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I. Preliminaries.
Let k = k be an algebraically closed field, char k = 0.

Question. Classify Hopf algebras with finite Gelfand-Kirillov
dimension.

Some classical examples:
• A finitely generated commutative Hopf algebra H has finite GK-
dim ⇐⇒ there exists an algebraic group G such that H ≃ k[G].

• Let g be a Lie algebra. Then its enveloping algebra U(g) has
finite GK-dim ⇐⇒ dim g < ∞.

• (Gromov). The group algebra kG of a finitely generated group
G has finite GK-dim ⇐⇒ G is nilpotent-by-finite (∃N ⊴G nilpo-
tent of finite index).
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Definition. A Hopf algebra H is pointed ⇐⇒ its simple sub-
coalgebras are one-dimensional ⇐⇒ the coradical is a group
algebra ⇐⇒ every simple H-comodule has dim 1.

• kG, U(g) are pointed but k[G] is pointed iff G is abelian.

• The quantum groups Uq(g), Lusztig’s Uq(g), small versions
uq(g), Borel and parabolic subalgebras of them are all pointed.

• The quantum algebra of functions kq[G] on a semisimple alge-
braic group G is not pointed.

Question. Classify pointed Hopf algebras with finite GK-dim.
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• There are many results on Hopf algebras with low GK-dim

(and good homological properties) by K. A. Brown, N. Ding, K.

Goodearl, G. Liu, J. Wu, J. J. Zhang and others.

• A Hopf algebra H is connected if pointed and G(H) = e.

(Etingof-Gelaki) Connected Hopf algebras with finite GK-dim

are quantizations of algebras of functions on a nilpotent Poisson

algebraic group.

• A combinatorial approach to graded connected Hopf algebras

is due to Zhou-Shen-Lu.

In this talk we will not comment these results and we will

follow the aproach through Nichols algebras.
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Fix a pointed Hopf algebra H with group G of group-likes.

• Let grH be the graded Hopf algebra arising from the coradical
filtration of H: H0 = kG(H) ⊂ H1 ⊂ H2 · · · ⊂ Hn . . . Then

grH ≃ R#kG,

• R = ⊕n≥0R
n is a Hopf algebra in kG

kGYD.

• R is connected (R0 = k) and coradically graded (its coradical

filtration comes from the grading).

• V = R1 ∈ kG
kGYD; R′ = k⟨V ⟩ ↪→ R.
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kG
kGYD = category of Yetter-Drinfeld modules over kG:

• V = ⊕g∈GVg is a G-graded vector space;

• V is a left G-module such that g · Vh = Vghg−1 (compatibility).

If Γ is an abelian group, then kΓ
kΓYD is the category of Γ -graded

Γ -modules.

V ∈ kG
kGYD =⇒ V braided vector space:

c(v ⊗ w) = g · w ⊗ v, v ∈ Vg, w ∈ V.

That is, c ∈ GL(V ⊗ V ) satisfies the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).
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A coradically graded connected braided Hopf algebra E =
⊕

n∈N0
En

with E1 ≃ V is called a post-Nichols algebra of V .

A graded connected braided Hopf algebra B =
⊕

n∈N0
Bn gener-

ated in degree 1 i.e. by B1 ≃ V is called a pre-Nichols algebra

of V .

Theorem. V ∈ kΓ
kΓYD =⇒ ∃ unique (up to isomorphism)

B(V ) = ⊕n∈N0
Bn(V ) (graded) Hopf algebra in kΓ

kΓYD such that

B0(V ) ≃ k, B1(V ) ≃ V,

B(V ) = k⟨V ⟩, Prim(B(V )) = B1(V ).

In other words, there exists a unique braided Hopf algebra B(V )

which is both post-Nichols and pre-Nichols of V ; it is called the

Nichols algebra of V .
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The structure of Yetter-Drinfeld module in V extends to a struc-

ture of Hopf algebra in kG
kGYD on the tensor algebra T (V ).

Analogously T c(V ) = T (V ) with a natural comultiplication be-

comes a Hopf algebra in kG
kGYD with the quantum shuffle product.

There is a natural map of Hopf algebras in kG
kGYD

T (V ) //
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The map Ω is the quantum symmetrizer and gives an alternative

description of B(V ) = Im Ω.
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Summarizing: H pointed Hopf algebra with finitely generated

nilpotent-by-finite group G of group-likes

⇝ grH ≃ R#kG, R = ⊕n≥0R
n ⇝ V = R1, R′ = k⟨V ⟩ ≃ B(V ).

GK-dimH ≥ GK-dimgrH ≥ GK-dimR ≥ GK-dimR′

Question i. Classify V ∈ kG
kGYD such that GK-dimB(V ) < ∞.

Question ii. For such V ∈ kG
kGYD with GK-dimB(V ) < ∞ classify

E post-Nichols of V such that GK-dim E < ∞.

Question iii. For such V and E post-Nichols of V classify H

such that grH ≃ E#kG.
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H pointed Hopf algebra with group G. In this talk I will report
contributions to:

Question i. Classify V ∈ kG
kGYD such that GK-dimB(V ) < ∞,

• when G is abelian,

• when G is finitely generated nilpotent.

Question ii. For such V ∈ kG
kGYD with GK-dimB(V ) < ∞ classify

E post-Nichols of V such that GK-dim E < ∞,

• when V is of diagonal type.
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II. Nichols algebras over nilpotent groups

Let G be a finitely generated group.

Let V ∈ kG
kGYD = a Yetter-Drinfeld module over kG, that is

V = ⊕g∈GVg is G-graded, G acts on V and g · Vh = Vghg−1.

Its support is {g ∈ G : Vg ̸= 0}, a union of conjugacy classes.

Theorem. (A.) If the support of V is an infinite conjugacy class

O, then GK-dimB(V )#kG = ∞.
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Proof. By Gromov’s Theorem, G is nilpotent-by-finite.

Let K ≤ G such that for every g ∈ G there exists a positive integer

n such that gn ∈ K. By a Theorem of Malcev, [G : K] < ∞.

Let x ∈ O. Applying the preceding to [G : Gx] = ∞, ∃g ∈ G such

that xn = gn . x ̸= x for all n ∈ N.

Assume that Vx is a finitely generated Gx-module, say by a

finite F . Let S be a finite set of generators of G. Then

W = ⟨1, S, g±1, F ⟩ generates B(V )#kG.

Let v0 ∈ F\0, vn = gnv0g
−n, n ∈ N,

Λn = {vi1 · · · vis : 1 ≤ i1 < · · · < is ≤ n, 0 ≤ s ≤ n}.

Then (i) |Λn| = 2n, (ii) Λn ⊂ W (n+1)2, and (iii) Λn is linearly

independent. Hence 2n ≤ dimW (n+1)2 for all n.
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Lemma. If G is a finitely generated torsion-free nilpotent group,

then every non-central conjugacy class is infinite.

Corollary. Let G be a finitely generated torsion-free nilpotent

group and V ∈ kG
kGYD.

If GK-dimB(V )#kG < ∞, then sup V ⊂ Z(G) (so V ‘comes

from the abelian case’).



Finite nilpotent groups.

A rack is a set X ̸= ∅ with a self-distributive . : X ×X → X such

that ϕx := x . is bijective for all x ∈ X. The main examples are

subsets of groups stable under conjugation x . y = xy−1.

A rack X is abelian if x . y = y for all x, y ∈ X.

A finite rack X is of type C when there are a decomposable

subrack Y = R
∐
S and elements r ∈ R, s ∈ S such that r . s ̸= s,

R = OInnY
r , S = OInnY

s , min{|R|, |S|} > 2 or max{|R|, |S|} > 4.

Theorem. (A., Carnovale, Garćıa) A finite rack O of type C

collapses, that is dimB(O, q) = ∞ for every 2-cocycle q.
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Theorem. A conjugacy class O in a finite nilpotent group G of

odd order is either of type C or else an abelian rack.

If dimB(V ) < ∞, then sup V is abelian by the Theorem of the

previous slide (again ‘reduction to the abelian case’).

Conjecture. Let X be a finite rack of type C.

Then GK-dimB(O, q) = ∞ for every faithful 2-cocycle q.
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Sketch of a proof.

We may assume that G is a finite p-group with p an odd prime.

If O is not abelian, pick r, s ∈ O: r . s ̸= s. Let H = ⟨r, s⟩ ≤ G.

If R := OH
r ̸= S := OH

s , then O is of type C.

If R = S, then it is indecomposable, hence projects onto a simple

rack Z. Now Inn R is a p-group, then so is Inn Z, hence |Z| is a

power of p. But it is known by [A-Graña] that Inn Z could not

be a p-group.
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Proposition. (A.) Let G be a finitely generated nilpotent group
whose torsion subgroup T ̸= e has odd order. Then a finite
conjugacy class O of G is either abelian or else of type C.

The proof makes use of the following result.

Theorem. (Gruenberg). Let G be a finitely generated nilpotent
group with torsion T ̸= e and e ̸= g ∈ G. Then there exists
a prime p that divides |T |, a finite p-group P and a morphism
π : G → P such that π(g) ̸= e.

For the Proposition to have a deep meaning, we need the validity
of the Conjecture:

Conjecture. Let X be a finite rack of type C.
Then GK-dimB(O, q) = ∞ for every faithful 2-cocycle q.

16



III. Nichols algebras over abelian groups

Let (V, c) be a braided vector space, i.e. c ∈ GL(V ⊗ V ) satisfies

the braid equation (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

A decomposition of V is a family of subspaces (Vi)i∈Iθ where

V = V1 ⊕ · · · ⊕ Vθ, Vi ̸= 0, c(Vi ⊗ Vj) = Vj ⊗ Vi, i, j ∈ Iθ, θ ≥ 2.

(V, c) is of diagonal type if has a decomposition with all sum-

mands of dimension 1, i.e. if ∃ a basis (xi)i∈Iθ and a matrix

q = (qij)i,j∈Iθ with entries ̸= 0, such that

c(xi ⊗ xj) = qij xj ⊗ xi, i, j ∈ Iθ.
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Fix (V, c) of diagonal type with matrix q = (qij)i,j∈Iθ. The Nichols

algebra B(V ) is Zθ-graded, degxi = αi (canonical basis of Zθ).

Theorem. (Kharchenko) B(V ) has a PBW basis:

∃ an ordered S: {x1, . . . , xθ} ⊂ S ⊂ B(V ) consisting of Zθ-homog.

elements; and for s ∈ S, Ns ∈ N≥2 ∪ {∞}, such that

{se11 s
e2
2 . . . sett : t ∈ N0, s1 > . . . s2 > · · · > st, 0 < ej < Nsj , j ∈ It}

is a basis of B(V ).

• ∆q
+ = (degx)x∈S, S as in the Theorem;

• ∆q = ∆q
+ ∪ −∆q

+ ⊂ Zθ
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Theorem. (Heckenberger) The matrices q with dimB(V ) < ∞
(more generally with finite root system) are classified.

The classification can be organized in terms of Lie theory.

Conjecture. (A.–Angiono–Heckenberger) GK-dimB(V ) < ∞ ⇔
the root system is finite ↭ Heckenberger’s list.

Partial results:
• (A.–Angiono, Rosso) If all qii, qijqji ∈ (k−G∞)∪{1}, ∀i ̸= j ∈ Iθ
and GK-dimB(V ) < ∞ ⇔ q is of finite Cartan type.

• (AAH) If a is of affine type, then GK-dimB(V ) = ∞.

• The conjecture is true when dimV = 2(AAH) and 3 (Angiono–
Garćıa Iglesias).

19



Nichols algebras of blocks

Block V(ε, `): ∃ a basis (xi)i∈I` such that

c(xi ⊗ xj) =

εx1 ⊗ xi, j = 1

(εxj + xj−1)⊗ xi, j ≥ 2,
i ∈ I`.

Theorem. (A.–Angiono–Heckenberger)

GK-dimB(V(ε, `)) < ∞ ⇐⇒ ` = 2 and ε ∈ {±1}.

• B(V(1,2)) = k⟨x1, x2|x2x1 − x1x2 + 1
2x

2
1⟩ Jordan plane.

• B(V(−1,2)) = k⟨x1, x2|x21, x2x12−x12x2−x1x12⟩ super Jordan

plane. Here x12 = x2x1 + x1x2.

GK-dimB(V(1,2)) = GK-dimB(V(−1,2)) = 2.
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Nichols algebras of blocks & points

V = V1 ⊕ · · · ⊕ Vt ⊕ Vt+1 ⊕ · · · ⊕ Vθ braided vector space with a

decomposition, where t > 0,

• V1, . . . , Vt ∈ kΓ
kΓYD are blocks (may assume of dim 2 and ε2 = 1);

•Vt+1, . . . , Vθ ∈ kΓ
kΓYD are points (i.e. of dimension 1).

Theorem. (A.–Angiono–Heckenberger) The classification of

those V with GK-dimB(V ) < ∞ is known. Also the defining

relations.

Up to the Conjecture on diagonal type...
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However this is not the end of the story since there are indecom-

posable Yetter-Drinfeld modules that are not blocks. We call

them pale blocks

Theorem. (A.–Angiono–Heckenberger) The classification of

those V ∈ kG
kGYD of dimension 3 with one pale block such that

GK-dimB(V ) < ∞ is known.

Theorem. (A.–Angiono–Moya) The classification of those V ∈
kG
kGYD of dimension 4 with at least one pale block such that

GK-dimB(V ) < ∞ is known.

In both Theorems we present the defining relations and the ex-

plicit PBW-basis (that exists by a general result of Ufer).
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IV. Eminent pre-Nichols algebras.

The set Post(V ) of isomorphism classes of post-Nichols algebras

of V is partially ordered with T c(V ) maximal and B(V ) minimal.

The set Pre(V ) of isomorphism classes of pre-Nichols algebras

of V is partially ordered with T (V ) minimal and B(V ) maximal.
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Question ii. For such V ∈ kG
kGYD with GK-dimB(V ) < ∞ classify

E post-Nichols of V such that GK-dim E < ∞.

PostfGK(V ) ≤ Post(V ) = post-Nichols algebras of V with finite

GK-dim.

Lemma. (AAH) B a pre-Nichols algebra of V , E = Bd the

graded dual of B. Then GK-dim E ≤ GK-dimB. If E is finitely

generated, then the equality holds.

Question ii bis. For such V ∈ kG
kGYD with GK-dimB(V ) < ∞

classify B pre-Nichols of V such that GK-dimB < ∞.

PrefGK(V ) ≤ Pre(V ) = pre-Nichols algebras of V with finite

GK-dim.
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Question ii bis. For such V ∈ kG
kGYD with GK-dimB(V ) < ∞

classify B pre-Nichols of V such that GK-dimB < ∞.

A pre-Nichols algebra is eminent if it is a minimum in PrefGK(V );

i.e. a pre-Nichols algebra B̂ is eminent if

• GK-dim B̂ < ∞;

• if B is a pre-Nichols algebra of V with GK-dimB < ∞, then

there exists a morphism of pre-Nichols algebras B̂ ↠ B.
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Warning: Eminent pre-Nichols algebras do not always exist (e.g.

if the braiding is the usual transposition).

Theorem. (A.–Sanmarco) A braided vector space of Cartan

diagonal type admits an eminent pre-Nichols algebra, that turns

out to be the distinguished pre-Nichols algebra introduced by

Angiono, except for very few exceptions in low rank.

Remarks: 1) When the braided vector space of Cartan type is

the one at the origin of quantum groups at roots of one, the

distinguished pre-Nichols algebra is the positive part of the Kac–

De Concini–Procesi quantum group.

2) The Theorem was extended to other braided vector spaces of

diagonal type by Angiono, Campagnolo and Sanmarco.
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