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PERIODIC HOMOGENIZATION OF NON-SYMMETRIC LÉVY-TYPE PROCESSES

XIN CHEN ZHEN-QING CHEN TAKASHI KUMAGAI JIAN WANG

Abstract. In this paper, we study homogenization problem for strong Markov processes on R
d having

infinitesimal generators

Lf(x) =

∫

Rd

(

f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

)

k(x, z) Π(dz) + 〈b(x),∇f(x)〉, f ∈ C
2
b (R

d)

in periodic media, where Π is a non-negative measure on R
d that does not charge the origin 0, satisfies

∫

Rd(1 ∧ |z|2) Π(dz) < ∞, and can be singular with respect to the Lebesgue measure on R
d. Under a

proper scaling, we show the scaled processes converge weakly to Lévy processes on R
d. The results are

a counterpart of the celebrated work [6, 7] in the jump-diffusion setting. In particular, we completely
characterize the homogenized limiting processes when b(x) is a bounded continuous multivariate 1-periodic

R
d-valued function, k(x, z) is a non-negative bounded continuous function that is multivariate 1-periodic

in both x and z variables, and, in spherical coordinate z = (r, θ) ∈ R+ × S
d−1,

1{|z|>1} Π(dz) = 1{r>1}̺0(dθ)
dr

r1+α

with α ∈ (0,∞) and ̺0 being any finite measure on the unit sphere S
d−1 in R

d. Different phenomena
occur depending on the values of α; there are five cases: α ∈ (0, 1), α = 1, α ∈ (1, 2), α = 2 and
α ∈ (2,∞).
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1. Introduction

In the celebrated work [6, 7] the authors studied the periodic homogenization of a diffusion X :=
(Xt)t>0 on Rd generated by the following second-order elliptic operator

L̂f(x) =
1

2

d∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d∑

i=1

bi(x)
∂f(x)

∂xi
,

where the coefficients (aij(x))16i,j6d and b(x) := (bi(x))16i6d are bounded and multivariate 1-periodic

(that is, they can be viewed as bounded functions defined on the d-dimensional torus Td := (R/Z)d).
Under the assumptions that each aij(·) has bounded second derivatives, each bi(·) has bounded first
derivatives, and (aij(x))16i,j6d is uniformly elliptic, they showed

{
Xε

t − ε−1b̄t : t > 0
}

converges weakly as ε→ 0 to a driftless Brownian motion with covariance matrix
(∫

Td

d∑

k,l=1

(
δki −

∂ψi(x)

∂xk

)
akl(x)

(
δlj −

∂ψj(x)

∂xl

)
µ(dx)

)

16i,j6d

.

Here, Xε
t := εXt/ε2 for t > 0, µ(dx) is the unique invariant probability measure for the quotient process

of X on Td, b̄ =
∫
Td b(x)µ(dx), and ψ ∈ C2(Rd) is the unique periodic solution to the equation

L̂ψ(x) = b(x)− b̄ on T
d.

The goal of this paper is to study the periodic homogenization of jump diffusions whose infinitesimal
generators are of the following form when acting on C2

b (R
d):

Lf(x) =

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

)
k(x, z)Π(dz) + 〈b(x),∇f(x)〉. (1.1)

Here, Π(dz) is a non-negative measure on Rd that does not charge at the origin 0 and satisfies
∫
Rd(1 ∧

|z|2)Π(dz) < ∞; b(x) is a bounded continuous multivariate 1-periodic Rd-valued function, and k(x, z) :
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Rd × Rd → [0,∞) is a function that is bounded so that x 7→ k(x, z) is multivariate 1-periodic for each
fixed z ∈ Rd and

lim
y→x

sup
z∈Rd

|k(y, z) − k(x, z)| = 0. (1.2)

Since k(·, z) and b(·) are multivariate 1-periodic, it is easy to verify that Lf is pointwisely well defined
as a function on Td for every f ∈ C2(Td). By the maximum principle, (L, C2(Td)) can be extended to a
closed operator (L,D(L)) on C(Td). Throughout the paper, the following two assumptions are in force.

(A1) There exists a strong Markov process X :=
(
(Xt)t>0; (Px)x∈Rd

)
associated with L in the sense

that for every f ∈ C1,2
b (R+ ×Rd) with R+ := [0,∞),

{
f(t,Xt)− f(0,X0)−

∫ t

0

(
∂f

∂s
(s,Xs) + Lf(s, ·)(Xs)

)
ds, t > 0

}

is a martingale under Px for all x ∈ Rd with respect to the natural filtration generated by X.

(A2) Regarding X as an Td-valued process, the process X is exponentially ergodic in the sense that

there exist a unique invariant probability measure µ(dx) and constants λ1, C0 > 0 so that

sup
x∈Td

|Exf(Xt)− µ(f)| 6 C0e
−λ1t‖f‖∞, t > 0, f ∈ Cb(T

d). (1.3)

Assumption (A1) is satisfied, when the martingale problem for the operator (L, C2
b (R

d)) is well posed.
The latter has been extensively investigated in the literature, see [12, 13, 14, 15, 27] and the references
therein. See also [32, Theorem 3.1] for more recent study on the existence of a martingale solution asso-
ciated with Lévy type operators whose corresponding canonical process has the strong Markov property.
Since Td is compact, Assumption (A2) is a direct consequence of the irreducibility (that is, for any
t > 0, x ∈ Rd and any non-empty open set U ⊂ Rd, Px(Xt ∈ U) > 0) and the strong Feller property
(that is, for any f ∈ Bb(R

d) and t > 0, x 7→ Exf(Xt) is bounded and continuous) of the process X; see
[43, Theorem 1.1]. Assumption (A2) also holds, if the process X admits a transition density function
p(t, x, y) with respect to the Lebesgue measure so that for any t > 0, the function (x, y) 7→ p(t, x, y) is
continuous on Rd × Rd, and that there is a non-empty open set U ⊂ Rd such that p(t, x, y) > 0 for all
t > 0, x ∈ Rd and y ∈ U ; see [6, p. 365, Theorem 3.1] for a modification of Doeblin’s celebrated result.
The reader is referred to Subsection 7.2 for concrete examples on Assumptions (A1) and (A2).

In order to deal with the scaling limit of X that requires recentering (which includes cases considered
in Subsection 3.2, Section 4 and Section 5), we need one more assumption.

(A3) For every f ∈ C(Td) with µ(f) = 0, there exists a unique multivariate 1-periodic solution ψ ∈
D(L) to

Lψ = f on T
d with µ(ψ) = 0 (1.4)

and

‖ψ‖∞ + ‖∇ψ‖∞ 6 C1‖f‖∞, (1.5)

where C1 > 0 is independent of f .

There are a few literature on homogenization of non-local operators. We refer readers to [2, 3, 29, 35, 39]
for the periodic homogenization results for stable-like operators or the operator with convolution type
kernels. The methods used in the these papers are analytic and called the corrector method. The
probabilistic study of homogenization of periodic stable-like processes can be found in [20, 25, 37] via the
characteristics of semimartingales, in [21, 23, 24] by SDE driven by Lévy processes or by Poisson random
measures, and in [22, 41] via the martingale problem method. A closely related topic is homogenization
of non-local operators or jump diffusions in random media, which typically requires a different approach
than the periodic media case, see [36, 40] for example. Recently we have studied homogenization of
symmetric stable-like processes in stationary ergodic random media in [11].

The approach of this paper is different from all the papers mentioned above. We will use generator
method combined with its connection to martingales. In particular, we summarize the novelties of our
paper as follows.

(i) Our results reveal that the crucial ingredients for the homogenization of Lévy type operators
are the shape of large jumps for the jumping measures Π(dz) and its limiting spherical measure
on the unit sphere Sd−1 when expressed in spherical coordinates, see e.g. conditions (3.1), (4.1)
and (5.1)–(5.3). Compared with the references mentioned above on the homogenization of non-
local operators (which are mainly concerned on stable-like processes), our results work for more
general jump processes with a large class of scaling factors, see the weighted function ϕ in Section
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3, Example 7.2 and Remark 7.3. Moreover, limiting processes of our homogenization results
are also quite general, including all stable Lévy processes on Rd that can be non-symmetric,
degenerate and have singular Lévy measures, see Example 1.1 below and examples in Subsection
7.1 for more details.

(ii) We will establish the periodic homogenization results for Lévy type operators L after suitable
scalings that depend only on the tail of Π(dz) which gives the rate of large jumps. Our results in
particular cover the critical case; see Example 1.1(ii). To the best of our knowledge, this is the
first time in literature that critical cases have been studied. Moreover, the Lévy measure Π can
be singular with respect to the Lebesgue measure on Rd and its support can have zero Lebesgue
measure.

(iii) Among all the results mentioned above, the process under investigation is either the unique strong
solution of a stochastic differential equation or a Feller process on Rd. In this paper, the process
is only assumed to solve the martingale problem of (L, C2

b (R
d)) and have strong Markov property.

The main results of this paper are Theorems 3.2, 3.4, 4.1 and 5.1 as well as Theorems 6.5 and 6.7. We
use the following example, a special case of these much more general results, for illustration. We first
introduce some notations which will be frequently used in the paper. By assumptions on k and Π (see
the line immediately after (1.1)),

bR(x) :=

∫

{1<|z|6R}
zk(x, z)Π(dz) (1.6)

is well defined for every R > 1, and bR ∈ Cb(R
d) is multivariate 1-periodic. Clearly, if

∫
{|z|>1} |z|Π(dz) <

∞, then

b∞(x) :=

∫

{|z|>1}
zk(x, z)Π(dz) (1.7)

is also well defined and is the limit of bR(x) as R → ∞. Let R+ := [0,∞) and Sd−1 be the unit sphere
in Rd. Denote by D([0,∞);Rd) the space of Rd-valued right continuous functions having left limits on
[0,∞), equipped with the Skorohod topology.

Example 1.1. Suppose that Assumptions (A1), (A2) and (A3) hold. Let X := (Xt)t>0 be the strong
Markov process corresponding to the operator L given by (1.1) with the jumping measure Π(dz) such
that

1{|z|>1}Π(dz) = 1{r>1}
1

r1+α
dr̺0(dθ) (1.8)

where α ∈ (0,∞), ̺0(dθ) is a non-negative finite measure on Sd−1 and (r, θ) denotes the spherical
coordinates of z ∈ Rd.

Denote by µ(dx) the stationary probability measure for the quotient process of X on Td. Define for
any R > 1,

b̄ :=

∫

Td

b(x)µ(dx), b̄R :=

∫

Td

bR(x)µ(dx), b̄∞ :=

∫

Td

b∞(x)µ(dx). (1.9)

(i) Suppose that k(x, z) is a bounded continuous function on Rd ×Rd so that x 7→ k(x, z) is multi-
variate 1-periodic for each fixed z ∈ Rd and z 7→ k(x, z) is multivariate 1-periodic for each fixed
x ∈ Rd. For any ε ∈ (0, 1], define (Y ε

t )t>0 by

Y ε
t =





εXt/εα , 0 < α < 1,

εXt/εα − (b̄1/ε + b̄)t, α = 1,

εXt/εα − ε1−α(b̄∞ + b̄)t, 1 < α < 2.

Then the process (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε → 0, to a (possibly non-

symmetric) α-stable Lévy process (X̄t)t>0 having jumping kernel k̄(θ)
r1+α dr ̺0(dθ), where k̄ : Sd−1 →

R+ is defined by

k̄(θ) :=

∫

Td

k̄(x, θ)µ(dx), θ ∈ S
d−1,

and k̄ : Rd × Sd−1 → R+ satisfies that for all x ∈ Rd and θ ∈ Sd−1,

k̄(x, θ) = lim
T→∞

1

T

∫ T

0
k(x, (r, θ)) dr. (1.10)
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The infinitesimal generator of the Lévy process (X̄t)t>0 is given by

L̄f(x) =





∫

Rd

(f(x+ z)− f(x)) k̄(z/|z|)Π0(dz) α ∈ (0, 1),
∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

)
k̄(z/|z|)Π0(dz) α = 1,

∫

Rd

(f(x+ z)− f(x)− 〈∇f(x), z〉) k̄(z/|z|)Π0(dz) α ∈ (1, 2),

where Π0(dz) := 1{r>0}
1

r1+α dr ̺0(dθ).

Furthermore, if the finite measure ̺0 on Sd−1 that does not charge on the set of rationally
dependent θ ∈ Sd−1, then we can take k̄(θ) ≡

∫
Td

∫
Td k(x, z) dz µ(dx) for all θ ∈ Sd−1, which is

a constant, in the statement above. Here we call θ = (θ1, · · · , θd) ∈ Sd−1 is rationally dependent

if there is some non-zero m = (m1, · · · ,md) ∈ Zd so that 〈m, θ〉 = ∑d
i=1miθi = 0. Otherwise,

we call θ rationally independent. When d = 1, S0 = {1,−1} so every its member is rationally
independent. In particular, if ̺0 does not charge on singletons when d = 2 and does not charge
on subsets of Sd−1 that are of Hausdorff dimension d − 2 when d > 3 (for example, ̺0 is γ-
dimensional Hausdorff measure with γ ∈ (d − 2, d − 1]), then ̺0 does not charge on the set of
rationally dependent θ ∈ Sd−1 and so the result above holds with k̄(θ) ≡

∫
Td

∫
Td k(x, z) dz µ(dx).

Moreover, if ̺0 is absolutely continuous with respect to the Lebesgue surface measure σ on Sd−1

with a bounded Radon-Nikodym derivative, then we can replace the joint continuity assumption
on k(x, z) by the continuity of the function x 7→ k(x, z) and condition (1.2).

(ii) When α = 2, define

Y ε
t := εXε−2| log ε|−1t − ε−1| log ε|−1(b̄∞ + b̄)t, t > 0.

Suppose that

k0 := lim
|z|→∞

∫

Td

k(x, z)µ(dx) > 0. (1.11)

Then (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε→ 0, to Brownian motion (Bt)t>0 with the

covariance matrix A = {aij}16i,j6d such that

aij := k0

∫

Sd−1

θiθj ̺0(dθ). (1.12)

(iii) When α > 2, define
Y ε
t := εXt/ε2 − ε−1(b̄∞ + b̄)t, t > 0.

Then (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε→ 0, to a d-dimensional Brownian motion

(Bt)t>0 with the covariance matrix

A :=

∫

Td

∫

Rd

(
z + ψ(x+ z)− ψ(x)

)
⊗
(
z + ψ(x+ z)− ψ(x)

)
k(x, z)Π(dz)µ(dx). (1.13)

Here ψ ∈ D(L) is the unique periodic solution on Rd to the following equation

Lψ(x) = −b∞(x)− b(x) + b̄∞ + b̄, x ∈ T
d

with µ(ψ) = 0.

One sufficient condition for (A1), (A2) and (A3) to hold in this example is that k(x, z) is bounded
between two positive constants, and that there is a constant β ∈ (0, 1) so that b(x) = (bi(x))16i6d ∈
Cβ
b (R

d),

sup
z∈Rd

|k(x, z) − k(y, z)| 6 c0|x− y|β , x, y ∈ R
d

for some c0 > 0, and

1{|z|61}Π(dz) = 1{|z|61}
1

|z|d+α0
dz

for some α0 ∈ (1, 2) – see Propositions 7.5 and 7.6.

Motivated by the classical central limit theorem for stable laws (see e.g. [17, p. 161, Theorem 3.7.2;
and p. 164, Exercise 3.7.2]), in order to study the limit behavior of the scaled process Xε := (εXt/εα)t>0,
we do not need to recenter it when α ∈ (0, 1), but do need to recenter it when α ∈ [1, 2). Moreover,
the normalizing factors of the centered terms are different in the critical case α = 1 and in the case
α ∈ (1, 2). See [26, Theorem 2.4] for related discussions on limit theorems for additive functions of a
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Markov chain to stable laws. A recent paper [25] studied the periodic homogenization for stable-like
Feller processes under the centering condition on the drift term b(x), see [25, Assumption (H4)]. We
emphasize that such centering condition is commonly assumed in all the quoted papers above except [21]
which only considers symmetric α-stable Lévy noises with α ∈ (1, 2). (For the periodic homogenization
for diffusion processes under the centering condition on the drift term b(x), the reader is referred to
[6].) In some sense, studying homogenization problem with general drift, as done in [7, 19] for diffusions,
requires normalizing the center first, which typically needs much more effort. Concerning the assertion
(iii) in Example 1.1, the closely related works in [35, 37] deal with non-local operators with convolution-
type kernels, and Lévy type operators without drift terms, respectively. The critical case corresponds
to the assertion (ii). Note that in the critical case, in contrast to the diffusive case (iii), the scaling
factor is ε−2| log ε|−1 rather than the standard diffusive scaling ε−2 and the corrector solution does not
contribute to the diffusion coefficient of the limiting Brownian motion. Moreover, in this case, because of
(1.12), the limiting Brownian motion may be degenerate even under the non-degeneracy assumption on
1{|z|61}Π(dz), which is different from the diffusive scaling case (iii) (see Remark 4.2 below). We should
mention that all the limit processes have the scaling property; however, different from the cases (ii) and
(iii), the limit processes considered in (i) is an α-stable Lévy process which can be non-symmetric and
singular, as the spherical measure ̺0(dθ) can be any finite measure on Sd−1.

Finally, we emphasize that the results of our paper can be regarded as the counterpart in the jump-
diffusion setting of the work by [7], which studied periodic homogenization for diffusion processes without
assuming the zero averaging condition on the drift term (that is, b̄ = 0) which was imposed in [6]. However,
since we will treat general jump processes with a large class of scaling factors, there are essential differences
which require new ideas. For example, it always takes the diffusion scaling in [7], while as mentioned
above in the present paper the scaling and the limit process in the non-diffusive cases are determined
by the asymptotic behavior of the jumping measure Π(dz) at infinity. The α-stable scaling ε−α with
α ∈ (0, 2) in Example 1.1 is merely a special case (see Example 7.2). Furthermore, we do not assume
the uniform ellipticity condition on the non-local operator L of (1.1) in the sense that the support of the
jumping measure 1{|z|>1}Π(dz) can have zero Lebesgue measure and whose linear span can be a proper

linear subspace of Rd.

The remainder of this paper is organized as follows. In the next section, we present an elementary
lemma and some properties on the scaled processes under Assumptions (A1) and (A2). Sections 3
and 4 are devoted to the study of the limiting behaviors of the scaled processes under the jump scaling
and the diffusive scaling, respectively. In Section 5, we consider homogenization in the critical cases.
Roughly speaking, the limiting process is still Brownian motion, but the scaling factor is different from
the standard diffusive scaling ε−2. In Section 6, sufficient conditions are given for the key averaging
assumption (3.6) of our main results to hold, which are also of independent interest. With all the results
above at hand, in Subsection 7.1 we give the proof of the assertions made in Example 1.1. Two more
examples are given to illustrate the power of our main results. Sufficient conditions for Assumptions
(A1)-(A3) to hold are presented in Subsection 7.2.

In this paper, we use := as a way of definition. For two positive functions f and g, f ≍ g means that
f/g is bounded between two positive constants, and f � g means that f/g is bounded by a positive
constant. We use [a] to denote the largest integer not exceeding a. For a, b ∈ R, a ∧ b := min{a, b}. For
any vector x, y ∈ Rd, x⊗ y denotes its tensor product, which is equivalent to an d× d-matrix defined by
(x⊗ y)ij = xiyj for 1 6 i, j 6 d.

2. Preliminaries

2.1. Elementary lemma.

Lemma 2.1. For ψ ∈ C1
b (R

d;Rd) and ε > 0, set

Φε(x) := x+ εψ(x/ε), Θε(x, z) := ψ(x/ε + z)− ψ(x/ε), x ∈ R
d.

Then, for any f ∈ C3
b (R

d) and M ∈ (0,∞],

f(Φε(x+ εz)) − f(Φε(x))− 〈∇(f(Φε(·)))(x), εz〉1{|z|6M}

= f(Φε(x) + εz)− f(Φε(x))− 〈∇f(Φε(x)), εz〉1{|z|6M}

+ ε〈∇f(Φε(x)), ψ(x/ε + z)− ψ(x/ε) −∇ψ(x/ε) · z1{|z|6M}〉
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+
ε2

2
〈∇2f(Φε(x)), (2Θε(x, z) ⊗ z)1{|z|6M} +Θε(x, z) ⊗Θε(x, z)〉 +Gε(x, z),

where Gε(x, z) satisfies

|Gε(x, z)| 6C1ε
3‖∇3f‖∞(1 + ‖ψ‖∞ + ‖∇ψ‖∞)3(|z|21{|z|6R} + |z|1{R<|z|6M} + 1{|z|>M})

+ C1ε
2‖∇2f‖∞‖ψ‖∞|z|1{R<|z|6M} + C1‖f‖∞1{|z|>M}

for all 0 < R 6M 6 ∞ and some constant C1 > 0 independent of ε, M , R, x, z, f and ψ.

Proof. For any f ∈ C3
b (R

d) and M ∈ (0,∞], we write

f(Φε(x+ εz)) − f(Φε(x))− 〈∇(f(Φε(·)))(x), εz〉1{|z|6M}

= f(Φε(x+ εz))− f(Φε(x))− 〈∇f(Φε(x)), (εz + ε∇ψ(x/ε) · z)〉1{|z|6M}

=
[
f(x+ εz + εψ(x/ε + z))− f(x+ εψ(x/ε + z))− 〈∇f(x+ εψ(x/ε + z)), εz〉1{|z|6M}

]

+
[
〈∇f(x+ εψ(x/ε + z)) −∇f(x+ εψ(x/ε)), εz〉1{|z|6M}

]

+
[
f(x+ εψ(x/ε + z))− f(x+ εψ(x/ε)) − 〈∇f(x+ εψ(x/ε)), ε∇ψ(x/ε) · z〉1{|z|6M}

]

=:
3∑

i=1

Iεi .

First, for fixed x, z ∈ Rd and ε ∈ (0, 1), let

H1(y) := f(x+ y + εz)− f(x+ y)− 〈∇f(x+ y), εz〉1{|z|6M}.

Then,
‖H1‖∞ � ε2‖∇2f‖∞|z|21{|z|6M} + ‖f‖∞1{|z|>M},

and, for any 0 < R 6M ,

‖∇H1‖∞ � ε2‖∇3f‖∞|z|21{|z|6R} + ε‖∇2f‖∞|z|1{|z|>R}.

Thus,

Iε1 = H1(εψ(x/ε + z)) = H1(εψ(x/ε)) +
[
H1(εψ(x/ε + z))−H1(εψ(x/ε))

]

=: f(Φε(x) + εz)− f(Φε(x))− 〈∇f(Φε(x)), εz〉1{|z|6M} +G1,ε(x, z).

Furthermore, according to the mean value theorem, G1,ε(x, z) satisfies that

|G1,ε(x, z)| � ε‖∇H1‖∞
∣∣ψ(x/ε+ z)− ψ(x/ε)

∣∣1{|z|6M} + ‖H1‖∞1{|z|>M}

� ε3‖∇3f‖∞‖ψ‖∞|z|21{|z|6R} + ε2‖∇2f‖∞‖ψ‖∞|z|1{R<|z|6M} + ‖f‖∞1{|z|>M}.

Second, by the Taylor expansion, it holds that

Iε2 = ε2
〈
∇2f(Φε(x)),Θε(x, z) ⊗ z

〉
1{|z|6M}

+
ε3

2

〈
∇3f(Φε(x) + θ0Θε(x, z)),Θε(x, z) ⊗Θε(x, z) ⊗ z

〉
1{|z|6M}

=: ε2
〈
∇2f(Φε(x)),Θε(x, z) ⊗ z

〉
1{|z|6M} +G2,ε(x, z),

where θ0 ∈ (0, 1) and

|G2,ε(x, z)| � ε3‖∇3f‖∞
(
‖ψ‖∞‖∇ψ‖∞|z|21{|z|6R} + ‖ψ‖2∞|z|1{R<|z|6M}

)

for any 0 < R 6M.
Third, applying the Taylor expansion again and using the mean value theorem, we obtain

Iε3 = ε〈∇f(Φε(x)), ψ(x/ε + z)− ψ(x/ε) −∇ψ(x/ε) · z1{|z|6M}〉

+
ε2

2

〈
∇2f(Φε(x) + εθ1Θε(x, z)),Θε(x, z)⊗Θε(x, z)

〉

= ε〈∇f(Φε(x)), ψ(x/ε + z)− ψ(x/ε) −∇ψ(x/ε) · z1{|z|6M}〉

+
ε2

2

〈
∇2f(Φε(x)),Θε(x, z)⊗Θε(x, z)

〉

+
ε3

2
θ1
〈
∇3f(Φε(x) + εθ1θ2Θε(x, z)),Θε(x, z) ⊗Θε(x, z) ⊗Θε(x, z)

〉



PERIODIC HOMOGENIZATION OF NON-SYMMETRIC LÉVY-TYPE PROCESSES 7

=: ε
〈
∇f(Φε(x)), ψ(x/ε + z)− ψ(x/ε) −∇ψ(x/ε) · z1{|z|6M}

〉

+
ε2

2

〈
∇2f(Φε(x)),Θε(x, z)⊗Θε(x, z)

〉
+G3,ε(x, z),

where θ1, θ2 ∈ (0, 1) and

|G3,ε(x, z)| �ε3‖∇3f‖∞(‖ψ‖∞‖∇ψ‖2∞|z|21{|z|6R} + ‖ψ‖2∞‖∇ψ‖∞|z|1{R<|z|6M} + ‖ψ‖3∞1{|z|>M})

for any 0 < R 6M .
Therefore, putting all the estimates above together, we prove the required assertion. �

2.2. Consequences of (A1) and (A2). Let L be the operator given by (1.1) with Π(dz), k(x, z) and
b(x) satisfying all the conditions below (1.1). We assume that Assumptions (A1) and (A2) in Section
1 also hold true. Denote by X := (Xt)t>0 the strong Markov process associated with the generator L as
in (A1).

Let ρ : R+ → R+ be a strictly increasing function such that limr→∞ ρ(r) = ∞. For ε ∈ (0, 1), consider
the scaled process

Xε := {εXρ(1/ε)t : t > 0}. (2.1)

Clearly, Xε is a strong Markov process on Rd, and the associated generator is given by

L
εf(x) = ρ(1/ε)

∫

Rd

(
f(x+ εz)− f(x)− ε〈∇f(x), z〉1{|z|61}

)
k(x/ε, z)Π(dz)

+ ερ(1/ε)〈b(x/ε),∇f(x)〉.
(2.2)

See e.g. [11, Lemma 2.1]. Since the coefficients of the generator Lε are multivariate ε-periodic, the process
Xε can be also viewed as an Td-valued process if 1/ε is an integer.

Lemma 2.2. Under Assumption (A2), we have the following two statements.

(i) For every f ∈ Cb(T
d) with µ(f) = 0, any 0 < s < t and x ∈ Rd,

lim
ε→0

Ex

[∣∣∣∣
∫ t

s
f (Xε

r/ε) dr

∣∣∣∣
2
]
= 0.

(ii) Suppose that for some x ∈ Rd,

lim
ε→0

sup
|s−t|61/[

√
ρ(1/ε)]

Ex(|Xε
s −Xε

t | ∧ 1) = 0. (2.3)

Then for any bounded continuous function F : Td ×Rd → R and any 0 < s < t,

lim
ε→0

Ex

[∣∣∣∣
∫ t

s
F (Xε

r/ε,X
ε
r ) dr −

∫ t

s
F̄ (Xε

r ) dr

∣∣∣∣
2
]
= 0, (2.4)

where F̄ : Rd → R is defined by

F̄ (y) :=

∫

Td

F (x, y)µ(dx).

Proof. (i) Let f ∈ Cb(T
d) be such that µ(f) = 0. Then, for any 0 < s < t and x ∈ Rd, by the Markov

property and (A2),

Ex

[∣∣∣∣
∫ t

s
f
(
ε−1Xε

r

)
dr

∣∣∣∣
2
]
= 2Ex

[∫ t

s

∫ r

s
f(Xρ(1/ε)r)f(Xρ(1/ε)u) du dr

]

= 2

∫ t

s

∫ r

s
Ex

[
f(Xρ(1/ε)u)EXρ(1/ε)u

f(Xρ(1/ε)(r−u))
]
du dr

� ‖f‖2∞
ρ(1/ε)

∫ t

s

(
1− e−λ1ρ(1/ε)(r−s)

)
dr � ‖f‖2∞(t− s)

ρ(1/ε)
.

(2.5)

This along with the fact that limε→0 ρ(1/ε) = ∞ yields the first desired assertion.
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(ii) By the standard approximation, it suffices to prove (2.4) for F (x, y) = f(x)g(y) with f ∈ Cb(T
d)

and g ∈ C1
b (R

d). Without loss of generality, we assume that f ∈ Cb(T
d) with µ(f) = 0. For ε > 0, define

si = s+ i(t−s)

[
√

ρ(1/ε)]
. Let

Iε := Ex

[∣∣∣∣
∫ t

s
f (Xε

r/ε) g(X
ε
r ) dr

∣∣∣∣
2
]

and

Jε := Ex




∣∣∣∣∣∣∣

[
√

ρ(1/ε)]−1∑

i=0

∫ si+1

si

f (Xε
r/ε) dr · g(Xε

si)

∣∣∣∣∣∣∣

2
 .

We can write

Iε =
∑

06i,j6[
√

ρ(1/ε)]−1

∫ si+1

si

∫ sj+1

sj

Ex

[
f (Xε

r/ε) f (X
ε
u/ε) g(X

ε
r )g(X

ε
u)
]
dr du

and

Jε =
∑

06i,j6[
√

ρ(1/ε)]−1

∫ si+1

si

∫ sj+1

sj

Ex

[
f (Xε

r/ε) f (X
ε
u/ε) g(X

ε
si)g(X

ε
sj )
]
dr du.

Note that, for every 0 6 i, j 6 [
√
ρ(1/ε)]− 1, si 6 r 6 si+1 and sj 6 u 6 sj+1,

∣∣∣∣Ex

[
f (Xε

r/ε) f (X
ε
u/ε) g(X

ε
r )g(X

ε
u)]− Ex

[
f (Xε

r/ε) f (X
ε
u/ε) g(X

ε
si)g(X

ε
sj )
]∣∣∣∣

6 ‖f‖2∞‖g‖∞
(
Ex|g(Xε

r )− g(Xε
si)|+ Ex|g(Xε

u)− g(Xε
sj )|
)

6 2‖f‖2∞‖g‖∞(‖g‖∞ + ‖∇g‖∞)
(
Ex(|Xε

r −Xε
si | ∧ 1) + Ex(|Xε

u −Xε
sj | ∧ 1)

)

6 c1η(ε),

where c1 = 4(‖g‖∞ + ‖∇g‖∞)‖f‖2∞‖g‖∞ and

η(ε) := sup
|r1−r2|6(t−s)/[

√
ρ(1/ε)]

Ex(|Xε
r1 −Xε

r2 | ∧ 1).

Thus,

|Iε − Jε| 6 c1η(ε)
∑

06i,j6[
√

ρ(1/ε)]−1

(sj+1 − sj)(si+1 − si) 6 c1η(ε)(t− s)2.

Hence limε→0 |Iε − Jε| = 0. So it remains to show that limε→0 Jε = 0.
By the Cauchy-Schwarz inequality and (2.5),

Jε 6 [
√
ρ(1/ε)]‖g‖2∞

[
√

ρ(1/ε)]−1∑

i=0

Ex

[∣∣∣∣
∫ si+1

si

f (Xε
r/ε) dr

∣∣∣∣
2
]

6
c2[
√
ρ(1/ε)]

ρ(1/ε)
‖g‖2∞‖f‖2∞

[
√

ρ(1/ε)]−1∑

i=0

(si+1 − si) 6 c2‖f‖2∞‖g‖2∞
(t− s)√
ρ(1/ε)

.

Since limε→0 ρ(1/ε) = ∞, we get limε→0 Jε = 0. �

3. Homogenization: jump scalings

Let Sd−1 := {x ∈ Rd : |x| = 1} be the unit sphere on Rd, and z := (r, θ) ∈ R+ × Sd−1 be the spherical
coordinate of z ∈ Rd\{0}. Throughout this section, we assume that the jumping measure Π(dz) in (1.1)
has the following form on {|z| > 1}:

1{|z|>1}Π(dz) := 1{r>1}̺(r, dθ) dr = 1{r>1}
̺0 (dθ) + κ(r, dθ)

rϕ(r)
dr, (3.1)

where

(i) ̺0(dθ) is a e non-negative finite measure on Sd−1 such that ̺0(S
d−1) > 0;
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(ii) for every r > 1, κ(r, dθ) is a finite signed measure on Sd−1 so that for any r0 > 1,

sup
r∈[r0,∞)

|κ|(r,Sd−1) <∞, lim
r→∞

|κ|(r,Sd−1) = 0, (3.2)

where, for each r > 1, |κ|(r, dθ) denotes the total variational measure of κ(r, dθ);
(iii) ϕ : (1,∞) → R+ is a strictly increasing function such that there are constants α ∈ (0, 2),

c0 ∈ (0, 1], and η0 ∈ (0, α ∧ |α − 1| ∧ (2− α)) when α 6= 1 and η0 ∈ (0, 1/6) when α = 1, so that
for any 1 < r 6 R,

lim
λ→∞

∣∣∣ϕ(λr)
ϕ(λ)

− rα
∣∣∣ = 0, c0(R/r)

α−η0 6
ϕ(R)

ϕ(r)
6 c−1

0 (R/r)α+η0 . (3.3)

Define

Π0(dz) := 1{r>0}
̺0(dθ) dr

r1+α
, (3.4)

where α ∈ (0, 2) is the constant in (3.3). It is obvious that Π0(dz) satisfies the scaling property that
Π0(sA) = s−αa0(A) for all s > 0 and A ⊂ Rd\{0}; however, since ̺0(dθ) may be non-symmetric on Sd−1,
Π0(dz) can be non-symmetric on Rd.

We also suppose that for the function k(x, z) in (1.1), there exists a bounded function k̄ : Rd×Rd → R+

such that for any 0 < r < R and f : Rd ×Rd ×Rd → R satisfying

lim
ε→0

sup
x∈Rd,|z1−z2|6ε

|f(x, z1)− f(x, z2)| = 0, (3.5)

it holds that

lim
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)k(x/ε, z/ε)Π0(dz) −

∫

{r6|z|6R}
f(x, z)k̄(x/ε, z)Π0(dz)

∣∣∣ = 0. (3.6)

Remark 3.1. We make some comments on the assumptions above. In the following, ϕ is a function
given in (3.3).

(1) Examples of functions satisfying (3.3) include ϕ(r) = rα + rβ on (1,∞) for 0 < β 6 α < 2 and
ϕ(r) = rα log(1 + r) on (1,∞) for 0 < α < 2. In fact any strictly increasing function ϕ(r) on
(1,∞) of the form

∫ α2

α1
rβ ν(dβ) satisfies condition (3.3), where 0 < α1 6 α2 < 2, and ν is a finite

measure on [α1, α2] so that α2 is in the support of ν; see Example 7.2 for the proof of this fact.
Observe that the second condition in (3.3) is equivalent to that there is some R0 > 1 so that for
all R > r > R0,

c0(R/r)
α−η0 6

ϕ(R)

ϕ(r)
6 c−1

0 (R/r)α+η0 .

Indeed, the statements in this section still holds if we replace r > 1 in (3.1) by r > R0 for some
R0 > 1, and restrict ϕ defined on (R0,∞).

(2) Condition (3.2) means that the term κ(r, ·) is a lower order perturbation as r → ∞, and thus, by

(3.1), the jumping measure Π(dz) is comparable to ̺0(dθ) dr
rϕ(r) for large |z|.

(3) Suppose that ϕ1(r) is a strictly increasing function on (1,∞) so that

lim
r→∞

ϕ1(r)

ϕ(r)
= 1. (3.7)

Then ϕ1(r) clearly satisfies (3.3), and we can rewrite a(z) as

1{|z|>1}Π(dz) = 1{r>1}
̺0(dθ) + κ̃(r, dθ)

rϕ1(r)
dr

with

κ̃(r, dθ) =

(
ϕ1(r)

ϕ(r)
− 1

)
̺0(dθ) +

ϕ1(r)

ϕ(r)
κ(r, dθ).

Evidently, limr→∞ |κ̃|(r,Sd−1) = 0 and supr∈[r0,∞) |κ̃|(r,Sd−1) <∞ for all r0 > 1. In other words,

the representation of Π(dz) in the form of (3.1) is invariant among the family of strictly increasing
functions ϕ on (1,∞) that mutually satisfy the relation (3.7).

(4) Let k : Rd ×Rd → R+ be the function satisfying the assumptions below (1.1). In view of (3.4),
it is easy to see that if for every x ∈ Rd and ̺0-a.e. θ ∈ Sd−1, there is a constant k̄(x, θ) so that

lim
T→∞

1

T

∫ T

0
k(x, (r, θ)) dr = k̄(x, θ), (3.8)
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then (3.6) holds with k̄(x, z) := k̄(x, z/|z|). Clearly, condition (3.8) holds, if for ̺0-a.e. θ ∈ Sd−1,
there exists a bounded measurable function k̄(·, θ) : Rd → R+ such that

lim
ε→0

sup
x∈Rd

∣∣k (x, (r/ε, θ)) − k̄(x, θ)
∣∣ = 0.

It is shown in Theorem 6.5 below that condition (3.8) holds for every θ ∈ Sd−1 and so condition
(3.6) automatically holds for any finite measure ̺0 on Sd−1, when k(x, z) is bounded, continuous
and multivariate 1-periodic in both x and z. See Section 6 for more sufficient conditions for (3.6)
including the information on k̄(x, θ), when z 7→ k(x, z) is multivariate 1-periodic for any fixed
x ∈ Rd.

The purpose of this section is to consider the limiting behavior of the scaled process

Xε = (Xε
t )t>0 := (εXϕ(1/ε)t)t>0. (3.9)

Note that by (1.1) and (2.2), the generator of Xε is given by

L
εf(x) = ϕ(1/ε)

∫

Rd

(
f(x+ εz) − f(x)− ε〈∇f(x), z〉1{|z|61}

)
k(x/ε, z)Π(dz)

+ εϕ(1/ε)〈b(x/ε),∇f(x)〉.
(3.10)

It turns out that the limiting behavior of Xε as ε → 0 depends on the value of α associated with the
scaling function ϕ in (3.3). We will divide this section into two parts. One is to consider the invariance
principle for Xε that needs no recentering, and the other that requires recentering. In some literature,
invariance principle that requires recentering is called non-central limit theorem; see for instance [21].

3.1. Invariance principle without recentering: α ∈ (0, 1). Recall that α ∈ (0, 2) is the constant in
(3.3). In this subsection, we will restrict ourselves to the case α ∈ (0, 1). Then, by (3.1), we have

lim
ε→0

εϕ(ε−1) = 0, lim
δ→0

lim sup
ε→0

(
εϕ(ε−1)

∫ δ/ε

1

1

ϕ(r)
dr

)
= 0,

lim
δ→0

sup
ε∈(0,1)

(
δεϕ(ε−1)

∫ 1/(δε)

1

1

ϕ(r)
dr

)
= 0, lim

δ→0
sup

ε∈(0,1)

(
ϕ(ε−1)

∫ ∞

1/(δε)

1

rϕ(r)
dr

)
= 0,

sup
ε∈(0,1)

(
εϕ(ε−1)

∫ 1/ε

1

1

ϕ(r)
dr

)
<∞, sup

ε∈(0,1)

(
ϕ(1/ε)

∫ ∞

1/ε

1

rϕ(r)
dr

)
<∞.

(3.11)

In particular,

lim
δ→0

sup
ε∈(0,1)

(
δ2ε2ϕ(ε−1)

∫ 1/(δε)

1

r

ϕ(r)
dr

)
6 lim

δ→0
sup

ε∈(0,1)

(
δεϕ(ε−1)

∫ 1/(δε)

1

1

ϕ(r)
dr

)
= 0.

In fact, for any ε, δ ∈ (0, 1),

δεϕ(ε−1)

∫ 1/(δε)

1

1

ϕ(r)
dr = δ

∫ 1/δ

ε

ϕ(1/ε)

ϕ(r/ε)
dr

� δ

(∫ 1

ε

1

rα+η0
dr +

∫ 1/δ

1

1

rα−η0
dr

)
� δ

(
1 + δ−1−η0+α

)
,

where we have used the second condition of (3.3) in the first inequality. So, by the fact η0 ∈ (0, α∧(1−α)),
we obtain

lim
δ→0

sup
ε∈(0,1)

(
δεϕ(ε−1)

∫ 1/(δε)

1

1

ϕ(r)
dr

)
= 0.

Other estimates in (3.11) can be proved similarly and we omit the details.

The following is the main result of this section.

Theorem 3.2. Suppose that (3.1) and (3.6) hold. If (3.3) holds with α ∈ (0, 1), then the scaled process

(Xε
t )t>0 of (3.9) converges weakly in D([0,∞);Rd), as ε→ 0, to an α-stable Lévy process X̄ := (X̄t)t>0

with Lévy measure k̄0(z)Π0(dz); that is, the generator of the α-stable Lévy process X̄ is given by

L̄f(x) =

∫

Rd

(f(x+ z)− f(x))k̄0(z)Π0(dz).
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Here Π0(dz) is the measure defined in (3.4) and k̄0(z) :=
∫
Td k̄(x, z)µ(dx), where µ is the unique invariant

probability measure of X on Td, and k̄(x, z) is the function in (3.6).

To prove this theorem, we need the following property for the generator of the scaled process Xε.

Lemma 3.3. Suppose that (3.1) and (3.6) hold, and that 0 < α < 1. For every f ∈ C2
b (R

d),

lim
ε→0

sup
x∈Rd

|Lεf(x)− L̄
εf(x)| = 0,

where

L̄
εf(x) :=

∫

Rd

(
f(x+ z)− f(x)

)
k̄(x/ε, z)Π0(dz) (3.12)

with k̄(x, z) being the function in (3.6) and Π0(dz) defined by (3.4).

Proof. By (3.10), for every ε, δ ∈ (0, 1) and f ∈ C2
b (R

d),

L
εf(x) =ϕ(1/ε)

∫

{|z|6δ/ε}

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉

)
k(x/ε, z)Π(dz)

+ ϕ(1/ε)

∫

{δ/ε<|z|<1/(δε)}

(
f(x+ εz)− f(x)

)
k(x/ε, z)Π(dz)

+ ϕ(1/ε)

∫

{|z|>1/(δε)}

(
f(x+ εz)− f(x)

)
k(x/ε, z)Π(dz) + εϕ(1/ε)

〈
∇f(x), bδ/ε(x/ε) + b(x/ε)

〉

= :

4∑

i=1

L
ε,δ
i f(x),

where bδ/ε(x) is defined by (1.6). We can write

L̄
εf(x) =

∫

{|z|6δ}

(
f(x+ z)− f(x)

)
k̄(x/ε, z)Π0(dz)

+

∫

{δ<|z|<1/δ}

(
f(x+ z)− f(x)

)
k̄(x/ε, z)Π0(dz) +

∫

{|z|>1/δ}

(
f(x+ z)− f(x)

)
k̄(x/ε, z)Π0(dz)

= :

3∑

i=1

L̄
ε,δ
i f(x).

Since k̄(x, z) is bounded and α ∈ (0, 1), by (3.4) we have

|L̄ε,δ
1 f(x)| � ‖∇f‖∞

∫

{|z|6δ}
|z|Π0(dz) � ‖∇f‖∞

∫ δ

0

̺0(S
d−1)

rα
dr � ‖∇f‖∞δ1−α.

Applying the same argument to |L̄ε,δ
3 f(x)|, we see that

lim
δ→0

sup
ε∈(0,1],x∈Rd

(
|L̄ε,δ

1 f(x)|+ |L̄ε,δ
3 f(x)|

)
= 0.

On the other hand, according to (3.1),

1{|z|>1}Π(dz) 6
̺0(dθ) + |κ|(r, dθ)

rϕ(r)
1{r>1} dr, (3.13)

and so by (3.2) we obtain that for 0 < ε < δ < 1,

sup
x∈Rd

|Lε,δ
1 f(x)| � ‖∇2f‖∞ε2ϕ(1/ε)

∫

{|z|6δ/ε}
|z|2 Π(dz)

� ‖∇2f‖∞ε2ϕ(1/ε)
(∫

{|z|61}
|z|2 Π(dz) +

∫ δ/ε

1

r

ϕ(r)
dr

)

� ‖∇2f‖∞
(
ε2ϕ(1/ε)

∫

{|z|61}
|z|2 Π(dz) + δεϕ(1/ε)

∫ δ/ε

1

1

ϕ(r)
dr

)
,

sup
x∈Rd

|Lε,δ
3 f(x)| � ‖f‖∞ϕ(1/ε)

∫

{|z|>1/(δε)}
Π(dz) � ‖f‖∞ϕ(1/ε)

∫ ∞

1/(δε)

1

rϕ(r)
dr,
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and

sup
x∈Rd

∣∣bδ/ε(x/ε)
∣∣ �

∫ δ/ε

1

1

ϕ(r)
dr.

Thus, by (3.11) and the fact that b(x) is bounded, we have

lim
δ→0

lim sup
ε→0

sup
x∈Rd

(
|Lε,δ

1 f(x)|+ |Lε,δ
3 f(x)|+ |Lε,δ

4 f(x)|
)
= 0.

Furthermore, due to (3.1),

L
ε,δ
2 f(x) =ϕ(1/ε)

∫

{δ<|z|<1/δ}

(
f(x+ z)− f(x)

)
k(x/ε, z/ε) a(d(z/ε))

=ϕ(1/ε)

∫ 1/δ

δ

∫

Sd−1

(
f(x+ z)− f(x)

)
k(x/ε, z/ε)

̺0(dθ) + κ(r/ε, dθ)

r/εϕ(r/ε)
d(r/ε)

=

∫ 1/δ

δ

∫

Sd−1

(
f(x+ z)− f(x)

)
k(x/ε, z/ε)

ϕ(1/ε)

rϕ(r/ε)
̺0(dθ) dr

+

∫ 1/δ

δ

∫

Sd−1

(
f(x+ z)− f(x)

)
k(x/ε, z/ε)

ϕ(1/ε)

rϕ(r/ε)
κ(r/ε, dθ) dr

= : Lε,δ
2,1f(x) + L

ε,δ
2,2f(x).

By (3.2) and (3.3) as well as the dominated convergence theorem, we know that for every fixed δ ∈ (0, 1),

lim
ε→0

sup
x∈Rd

|Lε,δ
2,2f(x)| = 0.

Again by (the first condition in) (3.3), (3.4) and (3.6) as well as the dominated convergence theorem, one
can verify that for every fixed δ ∈ (0, 1),

lim
ε→0

sup
x∈Rd

|Lε,δ
2,1f(x)− L̄

ε,δ
2 f(x)| = 0. (3.14)

Putting all the estimates together, and letting ε→ 0 and then δ → 0, we get the desired assertion. �

Proof of Theorem 3.2. (1) Recall that L
ε is the infinitesimal generator for the Markov process Xε :=(

(Xε
t )t>0; (Px)x∈Rd

)
. For every x ∈ Rd, t > 0, f ∈ C2

b (R
d) and stopping time τ ,

Exf(X
ε
t∧τ ) = f(x) + Ex

[∫ t∧τ

0
L
εf(Xε

s ) ds

]
. (3.15)

For any R > 1, we write

L
εf(x) =ϕ(1/ε)

∫

{|z|6R/ε}

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉

)
k(x/ε, z)Π(dz)

+ ϕ(1/ε)

∫

{|z|>R/ε}

(
f(x+ εz) − f(x)

)
k(x/ε, z)Π(dz)

+ εϕ(1/ε)
〈
∇f(x), bR/ε(x/ε) + b(x/ε)

〉

= :
3∑

i=1

Iε,Ri (x),

where bR/ε(x) is defined by (1.6). Using (3.13) and following the proof of Lemma 3.3, we have

sup
x∈Rd

|Iε,R1 (x)| � ‖∇2f‖∞ε2ϕ(1/ε)
(∫

{|z|61}
|z|2 Π(dz) +

∫ R/ε

1

r

ϕ(r)
dr

)
,

sup
x∈Rd

|Iε,R2 (x)| � ‖f‖∞ϕ(1/ε)
∫ ∞

R/ε

1

rϕ(r)
dr,

sup
x∈Rd

|Iε,R3 (x)| � ‖∇f‖∞εϕ(1/ε)
(
‖b‖∞ +

∫ R/ε

1

1

ϕ(r)
dr

)
.
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Hence, for every R > 1,

sup
x∈Rd

|Lεf(x)| �‖∇2f‖∞ε2ϕ(1/ε)
(
1 +

∫ R/ε

1

r

ϕ(r)
dr

)

+ ‖f‖∞ϕ(1/ε)
∫ ∞

R/ε

1

rϕ(r)
dr + ‖∇f‖∞εϕ(1/ε)

(
1 +

∫ R/ε

1

1

ϕ(r)
dr

)
.

(3.16)

(2) In the following, for every l > 0, let fl ∈ C3
b (R

d) be such that

fl(x) =

{
0 |x| 6 l/2,

1 |x| > l,
(3.17)

and ‖∇ifl‖∞ � l−i for 0 6 i 6 3. For any fixed y ∈ Rd, we set f yl (x) := fl(x − y). Then, according to
(3.16), we have

sup
x,y∈Rd

|Lεf yR(x)| �R−2ε2ϕ(1/ε)

(
1 +

∫ R/ε

1

r

ϕ(r)
dr

)
+ ϕ(1/ε)

∫ ∞

R/ε

1

rϕ(r)
dr

+R−1εϕ(1/ε)

(
1 +

∫ R/ε

1

1

ϕ(r)
dr

)
.

This along with (3.15) yields that for any T > 0,

P0

(
sup

t∈[0,T ]
|Xε

t | > R

)
� E[fR(X

ε
T∧τεR

)] = E

[∫ T∧τεR

0
L
εfR(X

ε
s ) ds

]

� T

[
R−2ε2ϕ(1/ε)

(
1 +

∫ R/ε

1

r

ϕ(r)
dr

)
+ ϕ(1/ε)

∫ ∞

R/ε

1

rϕ(r)
dr

+R−1εϕ(1/ε)

(
1 +

∫ R/ε

1

1

ϕ(r)
dr

)]
.

Here and in what follows, τ εl := inf{t > 0 : |Xε
t −Xε

0 | > l}. Hence, according to (3.11), we have

lim
R→∞

sup
ε∈(0,1)

P0

(
sup

t∈[0,T ]
|Xε

t | > R
)
= 0. (3.18)

On the other hand, following the argument in (3.16), we can obtain that for every θ ∈ (0, 1) and y ∈ Rd,

sup
x∈Rd

|Lεf yθ (x)| �‖∇2f yθ ‖∞ε2ϕ(1/ε)
(
1 +

∫ θ/ε

1

r

ϕ(r)
dr

)
+ ‖f yθ ‖∞ϕ(1/ε)

∫ ∞

θ/ε

1

rϕ(r)
dr

+ ‖∇f yθ ‖∞εϕ(1/ε)
(
1 +

∫ θ/ε

1

1

ϕ(r)
dr

)

�θ−2εϕ(1/ε) + ϕ(1/ε)

∫ ∞

θ/ε

1

rϕ(r)
dr + θ−1εϕ(1/ε)

∫ θ/ε

1

1

ϕ(r)
dr.

It follows from (3.11) that for every θ ∈ (0, 1),

sup
ε∈(0,1)

sup
x,y∈Rd

|Lεf yθ (x)| 6 C(θ) <∞.

Therefore, for any stopping time τ with τ 6 T and any positive constant δ(ε) with limε→0 δ(ε) = 0,

P0

(
|Xε

τ+δ(ε) −Xε
τ | > θ

)
= E0

[
PXε

τ

(
|Xε

δ(ε) −Xε
0 | > θ

)]
6 E0

(
EXε

τ
fθ
(
Xε

τεθ∧δ(ε)

))

= E0

[
EXε

τ

(∫ τεθ∧δ(ε)

0
L
εfθ(X

ε
s ) ds

)]
6 C(θ)δ(ε),

which implies

lim
ε→0

P0

(
|Xε

τ+δ(ε) −Xε
τ | > θ

)
= 0. (3.19)

Due to (3.18) and (3.19) (see e.g. [1, Theorem 1]), we conclude that {Xε}{ε∈(0,1]} is tight in D([0,∞);Rd).
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(3) By (2), for any sequence {Xεn}n>1 with limn→∞ εn = 0, there is a subsequence {Xεnk }k>1 (which
we still denote by {Xεn}n>1 below for the notional simplicity) such that the distribution of {Xεn}n>1

on D([0,∞);Rd) equipped with the Skorohod topology converges weakly to a probability measure P̄ on
D([0,∞);Rd). Let

L̄f(x) =

∫

Rd

(
f(x+ z)− f(x)

)
k̄0(z)Π0(dz), (3.20)

which is the infinitesimal generator of the Lévy process as in the statement. In particular, the associated
martingale problem for (L̄, C2

c (R
d)) is unique. Thus, it suffices to verify that for any subsequence of

{εn}n>1, the limit distribution P̄ is the same as that of the solution to the martingale problem for the
operator (L̄, C2

c (R
d)).

Due to the fact that the distribution of {Xεn}n>1 converges weakly to P̄ in D([0,∞);Rd), there exist

a probability space (Ω̃, F̃ , P̃), and a series of stochastic processes {X̃n}n>1 and X̃ defined on it, such

that the distribution of X̃n under P̃ is the same as that of Xεn under P0 for any n > 1, the distribution

of X̃ is the same as P̄, and X̃n converges to X̃ almost surely in D([0,∞);Rd).
Note again that Xε := ((Xε

t )t>0; (P
x)x∈Rd) is a solution to the martingale problem for the operator

(Lε, C2
c (R

d)). Then, for every 0 < s1 < s2, · · · < sk < s 6 t, f ∈ C2
c (R

d) and G ∈ Cb(R
dk),

Ẽ

[(
f(X̃n

t )− f(X̃n
s )−

∫ t

s
L
εnf(X̃n

r ) dr

)
G
(
X̃n

s1 , · · · , X̃
n
sk

)]
= 0.

According to (3.16), Lemma 3.3 and the dominated convergence theorem,

lim
n→∞

Ẽ

[(
f(X̃n

t )− f(X̃n
s )−

∫ t

s
L̄
εnf(X̃n

r ) dr

)
G
(
X̃n

s1 , · · · , X̃
n
sk

)]
= 0, (3.21)

where L̄
εf(x) is defined by (3.12). Set F : Td ×Rd → R and F̄ : Rd → R by

F (x, y) :=

∫

Rd

(
f(y + z)− f(y)

)
k̄(x, z)Π0(dz), F̄ (y) :=

∫

Td

F (x, y)µ(dx),

where k̄(x, z) is given by (3.6). Then, L̄εf(x) = F (x/ε, x) and L̄f(x) = F̄ (x). Therefore,

Ẽ

[∣∣∣∣
∫ t

s
L̄
εnf(X̃n

r ) dr −
∫ t

s
L̄f(X̃r) dr

∣∣∣∣
]

� Ẽ

[∣∣∣∣
∫ t

s

(
F (X̃n

r /εn, X̃
n
r )− F̄ (X̃n

r )
)
dr

∣∣∣∣
]
+ Ẽ

[∣∣∣∣
∫ t

s

(
F̄ (X̃n

r )− F̄ (X̃r)
)
dr

∣∣∣∣
]

=: In1 + In2 .

Following the proof of (3.19), we have that for any θ > 0 and δ(ε) > 0 with limε→0 δ(ε) = 0,

lim
ε→0

P0

(
sup

06s6t6s+δ(ε)
|Xε

t −Xε
s | > θ

)
= 0.

Clearly,

E0

[
sup

06s6t6s+δ(ε)
|Xε

t −Xε
s | ∧ 1

]
6 P0

(
sup

06s6t6s+δ(ε)
|Xε

t −Xε
s | > θ

)
+ θ.

By letting ε→ 0 first and then θ → 0 in the inequality above, we get that (2.3) holds as limε→0 ρ(1/ε) =
limε→0 ϕ(1/ε) = ∞. Thus, by Lemma 2.2 and the fact that F is uniformly continuous,

lim
n→∞

Ẽ

[∣∣∣∣
∫ t

s

(
F (X̃n

r /εn, X̃
n
r )− F̄ (X̃n

r )
)
dr

∣∣∣∣
2
]
= 0, (3.22)

and so limn→∞ In1 = 0. On the other hand, by the facts that X̃n converges almost surely in D([0,∞);Rd)

to X̃ and F̄ ∈ Cb(R
d), as well as the dominated convergence theorem, it holds that limn→∞ In2 = 0. Thus,

we obtain

lim
n→∞

Ẽ

[∣∣∣∣
∫ t

s
L̄
εnf(X̃n

r ) dr −
∫ t

s
L̄f(X̃r) dr

∣∣∣∣
]
= 0.

Putting the estimate above into (3.21) and letting n→ ∞, we get

Ẽ

[(
f(X̃t)− f(X̃s)−

∫ t

s
L̄f(X̃r) dr

)
G
(
X̃s1 , · · · , X̃sk

)]
= 0.
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Thus, (X̃, P̃) is a solution for the martingale problem (L̄, C2
c (R

d)). This shows that X̃ is a pure jump
Lévy process with Lévy measure k̄0(z)Π0(dz). �

3.2. Invariance principle with recentering: α ∈ [1, 2). In this subsection, we are concerned with
the case that α ∈ [1, 2) and will present scaling limit theorems that require recentering for Xε of (3.9).
Recall that Π0(dz) is defined by (3.4) and k̄0(z) :=

∫
Td

∫
Td k̄(x, z)µ(dx), where µ is the unique invariant

probability measure of X on Td, and k̄(x, z) is the function in (3.6). The following is the main result of
this subsection.

Theorem 3.4. Suppose that (3.1) and (3.6) hold, and that Assumption (A3) is satisfied.

(i) Assume that (3.3) holds with α = 1. Let

Y ε
t := Xε

t − εϕ(1/ε)(b̄1/ε + b̄)t = ε
(
Xϕ(1/ε)t − ϕ(1/ε)(b̄1/ε + b̄)t

)
, t > 0,

where b̄1/ε :=
∫
Td b1/ε(x)µ(dx) and b̄ :=

∫
Td b(x)µ(dx). Then, as ε → 0, (Y ε

t )t>0 converges

weakly in D([0,∞);Rd) to a Cauchy (i.e. 1-stable) Lévy process whose generator L̄ is

L̄f(x) =

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z1{|z|61}〉

)
k̄0(z)Π0(dz). (3.23)

(ii) Assume that (3.3) holds with α ∈ (1, 2). Let

Y ε
t := Xε

t − εϕ(1/ε)(b̄∞ + b̄)t = ε
(
Xϕ(1/ε)t − ϕ(1/ε)(b̄∞ + b̄)t

)
, t > 0,

where b̄∞ :=
∫
Td b∞(x)µ(dx). Then, as ε → 0, (Y ε

t )t>0 converges weakly in D([0,∞);Rd) to an

α-stable Lévy process whose generator L̄ is

L̄f(x) =

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉

)
k̄0(z)Π0(dz).

Note that when (3.3) holds with α ∈ (1, 2) (resp. α = 1), limε→0 εϕ(1/ε) = ∞ (resp. limε→0 εϕ(1/ε) >
0). So in assumptions of Theorem 3.4, one really needs to recenter Xε in order to have a limit.

To prove Theorem 3.4, we need two lemmas. The first one is analogous to Lemma 3.3. Recall that the
infinitesimal generator L

ε, given by (3.10), of the process Xε can be written as

L
εf(x) = L

ε
0f(x) + εϕ(1/ε)

〈
∇f(x), b1/ε(x/ε) + b(x/ε)

〉

and

L
ε
0f(x) := ϕ(1/ε)

∫

Rd

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉1{|z|61/ε}

)
k(x/ε, z)Π(dz).

Note that, according to (3.13),
∫

{|z|>1}
|z|k(x, z)Π(dz) �

∫ ∞

1

1

ϕ(r)
dr,

and so we can define

b∞(x) =

∫

{|z|>1}
zk(x, z)Π(dz) (3.24)

provided ∫ ∞

1

1

ϕ(r)
dr <∞. (3.25)

In this case,

L
εf(x) = L

ε
1f(x) + εϕ(1/ε) 〈∇f(x), b∞(x/ε) + b(x/ε)〉 ,

where

L
ε
1f(x) = ϕ(1/ε)

∫

Rd

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉

)
k(x/ε, z)Π(dz). (3.26)

Lemma 3.5. (i) For any ε ∈ (0, 1) and x ∈ Rd, define

L
ε
0,xf(y) := ϕ(1/ε)

∫

Rd

(
f(y + εz)− f(y)− 〈∇f(y), εz〉1{|z|61/ε}

)
k(x/ε, z)Π(dz). (3.27)

Suppose that (3.3) holds with α = 1. Then, for every f ∈ C2
b (R

d),

lim
ε→0

sup
x,y∈Rd

|Lε
0,xf(y)− L̄

ε
0,xf(y)| = 0, (3.28)
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where

L̄
ε
0,xf(y) :=

∫

Rd

(
f(y + z)− f(y)− 〈∇f(y), z1{|z|61}〉

)
k̄(x/ε, z)Π0(dz).

(ii) For any ε ∈ (0, 1) and x ∈ Rd, define

L
ε
1,xf(y) = ϕ(1/ε)

∫

Rd

(
f(y + εz)− f(y)− 〈∇f(y), εz〉

)
k(x/ε, z)Π(dz).

Suppose that (3.3) holds with 1 < α < 2. Then, for every f ∈ C2
b (R

d),

lim
ε→0

sup
x,y∈Rd

|Lε
1,xf(y)− L̄

ε
1,xf(y)| = 0, (3.29)

where

L̄
ε
1,xf(y) :=

∫

Rd

(
f(y + z)− f(y)− 〈∇f(y), z〉

)
k̄(x/ε, z)Π0(dz).

Proof. We only prove (ii), since the proof of (i) is similar and simpler.
Suppose that 1 < α < 2. Then, by (3.3), we have (3.25), and so L

ε
1,xf is well defined for any ε ∈ (0, 1)

and x ∈ Rd. Moreover, according to (3.3) and 1 < α < 2,

lim
ε→0

ε2ϕ(1/ε) = 0, lim
δ→0

(∫ δ

0

r

ϕ(r)
dr +

∫ ∞

1/δ

1

ϕ(r)
dr

)
= 0,

lim
δ→0

lim sup
ε→0

(
ε2ϕ(1/ε)

∫ δ/ε

1

r

ϕ(r)
dr

)
= 0, lim

δ→0
lim sup

ε→0

(
εϕ(1/ε)

∫ ∞

1/(δε)

1

ϕ(r)
dr

)
= 0.

(3.30)

The proof for (3.30) is similar to that of (3.11), and we omit the details.
For every δ ∈ (0, 1) and x ∈ Rd, we write

L
ε
1,xf(y) =ϕ(1/ε)

(∫

{|z|6δ/ε}
+

∫

{δ/ε<|z|<1/(δε)}
+

∫

{|z|>1/(δε)}

)

(
f(y + εz)− f(y)− 〈∇f(y), εz〉

)
k(x/ε, z)Π(dz)

= :

3∑

i=1

L
ε,δ
1,x,if(y)

and

L̄
ε
1,xf(y) =

(∫

{|z|6δ}
+

∫

{δ<|z|<1/δ}
+

∫

{|z|>1/δ}

)
(
f(y + z)− f(y)− 〈∇f(y), z〉

)
k̄(x/ε, z)Π0(dz)

= :

3∑

i=1

L̄
ε,δ
1,x,if(y).

By (3.4) and (3.30), it is obvious that

lim
δ→0

sup
ε∈(0,1)

sup
x,y∈Rd

(
|L̄ε,δ

1,x,1f(y)|+ |L̄ε,δ
1,x,3f(y)|

)

� lim
δ→0

(
‖∇2f‖∞

∫ δ

0

r

ϕ(r)
dr + ‖f‖∞

∫ ∞

1/δ

1

rϕ(r)
dr + ‖∇f‖∞

∫ ∞

1/δ

1

ϕ(r)
dr

)
= 0.

On the other hand, according to (3.13), we have

sup
x,y∈Rd

|Lε,δ
1,x,1f(y)| � ‖∇2f‖∞ε2ϕ(1/ε)

∫

{|z|6δ/ε}
|z|2 Π(dz)

� ‖∇2f‖∞ε2ϕ(1/ε)
(∫

{|z|61}
|z|2 Π(dz) +

∫ δ/ε

1

r

ϕ(r)
dr

)

and

sup
x,y∈Rd

|Lε,δ
1,x,3f(y)| � ϕ(1/ε)

∫

{|z|>1/(δε)}

(
‖f‖∞ + ε‖∇f‖∞|z|

)
Π(dz)
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�
(
‖f‖∞ + ‖∇f‖∞

)
(
ϕ(1/ε)

∫ ∞

1/(δε)

1

rϕ(r)
dr + ϕ(1/ε)ε

∫ ∞

1/(δε)

1

ϕ(r)
dr

)

�
(
‖f‖∞ + ‖∇f‖∞

)
ϕ(1/ε)ε

∫ ∞

1/(δε)

1

ϕ(r)
dr.

These estimates along with (3.30) yields that

lim
δ→0

lim sup
ε→0

sup
x,y∈Rd

(
|Lε,δ

1,x,1f(y)|+ |Lε,δ
1,x,3f(y)|

)
= 0.

Following the argument for (3.14), we can also obtain that for every fixed δ ∈ (0, 1),

lim
ε→0

sup
x,y∈Rd

|Lε,δ
1,x,2f(y)− L̄

ε,δ
1,x,2f(y)| = 0.

Combining all the estimates above, by first letting ε → 0 and then δ → 0, we get the assertion
(3.29). �

In the next lemma, we use the convention 1/0 = ∞.

Lemma 3.6. Suppose that Assumption (A3) holds. For any ε ∈ [0, 1], let ψε ∈ D(L) be the solution to

Lψε(x) = −b1/ε(x)− b(x) + b̄1/ε + b̄, x ∈ T
d (3.31)

with µ(ψε) = 0. Then,

‖ψε‖∞ + ‖∇ψε‖∞ � 1 +

∫ 1/ε

1

1

ϕ(r)
dr. (3.32)

Proof. According to (3.13),

sup
x∈Rd

|b1/ε(x)| �
∫

{1<|z|61/ε}
|z|Π(dz) �

∫ 1/ε

1

1

ϕ(r)
dr.

This along with the fact that b(x) ∈ Cb(R
d) and (A3) yields the desired assertion. �

Now, we are in a position to present the

Proof of Theorem 3.4. (1) Suppose that Assumption (A3) holds. We first assume that the solution ψε

of (3.31) satisfies that µ(ψε) = 0 and also ψε ∈ C2(Td). Set Φε(x) := x+ εψε(x/ε). Define

Zε
t := Y ε

t + εψε(Xε
t /ε) = Φε(X

ε
t )− εϕ(1/ε)(b̄1/ε + b̄)t, t > 0.

For f ∈ C2
b (R

d), define

fε,s(x) := f
(
x− εϕ(1/ε)(b̄1/ε + b̄)s

)
and Fε(s, x) = fε,s(Φε(x)).

Clearly f(Zε
t ) = Fε(t,X

ε
t ). Since Xε := ((Xε

t )t>0; (Px)x∈Rd) is a solution to the martingale problem for

the operator L
ε, it holds that for any x ∈ Rd, t > 0, f ∈ C3

b (R
d) and any stopping time τ ,

Ex

[
f(Zε

t∧τ )
]
= f

(
x+ εψε(ε−1x)

)
+ Ex

[∫ t∧τ

0

(
∂Fε

∂s
(s,Xε

s ) + L
εFε(s, ·)(Xε

s )

)
ds

]
.

Note that
∂Fε

∂s
(s, x) = −εϕ(1/ε)

〈
∇fε,s(Φε(x)), b̄1/ε + b̄

〉
.

Applying Lemma 2.1 with R = 1 and M = 1/ε, we find that

L
εFε(s, ·)(x)

= ϕ(1/ε)

∫

Rd

(
fε,s(Φε(x+ εz))− fε,s(Φε(x))− 〈∇(fε,s(Φε(·)))(x), εz〉1{|z|61}

)
k(x/ε, z)Π(dz)

+ εϕ(1/ε)〈∇(fε,s(Φε(·)))(x), b(x/ε)〉

= ϕ(1/ε)

∫

Rd

(
fε,s(Φε(x+ εz))− fε,s(Φε(x))− 〈∇(fε,s(Φε(·)))(x), εz〉1{|z|61/ε})k(x/ε, z)Π(dz)

+ εϕ(1/ε)〈∇(fε,s(Φε(·)))(x), b1/ε(x/ε) + b(x/ε)
〉

= ϕ(1/ε)

∫

Rd

(
fε,s(Φε(x) + εz)− fε,s(Φε(x))− 〈∇fε,s(Φε(x)), εz〉1{|z|61/ε})k(x/ε, z)Π(dz)
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+ εϕ(1/ε)

〈
∇fε,s(Φε(x)),

∫

Rd

(
ψε(x/ε + z)− ψε(x/ε) − 〈∇ψε(x/ε), z〉1{|z|61/ε}

)
k(x/ε, z)Π(dz)

〉

+ εϕ(1/ε)
〈
∇fε,s(Φε(x

)
), b1/ε(x/ε) + b(x/ε)

〉

+ εϕ(1/ε)
〈
∇fε,s(Φε(x

)
),∇ψε(x/ε) · (b1/ε(x/ε) + b(x/ε))

〉

+ ϕ(1/ε)

∫

Rd

Kε(x, z)k(x/ε, z)Π(dz)

= L
ε
0,xfε,s(Φε(x)) + εϕ(1/ε)〈∇fε,s(Φε(x)), (Lψ

ε + b1/ε + b)(x/ε)〉 + ϕ(1/ε)

∫

Rd

Kε(x, z)k(x/ε, z)Π(dz),

where L
ε and L

ε
0,x are defined by (3.10) and (3.27) respectively, and Kε(x, z) satisfies that

|Kε(x, z)|
� (ε3‖∇3f‖∞ + ε2‖∇2f‖∞)

(
1 + ‖ψε‖∞ + ‖∇ψε‖∞

)3(|z|21{|z|61} + |z|1{1<|z|61/ε} + 1{|z|>1/ε}

)

+ ‖f‖∞1{|z|>1/ε}.

According to all estimates above, (3.31), (3.13) and (3.32), we have that

∂Fε

∂s
(s, x) + L

εFε(s, ·)(x) = L
ε
0,xfε,s(Φε(x))

+ εϕ(1/ε)
〈
∇fε,s(Φε(x)),

(
Lψε + bε + b− b̄ε − b̄

)
(x/ε)

〉

+ ϕ(1/ε)

∫

Rd

Kε(x, z)k(x/ε, z)Π(dz)

= L
ε
0,xfε,s(Φε(x)) +Hε(x),

(3.33)

where

sup
x∈Rd

|Hε(x)| � ε2ϕ(1/ε)
( 3∑

i=2

‖∇if‖∞
)(

1+

∫ 1/ε

1

1

ϕ(r)
dr

)3(
1+

∫ 1/ε

1

1

ϕ(r)
dr+

∫ ∞

1/ε

1

rϕ(r)
dr

)

+ ϕ(1/ε)‖f‖∞
∫ ∞

1/ε

1

rϕ(r)
dr.

(3.34)

(2) For any l > 1, let fl be the function defined by (3.17). Then, for any x, y ∈ Rd,

|Lε
0,xfl(y)| 6 ϕ(1/ε)

∣∣∣∣∣

∫

{|z|61/ε}

(
fl(y + εz)− fl(y)− 〈∇fl(y), εz〉

)
k(x/ε, z)Π(dz)

∣∣∣∣∣

+ ϕ(1/ε)

∣∣∣∣∣

∫

{1/ε<|z|6l/ε}

(
fl(y + εz)− fl(y)

)
k(x/ε, z)Π(dz)

∣∣∣∣∣

+ ϕ(1/ε)

∣∣∣∣∣

∫

{|z|>l/ε}

(
fl(x+ εz) − fl(x)

)
k(x/ε, z)Π(dz)

∣∣∣∣∣

� ‖∇2fl‖∞ϕ(1/ε)ε2
∫

{|z|61/ε}
|z|2 Π(dz) + ‖∇fl‖∞εϕ(1/ε)

∫

{1/ε<|z|6l/ε}
|z|Π(dz)

+ ‖fl‖∞ϕ(1/ε)
∫

{|z|>l/ε}
Π(dz)

� l−2ε2ϕ(1/ε)

(
1 +

∫ 1/ε

1

r

ϕ(r)
dr

)
+ l−1εϕ(1/ε)

∫ l/ε

1/ε

1

ϕ(r)
dr

+ ϕ(1/ε)

∫ ∞

l/ε

1

rϕ(r)
dr.

(3.35)
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Let Fε,l(t, x) := fl
(
Φε(x) − εϕ(1/ε)(b̄1/ε + b̄)t

)
. Then, combining (3.33), (3.34) with (3.35), we find

that

sup
x∈Rd

sup
s>0

∣∣∣∂Fε,l

∂s
(s, x) +L

εFε,l(s, ·)(x)
∣∣∣

� l−2ε2ϕ(1/ε)


1 +

∫ 1/ε

1

r

ϕ(r)
dr +

(∫ 1/ε

1

1

ϕ(r)
dr

)4

+

(∫ ∞

1/ε

1

rϕ(r)
dr

)4



+ l−1εϕ(1/ε)


ε+

∫ l/ε

1/ε

1

ϕ(r)
dr + ε

(∫ 1/ε

1

1

ϕ(r)
dr

)4

+ ε

(∫ ∞

1/ε

1

rϕ(r)
dr

)4



+ ϕ(1/ε)

∫ ∞

1/ε

1

rϕ(r)
dr.

(3.36)

Note that in the arguments above for (3.36) we need that ψε ∈ C2(Td). For general ψε ∈ D(L) satisfying
(3.31), there exists a sequence of function {ψε

k}k>1 ⊂ C2(Td) such that µ(ψε
k) = 0 for all k > 1 and

lim
k→∞

sup
x∈Td

(
∣∣ψε

k(x)− ψε(x)
∣∣+
∣∣Lψε

k(x)− Lψε(x)
∣∣) = 0.

This along with (1.5) yields that

sup
k>1

(
‖ψε

k‖∞ + ‖∇ψε
k‖∞

)
� 1 +

∫ 1/ε

1

1

ϕ(r)
dr.

For the arguments above, we have used the facts that Lψε
k ∈ C(Td) with µ(Lψε

k) = 0 for all k > 1 and
the solution to (1.4) with f = Lψε

k is unique. By a standard approximation procedure, it is not difficult
to verify that (3.36) still holds true for every ψε ∈ D(L) satisfying (3.31).

We now assume that (3.3) holds with α = 1. It follows from (3.3) that

ϕ(1/ε)

∫ 1/ε

1

r

ϕ(r)
dr �

∫ 1/ε

1
r(εr)−1−η0 dr � ε−2.

Estimating other terms in the right hand side of (3.36) by the same way as above, we get

lim
R→∞

sup
ε∈(0,1)

sup
x∈Rd

sup
s>0

∣∣∣∂Fε,R

∂s
(s, x) +L

εFε,R(s, ·)(x)
∣∣∣ = 0.

Since for every R > 1 and T > 0

P0

(
sup

t∈[0,T ]
|Zε

t | > R
)
� EfR(Z

ε
T∧τεR

) = E

[∫ T∧τεR

0

(∂Fε,R

∂s
(s,Xε

s ) + L
εFε,R(s, ·)(Xε

s )
)
ds

]

� T sup
x∈Rd

sup
s>0

∣∣∣∣
∂Fε,R

∂s
(s, x) + L

εFε,R(s, ·)(x)
∣∣∣∣ ,

we conclude that

lim
R→∞

sup
ε∈(0,1)

P0

(
sup

t∈[0,T ]
|Zε

t | > R

)
= 0. (3.37)

According to the argument for (3.35), we can also obtain that for every θ ∈ (0, 1),

sup
x∈Rd

sup
s>0

∣∣∣∂Fε,θ

∂s
(s, x) + L

εFε,θ(s, ·)(x)
∣∣∣ �θ−3ε2ϕ(1/ε)

(
1 +

∫ 1/ε

1

r

ϕ(r)
dr +

(∫ 1/ε

1

1

ϕ(r)
dr
)4)

+ ϕ(1/ε)

∫ ∞

1/ε

1

rϕ(r)
dr.

By this estimate and the fact that (3.3) holds with α = 1, we have

sup
ε∈(0,1)

sup
x∈Rd

sup
s>0

∣∣∣∂Fε,θ

∂s
(s, x) + L

εFε,θ(s, ·)(x)
∣∣∣ � C(θ)

for some constant C(θ) > 0. This together with the proof of (3.37) gives us that for any increasing
function δ(ε) with limε→0 δ(ε) = 0 and stopping time τ with τ 6 T

lim
ε→0

P0

(
|Zε

τ+δ(ε) − Zε
τ | > θ

)
= 0. (3.38)
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Therefore, it follows from (3.37) and (3.38) as well as [1, Theorem 1] that the distribution of {Zε}ε∈(0,1)
is tight in D([0,∞);Rd).

(3) Let {Zεn}n>1 be a sequence of processes with limn→∞ εn = 0. There is a subsequence {Zεnk}k>1

(which will be still denoted by {Zεn}n>1 below for simplicity) such that the distribution of Zεn on
D([0,∞;Rd) converges weakly under the Skorohod topology to a probability measure P̄ on D([0,∞);Rd).
Note that

Y ε
t = Zε

t + εψε(Xε
t /ε), t > 0.

By (3.32), limε→0 ε‖ψε‖∞ = 0. This implies that the distribution of (Y εn
t )t>0 converges weakly in

D([0,∞);Rd) to P̄. Similar to the part (3) of the proof for Theorem 3.2, it suffices to verify that for
any subsequence {εn}n>1, the limit distribution P̄ is the same as that of the solution to the martingale
problem for L̄ defined by (3.23).

For every 0 < s1 < s2, · · · < sk < s 6 t, f ∈ C2
b (R

d) and G ∈ Cb(R
dk), by (3.33),

E

[(
f(Zε

t )− f(Zε
s)−

∫ t

s

(∂Fε

∂r
(r,Xε

r ) + L
εFε(r, ·)(Xε

r )
)
dr
)
G(Zε

s1 , · · · , Z
ε
sk
)
]

= E0

[(
f(Zε

t )− f(Zε
s)−

∫ t

s
(Lε

0,Xε
r
fε,r(Φε(X

ε
r )) +Hε(X

ε
r )) dr

)
G(Zε

s1 , · · · , Z
ε
sk
)
]

= 0.

According to condition (3.3) with α = 1 and (3.34), limε→0 supx∈Rd |Hε(x)| = 0. Combining this with
(3.28) further yields

lim
ε→0

E0

[(
f(Zε

t )− f(Zε
s)−

∫ t

s
L̄
ε
0,Xε

r
f(Zε

r ) dr
)
G
(
Zε
s1 , · · · , Z

ε
sk

)]
= 0.

Note that, by tracking the proof of Lemma 2.2, we can verify that if (2.3) holds with (Xε
t )t>0 replaced

by (Zε
t )t>0, then for every bounded continuous function F : Td ×Rd → R and 0 < s < t,

lim
ε→0

Ex

[∣∣∣∣
∫ t

s
F (Xε

r/ε, Z
ε
r ) dr −

∫ t

s
F̄ (Zε

r ) dr

∣∣∣∣
]
= 0,

where F̄ is the same function as in Lemma 2.2. Using this property and (3.38), we can follow the argument
for (3.22) to obtain

lim
ε→0

E0

[∣∣∣∣
∫ t

s
L̄
ε
0,Xε

r
f(Zε

r ) dr −
∫ t

s
L̄f(Zε

r ) dr

∣∣∣∣
2
]
= 0.

Hence,

lim
ε→0

E0

[(
f(Zε

t )− f(Zε
s)−

∫ t

s
L̄f(Zε

r ) dr

)
G(Zε

s1 , · · · , Z
ε
sk
)

]
= 0,

where L̄ is defined in (3.23). Notice further that the distribution of {Zεn}n>1 converges weakly to P̄.
According to the proof of Theorem 3.2 (in particular, by applying the Skorohod representation theorem),
letting ε = εn and taking εn → 0 in the equation above give us

Ē

[(
f(Zt)− f(Zs)−

∫ t

s
L̄f(Zr) dr

)
G(Zs1 , · · · , Zsk)

]
= 0,

where (Zt)t>0 denotes the coordinate process on D([0,∞);Rd), and Ē denotes the expectation with
respect to P̄. This implies that the distribution of P̄ is a solution to the martingale problem for the Lévy
operator L̄. By now we have finished the proof for the assertion (i) of Theorem 3.4.

(4) Next, we assume that condition (3.3) holds with α ∈ (1, 2). In this case, b∞(x) is well defined.
According to Assumption (A3), let ψ ∈ D(L) be the unique solution to the following equation

Lψ(x) = −b∞(x)− b(x) + b̄∞ + b̄, x ∈ T
d

with µ(ψ) = 0. By the approximation argument as in Step (2), without loss of generality we can suppose
that ψ ∈ C2(Td). For every f ∈ C3

b (R
d), define

Fε(s, x) := f(x+ εψ(x/ε) − εϕ(1/ε)(b̄∞ + b̄)s).



PERIODIC HOMOGENIZATION OF NON-SYMMETRIC LÉVY-TYPE PROCESSES 21

Applying Lemma 2.1 with R = 1 and M = ∞, and following the same arguments for (3.33) and (3.36),
we obtain

∂Fε

∂s
(s, x) + L

εFε(s, ·)(x) = L
ε
1,xfε,s(Φε(x)) +Hε(x),

where Φε(x) = x+ εψ(x/ε), fε,s(x) = f
(
x− εϕ(1/ε)(b̄∞ + b̄)s

)
, and Hε satisfies that

sup
x∈Rd

|Hε(x)| �
( 3∑

i=2

‖∇if‖∞
)
ϕ(1/ε)ε2

(∫

{|z|61}
|z|2 Π(dz) +

∫ ∞

1

r

ϕ(r)
dr

)

�
(

3∑

i=2

‖∇if‖∞
)
ϕ(1/ε)ε2.

In particular,
lim
ε→0

sup
x∈Rd

|Hε(x)| = 0.

Using these estimates and repeating the proof for the assertion (i) (in particular, applying (3.29) instead
of (3.28)), we obtain the assertion (ii) of Theorem 3.4. �

4. Homogenization: diffusive scaling

In this section, we treat the case that the jumping measure for the non-local operator L of (1.1) has
a finite second moment, i.e., ∫

Rd

|z|2 Π(dz) <∞. (4.1)

Under this condition, it is natural to conjecture that, after appropriate scaling, X would converge to
Brownian motion. Thus we will take the scaling function ρ(r) = r2 in (2.1), and consider the limit of the
scaled process Xε = (Xε

t )t>0 := (εXt/ε2)t>0. Here is the main result of this section.

Theorem 4.1. Suppose that Assumption (A3) and (4.1) hold. Let

Y ε
t := Xε

t − (b̄∞ + b̄)t/ε = ε
(
Xt/ε2 − (b̄∞ + b̄)t/ε2), t > 0.

Then (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε → 0, to Brownian motion with the covariance

matrix A given by

A :=

∫

Td

∫

Rd

(
z + ψ(x+ z)− ψ(x)

)
⊗
(
z + ψ(x+ z)− ψ(x)

)
k(x, z)Π(dz)µ(dx),

where ψ ∈ D(L) is the unique solution to the following equation

Lψ(x) = −b∞(x)− b(x) + b̄∞ + b̄, x ∈ T
d (4.2)

such that µ(ψ) = 0.

Remark 4.2. Let {ei : 1 6 i 6 d} be the standard orthonormal basis of Rd. We claim that if the process
X is irreducible, and for each ei, 1 6 i 6 d, there exists a sequence {zik}k>1 ⊂ supp[Π] such that zik 6= 0
for all k > 1 and

lim
k→∞

zik = 0, lim
k→∞

zik/|zik| = ei, 1 6 i 6 d, (4.3)

then the covariance matrix A in Theorem 4.1 above is non-degenerate. Indeed, for any ξ ∈ Rd,

〈Aξ, ξ〉 =
∫

Td

∫

Rd

〈z + ψ(x+ z)− ψ(x), ξ〉2 Π(dz)µ(dx).

Since the process X is irreducible, for any t > 0, x ∈ Rd and open set U ⊂ Rd, Px(Xt ∈ U) > 0. Then,
µ(U) =

∫
Rd Px(Xt ∈ U)µ(dx) > 0; that is, supp[µ] = Td.

Now, assume that for some 0 6= ξ ∈ Rd, 〈Aξ, ξ〉 = 0. Note that, under (A3), by the dominated
convergence theorem, x 7→

∫
Rd〈z + ψ(x+ z)− ψ(x), ξ〉2 Π(dz) is a continuous function. This along with

the fact supp[µ] = Td yields that for every x ∈ Td,
∫

Rd

〈z + ψ(x+ z)− ψ(x), ξ〉2 Π(dz) = 0.

Without loss of generality, we assume that ξ = (ξ(1), · · · , ξ(d)) with ξ(1) > 0 (since ξ 6= 0). Let {z1k}k>1

be the sequence in the assumptions above. Then, we have

〈ψ(x+ z1k)− ψ(x), ξ〉 = 〈−z1k, ξ〉, k > 1, x ∈ T
d.
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By the mean value theorem and the fact that ‖∇ψ‖∞ <∞ (see Lemma 3.6 with ε = 0), we have

〈∇〈ψ(x), ξ〉, z1k/|z1k|〉+ o(|z1k|)/|z1k | = 〈z1k/|z1k|,−ξ〉, k > 1, x ∈ T
d.

Letting k → ∞ and using (4.3), we obtain

∂x1〈ψ(x), ξ〉 = −ξ(1) < 0, x ∈ T
d,

which obviously contradicts with the fact that x 7→ 〈ψ(x), ξ〉 is continuous and multivariate periodic.
Therefore, we have 〈Aξ, ξ〉 > 0 for every ξ 6= 0, and so A is non-degenerate.

We further note that the assumptions above, which guarantee that the covariance matrix A in Theorem
4.1 is non-degenerate, are weak in some sense. For example, let d = 2, Π(dz) = δe1(dz), and ξ = e2.
Then, for any x ∈ Td, since ψ is multivariate periodic,

∫

R2

〈z + ψ(x+ z)− ψ(x), ξ〉2 Π(dz) = (ψ(2)(x+ e1)− ψ(2)(x))
2 = 0

and so 〈Aξ, ξ〉 = 0, where we write ψ(x) = (ψ(1)(x), ψ(2)(x)). Hence, the associated covariance matrix A
in Theorem 4.1 is degenerate.

Note that the scaled process Xε is a strong Markov process, whose generator is given by

L
εf(x) = ε−2

∫

Rd

(
f(x+ εz)− f(x)− ε〈∇f(x), z〉1{|z|61}

)
k(x/ε, z)Π(dz) + ε−1〈∇f(x), b(x/ε)〉

=: Lε
1f(x) + ε−1〈∇f(x), b∞(x/ε) + b(x/ε)〉.

Here, b∞(x) is defined by (3.24), and

L
ε
1f(x) = ε−2

∫

Rd

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉

)
k(x/ε, z)Π(dz). (4.4)

Lemma 4.3. For every x ∈ Rd and f ∈ C3
b (R

d), define

L
ε
1,xf(y) = ε−2

∫

Rd

(
f(y + εz)− f(y)− 〈∇f(y), εz〉

)
k(x/ε, z)Π(dz). (4.5)

Then,

L
ε
1,xf(y) =

〈
∇2f(y),

1

2

∫

Rd

(z ⊗ z)k(x/ε, z)Π(dz)
〉
+G1,ε(x, y), (4.6)

where G1,ε(x, y) satisfies

lim
ε→0

sup
x,y∈Rd

|G1,ε(x, y)| = 0. (4.7)

Proof. According to the Taylor expansion, for any f ∈ C3
b (R

d) and R > 1,

f(y + εz) − f(y)− 〈∇f(y), εz〉

=

{
ε2〈∇2f(y), z ⊗ z〉/2 + ε3〈∇3f(y + θ1εz), z ⊗ z ⊗ z〉/6, |z| 6 R,

ε2〈∇2f(y + θ2εz), z ⊗ z〉/2, |z| > R

= ε2〈∇2f(y), z ⊗ z〉/2 +Hε(y, z),

where θ1, θ2 ∈ (0, 1) and

|Hε(y, z)| �
(
‖∇2f‖∞ + ‖∇3f‖∞

)(
ε3|z|31{|z|6R} + ε2|z|21{|z|>R}

)
. (4.8)

In particular, (4.6) holds with

G1,ε(x, y) = ε−2

∫

Rd

Hε(y, z)k(x/ε, z)Π(dz).

By (4.8), it holds that

|G1,ε(x, y)| 6 C1

(
3∑

i=2

‖∇if‖∞
)(

ε

∫

{|z|6R}
|z|3 Π(dz) +

∫

{|z|>R}
|z|2 Π(dz)

)

with any R > 0 and some C1 > 0 (which is independent of f , ε and R). Since
∫
Rd |z|2 Π(dz) < ∞, first

letting ε→ 0 and then R→ ∞ in the estimate above, we obtain (4.7). �
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Proof of Theorem 4.1. We first assume that ψ ∈ C2(Td). Let

Zε
t = Y ε

t + εψ(Xε
t /ε) = Xε

t + εψ(Xε
t /ε)− ε−1(b̄∞ + b̄)t, t > 0.

Recall that the generator of the process Xε is

L
εf(x) =L

ε
1f(x) + ε−1〈∇f(x), b∞(x/ε) + b(x/ε)〉,

where L
ε
1f is defined by (4.4). Then, for every f ∈ C3

b (R
d), x ∈ Rd and t > 0,

Ex[f(Z
ε
t )] = Ex[Fε(t,X

ε
t )] = f(Φε(x)) + Ex

[∫ t

0

(∂Fε

∂s
(s,Xε

s ) + L
εFε(s, ·)(Xε

s )
)
ds

]
,

where Fε(s, x) = f(Φε(x)− ε−1(b̄∞ + b̄)s) and Φε(x) = x+ εψ(x/ε).
Let fε,s(x) = f(x− ε−1(b̄∞ + b̄)s). Then, Fε(s, x) = fε,s(Φε(x)). Set Θε(x, z) := ψ(x/ε + z)− ψ(x/ε)

and

A(x) :=
1

2

∫

Rd

(
z + ψ(x+ z)− ψ(x)

)
⊗
(
z + ψ(x+ z)− ψ(x)

)
k(x, z)Π(dz).

Applying Lemma 2.1 with M = ∞, R→ 0, and using (4.2) and Lemma 4.3, we can verify that

∂Fε

∂s
(s, x) + L

εFε(s, ·)(x)

= −ε−1〈∇fε,s(Φε(x)), b̄∞ + b̄〉+ L
ε
1,xfε,s(Φε(x))

+ ε−1
〈
∇fε,s(Φε(x)),

∫ (
ψ(x/ε + z)−ψ(x/ε)−∇ψ(x/ε) · z

)
k(x/ε, z)Π(dz)

〉

+
1

2

〈
∇2fε,s(Φε(x)),

∫ (
2Θε(x, z)⊗ z +Θε(x, z) ⊗Θε(x, z)

)
k(x/ε, z)Π(dz)

〉

+Hε
1(x) + ε−1〈∇fε,s(Φε(x)), b∞(x/ε) + b(x/ε)〉 + ε−1〈∇fε,s(Φε(x)),∇ψ(x/ε) · (b∞(x/ε) + b(x/ε))〉

= L
ε
1,xfε,s(Φε(x)) +

1

2

〈
∇2fε,s(Φε(x)),

∫ (
2Θε(x, z)⊗ z+Θε(x, z)⊗Θε(x, z)

)
k(x/ε, z)Π(dz)

〉
+Hε

1(x)

=
1

2

〈
∇2fε,s

(
Φε(x)

)
,

∫ (
z +Θε(x, z)

)
⊗
(
z +Θε(x, z)

)
k(x/ε, z)Π(dz)

〉
+Hε

2(x)

= 〈∇2fε,s(Φε(x)), A(x/ε)〉 +Hε
2(x),

where in the first and the second equalities L
ε
1,x is defined by (4.5). Here Hε

1 satisfies

|Hε
1(x)| � ε

(
3∑

i=2

‖∇if‖∞
)(∫

{|z|6R}
|z|2 Π(dz) +

∫

{|z|>R}
|z|Π(dz)

)
,

thanks to the fact that ‖ψ‖∞ + ‖∇ψ‖∞ � 1 under Assumption (A3) (see Lemma 3.6 with ε = 0), and
Hε

2(x) = Hε
1(x)+G1,ε(x) with G1,ε as in Lemma 4.3. As explained in the proof of Theorem 3.4 the above

estimate still holds true when ψ ∈ D(L).
Given these estimates, the rest of the proof is very similar to that of Theorem 3.4, so we omit it (see

also the proof of Theorem 5.1 below). �

5. Homogenization: critical cases

Throughout this section, φ is a strictly positive and strictly decreasing function on R+ so that
limr→0 φ(r) = ∞, limr→0 r

−2φ(r)−1 = ∞,

lim
ε→0

(
ε
∫
{|z|61/ε} |z|3 Π(dz)

φ(ε)
+

∫
{|z|>1/ε} |z|Π(dz)

εφ(ε)

)
= 0, (5.1)

and

lim sup
ε→0

∫
{|z|61/ε} |z|2 Π(dz)

φ(ε)
<∞ (5.2)

with

A := lim
ε→0

∫
Td

∫
{|z|61/ε}(z ⊗ z)k(x, z)Π(dz)µ(dx)

φ(ε)
(5.3)

being a non-zero d× d-matrix.
We make four remarks on the assumptions above.
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(i) Since the matrix A is non-zero and limε→0 φ(ε) = ∞,
∫
Rd |z|2 Π(dz) has to be infinite.

(ii) In (5.1), (5.2) and (5.3), the domain {|z| 6 1/ε} can be replaced by {r0 6 |z| 6 1/ε} for any
fixed r0 > 1.

(iii) For 1{|z|>1}Π(dz) = 1{|z|>1}|z|−(d+α) dz with α ∈ (0, 2), condition (5.2) holds with φ(ε) = εα−2

but condition (5.1) fails.
(iv) For 1{|z|>1}Π(dz) = 1{|z|>1}|z|−d−2 dz, conditions (5.1) and (5.2) are satisfied with φ(ε) = log(1+

1/ε).

Under (5.1) and (5.2), we will take ρ(ε) = ε2/φ(1/ε) in (2.1), which corresponds to the scaling function
for critical cases in the setting of infinite second moments. The purpose of this section is to study the
limit behavior of the scaled process Xε := (Xε

t )t>0 defined by Xε
t = εXε−2φ(ε)−1t for any t > 0.

Theorem 5.1. Suppose that Assumption (A3), (5.1), (5.2) and (5.3) hold. Let

Y ε
t := Xε

t − ε−1φ(ε)−1(b̄∞ + b̄)t = ε
(
Xε−2φ(ε)−1t − ε−2φ(ε)−1(b̄∞ + b̄)t

)
, t > 0.

Then, (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε → 0, to Brownian motion with the non-zero

covariance matrix A defined by (5.3).

For the scaled process Xε = (Xε
t )t>0 := (εXε−2φ(ε)−1t)t>0 as above, its infinitesimal generator is given

by

L
εf(x) =

1

ε2φ(ε)

∫

Rd

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉1{|z|61}

)
k(x/ε, z)Π(dz) +

1

εφ(ε)
〈b(x/ε),∇f(x)〉

=: Lε
1f(x) +

1

εφ(ε)
〈b∞(x/ε) + b(x/ε),∇f(x)〉 ,

where

L
ε
1f(x) =

1

ε2φ(ε)

∫

Rd

(
f(x+ εz)− f(x)− 〈∇f(x), εz〉

)
k(x/ε, z)Π(dz).

Similar to Lemma 4.3, we have the following statement.

Lemma 5.2. For any x, y ∈ Rd and f ∈ C3
b (R

d), let

L
ε
1,xf(y) = ε−2φ(ε)−1

∫

Rd

(
f(y + εz) − f(y)− 〈∇f(y), εz〉

)
k(x/ε, z)Π(dz).

Suppose that (5.1) holds. Then, for every x, y ∈ Rd and f ∈ C3
b (R

d),

L
ε
1,xf(y) =

〈
∇2f(y),

1

2φ(ε)

∫

{|z|61/ε}
(z ⊗ z)k(x/ε, z)Π(dz)

〉
+G2,ε(x, y),

where G2,ε(x, y) satisfies that

lim
ε→0

sup
x,y∈Rd

|G2,ε(x, y)| = 0.

Proof. According to the Taylor expansion, for any f ∈ C3
b (R

d) and ε ∈ (0, 1),

f(x+ εz) − f(x)− 〈∇f(x), εz〉

=

{
ε2

2 〈∇2f(x), z ⊗ z〉+ ε3

6 〈∇3f(x+ θ1εz), z ⊗ z ⊗ z〉, |z| 6 1/ε,

〈∇f(x+ θ2εz), εz〉 − 〈∇f(x), εz〉, |z| > 1/ε

=
ε2

2
〈∇2f(x), z ⊗ z〉1{|z|61/ε} +Hε(x, z),

where θ1, θ2 ∈ (0, 1) and

|Hε(x, z)| �
(
‖∇f‖∞ + ‖∇3f‖∞

)(
ε3|z|31{|z|61/ε} + ε|z|1{|z|>1/ε}

)
.

In particular, we have

L
ε
1,xf(y) =

〈
∇2f(y),

1

2φ(ε)

∫

{|z|61/ε}
(z ⊗ z)k(x/ε, z)Π(dz)

〉
+G2,ε(x, y),

where

G2,ε(x, y) = ε−2φ(ε)−1

∫
Hε(y, z)k(x/ε, z)Π(dz).
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Furthermore,

|G2,ε(x, y)| 6 C1

(
3∑

i=1

‖∇if‖∞
)(

ε
∫
{|z|61/ε} |z|3 Π(dz)

φ(ε)
+

∫
{|z|>1/ε} |z|Π(dz)

εφ(ε)

)
(5.4)

with some C1 > 0 independent of f and ε. By (5.1), we can further obtain that

lim
ε→0

sup
x∈Rd

|G2,ε(x)| � lim
ε→0

(
ε
∫
{|z|61/ε} |z|3 Π(dz)

φ(ε)
+

∫
{|z|>1/ε} |z|Π(dz)

εφ(ε)

)
= 0.

The proof is finished. �

Proof of Theorem 5.1. (1) Let ψ ∈ D(L) be the unique solution to the following equation

Lψ(x) = −b∞(x)− b(x) + b̄∞ + b̄, x ∈ T
d

with µ(ψ) = 0. Let

Zε
t = Y ε

t + εψ(Xε
t /ε) = Xε

t + εψ(Xε
t /ε)− ε−1φ(ε)−1(b̄∞ + b̄)t, t > 0.

As explained in the proof of Theorem 3.4, without of loss generality we can assume that ψ ∈ C2(Td).
Noticing that ((Xε

t )t>0; (Px)x∈Rd) is a solution to the martingale problem for the operator L
ε, we obtain

that for every f ∈ C3
b (R

d), x ∈ Rd and t > 0,

Ex[f(Z
ε
t )] = f(Φε(x)) + Ex

[∫ t

0

(∂Fε

∂s
(s,Xε

s ) + L
εFε(s, ·)(Xε

s )
)
ds

]
,

where Fε(s, x) = f
(
Φε(x)− ε−1φ(ε)−1(b̄∞ + b̄)s

)
and Φε(x) = x+ εψ(x/ε).

Let fε,s(x) = f
(
x− ε−1φ(ε)−1(b̄∞ + b̄)s

)
, Θε(x, z) = ψ(x/ε+ z)− ψ(x/ε), and

Aε(x) =
1

2

∫

{|z|61/ε}
(z ⊗ z)k(x, z)Π(dz).

Applying Lemma 2.1 with R = 1/ε and M = ∞, and using Lemma 5.2 and (5.4), we can verify that

∂Fε

∂s
(s, x) + L

εFε(s, ·)(x)
= L

ε
1,xfε,s(Φε(x))

+
1

2φ(ε)

〈
∇2fε,s(Φε(x)),

∫
(2Θε(x, z) ⊗ z+Θε(x, z) ⊗Θε(x, z))k(x/ε, z)Π(dz)

〉
+Hε

1(x)

=
1

2

〈
∇2fε,s(Φε(x)),

1

φ(ε)

∫

{|z|61/ε}
(z ⊗ z)k(x/ε, z)Π(dz)

〉
+Hε

2(x)

=
〈
∇2fε,s(Φε(x)),

1

φ(ε)
Aε(x/ε)

〉
+Hε

2(x),

where Hε
1 and Hε

2 satisfy

|Hε
i (x)| �

( 3∑

i=1

‖∇if‖∞
)[ε(

∫
{0<|z|61} |z|2 Π(dz) +

∫
{1<|z|61/ε} |z|3 Π(dz))

φ(ε)

+

∫
{|z|>1/ε} |z|Π(dz)

εφ(ε)
+

1

φ(ε)

(∫

{|z|61}
|z|2 Π(dz) +

∫

{|z|>1}
|z|Π(dz)

)]
.

In particular, by (5.1), limε→0 φ(ε) = ∞ and
∫
{|z|>1} |z|Π(dz) <∞, it holds that

lim
ε→0

sup
x∈Rd

|Hε
2(x)| = 0.

(2) For any l > 1, let fl be the function defined by (3.17), and Fε,l(s, x) = fl
(
Φε(x)− ε−1φ(ε)−1(b̄∞ +

b̄)s
)
. According to all the estimates above and supε∈(0,1) supx∈Rd

|Aε(x)|
φ(ε) < ∞ (which is due to (5.2) and

the boundedness of k(x, z)), we can get

lim
R→∞

sup
ε∈(0,1),x∈Rd,s>0

∣∣∣∣
∂Fε,R

∂s
(s, x) + L

εFε,R(s, ·)(x)
∣∣∣∣ = 0
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and

sup
ε∈(0,1),x∈Rd,s>0

∣∣∣∣
∂Fε,θ

∂s
(s, x) +L

εFε,θ(s, ·)(x)
∣∣∣∣ 6 C(θ), θ ∈ (0, 1).

Thus, following the proof of Theorem 3.4, we can obtain that {Zε}ε∈(0,1) is tight in D([0,∞);Rd).
(3) Recall that the generator of the process Xε is L

ε, and again that

Fε(s, x) = f
(
x+ εψ(x/ε) − ε−1φ(ε)−1(b̄∞ + b̄)s

)
, fε,s(x) = f

(
x− ε−1φ(ε)−1(b̄∞ + b̄)s

)
.

For every 0 < s1 < s2, · · · < sk < s 6 t, f ∈ C3
b (R

d) and G ∈ Cb(R
dk),

E0

[(
f(Zε

t )− f(Zε
s)−

∫ t

s

(∂Fε

∂r
(r,Xε

r ) + L
εFε(r, ·)(Xε

r )
)
dr
)
G(Zε

s1 , · · · , Z
ε
sk
)
]

= E0

[(
f(Zε

t )− f(Zε
s)−

∫ t

s

(〈
∇2fε,r(Φε(X

ε
r )),

1

φ(ε)
Aε(X

ε
r/ε)

〉
+Hε

2(X
ε
r )
)
dr
)
G
(
Zε
s1 , · · · , Z

ε
sk

)]

→ 0 as ε→ 0.

Let

Aε =

∫

Td

Aε(x)µ(dx) =

∫

Td

∫

{|z|6ε−1}
(z ⊗ z)k(x, z) dz µ(dx).

Then, following the argument in (3.22), and using Lemma 2.2 and the fact that

sup
ε∈(0,1)

sup
x∈Rd

|Aε(x)|
φ(ε)

<∞,

we get that

lim
ε→0

E0

[∣∣∣∣
∫ t

s

〈
∇2fε,r(Φε(X

ε
r )),

1

φ(ε)
Aε (X

ε
r/ε)

〉
dr −

∫ t

s

〈
∇2fε,r(Φε(X

ε
r )),

Aε

φ(ε)

〉
dr

∣∣∣∣
2
]
= 0.

Hence, putting all estimates together, we obtain

lim
ε→0

E0

[(
f(Zε

t )− f(Zε
s)−

∫ t

s

〈
∇2f(Zε

r ),
Aε

φ(ε)

〉
dr
)
G(Zε

s1 , · · · , Z
ε
sk
)
]
= 0.

Given this, the fact that limε→0
Aε
φ(ε) = A and the tightness of {Zε}ε∈(0,1) in D([0,∞);Rd), one can follow

the proof of Theorem 3.4 to get the desired assertion. �

6. Sufficient conditions for averaging assumption (3.6)

In this section, we present some sufficient conditions for the key averaging assumption (3.6), which is
needed for the proof of the assertions in Example 1.1 and the two additional examples in Subsection 7.1.
The main results of this section are Theorems 6.5 and 6.7.

Let Π0(dz) be defined by (3.4). Let k(x, z) be a non-negative bounded function on Rd × Rd so that
x 7→ k(x, z) is multivariate 1-periodic for each fixed z ∈ Rd and condition (1.2) holds. We will represent
z in the spherical coordinate (r, θ) with r = |z| and θ = z/|z|, and will write k(x, z) as k(x, (r, θ)) as well.

Proposition 6.1. Suppose that for every x ∈ Rd and ̺0-a.e. θ ∈ Sd−1, there is a constant k̄(x, θ) so that

lim
T→∞

1

T

∫ T

0
k(x, (r, θ)) dr = k̄(x, θ). (6.1)

Then for any bounded function f : Rd ×Rd → R satisfying (3.5) and for 0 < r 6 R,

lim
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)

(
k(x/ε, z/ε) − k̄(x/ε, z/|z|)

)
Π0(dz)

∣∣∣ = 0. (6.2)

Proof. (1) Let Λ0 denote the collection of all θ ∈ Sd−1 such that for any x ∈ Rd there is a constant k̄(x, θ)
so that (6.1) holds. Now we are going to show that the function x 7→ k̄(x, θ) is equi-continuous in x for
all θ ∈ Λ0. Moreover, for every θ ∈ Λ0, the convergence in (6.1) is uniform in x ∈ Rd.

For any ε > 0, by (1.2), there is a constant δ0 > 0 so that |k(x, z) − k(y, z)| < ε for any x, y, z ∈ Rd

with |x− y| 6 δ0. Thus for θ ∈ Λ0,

|k̄(x, θ)− k̄(y, θ)| 6 lim sup
T→∞

1

T

∫ T

0
|k(x, (r, θ)) − k(y, (r, θ))| dr 6 ε.
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as long as |x− y| 6 δ0. In other words, x 7→ k̄(x, θ) is equi-continuous in x for all θ ∈ Λ0.
Let {yk : 1 6 k 6 N} ⊂ Td be an δ0-net in Td meaning that for every x ∈ Td there is some 1 6 j 6 N

so that |x− yj| < δ0. By (6.1), for each θ ∈ Λ0, there is some T0 > 1 so that for every 1 6 k 6 N ,

∣∣∣ 1
T

∫ T

0
k(yk, (r, θ)) dr − k̄(yk, θ)

∣∣∣ < ε for every T > T0.

For every x ∈ Td, there is some yk so that |x− yk| < δ0. Hence for any T > T0,

∣∣∣ 1
T

∫ T

0
k(x, (r, θ)) dr − k̄(x, θ)

∣∣∣

6
1

T

∫ T

0
|k(x, (r, θ)) − k(yk, (r, θ))| dr +

∣∣∣ 1
T

∫ T

0
k(yk, (r, θ)) dr − k̄(yk, θ)

∣∣∣+ |k̄(yk, θ)− k̄(x, θ)|

6 3ε,

where in the last inequality we used (1.2) again. This proves that for each θ ∈ Λ0,

lim
T→∞

sup
x∈Rd

∣∣∣ 1
T

∫ T

0
k(x, (r, θ)) dr − k̄(x, θ)

∣∣∣ = 0. (6.3)

(2) Let f be a bounded function such that (3.5) is satisfied. For each ε0 > 0, there is δ1 ∈ (0, 1/4] so that
|f(x, z1)−f(x, z2)| < ε0 whenever |z1−z2| < δ1. For 0 < r < R, we divide [r,R] into N = 1+[(R−r)/δ1]
equal subintervals with partition points {t0, t1, · · · , tN} with ∆ = tk − tk−1 = (R − r)/N ∈ (0, δ1). By
taking δ1 smaller if needed (which may depend on r, R and ‖f‖∞), we can and do assume that

sup
x∈Rd

∣∣∣f(x, (s, θ))
s1+α

− f(x, (tk, θ))

t1+α
k

∣∣∣ 6 ε0 for s ∈ [tk−1, tk], θ ∈ S
d−1. (6.4)

Using spherical coordinates and Fatou’s lemma, we have for any 0 < r 6 R,

lim sup
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)(k(x/ε, z/ε) − k̄(x/ε, z/|z|))Π0(dz)

∣∣∣

6 lim sup
ε→0

sup
x∈Rd

∣∣∣∣
∫

Sd−1

∫ R

r
f(x, (s, θ))

(
k(x/ε, (s/ε, θ)) − k̄(x/ε, θ)

) 1

s1+α
ds ̺0(dθ)

∣∣∣∣

6 lim sup
ε→0

sup
x∈Rd

∫

Sd−1

∣∣∣∣∣

N∑

k=1

∫ tk

tk−1

f(x, (s, θ))
(
k(x/ε, (s/ε, θ)) − k̄(x/ε, θ)

) 1

s1+α
ds

∣∣∣∣∣ ̺0(dθ)

6 lim sup
ε→0

sup
x∈Rd

∣∣∣∣∣

∫

Sd−1

N∑

k=1

f(x, (tk, θ))

t1+α
k

∫ tk

tk−1

(
k(x/ε, (s/ε, θ)) − k̄(x/ε, θ)

)
ds ̺0(dθ)

∣∣∣∣∣

+ 2ε0R‖k‖∞̺0(Sd−1)

6 lim sup
ε→0

N∑

k=1

‖f‖∞
t1+α
k

(∫

Sd−1

tk−1 sup
x∈Rd

∣∣∣∣∣
ε

tk−1

∫ tk−1/ε

0
k(x/ε, (s, θ)) ds − k̄(x/ε, θ)

∣∣∣∣∣ ̺0(dθ)

+

∫

Sd−1

tk sup
x∈Rd

∣∣∣∣∣
ε

tk

∫ tk/ε

0
k(x/ε, (s, θ)) ds − k̄(x/ε, θ)

∣∣∣∣∣ ̺0(dθ)
)

+ 2ε0R‖k‖∞̺0(Sd−1)

6

N∑

k=1

‖f‖∞
t1+α
k

(∫

Sd−1

tk−1 lim sup
ε→0

sup
x∈Rd

∣∣∣∣∣
ε

tk−1

∫ tk−1/ε

0
k(x, (s, θ)) ds − k̄(x, θ)

∣∣∣∣∣ ̺0(dθ)

+

∫

Sd−1

tk lim sup
ε→0

sup
x∈Rd

∣∣∣∣∣
ε

tk

∫ tk/ε

0
k(x, (s, θ)) ds − k̄(x, θ)

∣∣∣∣∣ ̺0(dθ)
)

+ 2ε0R‖k‖∞̺0(Sd−1)

= 2ε0R‖k‖∞̺0(Sd−1).

Here in the third inequality we have used (6.4) and the fact ‖k̄‖∞ 6 ‖k‖∞, while the last inequality follows
from the fact that (6.3) holds for ̺0-a.e. θ ∈ Sd−1. Since ε0 > 0 is arbitrary, we get (6.2) immediately. �
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As in the proof of Proposition 6.1, in the following denote by Λ0 the collection of all θ ∈ Sd−1 so that
for every x ∈ Rd there is a constant k̄(x, θ) such that (6.1) holds.

Remark 6.2. Here are two simple cases so that θ ∈ Λ0.

(i) If θ ∈ Sd−1 has the property that r 7→ k(x, (r, θ)) is multivariate T (x)-periodic for each x ∈ Rd

(it can have different period for different x ∈ Rd), then clearly (6.1) holds for any function f(x, z)

that satisfies (3.5) with k̄(x, θ) = 1
T (x)

∫ T (x)
0 k(x, (r, θ)) dr, and so θ ∈ Λ0.

(ii) A function ϕ(r) on [0,∞) is said to be almost periodic if it is the uniform limit of some periodic
functions (cf. [8, p. 81]). It follows from (i) above that if θ ∈ Sd−1 has the property that
r 7→ k(x, (r, θ)) is almost periodic for each x ∈ Rd, then (6.1) holds for any function f(x, z) that
satisfies (3.5), and so θ ∈ Λ0. See Lemma 6.4 and its proof below for more information.

Next, we will present some sufficient conditions for θ ∈ Λ0 under the periodicity of z 7→ k(x, z).

Corollary 6.3. Suppose in addition that for each x ∈ Rd, there is some T := T (x) > 0 so that z 7→ k(x, z)
is multivariate T -periodic.

(i) θ = (θ1, · · · , θd) ∈ Sd−1 is in Λ0, if θ is pairwise rational in the sense that each θi/θj is a rational

number whenever θj 6= 0;

(ii) If ̺0 does not charge on the set of those θ ∈ Sd−1 that are not pairwise rational, then (6.2) holds

for any function f(x, z) that satisfies (3.5).

In particular, suppose that ̺0(dθ) = δθ0(dθ) for some rational point θ0 = (m1/n, · · · ,md/n) ∈ Sd−1,

where n,m1, · · · ,md ∈ Z and δθ0(dθ) denotes the Dirac measure on Sd−1. Then (6.2) holds for any

function f(x, z) satisfying (3.5) with

k̄(x, θ) =
1

n

∫ n

0
k (x, (r, θ0)) dr for all θ ∈ S

d−1.

Proof. (i) If the measure θ ∈ Sd−1 is pairwise rational, then there is some r0 > 0 so that r0θ has integer
coordinates. For each x ∈ Rd,

r 7→ k(x, (r, θ)) = k(x, (rθ1, · · · , rθd))
is a bounded (r0T )-periodic function on [0,∞), and so (6.1) holds with k̄(x, θ) = 1

r0T

∫ r0T
0 k(x, (r, θ)) dr

from Remark 6.2(i).
(ii) The assertion follows immediately from (i) and Proposition 6.1.
Having (i) and (ii) at hand, we can easily see the validity of the last assertion. �

Recall that θ = (θ1, · · · , θd) ∈ Sd−1 is said to be rationally dependent if there is some non-zero

m = (m1, · · · ,md) ∈ Zd so that 〈m, θ〉 = ∑d
i=1miθi = 0. Otherwise, we call θ rationally independent.

When d = 1, S0 = {1,−1} so every its member is rationally independent.

Lemma 6.4. Suppose that f(x) = f(x1, · · · , xd) is a continuous multivariate 1-periodic function on Rd.

Then for each θ ∈ Sd−1, there is a constant C(θ) so that

lim
T→∞

1

T

∫ T

0
f(θt) dt = C(θ). (6.5)

Set

Γf =

{
θ ∈ S

d−1 : C(θ) =

∫

Td

f(x) dx

}
.

Then every rationally independent θ ∈ Sd−1 is in Γf . In particular, Γf = {1,−1} if d = 1, S1 \ Γf is

countable if d = 2, and dimH(Sd−1 \Γf ) 6 d−2 if d > 3. Here dimH stands for the Hausdorff dimension.

Proof. The result is trivial when d = 1. So we assume d > 2 in the rest of the proof. Let 〈·, ·〉 denote the

inner product in Rd. Define f(x) =
∑

k∈Zd:|k|6N cke
i2π〈k,x〉 with

ck =

∫

Td

e−i2π〈k,x〉f(x) dx.

Then, for θ ∈ Sd−1,

f(θt) =
∑

k∈Zd:|k|6N

cke
i2π〈k,θ〉t.
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Clearly

C(θ) := lim
T→∞

1

T

∫ T

0
f(θt) dt =

∑

k∈Zd:|k|6N,〈k,θ〉=0

ck. (6.6)

Note that for each non-zero k ∈ Zd and d > 2, the set {θ ∈ Sd−1 : 〈k, θ〉 = 0} is a two-point set when
d = 2, and has Hausdorff dimension d− 2 when d > 3. Noting also that

S
d−1 \ Γf ⊂ {θ ∈ S

d−1 : 〈k, θ〉 = 0 for some non-zero k ∈ Z
d}, (6.7)

we have Sd−1 \ Γf is a countable set when d = 2, and dimH(Sd−1 \ Γf ) 6 d− 2 for d > 3.

Now, suppose that f(x1, · · · , xd) is a continuous multivariate 1-period function on Rd. It can then
be viewed as a continuous function on Td. By the Stone-Weierstrass theorem, it can be uniformly
approximated by functions of the form

∑
k∈Zd:|k|6N cke

i2π〈k,x〉 on Rd, see e.g. [8, p. 26]. Thus for any

θ = (θ1, · · · , θd) ∈ Sd−1,
f(θt) = f(θ1t, · · · , θdt)

can be approximated uniformly by the functions of the form
∑

k∈Zd:|k|6N cke
i2π〈k,θ〉t. It follows from (6.6)

that for any θ ∈ Sd−1, there is a constant C(θ) so that

lim
T→∞

1

T

∫ T

0
f(θt) dt = C(θ), (6.8)

and (6.7) continues to hold for this f . In particular, C(θ) =
∫
Td f(x) dx if θ ∈ Sd−1 is rationally

independent. The assertion of the proposition now follows. �

Theorem 6.5. Suppose that k(x, z) is jointly continuous on Rd×Rd and k(x, z) is multivariate 1-periodic
both in x and in z. Then

(i) Λ0 = Sd−1; that is, (6.1) holds for every θ ∈ Sd−1 and x ∈ Rd with some k̄(x, θ).
(ii) Let

k̄(x) =

∫

Td

k(x, z) dz, x ∈ R
d.

Then for each x ∈ Rd, k̄(x, θ) = k̄(x) for every rationally independent θ ∈ Sd−1. In particular

we have for every x ∈ Rd, k̄(x, 1) = k̄(x,−1) = k̄(x) when d = 1, {θ ∈ S1 : k̄(x, θ) 6= k̄(x)} is

countable when d = 2, and the Hausdorff dimension of {θ ∈ Sd−1 : k̄(x, θ) 6= k̄(x)} is no larger

than d− 2.
(iii) Property (6.2) holds for any function f(x, z) that satisfies (3.5).

Proof. This follows directly by applying Lemma 6.4 to function z 7→ k(x, z) and by Proposition 6.1. �

Remark 6.6. We present two explicit cases that Theorem 6.5 applies.

(i) Assume that Π0(dz) is absolutely continuous with respect to the Lebesgue measure on Rd; or
equivalently, ̺0 is absolutely continuous with respect to the Lebesgue surface measure σ on Sd−1.
Then under the assumptions of Theorem 6.5, (6.2) holds with k̄(x, θ) = k̄(x) :=

∫
Td k(x, z) dz for

all x ∈ Rd and θ ∈ Sd−1; that is,

lim
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)

(
k(x/ε, z/ε) − k̄(x/ε)

)
Π0(dz)

∣∣∣ = 0. (6.9)

We emphasize that for this result we do not assume the boundedness of the Radon-Nikodym

derivative ̺0(dθ)
σ(dθ) .

(ii) In fact the conclusion (6.9) holds for any finite measure ̺0 on Sd−1 that does not charge on the
set of rationally dependent θ ∈ Sd−1. In particular, if ̺0 does not charge on singletons when
d = 2 and does not charge on subsets of Sd−1 that are of Hausdorff dimension d− 2 when d > 3
(for example, ̺0 is γ-dimensional Hausdorff measure with γ ∈ (d− 2, d− 1]) then (6.9) holds for
any function f(x, z) that satisfies (3.5).

We can drop the continuous assumption on z 7→ k(x, z) in Theorem 6.5(iii) when the spherical measure
̺0 in Π0 is absolutely continuous with respect to σ with bounded Radon-Nikodym derivative.

Theorem 6.7. Suppose that ̺0 is absolutely continuous with respect to the Lebesgue surface measure σ
on Sd−1 with bounded Radon-Nikodym derivative. Let k(x, z) be a bounded function on Rd × Rd such

that z 7→ k(x, z) is 1-periodic for each fixed x ∈ Rd and (1.2) is true. Then (6.2) holds for any function

f(x, z) satisfying (3.5) with k̄(x, θ) = k̄(x) :=
∫
Td k(x, z) dz for all x ∈ Rd and θ ∈ Sd−1.



30 XIN CHEN ZHEN-QING CHEN TAKASHI KUMAGAI JIAN WANG

Proof. Let ϕ > 0 is a smooth function with compact support in Rd having
∫
Rd ϕ(y) dy = 1. For δ > 0,

let ϕδ(y) := δ−dϕ(y/δ). Define

kδ(x, z) =

∫

Rd

k(x, z − y)ϕδ(y) dy.

Clearly kδ(x, z) is a bounded, multivariate 1-periodic and continuous function on Rd × Rd. Thus by
Remark 6.6,

lim
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)

(
kδ(x/ε, z/ε) − k̄δ(x/ε)

)
Π0(dz)

∣∣∣ = 0 (6.10)

for any function f(x, z) that has property (3.5), where k̄δ(x) :=
∫
[0,1]d kδ(x, z) dz. Clearly,

lim
δ→0

∫

Td

|k(x, z) − kδ(x, z)| dz = 0,

Condition (1.2) implies that the above convergence is uniform in x ∈ Rd. Furthermore, k̄(x) :=∫
Td k(x, z) dz is uniformly continuous in x, and k̄δ(x) converges to k̄(x) uniformly as δ → 0. Observe that

by the fact that ̺0 is absolutely continuous with respect to σ on Sd−1 with bounded Radon-Nikodym
derivative and the multivariate 1-periodicity of (x, z) 7→ k(x, z), it holds that for any 0 < r < R and
ε ∈ (0, 1),

∫

{r6|z|6R}
|k(x/ε, z/ε) − kδ(x/ε, z/ε)|Π0(dz)

6 c1r
−(d+α)

∫

{r6|z|6R}
|k(x/ε, z/ε) − kδ(x/ε, z/ε)| dz

6 c2r
−(d+α)|B(0, R) \B(0, r)|

∫

Td

|k(x, z) − kδ(x, z)| dz,

where c1 and c2 are two positive constants that are independent of ε ∈ (0, 1), δ ∈ (0, 1) and 0 < r < R.
Thus we have

lim
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)

(
k(x/ε, z/ε) − k̄(x/ε)

)
Π0(dz)

∣∣∣

6 lim
ε→0

sup
x∈Rd

‖f‖∞
∫

{r6|z|6R}
|k(x/ε, z/ε) − kδ(x/ε, z/ε)|Π0(dz)

+ lim
ε→0

sup
x∈Rd

∣∣∣
∫

{r6|z|6R}
f(x, z)

(
kδ(x/ε, z/ε) − k̄δ(x/ε)

)
Π0(dz)

∣∣∣

+ lim
ε→0

sup
x∈Rd

‖f‖∞|k̄δ(x/ε)− k̄(x/ε)|Π0(r 6 |z| 6 R)

6 c2‖f‖∞r−(d+α)|B(0, R) \B(0, r)| sup
x∈Rd

∫

Td

|k(x, z) − kδ(x, z)| dz

+ ‖f‖∞Π0(r 6 |z| 6 R) sup
x∈Rd

|k̄δ(x)− k̄(x)|.

Letting δ → 0 in the right hand side of the inequality above proves the result. �

7. Examples and comments

7.1. Examples. In this subsection, we first give the proof of the assertions in Example 1.1, and then
present two additional examples to further illustrate the applications of our main results. Example 1.1
together with two examples below show that the periodic homogenization of jump processes is very
different from that of diffusion processes. In the homogenization of jump processes, large jumps play
a key role on the homogenized process. The scale function ϕ is determined by the tail of the jumping
kernel.

Proof of Example 1.1. (i) Suppose that α ∈ (0, 2) and that k(x, z) is a bounded continuous function on
Rd ×Rd so that x 7→ k(x, z) is multivariate 1-periodic for each fixed z ∈ Rd, z 7→ k(x, z) is multivariate
1-periodic for each fixed x ∈ Rd and (1.2) is true. Clearly ϕ(r) := rα satisfies (3.3). Then it is
easy to see that Π(dz) defined by (1.8) has the expression (3.1) with ̺0(dθ), ϕ(r) given above and
κ(r, dθ) ≡ 0. Furthermore, we know by Theorem 6.5 that (3.6) holds with k̄(x, z) = k̄(x, z/|z|) given by
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(1.10). Therefore, the claimed assertions in this example follow readily from Theorem 3.2, Theorem 3.4,
Remark 6.6(ii) and Theorem 6.7.

(ii) Suppose that α = 2 and lim|z|→∞ k̄(z) = k0, where k̄(z) =
∫
Td k(x, z)µ(dx). Then

lim
ε→0

1

| log ε|

∣∣∣∣∣

∫

{|z|61/ε}
(z ⊗ z)

(
k̄(z)− k0

)
Π(dz)

∣∣∣∣∣ = 0

and

lim
ε→0

1

| log ε|

∫

{16|z|61/ε}
zizj Π(dz) =

∫

Sd−1

θiθj ̺0(dθ).

Consequently,

lim
ε→0

1

| log ε|

∫

{|z|61/ε}
(z ⊗ z)k̄(z)Π(dz) = A,

where A = {aij}16i,j6d with

aij := k0

∫

Sd−1

θiθj ̺0(dθ).

Thus, (5.2) and (5.3) hold with φ(ε) = | log ε|. Furthermore, it is easy to see that (5.1) holds for φ(ε).
Then, the assertion follows from Theorem 5.1.

(iii) If α > 2, then
∫
Rd |z|2 Π(dz) < ∞, so the desired assertion immediately follows from Theorem

4.1. �

Remark 7.1. We call a subset Γ ⊂ Rd an unbounded generalized cone, if λΓ ⊂ Γ for every λ > 0. Note
that Γ can have several branches starting from the origin, and it can be non-symmetric. Let σ(dθ) denote
the Lebesgue surface measure on Sd−1. If

1{|z|>1}Π(dz) =
1

|z|d+α
1{|z|>1:z∈Γ} dz =

1

r1+α
1{r>1,θ∈Γ} dr σ(dθ)

for some generalized cone Γ with σ(Γ ∩ Sd−1) > 0 in Example 1.1(i), then the generator L0 of the limit
process (X̄t)t>0 is given by

L̄0f(x) =





∫

Rd

(f(x+ z)− f(x))
1

|z|d+α
1Γ(z) dz, α ∈ (0, 1),

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

) 1

|z|d+1
1Γ(z) dz, α = 1,

∫

Rd

(f(x+ z)− f(x)− 〈∇f(x), z〉) 1

|z|d+α
1Γ(z) dz, α ∈ (1, 2).

This gives us another concrete example that the jumping kernel limiting process (X̄t)t>0 can be degen-
erate.

In the following, we always suppose that Assumptions (A1), (A2) and (A3) hold, and that k(x, z)
is a non-negative bounded function on Rd ×Rd such that x 7→ k(x, z) is multivariate 1-periodic for each
fixed z ∈ Rd and (1.2) is true. We refer the reader to Subsection 7.2 for conditions on small jumps of
the jumping kernel such that all (A1), (A2) and (A3) are satisfied. Let (Xt)t>0 be the strong Markov
process corresponding to the operator L given by (1.1). Let µ(dx) be the stationary probability measure
for the quotient process of X on Td. Let bR(x), b∞(x), b̄R (with R > 1) and b̄∞ be defined by (1.6),
(1.7) and (1.9), respectively. Let σ(dθ) denote the Lebesgue surface measure on Sd−1.

Example 7.2. Let a0(θ) be a non-negative bounded function defined on the unit sphere Sd−1. Suppose
that

1{|z|>1}Π(dz) =
a0(z/|z|)
|z|dΦ(|z|)1{|z|>1} dz,

where

Φ(r) :=

∫ α2

α1

rα ν(dα) (7.1)

for constants 0 < α1 < α2 < 2 and a non-negative finite measure ν on [α1, α2] such that α2 ∈ supp[ν]
(that is, ν((α2 − ε, α2]) > 0 for any ε > 0). Suppose also that for every fixed x ∈ Rd, k(x, ·) : Rd → R+

is multivariate 1-periodic and satisfies (1.2).
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For any ε ∈ (0, 1], define (Xε
t )t>0 = (εXΦ(1/ε)t)t>0, and (Y ε

t )t>0 by

Y ε
t =





Xε
t , 0 < α2 < 1,

Xε
t − εΦ(1/ε)(b̄1/ε + b̄)t, α2 = 1,

Xε
t − εΦ(1/ε)(b̄∞ + b̄)t, 1 < α2 < 2.

Then, the process (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε → 0, to a (possibly non-symmetric)

α2-stable process with jumping measure k̄0a0(z/|z|)|z|−d−α2 dz, where k̄0 :=
∫
Td

∫
Td k(x, z) dz µ(dx).

Proof. Let ϕ(r) = Φ(r). Clearly, ϕ(r) is a strictly increasing function on (1,∞). We claim that it satisfies
condition (3.3) with α = α2. For any η ∈ (0, α2), since ν((α2 − η, α2]) > 0,

ϕ(r) ≍
∫ α2

α2−η
rα ν(dα) for r > 1.

Thus for r > 1 and λ > 1,

λα2−ηϕ(r) � λα2−η

∫ α2

α2−η
rα ν(dα) � ϕ(λr) � λα2

∫ α2

α2−η
rα ν(dα) 6 λα2ϕ(r).

Hence we have shown that for any η ∈ (0, α2), there is a positive constant c0 = c0(η) 6 1 so that

c0(R/r)
α2−η

6
ϕ(R)

ϕ(r)
6 c−1

0 (R/r)α2 for any R > r > 1. (7.2)

Furthermore, for any η > 0 sufficiently small, clearly we have for every r > 1,

lim sup
λ→∞

ϕ(λr)

ϕ(λ)
= lim sup

λ→∞

∫ α2

α1
λαrα ν(dα)

∫ α2

α1
λα ν(dα)

6 rα2 .

On the other hand, since ν((α2 − η, α2]) > 0,

lim inf
λ→∞

ϕ(λr)

ϕ(λ)
� lim inf

λ→∞

∫ α2

α2−η λ
αrα ν(dα)

∫ α2

α2−η λ
α ν(dα)

> rα2−η for r > 1.

Since the above holds for every sufficiently small η > 0, passing η → 0 yields that lim inf
λ→∞

ϕ(λr)/ϕ(λ) = rα2

for r > 1. Hence we get

lim
λ→∞

ϕ(λr)

ϕ(λ)
= rα2 for r > 1.

This together with (7.2) proves the claim that (3.3) holds with α2 in place of α there. On the other hand,
it follows from Theorem 6.7 that (3.6) holds with k̄(x, z) = k̄(x) :=

∫
Td k(x, u) du for all x, z ∈ Rd. The

desired assertions now follows from Theorems 3.2 and 3.4, after noticing that Π(dz) has the representation
(3.1) with ̺0(dθ) = a0(θ)σ(dθ) and κ(r, dθ) ≡ 0, where σ(dθ) denotes the Lebesgue surface measure on
Sd−1. �

Remark 7.3. (1) If ν(dη) = δ{α}(dη) + δ{β}(dη) with 0 < β < α < 2 in (7.1), then 1{|z|>1}Π(dz) in
Example 7.2 is reduced to

a0(z/|z|)
|z|d+α + |z|d+β

1{|z|>1} dz.

In this case, 1{|z|>1}Π(dz) admits the expression (3.1) with ϕ(r) = rα + rβ, ̺0(dθ) = a0(θ)σ(dθ) and

κ(r, dθ) ≡ 0. If we take ϕ1(r) = rα, ̺0(dθ) = a0(θ)σ(dθ) and κ1(r, dθ) := rβ

rα+rβ
a0(θ)σ(dθ), then

1{|z|>1}Π(dz) can be also represented by (3.1) with ϕ1 and κ1(r, dθ) in place of ϕ and κ(r, dθ). Thus the
homogenization result for X holds with both ϕ and ϕ1 as its time scaling function.

(2) If ν(dη) is the Lebesgue measure on [α/2, α] for some α ∈ (0, 2), then

1{|z|>1}Π(dz) =
a0(z/|z|)

|z|d(|z|α − |z|α/2) log |z|1{|z|>1} dz.

In this case, 1{|z|>1}Π(dz) admits the expression (3.1) with ϕ(r) = Φ(r) = (rα − rα/2) log r, ̺0(dθ) =

a0(θ)σ(dθ) on Sd−1 and κ(r, dθ) ≡ 0. If we take

ϕ1(r) = rα log r1{r>1},
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then clearly limr→∞ ϕ1(r)/ϕ(r) = 1. Thus by Remark 3.1, 1{|z|>1}Π(dz) can also be represented by (3.1)
with ϕ1 in place of ϕ (but with different κ(r, dθ)); that is, we can write

1{|z|>1}Π(dz) = 1{|z|>1}
a0(θ) + κ1(r, dθ)

rd+α log r
σ(dθ) dr,

where κ1(r, θ) satisfies (3.2). In particular, the homogenization result for X holds with both ϕ and ϕ1

as its time scaling function.
(3) Similar to these of Example 1.1, we can get the assertion when the jumping measure Π(dz) enjoys

the form

1{|z|>1}Π(dz) = 1{|z|>1}
a0(z/|z|)

|z|d+α log |z| dz

with α > 2. In details, when α = 2, define

Y ε
t := εXε−2| log log ε|t − ε−1| log log ε|(b̄∞ + b̄)t, t > 0.

Suppose that (1.11) holds for some k0 > 0. Then, as ε → 0, (Y ε
t )t>0 converges weakly in D([0,∞);Rd)

to Brownian motion (Bt)t>0 with the covariance matrix A = {aij}16i,j6d, where

aij = k0

∫

Sd−1

θiθja0(θ)σ(dθ).

When α > 2, we define

Y ε
t := εXt/ε2 − ε−1(b̄∞ + b̄)t, t > 0.

Then, as ε→ 0, (Y ε
t )t>0 converges weakly in D([0,∞);Rd) to Brownian motion (Bt)t>0 with the covari-

ance matrix A defined by (1.13).

The following example is concerned with the homogenization for jump process with a singular jumping
kernel.

Example 7.4. Suppose that

1{|z|>1}Π(dz) =

d∑

i=1

1

r1+α
δei(dθ)1{|r|>1} dr, (7.3)

where {ei}di=1 is the standard orthonormal basis of Rd and δθ0(dθ) denotes the Dirac measure on Sd−1

concentrated at θ0 ∈ Sd−1.

(i) Suppose that z 7→ k(x, z) is multivariate 1-periodic for each fixed x ∈ Rd. For any ε ∈ (0, 1),
define (Y ε

t )t>0 by

Y ε
t =





εXt/εα , 0 < α < 1,

εXt/εα − (b̄1/ε + b̄)t, α = 1,

εXt/εα − ε1−α(b̄∞ + b̄)t, 1 < α < 2.

Then the process (Y ε
t )t>0 converges weakly in D([0,∞);Rd), as ε → 0, to a non-symmetric

α-stable process (X̄t)t>0 with infinitesimal generator L0 as follows

L0f(x) =





d∑

i=1

∫ ∞

0
(f(x+ ziei)− f(x))

k̄i

z1+α
i

dzi, α ∈ (0, 1),

d∑

i=1

∫ ∞

0

(
f(x+ ziei)− f(x)− ∂f(x)

∂xi
· zi1{0<zi61}

)
k̄i

z1+α
i

dzi α = 1,

d∑

i=1

∫ ∞

0

(
f(x+ ziei)− f(x)− ∂f(x)

∂xi
· zi
)

k̄i

z1+α
i

dzi α ∈ (1, 2),

where

k̄i :=

∫

Td

∫ 1

0
k (x, (0, · · · , zi, · · · , 0)) dzi µ(dx).

(ii) When α = 2, we define

Y ε
t := εXε−2| log ε|t − ε−1| log ε|(b̄∞ + b̄)t, t > 0.
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Suppose that (1.11) holds for some k0 > 0. Then, as ε → 0, (Y ε
t )t>0 converges weakly in

D([0,∞);Rd) to Brownian motion (Bt)t>0 with the covariance matrix A := k0Id×d, where Id×d

denotes the d× d identity matrix.
(iii) When α > 2, we define

Y ε
t := εXt/ε2 − ε−1(b̄∞ + b̄)t, t > 0.

Then, as ε→ 0, (Y ε
t )t>0 converges weakly in D([0,∞);Rd) to Brownian motion (Bt)t>0 with the

covariance matrix A defined by (1.13).

Proof. By (7.3) we know that (3.1) holds with ϕ(r) = rα, ̺0(dθ) = σ0(dθ) and κ(r, dθ) ≡ 0. According to

Corollary 6.3 below we know that (3.6) holds with k̄(x, ei) =
∫ 1
0 k (x, (0, · · · , zi, · · · , 0)) dzi for 1 6 i 6 d,

and k̄(x, θ) = 0 for any θ ∈ Sd−1\{ei}16i6d. Hence the desired assertion in (i) follows from Theorems 3.2
and 3.4. The proofs of (ii) and (iii) are similar to these of Example 1.1. �

7.2. Comments on assumptions (A1), (A2) and (A3). Assumptions (A1), (A2) and (A3) are
closely related with recent developments on the fundamental solution of the Lévy type operators. For
example, in [13] the authors considered the following Lévy-type operator on Rd:

Lf(x) = lim
δ→0

∫

{|z|>δ}
(f(x+ z)− f(x))

k(x, z)

|z|d+α
dz,

where 0 < k1 6 k(x, z) 6 k2, k(x, z) = k(x,−z) and |k(x, z) − k(y, z)| 6 k3|x − y|β for some constants
ki > 0 (i = 1, 2, 3) and β ∈ (0, 1). Later the results of [13] are extended to time-dependent cases in
[14] such that the symmetric assumption in z for the function k(x, z) are not required; moreover, the
corresponding results for the perturbation by a drift term b(x) belonging to some Kato’s class when
α ∈ (1, 2) are also considered there, see [14, Theorem 1.5]. For the critical case (i.e., α = 1), one can
refer to [42]. See [27, 30, 12] and the references therein for more recent progress on this topic, including
the case that a large class of symmetric Lévy processes are considered instead of rotationally symmetric
α-stable processes, and the case that the index function α(x) depends on x.

Proposition 7.5. Let L be the operator given by (1.1) such that the coefficients satisfy all the assumptions

below (1.1), k(x, z) is bounded between two positive constants, and that there is a constant β ∈ (0, 1) so

that b(x) ∈ Cβ
b (R

d) and

sup
z∈Rd

|k(x, z) − k(y, z)| 6 c0|x− y|β , x, y ∈ R
d

for some c0 > 0. Assume that

1{|z|61}Π(dz) = 1{|z|61}
1

|z|d+α0
dz (7.4)

for some α0 ∈ (0, 2). For α0 ∈ (0, 1), we assume in addition that b(x) =
∫
{|z|61} z

k(x,z)
|z|d+α dz; for α0 = 1,

we assume in addition that k(x, z) = k(x,−z) for all x, z ∈ Rd. Then assumptions (A1) and (A2) are

satisfied.

Proof. For simplicity, we only prove the case that α0 ∈ (1, 2), since the proofs of the cases α0 ∈ (0, 1)
and α0 = 1 are similar.

(1) We first assume that Π(dz) = |z|−d−α0 dz. According [14, Theorem 1.5] (see also [27, Theorem
1.4]), there is a unique fundamental solution p(t, x, y) : R+ ×Rd ×Rd → R+ of the operator L. Then,
the existence and the uniqueness of the Feller process X := ((Xt)t>0; (P

x)x∈Rd) associated with the
operator L was mentioned in [14, Remark 1.6]. In particular, p(t, x, y) is the transition density function
of the process X with respect to the Lebesgue measure. By two-sided estimates and gradient estimates of
p(t, x, y) stated in [14, Theorem 1.5, (i) and (vi)], we can easily see that the process X is irreducible and
enjoys the strong Feller property; that is, the associated semigroup (Pt)t>0 maps measurable bounded
functions into continuous bounded functions.

Concerning assumption (A1), it is clear that the probability law of X solves the martingale problem
for (L, C∞

c (Rd)) in the sense that for every f ∈ C∞
c (Rd) and x ∈ Rd,

f(Xt)− f(x)−
∫ t

0
Lf(Xs) ds, t > 0

is a Px-martingale, see [14, Remark 1.2 (iv)]. By our assumptions on k(x, z) and b(x) again and the process
X being conservative (see [14, Theorem 1.1, (iv)]), X solves the martingale problem for (L, C2

b (R
d)) as

well. If we regard X as a Td-valued process, then the associated semigroup is still irreducible and has
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the strong Feller property by the statements above, see, for example, the proof of [21, Proposition 1] or
the argument of [37, Section 4]. This along with [43, Theorem 1.1] gives us Assumption (A2).

(2) Let L be the operator given in Proposition 7.5. Set Π̂(dz) := |z|−d−α0 dz and

L0f(x) :=

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

)
k(x, z) Π̂(dz) + 〈b(x),∇f(x)〉. (7.5)

Then,
Lf(x) = L0f(x) +Af(x),

where

Af(x) =

∫

{|z|>1}
(f(x+ z)− f(x))k(x, z) (Π(dz) − Π̂(dz)). (7.6)

It is clear that, under assumptions on k(x, z) and Π(dz), there is a constant c1 > 0 such that ‖Af‖∞ 6

c1‖f‖∞ for all f ∈ Bb(R
d). By bounded perturbation results for martingale problems, one can deduce

that assumption (A1) holds for the operator L; see, e.g., [18, Chapter 4, Section 10, p. 253].
By the proof of Proposition 6 and Remark 8 in [10], we know that the process (Xt)t>0 is irreducible.

On the other hand, let (Pt)t>0 and (P 0
t )t>0 be the semigroups associated with the operator (L, C2

b (R
d))

and (L0, C
2
b (R

d)), respectively. It holds that

Ptf = P 0
t f +

∫ t

0
P 0
s APt−sf ds, t > 0, f ∈ Bb(R

d).

This along with the fact that (P 0
t )t>0 has the strong Feller property yields that (Pt)t>0 also enjoys the

strong Feller property. Thus Assumption (A2) holds, thanks to [43, Theorem 1.1] again. �

Proposition 7.6. Let L be the operator given in Proposition 7.5. If α0 ∈ (1, 2), then assumption (A3)
is also satisfied.

Proof. Similar to the proof of Proposition 7.5, let L0 be defined by (7.5). We write

L0f(x) =

∫

Rd

(f(x+ z)− f(x)− 〈∇f(x), z〉) k(x, z) Π̂(dz) + 〈b̂∞(x),∇f(x)〉,

where

Π̂(dz) :=
1

|z|d+α0
dz, b̂∞(x) := b(x) +

∫

{|z|>1}
z
k(x, z)

|z|d+α0
dz.

Let p0(t, x, y) and P 0
t be the fundamental solution and Markov semigroup associated with L0 respectively.

Note that b̂∞ ∈ Cβ
b (R

d;Rd). By [14, Theorem 1.5], for any t ∈ (0, 1] and x, y ∈ Rd,

p0(t, x, y) 6
c0t(

t1/α0 + |x− y|
)d+α0

,

|∇xp0(t, ·, y)(x)| 6
c0t

1−1/α0

(
t1/α0 + |x− y|

)d+α0
.

(7.7)

(Note that in our setting we can take η = 0 in [13, Theorem 1.5], see also [27, Theorem 1.4].) For any
λ > 0, let R0

λ be the λ-resolvent of the semigroup (P 0
t )t>0, i.e.,

R0
λf(x) :=

∫ ∞

0
e−λtP 0

t f(x) dt, f ∈ C(Td)x ∈ R
d.

According to (7.7), we can see that R0
λ is an operator such that R0

λ : C(Td) → C1(Td) so that

‖R0
λf‖∞ + ‖∇R0

λf‖∞ 6
c1
λ
‖f‖∞, f ∈ C(Td).

where c1 is a positive constant independent of λ and f . Here, we used the fact that α0 ∈ (1, 2).
Furthermore, It is well known that R0

λ = (λ− L0)
−1. Thus, (λ− L0)

−1 : C(Td) → C1(Td) and

‖(λ− L0)
−1f‖∞ + ‖∇(λ− L0)

−1f‖∞ 6
c1
λ
‖f‖∞, f ∈ C(Td). (7.8)

Let Af be defined by (7.6). By the assumption on k(x, z), A : C(Td) → C(Td) satisfies that

‖Af‖∞ 6 c2‖f‖∞, f ∈ C(Td). (7.9)

Note that L = L0 +A. Then, for each λ > 0,

(λ− L)−1 = (λ− L0)
−1
(
1−A(λ− L0)

−1
)−1

.
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Therefore, combining (7.8) with (7.9), we find that for every λ > λ0 := c1c2 > 0, (λ − L)−1 : C(Td) →
C1(Td) is well defined such that

‖(λ− L)−1f‖∞ + ‖∇(λ− L)−1f‖∞ 6 c3(λ)‖f‖∞, λ > λ0, f ∈ C(Td). (7.10)

For every f ∈ C(Td) with µ(f) = 0, let ψf := −
∫∞
0 Ptf dt, which is well defined by (1.3). Moreover,

ψf ∈ D(L), Lψf = f , µ(ψf ) = 0 and ‖ψf‖∞ 6 c4‖f‖∞. In particular, for every λ > λ0, it holds that

ψf = (λ− L)−1 (λψf − f) .

Hence by (7.10), for any λ > λ0 we obtain

‖ψf‖∞ + ‖∇ψf‖∞ 6 c3(λ)‖λψf − f‖∞ 6 c5(λ)‖f‖∞.
Let (Xx

t )t>0 be the process associated with the martingale problem for (L, C2
b (R

d)) with initial value x.

Let f ∈ C(Td) such that µ(f) = 0. Then, for every ψ ∈ D(L) satisfying Lψ = f and µ(ψ) = 0, we have

E[ψ(Xx
t )] = ψ(x) +

∫ t
0 E[f(X

x
s )] ds. Letting t → ∞ and applying (1.3), we get ψ(x) = −

∫∞
0 Psf(x) ds.

This means there exists a unique ψ ∈ D(L) satisfying Lψ = f . Therefore, according to all the conclusions
above, we prove that Assumption (A3) holds. �

Remark 7.7. For simplicity, in Proposition 7.5 we require Π(dz) and b(x) to have special forms; for

instance, Π(dz) satisfies (7.4) and b(x) =
∫
Rd z

k(x,z)

|z|d+α0
dz when α0 ∈ (0, 1). These conditions are used

to verify Assumption (A3) under minimal regularity requirements on k(x, z) and b(x). Indeed, under

more general assumptions on k(x, z) and b(x) (that is, it is not required that b(x) =
∫
Rd z

k(x,z)

|z|d+α0
dz when

α0 ∈ (0, 1)), we can still verify (A1), (A2) (see [32] for details) and weaken (1.5) into

‖ψ‖∞ + ‖∇ψ‖∞ 6 C1‖f‖Cβ . (7.11)

Then, under the conditions above, Theorems 3.4, 4.1 and 5.1 still hold true with some small modifications
in their proofs. We note that (7.11) is closely related to the Schauder estimates for Lévy-type operators,
see [4, 5, 16, 31, 33] and references therein for more details.

Moreover, suppose that k ∈ C∞
b (Rd ×Rd) and b ∈ C∞

b (Rd;Rd). Then, by using the theory of pseudo-
differential operators, we can prove the existence of the Feller process X := ((Xt)t>0; (Px)x∈Rd) associated

with (L, C∞
c (Rd)), and moreover the process X can be written explicitly via a solution of a stochastic

differential equation with jumps; see [9, Chapter 3] for more details. Hence, we may obtain the following
estimates for the associated semigroup (Pt)t>0 through the Bismut-type formula (see [34] and references
therein):

‖∇Ptf‖∞ 6 c1‖∇f‖∞, 0 < t 6 1,

‖∇Ptf‖∞ 6 c2‖f‖∞, 1/2 < t < 1.

According to these estimates and (1.3), we can find that for every f ∈ C1(Td) with µ(f) = 0, there exists
a unique ψ ∈ D(L) such that Lψ = f , µ(ψ) = 0 and

‖ψ‖∞ + ‖∇ψ‖∞ 6 c3 (‖f‖∞ + ‖∇f‖∞) .

This also suffices to prove Theorems 3.4, 4.1 and 5.1 with some modifications in the proofs.
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