Introduction and Background Automorphisms of 'Quantum' Algebras Algebras with the Dixmier Property Some New Results and Examples Acknowledgements

On The Endomorphisms of Some Noncommutative Algebras

Xin Tang

Dept. of Math & CSC, Fayetteville State University Fayetteville, NC 28301, USA

Virtual "Seattle Noncommutative Algebra Day" (SNAD) University of Washington, Seattle, WA, May 29-30, 2021

Automorphisms of Polynomial Algebras

Let k be a field. The k-algebra automorphisms of $k[x_1, \dots, x_n]$ have been extensively researched in the literature.

▶ The automorphism group $Aut_k k[x]$ is 'trivial' in nature.

Automorphisms of Polynomial Algebras

Let k be a field. The k-algebra automorphisms of $k[x_1, \dots, x_n]$ have been extensively researched in the literature.

- ▶ The automorphism group $Aut_k k[x]$ is 'trivial' in nature.
- ► (H.W.E. Jung 1942 & W. Van der Kulk 1953) The structure of $\mathrm{Aut}_{\Bbbk} \Bbbk[x,y]$ is also well understood.

Automorphisms of Polynomial Algebras

Let k be a field. The k-algebra automorphisms of $k[x_1, \dots, x_n]$ have been extensively researched in the literature.

- ▶ The automorphism group $Aut_k k[x]$ is 'trivial' in nature.
- ▶ (H.W.E. Jung 1942 & W. Van der Kulk 1953) The structure of $\mathrm{Aut}_{\Bbbk} \Bbbk[x,y]$ is also well understood.
- ▶ (M. Nagata 1972) It was conjectured by Nagata that $\mathbb{k}[x, y, z]$ has a wild automorphism

$$(x, y, z) \mapsto (x-2(xz+y^2)y-(xz+y^2)^2z, y+(xz+y^2)z, z).$$

This conjecture was proved by U.U. Umirbaev and I.P. Shestakov in 2004.

The Jacobian Conjecture

▶ The automorphism group of $\mathbb{k}[x_1, \dots, x_n]$ remains a mystery in large for $n \geq 3$. The question seems to be hopeless.

The Jacobian Conjecture

- ▶ The automorphism group of $\mathbb{k}[x_1, \dots, x_n]$ remains a mystery in large for $n \ge 3$. The question seems to be hopeless.
- ▶ (O. Keller 1939) The **Jacobian Conjecture** JC_n asserts that any polynomial k-algebra endomorphism of $k[x_1, \dots, x_n]$ with Jacobian 1 is an automorphism (when k is zero characteristic).

The Jacobian Conjecture

- ▶ The automorphism group of $\mathbb{k}[x_1, \dots, x_n]$ remains a mystery in large for $n \geq 3$. The question seems to be hopeless.
- ▶ (O. Keller 1939) The **Jacobian Conjecture** JC_n asserts that any polynomial k-algebra endomorphism of $k[x_1, \dots, x_n]$ with Jacobian 1 is an automorphism (when k is zero characteristic).
- ► The Jacobian Conjecture remains open (except for the case n = 1 which is trivial).

Weyl Algebras and The Dixmier Conjecture

Let $A_1(\mathbb{C})$ be the $\mathbb{C}-$ algebra generated by x,y subject to the relation xy-yx=1.

▶ (J. Dixmier 1968 & L. Makar-Limanov 1983) The group $\operatorname{Aut}_{\mathbb{C}}A_1(\mathbb{C})$ was classified by Dixmier. Makar-Limanov determined $\operatorname{Aut}_{\mathbb{k}}(A_1(\mathbb{k}))$ for \mathbb{k} of positive characteristic.

Weyl Algebras and The Dixmier Conjecture

Let $A_1(\mathbb{C})$ be the $\mathbb{C}-$ algebra generated by x,y subject to the relation xy-yx=1.

- ▶ (J. Dixmier 1968 & L. Makar-Limanov 1983) The group $\operatorname{Aut}_{\mathbb{C}}A_1(\mathbb{C})$ was classified by Dixmier. Makar-Limanov determined $\operatorname{Aut}_{\mathbb{k}}(A_1(\mathbb{k}))$ for \mathbb{k} of positive characteristic.
- ▶ Dixmier asked whether each \mathbb{C} -algebra endomorphism of $A_1(\mathbb{C})$ is an automorphism. Dixmier's question with its higher rank analogues has been referred to as the **Dixmier** Conjecture.

Weyl Algebras and The Dixmier Conjecture

Let $A_1(\mathbb{C})$ be the $\mathbb{C}-$ algebra generated by x,y subject to the relation xy-yx=1.

- ▶ (J. Dixmier 1968 & L. Makar-Limanov 1983) The group $\operatorname{Aut}_{\mathbb{C}}A_1(\mathbb{C})$ was classified by Dixmier. Makar-Limanov determined $\operatorname{Aut}_{\mathbb{k}}(A_1(\mathbb{k}))$ for \mathbb{k} of positive characteristic.
- ▶ Dixmier asked whether each \mathbb{C} -algebra endomorphism of $A_1(\mathbb{C})$ is an automorphism. Dixmier's question with its higher rank analogues has been referred to as the **Dixmier** Conjecture.
- ► (Y. Tsuchimoto 2003, A. Belov-Kanel & M. Kontsevich 2005) The Dixmier Conjecture is **stably equivalent to** the Jacobian Conjecture.

Three Questions Considered

There has much interest in the following questions:

▶ Determine the automorphism group for a noncommutative algebra.

Three Questions Considered

There has much interest in the following questions:

- ▶ Determine the automorphism group for a noncommutative algebra.
- Identify noncommutative algebras whose endomorphisms are all automorphisms.

Three Questions Considered

There has much interest in the following questions:

- Determine the automorphism group for a noncommutative algebra.
- Identify noncommutative algebras whose endomorphisms are all automorphisms.
- Establish a criterion for an algebra endomorphism to be an automorphism.

Classifying the Automorphism Group

The automorphism groups have been classified for the following algebras.

▶ (J. Alev & M. Chamarie 1992) The tensor products of quantum plane algebras $\mathbb{k}_q[x,y]$, the 2 × 2 quantum matrix algebra $R_q[M_2]$, the quantum space $\mathbb{k}_q[x_1,\cdots,x_n]$, and the quantized enveloping algebra $U_q(sl_2)$.

Classifying the Automorphism Group

The automorphism groups have been classified for the following algebras.

- ▶ (J. Alev & M. Chamarie 1992) The tensor products of quantum plane algebras $\mathbb{k}_q[x,y]$, the 2 × 2 quantum matrix algebra $R_q[M_2]$, the quantum space $\mathbb{k}_q[x_1,\cdots,x_n]$, and the quantized enveloping algebra $U_q(sl_2)$.
- ▶ (J. Alev & F. Dumas 1993) The quantum Heisenberg algebra $U_q^+(sl_3)$, the quantum Weyl algebra $A_1^q(\Bbbk)$ of rank 1, the Weyl-Hayashi algebra, and other related algebras.

Classifying Automorphism Groups

The automorphism groups have been classified for the following algebras.

▶ (J.M. Osborn & D.S. Passman 1995) The quantum polynomial algera $\mathbb{k}_Q[x_1, \cdots, x_n]$ such that $\mathbb{k}_Q[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$ is simple. Here $\mathbb{k}_Q[x_1, \cdots, x_n]$ is the \mathbb{k} -algebra generated by x_1, \cdots, x_n subject to the relation $x_i x_j = q_{ij} x_j x_i$.

Classifying Automorphism Groups

The automorphism groups have been classified for the following algebras.

- ▶ (J.M. Osborn & D.S. Passman 1995) The quantum polynomial algera $\mathbb{k}_Q[x_1, \dots, x_n]$ such that $\mathbb{k}_Q[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ is simple. Here $\mathbb{k}_Q[x_1, \dots, x_n]$ is the \mathbb{k} -algebra generated by x_1, \dots, x_n subject to the relation $x_i x_j = q_{ij} x_j x_i$.
- ▶ (L. Rigal 1996) The quantized Weyl algebras of higher ranks.

Classifying Automorphism Groups

The automorphism groups have been classified for the following algebras.

- ▶ (J.M. Osborn & D.S. Passman 1995) The quantum polynomial algera $\mathbb{k}_Q[x_1, \dots, x_n]$ such that $\mathbb{k}_Q[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ is simple. Here $\mathbb{k}_Q[x_1, \dots, x_n]$ is the \mathbb{k} -algebra generated by x_1, \dots, x_n subject to the relation $x_i x_j = q_{ij} x_j x_i$.
- ▶ (L. Rigal 1996) The quantized Weyl algebras of higher ranks.
- ▶ (J. Gómez-Torrecillas & L. EL Kaoutit 2002) The coordinate ring of quantum Symplectic space.

Andruskiewitsch-Dumas Conjecture and Launois-Lenagan Conjecture

▶ In 2003, N. Andruskiewitsch and F. Dumas conjectured that

$$\operatorname{Aut}_{\Bbbk}(U_q^+(\mathfrak{g})) \cong (\Bbbk^{\times})^n \rtimes \operatorname{Aut}(\Gamma).$$

This was verified for $U_q^+(so_5)$ by S. Launois in 2004 and for $U_q^+(sl_4)$ by S. Launois and S. Lopes in 2006.

Andruskiewitsch-Dumas Conjecture and Launois-Lenagan Conjecture

▶ In 2003, N. Andruskiewitsch and F. Dumas conjectured that

$$\operatorname{Aut}_{\Bbbk}(U_q^+(\mathfrak{g})) \cong (\Bbbk^{\times})^n \rtimes \operatorname{Aut}(\Gamma).$$

This was verified for $U_q^+(so_5)$ by S. Launois in 2004 and for $U_q^+(sl_4)$ by S. Launois and S. Lopes in 2006.

▶ In 2007, S. Launois and T.H. Lenagan conjectured that

$$\operatorname{Aut}_{\Bbbk}(R_q[M_n]) \cong (\Bbbk^{\times})^{2n-1} \rtimes \mathbb{Z}_2.$$

They proved their conjecture in the case n = 3 in 2011.

Introduction and Background Automorphisms of 'Quantum' Algebras Algebras with the Dixmier Property Some New Results and Examples Acknowledgements

Two Major Breakthroughs

► (M. Yakimov 2013) M. Yakimov resolved both conjectures in full generality in 2013.

Two Major Breakthroughs

- ► (M. Yakimov 2013) M. Yakimov resolved both conjectures in full generality in 2013.
- ► (M. Yakimov & K. Goodearl 2013) There is a far-reaching result by M. Yakimov and K. Goodearl on the unipotent automorphisms for a variety of quantum nilpotent algebras.

Two Major Breakthroughs

- ► (M. Yakimov 2013) M. Yakimov resolved both conjectures in full generality in 2013.
- ► (M. Yakimov & K. Goodearl 2013) There is a far-reaching result by M. Yakimov and K. Goodearl on the unipotent automorphisms for a variety of quantum nilpotent algebras.
- (S. Ceken, J.H. Palmieri, Y.-H. Wang & J.J. Zhang 2015) In the root of unity case, the automorphism group is determined for many quantum algebras using the idea of discriminants. There have been many works following this direction.

Algebras with Only Bijective Endomorphisms

Let $A = \mathbbm{k}_Q[x_1^{\pm 1}, \cdots, x_m^{\pm 1}]$ with $n \geq 2$ be the quantum Laurent polynomial algebra defined by $Q = (q_{ij})_{1 \leq i,j \leq m}$.

▶ (L. Richard 2002) If A is a simple algebra, then each k-algebra endomorphism φ of A is an automorphism.

Algebras with Only Bijective Endomorphisms

Let $A = \mathbbm{k}_Q[x_1^{\pm 1}, \cdots, x_m^{\pm 1}]$ with $n \ge 2$ be the quantum Laurent polynomial algebra defined by $Q = (q_{ij})_{1 \le i,j \le m}$.

- ▶ (L. Richard 2002) If A is a simple algebra, then each k-algebra endomorphism φ of A is an automorphism.
- (L. Richard 2002) Otherwise, any k-algebra endomorphism φ of A is an automorphism if and only if φ preserves the center of A and the restriction of φ to the center is an automorphism.

Algebras with Only Bijective Endomorphisms

Let $A = \mathbbm{k}_Q[x_1^{\pm 1}, \cdots, x_m^{\pm 1}]$ with $n \ge 2$ be the quantum Laurent polynomial algebra defined by $Q = (q_{ij})_{1 \le i,j \le m}$.

- ▶ (L. Richard 2002) If A is a simple algebra, then each k-algebra endomorphism φ of A is an automorphism.
- (L. Richard 2002) Otherwise, any k-algebra endomorphism φ of A is an automorphism if and only if φ preserves the center of A and the restriction of φ to the center is an automorphism.
- ▶ One may refer the property with "all algebra endomorphisms being bijective" to as the **Dixmier Property or Condition**.

Endomorphisms of Quantized Weyl Algebras

Let $R = \mathbb{C}[t, t^{-1}]$ and $A_n^{(t)}$ be the R-algebra generated by $x_1, y_1, \dots, x_n, y_n$ subject to the relations: $x_i y_i - t y_i x_i = 1, \ x_i y_j = y_j x_i, \ x_i x_j = x_j x_i, \ \text{and} \ y_i y_j = y_j y_i. \ \text{Set} \ A_n^q = A_n^{(t)}/(t-q) \ \text{for} \ q \neq 1 \in \mathbb{C}^\times \ \text{and} \ z = \prod_{i=1}^n (x_i y_i - y_i x_i).$

► (E. Backelin 2011) Each R-algebra endomorphism of $(A_n^{(t)})_z$ is an automorphism.

Endomorphisms of Quantized Weyl Algebras

Let $R = \mathbb{C}[t, t^{-1}]$ and $A_n^{(t)}$ be the R-algebra generated by $x_1, y_1, \dots, x_n, y_n$ subject to the relations: $x_i y_i - t y_i x_i = 1, \ x_i y_j = y_j x_i, \ x_i x_j = x_j x_i, \ \text{and} \ y_i y_j = y_j y_i. \ \text{Set} \ A_n^q = A_n^{(t)}/(t-q) \ \text{for} \ q \neq 1 \in \mathbb{C}^\times \ \text{and} \ z = \prod_{i=1}^n (x_i y_i - y_i x_i).$

- ► (E. Backelin 2011) Each R-algebra endomorphism of $(A_n^{(t)})_z$ is an automorphism.
- ▶ (E. Backelin 2011) The algebra A_n^q has injective but not surjective endomorphisms; and A_n^q has endomorphisms which are neither injective nor surjective.

Endomorphisms of Quantized Weyl Algebras

Let $R = \mathbb{C}[t, t^{-1}]$ and $A_n^{(t)}$ be the R-algebra generated by $x_1, y_1, \dots, x_n, y_n$ subject to the relations: $x_i y_i - t y_i x_i = 1, \ x_i y_j = y_j x_i, \ x_i x_j = x_j x_i, \text{ and } y_i y_j = y_j y_i.$ Set $A_n^q = A_n^{(t)}/(t-q)$ for $q \neq 1 \in \mathbb{C}^\times$ and $z = \prod_{i=1}^n (x_i y_i - y_i x_i)$.

- ► (E. Backelin 2011) Each R-algebra endomorphism of $(A_n^{(t)})_z$ is an automorphism.
- ▶ (E. Backelin 2011) The algebra A_n^q has injective but not surjective endomorphisms; and A_n^q has endomorphisms which are neither injective nor surjective.
- ▶ (E. Backelin 2011) When q is a root of unity, the localization $(A_n^q)_z$ is an Azumaya algebra over its center.

For $0 \neq a(h) \in \mathbb{K}[h^{\pm 1}]$, let A(a(h),q) be the k-algebra generated by $x,y,h^{\pm 1}$ subject to the relations

$$xh = qhx$$
, $yh = q^{-1}hy$, $xy = a(qh)$, $yx = a(h)$.

▶ (S. Launois & A. Kitchin 2014) Assume that a is not a monomial. Each k-algebra monomorphism of A(a(h), q) is an automorphism. If A(a(h), q) is simple, then each k-algebra endomorphism of A(a(h), q) is an algebra automorphism.

For $0 \neq a(h) \in \mathbb{K}[h^{\pm 1}]$, let A(a(h),q) be the k-algebra generated by $x,y,h^{\pm 1}$ subject to the relations

$$xh = qhx$$
, $yh = q^{-1}hy$, $xy = a(qh)$, $yx = a(h)$.

- ▶ (S. Launois & A. Kitchin 2014) Assume that a is not a monomial. Each \mathbb{R} -algebra monomorphism of A(a(h),q) is an automorphism. If A(a(h),q) is simple, then each \mathbb{R} -algebra endomorphism of A(a(h),q) is an algebra automorphism.
- ▶ (S. Launois & A. Kitchin 2015) When q is not a root of unity, each k-algebra endomorphism of A(n,d,q) is an automorphism, where $A(n,d,q) = \bigotimes_{i=1}^n A(h^d-1,q)$ for $d \in \mathbb{N}$.

▶ (Tang 2015) The localized down-up algebra: $A_{r,s}(\mathbb{k})_{\mathcal{S}}$ with r,s being independent in \mathbb{K}^{\times} . Here $A_{r,s}(\mathbb{k})$ is a \mathbb{k} -algebra generated by u,d subject to: $u^2d-(r+s)udu+rsdu^2=0$, $d^2u-(r+s)dud+rsud^2=0$. We denote by \mathcal{S} the set $\{[(ud-rdu)(ud-sdu)]^i\mid i\geq 0\}$.

- ▶ (Tang 2015) The localized down-up algebra: $A_{r,s}(\mathbb{k})_{\mathcal{S}}$ with r,s being independent in \mathbb{K}^{\times} . Here $A_{r,s}(\mathbb{k})$ is a \mathbb{k} -algebra generated by u,d subject to: $u^2d (r+s)udu + rsdu^2 = 0$, $d^2u (r+s)dud + rsud^2 = 0$. We denote by \mathcal{S} the set $\{[(ud rdu)(ud sdu)]^i \mid i \geq 0\}$.
- ▶ (Tang 2017) The algebra: $\bigotimes_{i=1}^n A(\frac{h_i-1}{q_i-1},q_i)$ with q_1,\cdots,q_n being independent in \mathbb{k}^{\times} .

- ▶ (Tang 2015) The localized down-up algebra: $A_{r,s}(\mathbb{k})_{\mathcal{S}}$ with r,s being independent in \mathbb{K}^{\times} . Here $A_{r,s}(\mathbb{k})$ is a \mathbb{k} -algebra generated by u,d subject to: $u^2d (r+s)udu + rsdu^2 = 0$, $d^2u (r+s)dud + rsud^2 = 0$. We denote by \mathcal{S} the set $\{[(ud rdu)(ud sdu)]^i \mid i \geq 0\}$.
- ▶ (Tang 2017) The algebra: $\bigotimes_{i=1}^n A(\frac{h_i-1}{q_i-1},q_i)$ with q_1,\cdots,q_n being independent in \mathbb{k}^{\times} .
- ▶ (Tang 2017) The algebra: $\mathbb{k}_p[s^{\pm 1}, t^{\pm 1}] \bigotimes A(\frac{h-1}{q-1}, q)$ with $p, q \in \mathbb{k}^{\times}$ being non-root of unity.

Some Criteria for Bijectivity

There have been some criteria in the literature for singling algebra automorphisms out of algebra endomorphisms:

▶ (V.A. Artamonov & R. Wisbauer 2001) Assume that $n \geq 3$ and q_{ij} are independent in \mathbb{k}^{\times} . Let φ be a \mathbb{k} -algebra endomorphism of $\mathbb{k}_Q[x_1^{\pm 1}, \cdots, x_r^{\pm 1}, x_{r+1}, \cdots, x_n]$. If there exist i, j, k such that $\varphi(x_i), \varphi(x_j), \varphi(x_k) \neq 0$, then φ is an algebra automorphism.

Some Criteria for Bijectivity

There have been some criteria in the literature for singling algebra automorphisms out of algebra endomorphisms:

- ▶ (V.A. Artamonov & R. Wisbauer 2001) Assume that $n \geq 3$ and q_{ij} are independent in \mathbb{k}^{\times} . Let φ be a \mathbb{k} -algebra endomorphism of $\mathbb{k}_Q[x_1^{\pm 1}, \cdots, x_r^{\pm 1}, x_{r+1}, \cdots, x_n]$. If there exist i, j, k such that $\varphi(x_i), \varphi(x_j), \varphi(x_k) \neq 0$, then φ is an algebra automorphism.
- N. Lauritzen & J.F. Thomsen 2017) Assume that $\operatorname{char} \Bbbk = 0$. Each birational \Bbbk -algebra endomorphism of $A_n(\Bbbk)$ is an automorphism.

Benkart's Multi-paramter Weyl Algebras

▶ (G. Benkart 2013) For any $r, s \in \mathbb{k}^{\times}$, let $A_{r,s}(\mathbb{k})$ be the \mathbb{k} -algebra generated by $\rho^{\pm 1}, \sigma^{\pm 1}$ and x, y subject to the following relations: $\rho \sigma = \sigma \rho, \rho x = rx\rho, \rho y = r^{-1}\rho y, \sigma x = sx\sigma, \sigma y = s^{-1}y\sigma, yx = \frac{r^2\rho^2 - s^2\sigma^2}{r^2 - s^2}, xy = \frac{\rho^2 - \sigma^2}{r^2 - s^2}$. Set $A_{\overline{t},\overline{s}}(n) = \bigotimes_{i=1}^n A_{r_i,s_i}(\mathbb{k})$.

Benkart's Multi-paramter Weyl Algebras

- ▶ (G. Benkart 2013) For any $r, s \in \mathbb{k}^{\times}$, let $A_{r,s}(\mathbb{k})$ be the \mathbb{k} -algebra generated by $\rho^{\pm 1}, \sigma^{\pm 1}$ and x, y subject to the following relations: $\rho \sigma = \sigma \rho, \rho x = r x \rho, \rho y = r^{-1} \rho y, \sigma x = s x \sigma, \sigma y = s^{-1} y \sigma, y x = \frac{r^2 \rho^2 s^2 \sigma^2}{r^2 s^2}, x y = \frac{\rho^2 \sigma^2}{r^2 s^2}.$ Set $A_{\overline{r},\overline{s}}(n) = \bigotimes_{i=1}^n A_{r_i,s_i}(\mathbb{k}).$
- ▶ For any $r, s \in \mathbb{R}^{\times}$ and $b(\rho, \sigma) \in \mathbb{R}[\sigma^{\pm 1}, \rho^{\pm 1}]$, let B(b, r, s) be the \mathbb{R} -algebra generated by $\rho^{\pm 1}, \sigma^{\pm 1}$ and x, y subject to the following relations $\rho \sigma = \sigma \rho$ and

$$\rho x = rx\rho, \quad \rho y = r^{-1}y\rho;$$

$$\sigma x = sx\sigma, \quad \sigma y = s^{-1}y\sigma;$$

$$xy = b(r\rho, s\sigma), \quad yx = b(\rho, \sigma).$$

Benkart's algebras have the Dixmier Property.

▶ If $b(\rho, \sigma)$ is a monomial and $r^i s^j = 1$ implies that i = j = 0, then each endomorphism of B(b, r, s) is an automorphism.

Benkart's algebras have the Dixmier Property.

- If $b(\rho, \sigma)$ is a monomial and $r^i s^j = 1$ implies that i = j = 0, then each endomorphism of B(b, r, s) is an automorphism.
- If $b(\rho,\sigma) \in \mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ is not a monomial with no momials $m_1,m_2 \in \mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ such that $b(m_1,m_2)=b(rm_1,sm_2)=0$ and $r^is^j=1$ implies that i=j=0, then each endomorphism of B(b,r,s) is an automorphism.

Benkart's algebras have the Dixmier Property.

- ▶ If $b(\rho, \sigma)$ is a monomial and $r^i s^j = 1$ implies that i = j = 0, then each endomorphism of B(b, r, s) is an automorphism.
- If $b(\rho,\sigma) \in \mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ is not a monomial with no momials $m_1,m_2 \in \mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ such that $b(m_1,m_2)=b(rm_1,sm_2)=0$ and $r^is^j=1$ implies that i=j=0, then each endomorphism of B(b,r,s) is an automorphism.
- ▶ An Example: One can set $b(\rho, \sigma) = \frac{\rho^d \sigma^d}{r s}$ where $d \in \mathbb{Z}$ and $r^i s^j = 1$ implies that i = j = 0.

Benkart's algebras have the Dixmier Property.

- ▶ If $b(\rho, \sigma)$ is a monomial and $r^i s^j = 1$ implies that i = j = 0, then each endomorphism of B(b, r, s) is an automorphism.
- If $b(\rho,\sigma) \in \mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ is not a monomial with no momials $m_1,m_2 \in \mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ such that $b(m_1,m_2)=b(rm_1,sm_2)=0$ and $r^is^j=1$ implies that i=j=0, then each endomorphism of B(b,r,s) is an automorphism.
- ▶ An Example: One can set $b(\rho, \sigma) = \frac{\rho^d \sigma^d}{r s}$ where $d \in \mathbb{Z}$ and $r^i s^j = 1$ implies that i = j = 0.
- ▶ **A Counter-Example:** Set $b(\rho, \sigma) = (\rho \sigma)(s\rho t\sigma)$. Then B(b, r, s) has non-injective endomorphisms.

A Tensor Product Phenomenon

The following algebras have the Dixmier Property.

▶ The algebra: $\bigotimes_{i=1}^{n} \mathbb{k}[h^{\pm 1}](a_i(h), q_i)$ where q_i is a not a root of unity and a_i is a non-monomial with no $c_i \in \mathbb{k}^{\times}$ such that $a_i(c_i) = a_i(q_ic_i) = 0$ for $i = 1, \dots, n$.

A Tensor Product Phenomenon

The following algebras have the Dixmier Property.

- ▶ The algebra: $\bigotimes_{i=1}^n \mathbb{k}[h^{\pm 1}](a_i(h), q_i)$ where q_i is a not a root of unity and a_i is a non-monomial with no $c_i \in \mathbb{k}^\times$ such that $a_i(c_i) = a_i(q_ic_i) = 0$ for $i = 1, \dots, n$.
- ▶ The algebra: $[\bigotimes_{i=1}^n A(a_i(h), q_i)] \bigotimes \mathbb{k}_Q[t_1^{\pm 1}, \cdots, t_m^{\pm 1}]$ where q_i is not a root of unity and $a_i(h)$ is not a monomial with no $c_i \in \mathbb{k}^\times$ such that $a_i(c_i) = a_i(q_ic_i) = 0$ for $i = 1, \cdots, n$ and $\mathbb{k}_Q[t_1^{\pm 1}, \cdots, t_m^{\pm 1}]$ is a simple algebra.

A Tensor Product Phenomenon

The following algebras have the Dixmier Property.

- ▶ The algebra: $\bigotimes_{i=1}^n \mathbb{k}[h^{\pm 1}](a_i(h), q_i)$ where q_i is a not a root of unity and a_i is a non-monomial with no $c_i \in \mathbb{k}^\times$ such that $a_i(c_i) = a_i(q_ic_i) = 0$ for $i = 1, \dots, n$.
- ▶ The algebra: $[\bigotimes_{i=1}^n A(a_i(h), q_i)] \bigotimes \mathbb{k}_Q[t_1^{\pm 1}, \cdots, t_m^{\pm 1}]$ where q_i is not a root of unity and $a_i(h)$ is not a monomial with no $c_i \in \mathbb{k}^\times$ such that $a_i(c_i) = a_i(q_ic_i) = 0$ for $i = 1, \cdots, n$ and $\mathbb{k}_Q[t_1^{\pm 1}, \cdots, t_m^{\pm 1}]$ is a simple algebra.
- ► The algebra: $\bigotimes_{i=1}^n B(b_i(\rho,\sigma),r_i,s_i)$ where r_1,s_1,\cdots,r_n,s_n are independent in \mathbb{k}^\times and b_i is not a monomial with no monomials $m_1^i,m_2^i\in\mathbb{k}[\rho^{\pm 1},\sigma^{\pm 1}]$ such that $b_i(m_1^i,m_2^i)=0$ and $b_i(r_im_1^i,s_im_2^i)=0$ for $i=1,\cdots,n$.

What Is the Underlying Idea?

► The algebra has a lot of units.

What Is the Underlying Idea?

- ▶ The algebra has a lot of units.
- ▶ The algebra has a \mathbb{Z}^n -graded structure.

What Is the Underlying Idea?

- ► The algebra has a lot of units.
- ▶ The algebra has a \mathbb{Z}^n -graded structure.
- ▶ There is a strong corelation between the units and generators.

What Is the Underlying Idea?

- ► The algebra has a lot of units.
- ▶ The algebra has a \mathbb{Z}^n -graded structure.
- ▶ There is a strong corelation between the units and generators.
- ► There is q-commuting relation between the generators and units.

What Might Be Next?

Understand the nature of these examples in an intrinsic way.

What Might Be Next?

- Understand the nature of these examples in an intrinsic way.
- Produce new families of examples in a systematic way.

What Might Be Next?

- Understand the nature of these examples in an intrinsic way.
- Produce new families of examples in a systematic way.
- Establish a general result on the tensor product behavior.

What Might Be Next?

- Understand the nature of these examples in an intrinsic way.
- Produce new families of examples in a systematic way.
- Establish a general result on the tensor product behavior.
- Research on the root of unity case.

THANK YOU!