Twisted tensor products of bialgebras and Frobenius algebras

arXiv 2211.14754

Pablo S Ocal and Amrei Oswald SNAD 2023

Wisted tensor product of algebras

We denote a unital, associative k-algebra A with multiplication $\nabla_A: A \otimes A \longrightarrow A$ and unit $\eta_A: k \longrightarrow A$ by (A, ∇_A, η_A)

Def: Given two unital, associative k-algebras
$$(A, \nabla_A, \eta_A)$$
 and (B, ∇_B, η_B) ,
a twisting map is a bijective k-linear map $\tau: B \otimes A \longrightarrow A \otimes B$
so that the following diagrams commute

Wisted tensor product of algebras Let $(A, \nabla_{A}, \eta_{A}), (B, \nabla_{B}, \eta_{B})$ be unital, associative k-algebras and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map Define $\nabla_{A \otimes_{\tau} B}: A \otimes B \otimes A \otimes B \longrightarrow A \otimes B$ by $A \otimes B \otimes A \otimes B \xrightarrow{|\otimes T \otimes I|} A \otimes A \otimes B \otimes B \xrightarrow{\nabla_{A} \otimes \nabla_{B}} A \otimes B$ $\eta_{A \otimes_{\tau} B}: k \longrightarrow A \otimes B$ by $k \xrightarrow{\sim} k \otimes k \xrightarrow{\eta_{A} \otimes \eta_{B}} A \otimes B$

Then, the twisted tensor product algebra is the unital, associative k-algebra $(A \otimes_{\tau} B, \nabla_{A \otimes_{\tau} B}, \eta_{A \otimes_{\tau} B})$ where $A \otimes_{\tau} B = A \otimes B$ as a vector space

[Cap, Schichl, Vanžura, 1994]

Twisted tensor product of algebras <u>Examples</u>:

1) G, H = finite groups where G acts on H via
$$\Psi:G \longrightarrow Aut(H)$$

Define $\tau: kG \otimes kH \longrightarrow kH \otimes kG$ by $g \otimes h \mapsto \Psi(g)(h) \otimes g$ for $g \in G$, $h \in H$
Then $kG \otimes_{\tau} kH \simeq k(H \rtimes_{\varphi} G)$

2)
$$k[x], k[y] = polynomial rings$$

Define $\tau:k[y] \otimes k[x] \longrightarrow k[x] \otimes k[y]$ by $y \otimes x \mapsto qx \otimes y$ for $q \in k^{\times}$
Then $k[x] \otimes_{\tau} k[y] \simeq k_q[x,y] \simeq k\langle x,y \rangle / (qxy-yx) \zeta$ the quantum plane
Let $q = (q_{ij}) \in M_n(k^{\times})$ st $q_{ii} = 1$ and $q_{ij}q_{ji} = 1$
Then, we obtain $k_q[x_1, ..., x_n] = k\langle x_1, ..., x_n \rangle / (x_i x_j - q_{ij} x_j x_i)$
Via iterated applications of the above

wisted tensor product of algebras

Examples:

3) Twisting by a bicharacter

F,G = abelian groups

$$A = k - algebra$$
 graded by F, $B = k - algebra$ graded by G

$$t: F \otimes_{\mathbb{Z}} G \longrightarrow k^{\times}$$
 is a group homomorphism

Define
$$\tau: B \otimes A \longrightarrow A \otimes B$$
 by linearly extending $b \otimes a \mapsto t(|a| \otimes_{\mathbb{Z}} |b|) a \otimes b$

Then, τ is a twisting map and we denote the resulting algebra $A \otimes_{\tau} B$ by $A \otimes^{t} B$

wisted tensor product of coalgebras We denote a counital, coassociative K-coalgebra A with comultiplication $\triangle_A: A \longrightarrow A \otimes A$ and counit $\mathcal{E}_A: A \longrightarrow k$ by $(A, \Delta_A, \mathcal{E}_A)$ <u>Def</u>: Given two coassociative coalgebras $(A, \Delta_A, \mathcal{E}_A), (B, \Delta_B, \mathcal{E}_B)$ and a twisting map $\tau: B \otimes A \longrightarrow A \otimes B$ define $\Delta_{A\otimes_{\tau}B}: A\otimes B \longrightarrow A\otimes B\otimes A\otimes B$ by $A \otimes B \xrightarrow{\Delta_A \otimes \Delta_B} A \otimes A \otimes B \otimes B \xrightarrow{I \otimes \tau^{-1} \otimes I} A \otimes B \otimes A \otimes B$ $\mathcal{E}_{A\otimes_{\tau}B}:A\otimes B\longrightarrow k$ by and 5 .5

$$A \otimes B \xrightarrow{c_{A} \otimes c_{B}} k \otimes k \xrightarrow{\sim} k$$

wisted tensor product of coalgebras

<u>Def</u>: Criven two coassociative coalgebras $(A, \Delta_A, \mathcal{E}_A), (B, \Delta_B, \mathcal{E}_B)$ and a twisting map $\tau: B \otimes A \longrightarrow A \otimes B$

define
$$\Delta_{A\otimes_{\tau B}}: A\otimes B \longrightarrow A\otimes B\otimes A\otimes B$$
 by $A\otimes B \xrightarrow{\Delta_{A}\otimes \Delta_{B}} A\otimes A\otimes B\otimes B \xrightarrow{|\otimes \tau^{-1}\otimes I} A\otimes B\otimes A\otimes B$
 $\mathcal{E}_{A\otimes_{\tau B}}: A\otimes B \longrightarrow k$ by $A\otimes B \xrightarrow{\mathcal{E}_{A}\otimes \mathcal{E}_{B}} k\otimes k \xrightarrow{\sim} k$

 $(A \otimes_{\tau} B, \Delta_{A \otimes_{\tau} B}, \mathcal{E}_{A \otimes_{\tau} B})$ is a counital coassociative K-coalgebra if and only if the following diagrams commute

Commute.

Bialgebra structures on twisted tensor products

Let $(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A), (B, \nabla_B, \eta_B, \Delta_B, \mathcal{E}_B)$ be bialgebras and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map

Bialgebra structures on twisted tensor products

Examples:

1) G, H = finite groups where G acts on H via $\Psi: G \longrightarrow Aut(H)$ Define $\tau: kG \otimes kH \longrightarrow kH \otimes kG$ by $g \otimes h \mapsto \Psi(g)(h) \otimes g$ for $g \in G$, $h \in H$ Then $kG \otimes_{\tau} kH \simeq k(H \rtimes_{\varphi} G)$

kG is a bialgebra with
$$\Delta_G: g \mapsto g \otimes g$$
 and $\mathcal{E}_G: g \mapsto I$ for $g \in G$
Then, diagram \bigstar does not commute $\Rightarrow kG \otimes_{\tau} kH \simeq k(H \rtimes_{\varphi} G)$ as algebras,
but $kG \otimes_{\tau} kH$ with $\Delta_{kG \otimes_{\tau} kH}$ is not a coalgebra, let alone a bialgebra

Note, $kG \otimes_{\tau} kH \simeq k(H \rtimes_{\varphi} G)$ is a group algebra, so it has a bialgebra structure

Bialgebra structures on twisted tensor products

Examples:

2)
$$k[x], k[y] = polynomial rings$$
 Define $\tau: k[y] \otimes k[x] \longrightarrow k[x] \otimes k[y]$ by $y \otimes x \mapsto q x \otimes y$ for $q \neq 0 \in k$
Then $k[x] \otimes_{\tau} k[y] \simeq kq[x,y] \simeq k[x,y]/\langle qxy-yx \rangle$ ie the quantum plane

 ϵ

k[x] is a bialgebra with $\Delta_x: x \mapsto i \otimes x + x \otimes i$ and $\mathcal{E}_x: x \mapsto 0$

Then, diagram
$$\not\approx$$
 commutes, and $(k[x] \otimes_{\tau} k[y], \Delta_{k[x] \otimes_{\tau} k[y]}, \mathcal{E}_{k[x] \otimes_{\tau} k[y]})$ is a coalgebra,

but
$$(k[x] \otimes_{\tau} k[y], \nabla_{k[x] \otimes_{\tau} k[y]}, \eta_{k[x] \otimes_{\tau} k[y]}, \Delta_{k[x] \otimes_{\tau} k[y]}, \mathcal{E}_{k[x] \otimes_{\tau} k[y]})$$
 is not a bialgebra

Similarly, for
$$q = (q_{ij}) \in M_n(k^*)$$
 st $q_{ii} = 1$ and $q_{ij}q_{ji} = 1$,
 $k_q[x_1, ..., x_n] = k\langle x_1, ..., x_n \rangle / \langle x_i x_j - q_{ij} x_j x_i \rangle$ is a coalgebra but not a bialgebra

and the outside commutes blc "counit commutes w/ τ and σ_{23} "

Bialgebra Structures on twisted tensor products
Theorem: [Ocal, O.] Let
$$(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A), (B, \nabla_B, \eta_B, \Delta_B, \mathcal{E}_B)$$
 be bialgebras and
 $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map. Then, $(A \otimes_{\tau} B, \nabla_{A \otimes_{\tau} B}, \eta_{A \otimes_{\tau} B}, \mathcal{E}_{A \otimes_{\tau} B})$
is a bialgebra if only if τ is trivial.

<u>Corollary</u>: Let A and B be Hopf algebras and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map.

Then, if $A\otimes_\tau B$ is a Hopf algebra, it is the tensor product Hopf algebra $A\otimes B$

Inisted tensor products of Frobenius algebras Def: A tuple $(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A)$ is a Frobenius algebra if (A, ∇_A, η_A) is an algebra, $(A, \Delta_A, \mathcal{E}_A)$ is a coalgebra and the following diagrams commute

1) For a finite group G_R , kG is a Frobenius algebra with $\widetilde{\Delta}_G: g \mapsto \underset{r \in G}{\Sigma} g r \otimes r^{-1}$ and $\widetilde{\mathcal{E}}_G: g \mapsto \mathcal{J}_{g, r}$ for $g \in G$

2) $k[x]/\langle x^n \rangle$ is Frobenius with

$$\widetilde{\Delta}_{x}: p(x) \mapsto \sum_{i=0}^{n-1} x^{i} p(x) \otimes x^{n-1-i}$$
 and $\widetilde{\mathcal{E}}_{x}: x^{i} \mapsto S_{i,n-1}$

wisted tensor products of Frobenius algebras

<u>Example</u>:

G, H = finite groups where G acts on H via $\Psi: G \longrightarrow Aut(H)$ Define $\tau: kG \otimes kH \longrightarrow kH \otimes kG$ by $g \otimes h \mapsto \Psi(g)(h) \otimes g$ for $g \in G, h \in H$ Then $kG \otimes_{\tau} kH \simeq k(H \rtimes_{\varphi} G)$

kG is a Frobenius algebra with
$$\tilde{\Delta}_G: g \mapsto \underset{r \in G}{\Sigma} gr \otimes r^{-1}$$
 and $\tilde{\mathcal{E}}_G: g \mapsto \mathcal{S}_{g, i}$ for $g \in G$

kH is a Frobenius algebra w/
$$\tilde{\Delta}_{H}:h \mapsto \mathcal{Z}_{hr\otimes r} \circ r \circ hd \tilde{\mathcal{E}}_{H}:h \mapsto \mathcal{J}_{h,r}$$
 for heh

Then, diagram
$$\not\approx$$
 commutes \Rightarrow (kG \otimes_{τ} kH, $\breve{\Delta}_{kG\otimes_{\tau}kH}, \breve{\mathcal{E}}_{kG\otimes_{\tau}kH}$) is a coalgebra

$$(kG\otimes_{\tau}kH, \nabla_{kG\otimes_{\tau}kH}, \eta_{kG\otimes_{\tau}kH}, \widetilde{\Delta}_{kG\otimes_{\tau}kH}, \widetilde{\mathcal{E}}_{kG\otimes_{\tau}kH})$$
 is a Frobenius algebra

and $\widetilde{\Delta}_{kG\otimes_{\tau}kH}$ recovers exactly the Frobenius algebra structure on $k(H\rtimes_{\varphi}G)$

Iwisted tensor products of Frobenius algebras

Theorem: [Ocal, O.] Let $(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A)$, $(B, \nabla_B, \eta_B, \Delta_B, \mathcal{E}_B)$ be Frobenius algebras

and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map so that diagram $\not\bowtie$ commutes. Then,

 $(A \otimes_{\tau} B, \nabla_{A \otimes_{\tau} B}, \eta_{A \otimes_{\tau} B}, \Delta_{A \otimes_{\tau} B}, \mathcal{E}_{A \otimes_{\tau} B})$ is a Frobenius algebra.

Iwisted tensor products of Frobenius algebras

Def: Let
$$(A, \nabla_{A}, \eta_{A})$$
 be an algebra. A pairing is a k-linear map $B: A \otimes A \longrightarrow A$
A copairing is a k-linear map $\alpha: k \longrightarrow A \otimes A$.
A pairing B is non-degenerate if there is a copairing α so that
the following diagram commutes
 $k \otimes A \xrightarrow{\alpha \otimes l} A \otimes A \otimes A \xrightarrow{l \otimes B} A \otimes k$
 $a \longrightarrow l \longrightarrow A$
A pairing B is associative if the following diagram commutes
 $A \otimes A \otimes A \xrightarrow{l \otimes \nabla_{A}} A \otimes A$
 $A \otimes A \otimes A \xrightarrow{l \otimes \nabla_{A}} A \otimes A$

An algebra (A, ∇_A, η_A) is Frobenius if and only if there is a nondegenerate, associative pairing $B: A \otimes A \longrightarrow k$. Inisted tensor products of Frobenius algebras

Given a Frobenius algebra $(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A)$, we can define

$$\mathcal{B}: A \otimes A \xrightarrow{\nabla_A} A \xrightarrow{\mathcal{E}_A} k \quad \text{ond} \quad \alpha: k \xrightarrow{\eta_A} A \xrightarrow{\Delta_A} A \otimes A$$

Then B is an associative, non-degenerate pairing with copairing α .

Given an algebra (A, ∇_A, η_A) with associative, non-degenerate pairing B and copairing α , We have that $(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A)$ is a Frobenius algebra where Δ_A and \mathcal{E}_A are defined by

Inisted tensor products of Frobenius algebras

<u>Proposition</u>: [Ocal, O.] Let $(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A), (B, \nabla_B, \eta_B, \Delta_B, \mathcal{E}_B)$ be Frobenius algebras with pairings B_A , B_B and copairings α_A, α_B resp. and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map so that diagram $\not\approx$ commutes. Then,

$$\beta_{A\otimes_{\tau}B}:A\otimes B\otimes A\otimes B \xrightarrow{I\otimes \tau\otimes I} A\otimes A\otimes B\otimes B \xrightarrow{\beta_{A}\otimes \beta_{B}} k\otimes k \xrightarrow{\sim} k$$

 $\alpha_{A\otimes_{\tau}B}: k \longrightarrow k \otimes k \xrightarrow{\alpha_{A} \otimes \alpha_{B}} A \otimes A \otimes B \otimes B \xrightarrow{I \otimes \tau^{-1} \otimes I} A \otimes B \otimes A \otimes B$

are an associative, non-degenerate pairing and copairing of $(A \otimes_{\tau} B, \nabla_{A \otimes_{\tau} B}, \eta_{A \otimes_{\tau} B}, \mathcal{L}_{A \otimes_{\tau} B}$

proof:

₿_{A⊗τ}₿

F,G = abelian groups, A = k-algebra graded by F, B = k-algebra graded by G $t: F \otimes_{\mathbb{Z}} G \longrightarrow k^{\times}$ is a group homomorphism Define $\tau: B \otimes A \longrightarrow A \otimes B$ by linearly extending $b \otimes a \longmapsto t(|a| \otimes_{\mathbb{Z}} |b|) a \otimes b$ Then, τ is a twisting map and we denote the resulting algebra $A \otimes_{\tau} B$ by $A \otimes^{t} B$

Theorem: [Ocal, 0.] Let A and B be Frobenius K-algebras graded by F and G resp. Where the comultiplication maps Δ_A , Δ_B are graded maps of degree d_A and d_B resp.

Then, A®tB is a Frobenius algebra if and only if

 $t(|a|\otimes_{\mathbb{Z}}|b|) = t((|a|+d_A)\otimes_{\mathbb{Z}}|b|) = t(|a|\otimes_{\mathbb{Z}}(|b|+d_B))$

Corollary: If
$$d_A = O_F$$
 and $d_B = O_G$, $A \otimes^t B$ is a Frobenius algebra.

Twisted tensor products of Frobenius algebras

$$k[X]_{\langle X^m \rangle}$$
 is Frobenius with $\tilde{\Delta}_{x}:p(x) \mapsto \tilde{\sum}_{i=0}^{n-1} xip(x) \otimes x^{n-i-i}$ and $\tilde{E}_{x}:x^{i} \mapsto \vartheta_{i,n-i}$
Example: Let $q = (q_{ij}) \in M_n(k^{x})$ st $q_{ii} = 1$ and $q_{ij}q_{ji} = 1$
and $m = (m_{1},...,m_{n})$
The complete quantum intersections $\Lambda_{q,m} = k_{q}[x_{1},...,x_{n}]_{\langle x_{1}^{m},...,x_{n}^{m} \rangle}$
can be understood as an iterated twisted tensor product where the
twists come from the bicharacters $t_{i}^{i}(r \otimes_{z} S) = q_{ij}^{rs}$ using the Z-grading on $k[x_{i}]_{\langle x_{i}^{m} \rangle}$
The comultiplication $\tilde{\Delta}_{x}$ is graded of degree m_{i-1}
Corollary: If q_{ij} is a root of unity whose order divides $gcd(m_{i}-1,m_{j}-1)$ for each i,j ,
then $\Lambda_{q,m}$ is a Frobenius algebra
Further, we can compute the pairing

 $\beta_{\Delta_{q,m}}(\mathbf{x}_{i}^{a_{i}} \otimes ... \otimes \mathbf{x}_{n}^{a_{n}} \otimes \mathbf{x}_{i}^{b_{i}} \otimes ... \otimes \mathbf{x}_{n}^{b_{n}}) = \prod_{j=2}^{n} \prod_{i=1}^{j-1} q_{ij}^{a_{i}b_{j}} \prod_{\ell=1}^{n} S_{a_{\ell}+b_{\ell}, m_{\ell}-1} \text{ which is symmetric}$

This partially recovers results from [Bergh, 2009]

Twisted tensor products of Frobenius algebras

Def: An algebra
$$(A, \nabla_A, \eta_A)$$
 is separable if ∇_A has a right inverse
as an A-bimodule morphism

Commutes ie (A, ∇_A, η_A) is separable w/ right inverse Δ_A

Inisted tensor products of Frobenius algebras Theorem: [Ocal, O.] Let (A, ∇_A, η_A) , (B, ∇_B, η_B) be separable algebras w/ inverses Γ_A and Γ_B resp and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map $(A \otimes_{\tau} B, \nabla_{A \otimes_{\tau} B}, \eta_{A \otimes_{\tau} B})$ is a separable algebra with inverse $\Gamma_{A\otimes_{\tau}B}: A\otimes B \xrightarrow{\Gamma_{A}^{\prime}\otimes\Gamma_{B}^{\prime}} A\otimes A\otimes B\otimes B \xrightarrow{I\otimes\tau^{-1}\otimes I} A\otimes B\otimes A\otimes B$ if and only if the following diagrams commute $\xrightarrow{\tau} A \otimes B \qquad B \otimes A \xrightarrow{\tau} A \otimes B \qquad \downarrow \Gamma_A \otimes I \qquad \downarrow \Gamma_B \otimes I \qquad \downarrow$ B⊗A – → A⊗B INFB $B \otimes A \otimes A \xrightarrow{\tau \otimes I} A \otimes B \otimes A \xrightarrow{I \otimes \tau} A \otimes A \otimes B \qquad B \otimes B \otimes A \xrightarrow{I \otimes \tau} B \otimes A \otimes B \xrightarrow{\tau \otimes I} A \otimes B \otimes B$

Corollary: Let
$$(A, \nabla_A, \eta_A, \Delta_A, \mathcal{E}_A), (B, \nabla_B, \eta_B, \Delta_B, \mathcal{E}_B)$$
 be special Frobenius algebras
and $\tau: B \otimes A \longrightarrow A \otimes B$ a twisting map so that diagram \bigstar commutes. Then
 $(A \otimes_{\tau} B, \nabla_{A \otimes_{\tau} B}, \eta_{A \otimes_{\tau} B}, \Delta_{A \otimes_{\tau} B}, \mathcal{E}_{A \otimes_{\tau} B})$ is a special Frobenius algebra.

Thank you! Questions?