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Hypergroups and hyperstructures



History of hypergroups

Idea: A hypergroup is “just like a group,” but whose binary
operation G× G→ G is replaced by a multivalued operation
G× G→ P(G).

Defined by Frédéric Marty in 1934:

• Mentions that the idea arose from groups of
transformations, not much else known about the origin

• Was only able to publish three works on the idea before
he died at age 29 in World War II
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Hypergroups

We will work with the following, close to Marty’s original notion.

Def: A hypergroup is a set G with a hyperoperation:
? : G× G→ P(G) \ {∅},

that satisfies the following properties

• associative: x ? (y ? z) = (x ? y) ? z as subsets;
• identity: exists e ∈ G such that x ? e = {x} = e ? x;
• inverses: e ∈ x−1 ? x and e ∈ x ? x−1;
• reversible: x ∈ y ? z =⇒ y ∈ x ? z−1 and z ∈ y−1 ? x.
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First remarks on hypergroups

Why these particular axioms?

Weak units: If we only demand x ∈ e ? x ∩ x ? e, then the unit e
need not be unique.

Example: Any set X with x ? y = X for all x, y ∈ X.

Reversibility: implies uniqueness of inverses, since

e ∈ x′ ? x =⇒ x′ ∈ e ? x−1 = {x−1}

(Otherwise, no reason that inverses need be unique.)

3/38



Examples of hypergroups

Example 1: Given a non-normal subgroup K of a group H, the
double cosets G = H//K form a hypergroup under

KxK ? KyK = {KwK | KwK ⊆ KxKyK}.

Example 2: For A ∈ Ab and G ⊆ Aut(A), the quotient A/G forms
a hypergroup under

Gx � Gy := {Gz | z ∈ Gx + Gy} = Gy � Gx.

(A commutative reversible hypergroup is said to be canonical.)

4/38



Some canonical hypergroups

Ex (Roth 1974): The set {χi} of complex irreducible characters
of a finite group G is a canonical hypergroup under:

χ ? ψ := {χi | χ · ψ =
∑

ciχi, ci 6= 0}.

Ex (Prenowitz 1943): If G is a projective geometry with at least 3
points in each line, then G t {0} is a hypergroup by defining
hyperaddition of x, y ∈ G as

x + y =

`(x, y) \ {x, y}, x 6= y

{x, 0}, x = y.

(Here −x = x and reversibility follows from projective axioms...)
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Morphisms of hypergroups

Def: A morphism of hypergroups is a function φ : G→ H
satisfying

φ(x ? y) ⊆ φ(x) ? φ(y).

The morphism is strict if φ(x ? y) = φ(x) ? φ(y).

Ex: For many of our hypergroups that are obtained as
quotients, the quotient map is a (not necessarily strict)
morphism.
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Hyperrings

Def (Krasner 1957): A hyperring R is both a multiplicative
monoid (in the ordinary sense) and an additive canonical
hypergroup, satisfying distributivity of the form

x(y + z) = xy + xz and (y + z)x = yx + zx

in P(R).

Morphisms: φ(xy) = φ(x)φ(y) and φ(x + y) ⊆ φ(x) + φ(y).

Ex (Krasner 1983): If R is a ring and G ≤ U(R) normalizes R, then
R/G becomes a hypergroup under x + y = {z | zG ⊆ xG+ yG}.
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Some hyperfields

A hyperfield is a commutative hyperring whose nonzero
elements form a multiplicative group.

Ex: The Krasner hyperfield K = {0, 1} has usual multiplication,
hyperaddition given by 1+ 1 = {0, 1}. (Note K ∼= F/F× for any
field of |F| > 2.) It is the terminal hyperfield.

Ex: The hyperfield of signs S = {1, 0,−1} ∼= R/R>0 with usual
multiplication and

1+ 1 = 1, −1− 1 = −1, 1− 1 = {1, 0,−1}.
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Representing Spec

One reason we might study hyperstructures even if we are
primarily interested in “ordinary” algebraic structures: functors
that were not representable may “become” representable!

Nullstellensatz: for commutative affine algebras A over k = k,

Max(A) ∼= Hom(A, k).

So the maximal spectrum is representable on the category of
such algebras.

We are not so lucky for the Zariski spectrum in general...
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Representing Spec

While there is a sense in which each commutative ring has

Spec(R) ∼= Hom(R, “fields”),

there is no single field (or ring) that represents this functor...
Or is there?

Connes-Consani (2011): For any commutative (hyper)ring R,

Spec(R) ∼= Hom(R,K)

Even more, if X is any scheme, |X| ∼= Hom(Spec(K), X).

Jun (2021) has also showed how to recover the Zariski topology
in this context.
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Today’s topic

Current work-in-progress with So Nakamura:

How to organize canonical hypergroups into a category with
“good” properties?

Would like (co)completeness, plus correspondences similar to
what we have with rings R and modules M:

bilinear R×M→ M ⇐⇒ R⊗Z M→ M ⇐⇒ R→ HomZ(M,M)

Eventual hope is to understand K-represenation theory for
noncommutative rings…
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Hyperstructures of interest

Note: We will now allow hyperoperations that possibly have
empty products/sums: M×M→ P(M)

Def: A hypermagma (M, ?) is a set with a hyperoperation. We
also define:

• A unit e ∈ M is an element satisfying e ? x = x ? e = x
• M is associative if x ? (y ? z) = (x ? y) ? z
• M is reversible if there is an operation (−)−1 satisfying
x ∈ y ? z =⇒ y ∈ x ? z−1 and z ∈ y−1 ? x

• An inverse x′ of x satisfies e ∈ x ? x′ ∩ x′ ? x

A hypermonoid is an associative hypermagma with unit.
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Categories of interest

HMag = category of hypermagmas with morphisms satisfying
φ(x ? y) ⊆ φ(x) ? φ(y)

uHMag = category of unital hypermagmas with morphisms as
above that preserve unit.

Full subcategories of hypermonoids and (canonical)
hypergroups:

Can ⊆ HGrp ⊆ HMon ⊆ uHMag

(Note: Morphisms automatically satisfy f (x−1) = f (x)−1 by
uniqueness of inverses.)
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Categories of hypermagmas



The category of hypermagmas

The forgetful functor HMag→ Set has both a left adjoint and a
right adjoint:

• Free functor F : Set→ HMag has F(X) = X with x ? y = ∅

• Cofree functor D : Set→ HMag has D(X) = X with x ? y = X.

Theorem
The forgetful functor HMag→ Set creates all limits and
colimits. Thus HMag is complete and cocomplete
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Unital hypermagmas

For unital hypermagmas, the forgetful functor uHMag→ Set•
has a left adjoint, and it creates limits and coproducts:

• Products are
∏
Mi with identity (ei)I.

• Coproducts are wedge sums
∨
(Mi, ei), Mi ?Mj = ∅ for i 6= j

Constructing coequalizers requires an extra step...

Lemma: For any hypermagma M and E ⊆ M, there exists
ME ∈ uHMag that represents the functor uMag→ Set,

F(N) = {f ∈ HMag(M,N) | E ⊆ f−1(eN)}.

We call ME the unitization of M at E.
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Cocompleteness of uHMag

Theorem
The category uHMag is complete and cocomplete.

Proof: Since it has limits and coproducts, just need to
construct coequalizers. Take f ,g : M→ N in uHMag.

Let πL : N→ L be their coequalizer in HMag.

Problem: The image of eN in L may not be an identity.

Solution: Set E = {πL(eN)} ⊆ L, and form πE : L→ LE .

Then we get the coequalizer in uHMag by composing

M N L LE
f

g

πL

π

πE
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Epimorphisms and monomorphisms

The mono- and epimorphisms are the usual suspects:

Proposition: The a morphism in HMag (resp., uHMag) is
a monomorphism if and only if it is injective, and it is an
epimorphism if and only if it is surjective.

(For HMag this is directly from co/free constructions.
Surjections in uHMag take just a little more work...)

In certain categories (like rings), epi/monomorphisms may not
be so “nice” in practice. So it can be useful to consider more
restricted classes of epi/mono’s...
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Regular and normal epi’s and mono’s

In any category, one defines:

• regular epimorphism = coequalizer
• regular monomorphism = equalizer

If the category has a zero object, then one defines:

• normal epimorphism = cokernel = Coeq(f , 0)
• normal monomorphism = kernel = Eq(f , 0)

Why we’re often blind to the distinction: in any abelian
category, the various epi’s and mono’s are all equivalent!
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Special morphisms and subobjects

Def: A morphism of hypermagmas f : M→ N is:

• short if f is surjective and satisfies, for all x, y ∈ N:

x ? y = f (f−1(x) ? f−1(y)).

• coshort if f is injective and satisfies, for all a,b ∈ M:

f−1(f (a) ? f (b)) ⊆ a ? b.

Note: Coshort morphisms correspond to weak
subhypermagmas: M ⊆ N with x ?M y = (x ?N y) ∩M.

Let’s say a strong subhypermagma is M ⊆ N such that
x, y ∈ M =⇒ x ?N y ⊆ M.
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Regular and normal epi’s and mono’s

Theorem
In each of HMag and uHMag, we have

• the regular epimorphisms are the short morphisms;
• the regular monomorphisms are the coshort morhpisms
(i.e., weak subhypermagmas).

In uHMag, we have:

• the normal epimorphisms p : M→ N correspond to the
unitizations M→ ME ;

• the normal monomorphisms correspond to strong
subhypermagmas.
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Closed monoidal structure

There is an obvious way to equip the hom sets with a
hyperoperation: for f ,g ∈ HMag(M,N),

f ? g := {h ∈ HMag(M,N) | h(x) ∈ f (x) ? g(x) for all x ∈ M}

This forms the enriched hom for a closed monoidal structure:

Set M� N = M× N with “minimal” hyperoperation satisfying

(x ? x′)� y ⊆ x � y ? x′ � y
x � (y ? y′) ⊆ x � y ? x � y′

Unit: 1∅ is 1 = {∗} with empty product ∅ ⊆ Rel(1× 1, 1)
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Closed monoidal structure

Universal property: A bimorphism is a function B : M× N→ L
such that each B(x,−) : N→ L and B(−, y) : M→ L are
morphisms.

Then Bim(M,N;−) ∼= HMag(M� N,−) : HMag→ Set.

Theorem
Thm: The structure (HMag,�, 1∅) is a symmetric closed
monoidal category, whose internal hom is HMag(M,N) with
the above hyperoperation:

HMag(L�M,N) ∼= HMag(L,HMag(M,N))
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Closed monoidal structure: unital case

Similarly uHMag has a closed monoidal structure, “created” by
the closed monoidal structure of (Set•,∧, 1).

The same hyperopration on uHMag(M,N) makes it a unital
hypermamga, whose unit is the constant morphism eN.

For E := M� eN ∪ eM � N = M ∨ N ⊆ M� N, set

M ∧ N = (M� N)E

This has underlying set (M, eM) ∧ (N, eN) = M× N/(M ∨ N) given
by the wedge product. It has the effect of setting

eM ∧ n = m ∧ eN = eM ∧ eN.
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Closed monoidal structure: unital case

As before, this represents bimorphisms in the category uHMag:

BimuHMag(M,N;−) ∼= uHMag(M ∧ N,−)

Unit is the terminal hypermagma 1 (i.e., the trivial monoid)

Theorem
The symmetric monoidal category (uHMag, ∧, 1) is closed,
with internal hom being the natural structure on hom sets:

uHMag(M ∧ N, L) ∼= uHMag(M,uHMag(N, L)).
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Categories of hypergroups and
generalizations



Trouble in the category of (canonical) hypergroups

A difficult lesson: While hypergroups form attractive objects,
they do not form such a nice category!

Both HGrp and Can are closed under products in uHMag.

But we are not so lucky when it comes to coproducts.

Theorem
The coproduct F2

∐
F2 does not exist in HGrp or Can.

Argument uses the fact that Hom(−,K) deterines all possible
kernels of morphisms out of an object...

25/38



Trouble in the category of (canonical) hypergroups

Equalizers are also problematic...

Let H = F9/F×
3 , a finite projective plane with zero.

Let F : H→ H be the morphism induced by the Frobenius map
x 7→ x3 on F9.

Theorem
There is no equalizer of the morphisms

H H
idH

F

in the categories HGrp or Can.
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Internal hom

What about internal homs? We know the natural structure on
hom sets gives a unital hypermagma: for f ,g ∈ Can(G,H) we
set

f + g = {h ∈ Can(G,H) | h(x) ∈ f (x) + g(x) for all x ∈ G}.

It also inherits reversibility if we assume H is reversible, so it
only needs associativity.

As discussed before, associativity would then imply f + g = ∅
for all f ,g…
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Failure of internal homs

Define a comutative ring by generators and relations:

R = Z[x, y, z | 2x = y(z + 1) = 0, z2 = 1].

Then G = {1, z} ⊆ R is a multiplicative group, and we may form
the quotient hyperring R/G.

Theorem
Let f ,g ∈ Can(F2,R/G) be given by f (1) = [x] and g(1) = [y].
Then

f + g = ∅,

so the commutative unital reversible hypermagma
Can(F2,R/G) is not a hypergroup.
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Failure of tensor products

It is also not possible to form a “tensor product” over Can that
represents the “bilinear” mappings.

Theorem
Let V = F2 × F2 denote the Klein four-group. Then the functor
of bimorphisms

BimCan(V, V;−) : Can→ Set

is not representable.
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A convenient category of canonical hypergroups

Def: We will say that a unital, reversible hypermagma is a
mosaic.

So we have full subcategories HGrp ⊆ Msc ⊆ uHMag and
Can ⊆ cMsc.

Happily, reversibility behaves well under many operations:

Theorem
The categories Msc and cMsc are closed under limits and
colimits in uHMag. Thus they are both complete and
cocomplete.
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Free mosaics are commutative

There are also free mosaics:

Theorem
The forgetful functor U : Msc→ Set has a left adjoint.

Construction: F(X) = X t −X t {0} with addition of nonzero
elements given by

a+ b =

0 if a = −b,

∅ otherwise
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Tensor products of commutative mosaics

Is the absence of associativity enough for us to form “tensor
products?”

Yes!

For M,N ∈ cMsc, define morphisms i−− : M ∧ N→ M ∧ N by
i−−(x ∧ y) = (−x) ∧ (−y). Then for i++ = idM∧N, we take the
coequalizer

M ∧ N M ∧ N M� N
i++

i−−

This satisfies expected relations like

0� n = 0� 0 = m� 0,
(−m)� n = m� (−n) =: −m� n,

and it forms an object of cMsc (reversible).
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Closed monoidal structure

As we expect by this point, this represents bimorphisms:

BimcMsc(M,N; L) ∼= cMsc(M� N, L).

Unit is the free object on one element F = {1, 0,−1}

Theorem
The symmetric monoidal category (cMsc,�, F) is closed, with
internal hom being the natural one:

cMsc(M� N, L) ∼= cMsc(M, cMsc(N, L)).
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A family photo

cRev Rev HMag

cMsc Msc uHMag

Can HGrp HMon

Ab Grp Mon

⊆ ⊆

⊆ ⊆

⊆

⊆

⊆

⊆ ⊆

⊆

⊆

⊆
⊆ ⊆
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Review of morphisms

normal
monomorphism

regular
monomorphism

mono.

strict
submosaic

weak
submosaic

injective
morphism

normal
epimorphism

regular
epimorphism

epimorphism

unitization short
morphism

surjective
morphism 35/38



Combinatorial examples of mosaics

A matroid is a set M with a closure operator C : P(M) → P(M)
satisfying the exchange axiom:

x ∈ C(S ∪ y) \ C(S) =⇒ y ∈ C(S ∪ x).

A (strong) morphism of matroids f : M→ N must satisfy
f (CM(S)) ⊆ CN(f (S)) (equiv., preimage of closed sets is closed).

A pointed matroid (M, 0) has a distinguished “loop” 0 ∈ C(∅).

We have categories Mat and Mat• of (pointed) matroids.

Example: M a vector space, C(S) = Span(S), 0 ∈ C(∅)
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Combinatorial examples of mosaics

A pointed matroid is simple if C(∅) = {0} and C(x) = {x, 0}.

Ex: M = V/k∗ = P(V) t {0}, closed subsets = linear subspaces

Inspired by similar construction for projective geometries:

Theorem: There is a functor sMat• → cMsc that turns a
simple pointed matroid (M, 0) into a mosaic with identity
0 by setting, for x, y 6= 0:

x + y =

C(x, y) \ {x, y, 0}, x 6= y

{x, 0}, x = y.

Conjecture: This restricts to a fully faithful embedding on
pointed projective geometries Proj• ⊆ sMat• (no assumptions
about number of points on a line). 37/38



What’s next?

Exactness: What exactness conditions does Msc satisfy? How
close does cMsc come to being “non-additive abelian”?

Generalized hyperrings and modules: Do “rings” with additive
mosaic structure also enjoy good categorical properties? What
about their module categories?

Extraordinary representations of rings: What unusual modules
can be constructed in this setting over an ordinary ring? Can
they provide new tools to study the structure of rings?

Thank you!
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