Hopf Actions of some quantum doubles on Artin-Schelter regular algebras

W. Frank Moore*

moorewf@math.wfu.edu
March 18th, 2023

Department of Mathematics

Joint work with Ellen Kirkman and Tolulope Oke

Plan of the talk:

- Hopf actions
(2) Quantum double $D(G)$ of a group G
(3) $D(G)$-modules
(A detailed example: $G=Q_{8}$

Throughout, let H be a finite dimensional Hopf algebra over a field k.

Motivating Question: Given a Hopf algebra H, determine 'nice' algebras A on which H acts homogeneously and inner-faithfully, and in turn study properties of the invariant subalgebra A^{H}.

In this talk, we will focus on when H is semisimple, and search for quadratic Artin-Schelter regular algebras A.

Hopf Actions

When we say that a Hopf algebra H acts on an algebra A, we mean that A is an H-comodule algebra.

That is, the action of H on A is associative, and for any elements $h \in H$ and $a, b \in A$, one has

$$
(a b) \cdot h=\sum\left(a \cdot h_{(1)}\right)\left(b \cdot h_{(2)}\right)
$$

In this context, the invariant subalgebra is defined as:

$$
A^{H}=\{f \in A \mid f . h=\epsilon(h) f\}
$$

We also often assume that A is generated in degree one, so that A_{1} is an H-module, and this H-module structure determines the action of H on A.

Inner-faithful actions

An inner-faithful H-module is an H-module V that is not annihilated by a nontrivial Hopf ideal.

Theorem (Rieffel)

Let H be a semisimple Hopf algebra. Then V is an inner-faithful H-module if and only if every simple H-module appears as a direct summand of some tensor power of V.

Examples

- $k G$ for G a finite group, char $k \nmid G \mid . A^{G}$ is the usual ring of invariants, and inner-faithful actions are just the faithful actions.
(2) $H=(k G)^{*}$ for G a group. A homogeneous action of H on A is a G-grading on A that is compatible with the \mathbb{N}-grading. This action is inner-faithful if the group grades of the G-homogeneous elements in A_{1} generate G.

The Quantum Double $D(G)$

Let G be a group and k a field. The quantum double $D(G)$ of G is the algebra

$$
D(G)=(k G)^{*} \# k G
$$

where we let G act on $(k G)^{*}$ via $(f . g)(x)=f\left(g^{-1} x g\right)$ for $f \in(k G)^{*}$ and $g \in G$.

Alternatively, we may write (suppressing the \# or \otimes sign):

$$
\left(\phi_{a} g\right)\left(\phi_{b} h\right)=\phi_{a} \phi_{g^{-1} b g} g h
$$

which is nonzero if and only if $a=g^{-1} b g$.

Invariants under $D(G)$

Note that if $D(G)$ acts on A, then $(k G)^{*}$ acts on $A, k G$ acts on A, and these actions are compatible (explained in detail on next slide).

Lemma

Let $D(G)$ act on an algebra A, so that A is G-graded and carries a compatible G-action. Then:

- A_{e} (the identity component of A in the G-grading) also carries a G-action.
(2) While A^{G} need not be G-graded, the identity component of a G-invariant element is again G-invariant.
(c) $A^{H}=\left(A_{e}\right)^{G}=A_{e} \cap A^{G}$.

G-equivariant vector bundles

Let G act on itself on the right by conjugation. That is, $a . g=a^{g}=g^{-1} a g$.

A G-equivariant vector bundle on G is a collection of vector spaces $\left\{V_{a}\right\}_{a \in G}$ together with a representation of G on $V=\bigoplus_{a \in G} V_{a}$ such that for each $v \in V_{a}$ and $g \in G$, one has $v . g \in V_{a^{g}}$.

The collection of all such objects and morphisms between them forms a category $\operatorname{vect}_{G}(G)$.

Theorem (Witherspoon)

There is an equivalence of categories between vect $G_{G}(G)$ and $\bmod D(G)$.

In this way, to search for $D(G)$-modules, we instead may search for G-graded vector spaces that carry an action of G that is compatible with the grading using the conjugation action.

Simple $D(G)$-modules

Let $\left\{a_{1}, \ldots, a_{r}\right\}$ be a set of representatives of the conjugacy classes of G. Let G_{i} denote the centralizer $C_{G}\left(a_{i}\right)$.
The simples of $D(G)$ are in bijection with the set

$$
\left\{\left(a_{i}, V\right) \mid V \text { is a simple } k G_{i} \text { module }\right\} .
$$

The simple $D(G)$-module corresponding to $\left(a_{i}, V\right)$ is the induced right $k G$-module

$$
V \otimes_{k G_{i}} k G
$$

where the group grade of $v \otimes g$ is a_{i}^{g} (so that this module is concentrated in degrees given by the conjugacy class of a_{i}).
Note that a basis of $V \otimes_{k G_{i}} k G$ may be taken to be the elementary tensors between a basis of V and elements of a right transversal of G_{i} in G, so that

$$
\operatorname{dim}_{k}\left(V \otimes_{k G_{i}} k G\right)=(\operatorname{dim} V)\left[G: G_{i}\right]
$$

An Example

Consider $Q_{8}=\left\langle r, s \mid r^{4}=1, s^{2}=r^{2}, s r s^{-1}=r^{-1}\right\rangle$.

Conjugacy class	Centralizer	Representations	Transversal
$\{e\}$	Q_{8}	$\psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}, \chi$	$\{1\}$
$\left\{r^{2}\right\}$	Q_{8}	$\psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}, \chi$	$\{1\}$
$\left\{r, r^{3}\right\}$	$\langle r\rangle$	$\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$	$\{1, s\}$
$\left\{s, s r^{2}\right\}$	$\langle s\rangle$	$\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$	$\{1, r\}$
$\left\{s r, s r^{3}\right\}$	$\langle s r\rangle$	$\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}$	$\{1, s\}$

Here, $\alpha_{\ell}, \beta_{\ell}$ and γ_{ℓ} send the generator of their corresponding centralizer to i^{ℓ}.
Also, ψ_{0} is the trivial module of $k G, \psi_{1}, \psi_{2}, \psi_{3}$ are the
one-dimensional reps corresponding to the index two subgroups $\langle r\rangle$, $\langle s\rangle$ and $\langle r s\rangle$ respectively, and χ is the unique two-dimensional simple representation of G.
We number the corresponding simple modules of $D(G)$ from the above table

$$
V_{0}, V_{1}, \ldots, V_{21}
$$

Inner Faithful Q_{8}-modules

Theorem (Kirkman-Oke-M)

Let V be a $D\left(Q_{8}\right)$-module. Then:

- If V has only one or two distinct simple summands up to isomorphism, then V is not inner-faithful.
(2) Suppose $V=W_{1} \oplus W_{2} \oplus W_{3}$ with each W_{ℓ} simple. Then V is an inner-faithful $D(G)$-module if and only if W_{1} and W_{2} correspond to distinct non-singleton conjugacy classes and W_{3} is:
() V_{4} or V_{9}, or
(0) One of two simples arising from each of the other three non-singleton conjugacy classes (six total choices) depending on your choices of W_{1} and W_{2}.
In total, there are 224 non-isomorphic inner-faithful $D\left(Q_{8}\right)$-modules with three distinct simple summands, and all of them dimension six.

Example: $V=V_{17} \oplus V_{20} \oplus V_{21}$

To determine a quadratic Artin-Schelter regular algebra A on which $D\left(Q_{8}\right)$ acts, we must choose a 15-dimensional $D\left(Q_{8}\right)$-submodule W of $V \otimes V$. So we must decompose $V \otimes V$ as a direct sum of simple $D\left(Q_{8}\right)$-modules.
Using either Witherspoon's character theory for almost cocommutative algebras or the S-matrix of this group due to Coste-Gannon-Ruelle, one has:

$$
\begin{aligned}
V_{17} \otimes V_{17} & =V_{0} \oplus V_{2} \oplus V_{6} \oplus V_{8} \\
V_{20} \otimes V_{20} & =V_{0} \oplus V_{3} \oplus V_{5} \oplus V_{8} \\
V_{21} \otimes V_{21} & =V_{0} \oplus V_{3} \oplus V_{6} \oplus V_{7} \\
V_{17} \otimes V_{20} \cong V_{20} \otimes V_{17} & =V_{11} \oplus V_{13} \\
V_{17} \otimes V_{21} \cong V_{21} \otimes V_{17} & =V_{10} \oplus V_{12} \\
V_{20} \otimes V_{21} \cong V_{20} \otimes V_{21} & =V_{4} \oplus V_{9}
\end{aligned}
$$

However, we need the actual decompositions that realize these isomorphisms.

Examining a particular case

If we let

$$
V_{17}=\operatorname{span}_{k}\left\{x_{1}, x_{2}\right\}, V_{20}=\operatorname{span}_{k}\left\{y_{1}, y_{2}\right\}, V_{21}=\operatorname{span}_{k}\left\{z_{1}, z_{2}\right\},
$$

then one may show

$\begin{aligned} V_{17} \otimes V_{17}= & \operatorname{span}_{k}\left\{x_{1} x_{2}-x_{2} x_{1}\right\} \oplus \\ & \operatorname{span}_{k}\left\{x_{1} x_{2}+x_{2} x_{1}\right\} \oplus \\ & \operatorname{span}_{k}\left\{x_{1}^{2}+x_{2}^{2}\right\} \oplus \\ & \operatorname{span}_{k}\left\{x_{1}^{2}-x_{2}^{2}\right\} \end{aligned}$	$\begin{array}{r} V_{17} \otimes V_{20}=\operatorname{span}_{k}\left\{x_{2} y_{1}-\dot{\mathrm{i}} x_{1} y_{2},\right. \\ \dot{\left.\mathrm{i} x_{2} y_{2}-x_{1} y_{1}\right\} \oplus} \\ \operatorname{span}_{k}\left\{x_{2} y_{1}+\dot{\mathrm{i} x_{1} y_{2},}\right. \\ \left.\dot{\mathrm{i}} x_{2} y_{2}+x_{1} y_{1}\right\} \end{array}$	$\begin{aligned} V_{21} \otimes V_{17}= & \operatorname{span}_{k}\left\{\dot{\mathrm{i}} z_{1} x_{1}+z_{2} x_{2},\right. \\ & \left.z_{2} x_{1}-\mathrm{i} i z_{1} x_{2}\right\} \oplus \\ & \operatorname{span}_{k}\left\{\dot{\mathrm{i}} z_{1} x_{1}-z_{2} x_{2},\right. \\ & \left.z_{2} x_{1}+\dot{\mathrm{i}} z_{1} x_{2}\right\} \end{aligned}$
$\begin{aligned} V_{20} \otimes V_{20}= & \operatorname{span}_{k}\left\{y_{1} y_{2}+y_{2} y_{1}\right\} \oplus \\ & \operatorname{span}_{k}\left\{y_{1} y_{2}-y_{2} y_{1}\right\} \oplus \\ & \operatorname{span}_{k}\left\{y_{1}^{2}+y_{2}^{2}\right\} \oplus \\ & \operatorname{span}_{k}\left\{y_{1}^{2}-y_{2}^{2}\right\} \end{aligned}$	$\begin{aligned} & V_{20} \otimes V_{17}= \operatorname{span}_{k}\left\{y_{1} x_{1}+\mathrm{i} y_{2} x_{2}\right. \\ &\left.-\mathrm{i} y_{2} x_{1}-y_{1} x_{2}\right\} \\ & \operatorname{span}_{k}\left\{y_{1} x_{1}-\mathrm{i} y_{2} x_{2}\right. \\ &\left.-\mathrm{i} y_{2} x_{1}+y_{1} x_{2}\right\} \end{aligned}$	$\begin{array}{r} V_{20} \otimes V_{21}=\operatorname{span}_{k}\left\{y_{1} z_{2}+\mathrm{i} y_{2} z_{1},\right. \\ \left.\dot{\mathrm{i}} y_{2} z_{1}-y_{1} z_{2}\right\} \\ \\ \operatorname{span}_{k}\left\{y_{2} z_{2}+\mathrm{i} y_{1} z_{1},\right. \\ \left.\dot{\mathrm{i}} y_{1} z_{1}-y_{2} z_{2}\right\} \end{array}$
$\begin{aligned} V_{21} \otimes V_{21}= & \operatorname{span}_{k}\left\{z_{1} z_{2}-z_{2} z_{1}\right\} \oplus \\ & \operatorname{span}_{k}\left\{z_{1} z_{2}+z_{2} z_{1}\right\} \oplus \\ & \operatorname{span}_{k}\left\{z_{1}^{2}-z_{2}^{2}\right\} \oplus \\ & \operatorname{span}_{k}\left\{z_{1}^{2}+z_{2}^{2}\right\} \end{aligned}$	$\begin{array}{r} V_{17} \otimes V_{21}=\operatorname{span}_{k}\left\{x_{2} z_{1}+\mathrm{i} x_{1} z_{2},\right. \\ \left.\dot{\mathrm{i}} x_{2} z_{2}-x_{1} z_{1}\right\} \\ \operatorname{span}_{k}\left\{x_{2} z_{1}-\mathrm{i} x_{1} z_{2},\right. \\ \left.\mathrm{i} x_{2} z_{2}+x_{1} z_{1}\right\} \end{array}$	$\begin{array}{r} V_{21} \otimes V_{20}=\operatorname{span}_{k}\left\{z_{2} y_{1}+\dot{\mathrm{i}} z_{1} y_{2},\right. \\ \left.\dot{\mathrm{i}} z_{1} y_{2}-z_{2} y_{1}\right\} \\ \operatorname{span}_{k}\left\{z_{2} y_{2}+\dot{\mathrm{i}} z_{1} y_{1},\right. \\ \left.\dot{\mathrm{i}} z_{1} y_{1}-z_{2} y_{2}\right\} \end{array}$

One way to choose relations from this list is to use the almost cocommutative property of $D\left(Q_{8}\right)$ to help create commutativity relations in A. For example, let W be given by the span of the following elements (where b, c, d, e are arbitrary parameters, and $\alpha, \beta, \gamma \in\{1,-1\})$:

$$
\begin{aligned}
& V_{0}: \quad x_{1} x_{2}-\alpha x_{2} x_{1} \\
& V_{3}: y_{1} y_{2}-\beta y_{2} y_{1} \\
& V_{0}: z_{1} z_{2}-\gamma z_{2} z_{1} \\
& V_{11}:\left(x_{2} y_{1}-\dot{\mathrm{i}} x_{1} y_{2}\right)-b\left(y_{1} x_{1}+\mathrm{i} y_{2} x_{2}\right),\left(\mathrm{i} x_{2} y_{2}-x_{1} y_{1}\right)-b\left(-\dot{\mathrm{i}} y_{2} x_{1}-y_{1} x_{2}\right) \text {, } \\
& V_{13}:\left(x_{2} y_{1}+\mathrm{i} x_{1} y_{2}\right)-b\left(y_{1} x_{1}-\dot{\mathrm{i}} y_{2} x_{2}\right),\left(\mathrm{i} x_{2} y_{2}+x_{1} y_{1}\right)-b\left(-\mathrm{i} y_{2} x_{1}+y_{1} x_{2}\right), \\
& V_{10}:\left(x_{2} z_{1}+\dot{\mathrm{i}} x_{1} z_{2}\right)-c\left(\mathrm{i} z_{1} x_{1}+z_{2} x_{2}\right),\left(\mathrm{i} x_{2} z_{2}-x_{1} z_{1}\right)-c\left(z_{2} x_{1}-\dot{\mathrm{i}} z_{1} x_{2}\right), \\
& V_{12}:\left(x_{2} z_{1}-\dot{\mathrm{i}} x_{1} z_{2}\right)-c\left(\mathrm{i} z_{1} x_{1}-z_{2} x_{2}\right),\left(\mathrm{i} x_{2} z_{2}+x_{1} z_{1}\right)-c\left(z_{2} x_{1}+\dot{\mathrm{i}} z_{1} x_{2}\right) \text {, } \\
& V_{4}: \quad\left(y_{1} z_{2}+\mathrm{i} y_{2} z_{1}\right)-d\left(z_{2} y_{1}+\mathrm{i} z_{1} y_{2}\right),\left(\mathrm{i} y_{2} z_{1}-y_{1} z_{2}\right)-d\left(\mathrm{i} z_{1} y_{2}-z_{2} y_{1}\right) \text {, } \\
& V_{9}:\left(y_{2} z_{2}+\mathrm{i} y_{1} z_{1}\right)-e\left(z_{2} y_{2}+\mathrm{i} z_{1} y_{1}\right),\left(\mathrm{i} y_{1} z_{1}-y_{2} z_{2}\right)-e\left(\mathrm{i} z_{1} y_{1}-z_{2} y_{2}\right)
\end{aligned}
$$

We can clean these relations up a bit by adding and subtracting them to get binomial relations. However, it is no longer obvious that what we have afterwards is an $D\left(Q_{8}\right)$-module!

Cleaning up the relations in this way gives:

$$
\begin{array}{lc}
x_{1} x_{2}-\alpha x_{2} x_{1}, & y_{1} y_{2}-\beta y_{2} y_{1}, z_{1} z_{2}-\gamma z_{2} z_{1} \\
x_{2} y_{1}-b y_{1} x_{1}, & x_{1} y_{2}+b y_{2} x_{2} \\
x_{2} y_{2}+b y_{2} x_{1}, & x_{1} y_{1}-b y_{1} x_{2} \\
x_{2} z_{1}-c i z_{1} x_{1}, & i x_{1} z_{2}-c z_{2} x_{2} \\
i x_{2} z_{2}-c z_{2} x_{1}, & x_{1} z_{1}-c i z_{1} x_{2} \\
y_{2} z_{1}-d z_{1} y_{2}, & y_{1} z_{2}-d z_{2} y_{1} \\
y_{1} z_{1}-e z_{1} y_{1}, & y_{2} z_{2}-e z_{2} y_{2}
\end{array}
$$

These relations define a (trimmed) double Ore extension (in the sense of Zhang-Zhang) of the skew polynomial ring $k_{p_{i j}}\left[y_{1}, y_{2}, z_{1}, z_{2}\right]$ by the variables x_{1}, x_{2}. In particular, this algebra (which we call A) is Artin-Schelter regular and Koszul.

Therefore this algebra is a derivation-quotient algebra defined by some twisted superpotential [Dubois-Violette].

The η-twisted superpotential of this algebra has the form:
$x_{1} x_{2} y_{1} y_{2} z_{1} z_{2}+\beta \gamma x_{1} x_{2} y_{2} y_{1} z_{2} z_{1}-\alpha \beta \gamma x_{2} x_{1} y_{2} y_{1} z_{2} z_{1}+717$ other terms
with η (the Nakayama automorphism) given by the matrix

$$
\left(\begin{array}{ccc}
\alpha I & 0 & 0 \\
0 & \alpha \beta I & 0 \\
0 & 0 & -\alpha \gamma I
\end{array}\right)
$$

where I is the 2×2 identity matrix.
To see that ω_{A} has this form is to note that in $A^{!}$one has:

$$
\begin{aligned}
& x_{1} x_{2} y_{2} y_{1} z_{2} z_{1}=(-\beta)(-\gamma) x_{1} x_{2} y_{1} y_{2} z_{1} z_{2} \\
& x_{2} x_{1} y_{2} y_{1} z_{2} z_{1}=(-\alpha)(-\beta)(-\gamma) x_{1} x_{2} y_{1} y_{2} z_{1} z_{2}
\end{aligned}
$$

In particular, A is Calabi-Yau if and only if $(\alpha, \beta, \gamma)=(1,1,-1)$.

The homological determinant of the action of H on A is a k-algebra homomorphism

$$
\operatorname{hdet}_{A}: H \rightarrow k
$$

defined by Jorgensen-Zhang in the case $H=k G$ and Kirkman-Kuzmanovich-Zhang when H is f.d. and semisimple.

This map is the character of a one-dimensional representation. When it is the character of the trivial representation (i.e. when $\operatorname{hdet}_{A}=\epsilon_{H}$), we say the homological determinant is trivial.

Theorem (KKZ)

When hdet_{A} is trivial, then A^{H} is $A S$-Gorenstein.

However, hdet_{A} can be a bit of a challenge (at least for me!) to compute as it is defined in terms of induced actions on local cohomology.

Theorem (Smith-Mori,Crawford)

If H is a semisimple Hopf algebra acting on a derivation-quotient algebra A defined by a twisted superpotential ω_{A}, then for all $h \in H$, one has

$$
\omega_{A} \cdot h=\omega_{A} \operatorname{hdet}_{A}(h) .
$$

When $H=D(G)$, for hdet to be a one-dimensional representation, we must have

$$
\text { hdet }=V \otimes_{k G_{i}} k G
$$

where:

- $G_{i}=C_{G}(z)=G$ for some $z \in Z(G)$, and
- V a one-dimensional representation of G.

So the superpotential must be homogeneous with group grade in the center of G, and its span must be a one-dimensional rep of G.

In our example, we have:

We have that the group grades of the variables are given by:

	x_{1}	x_{2}	y_{1}	y_{2}	z_{1}	z_{2}
Grade:	s	$s r^{2}$	$s r$	$s r^{3}$	$s r$	$s r^{3}$

and the actions of r and s are given by the following matrices (acting on rows since we are acting on the right):

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\dot{i} \\
0 & 0 & 0 & 0 & -\dot{i} & 0
\end{array}\right) \quad\left(\begin{array}{cccccc}
-\dot{i} & 0 & 0 & 0 & 0 & 0 \\
0 & \dot{i} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

Using our superpotential

$$
\omega_{A}=x_{1} x_{2} y_{1} y_{2} z_{1} z_{2}+\beta \gamma x_{1} x_{2} y_{2} y_{1} z_{2} z_{1}-\alpha \beta \gamma x_{2} x_{1} y_{2} y_{1} z_{2} z_{1}+\cdots
$$

we notice that ω_{A} is in group grade e_{G}, and one can check that:

$$
\operatorname{hdet}_{A}(r)=-\alpha \beta \gamma \quad \operatorname{hdet}_{A}(s)=-\beta \gamma .
$$

Therefore this action has trivial homological determinant if and only if $\alpha=1$ and $\beta=-\gamma$.

To see this, note that:

$$
\begin{aligned}
\left(-\alpha \beta \gamma x_{2} x_{1} y_{2} y_{1} z_{2} z_{1}\right) \cdot r & =-\alpha \beta \gamma\left(-x_{1}\right)\left(x_{2}\right)\left(-y_{3}\right)\left(-y_{4}\right)\left(-\dot{\mathrm{i}} z_{1}\right)\left(-\dot{\mathrm{i}} z_{2}\right) \\
& =-\alpha \beta \gamma x_{1} x_{2} y_{1} y_{2} z_{1} z_{2} .
\end{aligned}
$$

and similarly for s, acting on $x_{1} x_{2} y_{2} y_{1} z_{2} z_{1}$.

This led us to first consider the case

$$
(\alpha, \beta, \gamma, b, c, d, e)=(1,1,-1,1,1,1,1),
$$

as this case is Calabi-Yau and has trivial homological determinant with simpler relations involving b, c, d, e.

Work in progress: The ring of invariants A^{H} is generated by the following central(!) elements:

Degree	Generators
2	$y_{1} y_{2}$
	$z_{1} z_{2}$
	$x_{1}^{2} x_{2}^{2}$
	$x_{1}^{4}+x_{2}^{4}$
	$y_{1}^{4}+y_{2}^{4}$
	$z_{1}^{4}+z_{2}^{4}$
	$\left(x_{1}^{2}-x_{2}^{2}\right)\left(y_{1}^{2}-y_{2}^{2}\right)$
	$\left(x_{1}^{2}+x_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)$

Degree	Generators
6	$\left(x_{1} x_{2}\right)\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)$
	$\left(x_{1} x_{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}-y_{2}^{2}\right)$
	$\left(x_{1} x_{2}\right)\left(x_{1}^{2}-x_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)$
	$\left(x_{1} x_{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)\left(z_{1}^{2}+z_{2}^{2}\right)$
	$\left(x_{1} x_{2}\right)\left(y_{1}^{2}-y_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)$
8	$\left(x_{1}^{4}-x_{2}^{4}\right)\left(y_{1}^{2} z_{2}^{2}+y_{2}^{2} z_{1}^{2}\right)$
	$\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{2}^{4} z_{1}^{2}-y_{1}^{4} z_{2}^{2}\right)$
	$\left(x_{1}^{2}-x_{2}^{2}\right)\left(y_{1} z_{2}^{2}-y_{2} z_{1}^{2}\right)\left(y_{1} z_{2}^{2}+y_{2} z_{1}^{2}\right)$
	$y_{2}^{4} z_{1}^{4}+y_{1}^{4} z_{2}^{4}$

We are working on proving that they generate, but there are many cases to consider!

Thanks for listening!

