## Homological Regularities arXiv:2107.07474

Ellen Kirkman

## kirkman@wfu.edu

March 18, 2023



**Department of Mathematics** 

Joint with Robert Won and James Zhang SNAD – Seattle Noncommutative Algebra Days

#### Theorem (Stanley)

Let *A* be a commutative finitely generated connected graded Cohen–Macaulay domain. Then *A* is Gorenstein if and only if its Hilbert series  $h_A(t)$  satisfies the equation

$$h_A(t^{-1}) = \pm t^\ell h_A(t)$$

for some integer  $\ell$ .

There are noncommutative versions of this theorem due to Jørgensen-Zhang.

Homological Regularities:

Tor-regularity

Castelnuovo-Mumford regularity

Artin-Schelter regularity

Concavity of homological invariants

Weighted regularities

Let  $\Bbbk$  be a field, A be a connected  $\mathbb{N}$ -graded Noetherian  $\Bbbk$ -algebra with a balanced dualizing complex, and X be a complex of graded left A-modules.

Gradings on *X*:

- Internal degree
- Homological degree

Properties of *A* reflected in the relationship between these degrees.

# A is Koszul $\Leftrightarrow \Bbbk$ has a minimal free graded resolution of the form

$$\cdots \to A(-i)^{\beta_i} \to A(-i+1)^{\beta_{i-1}} \to \cdots \to A(-1)^{\beta_1} \to A \to \Bbbk \to 0,$$

A is Koszul  $\Leftrightarrow \operatorname{Tor}_i^A(\Bbbk, \Bbbk)_j = 0$  for all  $j \neq i$ .

Homological degree i = Internal degree j

Definition [Jørgensen, Dong-Wu]

The *Tor-regularity* of a nonzero complex *X* of graded left *A*-modules

$$\operatorname{Torreg}_{(A}X) = \sup_{i,j\in\mathbb{Z}} \{j-i \mid \operatorname{Tor}_{i}^{A}(\Bbbk, X)_{j} \neq 0\}.$$

 $\operatorname{Torreg}(_A \Bbbk) \ge 0$  and  $= 0 \iff A$  is Koszul.

 $\operatorname{Torreg}(_{A}X)$  measures the growth of the degrees of the generators of the free modules in a minimal free resolution of *X*.

A commutative, generated in degree one,  $\operatorname{Torreg}(_{A}\Bbbk) = 0 \text{ or } \infty$  (Avramov and Peeva)

In this case  $\operatorname{Torreg}(_{A}\mathbb{k})$  tells only whether A is Koszul.

*A* noncommutative,  $\operatorname{Torreg}(_{A}\mathbb{k})$  can be any value in  $\mathbb{N} \cup \{+\infty\}$ . Example: Let T be an AS-regular ring of dimension 3 that is not Koszul

$$\deg(\mathsf{Tor}_{i}^{T}(\Bbbk, \Bbbk)) = \begin{cases} 0, & i = 0, \\ 1, & i = 1, \\ 3, & i = 2, \\ 4, & i = 3, \\ -\infty & i > 3. \end{cases}$$

 $\operatorname{Torreg}_{T}(\mathbb{k}) = \max\{0, 1 - 1, 3 - 2, 4 - 3, -\infty\} = 1.$ In general, *T* AS regular of type  $(d, \ell)$  then

 $\operatorname{Torreg}(_T \Bbbk) = \ell - d.$ 

# $\operatorname{Torreg}(_T \Bbbk) = 1$

Let *A* be any finitely generated commutative Koszul algebra (but not regular) and let  $B = A \otimes T^{\otimes n}$ .

Then  $\operatorname{Torreg}(_B\mathbb{k}) = n$ 

(B is neither AS regular nor Koszul)

The *ith local cohomology* of a complex *X* of graded left *A*-module is

$$H^i_{\mathfrak{m}}(X) = \lim_{n \to \infty} \operatorname{Ext}^i_A(A/\mathfrak{m}^n, X).$$

Definition (Jørgensen, Dong-Wu): For *A* a noetherian connected graded algebra the *Castelnuovo–Mumford regularity* (or *CM regularity*) of *X*, a complex of graded left *A*-modules:

$$\operatorname{CMreg}(X) = \sup_{i,j \in \mathbb{Z}} \{ j + i \mid H^i_{\mathfrak{m}}(X)_j \neq 0 \}.$$

Let T be AS regular of type  $(d, \ell)$ 

$$\begin{aligned} \mathsf{Ext}^i_T(\Bbbk,T) &= 0 \text{ for } i \neq d \\ \mathsf{Ext}^d_T(\Bbbk,T) &= \Bbbk(\ell) \end{aligned}$$

$$H^i_{\mathfrak{m}}(T) = 0 \text{ for } i \neq d$$
$$H^d_{\mathfrak{m}}(T) = T^*(-\ell)$$

$$CMreg(T) = d - \ell = gldim(T) + \deg h_T(t)$$
  

$$CMreg(\Bbbk[x_1, \dots, x_d]) = d + \deg 1/(1-t)^d$$
  

$$= d - d = 0.$$

T non-Koszul AS regular of type (3, 4)CMreg $(T) = d - \ell = 3 - 4 = 3 + \deg 1/((1-t)^2(1-t^2)) = -1$  Generalization of a result of Symonds on bounds of degrees of generators:

 $\beta(R)$  is the maximal degree of a minimal set of generators of R

A graded algebra map  $\phi: T \to F$  is called *finite* if  $_TF$  and  $F_T$  are finitely generated.

(K, Won, Zhang (2021)) Suppose there is a finite map  $S \to A^H$ , where S is a noetherian AS regular algebra. Let  $\delta(A/S) = \operatorname{CMreg}(A) - \operatorname{CMreg}(S)$ . Then  $\beta(A^H) \leq \max\{\beta(S), \delta(A/S)\}$ 

(Eisenbud-Goto) 
$$T = \mathbb{k}[x_1, \ldots, x_n]$$
:

$$\operatorname{Torreg}(M) = \operatorname{CMreg}(M)$$

for all finitely generated graded T-module M.

Example: A non-Koszul AS-regular of dimension 3 Torreg( $\Bbbk$ ) = 1  $\neq$  CMreg( $\Bbbk$ ) = 0.

(Jørgensen, Dong-Wu) A is a Noetherian connected graded algebra with a balanced dualizing complex. Then A is a Koszul AS regular algebra if and only if

 $\operatorname{Torreg}(M) = \operatorname{CMreg}(M)$ 

for all finitely generated graded A-module M.

If A is f.g. commutative then CMreg(M) is finite for every f.g. A-module M.

There exist noetherian Koszul algebras of gldim A = 4 with CMreg(A) infinite (Rogalski and Sierra).

Here  $\chi$ -condition fails and A does not have a balanced dualizing complex.

## Let T be an AS regular algebra of type $(d, \ell)$ . Then

$$\operatorname{CMreg}(T) = d - \ell = -\operatorname{Torreg}(\Bbbk).$$

#### Definition:

Let *A* be a noetherian connected graded algebra. The *Artin–Schelter regularity* of *A* is defined to be

 $\operatorname{ASreg}(A) = \operatorname{Torreg}(\Bbbk) + \operatorname{CMreg}(A).$ 

Extending a result of Jørgensen, Dong-Wu to the non-Koszul case:

Let A be a noetherian connected graded algebra with balanced dualizing complex. Then

A is AS regular  $\iff ASreg(A) = 0.$ 

### ASreg(A) can be any value in $\mathbb{N}$

Let  $B = k[x]/(x^2)$ .

Then  $\operatorname{CMreg}(B) = 1$  and  $\operatorname{Torreg}(_B \Bbbk) = 0$  so  $\operatorname{ASreg}(B) = 1$ .

Let  $C = B^{\otimes m}$ .

Then  $\operatorname{CMreg}(C) = m$  and  $\operatorname{Torreg}_{C}(\mathbb{k}) = 0$  and  $\operatorname{ASreg}(C) = m$ .

For *A* a locally finite  $\mathbb{N}$ -graded noetherian ring:  $\Phi(A) := \{T \mid \text{there is a finite map } \phi : T \to A\}$ where *T* denotes a connected graded noetherian AS regular algebra.

The *concavity* of A is defined to

$$c(A) := \inf_{T \in \Phi(A)} \{-\operatorname{CMreg}(T)\} \ge 0$$

If A = T is a noetherian AS regular algebra, then c(T) = 0 if and only if T is Koszul. Imagine Spec T as a noncommutative space associated to T, which is "flat" if T is Koszul.

If  $T_1 \rightarrow T_2$  is a finite map between two noetherian AS regular algebras (or by analogy, if there is a finite map  $\operatorname{Spec} T_2 \rightarrow \operatorname{Spec} T_1$ ), then  $c(T_2) \leq c(T_1)$ .

If  $T_1$  is Koszul, then so is  $T_2$ .

Hence, in some sense, "concavity" measures how far away a noncommutative space is from being "flat".

Let *H* be a semisimple Hopf algebra acting on a noetherian AS regular algebra *T* homogeneously. Let  $R = T^H$  denote the invariant subring. Then

 $c(R) \ge \beta(R) - 1$ 

where  $\beta(R)$  is the maximal degree of a minimal set of generators of R.

Let  $A = \mathbb{k}[x_1, \dots, x_n][t]/(t^2 = f(x_1, \dots, x_n))$  where  $\deg x_i = 1$ ,  $\deg t \ge 2$ , and f an irreducible homogeneous polynomial in  $x_i$  of degree  $(2 \deg t)$ .

$$0 = c(A) < 1 \le \deg t - 1 = \beta(A) - 1.$$

Therefore A cannot be isomorphic to  $T^H$ .

Theorem: A noetherian connected graded with balanced dualizing complex. Let X be a nonzero object in  $D_{fg}^{b}(A \operatorname{Gr})$  with finite projective dimension. Then

 $\operatorname{CMreg}(X) = \operatorname{Torreg}(X) + \operatorname{CMreg}(A).$ 

Let  $\phi : T \to A$  be a finite map with T AS regular.  $CMreg(A) = CMreg(_TA) = Torreg(_TA) + CMreg(T)$   $- CMreg(T) = Torreg(_TA) - CMreg(A) \ge - CMreg(A)$   $c(A) \ge - CMreg(A)$  $c(A) + CMreg(A) \ge 0$ 

If A is regular then  $c(A) \leq -\text{CMreg}(A)$ and c(A) + CMreg(A) = 0. Converse is true.  $\operatorname{CMreg}(X) = \operatorname{Torreg}(X) + \operatorname{CMreg}(A).$ Let  $\phi : T \to A$  finite map T AS regular and Koszul.  $0 \le c(A) \le -\operatorname{CMreg}(T) = 0$  so c(A) = 0 $\operatorname{CMreg}(A) = \operatorname{CMreg}(_TA) = \operatorname{Torreg}(_TA) + \operatorname{CMreg}(T)$  $\operatorname{CMreg}(A) = \operatorname{Torreg}(_TA) \ge 0$ 

A is AS regular  $\Leftrightarrow$  CMreg $(A) = 0 \Leftrightarrow$  Torreg $(_TA) = 0$ 

A is AS regular if and only if c(A) + CMreg(A) = 0

If there exists a finite map  $T \to A$  with T noetherian Koszul AS regular, then

- $\operatorname{CMreg}(A) \ge 0$  and  $\operatorname{CMreg}(A) = 0$  if and only if A is AS regular (and Koszul)
- If A is graded s-Cohen-Macaulay then A is AS regular if and only if  $\deg(h_A(x)) = -s$
- *A* is AS regular if and only if  $Torreg(_TA) = 0$

Numerical invariants indicative of AS regularity:

- $\operatorname{ASreg}(A)$
- $c(A) + \operatorname{CMreg}(A)$
- $\deg(h_A(x))$
- $\mathbf{CMreg}(A)$
- $\operatorname{Torreg}(_TA)$

(K, Won, Zhang: arXiv 2204.06679) For a cochain complex X and  $\xi_0, \xi_1 \in \mathbb{R}$ ,  $\xi = (\xi_0, \xi_1)$ , the  $\xi$ -weighted degree of X is

$$\deg_{\xi}(X) = \sup_{m,n \in \mathbb{Z}} \{ \xi_0 m + \xi_1 n \mid H^n(X)_m \neq 0 \}.$$

Example:

$$\deg_{(1,0)}(X) = \deg(X)$$
$$\deg_{(0,1)}(X) = \sup(X)$$

$$\operatorname{Torreg}_{\xi}(X) = \deg_{\xi}(\mathbb{k} \otimes_{A}^{L} X)$$
  
When  $\xi_{0} \neq 0$   
$$\operatorname{Torreg}_{\xi}(X) = \sup_{i \in \mathbb{Z}} \{\xi_{0} \operatorname{deg}(\operatorname{Tor}_{i}^{A}(\mathbb{k}, X)) - \xi_{1}i\}$$
  
$$\operatorname{CMreg}_{\xi}(X) = \operatorname{deg}_{\xi}(\operatorname{R}_{\mathfrak{m}}(X)).$$
  
When  $\xi_{0} \neq 0$   
$$\operatorname{CMreg}_{\xi}(X) = \sup_{i \in \mathbb{Z}} \{\xi_{0} \operatorname{deg}(H_{\mathfrak{m}}^{i}(X)) + \xi_{1}i\}.$$
  
$$\operatorname{CMreg}_{(0,-1)}(X) = -\operatorname{depth}(X).$$

## Theorem:

If there is a finite map  $\phi : T \to A$ , then there is  $c \in \mathbb{R}$  such that for all  $\xi_1 \ge c$  and  $\xi = (1, \xi_1) \operatorname{Torreg}_{\xi}(X) < \infty$  for all  $X \in \mathsf{D}^{\mathsf{b}}_{\mathsf{fg}}(A \operatorname{Gr})$ ,

e.g. if A is a noetherian commutative graded algebra there exists  $\xi = (1, \xi_1)$  with

 $\operatorname{Torreg}_{\xi}(\Bbbk) < \infty.$ 

# Theorem: If

- A generated in degree 1
- there is a finite map T → A where T is a noetherian connected graded algebra of finite global dimension.

Then  $A^{(d)}$  is Koszul for  $d \gg 0$ ,

recovering a result of Mumford for commutative algebras.

For commutative algebras:

regular  $\implies$  hypersurface  $\implies$  complete intersection

 $\implies$  Gorenstein  $\implies$  Cohen-Macaulay.

Problem: Find computable invariants for other homological properties.

**THANKS**!