Cohen-Macaulay modules of noncommutative quadric hypersurfaces

Ji-Wei He
(Hangzhou Normal University)

May 29, 2021

Outline

(I) Noncommutative quadric hypersurfaces
(II) Clifford deformations
(III) Generalized Knörrer's periodicity theorem
(I) Noncommutative quadric hypersurfaces

Koszul algebras

- \mathbb{k} is an algebraically closed field of characteristic zero.

Koszul algebras

- \mathbb{k} is an algebraically closed field of characteristic zero.
- Let A be a connected graded algebra, i.e., $A_{0}=\mathbb{k}$. A is called a Koszul algebra if the trivial module $\mathbb{k}_{\boldsymbol{A}}$ has a graded free resolution

$$
0 \longleftarrow \mathbb{k}_{A} \longleftarrow P_{0} \longleftarrow P_{1} \longleftarrow \cdots \longleftarrow P_{n} \longleftarrow \cdots
$$

such that P_{n} is generated in degree n.

Koszul algebras

- \mathbb{k} is an algebraically closed field of characteristic zero.
- Let A be a connected graded algebra, i.e., $A_{0}=\mathbb{k}$.
A is called a Koszul algebra if the trivial module $\mathbb{k}_{\boldsymbol{A}}$ has a graded free resolution

$$
0 \longleftarrow \mathbb{k}_{A} \longleftarrow P_{0} \longleftarrow P_{1} \longleftarrow \cdots \longleftarrow P_{n} \longleftarrow \cdots
$$

such that P_{n} is generated in degree n.

- Example. $A=\mathbb{k}[x, y]$,
$A=\mathbb{k}_{-1}[x, y]$,
$A=\mathbb{k}\langle x, y\rangle /\left(x y-y x+x^{2}\right)$.

Quantum polynomial algebra

- A noetherian connected graded algebra A is called an Artin-Schelter Gorenstein algebra if
(1) $\operatorname{injdim}_{A} A=\operatorname{injdim} A_{A}=d<\infty$
(2) $\operatorname{Ext}_{A}^{n}(\mathbb{k}, A)=0$ if $n \neq d$, and $\operatorname{Ext}_{A}^{d}(\mathbb{k}, A) \cong \mathbb{k}$.

If further, $\operatorname{gldim} A=d$, then A is called an Artin-Schelter regular algebra.

Quantum polynomial algebra

- A noetherian connected graded algebra A is called an Artin-Schelter Gorenstein algebra if
(1) $\operatorname{injdim}_{A} A=\operatorname{injdim} A_{A}=d<\infty$
(2) $\operatorname{Ext}_{A}^{n}(\mathbb{k}, A)=0$ if $n \neq d$, and $\operatorname{Ext}_{A}^{d}(\mathbb{k}, A) \cong \mathbb{k}$.

If further, $\operatorname{gldim} A=d$, then A is called an Artin-Schelter regular algebra.

- A quantum polynomial algebra is a Koszul Artin-Schelter regular algebra A such that
(1) $H_{A}(t)=(1-t)^{-n}$ for some $n \geq 1$,
(2) A is a domain.
$H_{A}(t)=\sum_{n \geq 0} t^{n} \operatorname{dim} A_{n}$.

Noncommutative quadric hypersurfaces

- Let A be a quantum polynomial algebra. Let $f \in A_{2}$ be a central element of A.
Define $A_{f}:=A / A f$.

Noncommutative quadric hypersurfaces

- Let A be a quantum polynomial algebra. Let $f \in A_{2}$ be a central element of A.
Define $A_{f}:=A / A f$.
- A_{f} is called a noncommutative quadric hypersurface.

Noncommutative quadric hypersurfaces

- Let A be a quantum polynomial algebra. Let $f \in A_{2}$ be a central element of A.
Define $A_{f}:=A / A f$.
- A_{f} is called a noncommutative quadric hypersurface.
- Fact.
(1) A_{f} is a Koszul algebra.
(2) If A is of global dimension d, then A_{f} is an Artin-Schelter Gorenstein algebra of injective dimension $d-1$.

Noncommutative quadric hypersurfaces

- Let A be a quantum polynomial algebra. Let $f \in A_{2}$ be a central element of A.
Define $A_{f}:=A / A f$.
- A_{f} is called a noncommutative quadric hypersurface.

- Fact.

(1) A_{f} is a Koszul algebra.
(2) If A is of global dimension d, then A_{f} is an Artin-Schelter Gorenstein algebra of injective dimension $d-1$.

- $A=\mathbb{k}[x, y], f=x^{2}+y^{2}, A_{f}$
$A^{\prime}=\mathbb{k}_{-1}[x, y], f=x^{2}+y^{2}, A_{f}^{\prime}$

MCM modules

- R a noetherian connected graded algebra. gr R, category of finitely generated graded right R-modules tor R, full subcategory of $\mathrm{gr} R$ consisting of finite dimensional modules
qgr $R=\operatorname{gr} R /$ tor R.

MCM modules

- R a noetherian connected graded algebra.
gr R, category of finitely generated graded right R-modules tor R, full subcategory of $\operatorname{gr} R$ consisting of finite dimensional modules
qgr $R=\operatorname{gr} R /$ tor R.
- For $M \in \operatorname{gr} R$, let
$\Gamma(M)=\{m \in M \mid m A$ is finite dimensional $\}$.
The i-th right derived functor of Γ is denoted by $R^{i} \Gamma$.
For $M \in \operatorname{gr} R$, the depth of M is defined to be the number

$$
\operatorname{depth}(M)=\min \left\{i \mid R^{i} \Gamma(M) \neq 0\right\}
$$

MCM modules

- Suppose that R is an Artin-Schelter Gorenstein algebra with injdim $R_{R}=\operatorname{injdim}{ }_{R} R=d$.
$M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if $\operatorname{depth}(M)=d$.

MCM modules

- Suppose that R is an Artin-Schelter Gorenstein algebra with injdim $R_{R}=\operatorname{injdim}{ }_{R} R=d$.
$M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if $\operatorname{depth}(M)=d$.
- mam R the category of all the MCM over R.
$\mathrm{mcm} R$ is a Frobenius category, hence the stable category $\mathrm{mcm} R$ is a triangulated category.

The category $\mathrm{mcm} R$ is sometimes called the singularity category of R.

MCM modules

- Suppose that R is an Artin-Schelter Gorenstein algebra with injdim $R_{R}=\operatorname{injdim}{ }_{R} R=d$.
$M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if $\operatorname{depth}(M)=d$.
- mam R the category of all the MCM over R.
$\mathrm{mcm} R$ is a Frobenius category, hence the stable category $\underline{\mathrm{mcm}} R$ is a triangulated category.

The category $\mathrm{mcm} R$ is sometimes called the singularity category of R.

- Let A be a quantum polynomial algebra, $f \in A_{2}$ is a central element.

Aim: to understand the category $\underline{\mathrm{mcm}} A_{f}$?

MCM modules

- Suppose that R is an Artin-Schelter Gorenstein algebra with $\operatorname{injdim} R_{R}=\operatorname{injdim}{ }_{R} R=d$.
$M \in \operatorname{gr} R$ is called a maximal Cohen-Macaulay module (MCM module) if $\operatorname{depth}(M)=d$.
- mam R the category of all the MCM over R.
$\mathrm{mcm} R$ is a Frobenius category, hence the stable category $\mathrm{mcm} R$ is a triangulated category.

The category $\mathrm{mcm} R$ is sometimes called the singularity category of R.

- Let A be a quantum polynomial algebra, $f \in A_{2}$ is a central element.

Aim: to understand the category $\underline{\mathrm{mcm}} A_{f}$?

- Example. $A=\mathbb{k}^{[x, y]}, A^{\prime}=\mathbb{k}_{-1}[x, y], f=x^{2}+y^{2}$. $\underline{\mathrm{mcm}} A_{f} \cong \mathrm{mcm} A_{f}^{\prime} \cong D^{b}(\mathbb{k} \times \mathbb{k})$.

MCM modules

- A fundamental result:

Theorem

Let A be a quantum polynomial algebra and let $f \in A_{2}$ be a central element. Then there is a finite dimensional algebra $C\left(A_{f}\right)$ such that there is an equivalence of triangulated categories

$$
D^{b}\left(C\left(A_{f}\right)\right) \cong \underline{m c m} A_{f} .
$$

S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817-856.

MCM modules

- A fundamental result:

Theorem

Let A be a quantum polynomial algebra and let $f \in A_{2}$ be a central element. Then there is a finite dimensional algebra $C\left(A_{f}\right)$ such that there is an equivalence of triangulated categories

$$
D^{b}\left(C\left(A_{f}\right)\right) \cong \underline{m c m} A_{f} .
$$

S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817-856.

- Problems:

(1) find a way to compute $C\left(A_{f}\right)$;
(2) Let $A=\mathbb{k}^{[x, y]}$ and $A^{\prime}=\mathbb{k}_{-1}[x, y]$, and let $f=x^{2}+y^{2}$.

Note that $C\left(A_{f}\right) \cong C\left(A_{f}^{\prime}\right) \cong \mathbb{k} \times \mathbb{k}$. So, how can we recognize the difference between A_{f} and A_{f}^{\prime} ?

(II) Clifford deformations

Clifford deformation of Koszul algebra

- Let V be a finite dimensional vector space, and let $E=T(V) /(R)$ be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \rightarrow \mathbb{k}$ is called a Clifford map if

$$
(\theta \otimes 1-1 \otimes \theta)(V \otimes R \cap R \otimes V)=0
$$

Clifford deformation of Koszul algebra

- Let V be a finite dimensional vector space, and let $E=T(V) /(R)$ be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \rightarrow \mathbb{k}$ is called a Clifford map if

$$
(\theta \otimes 1-1 \otimes \theta)(V \otimes R \cap R \otimes V)=0
$$

- Define: $E(\theta)=T(V) /(r-\theta(r): r \in R)$.

Clifford deformation of Koszul algebra

- Let V be a finite dimensional vector space, and let $E=T(V) /(R)$ be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \rightarrow \mathbb{k}$ is called a Clifford map if

$$
(\theta \otimes 1-1 \otimes \theta)(V \otimes R \cap R \otimes V)=0
$$

- Define: $E(\theta)=T(V) /(r-\theta(r): r \in R)$.
- We call $E(\theta)$ a Clifford deformation of E.

Clifford deformation of Koszul algebra

- Let V be a finite dimensional vector space, and let $E=T(V) /(R)$ be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \rightarrow \mathbb{k}$ is called a Clifford map if

$$
(\theta \otimes 1-1 \otimes \theta)(V \otimes R \cap R \otimes V)=0
$$

- Define: $E(\theta)=T(V) /(r-\theta(r): r \in R)$.
- We call $E(\theta)$ a Clifford deformation of E.
- Note that a Clifford deformation is a special case of Poicaré-Birkhoff-Witt deformations.

Clifford deformation of Koszul algebra

- Let V be a finite dimensional vector space, and let $E=T(V) /(R)$ be a Koszul algebra, where $R \subseteq V \otimes V$.

A linear map $\theta: R \rightarrow \mathbb{k}$ is called a Clifford map if

$$
(\theta \otimes 1-1 \otimes \theta)(V \otimes R \cap R \otimes V)=0
$$

- Define: $E(\theta)=T(V) /(r-\theta(r): r \in R)$.
- We call $E(\theta)$ a Clifford deformation of E.
- Note that a Clifford deformation is a special case of Poicaré-Birkhoff-Witt deformations.
- The usual Clifford algebra
$\mathbb{R}_{n}^{p, q}=\mathbb{R}\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left(x_{i}^{2}+1, x_{j}^{2}-1: 1 \leq i \leq p, p+1 \leq j \leq p+q\right)$
is a Clifford deformation of the exterior algebra
$E=\bigwedge\left\{x_{1}, \ldots, x_{n}\right\}$.

Clifford deformation of Koszul algebra

- Let A be a quantum polynomial algebra.

Proposition

Let $E=A^{!}$be the quadratic dual of the quantum polynomial algebra A. Then E is a Koszul Frobenius algebra.
S.P. Smith, Some finite dimensional algebras related to elliptic curves, in: CMS Conf. Proc., 1996
D.-M. Lu, J.H. Palmieri, Q.-S. Wu, J.J. Zhang, A_{∞}-algebra for ring theorist, Algebra Colloq., 2004

Clifford deformation of Koszul algebra

- Let A be a quantum polynomial algebra.

Proposition

Let $E=A$! be the quadratic dual of the quantum polynomial algebra A. Then E is a Koszul Frobenius algebra.
S.P. Smith, Some finite dimensional algebras related to elliptic curves, in: CMS Conf. Proc., 1996
D.-M. Lu, J.H. Palmieri, Q.-S. Wu, J.J. Zhang, A_{∞}-algebra for ring theorist, Algebra Colloq., 2004

- We have the following facts:

Proposition

- Each central element $0 \neq f \in A_{2}$ is corresponding to a Clifford map θ_{f} of $E=A^{!}$.
- The Clifford deformation $E\left(\theta_{f}\right)$ is a strongly \mathbb{Z}_{2}-graded algebra.
- $C\left(A_{f}\right) \cong E\left(\theta_{f}\right)_{0}$.

Example

- Let $A=\mathbb{k}\langle x, y, z\rangle /\left(r_{1}, r_{2}, r_{3}\right)$, where $r_{1}=z x+x z, r_{2}=y z+z y, r_{3}=x^{2}+y^{2}$. Then A is a quantum polynomial algebra of dimension 3 .

f	$C\left(A_{f}\right)=E\left(\theta_{f}\right)_{0}$
$z^{2}+x y+y x+\lambda x^{2}$	\mathbf{k}^{4}
$z^{2}+x y+y x \pm 2 \sqrt{-1} x^{2}$	$\mathbf{k}[u] /\left(u^{2}\right) \times \mathbf{k}[u] /\left(u^{2}\right)$
z^{2}	$\mathbf{k}[u, v] /\left(u^{2}-v^{2}, u v\right)$
$z^{2}+x^{2}$	\mathbf{k}^{4}
$x y+y x+\lambda x^{2}$	$\mathbf{k}[u] /\left(u^{2}\right) \times \mathbf{k}[u] /\left(u^{2}\right)$
$x y+y x \pm 2 \sqrt{-1} x^{2}$	$\mathbf{k}[u, v] /\left(u^{2}, v^{2}\right)$
x^{2}	$\mathbf{k}[u] /\left(u^{2}\right) \times \mathbf{k}[u] /\left(u^{2}\right)$

Example

- Let $A=\mathbb{k}\langle x, y, z\rangle /\left(r_{1}, r_{2}, r_{3}\right)$, where
$r_{1}=z x+x z, r_{2}=y z+z y, r_{3}=x^{2}+y^{2}$. Then A is a quantum polynomial algebra of dimension 3 .

f	$C\left(A_{f}\right)=E\left(\theta_{f}\right)_{0}$
$z^{2}+x y+y x+\lambda x^{2}$	\mathbf{k}^{4}
$z^{2}+x y+y x \pm 2 \sqrt{-1} x^{2}$	$\mathbf{k}[u] /\left(u^{2}\right) \times \mathbf{k}[u] /\left(u^{2}\right)$
z^{2}	$\mathbf{k}[u, v] /\left(u^{2}-v^{2}, u v\right)$
$z^{2}+x^{2}$	\mathbf{k}^{4}
$x y+y x+\lambda x^{2}$	$\mathbf{k}[u] /\left(u^{2}\right) \times \mathbf{k}[u] /\left(u^{2}\right)$
$x y+y x \pm 2 \sqrt{-1} x^{2}$	$\mathbf{k}[u, v] /\left(u^{2}, v^{2}\right)$
x^{2}	$\mathbf{k}[u] /\left(u^{2}\right) \times \mathbf{k}[u] /\left(u^{2}\right)$

- Remark. Let A be a quantum polynomial algebra of dimensional 3. If $f \in A_{2}$ is a central element, $A_{f}=A / A f$ is called a noncommutative conic. The algebras $C\left(A_{f}\right)$ have been classified for noncommutative conics.
H. Hu, Classification of noncommutative conics associated to symmetric regular superpotentials, arXiv:2005.03918.
H. Hu, M. Matsuno, I. Mori, Noncommutative conics in Calabi-Yau quantum planes, arXiv:2104.00221.

Theorem

Let A be a quantum polynomial algebra, and let $f \in A_{2}$ be a central regular element.

Then $\mathrm{qgr} A_{f}$ has finite global dimension (i.e., $\operatorname{proj} A_{f}$ is smooth) if and only if $C\left(A_{f}\right)=E\left(\theta_{f}\right)_{0}$ is a semisimple algebra.
S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817-856.
J.-W. He, Y. Ye, Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics, arxiv:1905.04699
I. Mori, K. Ueyama, Noncommutative Knörrer Periodicity Theorem and noncommutative
quadric hypersurfaces, arxiv:1905.12266
(III) Generalizations of Knörrer's periodicity theorem

An example

- Example. $A=\mathbb{k}[x, y], A^{\prime}=\mathbb{k}_{-1}[x, y], f=x^{2}+y^{2}$. Then $\underline{\operatorname{mcm}}\left(A_{f}\right) \cong \underline{\operatorname{mcm}}\left(A_{f}^{\prime}\right) \cong D^{b}(\mathbb{k} \times \mathbb{k})$.

An example

- Example. $A=\mathbb{k}[x, y], A^{\prime}=\mathbb{k}_{-1}[x, y], f=x^{2}+y^{2}$. Then $\operatorname{mcm}\left(A_{f}\right) \cong \underline{\operatorname{mcm}}\left(A_{f}^{\prime}\right) \cong D^{b}(\mathbb{k} \times \mathbb{k})$.
- Let B be a quantum polynomial algebra and $g \in B_{2}$ be a central element.

Consider the tensor algebra $B \otimes A$ and $B \otimes A^{\prime}$, and view $h:=g+f$ as an element in $B \otimes A$ (or in $B \otimes A^{\prime}$, resp.).

An example

- Example. $A=\mathbb{k}[x, y], A^{\prime}=\mathbb{k}_{-1}[x, y], f=x^{2}+y^{2}$.

Then $\operatorname{mcm}\left(A_{f}\right) \cong \underline{\mathrm{mcm}}\left(A_{f}^{\prime}\right) \cong D^{b}(\mathbb{k} \times \mathbb{k})$.

- Let B be a quantum polynomial algebra and $g \in B_{2}$ be a central element.

Consider the tensor algebra $B \otimes A$ and $B \otimes A^{\prime}$, and view $h:=g+f$ as an element in $B \otimes A$ (or in $B \otimes A^{\prime}$, resp.).

- Fact: $\underline{\mathrm{mcm}}(B \otimes A)_{h}$ is different from $\underline{\mathrm{mcm}}\left(B \otimes A^{\prime}\right)_{h}$!

An example

- Example. $A=\mathbb{k}[x, y], A^{\prime}=\mathbb{k}_{-1}[x, y], f=x^{2}+y^{2}$.

Then $\underline{\mathrm{mcm}}\left(A_{f}\right) \cong \underline{\mathrm{mcm}}\left(A_{f}^{\prime}\right) \cong D^{b}(\mathbb{k} \times \mathbb{k})$.

- Let B be a quantum polynomial algebra and $g \in B_{2}$ be a central element.

Consider the tensor algebra $B \otimes A$ and $B \otimes A^{\prime}$, and view $h:=g+f$ as an element in $B \otimes A$ (or in $B \otimes A^{\prime}$, resp.).

- Fact: $\mathrm{mcm}(B \otimes A)_{h}$ is different from $\underline{\mathrm{mcm}}\left(B \otimes A^{\prime}\right)_{h}$!
- The reason is the following:

Let E and E^{\prime} be the Koszul dual of A and A^{\prime} respectively. The Clifford deformation of E and that of E^{\prime} associated to f are very different!

Indeed, $E\left(\theta_{f}\right) \cong \mathbb{M}_{2}(\mathbb{k})$ and $E^{\prime}\left(\theta_{f}\right) \cong \mathbb{k}_{\mathbb{Z}} \times \mathbb{k}_{2} \mathbb{Z}_{2}$.

Definition

- It seems reasonable to classify the noncommutative quadric hypersurfaces according the Clifford deformations.

Definition

Let A be a quantum polynomial algebra, and let $f \in A_{2}$ be a central element. Let E be the Koszul dual of A.

If the Clifford deformation $E\left(\theta_{f}\right)$ is a simple \mathbb{Z}_{2}-graded algebra, then we call $A_{f}=A / A f$ is a simple graded isolated singularity.

Definition

- Since \mathbb{k}^{k} is algebraically closed, there are only two classes of simple \mathbb{Z}_{2}-graded algebra:
(0) matrix algebras over \mathbb{k};
(1) matrix algebras over $\mathbb{k} \mathbb{Z}_{2}$.

Definition

- Since \mathbb{k}^{k} is algebraically closed, there are only two classes of simple \mathbb{Z}_{2}-graded algebra:
(0) matrix algebras over \mathbb{k};
(1) matrix algebras over $\mathbb{k}_{\mathbb{Z}} \mathbb{Z}_{2}$.
- If $E\left(\theta_{f}\right)$ is a matrix algebra over \mathbb{k}, then we further call A_{f} is a simple graded isolated singularity of 0-type If $E\left(\theta_{f}\right)$ is a matrix algebra over \mathbb{k}_{2}, then we further call A_{f} is a simple graded isolated singularity of 1-type.
- Proposition. Let A and B be quantum polynomial algebras, and let $f \in A_{2}$ and $g \in B_{2}$ be central elements. Suppose that $A \otimes B$ is noetherian. Let $h=f+g \in A \otimes B$.
- If both A_{f} and B_{f} are simple graded isolated singularity of 1-type, then $(A \otimes B)_{h}$ is a simple graded isolated singularity of 0 -type.
- If A_{f} is a simple graded isolated singularity of 1-type and B is a simple graded isolated singularity of 0 -type, then $(A \otimes B)_{h}$ is a simple graded isolated singularity of 1-type.
- If both A_{f} and B_{f} are simple graded isolated singularity of 0 -type, then $(A \otimes B)_{h}$ is a simple graded isolated singularity of 0 -type.
- A key lemma.

Lemma

Let A and B be quantum polynomial algebras, and let $f \in A_{2}$ and $g \in B_{2}$ be central elements. Suppose that $A \otimes B$ is noetherian. Let $h=f+g \in A \otimes B$.

Then we have an isomorphism of \mathbb{Z}_{2}-graded algebras

$$
E_{(A \otimes B)^{!}}\left(\theta_{h}\right) \cong E_{A^{!}}\left(\theta_{f}\right) \hat{\otimes} E_{B^{!}}\left(\theta_{g}\right),
$$

where $\hat{\otimes}$ is the \mathbb{Z}_{2}-graded tensor.

Examples

- Let $A=\mathbb{k}[x, y]$, and $f=x^{2}+y^{2}$. Then

$$
E\left(\theta_{f}\right) \cong \mathbb{M}_{2}(\mathbb{k})
$$

where $\mathbb{M}_{2}(\mathbb{k})$ is viewed as a \mathbb{Z}_{2}-graded algebra by setting

$$
\mathbb{M}_{2}\left(\mathbb{k}^{2}\right)_{0}=\left[\begin{array}{cc}
\mathbb{k} & 0 \\
0 & \mathbb{k}
\end{array}\right], \quad \mathbb{M}_{2}\left(\mathbb{k}^{2}\right)_{1}=\left[\begin{array}{cc}
0 & \mathbb{k} \\
\mathbb{k} & 0
\end{array}\right]
$$

Hence A_{f} is a simple graded isolated singularity of 0-type.

- Let $A=\mathbb{k}[x, y]$, and $f=x^{2}+y^{2}$. Then

$$
E\left(\theta_{f}\right) \cong \mathbb{M}_{2}\left(\mathbb{k}_{k}\right)
$$

where $\mathbb{M}_{2}(\mathbb{k})$ is viewed as a \mathbb{Z}_{2}-graded algebra by setting

$$
\mathbb{M}_{2}\left(\mathbb{k}^{k}\right)_{0}=\left[\begin{array}{cc}
\mathbb{k} & 0 \\
0 & \mathbb{k}
\end{array}\right], \quad \mathbb{M}_{2}(\mathbb{k})_{1}=\left[\begin{array}{cc}
0 & \mathbb{k} \\
\mathbb{k} & 0
\end{array}\right]
$$

Hence A_{f} is a simple graded isolated singularity of 0-type.

- Let $A=\mathbb{k}\left\langle x_{1}, \ldots, x_{5}\right\rangle /\left(r_{1}, \ldots, r_{10}\right)$, where the generating relations are as follows:

$$
\begin{aligned}
r_{1}=x_{1} x_{2}-x_{2} x_{1}, r_{2}=x_{1} x_{3}+x_{3} x_{1}, r_{3}=x_{1} x_{4}+x_{4} x_{1} \\
r_{4}=x_{1} x_{5}+x_{5} x_{1}, r_{5}=x_{2} x_{3}-x_{3} x_{2}, r_{6}=x_{2} x_{4}+x_{4} x_{1} \\
r_{7}=x_{2} x_{5}+x_{5} x_{2}, r_{8}=x_{3} x_{4}-x_{4} x_{3}, r_{9}=x_{3} x_{5}+x_{5} x_{3} \\
r_{10}=x_{4} x_{5}+x_{5} x_{4}
\end{aligned}
$$

Let $f=x_{1}^{2}+\cdots+x_{5}^{2}$. Then A_{f} is a simple graded isolated singularity of 1-type.

- Remark. We are unable to find a way to characterize when A_{f} is a simple graded isolated singularity.
- Remark. We are unable to find a way to characterize when A_{f} is a simple graded isolated singularity.
- Proposition. Let A be a quantum polynomial algebra of global dimension n, and let $f \in A_{2}$ be a central regular element.
(i) If A_{f} is a simple graded isolated singularity of 0-type, then n is even.
(ii) If A_{f} is a simple graded isolated singularity of 1-type, then n is odd.
- We have the following generalized Knörrer's periodicity theorem.

Theorem

Let A and B be quantum polynomial algebras, and let $f \in A_{2}$ and $g \in B_{2}$ be central elements. Suppose that $A \otimes B$ is noetherian, and let $h=f+g \in A \otimes B$.
(i) If B_{g} is a simple graded isolated singularity of 0-tpye, then there are equivalences of triangulated categories

$$
\mathrm{mcm}(A \otimes B)_{h} \cong D^{b}\left(\bmod E\left(\theta_{f}\right)_{0}\right) \cong \underline{\operatorname{mcm}} A_{f} ;
$$

(ii) If B_{g} is a simple graded isolated singularity of 1-type, there is an equivalence of triangulated categories

$$
\underline{\mathrm{mcm}}(A \otimes B)_{h} \cong D^{b}\left(\bmod E\left(\theta_{f}\right)^{\mathrm{t}}\right),
$$

where $E\left(\theta_{f}\right)^{\natural}$ is the underlying ungraded algebra, and $\bmod E\left(\theta_{f}\right)^{\natural}$ is the category of all the finite dimensional modules over $E\left(\theta_{f}\right)^{4}$.
J.-W. He, X.-C. Ma, Y. Ye, Generalized Knörrer Periodicity Theorem, preprint, 2021.

Noncommutative Knörrer's periodicity theorem

- In particular, if we take $B=\mathbb{k}[x, y]$ and $g=x^{2}+y^{2}$, then we obtain:

Theorem

Let A be a quantum polynomial algebra and let $f \in A_{2}$ be a central element. Let $A_{f}^{\# \#}=A[x, y] /\left(f+x^{2}+y^{2}\right)$. Then

$$
\mathrm{mcm} A_{f}^{\# \#} \cong \mathrm{mcm} A_{f}
$$

H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987), 153-164.
A. Conner, E. Kirkman, W. F. Moore, C. Walton, Noncommutative Knörrer periodicity and noncommutative Kleinian singularities, arXiv:1809.06524.
J.-W. He, Y. Ye, Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics, arxiv:1905.04699.
I. Mori, K. Ueyama, Noncommutative Knörrer's Periodicity Theorem and noncommutative quadric surfaces, arXiv:1905.12266.

An example

- Let A be a quantum polynomial algebra, and let $f \in A_{2}$ be a central element. Taking a minimal graded projective resolution of $\mathbb{k}_{A_{f}}$ as follows:

$$
\cdots \longrightarrow P^{-d} \xrightarrow{\partial^{-d}} P^{-d+1} \xrightarrow{\partial^{-d+1}} \cdots \longrightarrow P^{0} \longrightarrow \mathbb{k}_{A_{f}} \longrightarrow 0 .
$$

Let $\Omega^{d}\left(\mathbb{k}_{A_{f}}\right)=\operatorname{ker} \partial^{-d+1}$ be the d th syzygy of the trivial module.

We fix a notion as follows:

$$
\mathbb{M}:=\Omega^{d}\left(\mathbb{k}_{A_{f}}\right)(d)
$$

An example

- Let A be a quantum polynomial algebra, and let $f \in A_{2}$ be a central element. Taking a minimal graded projective resolution of $\mathbb{k}_{A_{f}}$ as follows:

$$
\cdots \longrightarrow P^{-d} \xrightarrow{\partial^{-d}} P^{-d+1} \xrightarrow{\partial^{-d+1}} \cdots \longrightarrow P^{0} \longrightarrow \mathbb{k}_{A_{f}} \longrightarrow 0
$$

Let $\Omega^{d}\left(\mathbb{k}_{A_{f}}\right)=\operatorname{ker} \partial^{-d+1}$ be the d th syzygy of the trivial module.

We fix a notion as follows:

$$
\mathbb{M}:=\Omega^{d}\left(\mathbb{k}_{A_{f}}\right)(d)
$$

Theorem

We have $\operatorname{End}_{g r} A_{f}(\mathbb{M}) \cong E\left(\theta_{f}\right)_{0} \cong C\left(A_{f}\right)$.
J.-W. He, Y. Ye, Pre-resolutions of noncommutative isolated singularities,
arXiv:2005.11873.

An example

- Let $\mathbb{k}=\mathbb{C}$, let $S=\mathbb{k}\langle x, y, z\rangle /(R)$, where $R=\operatorname{span}\left\{x z+z x, y z+z y, x^{2}+y^{2}\right\}$.
Let $f=x^{2}+z^{2} \in S_{2}$, and $A=S / S f$.
Then $\operatorname{injdim} A_{A}=2$.

An example

- Let $\mathbb{k}=\mathbb{C}$, let $S=\mathbb{k}\langle x, y, z\rangle /(R)$, where $R=\operatorname{span}\left\{x z+z x, y z+z y, x^{2}+y^{2}\right\}$.
Let $f=x^{2}+z^{2} \in S_{2}$, and $A=S / S f$.
Then injdim $A_{A}=2$.
- Set $\mathbb{M}=\Omega^{2}\left(\mathbb{k}_{A}\right)(2)$.
\mathbb{M} is a quotient module of the free module $m_{1} A \oplus m_{2} A \oplus m_{3} A \oplus m_{4} A$ with relations:

$$
\begin{aligned}
& r_{1}=m_{1} x+m_{2} y+m_{3} z \\
& r_{2}=2 m_{1} x+m_{2} y+m_{3} z+m_{4} z \\
& r_{3}=m_{2} z-m_{3} y+m_{4} y \\
& r_{4}=m_{1} z+m_{2} z-m_{3} y+m_{4}(x+y)
\end{aligned}
$$

An example

$$
\operatorname{End}_{\operatorname{gr} A}(\mathbb{M})=\left\{\left(\begin{array}{cccc}
b+d & 0 & a & a \\
0 & b & c & 0 \\
0 & -c & b & 0 \\
a & c & d & b+d
\end{array}\right): a, b, c, d \in \mathbb{k}\right\}
$$

An example

$$
\operatorname{End}_{\operatorname{gr} A}(\mathbb{M})=\left\{\left(\begin{array}{cccc}
b+d & 0 & a & a \\
0 & b & c & 0 \\
0 & -c & b & 0 \\
a & c & d & b+d
\end{array}\right): a, b, c, d \in \mathbb{k}\right\} .
$$

- We have the following complete set of primitive idempotents in $\operatorname{End}_{g r A}(\mathbb{M})$:

$$
\begin{gathered}
e_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} i & 0 \\
0 & -\frac{1}{2} i & \frac{1}{2} & 0 \\
0 & \frac{1}{2} i & -\frac{1}{2} & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} i & 0 \\
0 & \frac{1}{2} i & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} i & -\frac{1}{2} & 0
\end{array}\right), \\
e_{3}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad e_{4}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) .
\end{gathered}
$$

An example

- We have the following nonprojective nonisomorphic indecomposable MCM modules:

$$
\begin{aligned}
\mathbb{M}^{1} & :=A /(y+i z) A, \mathbb{M}^{2} \\
\mathbb{M}^{3} & :=A /(x+z) A, \mathbb{M}^{4}:=A /(x-z) A
\end{aligned}
$$

Thank you for your attention!

