Universal quantum semigroupoids

Seattle Noncommutative Algebra Day
Online

Robert Won
University of Washington

Joint work with

Hongdi Huang

Chelsea Walton

Elizabeth Wicks
arXiv:2008.00606

Big picture

Goal. [Lots of people here, throughout history, etc.]
Study symmetries in algebra.

Symmetries in algebra

- Fix a field \mathbb{k}.
- Want to study symmetries of

$$
A=\bigoplus_{i \in \mathbb{N}} A_{i}=A_{0} \oplus A_{1} \oplus \cdots
$$

an \mathbb{N}-graded, locally finite \mathbb{k}-algebra.

Favorite example.

The polynomial ring $A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
Also connected $\left(A_{0}=\mathbb{k}\right)$ and commutative.

How to study symmetries?

- Classically, symmetries are captured by group actions.

$C_{2} \curvearrowright$ tiger

$D_{10} \curvearrowright$ pentagon
- $A=\left(\bigoplus_{i \in \mathbb{N}} A_{i}, \quad m: A \otimes_{\mathbb{k}} A \rightarrow A, \quad u: \mathbb{k} \rightarrow A\right)$ has structure.
- Should preserve algebra structure and grading.

Classical symmetry

- Suppose A is connected and commutative.
- Study group actions such that:

$$
\begin{aligned}
g \cdot(a b) & =(g \cdot a)(g \cdot b) \quad \text { and } \\
g \cdot 1_{A} & =1_{A},
\end{aligned}
$$

[A is a G-module and m and u are G-module morphisms] and

$$
g\left(A_{i}\right) \subseteq A_{i} \quad \text { for all } i
$$

[each A_{i} is a G-module].

Example. [Extremely rich history]
Finite group $G \leq G L_{n}(\mathbb{k}) \curvearrowright A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

Quantum rigidity

Example.

Let $q \in \mathbb{k}^{\times}$. Define the quantum plane

$$
\mathbb{k}_{q}[x, y]:=\frac{\mathbb{k}^{k}\langle x, y\rangle}{(y x-q x y)}
$$

- If g preserves grading, then $g(x)=\alpha x+\beta y$ and $g(y)=\gamma x+\delta y$.
- For g to extend to $\mathbb{k}_{q}[x, y]$, must send $y x-q x y$ to $\lambda(y x-q x y)$.

1. If $q=1$, no restriction so

$$
\operatorname{Aut}_{\mathrm{gr}}(\mathbb{k}[x, y])=\mathrm{GL}_{2}(\mathbb{k}) .
$$

2. If $q=-1, \alpha=\delta=0$ or $\beta=\gamma=0$ so

$$
\operatorname{Aut}_{\mathrm{gr}}\left(\mathbb{k}_{-1}[x, y]\right)=\left(\mathbb{k}^{\times}\right)^{2} \rtimes\langle\sigma\rangle .
$$

3. If $q \neq \pm 1, \beta=\gamma=0$ so

$$
\operatorname{Aut}_{\mathrm{gr}}\left(\mathbb{k}_{q}[x, y]\right)=\left(\mathbb{k}^{\times}\right)^{2}
$$

Bialgebras

- A bialgebra H over \mathbb{k}_{k} is a \mathbb{k}-algebra (H, m, u) and a \mathbb{k}-coalgebra (H, Δ, ε) such that
(a) m and u are coalgebra morphisms

$$
\Delta(a b)=\Delta(a) \Delta(b) \quad \text { and } \quad \Delta(1)=1 \otimes 1
$$

(a') Δ and ε are algebra morphisms

$$
\Delta(a b)=\Delta(a) \Delta(b) \quad \text { and } \quad \varepsilon(a b)=\varepsilon(a) \varepsilon(b)
$$

- Sweedler Notation. $\Delta(a)=a_{1} \otimes a_{2}$.
- A Hopf algebra is a bialgebra with a \mathbb{k}-linear antipode S

$$
S\left(a_{1}\right) a_{2}=a_{1} S\left(a_{2}\right)=\varepsilon(a)
$$

Quantum symmetries

- Bialgebra (co)actions capture quantum symmetries.
- Let ${ }_{H} \mathcal{M}$ be the category of left H-modules.
- A is called a left H-module algebra if $A \in{ }_{H} \mathcal{M}$ such that

$$
\begin{aligned}
h \cdot(a b) & =\left(h_{1} \cdot a\right)\left(h_{2} \cdot b\right) \\
h \cdot 1_{A} & =\varepsilon(h) 1_{A} .
\end{aligned}
$$

Theorem. [Etingof-Walton, 2013]

Let H be a semisimple Hopf algebra over an algebraically closed field of characteristic zero. If A is a commutative domain that is an H-module algebra, then the H-action factors through a group action.

Hopf algebras as quantum symmetries

Theorem. [Etingof-Walton]
Semisimple Hopf actions on commutative domains are captured by group actions.

Hopf algebras "=" Quantum groups Bialgebras " $=$ " Quantum semigroups
[Extremely rich theory.]

Hopf algebras as quantum symmetries

In this picture:

Motivating question.

How do we enlarge this picture?
(Quotients of) path algebras of quivers: so $A_{0} \neq \mathbb{k}$.

What is symmetry?

- Group: $g \cdot(a b)=(g \cdot a)(g \cdot b)$ and $.1=1$.
- Hopf algebra: $h .(a b)=\left(h_{1} \cdot a\right)\left(h_{2} \cdot b\right)$ and $h .1=\varepsilon(h) 1$.
- $(\mathrm{C}, \otimes, \mathbb{1})$ a monoidal category. An algebra object in C is (A, m, u) where A is an object, m and u are morphisms satisfying:

- Group: (A, m, u) an algebra object in monoidal category ${ }_{{ }_{k} G} \mathcal{M}$.
- Hopf: (A, m, u) an algebra object in monoidal category ${ }_{H} \mathcal{M}$.

A more general framework?

Look for H with ${ }_{H} \mathcal{M}$ or \mathcal{M}^{H} monoidal.
Many generalizations of Hopf algebras:

1. Weak Hopf algebras
2. Quasi-bialgebras with antipode
3. Hopf algebroids
4. Hopf bimonoids in duoidal categories
5. Hopfish algebras

Weak Hopf algebras

- A weak bialgebra H over \mathbb{k} is a \mathbb{k}-algebra (H, m, u) and a \mathbb{k}-coalgebra (H, Δ, ε) such that
(1) $\Delta(a b)=\Delta(a) \Delta(b)$,
(2) $(\Delta \otimes \mathrm{Id}) \circ \Delta=(\Delta(1) \otimes 1)(1 \otimes \Delta(1))=(1 \otimes \Delta(1))(\Delta(1) \otimes 1)$,
(3) $\varepsilon(a b c)=\varepsilon\left(a b_{1}\right) \varepsilon\left(b_{2} c\right)=\varepsilon\left(a b_{2}\right) \varepsilon\left(b_{1} c\right)$.
- Bialgebra if and only if $\Delta(1)=1 \otimes 1$ if and only if $\varepsilon(a b)=\varepsilon(a) \varepsilon(b)$.
- A weak Hopf algebra is a weak bialgebra with antipode S :

$$
S\left(a_{1}\right) a_{2}=1_{1} \varepsilon\left(a 1_{2}\right), \quad a_{1} S\left(a_{2}\right)=\varepsilon\left(1_{1} a\right) 1_{2}, \quad S\left(a_{1}\right) a_{2} S\left(a_{3}\right)=S(a) .
$$

Counital maps

- The maps appearing in the antipode axioms:

$$
S\left(a_{1}\right) a_{2}=1_{1} \varepsilon\left(a 1_{2}\right), \quad a_{1} S\left(a_{2}\right)=\varepsilon\left(1_{1} a\right) 1_{2}
$$

are important.
source counital map

$$
\begin{gathered}
\varepsilon_{s}: H \rightarrow H \\
\varepsilon_{s}(a)=1_{1} \varepsilon\left(a 1_{2}\right)
\end{gathered}
$$

source counital subalgebra

$$
H_{s}:=\varepsilon_{s}(H)
$$

$$
\begin{gathered}
\text { target counital map } \\
\varepsilon_{t}: H \rightarrow H \\
\varepsilon_{t}(a)=\varepsilon\left(1_{1} a\right) 1_{2}
\end{gathered}
$$

target counital subalgebra

$$
H_{t}=\varepsilon_{t}(H)
$$

- H_{s} and H_{t} are antiisomorphic separable, semisimple, finite-dimensional, codieal sub-lk-algebras.
- A weak bialgebra is a bialgebra if and only if $H_{s}=H_{t}=\mathbb{k}$.

Why weak Hopf algebras?

- Introduced by [Böhm-Nill-Szlachanyi 1999], motivated by physics: study symmetries in conformal field theory.
- Axioms are self-dual, so the dual of a finite-dimensional weak Hopf algebra is again a weak Hopf algebra.

Example.

If H, K are bialgebras, then $H \oplus K$ is an algebra as usual and a coalgebra under

$$
\begin{aligned}
& \Delta(h, k)=\left(h_{1}, 0\right) \otimes\left(h_{2}, 0\right)+\left(0, k_{1}\right) \otimes\left(0, k_{2}\right) \\
& \varepsilon(h, k)=\varepsilon_{H}(h)+\varepsilon_{K}(k) \\
& \text { But } \Delta(1,1)=(1,0) \otimes(1,0)+(0,1) \otimes(0,1) \neq(1,1) \otimes(1,1) . \\
& (H \oplus K)_{t}=(H \oplus K)_{s}=\mathbb{k} \oplus \mathbb{k} . \\
& \text { So } H \oplus K \text { not a bialgebra, only a weak bialgebra. }
\end{aligned}
$$

Why weak Hopf algebras?

If G, H are groups, then $G \sqcup H$ is not a group, but a groupoid.

Example.

\mathcal{G} is a groupoid. $\mathbb{k}_{\mathrm{k}} \mathcal{G}$ the groupoid algebra is a weak Hopf algebra.

$$
\text { For } g \in \mathcal{G}: \quad \Delta(g)=g \otimes g, \quad \varepsilon(g)=1, \quad S(g)=g^{-1}
$$

$$
\mathcal{G}=1 \overbrace{\alpha^{-1}}^{\alpha} 2
$$

Then $1=e_{1}+e_{2}$ but $\Delta(1)=e_{1} \otimes e_{1}+e_{2} \otimes e_{2} \neq 1 \otimes 1$.
$(\mathbb{k} \mathcal{G})_{t}=(\mathbb{k} \mathcal{G})_{s}=\mathbb{k} e_{1} \oplus \mathbb{k} e_{2}$.

Weak Hopf algebras "=" Quantum groupoids Weak bialgebras "=" Quantum semigroupoids

Why weak Hopf algebras?

Theorem. [Hayashi 1999, Szlachanyi 2001]

Every fusion category is equivalent to ${ }_{H} \mathcal{M}_{\mathrm{fd}}$ for some weak Hopf algebra H.

- If $(H, m, u, \Delta, \varepsilon)$ is an algebra and coalgebra such that $\Delta(a b)=\Delta(a) \Delta(b)$, then
Δ axiom $\Rightarrow{ }^{H} \mathcal{M}$ and \mathcal{M}^{H} are monoidal, ε axiom $\Rightarrow{ }_{H} \mathcal{M}$ and \mathcal{M}_{H} are monoidal.
- But not $\otimes_{\mathbb{k}}$! [Nill 1998], [Böhm-Caenepeel-Janssen 2011], [Walton-Wicks-W arXiv: 1911.12847]

An important example

Example. [Hayashi]

Q a finite quiver, e.g.:

$$
Q=1 \xrightarrow{p} 2 \xrightarrow{q} 3 .
$$

Define a graded weak bialgebra $\mathfrak{H}(Q)$:

- \mathbb{K}_{k}-basis: $\left\{x_{a, b} \mid a, b \in Q_{\ell}, \ell \in \mathbb{N}\right\}$

$$
=\left\{x_{i, j} \mid 1 \leq i, j \leq 3\right\} \cup\left\{x_{p, p}, x_{p, q}, x_{q, p}, x_{q, q}\right\} \cup\left\{x_{p q, p q}\right\} .
$$

- Multiplication: $x_{a, b} x_{c, d}= \begin{cases}x_{a c, b d}, & \text { if } a c \text { and } b d \text { are paths } \\ 0, & \text { otherwise. }\end{cases}$
- Unit: $1_{\mathfrak{H}(Q)}=\sum_{i, j \in Q_{0}} x_{i, j}$.
- As an algebra, $\mathfrak{H}(Q) \cong \mathbb{k} \widehat{Q}$ [Calderon-Walton, 2021].

An important example

Example. [Hayashi]

$$
Q=1 \xrightarrow{p} 2 \xrightarrow{q} 3
$$

- Comultiplication: $\Delta\left(x_{a, b}\right)=\sum_{c \in Q_{\ell}} x_{a, c} \otimes x_{c, b}$

$$
\Delta\left(x_{p, q}\right)=x_{p, p} \otimes x_{p, q}+x_{p, q} \otimes x_{q, q} .
$$

- Counit: $\varepsilon\left(x_{a, b}\right)=\delta_{a, b}$.

An important example

Example. [Hayashi]

There are natural left and right coactions of $\mathfrak{H}(Q)$ on $\mathbb{k} Q$:

$$
\begin{aligned}
\lambda^{\mathfrak{H}(Q)}: \mathbb{k} Q & \rightarrow \mathfrak{H}(Q) \otimes \mathbb{k} Q & & \rho^{\mathfrak{H}(Q)}: \mathbb{k} Q \rightarrow \mathbb{k} Q \otimes \mathfrak{H}(Q) \\
a & \mapsto \sum_{b \in Q_{\ell}} x_{a, b} \otimes b & & a \mapsto \sum_{b \in Q_{\ell}} b \otimes x_{b, a} a \mapsto \sum_{b \in Q_{\ell}} x_{a, b} \otimes
\end{aligned}
$$

Making $\mathbb{k} Q$ a left and right $\mathfrak{H}(Q)$-comodule algebra. (\approx algebra object in ${ }^{H} \mathcal{M}$ and \mathcal{M}^{H}, see [Walton-Wicks-W].)

Back to the beginning

- Title: Universal quantum semigroupoids.
- Quantum semigroupoid = weak bialgebra.
- Universal?

Main theorem. [Huang-Walton-Wicks-W]
The universal quantum semigroupoid of $\mathfrak{k} Q$ is $\mathfrak{H}(Q)$.

Universal coactions

Suppose A is connected.

Definition. [Manin]

A left universal quantum semigroup (UQSG) of A is a bialgebra $O^{\text {left }}(A)$ that left coacts on A so that for every bialgebra H that left coacts on A, there exists a unique bialgebra map $\pi: O^{\text {left }}(A) \rightarrow H$ such that

Universal coactions

Example. [Manin]
Let $A=\mathbb{k}\left[y_{1}, y_{2}\right]$. Then

$$
O^{\mathrm{left}}(A)=\frac{\operatorname{lk}\left\langle x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right\rangle}{R}
$$

where

$$
\begin{aligned}
& y_{1} \mapsto x_{1,1} \otimes y_{1}+x_{1,2} \otimes y_{2} \\
& y_{2} \mapsto x_{2,1} \otimes y_{1}+x_{2,2} \otimes y_{2}
\end{aligned}
$$

Since $\left[y_{1}, y_{2}\right]=0$,

$$
R=\left(\left[x_{1,1}, x_{2,1}\right],\left[x_{1,2}, x_{2,2}\right],\left[x_{1,1} x_{2,2}\right]-\left[x_{1,2}, x_{2,1}\right]\right)
$$

Universal coactions

Definition. [Manin]

A right UQSG of A is a bialgebra $O^{\text {right }}(A)$ that right coacts on A so that for every bialgebra H that right coacts on A, there exists a unique bialgebra map $\pi: O^{\text {right }}(A) \rightarrow H$ such that

A transposed UQSG $O^{\text {trans }}(A)$ left and right coacts on A universally via λ^{O} and ρ^{O} such that

$$
\left(\rho^{O}\right)^{\top}: A^{*} \rightarrow O \otimes A^{*}
$$

is λ^{O} (after identifying a basis of A with the dual basis of A^{*}).

Universal coactions

Example. [Manin]

Let $A=\mathbb{k}^{[}\left[y_{1}, y_{2}\right]$. Then

$$
O^{\text {right }}(A)=\frac{\mathbb{k}_{k}\left\langle x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right\rangle}{R^{\prime}}
$$

where

$$
\begin{aligned}
& y_{1} \mapsto y_{1} \otimes x_{1,1}+y_{2} \otimes x_{2,1} \\
& y_{2} \mapsto y_{1} \otimes x_{1,2}+y_{2} \otimes x_{2,2}
\end{aligned}
$$

Since $\left[y_{1}, y_{2}\right]=0$,

$$
R^{\prime}=\left(\left[x_{1,1}, x_{1,2}\right],\left[x_{2,1}, x_{2,2}\right],\left[x_{1,1} x_{2,2}\right]+\left[x_{1,2}, x_{2,1}\right]\right)
$$

Universal coactions

$A=\mathbb{k}_{k}\left[y_{1}, y_{2}\right]$.

- $O^{\text {left }}(A)$ gave relations

$$
R=\left(\left[x_{1,1}, x_{2,1}\right],\left[x_{1,2}, x_{2,2}\right],\left[x_{1,1} x_{2,2}\right]-\left[x_{1,2}, x_{2,1}\right]\right) .
$$

- $O^{\text {right }}(A)$ gave relations

$$
R^{\prime}=\left(\left[x_{1,1}, x_{1,2}\right],\left[x_{2,1}, x_{2,2}\right],\left[x_{1,1} x_{2,2}\right]+\left[x_{1,2}, x_{2,1}\right]\right)
$$

- So $O^{\operatorname{trans}}(A) \cong \mathbb{k}\left[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right]$.
- Coassociativity and counitality of coaction give

$$
\begin{aligned}
\Delta\left(x_{i, j}\right) & =x_{i, 1} \otimes x_{1, j}+x_{i, 2} \otimes x_{2, j} \\
\varepsilon\left(x_{i, j}\right) & =\delta_{i, j} .
\end{aligned}
$$

- So $O^{\text {trans }}(A) \cong \mathcal{O}\left(\operatorname{Mat}_{2}(\mathbb{k})\right)$ as a bialgebra.

Universal UQSGds

Suppose A is not necessarily connected.

Definition?

A left UQSGd of A is a weak bialgebra $\mathcal{O}^{\text {left }}(A)$ that left coacts on A so that for every weak bialgebra H that left coacts on A, there exists a unique weak bialgebra map $\pi: \mathcal{O}^{\text {left }}(A) \rightarrow H$ such that

Fact. If $\phi: H \rightarrow K$ is a nonzero wba morphism, then $H_{t} \cong K_{t}$.

Universal UQSGds

- Would like a condition on H_{s} that generalizes the bialgebra case.

Definition

A left UQSGd of A is a weak bialgebra $\mathcal{O}=\mathcal{O}^{\text {left }}(A)$ that left coacts on A, with $A_{0} \cong \mathcal{O}_{t}$ in ${ }^{\mathcal{O}} \mathcal{M}$, so that for every weak bialgebra H that left coacts on A, with $A_{0} \cong H_{t}$, there exists a unique weak bialgebra map $\pi: \mathcal{O}^{\text {left }}(A) \rightarrow H$ such that the diagram commutes.

- Call this a base preserving coaction.
- $\mathcal{O}_{t}=\mathbb{1}$ in ${ }^{\mathcal{O}} \mathcal{M}$.
- Analogous definition for $\mathcal{O}^{\text {right }}(A)$, with H_{s} instead of H_{t}.

Universal UQSGds

- A transposed UQSGd $\mathcal{O}^{\text {trans }}(A)$ should coact on A on left and right universally + transpose compatibility conditions.
- $\mathcal{O}_{t} \cong A_{0} \cong \mathcal{O}_{s}$.
- Recall \mathcal{O}_{t} antiisomorphic to \mathcal{O}_{s}.
- So in our work, we assume A_{0} is commutative.

Main theorem

Theorem. [Huang-Walton-Wicks-W]

Let $A=\mathbb{k} Q$. Then

$$
\mathcal{O}^{*}(A) \cong \mathfrak{H}(Q)
$$

where $*=$ left, right, or trans.

- Surprising to us, but speaks to freeness of $\mathbb{k}_{k} Q$.
- $\mathbb{k}_{\mathrm{k} Q}$ is the tensor algebra $T_{\mathrm{lk}_{0}}\left(\mathbb{k}^{2} Q_{1}\right)$.

Theorem. [Huang-Walton-Wicks-W]

Let I be a graded ideal of $\mathbb{k} Q$. If $\mathcal{O}^{*}(\mathbb{k} Q / I)$ exists, then

$$
\mathcal{O}^{*}(\mathbb{k} Q / I) \cong \mathfrak{H}(Q) / \mathcal{I}
$$

for some biideal \mathcal{I} of $\mathfrak{H}(Q)$.

Quadratic quiver algebras

Theorem. [Huang-Walton-Wicks-W]
If I is a graded ideal of $\mathbb{k} Q$ generated in degree 2 , then

$$
\begin{gathered}
\mathcal{O}^{\text {left }}(\mathbb{k} Q / I) \cong \mathcal{O}^{\text {right }}\left((\mathbb{k} Q / I)^{!}\right)^{\mathrm{op}} \\
\mathcal{O}^{\text {trans }}(\mathbb{k} Q / I) \cong \mathcal{O}^{\text {trans }}\left((\mathbb{k} Q / I)^{!}\right)^{\mathrm{op}}
\end{gathered}
$$

where $(\mathbb{k} Q / I)^{!}$is the quadratic dual $\mathbb{k}_{\mathrm{k}} Q^{\mathrm{op}} / I_{\mathrm{op}}^{\perp}$.

Example.

If I is the ideal of $\mathbb{k} Q$ generated by all paths of length 2 , then $\mathbb{k}^{2} Q / I=\mathbb{k}^{2} Q$. Hence

$$
\mathcal{O}^{\text {left }}(\mathbb{k} Q / I) \cong \mathfrak{H}(Q)
$$

Thank you!

