# Automorphisms of the quantum grassmannian 

Tom Lenagan

Seattle, March 2023
(Joint work with Stéphane Launois)
(arXiv:2301.06865)

- The quantum grassmannian

The quantum grassmannian is a noncommutative deformation of the homogeneous coordinate ring of the classical grassmannian.
(Throughout, $K$ is a field and $0 \neq q \in K$ is not a root of unity.)

- The classical grassmannian

The $k \times n$ grassmannian $G(k, n)$ is the set of $k$-dimensional vector subspaces of an $n$-dimensional vector space over some fixed field.

- Example

The $1 \times 3$ grassmannian $G(1,3)$ is the set of lines through the origin in 3 -space; that is, $\mathbb{P}^{2}$

- $G(2,4)$ is the grassmannian of 2-spaces in 4-space
- Specify $P$ by two linearly independent vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$
- Display in a $2 \times 4$ matrix

$$
\left(\begin{array}{llll}
v_{11} & v_{12} & v_{13} & v_{14} \\
v_{21} & v_{22} & v_{23} & v_{24}
\end{array}\right)
$$

- Many such matrices give the same $P$ (change of basis, left multiplication by $G L(2)$ )
- Let [ij] be the $2 \times 2$ minor using columns $i$ and $j$
- The ratios [12] : [13] : [14] : [23] : [24] : [34] specify $P$ uniquely
- The ratios [12] : [13] : [14] : [23] : [24] : [34] are the Plücker coordinates of $P$; they specify $P$ uniquely.
- There is a Plücker relation [12][34] - [13][24] + [14][23] $=0$
- We can choose a normal form for $P \in G(2,4)$ by reducing to echelon form: the generic case is

$$
\left(\begin{array}{cccc}
1 & 0 & \star & \star \\
0 & 1 & \star & \star
\end{array}\right) \approx k^{4} \approx M_{2}(k)
$$

- The dehomogenisation of $G(2,4)$ at $[12]$ is the space of $2 \times 2$ matrices (aka the big cell )
- The algebra of quantum $2 \times 2$ matrices

$$
\mathcal{O}_{q}\left(M_{22}\right)=K\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is generated by four indeterminates $a, b, c, d$ subject to the following rules:

$$
\begin{gathered}
a b=q b a, \quad c d=q d c \\
a c=q c a, \quad b d=q d b \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c
\end{gathered}
$$

- The quantum determinant $a d-q b c$ is a central element


## $2 \times 4$ quantum matrices

- The algebra of $2 \times 4$ quantum matrices.

$$
\mathcal{O}_{q}\left(M_{24}\right):=K\left[\begin{array}{llll}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24}
\end{array}\right]
$$

where each $2 \times 2$ sub-matrix is a copy of $\mathcal{O}_{q}\left(M_{22}\right)$.

- $\mathcal{O}_{q}\left(M_{24}\right):=K\left[\begin{array}{llll}Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24}\end{array}\right]$
- The quantum grassmannian $\mathcal{O}_{q}\left(G_{24}\right)$ is the subalgebra of $\mathcal{O}_{q}\left(\mathcal{M}_{24}\right)$ generated by the quantum determinants of the $2 \times 2$ quantum submatrices.
- Denote by [ij] the quantum determinant of the $2 \times 2$ quantum submatrix that uses columns $i, j$. These are the quantum Plücker coordinates. (Eg. [12] $=Y_{11} Y_{22}-q Y_{12} Y_{21}$ )
- $\mathcal{O}_{q}\left(G_{24}\right)$ is a domain that is an $\mathbb{N}$-graded algebra with each [ij] having degree 1 .
- $\mathcal{O}_{q}\left(G_{24}\right)$ is generated by the six quantum Plücker coordinates

$$
[12], \quad[13], \quad[14], \quad[23], \quad[24], \quad[34]
$$

- Some quantum minors $q^{\bullet}$-commute, for example,

$$
[14][23]=[23][14], \quad[12][13]=q[13][12], \quad[12][34]=q^{2}[34][12]
$$

- However,

$$
[13][24]=[24][13]+\left(q-q^{-1}\right)[14][23]
$$

- There is a quantum Plücker relation

$$
[12][34]-q[13][24]+q^{2}[14][23]=0 .
$$

- Let $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ be an $\mathbb{N}$-graded algebra and $x \in R_{1}$ be a nonzerodivisor that is normal (ie. $x R=R x$ )
- Then $S:=R\left[x^{-1}\right]$ is $\mathbb{Z}$-graded
- Set $\operatorname{Dhom}(R, x):=S_{0} \quad\left(=R_{0}+R_{1} x^{-1}+R_{2} x^{-2}+\ldots\right)$, the noncommutative dehomogenisation of $R$ at $x$.
- For $r \in R$, write $x r=\sigma(r) x$, with $\sigma$ an automorphism of $R$.

$$
R\left[x^{-1}\right] \cong \operatorname{Dhom}(R, x)\left[z, z^{-1} ; \sigma\right]
$$

- Recall from earlier that in the classical grassmannian, the dehomogenisation of $G(2,4)$ at the Plücker coordinate [12] is isomorphic to $2 \times 2$ matrices.
- In $\mathcal{O}_{q}\left(G_{24}\right)$ the quantum Plücker coordinate $u:=[12]$ $q^{\bullet}$-commutes with each [ij] and so is normal. Consequently, the Ore localisation at the powers of $u$ exists and
- Theorem

$$
\operatorname{Dhom}\left(\mathcal{O}_{q}\left(G_{24}\right), u\right) \cong \mathcal{O}_{q}\left(M_{22}\right)
$$

- The dehomogenisation equality

$$
\mathcal{O}_{q}\left(G_{24}\right)\left(u^{-1}\right)=\mathcal{O}_{q}\left(M_{22}\right)\left[y, y^{-1} ; \sigma\right]
$$

can be used either to get properties of quantum matrices from the quantum grassmannian or, vice versa, to get properties of the quantum grassmannian from quantum matrices.

- Today, we use the known automorphism group of quantum matrices to calculate the automorphism group of the quantum grassmannian.
- Recall $\mathcal{O}_{q}\left(M_{22}\right)=K\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with

$$
\begin{gathered}
a b=q b a, \quad c d=q d c, \quad a c=q c a, \quad b d=q d b, \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c .
\end{gathered}
$$

- The torus $\mathcal{H}:=\left(K^{*}\right)^{4}$ acts on $\mathcal{O}_{q}\left(M_{22}\right)$ so that $h:=\left(\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2}\right)$ multiplies row $i$ by $\alpha_{i}$ and column $j$ by $\beta_{j}$
- Transposition (flip over the diagonal) gives an automorphism of $\mathcal{O}_{q}\left(M_{22}\right)$ because $b$ and $c$ satisfy the same commutation rules.

The automorphism group of quantum matrices

- Theorem

The automorphism group of $\mathcal{O}_{q}\left(M_{m n}\right)$ is $\mathcal{H}:=\left(K^{*}\right)^{(m+n)}$ when $m \neq n$, and $\left(K^{*}\right)^{2 n} \rtimes\langle\tau\rangle$ when $m=n$

- History:

Alev and Chamarie did the $2 \times 2$ case (1992).
Launois and Lenagan did the nonsquare case and the $3 \times 3$ case (2007, 2013).
Yakimov did the $n \times n$ case in general (2013).

- Recall that $\mathcal{O}_{q}\left(G_{24}\right)$ is the subalgebra of $\mathcal{O}_{q}\left(M_{24}\right)$ generated by the $2 \times 2$ quantum minors [ij].

The torus $\mathcal{H}:=\left(K^{*}\right)^{4}$ of column automorphisms of $\mathcal{O}_{q}\left(M_{24}\right)$ acts on $\mathcal{O}_{q}\left(G_{24}\right)$ by restriction so that

$$
\left(h_{1}, h_{2}, h_{3}, h_{4}\right) \circ[i j]=h_{i} h_{j}[i j]
$$

- Given any automorphism $\rho$ of $\mathcal{O}_{q}\left(G_{24}\right)$ show that by adjusting $\rho$ by elements of $\mathcal{H}$ we can assume that the quantum Plücker coordinates [12] and [34] are fixed by $\rho$.
- With this assumption, we may extend $\rho$ to act on the left hand side of the dehomogenisation equality

$$
\mathcal{O}_{q}\left(G_{24}\right)\left(u^{-1}\right)=\mathcal{O}_{q}\left(M_{22}\right)\left[y, y^{-1} ; \sigma\right]
$$

and this transfers to an action on the right hand side.

- In this equality, $y$ and $u$ are essentially the same element, and so $\rho$ fixes $y$ and the quantum determinant $\left(=[34][12]^{-1}\right)$.
- Now $\rho$ acts on

$$
\mathcal{O}_{q}\left(M_{22}\right)\left[y, y^{-1} ; \sigma\right]
$$

and fixes $y$.

- Show that $\rho$ takes $\mathcal{O}_{q}\left(M_{22}\right)$ to itself. Now we know how $\rho$ acts on the right hand side of the dehomogenisation equality as we know the automorphism group of quantum matrices.
- Use the dehomogenisation equality

$$
\mathcal{O}_{q}\left(G_{24}\right)\left(u^{-1}\right)=\mathcal{O}_{q}\left(M_{22}\right)\left[y, y^{-1} ; \sigma\right]
$$

to transfer this information back to $\mathcal{O}_{q}\left(G_{24}\right)$.

## The automorphism group of the quantum grassmannian

- Theorem

The automorphism group of $\mathcal{O}_{q}\left(G_{24}\right)$ is $\left(K^{*}\right)^{4} \rtimes\langle\tau\rangle$ where $h=\left(h_{1}, h_{2}, h_{3}, h_{4}\right)$ acts on [ij] by multiplying by $h_{i} h_{j}$ and $\tau$ is the diagram automorphism which fixes [12], [13], [24] and [34] and interchanges [14] and [23].

- Theorem

The automorphism group of $\mathcal{O}_{q}\left(G_{k n}\right)$ is $\left(K^{*}\right)^{n}$ when $2 k \neq n$ and $\left(K^{*}\right)^{n} \rtimes\langle\tau\rangle$ when $2 k=n$ (here, $\tau$ is the diagram automorphism).

The poset diagram of $\mathcal{O}_{q}\left(G_{36}\right)$ $\left[a_{1} a_{2} a_{3}\right] \leq\left[b_{1} b_{2} b_{3}\right]$ if and only if $a_{i} \leq b_{i}$ for $i=1,2,3$


