Ozone groups and centers of skew polynomial rings

 arXiv: 2302.11471Seattle Noncommutative Algebra Days
Seattle, WA
March 18, 2023

Jason Gaddis
Miami University
(no, the other one)

My collaborators

Robert Won

James Zhang

Setup

Let \mathbb{k} be a field of characteristic zero.
Let $\mathbf{p}=\left(p_{i j}\right) \in M_{n}\left(\mathbb{k}^{\times}\right)$be multiplicatively antisymmetric ($p_{i i}=1$ for all i and $p_{i j}=p_{j i}^{-1}$ for all $i \neq j$).

The skew polynomial ring S_{p} is the \mathbb{k}-algebra

$$
S_{\mathbf{p}}=\mathbb{k}_{\mathbf{p}}\left[x_{1}, \ldots, x_{n}\right]=\frac{\mathbb{k}\left\langle x_{1}, \ldots, x_{n}\right\rangle}{\left(x_{j} x_{i}=p_{i j} x_{i} x_{j}\right)}
$$

- S_{p} is AS regular
- S_{p} has global and GK dimension n
- S_{p} is PI if and only if each $p_{i j}$ is a root of unity

Motivation

In case S_{p} is PI, we want to understand the properties of S_{p} and its center $Z=Z S_{p}$. For example, when is Z Gorenstein or regular (a polynomial ring)?

Example $(n=2)$

Let $S=\mathbb{k}_{\mathrm{p}}\left[x_{1}, x_{2}\right]$. Then

$$
\mathbf{p}=\left(\begin{array}{cc}
1 & p_{12} \\
p_{12}^{-1} & 1
\end{array}\right)
$$

where p_{12} is an ℓ th root of unity.
Which monomials are central?

$$
\begin{aligned}
& \left(x_{1}^{i} x_{2}^{j}\right) x_{1}=p_{12}^{j} x_{1}\left(x_{1}^{i} x_{2}^{j}\right) \\
& \left(x_{1}^{i} x_{2}^{j}\right) x_{2}=p_{12}^{-i} x_{2}\left(x_{1}^{i} x_{2}^{j}\right)
\end{aligned}
$$

So $x_{1}^{i} x_{2}^{j}$ central if and only if $i \equiv j \equiv 0 \bmod \ell$. Thus,

$$
Z(S)=\mathbb{k}\left[x_{1}^{\ell}, x_{2}^{\ell}\right]
$$

The case $n=3$ is already significantly harder. Here we will give one way of attacking this problem.

The ozone group

Let $\phi_{i} \in \operatorname{Aut}_{\mathrm{gr}}\left(S_{\mathrm{p}}\right)$ denote conjugation by x_{i} :

$$
\phi_{i}(f)=x_{i}^{-1} f x_{i} \quad \text { for all } f \in S_{p}
$$

Let $O=\left\langle\phi_{1}, \ldots, \phi_{n}\right\rangle$, which is a subgroup of $\operatorname{Aut}_{\mathrm{gr}}\left(S_{\mathrm{p}}\right)$.
It is clear that

$$
Z=Z S_{\mathrm{p}}=S_{\mathrm{p}}^{O}
$$

so we can employ tools from (noncommutative) invariant theory.
One can show that $O=\operatorname{Aut}_{z-\mathrm{alg}}(S)$.

The ozone group

Some other famous ozones:

The ozone molecule

The G.I. Joe character

The Motown funk band

The ozone group

Definition

Let A be a noetherian PI AS regular algebra with center Z. The ozone group of A is

$$
\mathrm{Oz}(A)=\operatorname{Aut}_{z-\mathrm{alg}}(A) .
$$

In general we have

$$
1 \leq|O z(A)| \leq \operatorname{rank}\left(A_{z}\right)
$$

The ozone group can be used to characterize skew polynomial rings.
Theorem (CGWZ)
Suppose $\mathbb{k}=\overline{\mathbb{k}}$ and A is generated in degree 1 . Then A is a skew polynomial ring if and only if $\mathrm{Oz}(A)$ is abelian and $|\mathrm{Oz}(A)|=\operatorname{rank}\left(A_{z}\right)$.

The ozone group

Example

Let A be the quantum Heisenberg algebra

$$
\mathbb{k}\langle x, y, z\rangle /\left(z x=p x z, z y=p^{-1} y z, y x=p x y-z^{2}\right)
$$

where p is a primitive ℓ th root of unity.
Set $\Omega=\left(y x-p^{2} x y\right)$. The center of A is generated by $x^{\ell}, y^{\ell}, z^{\ell}$, and $\Omega z^{\ell-1}$.
Let $\phi \in \mathrm{Oz}(A)$. A computation shows

$$
\phi(x)=\epsilon_{1} x, \quad \phi(y)=\epsilon_{2} y, \quad \phi(z)=\epsilon_{3} z
$$

where each ϵ_{i} is an ℓ th root of unity.
In order to fix $\Omega z^{\ell-1}$ and satisfy $0=\phi\left(y x-p x y+z^{2}\right)$, we must have

$$
\epsilon_{3}=1 \quad \text { and } \quad \epsilon_{2}=\epsilon_{1}^{-1}
$$

This implies that $\mathrm{Oz}(A) \cong C_{\ell}$.

The ozone group

Lemma

If A and B are noetherian PI AS regular algebras, then

$$
\mathrm{Oz}(A \otimes B)=\mathrm{Oz}(A) \times \mathrm{Oz}(B) .
$$

Hence, every finite abelian group is realizable as the ozone group of a noetherian PI AS regular algebra.

Example

Let A be the 3 -dimensional Sklyanin algebra $S(1,1,-1)$

$$
\mathbb{k}\langle x, y, z\rangle /\left(x y+y x=z^{2}, y z+z y=x^{2}, z x+x z=y^{2}\right) .
$$

A similar computation to the previous one shows that the ozone group of A is trivial.
We conjecture that the ozone group is abelian for every PI AS regular algebra.
For non-connected algebras the ozone group may be non-abelian.

The mozone

One can ask if there is a "Galois-like" correspondence for the ozone group.

Definition

Let A be a noetherian $\mathrm{PI} A S$ regular algebra with center Z.
(1) A subring R of A is called ozone if R is AS regular and $Z \subseteq R \subseteq A$.
(2) The set of all ozone subrings of A is denoted by $\Phi_{Z}(A)$.
(3) If R is a minimal element in $\Phi_{Z}(A)$ via inclusion, then R is called a mozone subring of A.

Proposition (CGWZ)

Let $S=S_{\mathrm{p}}$ be PI and let O be the ozone group of S. Let H denote the subgroup of O generated by reflections. Then S^{H} is a mozone subring of S.

Reflections

Let $S=S_{\mathrm{p}}$ be PI, let $Z=Z S_{\mathrm{p}}$, and let O be the ozone group of S.
Since the automorphisms of O are diagonal, a reflection of O is a classical reflection.
Let H denote the subgroup of O generated by reflections.

Theorem (Kirkman, Kuzmanovich, Zhang (2010))
Let G be a finite subgroup of $\operatorname{Aut}_{\mathrm{gr}}(S)$. Then S^{G} has finite global dimension if and only if G is generated by reflections of S. In this case, S^{G} is again a skew polynomial ring.

By the above theorem, Z is regular if and only if $O=H$.
Theorem (Kirkman, Kuzmanovich, Zhang (2009))
Let G be a finite subgroup of $\operatorname{Aut}_{g r}(S)$. Then S^{G} is Gorenstein if and only if G / H acts on S^{H} with trivial homological determinant.

Reflections

Proposition (CGWZ)

Set

$$
\mathfrak{f}_{i}=\operatorname{gcd}\left\{d_{i} \mid x_{1}^{d_{1}} \cdots x_{i}^{d_{i}} \cdots x_{n}^{d_{n}} \in Z\right\} .
$$

Then

$$
H=\prod_{i=1}^{n}\left\langle r_{i}\right\rangle \quad \text { where } \quad r_{i}: x_{j} \mapsto\left\{\begin{array}{cc}
x_{j} & j \neq i \\
c_{i} x_{i} & j=i
\end{array}\right.
$$

for some root of unity c_{i}. Moreover, the order of c_{i} is \mathfrak{f}_{i}, so

$$
S^{H}=\mathbb{k}_{\mathbf{q}}\left[x_{1}^{f_{1}}, \ldots, x_{n}^{f_{n}}\right]
$$

and

$$
\mathfrak{f}_{i}=\min \left\{d_{i}>0 \mid x_{1}^{d_{1}} \cdots x_{i}^{d_{i}} \cdots x_{n}^{d_{n}} \in Z\right\} .
$$

An immediate consequence is that O contains no reflections if and only if each $f_{i}=1$.

Auslander's Theorem

Let A be an algebra and let G a subgroup of $\operatorname{Aut}(A)$. The Auslander map $A \# G \rightarrow \operatorname{End}\left(A_{A^{G}}\right)$ is given by

$$
a \# g \mapsto\left(\begin{array}{ccc}
A & \rightarrow & A \\
b & \mapsto & a g(b)
\end{array}\right)
$$

Auslander's original theorem says that for A a polynomial ring, the Auslander map is an isomorphism if and only if G is small (contains no reflections).

Theorem (CGWZ)

The following are equivalent:
(1) The Auslander map is an isomorphism for (S, O).
(2) O is small (in the classical sense).
(3) $f_{i}=1$ for all i. (There is an element of the form $x_{1}^{a_{1}} \cdots x_{i} \cdots x_{n}^{a_{n}} \in Z$.)

We can work this out explicitly (in terms of the parameters) for small n.

Auslander's Theorem

First, note that for the parameters $\mathbf{p}=\left(p_{i j}\right)$ we can find some ℓ th root of unity ξ (where ℓ is minimal) such that $p_{i j}=\xi^{b_{i j}}$ for some integers $b_{i j}$.

$$
\begin{aligned}
& \mathbf{p}=\left(\begin{array}{ccc}
1 & p_{12} & p_{13} \\
p_{12}^{-1} & 1 & p_{23} \\
p_{13}^{-1} & p_{23}^{-1} & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & \xi^{b_{12}} & \xi^{b_{13}} \\
\xi^{-b_{12}} & 1 & \xi^{b_{23}} \\
\xi^{-b_{13}} & \xi^{-b_{23}} & 1
\end{array}\right) \\
& B=\left(\begin{array}{ccc}
0 & b_{12} & b_{13} \\
-b_{12} & 0 & b_{23} \\
-b_{13} & -b_{23} & 0
\end{array}\right) \in \mathrm{M}_{3}(\mathbb{Z} / \ell \mathbb{Z})
\end{aligned}
$$

The matrix $B=\left(b_{i j}\right)$ is (honestly) anti-symmetric.
Recall that the Pfaffian of (a skew-symmetric matrix) B is

$$
\operatorname{pf}(B)=\sqrt{\operatorname{det}(B)}
$$

Auslander's Theorem

Theorem (CGWZ)

($n=2$) The Auslander map is not an isomorphism for (S, O).
($n=3$) The Auslander map is an isomorphism if and only if $\operatorname{gcd}\left(b_{i j}, \ell\right)=1$ for each $i \neq j$.
($n=4$) The Auslander map is an isomorphism if and only if $\mathrm{pf}(B)=0 \bmod \ell$ and there does not index j and integer k such that $k b_{i j}=0 \bmod \ell$ for all but one i.

In case $n=3, \operatorname{pf}(B)$ is automatically zero. This demonstrates that the Pfaffian plays an important role in analyzing these algebras.

Regular center

Recall that, in the $n=2$ case, Z is always regular.
There is an algorithm for working out this problem in general which is explained in our paper. Here is the key lemma:

Lemma

Let \bar{B} be the matrix obtained from B by reduction $\bmod \ell$. Let $\bar{K}=\operatorname{ker}(\bar{B})$ and let $K \subset \mathbb{Z}^{n}$ be its inverse image.

Then $Z=\mathbb{k}\left[x_{1}^{f_{1}}, \ldots, x_{n}^{f_{n}}\right]$ if and only if $\mathfrak{f}_{i} \mathbf{e}_{i} \in K$ for each i.
Equivalently, $f_{i} \mathbf{e}_{i} \otimes 1 \in K \otimes \mathbb{Z}_{(p)}$ for every prime $p \mid \ell$ and each i.
For each $p \mid \ell$, we work out an explicit generating set of $K \otimes \mathbb{Z}_{(p)}$ in the cases above. These can then be glued together to get a generating set for K.

Regular center

Let $n=3$. The Smith normal form $D=L B R$ of B over the ring $\mathbb{Z}_{(p)}$ is

$$
D=\left[\begin{array}{ccc}
b_{12} & 0 & 0 \\
0 & -b_{12} & 0 \\
0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
b_{23} / b_{12} & -b_{13} / b_{12} & 1
\end{array}\right], R=\left[\begin{array}{ccc}
0 & 1 & b_{23} / b_{12} \\
1 & 0 & -b_{13} / b_{12} \\
0 & 0 & 1
\end{array}\right]
$$

The kernel of $D_{(p)}$ is generated, as a $\mathbb{Z}_{(p)}$-module, by $p^{N} \mathbf{e}_{1}, p^{N} \mathbf{e}_{2}, \mathbf{e}_{3}$.
Applying R to these gives that $K_{(p)}$ is generated as a $\mathbb{Z}_{(p)}$-module by $p^{N} \mathbf{e}_{i}$ and

$$
\frac{1}{b_{12}}\left[\begin{array}{c}
b_{23} \\
-b_{13} \\
b_{12}
\end{array}\right]
$$

Theorem (CGWZ)
$(n=3) Z$ is regular if and only if the orders of p_{12}, p_{13}, and p_{23} are pairwise coprime.
($n=4$) Let $\rho=\operatorname{gcd}(\ell, \operatorname{pf}(B)), c_{i j}=\operatorname{gcd}\left(b_{i j}, \rho\right), \omega$ be a primitive ρ th root of unity, and set $q_{i j}=\omega^{c_{i j}}$. Then Z is regular if and only if the orders of the $\left\{q_{i j}\right\}_{i<j}$ are pairwise coprime.

Gorenstein center

We introduce here some "new" invariants. Several of these are "ozone versions" of invariants defined by Kirkman and Zhang (2021).
Ozone Invariants

- The ozone Jacobian of S is $\mathfrak{o j} s:=\prod_{i=1}^{n} x_{i}^{\mathrm{fi}_{i}-1}$.
- The ozone arrangement of S is $\mathfrak{o a s}:=\prod_{f_{i}>1}^{n} x_{i}$.
- The ozone Jacobian of S is $\mathfrak{o d}_{s}:=\prod_{\mathfrak{f}_{i}>1}^{n} x_{i}^{f_{i}}=\mathfrak{o j} s \mathfrak{o a}_{s}$.
- The product of generators of S is $\mathfrak{p g}_{s}:=\prod_{i=1}^{n} x_{i}$.

The first three are algebra invariants (up to a nonzero scalar) but the last one is not (depends on the presentation).

When Z is Gorenstein, then $\mathfrak{o d}_{s}$ is the same as $\mathfrak{j}_{s, o}$ as defined by Kirkman and Zhang.

Gorenstein center

Theorem (CGWZ)

The following are equivalent.
(1) Z is Gorenstein.
(2) $\mathfrak{o j} s \mathfrak{p g}_{s}=\prod_{i=1}^{n} x_{i}^{f_{i}}$.
(3) For all i, we have $\prod_{j=1}^{n} p_{i j}^{\mathrm{f}_{j}}=1$.

Again, when $n=2, Z$ is regular so Gorenstein.
Theorem (CGWZ) $(n=3) Z$ is Gorenstein if and only if

$$
\bar{B}\left(b_{23}^{\prime}, b_{13}^{\prime}, b_{12}^{\prime}\right)^{T}=0 \quad \text { where } \quad b_{i j}^{\prime}=\operatorname{gcd}\left(b_{i j}, \ell\right)
$$

$(n=4) Z$ is Gorenstein if and only if

$$
\frac{\ell}{\operatorname{gcd}(\operatorname{pf}(B), \ell)} \bar{B}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T}=0 \quad \text { where } \quad v_{i}=\operatorname{gcd}\left(\ell,\left\{b_{j k} \mid j, k \neq i\right\}\right)
$$

But wait! There's more!

Corollary (CGWZ)

(1) S is Calabi-Yau if and only $\mathfrak{p g}_{s} \in Z$ if and only if Z is Gorenstein and Auslander's Theorem holds for (S, O).
(2) If S is Calabi-Yau, then Z is not regular.

Questions

- Characterize S_{p} when $Z S_{\mathrm{p}}$ is a hypersurface ring, or a complete intersection

$$
\text { regular } \Rightarrow \text { hypersurface } \Rightarrow \text { complete intersection } \Rightarrow \text { Gorenstein }
$$

- For A a PI AS regular algebra, is there a semisimple Hopf algebra H such that

$$
Z(A)=A^{H} ?
$$

- Is there a version of previous corollary for A?
- Can we define the ozone invariants for A so that they control properties of the center?

Thank You!

Thanks James!

