On pointed Hopf algebras with finite GK-dimension

Nicolás Andruskiewitsch

Universidad of Córdoba, Argentina

Seattle Noncommutative Algebra Day (SNAD), May 29, 2021

Report on joint work with Iván Angiono, István Heckenberger, Matías Moya, Guillermo Sanmarco

I. Preliminaries.

Let $\mathbb{k} = \overline{\mathbb{k}}$ be an algebraically closed field, char $\mathbb{k} = 0$.

Question. Classify Hopf algebras with finite Gelfand-Kirillov dimension.

Some classical examples:

- A finitely generated commutative Hopf algebra H has finite GK-dim \iff there exists an algebraic group G such that $H \simeq \mathbb{k}[G]$.
- Let \mathfrak{g} be a Lie algebra. Then its enveloping algebra $U(\mathfrak{g})$ has finite GK-dim \iff dim $\mathfrak{g} < \infty$.
- (Gromov). The group algebra kG of a finitely generated group G has finite GK-dim $\iff G$ is nilpotent-by-finite ($\exists N \unlhd G$ nilpotent of finite index).

Definition. A Hopf algebra H is **pointed** \iff its simple subcoalgebras are one-dimensional \iff the coradical is a group algebra \iff every simple H-comodule has dim 1.

- kG, $U(\mathfrak{g})$ are pointed but k[G] is pointed iff G is abelian.
- The quantum groups $U_q(\mathfrak{g})$, Lusztig's $\mathcal{U}_q(\mathfrak{g})$, small versions $\mathfrak{u}_q(\mathfrak{g})$, Borel and parabolic subalgebras of them are all pointed.
- The quantum algebra of functions $k_q[G]$ on a semisimple algebraic group G is not pointed.

Question. Classify pointed Hopf algebras with finite GK-dim.

- There are many results on Hopf algebras with low GK-dim (and good homological properties) by K. A. Brown, N. Ding, K. Goodearl, G. Liu, J. Wu, J. J. Zhang and others.
- A Hopf algebra H is **connected** if pointed and G(H) = e.

(Etingof-Gelaki) Connected Hopf algebras with finite GK-dim are quantizations of algebras of functions on a nilpotent Poisson algebraic group.

• A combinatorial approach to graded connected Hopf algebras is due to Zhou-Shen-Lu.

In this talk we will not comment these results and we will follow the approach through Nichols algebras.

Fix a pointed Hopf algebra H with group G of group-likes.

• Let gr H be the graded Hopf algebra arising from the coradical filtration of H: $H_0 = \Bbbk G(H) \subset H_1 \subset H_2 \cdots \subset H_n \ldots$ Then

$$\operatorname{gr} H \simeq R \# \Bbbk G$$
,

- $R = \bigoplus_{n \geq 0} R^n$ is a Hopf algebra in ${}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$.
- R is connected $(R^0 = \mathbb{k})$ and coradically graded (its coradical filtration comes from the grading).
- $V = R^1 \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}; \ R' = \& \langle V \rangle \hookrightarrow R.$

 ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}=$ category of **Yetter-Drinfeld modules** over $\Bbbk G$:

- $V = \bigoplus_{g \in G} V_g$ is a G-graded vector space;
- ullet V is a left G-module such that $g\cdot V_h=V_{ghg^{-1}}$ (compatibility).

If Γ is an abelian group, then ${}^{\mathbb{k}\Gamma}_{\mathbb{k}\Gamma}\mathcal{YD}$ is the category of Γ -graded Γ -modules.

 $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD} \implies V$ braided vector space:

$$c(v \otimes w) = g \cdot w \otimes v,$$
 $v \in V_g, w \in V.$

That is, $c \in GL(V \otimes V)$ satisfies the braid equation

$$(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c).$$

A coradically graded connected braided Hopf algebra $\mathcal{E} = \bigoplus_{n \in \mathbb{N}_0} \mathcal{E}^n$ with $\mathcal{E}^1 \simeq V$ is called a **post-Nichols** algebra of V.

A graded connected braided Hopf algebra $\mathscr{B} = \bigoplus_{n \in \mathbb{N}_0} \mathscr{B}^n$ generated in degree 1 i.e. by $\mathscr{B}^1 \simeq V$ is called a pre-Nichols algebra of V.

Theorem. $V \in {}^{\mathbb{k}\Gamma}_{\Gamma} \mathcal{YD} \Longrightarrow \exists$ unique (up to isomorphism) $\mathscr{B}(V) = \oplus_{n \in \mathbb{N}_0} \mathscr{B}^n(V)$ (graded) Hopf algebra in ${}^{\mathbb{k}\Gamma}_{\mathbb{k}\Gamma} \mathcal{YD}$ such that $\mathscr{B}^0(V) \simeq \mathbb{k}$, $\mathscr{B}^1(V) \simeq V$, $\mathscr{B}(V) = \mathbb{k}\langle V \rangle$, $\mathsf{Prim}(\mathscr{B}(V)) = \mathscr{B}^1(V)$.

In other words, there exists a unique braided Hopf algebra $\mathcal{B}(V)$ which is both post-Nichols and pre-Nichols of V; it is called the **Nichols algebra** of V.

The structure of Yetter-Drinfeld module in V extends to a structure of Hopf algebra in ${}^{\Bbbk G}_{\mathbb{K} G} \mathcal{YD}$ on the tensor algebra T(V).

Analogously $T^c(V) = T(V)$ with a natural comultiplication becomes a Hopf algebra in $_{\Bbbk G}^{\& G} \mathcal{YD}$ with the quantum shuffle product.

There is a natural map of Hopf algebras in ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$

The map Ω is the *quantum symmetrizer* and gives an alternative description of $\mathscr{B}(V) = \operatorname{Im} \Omega$.

Summarizing: H pointed Hopf algebra with finitely generated nilpotent-by-finite group G of group-likes

$$\rightsquigarrow \operatorname{gr} H \simeq R \# \Bbbk G, \ R = \bigoplus_{n>0} R^n \rightsquigarrow V = R^1, \ R' = \Bbbk \langle V \rangle \simeq \mathscr{B}(V).$$

GK-dim $H \ge GK$ -dim $gr H \ge GK$ -dim $R \ge GK$ -dim R'

Question i. Classify $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ such that GK-dim $\mathscr{B}(V) < \infty$.

Question ii. For such $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ with GK-dim $\mathscr{B}(V) < \infty$ classify \mathcal{E} post-Nichols of V such that GK-dim $\mathcal{E} < \infty$.

Question iii. For such V and \mathcal{E} post-Nichols of V classify H such that $\operatorname{gr} H \simeq \mathcal{E} \# \Bbbk G$.

H pointed Hopf algebra with group G. In this talk I will report contributions to:

Question i. Classify $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ such that GK-dim $\mathscr{B}(V) < \infty$,

- \bullet when G is abelian,
- when G is finitely generated nilpotent.

Question ii. For such $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ with GK-dim $\mathscr{B}(V) < \infty$ classify \mathcal{E} post-Nichols of V such that GK-dim $\mathcal{E} < \infty$,

ullet when V is of diagonal type.

II. Nichols algebras over nilpotent groups

Let G be a finitely generated group.

Let $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD} = a$ Yetter-Drinfeld module over $\Bbbk G$, that is

$$V=\oplus_{g\in G}V_g$$
 is G -graded, G acts on V and $g\cdot V_h=V_{ghg^{-1}}.$

Its support is $\{g \in G : V_g \neq 0\}$, a union of conjugacy classes.

Theorem. (A.) If the support of V is an infinite conjugacy class \mathcal{O} , then $\mathsf{GK}\text{-}\mathsf{dim}\,\mathscr{B}(V)\#\Bbbk G=\infty$.

Proof. By Gromov's Theorem, G is nilpotent-by-finite.

Let $K \leq G$ such that for every $g \in G$ there exists a positive integer n such that $g^n \in K$. By a Theorem of Malcev, $[G:K] < \infty$. Let $x \in \mathcal{O}$. Applying the preceding to $[G:G^x] = \infty$, $\exists g \in G$ such

Assume that V_x is a finitely generated G^x -module, say by a finite F. Let S be a finite set of generators of G. Then $W = \langle 1, S, q^{\pm 1}, F \rangle$ generates $\mathscr{B}(V) \# \Bbbk G$.

Let $v_0 \in F \setminus 0$, $v_n = g^n v_0 g^{-n}$, $n \in \mathbb{N}$,

that $x_n = q^n \triangleright x \neq x$ for all $n \in \mathbb{N}$.

$$\Lambda_n = \{v_{i_1} \cdots v_{i_s} : 1 \le i_1 < \cdots < i_s \le n, \ 0 \le s \le n\}.$$

Then (i) $|\Lambda_n| = 2^n$, (ii) $\Lambda_n \subset W^{(n+1)^2}$, and (iii) Λ_n is linearly independent. Hence $2^n \leq \dim W^{(n+1)^2}$ for all n.

Lemma. If G is a finitely generated torsion-free nilpotent group, then every non-central conjugacy class is infinite.

Corollary. Let G be a finitely generated torsion-free nilpotent group and $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$.

If GK-dim $\mathscr{B}(V) \# \Bbbk G < \infty$, then sup $V \subset Z(G)$ (so V 'comes from the abelian case').

Finite nilpotent groups.

A rack is a set $X \neq \emptyset$ with a self-distributive $\triangleright : X \times X \to X$ such that $\varphi_x := x \triangleright_-$ is bijective for all $x \in X$. The main examples are subsets of groups stable under conjugation $x \triangleright y = xy^{-1}$.

A rack X is abelian if $x \triangleright y = y$ for all $x, y \in X$.

A finite rack X is of type C when there are a decomposable subrack $Y=R\coprod S$ and elements $r\in R$, $s\in S$ such that $r\triangleright s\neq s$, $R=\mathcal{O}_r^{\mathrm{Inn}Y}$, $S=\mathcal{O}_s^{\mathrm{Inn}Y}$, $\min\{|R|,|S|\}>2$ or $\max\{|R|,|S|\}>4$.

Theorem. (A., Carnovale, García) A finite rack \mathcal{O} of type C collapses, that is dim $\mathscr{B}(\mathcal{O},\mathfrak{q})=\infty$ for every 2-cocycle \mathfrak{q} .

Theorem. A conjugacy class \mathcal{O} in a finite nilpotent group G of odd order is either of type C or else an abelian rack.

If dim $\mathcal{B}(V) < \infty$, then sup V is abelian by the Theorem of the previous slide (again 'reduction to the abelian case').

Conjecture. Let X be a finite rack of type C. Then GK-dim $\mathscr{B}(\mathcal{O}, \mathfrak{q}) = \infty$ for every faithful 2-cocycle \mathfrak{q} .

Sketch of a proof.

We may assume that G is a finite p-group with p an odd prime.

If \mathcal{O} is not abelian, pick $r, s \in \mathcal{O}$: $r \triangleright s \neq s$. Let $H = \langle r, s \rangle \leq G$.

If $R := \mathcal{O}_r^H \neq S := \mathcal{O}_s^H$, then \mathcal{O} is of type C.

If R=S, then it is indecomposable, hence projects onto a simple rack Z. Now Inn R is a p-group, then so is Inn Z, hence |Z| is a power of p. But it is known by [A-Graña] that Inn Z could not be a p-group.

Proposition. (A.) Let G be a finitely generated nilpotent group whose torsion subgroup $T \neq e$ has odd order. Then a finite conjugacy class \mathcal{O} of G is either abelian or else of type C.

The proof makes use of the following result.

Theorem. (Gruenberg). Let G be a finitely generated nilpotent group with torsion $T \neq e$ and $e \neq g \in G$. Then there exists a prime p that divides |T|, a finite p-group P and a morphism $\pi: G \to P$ such that $\pi(g) \neq e$.

For the Proposition to have a deep meaning, we need the validity of the Conjecture:

Conjecture. Let X be a finite rack of type C. Then GK-dim $\mathscr{B}(\mathcal{O}, \mathfrak{q}) = \infty$ for every faithful 2-cocycle \mathfrak{q} .

III. Nichols algebras over abelian groups

Let (V,c) be a braided vector space, i.e. $c \in GL(V \otimes V)$ satisfies the braid equation $(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c)$.

A decomposition of V is a family of subspaces $(V_i)_{i\in\mathbb{I}_{\theta}}$ where

$$V = V_1 \oplus \cdots \oplus V_{\theta}, \ V_i \neq 0, \ c(V_i \otimes V_j) = V_j \otimes V_i, \ i, j \in \mathbb{I}_{\theta}, \ \theta \geq 2.$$

(V,c) is of **diagonal type** if has a decomposition with all summands of dimension 1, i.e. if \exists a basis $(x_i)_{i\in\mathbb{I}_\theta}$ and a matrix $\mathfrak{q}=(q_{ij})_{i,j\in\mathbb{I}_\theta}$ with entries \neq 0, such that

$$c(x_i \otimes x_j) = q_{ij} x_j \otimes x_i, \qquad i, j \in \mathbb{I}_{\theta}.$$

Fix (V,c) of diagonal type with matrix $\mathfrak{q}=(q_{ij})_{i,j\in\mathbb{I}_{\theta}}$. The Nichols algebra $\mathscr{B}(V)$ is \mathbb{Z}^{θ} -graded, $\deg x_i=\alpha_i$ (canonical basis of \mathbb{Z}^{θ}).

Theorem. (Kharchenko) $\mathcal{B}(V)$ has a PBW basis:

 \exists an ordered S: $\{x_1,\ldots,x_{\theta}\}\subset S\subset \mathscr{B}(V)$ consisting of \mathbb{Z}^{θ} -homog. elements; and for $s\in S$, $N_s\in \mathbb{N}_{\geq 2}\cup \{\infty\}$, such that

$$\{s_1^{e_1}s_2^{e_2}\dots s_t^{e_t}: t\in\mathbb{N}_0,\ s_1>\dots s_2>\dots>s_t,\ 0< e_j< N_{s_j}, j\in\mathbb{I}_t\}$$
 is a basis of $\mathscr{B}(V)$.

- $\Delta_+^{\mathfrak{q}} = (\deg x)_{x \in S}$, S as in the Theorem;
- ullet $\Delta^{\mathfrak{q}} = \Delta^{\mathfrak{q}}_+ \cup -\Delta^{\mathfrak{q}}_+ \subset \mathbb{Z}^{ heta}$

Theorem. (Heckenberger) The matrices \mathfrak{q} with dim $\mathcal{B}(V) < \infty$ (more generally with *finite root system*) are classified.

The classification can be organized in terms of Lie theory.

Conjecture. (A.–Angiono–Heckenberger) GK-dim $\mathcal{B}(V) < \infty \Leftrightarrow$ the root system is finite \rightsquigarrow Heckenberger's list.

Partial results:

- (A.–Angiono, Rosso) If all $q_{ii}, q_{ij}q_{ji} \in (\mathbb{k} \mathbb{G}_{\infty}) \cup \{1\}$, $\forall i \neq j \in \mathbb{I}_{\theta}$ and GK-dim $\mathcal{B}(V) < \infty \Leftrightarrow \mathfrak{q}$ is of finite Cartan type.
- (AAH) If \mathfrak{a} is of affine type, then GK-dim $\mathcal{B}(V) = \infty$.
- The conjecture is true when dim $V=2(\mathsf{AAH})$ and 3 (Angiono–García Iglesias).

Nichols algebras of blocks

Block $\mathcal{V}(\epsilon,\ell)$: \exists a basis $(x_i)_{i\in\mathbb{I}_{\ell}}$ such that

$$c(x_i \otimes x_j) = \begin{cases} \epsilon x_1 \otimes x_i, & j = 1 \\ (\epsilon x_j + x_{j-1}) \otimes x_i, & j \geq 2, \end{cases} \qquad i \in \mathbb{I}_{\ell}.$$

Theorem. (A.–Angiono–Heckenberger) GK-dim $\mathcal{B}(\mathcal{V}(\epsilon,\ell))<\infty\iff\ell=2$ and $\epsilon\in\{\pm 1\}$.

- $\mathcal{B}(\mathcal{V}(1,2)) = \mathbb{k}\langle x_1, x_2 | x_2 x_1 x_1 x_2 + \frac{1}{2} x_1^2 \rangle$ Jordan plane.
- $\mathcal{B}(\mathcal{V}(-1,2)) = \mathbb{k}\langle x_1, x_2|x_1^2, \ x_2x_{12} x_{12}x_2 x_1x_{12}\rangle$ super Jordan plane. Here $x_{12} = x_2x_1 + x_1x_2$.

$$\mathsf{GK-dim}\,\mathcal{B}(\mathcal{V}(1,2)) = \mathsf{GK-dim}\,\mathcal{B}(\mathcal{V}(-1,2)) = 2.$$

Nichols algebras of blocks & points

 $V = V_1 \oplus \cdots \oplus V_t \oplus V_{t+1} \oplus \cdots \oplus V_{\theta}$ braided vector space with a decomposition, where t > 0,

- $V_1, \ldots, V_t \in {}^{\mathbb{k}\Gamma}_{\mathbb{k}\Gamma} \mathcal{YD}$ are blocks (may assume of dim 2 and $\epsilon^2 = 1$);
- • $V_{t+1}, \ldots, V_{\theta} \in {}_{k\Gamma}^{k\Gamma} \mathcal{YD}$ are points (i.e. of dimension 1).

Theorem. (A.—Angiono—Heckenberger) The classification of those V with GK-dim $\mathcal{B}(V)<\infty$ is known. Also the defining relations.

Up to the Conjecture on diagonal type...

However this is not the end of the story since there are indecomposable Yetter-Drinfeld modules that are not blocks. We call them pale blocks

Theorem. (A.–Angiono–Heckenberger) The classification of those $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ of **dimension 3** with one pale block such that $\mathsf{GK}\text{-}\mathsf{dim}\,\mathcal{B}(V) < \infty$ is known.

Theorem. (A.–Angiono–Moya) The classification of those $V \in {}^{\Bbbk G}_{\mathbb K} \mathcal Y \mathcal D$ of **dimension 4** with at least one pale block such that $\mathsf{GK}\text{-}\mathsf{dim}\,\mathcal B(V) < \infty$ is known.

In both Theorems we present the defining relations and the explicit PBW-basis (that exists by a general result of Ufer).

IV. Eminent pre-Nichols algebras.

The set $\mathfrak{Post}(V)$ of isomorphism classes of post-Nichols algebras of V is partially ordered with $T^c(V)$ maximal and $\mathscr{B}(V)$ minimal.

The set $\mathfrak{Pre}(V)$ of isomorphism classes of pre-Nichols algebras of V is partially ordered with T(V) minimal and $\mathscr{B}(V)$ maximal.

Question ii. For such $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ with GK-dim $\mathscr{B}(V) < \infty$ classify \mathcal{E} post-Nichols of V such that GK-dim $\mathcal{E} < \infty$.

 $\mathfrak{Post}_{\mathsf{fGK}}(V) \leq \mathfrak{Post}(V) = \mathsf{post-Nichols} \ \mathsf{algebras} \ \mathsf{of} \ V \ \mathsf{with} \ \mathsf{finite} \ \mathsf{GK-dim}.$

Lemma. (AAH) \mathscr{B} a pre-Nichols algebra of V, $\mathcal{E} = \mathscr{B}^d$ the graded dual of \mathscr{B} . Then GK-dim $\mathcal{E} \leq$ GK-dim \mathscr{B} . If \mathcal{E} is finitely generated, then the equality holds.

Question ii bis. For such $V \in {}^{\Bbbk G}_{\mathbb{K} G} \mathcal{YD}$ with GK-dim $\mathscr{B}(V) < \infty$ classify \mathscr{B} pre-Nichols of V such that GK-dim $\mathscr{B} < \infty$.

 $\mathfrak{Pre}_{\mathsf{fGK}}(V) \leq \mathfrak{Pre}(V) = \mathsf{pre-Nichols}$ algebras of V with finite GK-dim.

Question ii bis. For such $V \in {}^{\Bbbk G}_{\mathbb{K} G} \mathcal{YD}$ with GK-dim $\mathscr{B}(V) < \infty$ classify \mathscr{B} pre-Nichols of V such that GK-dim $\mathscr{B} < \infty$.

A pre-Nichols algebra is *eminent* if it is a minimum in $\mathfrak{Pre}_{\mathsf{fGK}}(V)$; i.e. a pre-Nichols algebra $\widehat{\mathscr{B}}$ is eminent if

- GK-dim $\widehat{\mathscr{B}}<\infty$;
- if \mathscr{B} is a pre-Nichols algebra of V with GK-dim $\mathscr{B}<\infty$, then there exists a morphism of pre-Nichols algebras $\widehat{\mathscr{B}} \twoheadrightarrow \mathscr{B}$.

Warning: Eminent pre-Nichols algebras do not always exist (e.g. if the braiding is the usual transposition).

Theorem. (A.—Sanmarco) A braided vector space of Cartan diagonal type admits an eminent pre-Nichols algebra, that turns out to be the distinguished pre-Nichols algebra introduced by Angiono, except for very few exceptions in low rank.

Remarks: 1) When the braided vector space of Cartan type is the one at the origin of quantum groups at roots of one, the distinguished pre-Nichols algebra is the positive part of the Kac—De Concini—Procesi quantum group.

2) The Theorem was extended to other braided vector spaces of diagonal type by Angiono, Campagnolo and Sanmarco.

References.

[A] N. Andruskiewitsch. On pointed Hopf algebras over nilpotent groups. arXiv:2104.04789

[AA] N. Andruskiewitsch, I. Angiono. *On Nichols algebras with generic braiding*, in *Modules and Comodules*, Trends in Mathematics. Brzezinski, T.; Gómez Pardo, J.L.; Shestakov, I.; Smith, P.F. (Eds.), pp. 47–64 (2008).

[AAH] N. Andruskiewitsch, I. Angiono, I. Heckenberger. *On finite GK-dimensional Nichols algebras over abelian groups*. Mem. Amer. Math. Soc., to appear.

[AAM] N. Andruskiewitsch, I. Angiono, M. Moya. *Rank 4 Nichols algebras of pale braidings*. Mem. Amer. Math. Soc., to appear.

[ASa] N. Andruskiewitsch, G. Sanmarco, *Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type*. Trans. Amer. Math. Soc. Ser. B **8**, 296–329 (2021).

- [AS2] N. Andruskiewitsch and H.-J. Schneider, *A characterization of quantum groups*. J. Reine Angew. Math. **577** (2004) 81–104.
- [Ang] I. Angiono. *Distinguished pre-Nichols algebras*. Transf. Groups **21** 1–33 (2016).
- [ACS] I. Angiono, E. Campagnolo, G. Sanmarco. Finite GK-dimensional pre-Nichols algebras of super and standard type. arxiv.org/2009.04863
- [B] K. A. Brown, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, Contemp. Math. **229** (1998), 49–79.
- [BGLZ] K. A. Brown, K. Goodearl, T. Lenagan J. J. Zhang. *Infinite Dimensional Hopf Algebras*. Oberwolfach Rep. **11** (2014), 1111–1137.
- [BZ] K. A. Brown, J. J. Zhang. *Survey on Hopf algebras of GK-dimension 1 and 2.* Contemp. Math., to appear.

- [EG] P. Etingof and S. Gelaki, *Quasisymmetric and unipotent tensor categories*, Math. Res. Lett. **15** (2008), 857-866.
- [G] K. Goodearl. *Noetherian Hopf algebras*. Glasgow Math. J. **55A** (2013), 75–87.
- [Gr] M. Gromov, *Groups of polynomial growth and expanding maps*. Inst. Hautes Études Sci. Publ. Math. **53** (1981), 53–73.
- [L] G. Liu. A classification result on prime Hopf algebras of GK-dimension one. J. Algebra **547** 579–667 (2020).

[R] M. Rosso. Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998).

[WLD] J. Wu, G. Liu, N. Ding. *Classification of affine prime regular Hopf algebras of GK-dimension one*. Adv. Math. **296** 1–54 (2016).

[ZSL] G.-S. Zhou, Y. Shen, D.-M. Lu. *The structure of connected (graded) Hopf algebras.* Adv. Math. **372** 107292 (2020).