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A longstanding problem in affine algebraic geometry is the Zariski
cancellation problem, which asks whether an affine variety X over
an algebraically closed field k having the property that
X × A1 ∼= An+1 is necessarily isomorphic to An.

At the level of commutative k-algebras, this is just asking:

R[x ] ∼= k[x1, . . . , xn] =⇒ R ∼= k[x1, . . . , xn−1]?

What is Zariski Cancellation?



I It was solved for n = 1 by Abhyankar, Eakin, and Heinzer
(1972), who proved cancellation for all affine irreducible
curves.

I In n = 2, the characteristic zero case being done by Fujita
(1979) and Miyanishi-Sugie (1980).

I Russell (1981) did the n = 2 case in positive characteristic.
I Gupta (2014) gave counterexamples to the Zariski cancellation

problem in dimension at least three in positive characteristic.
I For characteristic zero, the problem is still open for n ≥ 3.

Some history



Of course, we can ask about in general whether an affine varieties
X is cancellative in the sense that if

X × A1 ∼= Y × A1

for some affine variety Y , then we must have X ∼= Y .

Here there is some connection with the idea that stably free
projective modules need not be free. Danielewski, Hochster,
Jelonek have given examples of affine varieties that are not
cancellative, and Danielewski’s examples are surfaces, so the result
of AEH does not hold in higher dimensions.



In fact, Abhyankar, Eakin, and Heinzer prove a very strong version
of cancellativity for affine irreducible curves: if

X × An ∼= Y × An

then
X ∼= Y .



In 2013 at Bedlewo (Poland), James and I started discussing the
idea of a noncommutative analogue of the Zariski Cancellation
Problem (NCZCP).

In this context, one has a field k, an associative k-algebra A and
one asks the question whether A[x ] ∼= B[x ] implies A ∼= B. Of
course, we know it is not true in general, but we can ask about
whether it holds for certain classes of algebras (e.g., AS regular in
characteristic zero).

Working with James



In the summer of 2019, Hongdi Huang, Maryam Hamidizadeh,
Helbert Venegas, and I started working on one of the basic open
questions (Lezama, Wang, and Zhang, also Tang, Venegas, Zhang)
about the NCZCP: does the analogue of the Abhyankar, Eakin,
Heinzer problem hold in the noncommutative setting?

Of course, we need to do a bit of a translation. Recall AEH says
that if R is a commutative affine domain of Krull dimension one
over a field k , then R[x ] ∼= S [x ] implies R ∼= S . Since Krull
dimension = Gelfand-Kirillov dimension for affine commutative
domains, we can replace “Krull dimension one” with
“Gelfand-Kirillov dimension one” and ask whether the same result
holds in the noncommutative setting.



Usually, extending about commutative rings to noncommutative
rings is a bit hopeless, but here it is reasonable to expect that this
should hold.

Theorem
(Small-Warfield) Let k be a field and let R be a finitely generated
prime k-algebra of Gelfand-Kirillov dimension one. Then R is a
finite module over its centre.

With Stafford, the prime hypothesis was later removed with the
conclusion changing to R satisfying a polynomial identity. Van den
Bergh noted that if k is algebraically closed and R is a domain of
GK dimension one then S-W implies that R is commutative. Why?
Look at Q(R): it is a division ring that is finite-dimensional over
Q(Z (R)), and since Q(Z (R)) has transcendence degree one over
k , Tsen’s theorem gives that Q(R) is a field.



So it felt like it shouldn’t be too much of an extension to take the
AEH theorem and extend it to noncommutative domains. But the
ultimate resolution was a bit surprising to me.

Theorem
(B-Huang-Hamidizadeh-Venegas) We have the following results for
affine domains of Gelfand-Kirillov dimension one.

1. Let k be a field of characteristic zero and let A be an affine
domain over k of Gelfand-Kirillov dimension one. Then A is
cancellative.

2. Let p be prime. Then there exists a field k of characteristic p
and an affine domain A of Gelfand-Kirillov dimension one that
is not cancellative.



Lezama, Wang, and Zhang proved that for algebraically closed
base fields k, affine prime k-algebras of Gelfand-Kirillov dimension
one are cancellative. The algebraically closed property is needed,
because the authors invoke Tsen’s theorem at one point in their
proof.

I In light of Van den Bergh’s result, we see that our result is
somewhat orthogonal to the LWZ result, since the intersection
is just AEH.

I Our example in positive characteristic shows that the LWZ
application of Tsen’s theorem is in some sense necessary to
get their result in positive characteristic.



Back in the day, Koras-Russell were trying to classify all
contractible threefolds admitting a hyperbolic C∗-action. They
ended up completely solving the problem, modulo one class of
examples they couldn’t distinguish.

Is
C[x , y , z ,w ]/(x + x2y + z2 + w3) ∼= C[u, v , t]?

Makar-Limanov showed how to show this isomorphism doesn’t hold
with an invariant he called AK, which is now denoted ML for
Makar-Limanov.

The Makar-Limanov invariant



Given a k-algebra R we let

ML(R) =
⋂

ker(δ),

where δ runs over all k-linear locally nilpotent derivations (LNDs)
of R. (Recall that a derivation δ is locally nilpotent if for every
a ∈ R there is some N = N(a) > 0 such that δn(a) = 0 for all
n > N.)

Notice that ML(k[x1, . . . , xn] = k, since d/dxi is a LND and the
kernel of d/dxi is k[x1, . . . , xi−1, xi+1, . . . , xn].



Exercise: the Makar-Limanov invariant of

C[x , y , z ,w ]/(x + x2y + z2 + w3)

is the image of C[x ].

Corollary:

C[x , y , z ,w ]/(x + x2y + z2 + w3) 6∼= C[u, v , t].



Derivations lose some of their power in positive characteristic. To
get around this, one can work with Hasse-Schmidt derivations. A
H-S derivation of A is a sequence of k-linear maps ∂ := {∂i}i≥0
such that:

∂0 = idA, and ∂n(ab) =
n∑

i=0

∂i (a)∂n−i (b)

for a, b ∈ A and n ≥ 0.



A Hasse-Schmidt derivation ∂ = (∂n) is called locally nilpotent if
for each a ∈ A there exists an integer N = N(a) ≥ 0 such that
∂n(a) = 0 for all n ≥ N and the k-algebra homomorphism
A[t]→ A[t] given by t 7→ t and a 7→

∑
i≥0 ∂i (a)t i is a k-algebra

isomorphism. If only the first condition holds then the map
A[t]→ A[t] is still an injective endomorphism but need not be
onto; we will call Hasse-Schmidt derivations for which only the first
condition holds (i.e., there exists an integer N = N(a) ≥ 0 such
that ∂n(a) = 0 for all n ≥ N) a weakly locally nilpotent
Hasse-Schmidt derivation.

The collection of locally nilpotent Hasse-Schmidt derivations of A
(resp. weakly locally nilpotent Hasse-Schmidt derivations) of A is
denoted LNDH(A) (resp. LNDH′(A)).



Then we can now define general Makar-Limanov invariants. The
Makar-Limanov∗ invariant of A is defined to be

ML∗(A) =
⋂

δ∈LND∗(A)

ker(δ),

where ∗ can be blank (the classical ML invariant, H or H ′).



We say that a domain is ML-rigid if ML(A) = A.

Theorem
(ML-B-Zhang) If A has finite GK dimension and is ML-rigid, then:

I ML(A[t]) = A;

I A is cancellative.

Why is ML useful for NCZCP?



Assume ML(A[t]) = A.

If A[t] ∼= B[t], then A = ML(A[t]) ∼= ML(B[t]).

Notice that ML(B[t]) ⊆ B since d/dt is a locally nilpotent
derivation of B[t] with kernel of B. Thus we get an embedding
A ⊆ B. Now A and B have the same GK dimension so intuitively
one “expects” derivations that vanish on A to vanish on B,
although this is a bit of work to prove in the noncommutative
setting.

Sketch of proof of second part



In characteristic zero, the main tool we use is a lemma.

Lemma
(Noncommutative slice lemma) Let k be a field and let A be a
k-algebra. Then the following statements hold.

1. Suppose that the characteristic of k is zero and δ ∈ LND(A).
If there exists x ∈ Z (A) such that δ(x) = 1, and if A0 is the
kernel of δ, then the sum

∑
i≥0 A0x

i is direct and A = A0[x ].

2. Suppose that ∂ := {∂n}n≥0 ∈ LNDH(A) that is iterative. If
there exists x ∈ Z (A) such that ∂1(x) = 1 and ∂i (x) = 0 for
i ≥ 2, and if A0 is the kernel of ∂, then the sum

∑
i≥0 A0x

i is
direct and A = A0[x ].

Characteristic zero results



Let’s just look at the first part and let’s work in characteristic zero.

A0 = {a ∈ A | δ(a) = 0}.

Goal: A = A0[x ]. Notice
∑

A0x
i is direct. Why?

Thus A0 and x generate a polynomial ring and A ⊇ A0[x ].

Proof



We next claim that A ⊆ A0[x ].

I To see this, suppose that there exists some a ∈ A \ A0[x ].

I Then there is some largest m ≥ 1 such that δm(a) 6= 0.

I Among all a ∈ A \ A0[x ], we choose one with this m minimal.

I Since δm+1(a) = 0, δm(a) ∈ ker(δ) = A0.

I Let c = δm(a) ∈ A0 and consider a′ = a− cxm/m!.

I Observe that δm(a′) = c − c = 0.

I Thus by minimality of m, a′ ∈ A0[x ] and hence so is a, a
contradiction.



There are really two cases: when ML(A) = A (rigidity) and when
ML(A) 6= A.

If ML(A) = A then ML(A[x ]) = ML(A) and A is cancellative.

If ML(A) 6= A, then there is a nonzero locally nilpotent derivation
δ of A.

Let A0 denote the kernel of δ. Then
GKdim(A0) ≤ GKdim(A)− 1 = 0, so A0 is locally
finite-dimensional.

So now pick z ∈ Z (A) that is not in A0. We may assume without
loss of generality that δ(z) = c ∈ Z (A0) and Z (A0) is an algebraic
field extension of k. Then look at x = zc−1. Then δ(x) = 1.

Using slice



Now use slice! So we know by the HHV slice theorem that
A ∼= A0[x ]. Now if A[t] ∼= B[t], then we can run the same
argument on B and we get B ∼= B0[x ] with B0 GK dimension 0.

We also have A[t] ∼= B[t] and so

A0[x , t] ∼= B0[x , t].

This implies
A0
∼= B0

and so
A ∼= B.



I thought proving the result in positive characteristic should be a
matter of using Hasse-Schmidt derivations and the HS analogue of
noncommutative slice. I was wrong....

Characteristic p > 0



General principle: Y = some class of examples; X = some nice
subclass of Y .

Then understanding Y in dimension d is often like understanding
X in dimension d + 1 for suitable X and Y , only a bit easier.

Examples:

I endomorphisms of d-dimensional varieties vs. automorphisms
of d + 1-dimensional varieties;

I wild automorphisms of d-dimensional varieties vs. tame
automorphisms in higher dimensions;

I algebras in GK dimension d vs. graded algebras in GK
dimension d + 1.

What is Hénonification?



When one tries to extend the cancellation results in positive
characteristic, one encounters one class of algebras where the proof
fails.

Namely, k a field of characteristic p > 0, A an affine k-algebra,
Z (A) = k[t], ML(A) = k . To construct a counterexample, we
combine two ideas: the idea of “Hénonification” along with an
idea of Small and Resco.



Let p be a prime, and let K = Fp(x1, . . . , xp2−1).

We let k = Fp(xp1 , . . . , x
p
p2−1) and we let δ be the k-linear

derivation of K given by δ(xi ) = xi+1 for i = 1, . . . , p2 − 1, where
we take xp2 = x1.

Since k has characteristic p > 0, we have δp
i

is a k-linear
derivation for every i ≥ 0, and since δp

2
(xi ) = δ(xi ) = xi+1 for

i = 1, . . . , p2 − 1, δp
j+2

= δp
j

for every j ≥ 0. We let δ′ := δp,
which as we have just remarked is a k-linear derivation of K .



Let A = K [x ; δ] and we let B = K [x ′; δ′]. Then

I A 6∼= B.

I A[t] ∼= B[t].

I A and B are k-algebras of GK dimension one.



Since adpu = adup for u in a ring of characteristic p, we have
z := xp

2 − x and z ′ := (x ′)p
2 − x ′ are central by the above

remarks. We claim that A and B have Gelfand-Kirillov dimension
one, A 6∼= B, and A[t] ∼= B[t ′].



Recall that A = K [x ; δ] and we let B = K [x ′; δ′]. Since
adpu = adup for u in a ring of characteristic p, we have
z := xp

2 − x and z ′ := (x ′)p
2 − x ′ are central by the above

remarks. We claim that A and B have Gelfand-Kirillov dimension
one, A 6∼= B, and A[t] ∼= B[t ′].

Isomorphism: We define Φ : A[t]→ B[t] by Φ(α) = α for α ∈ K ,
Φ(x) = (x ′)p + t ′ and Φ(t) = (x ′)p

2 − x ′ + (t ′)p. (Why is this
Hénonification?)

One can check that this is one-to-one and onto and is a
homomorphism.



Why do we have A 6∼= B as k-algebras?

Suppose that Ψ : A→ B is a k-algebra isomorphism. Then since
the units group of A and B are both K ∗, Ψ induces a k-algebra
automorphism of K ; furthermore, every α ∈ K satisfies αp ∈ k and
for β ∈ k there is a unique α ∈ K such that αp = β.

Since Ψ is the identity on k , Ψ is the identity on K . Thus
Ψ(x) = p(x ′) for some p(x ′) ∈ K [x ′; δ′] \ K .

Let d ≥ 1 denote the degree of p(x ′) as a polynomial in x ′. If
d > 1, Ψ cannot be onto.

So Ψ(x) = αx ′ + β with α ∈ K ∗ and β ∈ K .



Since Ψ is an isomorphism, for ζ ∈ K we have

δ(ζ) = Ψ(δ(ζ)) = Ψ([x , ζ]) = [Ψ(x),Ψ(ζ)] = [αx ′ + β, ζ].

The right side is just

α[x ′, ζ] = αδ′(ζ).

Thus there is some fixed α ∈ K ∗ such that

δ(ζ) = αδ′(ζ) ∀ζ ∈ K

.

But by construction δ(x1) = x2 and δ′(x1) = xp+1 and so
α = x2/xp+1. We also have δ(x2) = x3 and δ′(x2) = xp+2, and so
α = x3/xp+2, which gives x2xp+2 = x3xp+1, where we take
xp+2 = x1 when p = 2. This is a contradiction. Thus A 6∼= B.



In analogy with terminology from algebraic geometry, given an
algebraically closed field k and a finitely generated extension F of
k , we will say that F is uniruled over k if there is a finitely
generated field extension E of k with

trdegk(E ) = trdegk(F )− 1

and an injective k-algebra homomorphism

F → E (t).

What did we learn?



The idea here is that F is the function field of a normal projective
scheme X of finite type over k . Then the condition F ⊆ E (t) says
that there is a dominant rational map

Y × P1 99K X

for some variety Y with dim(Y ) = dim(X )− 1.

Similarly, if F is the function field of a normal projective scheme X
of finite type over k, we define the Kodaira dimension of F to be
the Kodaira dimension of X .

Since Kodaira dimension is a birational invariant, this is
well-defined. If k has characteristic zero, a uniruled variety has
Kodaira dimension −∞ and the converse holds in dimensions one,
two, and three; the main conjectures of the minimal model program
imply that the converse should hold in higher dimensions, too.



Over uncountable fields, affine uniruled varieties have a pleasant
characterization in terms of being covered by affine lines

Theorem
(Jelonek) Let k be an uncountable algebraically closed field and let
X be an irreducible affine variety over k of dimension at least one.
Then following conditions are equivalent:

1. for every x ∈ X there is a polynomial affine curve Yx in X
that passes through x ;

2. there is a Zariski-dense open subset U of X , such that for
every x ∈ U there is a polynomial affine curve Yx in X that
passes through x ;

3. X is uniruled; that is, there exists an affine variety Y with
dim(Y ) = dim(X )− 1 and a dominant morphism
Y × A1 → X .



Corollary

Let k be an uncountable algebraically closed field, let A be a
finitely generated prime left Goldie k-algebra of finite
Gelfand-Kirillov dimension, and suppose that Z (A) is affine. If A is
not cancellative then Frac(Z (A)) is uniruled. In particular, if k has
characteristic zero and Frac(A) has nonnegative Kodaira
dimension then A is strongly cancellative.



What does this mean? Not being uniruled is saying that Z (A) is in
some sense “rigid”. So the above result shows that if the centre of
an algebra is sufficiently “rigid” and the base field is sufficiently
“nice” then the algebra is cancellative.

Conjecture. Let k be an uncountable algebraically closed field of
characteristic zero and let A be an affine noetherian domain over
k . Suppose that Z (A) is affine and cancellative. Then A is
cancellative.

Centre controls cancellation



There is another natural way to extend the work of Abhyankar,
Eakin, and Heinzer.
One can now take R and S affine commutative domains of Krull
dimension one and consider an isomorphism of skew polynomial
extensions R[x ;σ, δ] ∼= S [x ;σ′; δ′], and ask whether this implies
that R and S are isomorphic.

When σ, σ′ are the identity maps and δ, δ′ are zero, the question
reduces to the classical cancellation problem for affine curves,
answered by Abhyankar, Eakin, and Heinzer.

Skew cancellativity?



Theorem
Let k be a field, let A and B be affine commutative integral
domains of Krull dimension one, and let σ, σ′ be k-algebra
automorphisms of A and B respectively and let δ, δ′ be k-linear
derivations of A and B respectively. If A[x ;σ] ∼= B[x ′;σ′] then
A ∼= B. If, in addition, k has characteristic zero and if
A[x ; δ] ∼= B[x ′; δ′] then A ∼= B.



A special case of this Theorem was proved by Bergen in the
derivation case. Specifically, he proved that if k is a field of
characteristic zero and R[t; δ] is isomorphic to k[x ][y ; δ′], with
δ′(x) ∈ k[x ] having degree at least one, then R ∼= k[x ]. It would
be interesting to give a “unification” of the two results occurring in
our and prove that skew cancellation holds for general skew
polynomial extensions, although this appears to be considerably
more subtle than the cases we consider.



Thanks!


	Working with Hongdi, Maryam, and Helbert

