Universal quantum semigroupoids

Seattle Noncommutative Algebra Day Online

Robert Won

University of Washington

May 30, 2021 1 / 34

Joint work with

Hongdi Huang

Chelsea Walton

Elizabeth Wicks

arXiv:2008.00606

May 30, 2021 2 / 34

Big picture

Goal. [Lots of people here, throughout history, etc.] Study symmetries in algebra.

Symmetries in algebra

- Fix a field k.
- Want to study symmetries of

$$A = \bigoplus_{i \in \mathbb{N}} A_i = A_0 \oplus A_1 \oplus \cdots$$

an \mathbb{N} -graded, locally finite \mathbb{k} -algebra.

Favorite example.

The polynomial ring $A = \mathbb{k}[x_1, \dots, x_n]$.

Also connected ($A_0 = \mathbb{k}$) and commutative.

How to study symmetries?

• Classically, symmetries are captured by group actions.

 $C_2 \curvearrowright tiger$

 $D_{10} \curvearrowright \text{pentagon}$

- $A = (\bigoplus_{i \in \mathbb{N}} A_i, \quad m : A \otimes_{\mathbb{k}} A \to A, \quad u : \mathbb{k} \to A)$ has structure.
- Should preserve algebra structure and grading.

Classical symmetry

- Suppose *A* is connected and commutative.
- Study group actions such that:

$$g \cdot (ab) = (g \cdot a)(g \cdot b)$$
 and $g \cdot 1_A = 1_A$,

[A is a G-module and m and u are G-module morphisms] and

$$g(A_i) \subseteq A_i$$
 for all i

[each A_i is a G-module].

Example. [Extremely rich history]

Finite group $G \leq GL_n(\mathbb{k}) \curvearrowright A = \mathbb{k}[x_1, \dots, x_n]$.

Quantum rigidity

Example.

Let $q \in \mathbb{k}^{\times}$. Define the quantum plane

$$\mathbb{k}_q[x,y] := \frac{\mathbb{k} \langle x,y \rangle}{(yx - qxy)}.$$

- If *g* preserves grading, then $g(x) = \alpha x + \beta y$ and $g(y) = \gamma x + \delta y$.
- For *g* to extend to $\mathbb{k}_q[x,y]$, must send yx qxy to $\lambda(yx qxy)$.
 - 1. If q = 1, no restriction so

$$\operatorname{Aut}_{\operatorname{gr}}(\Bbbk[x,y]) = \operatorname{GL}_2(\Bbbk).$$

2. If
$$q = -1$$
, $\alpha = \delta = 0$ or $\beta = \gamma = 0$ so
$$\operatorname{Aut}_{\operatorname{gr}}(\mathbb{k}_{-1}[x, y]) = (\mathbb{k}^{\times})^{2} \rtimes \langle \sigma \rangle.$$

3. If
$$q \neq \pm 1$$
, $\beta = \gamma = 0$ so
$$\operatorname{Aut}_{\operatorname{gr}}(\mathbb{k}_q[x,y]) = (\mathbb{k}^{\times})^2.$$

May 30, 2021 Symmetry 7 / 34

Bialgebras

- A bialgebra H over \Bbbk is a \Bbbk -algebra (H, m, u) and a \Bbbk -coalgebra (H, Δ, ε) such that
 - (a) m and u are coalgebra morphisms

$$\Delta(ab) = \Delta(a)\Delta(b)$$
 and $\Delta(1) = 1 \otimes 1$

(a') Δ and ε are algebra morphisms

$$\Delta(ab) = \Delta(a)\Delta(b)$$
 and $\varepsilon(ab) = \varepsilon(a)\varepsilon(b)$.

- Sweedler Notation. $\Delta(a) = a_1 \otimes a_2$.
- A Hopf algebra is a bialgebra with a k-linear antipode *S*

$$S(a_1)a_2 = a_1S(a_2) = \varepsilon(a).$$

May 30, 2021 Symmetry 8 / 34

Quantum symmetries

- Bialgebra (co)actions capture quantum symmetries.
- Let ${}_{H}\mathcal{M}$ be the category of left H-modules.
- *A* is called a left *H*-module algebra if $A \in {}_H\mathcal{M}$ such that

$$h \cdot (ab) = (h_1 \cdot a)(h_2 \cdot b)$$
$$h \cdot 1_A = \varepsilon(h)1_A.$$

Theorem. [Etingof–Walton, 2013]

Let *H* be a semisimple Hopf algebra over an algebraically closed field of characteristic zero. If *A* is a commutative domain that is an *H*-module algebra, then the *H*-action factors through a group action.

Hopf algebras as quantum symmetries

Theorem. [Etingof–Walton]

Semisimple Hopf actions on commutative domains are captured by group actions.

Hopf algebras "=" Quantum groups Bialgebras "=" Quantum semigroups

[Extremely rich theory.]

May 30, 2021 Symmetry 10 / 34

Hopf algebras as quantum symmetries

In this picture:

Motivating question.

How do we enlarge this picture?

(Quotients of) path algebras of quivers: so $A_0 \neq \mathbb{k}$.

May 30, 2021 Symmetry 11 / 34

What is symmetry?

- Group: g.(ab) = (g.a)(g.b) and .1 = 1.
- Hopf algebra: $h.(ab) = (h_1.a)(h_2.b)$ and $h.1 = \varepsilon(h)1$.
- $(C, \otimes, 1)$ a monoidal category. An algebra object in C is (A, m, u) where A is an object, m and u are morphisms satisfying:

- Group: (A, m, u) an algebra object in monoidal category ${}_{\mathbb{K}G}\mathcal{M}$.
- Hopf: (A, m, u) an algebra object in monoidal category $_H\mathcal{M}$.

May 30, 2021 Symmetry 12 / 34

A more general framework?

Look for H with HM or M^H monoidal.

Many generalizations of Hopf algebras:

- 1. Weak Hopf algebras
- 2. Quasi-bialgebras with antipode
- 3. Hopf algebroids
- 4. Hopf bimonoids in duoidal categories
- 5. Hopfish algebras

Weak Hopf algebras

• A weak bialgebra H over \mathbbm{k} is a \mathbbm{k} -algebra (H, m, u) and a \mathbbm{k} -coalgebra (H, Δ, ε) such that

(1)
$$\Delta(ab) = \Delta(a)\Delta(b)$$
,

$$\text{(2)}\ (\Delta \otimes \operatorname{Id}) \circ \Delta = (\Delta(1) \otimes 1)(1 \otimes \Delta(1)) = (1 \otimes \Delta(1))(\Delta(1) \otimes 1)\text{,}$$

(3)
$$\varepsilon(abc) = \varepsilon(ab_1)\varepsilon(b_2c) = \varepsilon(ab_2)\varepsilon(b_1c)$$
.

- Bialgebra if and only if $\Delta(1) = 1 \otimes 1$ if and only if $\varepsilon(ab) = \varepsilon(a)\varepsilon(b)$.
- A weak Hopf algebra is a weak bialgebra with antipode *S*:

$$S(a_1)a_2 = 1_1\varepsilon(a_{12}), \qquad a_1S(a_2) = \varepsilon(1_1a)1_2, \qquad S(a_1)a_2S(a_3) = S(a).$$

May 30, 2021 Weak bialgebras 14 / 34

Counital maps

• The maps appearing in the antipode axioms:

$$S(a_1)a_2 = 1_1\varepsilon(a1_2), \qquad a_1S(a_2) = \varepsilon(1_1a)1_2$$

are important.

source counital map
$$\varepsilon_s: H \to H$$
 $\varepsilon_s(a) = 1_1 \varepsilon(a1_2)$

source counital subalgebra
$$H_s := \varepsilon_s(H)$$

target counital map $\varepsilon_t: H \to H$ $\varepsilon_t(a) = \varepsilon(1_1 a) 1_2$

target counital subalgebra $H_t = \varepsilon_t(H)$

- *H*_s and *H*_t are antiisomorphic separable, semisimple, finite-dimensional, codieal sub-k-algebras.
- A weak bialgebra is a bialgebra if and only if $H_s = H_t = \mathbb{k}$.

May 30, 2021 Weak bialgebras 15 / 34

Why weak Hopf algebras?

- Introduced by [Böhm–Nill–Szlachanyi 1999], motivated by physics: study symmetries in conformal field theory.
- Axioms are self-dual, so the dual of a finite-dimensional weak Hopf algebra is again a weak Hopf algebra.

Example.

If H, K are bialgebras, then $H \oplus K$ is an algebra as usual and a coalgebra under

$$\Delta(h,k) = (h_1,0) \otimes (h_2,0) + (0,k_1) \otimes (0,k_2)$$

$$\varepsilon(h, k) = \varepsilon_H(h) + \varepsilon_K(k)$$

But $\Delta(1,1) = (1,0) \otimes (1,0) + (0,1) \otimes (0,1) \neq (1,1) \otimes (1,1)$.

 $(H \oplus K)_t = (H \oplus K)_s = \mathbb{k} \oplus \mathbb{k}.$

So $H \oplus K$ not a bialgebra, only a weak bialgebra.

Why weak Hopf algebras?

If G, H are groups, then $G \sqcup H$ is not a group, but a groupoid.

Example.

 ${\mathcal G}$ is a groupoid. ${\Bbbk}{\mathcal G}$ the groupoid algebra is a weak Hopf algebra.

For
$$g \in \mathcal{G}$$
: $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$, $S(g) = g^{-1}$.

$$G = 1 \underbrace{\stackrel{\alpha}{\sim}}_{\alpha^{-1}} 2$$

Then
$$1 = e_1 + e_2$$
 but $\Delta(1) = e_1 \otimes e_1 + e_2 \otimes e_2 \neq 1 \otimes 1$. $(\mathbb{k}\mathcal{G})_t = (\mathbb{k}\mathcal{G})_s = \mathbb{k}e_1 \oplus \mathbb{k}e_2$.

Weak Hopf algebras "=" Quantum groupoids Weak bialgebras "=" Quantum semigroupoids

May 30, 2021 Weak bialgebras 17 / 34

Why weak Hopf algebras?

Theorem. [Hayashi 1999, Szlachanyi 2001]

Every fusion category is equivalent to ${}_{H}\mathcal{M}_{fd}$ for some weak Hopf algebra H.

- If $(H, m, u, \Delta, \varepsilon)$ is an algebra and coalgebra such that $\Delta(ab) = \Delta(a)\Delta(b)$, then $\Delta \operatorname{axiom} \Rightarrow {}^H\mathcal{M} \text{ and } \mathcal{M}^H \text{ are monoidal,}$
- ε axiom $\Rightarrow_H \mathcal{M}$ and \mathcal{M}_H are monoidal.
- But not $\otimes_{\mathbb{R}}$! [Nill 1998], [Böhm–Caenepeel–Janssen 2011], [Walton–Wicks–W arXiv: 1911.12847]

May 30, 2021 Weak bialgebras 18 / 34

An important example

Example. [Hayashi]

Q a finite quiver, e.g.:

$$Q = 1 \xrightarrow{p} 2 \xrightarrow{q} 3.$$

Define a graded weak bialgebra $\mathfrak{H}(Q)$:

- k-basis: $\{x_{a,b} \mid a,b \in Q_{\ell}, \ell \in \mathbb{N}\}$
 - $= \{x_{i,j} \mid 1 \leq i, j \leq 3\} \cup \{x_{p,p}, x_{p,q}, x_{q,p}, x_{q,q}\} \cup \{x_{pq,pq}\}.$
- Multiplication: $x_{a,b}x_{c,d} = \begin{cases} x_{ac,bd}, & \text{if } ac \text{ and } bd \text{ are paths} \\ 0, & \text{otherwise.} \end{cases}$
- Unit: $1_{\mathfrak{H}(Q)} = \sum_{i,j \in Q_0} x_{i,j}$.
- As an algebra, $\mathfrak{H}(Q) \cong \mathbb{k} \widehat{Q}$ [Calderon–Walton, 2021].

May 30, 2021 Weak bialgebras 19 / 34

An important example

Example. [Hayashi]

$$Q = 1 \xrightarrow{p} 2 \xrightarrow{q} 3$$

• Comultiplication: $\Delta(x_{a,b}) = \sum_{c \in Q_{\ell}} x_{a,c} \otimes x_{c,b}$

$$\Delta(x_{p,q}) = x_{p,p} \otimes x_{p,q} + x_{p,q} \otimes x_{q,q}.$$

• Counit: $\varepsilon(x_{a,b}) = \delta_{a,b}$.

An important example

Example. [Hayashi]

There are natural left and right coactions of $\mathfrak{H}(Q)$ on $\mathbb{k}Q$:

$$\lambda^{\mathfrak{H}(Q)} : \mathbb{k}Q \to \mathfrak{H}(Q) \otimes \mathbb{k}Q \qquad \qquad \rho^{\mathfrak{H}(Q)} : \mathbb{k}Q \to \mathbb{k}Q \otimes \mathfrak{H}(Q)$$

$$a \mapsto \sum_{b \in Q_{\ell}} x_{a,b} \otimes b \qquad \qquad a \mapsto \sum_{b \in Q_{\ell}} b \otimes x_{b,a} \ a \mapsto \sum_{b \in Q_{\ell}} x_{a,b} \otimes b$$

Making kQ a left and right $\mathfrak{H}(Q)$ -comodule algebra.

(\approx algebra object in ${}^H\mathcal{M}$ and \mathcal{M}^H , see [Walton–Wicks–W].)

May 30, 2021 Weak bialgebras 21 / 34

Back to the beginning

- Title: Universal quantum semigroupoids.
- Quantum semigroupoid = weak bialgebra.
- Universal?

Main theorem. [Huang-Walton-Wicks-W]

The universal quantum semigroupoid of kQ is $\mathfrak{H}(Q)$.

Suppose *A* is connected.

Definition. [Manin]

A left universal quantum semigroup (UQSG) of A is a bialgebra $O^{\mathrm{left}}(A)$ that left coacts on A so that for every bialgebra H that left coacts on A, there exists a unique bialgebra map $\pi:O^{\mathrm{left}}(A)\to H$ such that

May 30, 2021 Weak bialgebras 23 / 34

Example. [Manin]

Let $A = \mathbb{k}[y_1, y_2]$. Then

$$O^{\text{left}}(A) = \frac{\mathbb{k}\langle x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\rangle}{R}$$

where

$$y_1 \mapsto x_{1,1} \otimes y_1 + x_{1,2} \otimes y_2$$

 $y_2 \mapsto x_{2,1} \otimes y_1 + x_{2,2} \otimes y_2.$

Since $[y_1, y_2] = 0$,

$$R = ([x_{1,1}, x_{2,1}], [x_{1,2}, x_{2,2}], [x_{1,1}x_{2,2}] - [x_{1,2}, x_{2,1}])$$

May 30, 2021 Weak bialgebras 24 / 34

Definition. [Manin]

A right UQSG of A is a bialgebra $O^{\text{right}}(A)$ that right coacts on A so that for every bialgebra H that right coacts on A, there exists a unique bialgebra map $\pi:O^{\text{right}}(A)\to H$ such that

A transposed UQSG $O^{\text{trans}}(A)$ left and right coacts on A universally via λ^O and ρ^O such that

$$(\rho^O)^\top: A^* \to O \otimes A^*$$

is λ^{O} (after identifying a basis of *A* with the dual basis of A^*).

Example. [Manin]

Let $A = \mathbb{k}[y_1, y_2]$. Then

$$O^{\text{right}}(A) = \frac{\mathbb{k}\langle x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\rangle}{R'}$$

where

$$y_1 \mapsto y_1 \otimes x_{1,1} + y_2 \otimes x_{2,1}$$

 $y_2 \mapsto y_1 \otimes x_{1,2} + y_2 \otimes x_{2,2}.$

Since $[y_1, y_2] = 0$,

$$R' = ([x_{1,1}, x_{1,2}], [x_{2,1}, x_{2,2}], [x_{1,1}x_{2,2}] + [x_{1,2}, x_{2,1}]).$$

May 30, 2021 Weak bialgebras 26 / 34

$$A = \mathbb{k}[y_1, y_2].$$

• $O^{\text{left}}(A)$ gave relations

$$R = ([x_{1,1}, x_{2,1}], [x_{1,2}, x_{2,2}], [x_{1,1}x_{2,2}] - [x_{1,2}, x_{2,1}]).$$

• $O^{\text{right}}(A)$ gave relations

$$R' = ([x_{1,1}, x_{1,2}], [x_{2,1}, x_{2,2}], [x_{1,1}x_{2,2}] + [x_{1,2}, x_{2,1}]).$$

- So $O^{trans}(A) \cong \mathbb{k}[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}].$
- Coassociativity and counitality of coaction give

$$\Delta(x_{i,j}) = x_{i,1} \otimes x_{1,j} + x_{i,2} \otimes x_{2,j}$$

$$\varepsilon(x_{i,j}) = \delta_{i,j}.$$

• So $O^{trans}(A) \cong \mathcal{O}(Mat_2(\mathbb{k}))$ as a bialgebra.

May 30, 2021 Weak bialgebras 27 / 34

Universal UQSGds

Suppose *A* is not necessarily connected.

Definition?

A left UQSGd of A is a weak bialgebra $\mathcal{O}^{\mathrm{left}}(A)$ that left coacts on A so that for every weak bialgebra H that left coacts on A, there exists a unique weak bialgebra map $\pi:\mathcal{O}^{\mathrm{left}}(A)\to H$ such that

Fact. If $\phi : H \to K$ is a nonzero wba morphism, then $H_t \cong K_t$.

Universal UQSGds

• Would like a condition on H_s that generalizes the bialgebra case.

Definition

A left UQSGd of A is a weak bialgebra $\mathcal{O} = \mathcal{O}^{\operatorname{left}}(A)$ that left coacts on A, with $A_0 \cong \mathcal{O}_t$ in ${}^{\mathcal{O}}\mathcal{M}$, so that for every weak bialgebra H that left coacts on A, with $A_0 \cong H_t$, there exists a unique weak bialgebra map $\pi : \mathcal{O}^{\operatorname{left}}(A) \to H$ such that the diagram commutes.

- Call this a base preserving coaction.
- $\mathcal{O}_t = \mathbb{1}$ in ${}^{\mathcal{O}}\mathcal{M}$.
- Analogous definition for $\mathcal{O}^{\text{right}}(A)$, with H_s instead of H_t .

Universal UQSGds

- A transposed UQSGd $\mathcal{O}^{trans}(A)$ should coact on A on left and right universally + transpose compatibility conditions.
- $\mathcal{O}_t \cong A_0 \cong \mathcal{O}_s$.
- Recall \mathcal{O}_t antiisomorphic to \mathcal{O}_s .
- So in our work, we assume A_0 is commutative.

Main theorem

Theorem. [Huang–Walton–Wicks–W]

Let $A = \mathbb{k}Q$. Then

$$\mathcal{O}^*(A) \cong \mathfrak{H}(Q)$$

where * =left, right, or trans.

- Surprising to us, but speaks to freeness of kQ.
- $\mathbb{k}Q$ is the tensor algebra $T_{\mathbb{k}Q_0}(\mathbb{k}Q_1)$.

Theorem. [Huang–Walton–Wicks–W]

Let *I* be a graded ideal of $\mathbb{k}Q$. If $\mathcal{O}^*(\mathbb{k}Q/I)$ exists, then

$$\mathcal{O}^*(\Bbbk Q/I) \cong \mathfrak{H}(Q)/\mathcal{I}$$

for some biideal \mathcal{I} of $\mathfrak{H}(Q)$.

May 30, 2021 Weak bialgebras 32 / 34

Quadratic quiver algebras

Theorem. [Huang–Walton–Wicks–W]

If I is a graded ideal of $\mathbb{k}Q$ generated in degree 2, then

$$\mathcal{O}^{\mathrm{left}}(\Bbbk Q/I) \cong \mathcal{O}^{\mathrm{right}}((\Bbbk Q/I)^!)^{\mathrm{op}}$$

$$\mathcal{O}^{trans}(\Bbbk Q/I) \cong \mathcal{O}^{trans}((\Bbbk Q/I)^!)^{op}$$

where $(\mathbb{k}Q/I)^!$ is the quadratic dual $\mathbb{k}Q^{op}/I_{op}^{\perp}$.

Example.

If *I* is the ideal of $\mathbb{k}Q$ generated by all paths of length 2, then $\mathbb{k}Q/I = \mathbb{k}Q^!$. Hence

$$\mathcal{O}^{\mathrm{left}}(\Bbbk Q/I) \cong \mathfrak{H}(Q).$$

May 30, 2021 Weak bialgebras 33 / 34

Thank you!

May 30, 2021 Weak bialgebras 34 / 34