Symmetries captured by weak Hopf algebra actions

Seattle Noncommutative Algebra Day University of Washington

Robert Won The George Washington University

March 17, 2023

Joint work with

Fabio Calderón

Hongdi Huang

Liz Wicks

Cocommutative Hopf-like actions on algebras, arXiv: 2209.11903

Big picture

Goal. [Lots of people here, throughout history, etc.] Study symmetries in algebra.

March 17, 2023

How to study symmetries?

• Classically, symmetries are captured by group actions.

 $C_2 \curvearrowright \text{tiger}$

 $D_{10} \curvearrowright \text{pentagon}$

• *V* a vector space, *G* a group $G \curvearrowright V$ if

$$(gh) \cdot v = g \cdot (h \cdot v).$$

Symmetries of algebras

- k algebraically closed field of characteristic zero.
- Want to study symmetries of k-algebras *A*.

Favorite examples.

The polynomial ring $A = \Bbbk[x_1, ..., x_n]$. Also connected ($A_0 = \Bbbk$) and commutative.

The skew polynomial ring $A = \Bbbk_{\mathbf{p}}[x_1, \dots, x_n]$. Connected but noncommutative.

• **Motivation:** What if *A* is not connected?

Group actions

- $A = (A, m : A \otimes_{\Bbbk} A \to A, u : \Bbbk \to A)$ has structure.
- Should preserve algebra structure.
- Study group actions $G \curvearrowright A$ such that:

$$g \cdot (ab) = (g \cdot a)(g \cdot b)$$
 and
 $g \cdot 1_A = 1_A,$

[A is a G-module and m and u are G-module morphisms].

• We say that *A* is a *G*-module algebra.

Example. [Extremely rich history] Finite group $G \leq \operatorname{GL}_n(\Bbbk) \curvearrowright A = \Bbbk[x_1, \ldots, x_n]$.

Group actions

- Group actions on a vector space *V* are captured by general linear group GL(*V*).
- Group actions on an algebra *A* are captured by the automorphism group Aut_{Alg}(*A*).

Facts.

- *G* acts on a vector space *V* if and only if there is a group homomorphism *G* → GL(*V*).
- *A* is a *G*-module algebra if and only if there is a group homomorphism *G* → Aut_{Alg}(*A*) ≤ GL(*A*).

Lie algebra actions

- Also classical symmetries by Lie algebras.
- *V* a vector space, \mathfrak{g} a Lie algebra, $\mathfrak{g} \curvearrowright V$ if

$$[p,q] \cdot v = p \cdot (q \cdot v) - q \cdot (p \cdot v).$$

We call V a \mathfrak{g} -module.

• *A* an algebra, we say *A* is a \mathfrak{g} -module algebra if $\mathfrak{g} \frown A$ and

$$p \cdot (ab) = (p \cdot a)b + a(p \cdot b)$$
 and
 $p \cdot 1_A = 0,$

[A is a g-module and m and u are g-module morphisms].

Lie algebra actions

- Lie algebra actions on *V* are captured by general linear Lie algebra $\mathfrak{gl}(V)$.
- Lie algebra actions on algebras *A* are captured by the Lie algebra of derivations Der(A).

Facts.

- \mathfrak{g} acts on a vector space *V* if and only if there is a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(V)$.
- *A* is a g-module algebra if and only if there is a Lie algebra homomorphism g → Der(A) ≤ gl(A).

Symmetry capturing objects

- A is a G-module algebra ⇔ morphism G → Aut_{Alg}(A).
 View Aut_{Alg}(A) as capturing symmetries of A in Grp.
- *A* is a g-module algebra ⇔ morphism g → Der(*A*).
 View Der(*A*) as capturing symmetries of *A* in Lie.
- Other categories?

Categories of interest

Let *X* be a nonempty set.

- X-Grpd, category of groupoids with object set X, X-preserving groupoid homomorphisms.
 - If |X| = 1, X-Grpd = Grp.
- *X*-Lie, category of *X*-Lie algebroids 𝔅 = ⊕_{x∈X} 𝔅_X, *X*-Lie algebroid homomorphisms.
 If |*X*| = 1, *X*-Lie = Lie.
- X-WHA, category of weak Hopf algebras with a complete set {*e_x*}_{x∈X} of grouplike idempotents, *X*-preserving weak Hopf algebra homomorphisms.
 If |*X*| = 1, *X*-WHA = Hopf.

Weak Hopf algebras

• A weak bialgebra H over \Bbbk is a \Bbbk -algebra (H, m, u) and a \Bbbk -coalgebra (H, Δ, ε) such that

(1) $\Delta(ab) = \Delta(a)\Delta(b)$, (2) $(\Delta \otimes \mathrm{Id}) \circ \Delta = (\Delta(1) \otimes 1)(1 \otimes \Delta(1)) = (1 \otimes \Delta(1))(\Delta(1) \otimes 1)$, (3) $\varepsilon(abc) = \varepsilon(ab_1)\varepsilon(b_2c) = \varepsilon(ab_2)\varepsilon(b_1c)$.

- Bialgebra if and only if $\Delta(1) = 1 \otimes 1$ if and only if $\varepsilon(ab) = \varepsilon(a)\varepsilon(b)$.
- A weak Hopf algebra is a weak bialgebra with antipode *S*:

$$S(a_1)a_2 = 1_1 \varepsilon(a 1_2), \qquad a_1 S(a_2) = \varepsilon(1_1 a) 1_2, \qquad S(a_1)a_2 S(a_3) = S(a).$$

Counital maps

• The maps appearing in the antipode axioms:

 $S(a_1)a_2 = 1_1\varepsilon(a1_2), \qquad a_1S(a_2) = \varepsilon(1_1a)1_2$

are important.

source counital map $\varepsilon_s : H \to H$ $\varepsilon_s(a) = 1_1 \varepsilon(a 1_2)$ target counital map $\varepsilon_t : H \to H$ $\varepsilon_t(a) = \varepsilon(1_1 a) 1_2$

source counital subalgebra $H_s := \varepsilon_s(H)$ target counital subalgebra $H_t = \varepsilon_t(H)$

- *H_s* and *H_t* are antiisomorphic separable, semisimple, finite-dimensional, coideal sub-k-algebras.
- A weak bialgebra is a bialgebra if and only if $H_s = H_t = \Bbbk$.

Why weak Hopf algebras?

- Introduced by [Böhm–Nill–Szlachanyi 1999], motivated by physics: study symmetries in conformal field theory.
- Axioms are self-dual, so the dual of a finite-dimensional weak Hopf algebra is again a weak Hopf algebra.

Example.

If *H*, *K* are bialgebras, then $H \oplus K$ is an algebra as usual and a coalgebra under

$$\Delta(h,k) = (h_1,0) \otimes (h_2,0) + (0,k_1) \otimes (0,k_2)$$

 $\varepsilon(h,k) = \varepsilon_H(h) + \varepsilon_K(k)$

But $\Delta(1,1) = (1,0) \otimes (1,0) + (0,1) \otimes (0,1) \neq (1,1) \otimes (1,1)$. $(H \oplus K)_t = (H \oplus K)_s = \Bbbk \oplus \Bbbk$. So $H \oplus K$ not a bialgebra, only a weak bialgebra.

Why weak Hopf algebras?

If G, H are groups, then $G \sqcup H$ is not a group, but a groupoid.

Example.

 ${\mathcal G}$ is a groupoid. $\Bbbk {\mathcal G}$ the groupoid algebra is a weak Hopf algebra.

For $g \in \mathcal{G}$: $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$, $S(g) = g^{-1}$. $\mathcal{G} = 1 \underbrace{\overset{\alpha}{\underset{\alpha^{-1}}{\leftarrow}} 2}_{\pi^{-1}}$ Then $1 = e_1 + e_2$ but $\Delta(1) = e_1 \otimes e_1 + e_2 \otimes e_2 \neq 1 \otimes 1$. $(\Bbbk \mathcal{G})_t = (\Bbbk \mathcal{G})_s = \Bbbk e_1 \oplus \Bbbk e_2$.

Why weak Hopf algebras?

Theorem. [Hayashi 1999, Szlachanyi 2001]

Every fusion category is equivalent to ${}_{H}\mathcal{M}_{fd}$ for some weak Hopf algebra *H*.

• If $(H, m, u, \Delta, \varepsilon)$ is an algebra and coalgebra such that $\Delta(ab) = \Delta(a)\Delta(b)$, then

 $\Delta \operatorname{axiom} \Rightarrow {}^{H}\mathcal{M} \operatorname{and} \mathcal{M}^{H} \operatorname{are monoidal},$

 ε axiom $\Rightarrow_H \mathcal{M}$ and \mathcal{M}_H are monoidal.

 But not ⊗_k! [Nill 1998], [Böhm–Caenepeel–Janssen 2011], [Walton–Wicks–W 2022]

Symmetries in categories

Definition.

A a k-algebra and *C* a category like X-Grpd, X-Lie, X-WHA. We denote by $Sym_{\mathcal{C}}(A)$ an object in *C* (if it exists) such that:

- 1. *A* is a $\text{Sym}_{\mathcal{C}}(A)$ -module algebra; we write $f \triangleright a$ for the action.
- 2. For each *H* in *C*, there is a bijection $\Psi_H : \operatorname{Act}(H, A) \to \operatorname{Hom}_{\mathcal{C}}(H, \operatorname{Sym}_{\mathcal{C}}(A))$ such that for any action \cdot of *H* on *A*, if we denote $\Psi_H(\cdot) := \Psi_{(H, \cdot)}$, then

$$h \cdot a = \Psi_{(H,\cdot)}(h) \triangleright a.$$

Symmetries in categories

 $\operatorname{Sym}_{\mathcal{C}}(A)$ may not exist.

Example.

- $C = AbGrp, A = \Bbbk[x].$
- $G = \langle g \rangle$ of order 2.
- $G \curvearrowright A$ via \cdot defined by $g \cdot x = -x$ and * defined by g * x = -x + 1.
- Sym_C(A) existed:

 $\Psi_{(G,\cdot)}: G \to \operatorname{Sym}_{\operatorname{\mathsf{AbGrp}}}(A) \quad \text{and} \quad \Psi_{(G,*)}: G \to \operatorname{Sym}_{\operatorname{\mathsf{AbGrp}}}(A)$

so that $\Psi_{(G,\cdot)}(g) \triangleright x = -x$ and $\Psi_{(G,*)}(g) \triangleright x = -x + 1$.

• But these elements would not commute in $\text{Sym}_{AbGrp}(A)$.

Modules over groupoids

Definition.

A vector space *V* is *X*-decomposable if there exists a family $\{V_x\}_{x \in X}$ of subspaces of *V* such that $V = \bigoplus_{x \in X} V_x$.

Definition.

 \mathcal{G} a groupoid with object set X. An X-decomposable vector space $V = \bigoplus_{x \in X} V_x$ is a left \mathcal{G} -module if it is equipped with, for each $x, y \in X$, a linear map $\operatorname{Hom}_{\mathcal{G}}(x, y) \times V_x \to V_y$, denoted $(g, v) \mapsto g \cdot v$, such that

• $(gh) \cdot v = g \cdot (h \cdot v)$, for all $g, h \in G_1$ with t(h) = s(g) and all $v \in V_{s(h)}$, and

•
$$e_x \cdot v = v$$
, for all $x \in X$ and $v \in V_x$

General linear groupoid

Definition.

Let $V = \bigoplus_{x \in X} V_x$ be an X-decomposable vector space. We define the X-general linear automorphism groupoid $GL_X(V)$:

- the object set is *X*,
- for any *x*, *y* ∈ *X*, Hom_{GL_X(V)}(*x*, *y*) is the space of vector space isomorphisms between *V_x* and *V_y*.

If $X = \{1, ..., n\}$ and V_i has dimension d_i , then we also denote $\operatorname{GL}_X(V)$ by $\operatorname{GL}_{(d_1,...,d_n)}(\Bbbk)$ for $d_1 \le d_2 \le \cdots \le d_n$.

This generalizes the classical notation $GL(V) = GL_d(\mathbb{k})$ when *V* has dimension *d*.

General linear groupoid

• A vector space *V* is a \mathcal{G} -module if and only if there is an *X*-groupoid morphism $\mathcal{G} \to \operatorname{GL}_X(V)$.

Example.

If $X = \{x, y\}$, then \Bbbk^4 is *X*-decomposable by taking $(\Bbbk^4)_x := (\Bbbk, \Bbbk, 0, 0)$ and $(\Bbbk^4)_y := (0, 0, \Bbbk, \Bbbk)$. Moreover, we have

$$\operatorname{GL}_X(\Bbbk^4) = \operatorname{GL}_{(2,2)}(\Bbbk) = \left(\begin{array}{c} & \mathbb{R}^2 \end{array} \right)^{-1} \mathbb{R}^2 \mathbb{R}^2 \left(\begin{array}{c} & \mathbb{R}^2 \end{array} \right)^{-1},$$

where the dashed arrows can be identified with $GL_2(k)$.

Module algebras over groupoids

Definition.

Let *A* be a k-algebra. We say that *A* is an *X*-decomposable algebra if there exists a family $\{A_x\}_{x \in X}$ of k-algebras (some of which may be 0) such that $A = \bigoplus_{x \in X} A_x$ as algebras.

Lemma.

 $A = \bigoplus_{x \in X} A_x$ is a \mathcal{G} -module algebra if and only if A is a \mathcal{G} -module such that

$$g \cdot (ab) = (g \cdot a)(g \cdot b),$$

$$g \cdot 1_{s(g)} = 1_{t(g)},$$

for all $g \in \mathcal{G}_1$ and $a, b \in A_{s(g)}$.

Module algebras over groupoids

Example.

Let
$$A = \Bbbk[x] \oplus \Bbbk[x]$$
. $\mathcal{G} = 1$ $\overbrace{\alpha^{-1}}^{\alpha} 2$.
Let $\sigma \in \operatorname{Aut}_{\mathsf{Alg}}(\Bbbk[x])$. For $(f,g) \in A$, let

$$\alpha \cdot (f,g) = (0,\sigma(f))$$

$$\alpha^{-1} \cdot (f,g) = (\sigma^{-1}(g),f)$$

$$e_1 \cdot (f,g) = (f,0)$$

$$e_2 \cdot (f,g) = (0,g).$$

Then *A* is a \mathcal{G} -module algebra.

Symmetries by groupoids

Definition.

Let $A = \bigoplus_{x \in X} A_x$ be an X-decomposable algebra. We define Aut_{X-Alg}(A), the X-algebra automorphism groupoid of A:

- the object set is *X*,
- for any $x, y \in X$, $\operatorname{Hom}_{\operatorname{Aut}_{X-\operatorname{Alg}}(A)}(x, y)$ is the space of algebra isomorphisms between the unital algebras A_x and A_y .

Theorem.

 \mathcal{G} an X-groupoid, then A is a \mathcal{G} -module algebra if and only if there exists a morphism $\pi : \mathcal{G} \to \operatorname{Aut}_{X-\operatorname{Alg}}(A)$.

 $\operatorname{Hence}\operatorname{Sym}_{X\operatorname{\mathsf{-}Grpd}}(A) = \operatorname{Aut}_{X\operatorname{\!-}\operatorname{Alg}}(A).$

Algebras that groupoids act on

• $A = \bigoplus_{x \in X} A_x$ seems like a strong hypothesis.

Theorem.

Let *H* be a weak Hopf algebra with $H_s = H_t$ and let *A* be an *H*-module algebra. Then $A = \bigoplus_{i=1}^n A_i$ is an *X*-decomposable algebra where $X = \{e_1, \ldots, e_n\}$ is a complete set of primitive idempotents of *H*. The local identities of *A* are given by the family of orthogonal idempotents $\{e_i \cdot 1_A \mid 1 \le i \le n\}$.

• $\Bbbk \mathcal{G}$ -mod $\cong \mathcal{G}$ -mod.

"No weak quantum symmetries"

Corollary.

Suppose that \mathcal{G} is a finite groupoid and A is a domain such that A is an inner-faithful $\Bbbk \mathcal{G}$ -module algebra. Then \mathcal{G} is a disjoint union of groups, and at most one of the groups is nontrivial.

Conjecture.

If *H* is a weak Hopf algebra and *A* is a domain that is an inner-faithful *H*-module algebra, then *H* is a Hopf algebra.

Back to Lie symmetries

Definition.

An X-Lie algebroid & is a direct sum of vector spaces

$$\mathfrak{G} := \bigoplus_{x \in X} \mathfrak{g}_x$$

where each \mathfrak{g}_x . We regard \mathfrak{G} as having a partially defined bracket [-, -]. The *X*-universal enveloping algebra of \mathfrak{G} is $U_X(\mathfrak{G}) = \bigoplus U(\mathfrak{g}_x)$.

Theorem. [Nikshych thesis]

Any cocommutative weak Hopf algebra is isomorphic to $U_X(\mathfrak{G}) # \Bbbk \mathcal{G}$ for an X-groupoid \mathcal{G} and an X-Lie algebroid \mathfrak{G} .

• Analogue of Gabriel–Kostant–Milnor–Moore.

Modules over Lie algebroids

Definition.

 $V = \bigoplus_{x \in X} V_x$ is a \mathfrak{G} -module if each V_x is a \mathfrak{g}_x -module.

Definition.

The *X*-general linear algebroid $\mathfrak{GL}_X(V) = \bigoplus_{x \in X} \mathfrak{gl}(V_x)$, viewed as a Lie algebroid.

Lemma.

V is a \mathfrak{G} -module if and only if there is an X-Lie algebroid homomorphism $\mathfrak{G} \to \mathfrak{GL}_X(V)$.

Modules algebras of Lie algebroids

Lemma.

 $A = \bigoplus_{x \in X} A_x$ is a \mathfrak{G} -module algebra if and only if A is a \mathfrak{G} -module such that

$$p \cdot (ab) = a(p \cdot b) + (p \cdot a)b,$$

$$p \cdot 1_x = 0,$$

for all $p \in \mathfrak{g}_x$ and $a, b \in A_x$.

Symmetries by Lie algebroids

Definition.

 $A = \bigoplus_{x \in X} A_x$. The *X*-Lie algebroid of derivations is $\text{Der}_X(A) = \bigoplus_{x \in X} \text{Der}(A_x)$.

Theorem.

If \mathfrak{G} is an X-Lie algebroid, then A is a \mathfrak{G} -module algebra if and only if there exists an X-Lie algebroid homomorphism $\tau : \mathfrak{G} \to \operatorname{Der}_X(A)$.

Hence $\operatorname{Sym}_{\operatorname{Lie}}(A) = \operatorname{Der}_X(A)$.

From groupoids to groupoid algebras

•
$$\mathcal{G}$$
 an *X*-groupoid, $A = \bigoplus_{x \in X} A_x$.

Theorem.

A is a *G*-module algebra if and only if there exists an *X*-groupoid morphism $\pi : \mathcal{G} \to \operatorname{Aut}_{X-\operatorname{Alg}}(A)$.

Hence $\operatorname{Sym}_{X\operatorname{-}\mathsf{Grpd}}(A) = \operatorname{Aut}_{X\operatorname{-}\mathsf{Alg}}(A)$.

Theorem.

A is a $\Bbbk \mathcal{G}$ -module algebra if and only if there exists a weak Hopf morphism $\widetilde{\pi} : \Bbbk \mathcal{G} \to \Bbbk \operatorname{Aut}_{X-\operatorname{Alg}}(A)$.

 The groupoid algebra functor X-Grpd → X-WHA is left adjoint to the grouplike elements functor X-WHA → X-Grpd. From Lie algebroids to universal enveloping algebras

•
$$\mathfrak{G}$$
 an X-Lie algebroid, $A = \bigoplus_{x \in X} A_x$.

Theorem.

A is a \mathfrak{G} -module algebra if and only if there exists an *X*-Lie algebroid morphism $\tau : \mathfrak{G} \to \text{Der}_X(A)$.

Hence $\operatorname{Sym}_{X-\operatorname{Lie}}(A) = \operatorname{Der}_X(A)$.

Theorem.

A is a $U_X(\mathfrak{G})$ -module algebra if and only if there exists an weak Hopf morphism $\tilde{\tau} : U_X(\mathfrak{G}) \to U_X(\text{Der}_X(A))$.

Weak Hopf algebra symmetries

• By Nikshych's analogue to Gabriel–Kostant–Milnor–Moore, we have the following:

Theorem.

Let $H := U_X(\mathfrak{G}) \# \mathbb{k} \mathcal{G}$ be a cocommutative weak Hopf algebra and $A = \bigoplus_{x \in X} A_x$ be a *X*-decomposable algebra. Then the following statements are equivalent:

- 1. *A* is an *H*-module algebra.
- 2. There exists an X-weak Hopf algebra homomorphism

 $\phi: H \longrightarrow U_X(\operatorname{Der}_X(A)) \# \Bbbk(\operatorname{Aut}_{X\operatorname{-Alg}}(A)).$

Hence $\operatorname{Sym}_{X\operatorname{-CocomWHA}}(A) = U_X(\operatorname{Der}_X(A)) \# \Bbbk(\operatorname{Aut}_{X\operatorname{-Alg}}(A)).$

Future work

• Let $A = \bigoplus_{x \in X} A_x$.

Question.

Take a finite subgroupoid \mathcal{G} of $\text{Sym}_{\text{Grpd}}(A) = \text{Aut}_{X-\text{Alg}}(A)$. Study \mathcal{G} actions on A.

Chevalley–Shephard–Todd? Watanabe's Theorem? Auslander's Theorem? Homological determinants?

Question.

Take a finite-dimensional weak Hopf subalgebra H of $\operatorname{Sym}_{X\operatorname{-CocomWHA}}(A) = U_X(\operatorname{Der}_X(A)) \# \Bbbk(\operatorname{Aut}_{X\operatorname{-Alg}}(A))$. Study H actions on A.

Future work

