)

• $A = \Bbbk[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra

Lemma (Wang-Zhang-T. 22)

- $A = \Bbbk[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$ of degree zero

Lemma (Wang-Zhang-T. 22)

- $A = \Bbbk[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$ of degree zero
- m: modular derivation of A

Lemma (Wang-Zhang-T. 22)

- $A = \Bbbk[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$ of degree zero
- m: modular derivation of A
- \mathfrak{n} : modular derivation of A^{δ}

Lemma (Wang-Zhang-T. 22)

- $A = \Bbbk[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$ of degree zero
- m: modular derivation of A
- \mathfrak{n} : modular derivation of A^{δ}

Then

$$\mathbf{n} = \mathbf{m} + \left(\sum_{i=1}^n \deg(x_i)\right) \,\delta - \operatorname{Div}(\delta) E.$$

Unimodular Poisson Brackets

Theorem (Wang-Zhang-T. 22)

•
$$(A = \Bbbk[x_1, \dots, x_n], \pi)$$
: \mathbb{Z} -graded Poisson algebra

•
$$\operatorname{Div}(E) = \operatorname{deg}(x_1) + \cdots + \operatorname{deg}(x_n) \neq 0$$
 in \Bbbk

•
$$\mathfrak{m}(-) = -\operatorname{Div}(H_-)$$
: modular derivation of A.

Then
$$\left(A^{-\frac{1}{\operatorname{Div}(E)}\mathfrak{m}}, \pi_{unim}\right)$$
 is unimodular and

$$\pi = \pi_{unim} + \frac{1}{\operatorname{Div}(E)} \left(E \wedge \mathfrak{m} \right).$$

æ

Theorem (Wang-Zhang-T. 22)

Let A be a $\mathbb{Z}\text{-}\mathsf{graded}$ Poisson algebra. Then

• A is unimodular \Rightarrow Gspd(A) = Gpd(A)

Theorem (Wang-Zhang-T. 22)

Let A be a $\mathbb{Z}\text{-}\mathsf{graded}$ Poisson algebra. Then

• A is unimodular \Rightarrow Gspd(A) = Gpd(A)

•
$$\dim_{\Bbbk} Gspd(A) = \dim_{\Bbbk} Gspd(A^{\delta})$$

Theorem (Wang-Zhang-T. 22)

Let A be a \mathbb{Z} -graded Poisson algebra. Then

- A is unimodular \Rightarrow Gspd(A) = Gpd(A)
- $\dim_{\Bbbk} Gspd(A) = \dim_{\Bbbk} Gspd(A^{\delta})$

•
$$rgt(A) = 0 \Rightarrow A$$
 is unimodular

Theorem (Wang-Zhang-T. 22)

Let A be a \mathbb{Z} -graded Poisson algebra. Then

- A is unimodular \Rightarrow Gspd(A) = Gpd(A)
- $\dim_{\Bbbk} \operatorname{Gspd}(A) = \dim_{\Bbbk} \operatorname{Gspd}(A^{\delta})$
- $rgt(A) = 0 \Rightarrow A$ is unimodular
- $rgt(A) = -1 \Rightarrow \dim_{\mathbb{K}} Gspd(A) = \dim_{\mathbb{K}} Gpd(A) = 2$

• $A = \Bbbk[x, y, z]$ with $\deg(x, y, z) = 1$

イロト 不得 ト イヨト イヨト

- $A = \Bbbk[x, y, z]$ with $\deg(x, y, z) = 1$
- (A, π) : unimodular

Image: A mathematical states of the state

< □ > < /□ >

- $A = \Bbbk[x, y, z]$ with $\deg(x, y, z) = 1$
- (A, π) : unimodular

۲

$$\pi = \Omega_z \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \Omega_x \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \Omega_y \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x}$$

for some cubic Ω .

- (日)

∃ ⇒

rgt for k[x, y, z]

- $A = \Bbbk[x, y, z]$ with deg(x, y, z) = 1
- (A, π) : unimodular

٠

$$\pi = \Omega_z \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \Omega_x \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \Omega_y \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x}$$

for some cubic Ω .

• $rgt(A) = 1 - \dim_{k} Gspd(A) = 1 - \dim_{k} Gpd(A) = 1 - \dim_{k} (PH^{1}(A))_{0}$

3

19/26

- $A = \Bbbk[x, y, z]$ with $\deg(x, y, z) = 1$
- (A, π) : unimodular

٠

$$\pi = \Omega_z \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \Omega_x \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \Omega_y \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x}$$

for some cubic Ω .

• $rgt(A) = 1 - \dim_{\Bbbk} Gspd(A) = 1 - \dim_{\Bbbk} Gpd(A) = 1 - \dim_{\Bbbk} (PH^{1}(A))_{0}$

Proposition (Wang-Zhang-T. 22)

$$\begin{array}{|c|c|c|c|c|c|c|c|} \Omega & 0 & x^3 & x^2y & xyz & xy(x+y) & xyz+x^3 & xy^2+x^2z & irred. \\ \hline rgt(A) & -8 & -5 & -3 & -2 & -2 & -1 & -1 & 0 \\ \end{array}$$

3

(日)

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in k$. Set $A(n, a) := k[x_0, \ldots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation

• modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} - 1)\Delta$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \ldots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation

• modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} - 1)\Delta$

•
$$A(n,a)$$
 is unimodular $\Leftrightarrow a = rac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n=3,a_0=-rac{5}{4})$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \ldots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation

- modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} 1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n = 3, a_0 = -\frac{5}{4})$
- $Gspd(A(n, a_0)) = Gpd(A(n, a_0)) = \operatorname{span}_{\Bbbk}(E, \Delta)$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \ldots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$$
: downward Poisson derivation

- modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} 1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n = 3, a_0 = -\frac{5}{4})$
- $Gspd(A(n, a_0)) = Gpd(A(n, a_0)) = \operatorname{span}_{\Bbbk}(E, \Delta)$
- A(n, a) are graded twists of each other for each $n \ge 1$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \Bbbk$. Set $A(n, a) := \Bbbk[x_0, \ldots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

•
$$\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$$
: downward Poisson derivation

- modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} 1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n = 3, a_0 = -\frac{5}{4})$
- $Gspd(A(n, a_0)) = Gpd(A(n, a_0)) = span_{\Bbbk}(E, \Delta)$
- A(n, a) are graded twists of each other for each $n \ge 1$
- rgt(A(n, a)) = -1

Table of Contents

- 1 Examples of Poisson Algebras
- 2 Twists of Graded Poisson Brackets
- 8 Rigidity of Poisson Structures
- 4 H-ozoness and *PH*¹-minimality

Poisson algebra A with Poisson center Z

Poisson algebra A with Poisson center Z

• A Poisson derivation ϕ of A is called ozone if $\phi(Z) = 0$

Poisson algebra A with Poisson center Z

- A Poisson derivation ϕ of A is called ozone if $\phi(Z) = 0$
- A is H-ozone if every ozone Poisson derivation is Hamiltonian

Poisson algebra A with Poisson center Z

- A Poisson derivation ϕ of A is called ozone if $\phi(Z) = 0$
- A is *H*-ozone if every ozone Poisson derivation is Hamiltonian
- Let A be a nontrivial connected graded Poisson algebra with its Poisson center Z being a domain. A is said to be PH^1 -minimal if $PH^1(A) \cong ZE$

H-ozoness

Theorem (Wang-Zhang-T. 22)

Let $A = \Bbbk[x_1, \dots, x_n]$ be a connected graded Poisson algebra with its Poisson center $Z \neq \Bbbk$. Then

٩

글 에 에 글 에 다

æ

H-ozoness

Theorem (Wang-Zhang-T. 22)

Let $A = \Bbbk[x_1, \dots, x_n]$ be a connected graded Poisson algebra with its Poisson center $Z \neq \Bbbk$. Then

٢

$$A \text{ is } PH^1\text{-minimal} \Longrightarrow A \text{ is } H\text{-ozone} \ igvee for \ for \$$

• If Z = k[z] for some deg(z) > 0, then A is H-ozone implies that rgt(A) = 0.

H-ozones

Theorem (Wang-Zhang-T. 22)

Let $A = \Bbbk[x, y, z]$ be a connected graded Poisson algebra with Poisson center Z and $\deg(x, y, z) = 1$. TFAE.

- (1) A is PH^1 -minimal.
- (2) rgt(A) = 0.
- (3) Any graded twist of A is isomorphic to A.
- (4) $h_{Pder(A)}(t) = \frac{1}{(1-t)^3}$.
- (5) $h_{PH^1(A)}(t) = \frac{1}{1-t^3}$.
- (6) $h_{PH^1(A)}(t) = h_Z(t).$

(7)
$$h_{PH^3(A)}(t) - h_{PH^2(A)}(t) = t^{-3}$$
.

(8) A is unimodular with irreducible Ω .

24 / 26

Poisson cohomology of k[x, y, z]

Corollary (Wang-Zhang-T. 22)

 $A = \Bbbk[x, y, z]$ unimodular quadratic Poisson algebra with irreducible potential Ω . Then

Poisson cohomology of k[x, y, z]

Corollary (Wang-Zhang-T. 22)

 $A = \Bbbk[x, y, z]$ unimodular quadratic Poisson algebra with irreducible potential Ω . Then

(1)
$$h_{PH^{0}(A)}(t) = \frac{1}{1-t^{3}}$$

(2) $h_{PH^{1}(A)}(t) = \frac{1}{1-t^{3}}$

(3)
$$h_{PH^2(A)}(t) = \frac{1}{t^3} (\frac{(1+t)^3}{1-t^3} - 1)$$

(4)
$$h_{PH^3(A)}(t) = \frac{(1+t)^3}{t^3(1-t^3)}$$

Thank You!

< ∃⇒

æ