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PERIODIC HOMOGENIZATION OF NON-SYMMETRIC LEVY-TYPE PROCESSES

XIN CHEN ZHEN-QING CHEN TAKASHI KUMAGAI JIAN WANG

ABSTRACT. In this paper, we study homogenization problem for strong Markov processes on R¢ having
infinitesimal generators

Lf(z) = / L F@+2) = fl@) = (V (@), 21 gz1ny) b, 2) 11(d2) + (b(2), V(2), f € CR(R)

in periodic media, where II is a non-negative measure on R? that does not charge the origin 0, satisfies
Jra(L A |z|*)T(dz) < oo, and can be singular with respect to the Lebesgue measure on R?. Under a
proper scaling, we show the scaled processes converge weakly to Lévy processes on R%. The results are
a counterpart of the celebrated work [6, 7] in the jump-diffusion setting. In particular, we completely
characterize the homogenized limiting processes when b(z) is a bounded continuous multivariate 1-periodic
R%-valued function, k(z, z) is a non-negative bounded continuous function that is multivariate 1-periodic
in both = and z variables, and, in spherical coordinate z = (r,0) € R4 X gd-1
L2513 (dz) = 151300 (d0) Tfl:a

with o € (0,00) and go being any finite measure on the unit sphere $¢4-1 in R?. Different phenomena
occur depending on the values of «; there are five cases: a € (0,1), a = 1, a € (1,2), @« = 2 and
a € (2,00).
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1. INTRODUCTION

In the celebrated work [6, 7] the authors studied the periodic homogenization of a diffusion X :=
(Xt)t=0 on R¢ generated by the following second-order elliptic operator

d d
; 1 0% f(x) of(x)
where the coefficients (a;;())i<ij<q¢ and b(x) := (bi(x))1<i<qd are bounded and multivariate 1-periodic

(that is, they can be viewed as bounded functions defined on the d-dimensional torus T? := (R/Z)%).
Under the assumptions that each a;;(-) has bounded second derivatives, each b;(-) has bounded first
derivatives, and (ai;())1<; j<a is uniformly elliptic, they showed

{Xf—ctbt: t>0}

converges weakly as ¢ — 0 to a driftless Brownian motion with covariance matrix

d
;i (x) 0Y;(x)
St — ) (5 - 37) d
</Td Z < k ka akl(x) 1 a.%'l 'u( (L‘)
k=1

Here, Xi := X2 for t > 0, u(dx) is the unique invariant probability measure for the quotient process
of X on T¢ b= [1.b(z) p(dz), and ¢ € C*(R?) is the unique periodic solution to the equation

Lop(x) =b(x) —b on T

The goal of this paper is to study the periodic homogenization of jump diffusions whose infinitesimal
generators are of the following form when acting on C’,?(]Rd):

Lf(x) = /}Rd (f(@+2) = f(2) = (VF(2), 2)Lz<1y) k@, 2) TI(dz) + (b(x), Vf(@)). (L.1)

Here, T1(dz) is a non-negative measure on R? that does not charge at the origin 0 and satisfies f]Rd(l A

1<i,j<d

|2|?)TI(dz) < oo; b(z) is a bounded continuous multivariate 1-periodic R%valued function, and k(x, z) :
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R? x R? — [0, 00) is a function that is bounded so that z ~— k(x, z) is multivariate 1-periodic for each
fixed z € RY and
lim sup |k(y,z) — k(x,z)| =0. (1.2)
YT erd
Since k(+, z) and b(-) are multivariate 1-periodic, it is easy to verify that £ f is pointwisely well defined
as a function on T? for every f € C%(T?). By the maximum principle, (£, C%(T%)) can be extended to a
closed operator (£, 2(L)) on C(T9). Throughout the paper, the following two assumptions are in force.

(A1) There exists a strong Markov process X := ((Xi)i=0; (Pa)pcra) associated with L in the sense
that for every f € C;’Z(IR+ x RY) with Ry := [0, 00),

{rx0 = 1030 - [ (Fisx +£76.900) ) s 1> 0]

is a martingale under P, for all x € R* with respect to the natural filtration generated by X .
(A2) Regarding X as an T?-valued process, the process X is exponentially ergodic in the sense that
there exist a unique invariant probability measure u(dx) and constants A1, Cy > 0 so that

2EW%NXO—MUN<Qﬂ“Wﬂ%7t>07f€%@ﬂ- (1.3)
x

Assumption (A1) is satisfied, when the martingale problem for the operator (£, CZ(R%)) is well posed.
The latter has been extensively investigated in the literature, see [12, 13, 14, 15, 27] and the references
therein. See also [32, Theorem 3.1] for more recent study on the existence of a martingale solution asso-
ciated with Lévy type operators whose corresponding canonical process has the strong Markov property.
Since T¢ is compact, Assumption (A2) is a direct consequence of the irreducibility (that is, for any
t >0, z € R? and any non-empty open set U C R, P,(X; € U) > 0) and the strong Feller property
(that is, for any f € By(R?) and ¢ > 0, 2 — [, f(X;) is bounded and continuous) of the process X; see
[43, Theorem 1.1]. Assumption (A2) also holds, if the process X admits a transition density function
p(t,x,y) with respect to the Lebesgue measure so that for any ¢ > 0, the function (z,y) — p(t,z,y) is
continuous on RY x R, and that there is a non-empty open set U C R such that p(t,z,y) > 0 for all
t>0,zeRand y € U; see [6, p. 365, Theorem 3.1| for a modification of Doeblin’s celebrated result.
The reader is referred to Subsection 7.2 for concrete examples on Assumptions (A1) and (A2).

In order to deal with the scaling limit of X that requires recentering (which includes cases considered
in Subsection 3.2, Section 4 and Section 5), we need one more assumption.

(A3) For every f € C(T9) with u(f) = 0, there exists a unique multivariate 1-periodic solution 1) €
2(L) to
Lp=f on T with pu(h) =0 (1.4)
and

[¥lloe + IVY]loo < Cillfloos (1.5)
where C > 0 is independent of f.

There are a few literature on homogenization of non-local operators. We refer readers to |2, 3, 29, 35, 39|
for the periodic homogenization results for stable-like operators or the operator with convolution type
kernels. The methods used in the these papers are analytic and called the corrector method. The
probabilistic study of homogenization of periodic stable-like processes can be found in [20, 25, 37| via the
characteristics of semimartingales, in |21, 23, 24| by SDE driven by Lévy processes or by Poisson random
measures, and in [22, 41| via the martingale problem method. A closely related topic is homogenization
of non-local operators or jump diffusions in random media, which typically requires a different approach
than the periodic media case, see [36, 40| for example. Recently we have studied homogenization of
symmetric stable-like processes in stationary ergodic random media in [11].

The approach of this paper is different from all the papers mentioned above. We will use generator
method combined with its connection to martingales. In particular, we summarize the novelties of our
paper as follows.

(i) Our results reveal that the crucial ingredients for the homogenization of Lévy type operators
are the shape of large jumps for the jumping measures II(dz) and its limiting spherical measure
on the unit sphere $~! when expressed in spherical coordinates, see e.g. conditions (3.1), (4.1)
and (5.1)-(5.3). Compared with the references mentioned above on the homogenization of non-
local operators (which are mainly concerned on stable-like processes), our results work for more
general jump processes with a large class of scaling factors, see the weighted function ¢ in Section
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3, Example 7.2 and Remark 7.3. Moreover, limiting processes of our homogenization results
are also quite general, including all stable Lévy processes on R¢ that can be non-symmetric,
degenerate and have singular Lévy measures, see Example 1.1 below and examples in Subsection
7.1 for more details.

(ii) We will establish the periodic homogenization results for Lévy type operators £ after suitable
scalings that depend only on the tail of TI(dz) which gives the rate of large jumps. Our results in
particular cover the critical case; see Example 1.1(ii). To the best of our knowledge, this is the
first time in literature that critical cases have been studied. Moreover, the Lévy measure Il can
be singular with respect to the Lebesgue measure on R¢ and its support can have zero Lebesgue
measure.

(iii) Among all the results mentioned above, the process under investigation is either the unique strong
solution of a stochastic differential equation or a Feller process on R?. In this paper, the process
is only assumed to solve the martingale problem of (£, CZ(RR?)) and have strong Markov property.

The main results of this paper are Theorems 3.2, 3.4, 4.1 and 5.1 as well as Theorems 6.5 and 6.7. We
use the following example, a special case of these much more general results, for illustration. We first
introduce some notations which will be frequently used in the paper. By assumptions on k and II (see
the line immediately after (1.1)),

br(zx) := /{1<Z<R} zk(z, z) I1(dz) (1.6)

is well defined for every R > 1, and bg € Cy(RY) is multivariate 1-periodic. Clearly, if f{\z\>1} |z| II(dz) <
oo, then

boo () := /{|Z|>1} zk(z, z) I1(dz) (L.7)

is also well defined and is the limit of br(z) as R — oco. Let Ry := [0,00) and $9! be the unit sphere
in R%. Denote by 2(]0,00); R?) the space of R%valued right continuous functions having left limits on
[0,00), equipped with the Skorohod topology.

Example 1.1. Suppose that Assumptions (A1), (A2) and (A3) hold. Let X := (X};)i>0 be the strong
Markov process corresponding to the operator £ given by (1.1) with the jumping measure II(dz) such
that

1
Ljz51y TH(d2) = Loy gz dreo(db) (1.8)

where a € (0,00), 0o(df) is a non-negative finite measure on $9~! and (r,6) denotes the spherical
coordinates of z € R%.

Denote by p(dz) the stationary probability measure for the quotient process of X on T?. Define for
any R > 1,

b:= /]Fd b(z)u(dx), bg:= /]Fd br(z) p(dr), b = /Td boo () pu(dzx). (1.9)

(i) Suppose that k(z, z) is a bounded continuous function on R? x R? so that z + k(z, z) is multi-
variate 1-periodic for each fixed z € R? and 2 + k(z, ) is multivariate 1-periodic for each fixed
z € RY. For any ¢ € (0, 1], define (Y;);=0 by

eXt/Ea, 0<Oé<1,
Y;fe = gXt/EO‘ - (l_)l/s + l_))t’ a = 1’
€Xt/€a — 81_a(500 =+ B)t, 1 < o< 2.

Then the process (Y )i>o converges weakly in Z([0,00);R?), as ¢ — 0, to a (possibly non-

symmetric) a-stable Lévy process (X;)s>0 having jumping kernel ,ﬁ(f()x dr 00(df), where k : $4=1 —

R is defined by

R(0) = /Tdk(x,e),u(dm), fegi-l

and k: R? x $971 — R satisfies that for all 2 € R? and § € $971,

T
F(2,0) = lim %/0 Kz, (r,0)) dr. (1.10)

T—o00
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The infinitesimal generator of the Lévy process (X;)¢>o is given by
/d(f(erZ) = f(@)) k(2/|2]) o (dz) ae(0,1),
Lf(x) = /Rd (f(z+2) = f(2) = (Vf(2), 2) L2 1<ny) k(2/|2) o (d2)  a=1,
(f(z+2) = f(z) = (V[(),2)) k(2/]2]) To(dz) a € (1,2),

R4
where Ily(dz) := ]1{r>0}r1% dr 00(d0).

Furthermore, if the finite measure gg on $%~! that does not charge on the set of rationally
dependent 6 € $971, then we can take k(0) = [1u [pa k(z, 2) dz p(dz) for all 6 € $471, which is
a constant, in the statement above. Here we call = (01, -- ,04) € S9! is rationally dependent
if there is some non-zero m = (my,--- ,my) € Z% so that (m,0) = Z?:l m;0; = 0. Otherwise,
we call 0 rationally independent. When d = 1, $° = {1, -1} so every its member is rationally
independent. In particular, if gy does not charge on singletons when d = 2 and does not charge
on subsets of $9~! that are of Hausdorff dimension d — 2 when d > 3 (for example, gy is -
dimensional Hausdorff measure with v € (d — 2,d — 1]), then gy does not charge on the set of
rationally dependent 6 € $9~! and so the result above holds with k() = [1u [pa k(z, 2) dz p(dz).
Moreover, if gg is absolutely continuous with respect to the Lebesgue surface measure o on $4-!
with a bounded Radon-Nikodym derivative, then we can replace the joint continuity assumption
on k(zx, z) by the continuity of the function = — k(x, z) and condition (1.2).

(ii) When a = 2, define
Yy =X 21051t — e loge| M (boo +b)t, t=0.
Suppose that
ko := lim k(x,z) p(dz) > 0. (1.11)
|z]—o00 Jd
Then (Y§ )0 converges weakly in 2([0,00); R?), as ¢ — 0, to Brownian motion (By)¢o with the
covariance matrix A = {a;;}1<; j<a such that

aij = /{?0 /d ) (92(9] Qo(d@). (1.12)
gd—
(iii) When « > 2, define B )
Y i=eXye2 —e (b +D)E, £ >0
Then (Y§)s=0 converges weakly in 2([0,00); R?), as € — 0, to a d-dimensional Brownian motion
(B¢)t=0 with the covariance matrix

A= / / (z+v@@+2) —v(@) @ (2 +¥(x+ 2) — ¥(2))k(z, 2) (dz) p(dz). (1.13)
Td JRE
Here 1) € 2(L) is the unique periodic solution on R? to the following equation
Lip(z) = —boo(x) — b(z) + boo + b, € T?
with u(y) = 0.

One sufficient condition for (A1), (A2) and (A3) to hold in this example is that k(z, z) is bounded
between two positive constants, and that there is a constant 5 € (0,1) so that b(x) = (b;i(2))1<i<a €
Cy (R,

sup |k(z, 2) — k(y, 2)| < colz —y|?, z,y € R?
z€R
for some ¢y > 0, and

1
]]-{|Z|<1} H(dz) = ]l{‘z‘<1}|z|d7+a0 dZ
for some g € (1,2) — see Propositions 7.5 and 7.6.

Motivated by the classical central limit theorem for stable laws (see e.g. [17, p. 161, Theorem 3.7.2;
and p. 164, Exercise 3.7.2|), in order to study the limit behavior of the scaled process X© := (e X/za )0,
we do not need to recenter it when a € (0,1), but do need to recenter it when o € [1,2). Moreover,
the normalizing factors of the centered terms are different in the critical case @« = 1 and in the case
a € (1,2). See |26, Theorem 2.4| for related discussions on limit theorems for additive functions of a
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Markov chain to stable laws. A recent paper [25] studied the periodic homogenization for stable-like
Feller processes under the centering condition on the drift term b(z), see |25, Assumption (H4)]. We
emphasize that such centering condition is commonly assumed in all the quoted papers above except [21]
which only considers symmetric a-stable Lévy noises with a € (1,2). (For the periodic homogenization
for diffusion processes under the centering condition on the drift term b(x), the reader is referred to
[6].) In some sense, studying homogenization problem with general drift, as done in [7, 19] for diffusions,
requires normalizing the center first, which typically needs much more effort. Concerning the assertion
(ili) in Example 1.1, the closely related works in [35, 37| deal with non-local operators with convolution-
type kernels, and Lévy type operators without drift terms, respectively. The critical case corresponds
to the assertion (ii). Note that in the critical case, in contrast to the diffusive case (iii), the scaling
factor is e2|loge|~! rather than the standard diffusive scaling =2 and the corrector solution does not
contribute to the diffusion coefficient of the limiting Brownian motion. Moreover, in this case, because of
(1.12), the limiting Brownian motion may be degenerate even under the non-degeneracy assumption on
14121<1311(dz2), which is different from the diffusive scaling case (iii) (see Remark 4.2 below). We should
mention that all the limit processes have the scaling property; however, different from the cases (ii) and
(iii), the limit processes considered in (i) is an a-stable Lévy process which can be non-symmetric and
singular, as the spherical measure gg(df) can be any finite measure on $%~1.

Finally, we emphasize that the results of our paper can be regarded as the counterpart in the jump-
diffusion setting of the work by [7], which studied periodic homogenization for diffusion processes without
assuming the zero averaging condition on the drift term (that is, b = 0) which was imposed in [6]. However,
since we will treat general jump processes with a large class of scaling factors, there are essential differences
which require new ideas. For example, it always takes the diffusion scaling in [7], while as mentioned
above in the present paper the scaling and the limit process in the non-diffusive cases are determined
by the asymptotic behavior of the jumping measure II(dz) at infinity. The a-stable scaling e~® with
a € (0,2) in Example 1.1 is merely a special case (see Example 7.2). Furthermore, we do not assume
the uniform ellipticity condition on the non-local operator £ of (1.1) in the sense that the support of the
jumping measure 1y z|>1}H(dz) can have zero Lebesgue measure and whose linear span can be a proper

linear subspace of R?.

The remainder of this paper is organized as follows. In the next section, we present an elementary
lemma and some properties on the scaled processes under Assumptions (A1) and (AZ2). Sections 3
and 4 are devoted to the study of the limiting behaviors of the scaled processes under the jump scaling
and the diffusive scaling, respectively. In Section 5, we consider homogenization in the critical cases.
Roughly speaking, the limiting process is still Brownian motion, but the scaling factor is different from
the standard diffusive scaling e~2. In Section 6, sufficient conditions are given for the key averaging
assumption (3.6) of our main results to hold, which are also of independent interest. With all the results
above at hand, in Subsection 7.1 we give the proof of the assertions made in Example 1.1. Two more
examples are given to illustrate the power of our main results. Sufficient conditions for Assumptions

(A1)-(A3) to hold are presented in Subsection 7.2.

In this paper, we use := as a way of definition. For two positive functions f and ¢, f < ¢ means that
f/g is bounded between two positive constants, and f < g means that f/g is bounded by a positive
constant. We use [a] to denote the largest integer not exceeding a. For a,b € R, a A b := min{a,b}. For
any vector x,y € R?%, x ® y denotes its tensor product, which is equivalent to an d x d-matrix defined by
(x®y)ij = xy; for 1 <i,j < d.

2. PRELIMINARIES
2.1. Elementary lemma.
Lemma 2.1. Fory € Cg(Rd;IRd) and e >0, set
O (z) :=x +ev(x/e), Oz, 2) :=(x/e +2) —(x/e), =R
Then, for any f € C}(R?) and M € (0, oc],
f(®c(x +e2)) = [(Pe(a)) = (V(f(P(-))(@), £2)Lq12<ry

= [(®e(2) + £2) = f(@c(x)) = (V[(Pe(2)), e2) 112 1<nry
+e(Vf(Pe(2)),¥(x/e + 2) — ¥(x/e) = Vi(z/e) - 2y<my)
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2
+ %(V2f(@a($)), (20:(z,2) @ 2)yjoj<ary + Oc(2, 2) @ Oc(, 2)) + Ge(2, 2),
where Ge(z, z) satisfies
(Ge(2,2)] SO V2 flloo (1 + 1lloo + IVelloo) (2P Ljai<ry + 2L {Refzi<ary + Ljz=ary)

+ C1e? V2 fllool1¥lloo 211 {r< i<y + Cill flloo T gj2p> a0y
for all 0 < R < M < oo and some constant C > 0 independent of €, M, R, x, z, f and .

Proof. For any f € cg(Rd) and M € (0, 00], we write
f(@c(x +e2)) = f(Pe(2) = (V(f(P())(@), £2)Lq12<ry
= f(Qe(z +e2)) = f(Pc(x)) = (V(Pe(2)), (62 + eV(x/e) - 2)) L2 1<nry
= [f(x teztep(zfe+2) — fle+ep(z/e+2) — (Vf(x +ep(z/e + z)),ez)]leKM}]
(Vf(x+ep(z/e +2) = Vf(x+ep(z/e)),e2) 1y 1<y

+ [F@+ev(a/e +2) — fl@ +e(/e) — (V@ +e(w/e)), eV(a/2) - 2)Lqpenn]

= Z I7.
i=1
First, for fixed x, 2 € R? and ¢ € (0, 1), let

Hy(y) .= f(x+y+ez) = flz+y) = (Vi@ +y),ea)lz<my
Then,
[Hilloo = €21V2 fllool21* L gjzi<ary + 1 lloo Lz 3
and, forany 0 < R< M

IVH oo = 2IV2 fllool2PLgjz1<ry + el V2 fllool2 T 121> Ry
Thus,
If = Hi(ew(a/e +2)) = Hi(e0(@/2)) + [Hi(ev(e/z + 2)) — Hi(b(a/2)]
= f(®e(z) +22) — f(Pe(z)) — <Vf(<I>€(x)),€z>]l{|z|<M} + Gl,a(x7 z).
Furthermore, according to the mean value theorem, G .(z, z) satisfies that
|Gre(x,2)| 2 e| VH|loo|t(x/e + 2) — (/)| Lisi<nry + [ Hilloo L 21>y

= NV fllooll$lloo 21 L g121<my + €21V Fllool¥llosl 2L gretzjcary + I oo L gjz1> a1y
Second, by the Taylor expansion, it holds that

5= 52<V2f(<1>6(3:)), O (x,2) ® z>]l{‘z‘<M}
3
+ %(Vg’f(fbg(x) + 6000:(z,2)),0:(x,2) ® O(z,2) ® z>]l{‘z‘<M}

(V2 f(Pe(x)), Oc (2, 2) @ 2) 12 jcpry + Gae(, 2),
where 6y € (0,1) and

|Gae(@,2)] 2 E2[IV2 flloo (I lloo I Ve lloo 22 L 1<ry + 191136 121L (Re)zi<ry)
forany 0 < R< M
Third, applying the Taylor expansion again and using the mean value theorem, we obtain

I5 = e(Vf(@(x)),¥(x/e + 2) —P(x/e) — V(x/e) - 21 {1 1<01y)
2
+ 5<V2f(<1>5(x) +0,0.(x,2)),0:(x, 2) @ O (z, z)>
= e(Vf(®e(2)),¥(x/e + 2) —(x/e) — Vp(x/e) - 21 1<0m1})

2
+ (T2 f(8e(2)), 022, 2) @ O (1, 2))

+ ?91<V3f(<1>5(3:) +€601020.(x, 2)), O (7, 2) ® Oc(z, 2) ® O(x,2))
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= (Y (@), Wl + 2) — Y(o/2) — Vi(/e) - 2 geany)
+ SV @.(2), 0.(2.2) © 0.(2.2)) + Ca (2. 2)
where 61,62 € (0,1) and

|Gs.e (2, 2)] 2V Flloo (19 lloo IVl 2P L2 my + 19113 IV oo |2 L gre)op<nry + 191136 L (125 01y)

forany 0 < R< M
Therefore, putting all the estimates above together, we prove the required assertion. O

2.2. Consequences of (A1) and (A2). Let £ be the operator given by (1.1) with II(dz), k(z, z) and
b(x) satisfying all the conditions below (1.1). We assume that Assumptions (A1) and (A2) in Section
1 also hold true. Denote by X := (X});>0 the strong Markov process associated with the generator £ as
in (A1).

Let p: R4 — Ry be a strictly increasing function such that lim, ., p(r) = co. For € € (0,1), consider
the scaled process

X°© = {6Xp(1/5)t 1t 2> 0} (21)
Clearly, X¢ is a strong Markov process on R?, and the associated generator is given by
£ 4(@) = p(1/2) [ (ot 22) = @) = (91 @) )L ey ba/e,2) ()
+ep(1/e){b(x/e), V£ ().

See e.g. [11, Lemma 2.1]. Since the coefficients of the generator £¢ are multivariate e-periodic, the process
X¢ can be also viewed as an T%valued process if 1/¢ is an integer.

(2.2)

Lemma 2.2. Under Assumption (A2), we have the following two statements.
(i) For every f € Cy(T?) with u(f) =0, any 0 < s <t and x € RY,

.

lim sup E(|X; - X7|A1)=0. (2.3)
20 <1/ /P (/)]

Then for any bounded continuous function F : T x R - R and any 0 < s < t,

t
3 (3
;l_)I%Em i f(X5/e) dr

(ii) Suppose that for some x € RY,

t
lim I, (XE/e, XE) dr—/ F(XZ)dr
e—0 s

2
] =0, (2.4)
where F : R4 — R is defined by
F) = [ Pl o)
Td

Proof. (i) Let f € Cy(T?) be such that u(f) = 0. Then, for any 0 < s < t and = € R?, by the Markov
property and (A2),

t
E, /Sf( IX5) dr| | =2, U / F(Xoa/0e) (X /6)u) dudr
=2 / / X1/ EX 1y f (Xp1/2)(r—u))] dudr (2:5)
115 [* M1/ (=9)) gy I f13(t = 5)
jp<1/e>/ (- e dr < e

This along with the fact that lim._,g p(1/¢) = oo yields the first desired assertion.
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(ii) By the standard approximation, it suffices to prove (2.4) for F(z,y) = f(z)g(y) with f € Cy(T%)
and g € C}(R?). Without loss of generality, we assume that f € Cy,(T9) with p(f) = 0. For e > 0, define

=5 =3
2]
/P91

e et
t
[ (X7 /e) g(X7)dr
Z / /e dr - g(XE)

and
2

N
Il
=

8

e -

We can write

> / T R O 5 (0 X006
<R
and
ng Z /z+1/y+1 (XE/E) ( Z/g)g(Xsei)g(X;)] dr du.
RN

Note that, for every 0 <, < [\/p(1/e)] — 1, s; <7 < s;41 and s < u < 5541,
E, [f (X7 /e) f(X5/e) 9(X7)9(X5)] — By [ f (Xf/ﬁ)f(XZ/ﬁ)g(Xi)g(X;)]‘

<1 Ngloe (Balg(X9) = (X5 |+ Balg(X5) — 9(X5,)1)

<2/l f I3 9llos llgllos + 11V glloc) (Ex(le — X5IAT) + B (JX5 — X, A 1))
< anle),
where c1 = 4(||gllso + [|Vglloo) I f 12 lglloc and
n(e) = sup E. (X7, — X[ A1)
Ir1—ra|<(t—s)/[\/p(1/€)]
Thus,
e — Je| < cnle) Z (sj41 = 85)(8i41 — 85) < ean(e)(t — s)*.

0<i,5<[v/p(1/€)] -1
Hence lim._,¢ |I. — Jz| = 0. So it remains to show that lim._,¢ J. = 0.
By the Cauchy-Schwarz inequality and (2.5),

[Vp(1/e)]-1 . 2
T<WVe/ellglle > E. / (X5 /e) dr ]
i=0 5
[Vp(1/e)]-1
caly/p(1/€)] 2 2 2 s (t—59)
= 0o 00 Si+1 — Si) S ¢ 00 T ——
o(1/%) [ =sival ; (si+1 = si) < e2l[F[[S M9l A
Since lim._,¢ p(1/e) = oo, we get lim._,o J: = 0. O

3. HOMOGENIZATION: JUMP SCALINGS

Let $971 := {x € R?: |z| = 1} be the unit sphere on R?, and z := (r,0) € Ry x $9~! be the spherical
coordinate of z € R¥\{0}. Throughout this section, we assume that the jumping measure II(dz) in (1.1)
has the following form on {|z| > 1}:

00 (dO) + k(r,dO)
ro(r)

]l{\z\>1}H(dZ) = ]l{r>1}g(7’, d@) dr = ]l{r>1} d’l“, (3.1)

where

(i) 0o(df) is a e non-negative finite measure on $¢~1 such that go($%1) > 0;
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(ii) for every r > 1, k(r,df) is a finite signed measure on $9~! so that for any ro > 1,

sup |k|(r, 8471 < oo, lim |k|(r,$%71) =0, (3.2)
r€lrg,00) r—roo
where, for each r > 1, |k|(r,df) denotes the total variational measure of x(r, df);
(iii) ¢ : (1,00) — Ry is a strictly increasing function such that there are constants a € (0,2),
¢o € (0,1], and 1y € (0, Ajla — 1] A (2 — «)) when av # 1 and 19 € (0,1/6) when a = 1, so that
for any 1 < r < R,

. (p()\T‘) oo a=mno < (p(R) < —1 a—+no
)\h_)nolo‘ 00 r* =0, co(R/rT) S o S co (R/r) . (3.3)
Define (d6) d
0 T
HO(dZ) = ]1{7">0} Or1+a ) (34)

where a € (0,2) is the constant in (3.3). It is obvious that IIp(dz) satisfies the scaling property that
My(sA) = s~%ag(A) for all s > 0 and A € R?\{0}; however, since go(df) may be non-symmetric on $91,
y(dz) can be non-symmetric on R%.
We also suppose that for the function k(x, z) in (1.1), there exists a bounded function & : RYxR? — Ry
such that for any 0 < r < R and f: R? x R? x R? — R satisfying
lim sup |f(z,21) — f(z,22)] =0, (3.5)

e—0 z€RY |21 —22|<e

it holds that

/ f(z,2)k(z /e, z/e) p(dz) —/ flz,2)k(z/e, z) o(dz)| = 0. (3.6)
{r<|z|<R}

{r<|zI<R}

lim sup
e—0 zeRY

Remark 3.1. We make some comments on the assumptions above. In the following, ¢ is a function
given in (3.3).
(1) Examples of functions satisfying (3.3) include o(r) = r® + 7% on (1,00) for 0 < 8 < o < 2 and
o(r) = r%log(1 4+ ) on (1,00) for 0 < a < 2. In fact any strictly increasing function ¢(r) on
(1,00) of the form fo?? rP v(dp) satisfies condition (3.3), where 0 < a; < ap < 2, and v is a finite
measure on |1, as| so that ay is in the support of v; see Example 7.2 for the proof of this fact.
Observe that the second condition in (3.3) is equivalent to that there is some Ry > 1 so that for
all R > r > Ry,
a—1o @ —1 a+o
CO(R/T) < QD(T‘) <G (R/?") :
Indeed, the statements in this section still holds if we replace r > 1 in (3.1) by r > Ry for some
Ry > 1, and restrict ¢ defined on (Rg, 00).
(2) Condition (3.2) means that the term x(r,-) is a lower order perturbation as r — oo, and thus, by
(d6) dr

(3.1), the jumping measure II(dz) is comparable to Qow(r)

(3) Suppose that ¢1(r) is a strictly increasing function on (1,00) so that
lim 1) =
r=oo o(r)
Then 1 (r) clearly satisfies (3.3), and we can rewrite a(z) as
00(d0) + r(r,db)
rei(r)

for large |z|.

dr

Ty l(dz) = 1oy

with

_ _(pulr) pi(r) o
K(r,df) = ( o) 1> 00(df) + o) (r,df).

Evidently, lim, o |%|(r, $¢71) = 0 and SUD;¢rg,00) |BI (7; 89=1) < oo for all 79 > 1. In other words,
the representation of II(dz) in the form of (3.1) is invariant among the family of strictly increasing
functions ¢ on (1,00) that mutually satisfy the relation (3.7).

(4) Let k: R x R? — R, be the function satisfying the assumptions below (1.1). In view of (3.4),
it is easy to see that if for every 2 € R? and gp-a.e. § € $%~!, there is a constant k(z,6) so that

1T _
lim ?/0 k(x,(r,0))dr = k(z,0), (3.8)
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then (3.6) holds with k(z, z) := k(x,z/|z|). Clearly, condition (3.8) holds, if for gp-a.c. 6 € $771,
there exists a bounded measurable function k(-,0) : R? — R such that

lim sup |k (z, (r/e,0)) — k(z,6)| = 0.

e—0 zeR

It is shown in Theorem 6.5 below that condition (3.8) holds for every § € $9~! and so condition
(3.6) automatically holds for any finite measure gy on $9-1 when k(x, z) is bounded, continuous
and multivariate 1-periodic in both x and z. See Section 6 for more sufficient conditions for (3.6)
including the information on k(z,0), when z — k(x,z) is multivariate 1-periodic for any fixed
r € R%

The purpose of this section is to consider the limiting behavior of the scaled process
X = (X{)iz0 = (5X<p(1/e)t)t>0- (3.9)
Note that by (1.1) and (2.2), the generator of X¢ is given by

LEf(x) = e(1/e) /}Rd (fl@+ez) = f(2) = e(V (), 2) Ly ) bl /e, 2) TT(dz)
+ep(1/e)(b(x/e), V f(x)).

It turns out that the limiting behavior of X¢ as ¢ — 0 depends on the value of a associated with the
scaling function ¢ in (3.3). We will divide this section into two parts. One is to consider the invariance
principle for X¢ that needs no recentering, and the other that requires recentering. In some literature,
invariance principle that requires recentering is called non-central limit theorem; see for instance [21].

(3.10)

3.1. Invariance principle without recentering: « € (0,1). Recall that « € (0,2) is the constant in
(3.3). In this subsection, we will restrict ourselves to the case a € (0,1). Then, by (3.1), we have

d/e 1
. -1y . . -1 —
ig%ego(e ) =0, %1_1% hrglj(l]lp <6gp(e )/1 o) dr) =0,

1/(d¢) 1 00 1
lim sup | dep(e! / ——dr | =0, lim sup |¢(e? / dr | =0, 3.11
3=0 c(0,1) < ) 1 o(r) 0=0 2¢(0,1) ) 1/(5¢) T(T) (3.11)

1/e 1 1
-1
sup | ep(e / dr | <oo, sup gpls/ dr | < oo.
56(0,1)< ) 1 () ) 56(0,1)( 1/e) 1/e ro(r)

In particular,

1/(6e) 1/(de) 1
lim sup 5252@(51)/ dr | <lim sup 55@(51)/ dr | =0.
0=0c¢(0,1) 1 o(r) 0=0c¢(0,1) 1 o(r)

In fact, for any ¢,4 € (0,1),

1/(5¢) 1/6
oot [ = [ S

1 16 q —
—LiTNoTa
=<6 /era+nodr+/1 ekl <6(1+6 ),

where we have used the second condition of (3.3) in the first inequality. So, by the fact 79 € (0, aA(1—a)),

we obtain
. 5 (_1)/1/(56) 1 d 0
im sup ep(e ——dr | =0.
0—=0ce(0,1) 1 o(r)

Other estimates in (3.11) can be proved similarly and we omit the details.

The following is the main result of this section.

Theorem 3.2. Suppose that (3.1) and (3.6) hold. If (3.3) holds with o € (0,1), then the scaled process
(X§)i=0 of (3.9) converges weakly in 2([0,00); RY), as € — 0, to an a-stable Lévy process X := (Xi)1=0
with Lévy measure ko(z) o(dz); that is, the generator of the a-stable Lévy process X is given by

£f@) = [ (14 2) = F@)ha() o(d2)
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Here Ty(dz) is the measure defined in (3.4) and ko(z de p(dzx), where pu is the unique invariant
probability measure of X on T¢, and k(x, z) is the functzon in (3 6)

To prove this theorem, we need the following property for the generator of the scaled process X¢.
Lemma 3.3. Suppose that (3.1) and (3.6) hold, and that 0 < a < 1. For every f € CZ(R%),
lim sup |£°f(x) — £L°f(2)] =0,

8ﬁ0x€Rd

where

LEf(x) = /}Rd (f(z+2) — f(z))k(z/e, z) U (dz) (3.12)
with k(z,z) being the function in (3.6) and Ily(dz) defined by (3.4).
Proof. By (3.10), for every ¢, € (0,1) and f € CZ(RY),

CF) =) [ (Sae) = 1) = (V). 2)k(a/z, )
—i—cp(l/e)/ (f(z+ez) = f(z))k(z/e, z) I(dz)
{0/e<z]<1/(0e)}

+p(1/e) / (f(z +e2) = f(x))k(z/e, 2) (dz) + ep(1/e) (VS (@), bse(w/2) + b /e))
{121>1/(6)}

L0 f (),

I
M-

i=1
where bs,. () is defined by (1.6). We can write

/ flz+ =) f(x))/;:(x/s, 2) Iy (dz)
\Z\<5}
+ /{5<z<1/6} (f(z+2) = f(z))k(z/e, z) U (dz) —i—/{ (f(z+2) — f(z))k(z/e, 2) o (dz)

12121/5)
3

=) LY f(x).

i=1
Since k(x, z) is bounded and a € (0,1), by (3.4) we have

_ 0 Sd—l
EF@N =190 [ lelTo(a) = 9 [ 20 e < 190t

|z|<o
Applying the same argument to |Z)§’5f(x)|, we see that

lim  sup  ([£9°f(2)] + L5 f(x)]) = 0.
0=0c(0,1],z€R4
On the other hand, according to (3.1),
2o(df) + |~(r, db)
r(r)

Lgjzz1y H(d2) < Lgy>qy dr, (3.13)

and so by (3.2) we obtain that for 0 <e < d < 1,

sup |L7°f ()] =2 \|V2f\|oo6290(1/6)/ |2[* 11(dz)
{lzl<d/e}

zeR?
d/e r
V2 flloog® *11(d d
<92 lcse(1/c) (/M@}m @+ [ = )

d/e
<9l (e%u/e) / 22 TI(d2) + ep(1/e) / ! dr>,

{121<1} @(r)
o0 1
sup 185° £()] = 1 lop(1/2) / I(d2) < || llsip(1/2) / dr.
zeR {121>1/(5¢)} 1/(s¢) TP(T)
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and

d/e 1
sup |bs/-(x/e)| = / ——dr.
ze]Rd‘ (5/6( / )‘ L QO(T’)
Thus, by (3.11) and the fact that b(x) is bounded, we have

lim lim sup sup (\£§5f(x)\ + \£§’5f(w)] + \ﬁi’(sf(x)]) =0.

020 50 zeRd

Furthermore, due to (3.1),

05 f(a) =p(1/e) /{ oy U+ = S/, 2/2) alde/2)
B 1/8 B 00(d0) + k(r/e,db)
=e1/e) [ [ (a2 = pa)ka/e, 2/ LD drje)

[ pl1/2)
_/5 /sdl (f(x+2) = f(x))k(z/e, z/s)w(r/g) 00(d6) dr

" (19
[0 G2 = ke o) E L e e
= : L33 f(x) + £55 1 (2).
By (3.2) and (3.3) as well as the dominated convergence theorem, we know that for every fixed 6 € (0, 1),

I 5 = 0.
21%;;@’%72 ()| =0

Again by (the first condition in) (3.3), (3.4) and (3.6) as well as the dominated convergence theorem, one
can verify that for every fixed § € (0,1),

lim sup |£57f(z) — £5° f(x)] = 0. (3.14)

e—0 rERM

Putting all the estimates together, and letting € — 0 and then § — 0, we get the desired assertion. [J

Proof of Theorem 3.2. (1) Recall that £¢ is the infinitesimal generator for the Markov process X¢ :=
(X§)i=0; (Py)pega)- For every z € R%, t > 0, f € CZ(R?) and stopping time 7,

B f(XE0) = ) + B | [ £5505) 8] (3.15)
For any R > 1, we write
S =1/e) [ () - J@) - (T )en) ko /e ) TU(d:)
{lzI<R/e}
b)) [ (floten) - @) bla/e, ) T1(d:)
{lz|>R/<}
+2p(1/2)( V£ (@), brye(w/2) + b(z/2))
3
=y (),
=1

where b/ () is defined by (1.6). Using (3.13) and following the proof of Lemma 3.3, we have

/e
sup |I7%(@)] = IV2 o0 (1/) ( /{ oy T ¢ / ' Wd> ,

z€ER?

R [ee] 1
sup |15 ()] = foogole/ —dr,
s 15T @I 2 ller1/2) [ o

R/e
sup [ER(@)] < [V flloc(1/e) (ubuoo - ﬁd) |

z€R4
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Hence, for every R > 1,

R/e r
sup [£°£(@)] <V e (1/2) (1 = dr)

zeER
© (3.16)
lap(179) [ s ar v 19 hzttfe) (14 [
+ op(l/e r ofp(l/e |
R/e TP(T) 1ol
(2) In the following, for every [ > 0, let f; € C3(R?) be such that
0 lz] < 1/2,
= 3.17
e {1 2l > 1, 17

and ||V fi|lee < 17 for 0 < i < 3. For any fixed y € RY, we set [/ (z) := fi(x — y). Then, according to
(3.16), we have

R/e r 00
sup |L°fh(x)] <R 2%p(1/e) (1 +/1 — d7“> + (p(l/e’;‘)/ L dr

z,yeR4 QD(T) R/e TQD(T)

. R/e 1
+ R ep(1/e) <1 +/1 o) dr) .

This along with (3.15) yields that for any 7' > 0,

ThTg
Py ( sup [XF| > R) < Elfp(Xfns)] = E [ | e ds]

t€[0,T]
R/e )
< T |R2%p(1/e) <1+/ (Pr dr) +g0(1/6)/ L
1

(T) R/e 7490(74)

- Rlep(1/e) (1 + /1 e ﬁ dr)

Here and in what follows, 77 := inf{t > 0 : |X; — X{| > [}. Hence, according to (3.11), we have

lim sup IPO( sup |X[|> R> = 0. (3.18)
fimeoze01)  “eefoT]

On the other hand, following the argument in (3.16), we can obtain that for every # € (0,1) and y € R,

0/e r 0 q
sup 62730 <V e e1/2) (1 - @—dr> 1 les1/2) [

zeR4 (T) 0/e T(P(T)
0/e
+ IV oz (1/2) <1+ /1 $d>
_9 00 . 0/e 1
=0 "cp(1/e) + p(1/e) /0/5 o) dr +6 5@(1/5)/1 0

It follows from (3.11) that for every 6 € (0, 1),

sup sup |L°fH(z)] < C(F) < 0.
e€(0,1) z,ycR4

Therefore, for any stopping time 7 with 7 < 7" and any positive constant 6(e) with lim._,od(e) = 0,
Po (| X5 50) — X5l > 0) = Bo[Px: (| X5, — X5l > 0)] < Bo(Bxs fo(Xins)))

75 N (€)
Ey: / L5 Fo(XF) ds
0

lim Py (| X5, 5 — X7| > 0) = 0. (3.19)
e—0

B, < CO)).

which implies
T+0(e
Due to (3.18) and (3.19) (see e.g. [1, Theorem 1), we conclude that { X< }.¢ (0,17} is tight in Z([0, 00); R%).
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(3) By (2), for any sequence {X¢},,~1 with lim,,_,o &, = 0, there is a subsequence { X" };~1 (which
we still denote by {X¢®"},,~1 below for the notional snnph(nty) such that the distribution of {X®"},>;
on 2([0, 00); Rd) equipped with the Skorohod topology converges weakly to a probability measure P on
2([0,0); RY). Let

£f@) = [ (Fle+2) = @)kl To(dz), (320)

which is the infinitesimal generator of the Lévy process as in the statement. In particular, the associated
martingale problem for (£, C2(R%)) is unique. Thus, it suffices to verify that for any subsequence of
{en}n>1, the limit distribution P is the same as that of the solution to the martingale problem for the
operator (£, C%(R%)).

Due to the fact that the distribution of {X®"};,~ converges weakly to P in 2([0, 00); R?), there exist
a probability space (Q Z, IP), and a series of stochastic processes {X tn>1 and X defined on it, such
that the distribution of Xn under P is the same as that of X°» under IPg for any n > 1, the distribution
of X is the same as P, and X™ converges to X almost surely in Z([0,00); RY).

Note again that X¢ := ((X{)i=0; (]Pm)xe]Rd) is a solution to the martingale problem for the operator
(L£5,C2(R%)). Then, for every 0 < s1 < 8g9,-+- < s, < s < t, f € C2(RY) and G € Cyp(R¥*),

E[(fu?f)—f(ffs)— / ﬁ"f()?ﬁ)dr)G( n X”)] =0,

According to (3.16), Lemma 3.3 and the dominated convergence theorem,

i B[00 - 150 - [ 2 & ar) a(xs, 1) =0 (3:21)
where L£°f(x) is defined by (3.12). Set F: T¢ x R? — R and F : R? — R by
Faw)i= [ (f+2) = Sk ) lo(d), Fo)i= [ Flay) utdo)
R4 Td

where k(z, z) is given by (3.6). Then, £°f(x) = F(x/e,x) and L f(x) = F(z). Therefore,

TE[/stzfnf(if)dr—/:zf(ir)dr]
||

t
=E [/ (F(X]Jen, X]') — F(X])) dr
S
Following the proof of (3.19), we have that for any 6 > 0 and 6(g) > 0 with lim._,od(e) =0,

/ (F(X]) — F(X,)) dr

=17+ I3

lim IPO( sup | X§ - XZ[> 9) =

=0 0<s<t<s+6(e)

Clearly,
Eo sup | X7 — XZ|IA1

g]PO( sup | X7 — XE| >6’>+9.
0<s<t<s+4(e)

0<s<t<s+6(e)

By letting ¢ — 0 first and then # — 0 in the inequality above, we get that (2.3) holds as lim._,g p(1/e) =
lim. 9 p(1/¢) = oco. Thus, by Lemma 2.2 and the fact that F' is uniformly continuous,

lim I

n—o0

/t (F(X] fen, X)) = F(X])) dr

2
] =0, (3.22)

and so lim,,_, IT = 0. On the other hand, by the facts that Xn converges almost surely in ([0, 00); R?)
to X and F € Cy(R?), as well as the dominated convergence theorem, it holds that lim,, . I 5 = 0. Thus,
t _ t
/ L f(X))dr — / Lf(X,)dr

S S

we obtain
] 0.
Putting the estimate above into (3.21) and letting n — oo, we get

B[ (50— 10 - [ £rE)ar) 6(T. oK) <0

lim IE[

n— o0
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Thus, (X,P) is a solution for the martingale problem (£,CZ?(R%)). This shows that X is a pure jump
Lévy process with Lévy measure ko(z) I (dz). O

3.2. Invariance principle with recentering: « € [1,2). In this subsection, we are concerned with
the case that o € [1,2) and will present scaling limit theorems that require recentering for X< of (3.9).
Recall that II(dz) is defined by (3.4) and ko(2) := [pa Jpa k( dz), where p is the unique invariant
probability measure of X on T?, and k(z, z) is the function in (3 6) The following is the main result of
this subsection.

Theorem 3.4. Suppose that (3.1) and (3.6) hold, and that Assumption (A3) is satisfied.
(i) Assume that (3.3) holds with o =1. Let

Y= X7 —ep(1/e)(bye + b)t = e(Xopyey — p(1/€)(byje +b)t), =0,

where byje = [pabije(x) p(dx) and b = [1.b(x) p(dx). Then, as e — 0, (YF)o converges
weakly in 2([0,00);RY) to a Cauchy (i.e. 1- stable) Lévy process whose generator L is
Zf(.%’) = /]Rd (f(.%' + Z) — f(m‘) — <Vf(.%'), Zﬂ{‘z‘gl}»ko(z) Ho(dz) (3.23)

(ii) Assume that (3.3) holds with oo € (1,2). Let
Yy© = Xf—egp(l/e)(l_)oo+l_))t:e( o1/t — P(1/€)(boo + b)E), >0,
where bo = [ipa boo(x) p(dz). Then, as € = 0, (Yi)i=0 converges weakly in ([0, );RY) to an

a-stable Levy process whose generator L is

£7@) = [ (Fe+2) = 1) = (97(@). ) kol To(d:).

Note that when (3.3) holds with o € (1,2) (resp. a = 1), lim._,pep(1/e) = oo (resp. lim.oep(1/e) >
0). So in assumptions of Theorem 3.4, one really needs to recenter X¢ in order to have a limit.

To prove Theorem 3.4, we need two lemmas. The first one is analogous to Lemma 3.3. Recall that the
infinitesimal generator £%, given by (3.10), of the process X¢ can be written as

L8 f(x) = L5 f (x) +ep(1/e) (V (), byje(2/e) +blz/e))
and
of(x) :==(1/e) /Rd (f(w +ez)— f(x) — <Vf(x),€z>]1{|z|<1/€})k(x/€,z) II(dz).
Note that, according to (3.13),

>~ 1
/{|z|>1} |z|k(z, 2) II(dz) = /1 o) dr,

and so we can define

boo(x) = zk(x, z) II(dz 3.24
@ =] ) (3:24)
provided

/1 cp(lr) dr < oc. (3.25)

In this case,

L8 f(x) = L1f(x) + ep(1/2) (Vf(2), boo(2/€) + b(z/€)) ,

where
£H@) = 91/2) [ (Flate2) = f(o) = (Vo). e2) Ka/e, ) TH(d2), (3.26)
Lemma 3.5. (i) For any e € (0,1) and x € R?, define
5l )= 91/6) [ (1l +22) = 1) = (VS @) e ery)bla/e D). (320)
Suppose that (3.3) holds with o = 1. Then, for every f € CZ(RY),
i sup (55, (0) — £5.F(w)] = (3.29)

z,yeR4
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where
5f0) = [ (F0-+2) = 1) = (V50D 21 0] Flo/e,2) To(dz).
(ii) For any e € (0,1) and x € R?, define
af0) = p1/2) [ (Fu+2) = 1) = (VF(0),e2)) /) Ta:).

Suppose that (3.3) holds with 1 < o < 2. Then, for every f € C’,?(Rd),

lim sup |£5,f(y) —L5.f(y)| =0, (3.29)
_>Omy€]R

where

5u£0) = [ (F0+2) = ) = (VF().2)kla/e. ) T do)

Proof. We only prove (ii), since the proof of (i) is similar and simpler.
Suppose that 1 < a < 2. Then, by (3.3), we have (3.25), and so L7 , f is well defined for any ¢ € (0, 1)

and = € R%. Moreover, according to (3.3) and 1 < o < 2,

9 00
T 1
lim £20(1 /¢ =0, lim /—dr—l—/ ——dr | =0,
e /e) sao<o o) Sigs o) )

d/e r () 1
lim lim sup [ €2¢(1/¢ / dr] =0, limlimsup (ep(l/e / dr ] =0.
6—0 €%0p< P(1/5) 1 e(r) ) 6—=0 saop< P(1/5) 1/(8¢) o(r)
The proof for (3.30) is similar to that of (3.11), and we omit the details.
For every § € (0,1) and = € R, we write

< F(y) =p(1/e) ( / + / + / )
{lz|<d/e} {6/e<]2]<1/(d¢)} {lz>1/(0¢)}

(fly+ez) = fly) = (VF(y),e2)) k(x/e, 2) 1T(dz)

(3.30)

3
£,0
ZLIIEZ

and

B z) = —(V 2NV k(z /e, 2) Ho(dz
</{Izl<6}+/{6<|z|<1/a}+/{z>1/s}> (Fly+2) = £u) = (VI (), 2) b(w/e, 2) o (d2)

Zﬁii@f(y)-

i=1
By (3.4) and (3.30), it is obvious that

~e,0 ~Ed
lim sup s (1£50,/(9)] + 1255 5F @)
0202€(0,1) 2,yeRr

5o, o q
< Jim (19201 [ sl [ s

On the other hand, according to (3.13), we have

sup 1655150 = V3 Slwee1/e) [ [P
zyeRd {lz1<6/¢}
d/e
<92 f (1)) ( /{ Ly ) / md>

sup [£70 5F(v)] < ¢(1/e) /{ . (Ifllos + €llV flloo|2]) T1(d2)

z,yeR4

A:ﬁmﬂ):O.

and
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(e o]

< (Iflle + 19511 (w/e) [ et [ dr)

o 1

dr.

2 (1l 19 51e) 00172 | =

These estimates along with (3.30) yields that
lim limsup sup (175,17 ()] + £33/ (4)]) = 0.
5—0 =0 $7yeRd selry by
Following the argument for (3.14), we can also obtain that for every fixed § € (0,1),
. 5 —e6
lim sup |£7%,f(y) — L7 of(y)| = 0.
6%0 x,yeRd b K b b
Combining all the estimates above, by first letting ¢ — 0 and then § — 0, we get the assertion
(3.29). O
In the next lemma, we use the convention 1/0 = oco.

Lemma 3.6. Suppose that Assumption (A3) holds. For any e € [0,1], let Y* € Z(L) be the solution to

L () = —byje(x) — b(x) + byje +b, x €T (3.31)
with () = 0. Then,
1/e 1
P lloo + Vweoojl‘i‘/ —— dr. 3.32
[l + IVl o0 (3.32)
Proof. According to (3.13),
1/e 1
sup |by/.(z)| < / |z| I(dz) = / dr.
xE]Rd’ 1/e(@) {1<|2|<1/e} 1 oe(r)
This along with the fact that b(z) € Cy(R?) and (A3) yields the desired assertion. O

Now, we are in a position to present the

Proof of Theorem 3.4. (1) Suppose that Assumption (A3) holds. We first assume that the solution ¢
of (3.31) satisfies that p(¢°) = 0 and also ¢ € C?(T?). Set ®.(z) := x + e¢)°(x /). Define

Zi = Y[ + et (Xj/e) = 0o(X) —ep(1/e)(brje +b)t, >0
For f € CZ(RY), define
fs,s(x) = f(x - 890(1/8)(61/5 + B)S) and Fa(sax) = fs,s(q)a(x))'

Clearly f(Z7) = F.(t,X7). Since X := ((X])t>0; (Pz)4erd) is a solution to the martingale problem for
the operator £¢, it holds that for any z € R%, ¢t > 0, f € Cg’(Rd) and any stopping time 7,

B, [f(Z0)) = fla+ e ) + B | [ (G200 + R0 ) as].
Note that OF
856 (s,z) = —ep(1l/e) <Vf€,s(<1>€(x)), 51/6 + l_)> .

Applying Lemma 2.1 with R = 1 and M = 1/¢, we find that
LEFL(s,-)(x)
= ¢(1/e) /Rd (fes(Pe(m +22)) = fos(Pe(@)) = (V(fe,s(Pe(-))(x), e2) L z1<1y ) k(2 /e, 2) TI(d2)
+ep(1/e)(V(fes(22(-))) (@), b /¢))
= ¢(1/e) /Rd (fes(Pe(z + €2)) = fos(Pe(x)) = (V(fo,s(D()) (@), £2) L 2 <1 /ey k(2 /€, 2) TT(d2)
+ep(1/e)(V(fe,s(:())) (@), brye (x/€) + b(z/2))
= ¢(1/e) /Rd (fes(Pe(@) +€2) = fos(Pe(@)) = (Vfers(Pe(2)), £2) L z1<1/e) (2 /2, 2) TT(d2)
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+ep(1/e) <Vf€s (P (x)),/ (1/)5(3:/6 +z2) =Y (x/e) — <V1/)€(x/6),z)]l{‘ZKl/a})k:(x/e, 2) H(dz)>

+ep(1/e) <Vf55 (), byje(x/e) + b(z/e))
+ep(1/e)(V fors(Pe (), VY& (2 /2) - (byje(a/e) + b(x/e)))

+ ¢(1/e) / K (z,2)k(x/e, z) 1I(dz)
= L5, f2,5(Pe(@)) + ep(1/E)(V [ s(Pe(2)), (L9 + by +)(2/€)) + @(1/¢) /}Rd Ke(z, 2)k(z /e, 2) I(dz),
where £ and £f , are defined by (3.10) and (3.27) respectively, and K. (z, z) satisfies that

|K€(x,z)|
3
= EVP Flloo + €21V Flloo) (1 + 195 [loo + V% ]loo)” (|2 L gpaj<ay + 12T {1 <paj< /ey + Ljaj>1/e1)
+ 1 lloo L2176} -

According to all estimates above, (3.31), (3.13) and (3.32), we have that

OF;

E(S’ x)+ LEF(s,)(x) = Laxfs,s(q)s(x))

+ €<p(1/€)<Vf578(<I>5(x)), (ﬁl/}e +b.4+b—b — 5) (w/€)>
+ ¢(1/¢) /]Rd K (z,2)k(xz/e, 2) 11(dz)
= ﬁ%,xf&ﬁ(q)e(x)) + He(z),

(3.33)

where

3 ' 1/e 1 s 1/e 1 <1
2 7 —ar — 5 ar "
$seu]1£>d [He ()] <€ 90(1/5)(; A4 f||oo><1+/1 o(r) d ) <1+/1 o(r) drt /1/5 ro(r) ! ) (3.34)

Fe /e [ o

(2) For any [ > 1, let f; be the function defined by (3.17). Then, for any z,y € R?,

1£6./1(W)] < p(1/e)

|, +22) = ) = (V) )k, ) 1G4

+p(1/¢)

/ (fily +£2) — filw)) k(z/e, 2) TI(dz)
{1/e<]z|<l/e}

+o(1/e) / (e + 2) — fule))k(z/e, 2) TI(d2)
{el>1/2)

= Hv2fz|!oo<p(1/g)g2/ ’z‘QH(dz)—i—HVleOOap(l/g)/ 2| TI(dz)  (3-39)
Uzl<1/ey {1/=<|2I</e}

1 fillsow(1/e) /{ oy )

2.2 Y ) rteense [l
< 17%e%p(1/e) (1—1—/1 o) dr) + 1 ep(l/ )/1/5 <p(7“)d

T (/) /l /Oo Wl(r) dr.
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Let FL(t,x) := fi(®(x) — ep(1/e)(b1e + b)t). Then, combining (3.33), (3.34) with (3.35), we find
that

sup sup
zeRI s>0

2.2 Ve e N (Y
< 17%e%p(1/e) 14—/1 <p(7°)dr+</1 <p(7")dT> +</1/5T<P(T)dr>

l—l ) l/e 1 p 1/e 1 p 4 oo 1 p 4
T ep(l/e) ”/UEW el [ ) v /1/57“@(7") ’

+ o(1/e) /1: %(7") dr.

Note that in the arguments above for (3.36) we need that ¢° € C?(T). For general 1)° € (L) satisfying
(3.31), there exists a sequence of function {15 }r>1 C C?(T?) such that p(¢5) =0 for all k > 1 and

dim sup ([4£(@) = v (@)] + [£vi(@) — Ly (@)]) = 0

OF. .
‘ 3371 (s,z)+ L Fe,l(s,-)(x)‘

This along with (1.5) yields that
1
p(r)

For the arguments above, we have used the facts that £y € C(T?) with p(£y5) = 0 for all £ > 1 and
the solution to (1.4) with f = L4}, is unique. By a standard approximation procedure, it is not difficult
to verify that (3.36) still holds true for every ¢° € Z(L) satisfying (3.31).

We now assume that (3.3) holds with a = 1. It follows from (3.3) that

1/e r 1/e . )
<p1€/ —drj/ rler) "0 dr < e,
1/e) 1 o) 1 (&r)

Estimating other terms in the right hand side of (3.36) by the same way as above, we get

dr.

1/e
sup (4 oe + |V0Ec) <14 [
k>1 1

OF.
lim sup sup sup 6’R(s,az) + LEF. g(s,")(x)| = 0.
R%0c(0,1) serd 5>0 | 08

Since for every R > 1and T >0

ThTg aFE
Po( sup |Z{| > R) = Bfa(Zipg) = E / (S5, X2) + L7 P n(s, ) (XD) ) ds
te[0,T] R 0 0s

oF,
B (s, 2) + L°F. (s, ) ()

=T sup sup ,
r€R4 s>0 s
we conclude that
lim sup Py | sup |Zf| >R | =0. (3.37)
Rmeoee01)  \te0T]

According to the argument for (3.35), we can also obtain that for every 6 € (0, 1),

sup sup 3(};5,9 (s,x) + L, g(s, )(g;)‘ <073%p(1/¢) <1 + /11/6 SDL) dr + (/11/8 % dr)4>

xERd s>0 S (’r

[e.e]

ot/ [

dr
1/e 7490(74)
By this estimate and the fact that (3.3) holds with v = 1, we have
OF.
sup_sup sup| == (s,2) + LF(s,-)(x)| = C(0)
£€(0,1) zeR4 s>0 S

for some constant C'(6) > 0. This together with the proof of (3.37) gives us that for any increasing
function 6(e) with lim._,¢d(¢) = 0 and stopping time 7 with 7 < T’

lim Po(|Z; 50 — Z51 > 0) = 0. (3.38)
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Therefore, it follows from (3.37) and (3.38) as well as [1, Theorem 1] that the distribution of {Z¢}.c 1)
is tight in 2([0, 00); RY).

(3) Let {Z¢"},,>1 be a sequence of processes with lim,, o £, = 0. There is a subsequence {Z°" }j>1
(which will be still denoted by {Z°"},>1 below for simplicity) such that the distribution of Z*" on
2([0, 00; R?) converges weakly under the Skorohod topology to a probability measure P on 2([0, 00); R?).
Note that

YE = 75+ et (X fe), £30.
By (3.32), lim.,0¢||Y°||cc = 0. This implies that the distribution of (Y;™);>0 converges weakly in
2([0,00); R%) to P. Similar to the part (3) of the proof for Theorem 3.2, it suffices to verify that for
any subsequence {e, },>1, the limit distribution PP is the same as that of the solution to the martingale
problem for £ defined by (3.23).

For every 0 < 81 < s9,-+- < s, < s < t, f € CZ(R?) and G € C,(R%), by (3.33),

B(rz0) - 120~ [ (G X0+ £ R )7)) )G 25

t
= o[ (£(20) — F(20) — [ (65 xe o (@u0X0) + HAXD) dr) (25, -+ . 25,)
=0.
According to condition (3.3) with o = 1 and (3.34), lim._,osup,ega |H:(z)| = 0. Combining this with
(3.28) further yields
t —
tm Bo (£(2) = F(22) = [ Roxe 1(20) ) G250+ 25)] =0

Note that, by tracking the proof of Lemma 2.2, we can verify that if (2.3) holds with (X7} );>0 replaced
by (Z§)i=0, then for every bounded continuous function F' : T!xR? - Rand 0 < s < t,

| o

where F is the same function as in Lemma 2.2. Using this property and (3.38), we can follow the argument
for (3.22) to obtain

2

] _o

o [(1(20) - 120) - [ &rz ) ez 2] <o

s

t t
lim E, [/ F(Xf/g,Zf)dr—/ F(Z%)dr
e—0 s s

t _ t _
| Eixer@ar- [ ez

S

lim EO
e—0

Hence,

where £ is defined in (3.23). Notice further that the distribution of {Z°"},>; converges weakly to P.
According to the proof of Theorem 3.2 (in particular, by applying the Skorohod representation theorem),
letting € = ¢, and taking &, — 0 in the equation above give us

E[(fz-rz)- [ N2 )G 2)] =0,

where (Z)¢0 denotes the coordinate process on Z([0,00); R?), and E denotes the expectation with
respect to IP. This implies that the distribution of I? is a solution to the martingale problem for the Lévy
operator £. By now we have finished the proof for the assertion (i) of Theorem 3.4.

(4) Next, we assume that condition (3.3) holds with a € (1,2). In this case, bso(x) is well defined.
According to Assumption (A3), let ¢ € Z(L) be the unique solution to the following equation

Lop(x) = —boo(x) — b(x) + boo + b, € T?

with p(1) = 0. By the approximation argument as in Step (2), without loss of generality we can suppose

that ¢ € C%(T9). For every f € C3(R?), define
Fu(s,) 1= (o + (/<) — ep(1/) (o + B)s).
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Applying Lemma 2.1 with R = 1 and M = oo, and following the same arguments for (3.33) and (3.36),
we obtain

aaie (s,2) + LEFL(s,-)(7) = ixfs,s(q)s(x)) + H.(z),

where ®.(z) =z + e(x/e), fos(z) = f(x — ep(1/€)(boo + b)s), and H. satisfies that

)

3 0o
i 2 r
sene ol = (ZHV f“°°> e </{z<1}|z| H(dz)+/1 (r) dr)
3
<ZHV fuoo> (1/e)é?

In particular,
lim sup |H:(z)| = 0.
€ 0:1:6]15‘1 | 6( )|

Using these estimates and repeating the proof for the assertion (i) (in particular, applying (3.29) instead
of (3.28)), we obtain the assertion (ii) of Theorem 3.4. O

4. HOMOGENIZATION: DIFFUSIVE SCALING

In this section, we treat the case that the jumping measure for the non-local operator £ of (1.1) has
a finite second moment, i.e.,

/Rd |2|*TI(dz) < oo. (4.1)

Under this condition, it is natural to conjecture that, after appropriate scaling, X would converge to
Brownian motion. Thus we will take the scaling function p(r) = r? in (2.1), and consider the limit of the
scaled process X© = (X} )0 := (6 Xy/c2)iz0. Here is the main result of this section.

Theorem 4.1. Suppose that Assumption (A3) and (4.1) hold. Let
Y7 = X7 — (boo + b)t/2 = £(Xy )2 — (boo + D)t/E7), =0,

Then (YE)i=0 converges weakly in 2(]0,00);RY), as e — 0, to Brownian motion with the covariance
matriz A given by

Aim [ [ eva+2) = 0@) @ (o + o+ 2) — (e bz, ) TI:) p(da),
Td JRA
where ¥ € P(L) is the unique solution to the following equation
Lp(2) = —boo(x) — b(2) + boo + b, x € T¢ (4.2)
such that p(¢) = 0.

Remark 4.2. Let {e; : 1 <i < d} be the standard orthonormal basis of R?. We claim that if the process
X is irreducible, and for each e;, 1 < i < d, there exists a sequence {z} }x>1 C supp[Il] such that 2} # 0
for all kK > 1 and
lim 2z}, =0, lim z /|20 = e, 1< <d, (4.3)
k—ro00

k—o0

then the covariance matrix A in Theorem 4.1 above is non-degenerate. Indeed, for any ¢ € R?,

e = [ [ (e vle+2) — 0(@).9° 1) )

Since the process X is irreducible, for any ¢ > 0, € R? and open set U C RY, P,(X; € U) > 0. Then,
= [ga P2(X; € U) p(dz) > 0; that is, supp[p] = T%.

Now assume that for some 0 # ¢ € RY, (A£,€) = 0. Note that, under (A3), by the dominated

convergence theorem, & — [pa(z 4+ ¢(z + z) — ¥ (x),£)? II(dz) is a continuous function. This along with

the fact supp[u] = T? yields that for every = € T,
[ (e bl +2) — wla). g 0dz) =0,
R4

Without loss of generality, we assume that & = (§1), - ;) with {q) > 0 (since § # 0). Let {21 k1
be the sequence in the assumptions above. Then, we have

(W(x+2) = 9(@),6) = (~=,€), k>LazeT
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By the mean value theorem and the fact that |Vi|s < oo (see Lemma 3.6 with £ = 0), we have
(V(W(2),€), 2/ 12l) + ollzil) /2] = (=i /|2l =€), k> 1,2 € T
Letting k — oo and using (4.3), we obtain
axl <’l/](.%'),§> = _5(1) <0, ze€ Td7

which obviously contradicts with the fact that x — (¢(z),&) is continuous and multivariate periodic.
Therefore, we have (A, &) > 0 for every £ # 0, and so A is non-degenerate.

We further note that the assumptions above, which guarantee that the covariance matrix A in Theorem
4.1 is non-degenerate, are weak in some sense. For example, let d = 2, II(dz) = d¢,(dz), and & = es.
Then, for any x € T¢, since ¢ is multivariate periodic,

[+ e+ 2) = 0@, 9P TE) = (Wi + 1) — b)) =0

and so (A¢, &) = 0, where we write () = (¢(1)(2),1(2)(2)). Hence, the associated covariance matrix A
in Theorem 4.1 is degenerate.

Note that the scaled process X¢ is a strong Markov process, whose generator is given by
LEf(x) = g2 /]Rd (f(ac +ez) — f(x) —e(Vf(x), z>]l{‘z‘<1})/<:(w/a, 2)I(dz) + €*1<Vf(x), b(x/e))

= L5 f(2) + e YV f(x), boo(2/€) + b1 /E)).
Here, boo(x) is defined by (3.24), and

L5 f(x) =2 /Rd (fx+ez) = flz) = (V[f(2),e2))k(z/e, 2) I1(dz). (4.4)
Lemma 4.3. For every x € R¢ and f € C’,‘j’(Rd), define
uf )= [ (fl+e2) = £0) = (VS (0),22)) Koo, 2) (). (15)
Then,
Wl W) = (VW) 5 [ (& Dkw/e.2)T)) + G (o), (46)
where G .(x,y) satisfies
hn% sup |Gie(z,y)| = 0. (4.7
eV yeRd

Proof. According to the Taylor expansion, for any f € C’g’(Rd) and R > 1,
fly+ez) = fly) = (VI(y),e2)

_ 2<V2f( ),2®2)/2+ (V3 f(y+bie2),2©2®2)/6,  |2| <R,
eX (V2 f(y + 02e2),2 ® 2) /2, 2| > R
= eX(V?f(y),2 @ 2)/2 + H.(y, 2),
where 61,62 € (0,1) and
|He(y, 2)| = (IIV?Flloo + 1V flloo) (€321 g2y + %121 N g5 RY) - (4.8)

In particular, (4.6) holds with

Gre(z,y) =2 /Rd H_(y,2)k(z/e, z) I1(dz).

By (4.8), it holds that

|G e(z, )] (Z |V fHoo> ( /{|z|<R} 2|2 T(dz) + /{|z|>R} Mﬂ'[(dz))

with any R > 0 and some C; > 0 (which is independent of f, ¢ and R). Since [ga]z[*II(dz) < oo, first
letting € — 0 and then R — oo in the estimate above, we obtain (4.7). O
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Proof of Theorem 4.1. We first assume that 1) € C?(T%). Let
ZE=Yi 4+ ep(XE/e) = Xi+ep(XEJe) — e Hboo + D)t, t>0.
Recall that the generator of the process X¢ is
L2 f(x) =L5 f(2) + eV f(2), boo(w/€) + b(a/e)),
where L] f is defined by (4.4). Then, for every f € Cg(IRd), z e R and t > 0,
B 20)) = B X0)] = 1) + B | [ (B X0) 4 R0 (00) ]

where FL(s,z) = f(®(z) — e (bso + b)s) and .(z) = x + ep(z/e).

€
get fes(x) = f(x — e (boo + b)s). Then, F.(s,z) = f-5(P-(x)). Set O(z,2) := V(z/c + 2) — P(z/e)

1

Aw) =5 [ e+ (o +2) = 0(a)) @ (2+ (o -+ 2) = 00a)) ha.2) ),

Applying Lemma 2.1 with M = oo, R — 0, and using (4.2) and Lemma 4.3, we can verify that

OF. _
G s,w) + £7F (5, ) (@)

— UV fes(@(@)), boo +0) + £5 4 fe,s(Pe(2))
+ 81<Vf5,5(<135(x)),/ (V(z/e + z)—p(x/e)—V(z/e) - 2)k(z/e, z) H(dz)>

+ %<V2f€,s(q>€(g;)),/ (20:(2,2) @ 2 + Oc(z,2) ® Oc(w, 2)) k(x/e, 2) H(dz)>
+ Hi(2) + €7V foo(@(), boo(@/2) + b(@/2)) + &7V fo (@ (@), Via/2) - (boo(@/2) + bl /2))
= L5 0 fea @) + 5 (P Loa(@e@), [ (262(0,2) © 24 0.(2,2) © Oc(a,2)) o /2,9 T1(d:) ) + H (o)

— %<V2fa,s (®e(2)), /(z + 0:(2,2)) @ (2 + Oc(z, 2)) k(x/e, 2) H(dz)> +Hs(x)

= (V2 fs(®e(2)), A(z/e)) + H5 (),
where in the first and the second equalities £7 , is defined by (4.5). Here Hf satisfies

3
Hi(z Voo 2|2 TI(dz z|1I(dz) ),
T )'ﬁ(;” 7l )(/{W}H ( ”/{M}" ( >)

thanks to the fact that ||¢]sc + ||V¢||oc < 1 under Assumption (A3) (see Lemma 3.6 with ¢ = 0), and
H5(z) = Hf(z) + G1(z) with G} - as in Lemma 4.3. As explained in the proof of Theorem 3.4 the above
estimate still holds true when ¢ € 2(L).

Given these estimates, the rest of the proof is very similar to that of Theorem 3.4, so we omit it (see

also the proof of Theorem 5.1 below). g

5. HOMOGENIZATION: CRITICAL CASES

Throughout this section, ¢ is a strictly positive and strictly decreasing function on R, so that

lim, g ¢(r) = oo, lim,_,q T_ng(r)_l = 00,

: 5f{|z|<1/5} | T1(d=) f{\z\>1/g} 2| 1(dz) B
and -
et f{zgl/ﬁj e 52
e e o= @ 2V, 2) TIG02) ()
d Jilz1<1/e3 (2 @ 2)R (T, 2 z) p(dx
A= ig% T J{|=|<1/<} e (5.3)

being a non-zero d x d-matrix.
We make four remarks on the assumptions above.
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(i) Since the matrix A is non-zero and lim._, ¢(e) = 00, [ra |2/ II(d2) has to be infinite.
(ii) In (5.1), (5.2) and (5.3), the domain {|z| < 1/e} can be replaced by {r¢p < |z| < 1/¢} for any
fixed rg > 1.
(iii) For Ty, >131(d2) = ]l{‘z‘%}\z]*(d*a) dz with a € (0,2), condition (5.2) holds with ¢(g) = ¢*2
but condition (5.1) fails.
(iv) For Ly, >3 11(dz) = Ly, >13]2] 7?72 dz, conditions (5.1) and (5.2) are satisfied with ¢(c) = log(1+
1/e).
Under (5.1) and (5.2), we will take p(g) = €2/¢(1/¢) in (2.1), which corresponds to the scaling function
for critical cases in the setting of infinite second moments. The purpose of this section is to study the
limit behavior of the scaled process X© := (X})i>o defined by X = eX_-24(;)-1, for any ¢ > 0.

Theorem 5.1. Suppose that Assumption (A3), (5.1), (5.2) and (5.3) hold. Let
Ve = X: — e to(e)  (boo + D)t = e(Xo—2p(e)-1¢ — e72¢(e) Hboo +b)t), t=0.

Then, (Y§)i=0 converges weakly in 2([0,00); R%), as e — 0, to Brownian motion with the non-zero
covariance matriz A defined by (5.3).

For the scaled process X = (X7)i>0 := (e Xc-24(-)-1¢)t=0 as above, its infinitesimal generator is given

by

LEf(z) = % /]Rd (f(ac +ez)— fx) — (Vf(w),€z>]l{‘z‘<1})k:(x/a, 2)II(dz) + f(e) (b(x/e),V f(z))
= L1 (@) + =5 ola/e) + (e /). VI @)
where .
if(z) = 25() /}Rd (fx+ez) = f(x) = (Vf(x),e2))k(z/e, 2) T(dz).

Similar to Lemma 4.3, we have the following statement.

Lemma 5.2. For any x,y € RY and f € CP(RY), let
Ll =200 [ (o e2) = ) - (V5(0),22) Ka/e, ) THd2),
Suppose that (5.1) holds. Then, for every z,y € R and f € C}(RY),

- B 1
W) = (0D gy [ (8 2K/ ) + Gl

where Gy .(x,y) satisfies that

lim sup |Gac(x,y)] = 0.
e—0 m7yE]Rgl

Proof. According to the Taylor expansion, for any f € C3(R%) and € € (0, 1),
fx+ez) = f(z) = (V[(2),e2)
_ 5V @),z 02 + (Vi@ +0ie2),202@2), |2 <1/,
(Vf(x+ b0sez),e2) — (Vf(x),ez), |z| > 1/e
2
€
= 5(V2f(l“), 2@ 2) L <1/ey + He(z, 2),
where 61,62 € (0,1) and
[He(,2)] 2 (IV Flloo + V2 Flloo) (€221 121< /ey + 2T gj2p51/ey)-

In particular, we have

LI = (V). 5

2¢(¢)

/ (2 @ 2)k(z /e, 2) H(dz)> + Gae(z,y),
{l1<1/e}

where

Goe(,y) = e 2(e) ! / H(y, 2)k(z /e, =) TI(d2).
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Furthermore,

f{\z\q/g} |2 TI(d2) f{| |>1/e} |2/ II(dz)

with some C; > 0 mdependent of f and €. By (5.1), we can further obtain that

<5f{z<1/e} 2PIE) | g1y |Z|H(dz)> Ly

lim sup |Ga.(z)| < lim
e=0 . cRd e—0

¢(e) e¢(e)
The proof is finished. O
Proof of Theorem 5.1. (1) Let ¢ € 2(£) be the unique solution to the following equation
Lh(z) = —boo(x) — b(2) + boo + b, =€ T?
with u(¢) = 0. Let
78 =Y +ep(Xi/e) = Xi+ep(X5Je) — e tp(e) b + D), t=0.

As explained in the proof of Theorem 3.4, without of loss generality we can assume that i € C?(T9).
Noticing that ((X7)t=0; (Py),era) is a solution to the martingale problem for the operator £, we obtain
that for every f € C3(RY), » € R? and ¢t > 0,

B, [F(Z)] = f(@.( 5 XE) 4 L5, (X))

where F.(s,z) = f(®:(z )—6_1¢( )" (boo + b)s ) and ®.(z) = = + ep(z/e).
Let fes(x) = f(z —e7'd(e) ! (bos +b)s), Oc(z,2) = Y(a/e + 2) — P(z/e), and
1
A (x) = = z® z2)k(x,z)I1(dz).
@=3 ek

Applying Lemma 2.1 with R = 1/e and M = oo, and using Lemma 5.2 and (5.4), we can verify that

OF. _
() + £ F (s, ) ()

= L7 o fes(Pc(2))
+ —<V2fes( e(z )),/(295(3:,2) ® z+ O (x,2) ® Oz, 2))k(x /e, 2) H(dz)> + Hi(x)

2¢(e)
= (V2 x L z2® 2)k(z/e, 2 2z 5(x
_ 2<v feal(@e(@)): 575 /{| |<1/€}( ® 2)k(z/e, 2) 1(d )> + HE(x)
1 €
= (V1o @), 55 Ac(o /<)) + H3(),

where H{ and Hj5 satisty

¢(e)

Jias1yey 1210(d2) 1 ,
’ ed(e) i (e) </{z<1}’2‘ ) Jr/{|z|>1}‘zm(dz)> '

In particular, by (5.1), lim._,0 ¢(¢) = oo and f{\z\>1} |z| II(dz) < oo, it holds that

z|? z 2|3 g
r) = (L1971 [eq{k'z'g”' PI2) + Sy gy )

lim sup |H5(x)| = 0.

e—0 zeR4

(2) For any [ > 1, let f; be the function defined by (3.17), and Fy (s, z) = fi(®(z) — e () ! (boo +

b)s). According to all the estimates above and SUP.¢(0,1) SUPz R4 %((m))‘ < 0o (which is due to (5.2) and

the boundedness of k(z, z)), we can get

OF,
lim sup ﬂ(& DU) + LaF@R(Sa )(x) =0
R—oo €€(0,1),zeR4,s>0 S
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and

F.
sup OF. g (s,2) + LF. o(s,)(z)| < C(0), 6¢€(0,1).
€€(0,1),zeR,5>0 s

Thus, following the proof of Theorem 3.4, we can obtain that {Z°}.¢ () is tight in 2([0, 00); R%).
(3) Recall that the generator of the process X¢ is £¢, and again that

F.(s,2) = f(z +ep(x/e) — e p(e) Hboo +0)8), fes(z)=f(z—c " p(e)  (boo + b)s).
For every 0 < 81 < 89,-+- < s;, < s < t, f € C}(R?) and G € Cy(R%*),

ol (1020) - 120~ [ (G X0+ £ R )(X0)) ) 622 25

= B, [(f(Zf) - f(22) - / (VP L@, %Asofﬁ/ew + H5(X7)) dr) G( 75, ,sz)]
— 0 as € — 0.
Let

A= /T Ac(a) ) = /T d /{ o O ) d= )

Then, following the argument in (3.22), and using Lemma 2.2 and the fact that

sup sup M < 00,
cc(0,1) zerd  P(€)
we get that
: ¢ € 1 5 ! 5 A€ ?
lim Eq /S<V2f€7r(<1>€(Xr)),%A€ (Xr/e)>dr—/s <v2f€,r(q>€(xr)), ¢(€)>dr ] —o.

Hence, putting all estimates together, we obtain

i B[ (£(70) — 1(20) — [ (212, 235 ) ar) 6125, Z2)] =0

¢(e)
Given this, the fact that lim._,g % = A and the tightness of {Z®}.c (g 1) in Z([0,00); R?), one can follow
the proof of Theorem 3.4 to get the desired assertion. O

6. SUFFICIENT CONDITIONS FOR AVERAGING ASSUMPTION (3.6)

In this section, we present some sufficient conditions for the key averaging assumption (3.6), which is
needed for the proof of the assertions in Example 1.1 and the two additional examples in Subsection 7.1.
The main results of this section are Theorems 6.5 and 6.7.

Let ITp(dz) be defined by (3.4). Let k(z,z) be a non-negative bounded function on R¢ x R? so that
x +— k(z,2) is multivariate 1-periodic for each fixed z € R? and condition (1.2) holds. We will represent
z in the spherical coordinate (r,0) with r = |z| and 6 = z/|z|, and will write k(x, z) as k(x, (r,0)) as well.

Proposition 6.1. Suppose that for every x € R and og-a.c. 6 € $?71, there is a constant k(z,0) so that

1T _
Th_r)réof/o k(x,(r,0))dr = k(x,0). (6.1)
Then for any bounded function f: R% x R — R satisfying (3.5) and for 0 < r < R,
lim sup / f(z,2) (k(z/e, z/e) — k(z /e, 2/|2])) Ho(dz)‘ = 0. (6.2)
e204erd | J{r<|2I<R}

Proof. (1) Let Ag denote the collection of all § € $7~! such that for any 2 € R? there is a constant k(x, )
so that (6.1) holds. Now we are going to show that the function z + k(z,6) is equi-continuous in z for
all § € Ag. Moreover, for every 6 € Ay, the convergence in (6.1) is uniform in x € R4,

For any € > 0, by (1.2), there is a constant &y > 0 so that |k(x,z) — k(y, 2)| < ¢ for any z,y,z € R?
with |z — y| < §p. Thus for 6 € Ay,

_ _ 1 (T
|k(z,0) — k(y, 0) < limsup — /0 |k(z, (r,0)) — k(y, (r,0))| dr <e.

T—o00
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as long as |z — y| < . In other words, x — k(x, ) is equi-continuous in x for all § € Ag.
Let {yx : 1 <k < N} C T? be an dp-net in T¢ meaning that for every x € T there is some 1 < j < N
so that |z — yj] < 0g. By (6.1), for each 6 € Ag, there is some Ty > 1 so that for every 1 < k < N,

1 _
E / Ei (r,0)) dr — Ky, 0)| < ¢ for every T > Ty,
0

For every x € T?, there is some y;, so that |z — yi| < 6. Hence for any T > Ty,
I _
F [ Ha ) dr —Fw.0)

—/ 0) = Mo 0+ [ [ K 000 B, 0)] + 0. 0) — FG2.0)
<3

where in the last inequality we used (1.2) again. This proves that for each 6 € Ay,
1T _
/ Ko, (r,0)) dr — k(z,0)| = 0. (6.3)
0

(2) Let f be a bounded function such that (3.5) is satisfied. For each €9 > 0, there is 01 € (0, 1/4] so that
|f(z, 21) — f(x, 22)| < eg whenever |21 — 23| < §;. For 0 < r < R, we divide [r, R] into N = 1+ [(R—r)/01]
equal subintervals with partition points {tg,t1, -+ ,tny} with A = ¢, —t,_1 = (R—1r)/N € (0,01). B
taking 0; smaller if needed (which may depend on 7, R and || f||), we can and do assume that

lim sup
T—o0 ZBERd

x,(s,0 z, (ty, 0 3
S 51(+a DA t}f*l; ) <eo fors€ [yt 0S¢ (6.4)

sup
z€R4

Using spherical coordinates and Fatou’s lemma, we have for any 0 < r < R,

/ f (@, 2) ()2, 2/€) — k(o /e, 2/)2])) o (d2)
{r<|z|<R}

lim sup sup
e—=0 gzeRd

< limsup sup

e—=0  zcRd
f(x,(5,0)) (k(z/e, (s/e,0)) = k(x/e,0)) 7 ds

< limsup sup/
e—=0 gzecRdJgd-1 b1 th—1

/S“Zf LD ™ (e 2.0) = bla/2.0) s ()

tp—1

/Sdl / P (5,0)) ((a /e, (5/2,0) = Flw/2,0)) o dsgo(de)‘

" 00 (dé?)

< lim sup sup
e—=0 gzeRd

+ 2eoRllkHoo@o($d b

3

: [[£llo0 /e z
< lim supz \T+a /Sdl tp—1 sup tk——l/o k(x/e,(s,0))ds — k(x/e,0)

e—0 =1 'k z€R4

00(d0)

€
+ / tr sup |—
§d-1  geRd t

k
+2¢0 Rkl o 00(8771)

[/ lloo
< Z \Tra o 1tk 1 lim sup sup

e—=0 zcRd

ty /e 3
/0 k(xz/e,(s,0))ds — k(x/e,0) go(dé?))

3

tp_1/€ _
— / k(x,(s,0))ds — k(x,0)

lk—1
Qo(d9)>

Here in the third inequality we have used (6.4) and the fact ||k|s < ||k||oo, While the last inequality follows
from the fact that (6.3) holds for gp-a.e. 6 € $?~1. Since gy > 0 is arbitrary, we get (6.2) immediately. [

00(d9)

e ty /e _
_/0 k(z, (s,0)) ds — k(z,6)

T

—i—/ t lim sup sup
Gd—1 e—=0 zeRd

+2¢0R||Klloo20(3)
= 260 R|Kl|o00(5 ).
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As in the proof of Proposition 6.1, in the following denote by Ag the collection of all 6 € $9=1 50 that
for every 2 € R? there is a constant k(z,6) such that (6.1) holds.

Remark 6.2. Here are two simple cases so that 8 € Ag.

(i) If @ € $?~! has the property that r — k(z, (r,0)) is multivariate T'(z)-periodic for each 2 € R?
(it can have different period for different = € R?), then clearly (6.1) holds for any function f(z, z)

that satisfies (3.5) with k(x,0) = T(lx) OT(:B) k(x,(r,0))dr, and so 6 € Ay.
(ii) A function ¢(r) on [0,00) is said to be almost periodic if it is the uniform limit of some periodic
functions (cf. [8, p. 81]). It follows from (i) above that if § € $91 has the property that
r > k(x, (r,0)) is almost periodic for each x € R?, then (6.1) holds for any function f(z,z) that

satisfies (3.5), and so § € Ag. See Lemma 6.4 and its proof below for more information.

Next, we will present some sufficient conditions for § € Ag under the periodicity of z — k(x, z).

Corollary 6.3. Suppose in addition that for each x € R?, there is some T := T(x) > 0 so that z — k(z, 2)
is multivariate T-periodic.
(i) 0= (01, ,0q) € S  is in Ao, if 0 is pairwise rational in the sense that each 0;/0; is a rational
number whenever 0; # 0;

(ii) If oo does not charge on the set of those 6 € $ that are not pairwise rational, then (6.2) holds
for any function f(x,z) that satisfies (3.5).

In particular, suppose that oo(df) = &g,(df) for some rational point 0y = (my/n,--- ,mg/n) € ST
where n,my, -+ ,mgq € Z and 6g,(df) denotes the Dirac measure on $9~1. Then (6.2) holds for any
function f(x,z) satisfying (3.5) with
_ 1 ("
k(z,0) = —/ k(z,(r,00)) dr  for all § € $771.
nJo

Proof. (i) If the measure § € $%~! is pairwise rational, then there is some ro > 0 so that 706 has integer
coordinates. For each z € RY,

r= ]C(:C, (T?a)) = ]C(SC, (7"91, T ,’I"ed))
is a bounded (roT)-periodic function on [0,00), and so (6.1) holds with k(z,0) = -1 fmT k(x,(r,0))dr

roT JO
from Remark 6.2(i).
(ii) The assertion follows immediately from (i) and Proposition 6.1.

Having (i) and (ii) at hand, we can easily see the validity of the last assertion. O
Recall that § = (0y,---,6;) € $97! is said to be rationally dependent if there is some non-zero
m = (mq,---,my) € Z¢ so that (m,0) = 2?21 m;0; = 0. Otherwise, we call 6 rationally independent.
When d = 1, $° = {1, —1} so every its member is rationally independent.
Lemma 6.4. Suppose that f(x) = f(x1, - ,xq) is a continuous multivariate 1-periodic function on R.
Then for each 0 € $471, there is a constant C(0) so that
1 (T
lim — fot)ydt = C(6). (6.5)
T—o00 0
Set

Then every rationally independent 6 € $41 is in Ty. In particular, Ty = {1,—1} if d = 1, $' \ Ty is
countable if d = 2, and dimp ($9"1\T'f) < d—2 if d > 3. Here dimpy stands for the Hausdorff dimension.

Proof. The result is trivial when d = 1. So we assume d > 2 in the rest of the proof. Let (-,-) denote the
inner product in RY. Define f(z) = DokeZd:|k|<N cpe??™ k) with

ck = / e~ ka) £ (1) .
Td

Then, for 6 € $9-1,
f(Ht) — Z Ck6i27r<k’6>t.

keZ:|k|<N
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Clearly
C(6) := lim 1 f(6t)dt = > Ch. (6.6)
kEZ:|k|<N,(k,0)=0

Note that for each non-zero k € Z¢ and d > 2, the set {# € $¢~!: (k,0) = 0} is a two-point set when
d = 2, and has Hausdorff dimension d — 2 when d > 3. Noting also that

$4INT; C {0 €871 (k,0) = 0 for some non-zero k € Z}, (6.7)
we have $771\ I'; is a countable set when d = 2, and dimp ($¢1\Ty) < d—2for d >3
Now, suppose that f(xq,---,24) is a continuous multivariate 1-period function on R% It can then

be viewed as a continuous function on T? By the Stone-Weierstrass theorem, it can be uniformly
approximated by functions of the form zk‘eZd:\kKN crei2mkm) on RY, see e.g. [8, p. 26]. Thus for any

0= (01, 0q) €5,

f(0t) = f(Ost,--- ,0at)
can be approximated uniformly by the functions of the form > cza.jp < 2™ kO Tt follows from (6.6)
that for any # € $91, there is a constant C'(6) so that

1 /T
lim — f0t)ydt = C(0), (6.8)
T—o00 0
and (6.7) continues to hold for this f. In particular, C(0) = [p. f(z)dz if 6 € $971 is rationally
independent. The assertion of the proposition now follows. ]

Theorem 6.5. Suppose that k(z, z) is jointly continuous on R*xRY and k(z, 2) is multivariate 1-periodic
both in x and in z. Then

(i) Ag = 8971 that is, (6.1) holds for every 0 € $%1 and x € RY with some k(z,0).

(ii) Let

E(x) :/ k(z,z)dz, zeR%
Td

Then for each x € RY, k(x,0) = k(x) for every rationally independent 0 € S*. In particular
we have for every x € RY, k(zx,1) = k(x,—1) = k(z) when d = 1, {0 € S* : k(z,0) # k(x)} is
countable when d = 2, and the Hausdorff dimension of {6 € S : k(x,0) # k(x)} is no larger
than d — 2.

(iii) Property (6.2) holds for any function f(x,z) that satisfies (3.5).

Proof. This follows directly by applying Lemma 6.4 to function z — k(z, z) and by Proposition 6.1. O

Remark 6.6. We present two explicit cases that Theorem 6.5 applies.
(i) Assume that IIp(dz) is absolutely continuous with respect to the Lebesgue measure on R%; or
equivalently, og is absolutely continuous with respect to the Lebesgue surface measure o on $41.
Then under the assumptions of Theorem 6.5, (6.2) holds with k(z, ) = [pa k(x, z) dz for
all z € R? and 6 € $9~1; that is,

/ f(@,2) (k(z/e, z/e) — k(z/e)) Ho(dz)‘ =0. (6.9)
{r<lzI<R}

We emphasize that for this result we do not assume the boundedness of the Radon-Nikodym

derivative ?((;g)) .

lim sup
e—0 rERM

(ii) In fact the conclusion (6.9) holds for any finite measure gy on $¢~! that does not charge on the
set of rationally dependent # € $?~!. In particular, if gy does not charge on singletons when
d = 2 and does not charge on subsets of $9~! that are of Hausdorff dimension d — 2 when d > 3
(for example, gg is y-dimensional Hausdorff measure with v € (d — 2,d — 1]) then (6.9) holds for
any function f(x,z) that satisfies (3.5).

We can drop the continuous assumption on z — k(z, z) in Theorem 6.5(iii) when the spherical measure
oo in Iy is absolutely continuous with respect to o with bounded Radon-Nikodym derivative.

Theorem 6.7. Suppose that og is absolutely continuous with respect to the Lebesque surface measure o
on $91 with bounded Radon-Nikodym derivative. Let k(x,z) be a bounded function on R? x RY such
that z — k(x, z) is 1-periodic for each ﬁxed r € R? and (1.2) is true. Then (6.2) holds for any function
f(z,2) satisfying (3.5) with k(x,0) = k(z) := [pa k(z,2)dz for all x € RY and 6 € $¢1.
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Proof. Let ¢ > 0 is a smooth function with compact support in R? having f]Rd o(y)dy = 1. For ¢ > 0,
let s(y) := 6~ %p(y/d). Define

tsle,2) = [ k(a2 = u)esto) dy.

Clearly ks(z,z) is a bounded, multivariate 1-periodic and continuous function on R? x R?. Thus by
Remark 6.6,

lim sup
e—0 rERM

/ f(@,2) (ks(x/e,z/e) — ks(x/e)) Ho(dz)‘ =0 (6.10)
{r<|z|<R}

for any function f(z,z) that has property (3.5), where ks(z) := f[o 14 ks(x,z)dz. Clearly,
lim |k(x, z) — ks(z, 2)| dz = 0,
0—0 Jd

Condition (1.2) implies that the above convergence is uniform in x € RY. Furthermore, k(z) :=
Ja k(z, z) dz is uniformly continuous in z, and ks(x) converges to k(z) uniformly as § — 0. Observe that
by the fact that gg is absolutely continuous with respect to o on $9~! with bounded Radon-Nikodym
derivative and the multivariate 1-periodicity of (z,z) — k(z,z), it holds that for any 0 < r < R and
e€(0,1),

| Whla/ezle) ~ ksla/e o) To(de)

{r<|z|<R}

< epr (@) / |k(z/e, z/€) — ks(x/e, z/e)| dz
{r<|z|<R}

< eor™ 9| B(0, R) \ B(0, )] /d \k(x, 2) — ks(x, 2)| dz,
T

where ¢; and ¢ are two positive constants that are independent of € € (0,1), 6 € (0,1) and 0 < r < R.
Thus we have

lim sup
e—0 zERM

/ F(@,2) (K, 2/2) — k(w/e)) To(dz)
{r<|z|<R}

< lim sup [|f]lo / k(2 /e, 2/) — k(a /e, 2/2)| To(d2)
€0 {r<|z|<R}

z€RY

i sup | [ fa2) (ko(o/z2/2)  Fo(a/2) Tolda)

20 era | J{r<|2|<R}
+ lim sup || flloo|ks(z/e) — k(z/e)| o (r < |2] < R)

e—0 reR

< || flloor =T B(0, R) \ B(0,r)| sup / |k(z, 2) — ks(z,2)| dz
x€RA J T4
+ [ flloolo(r < |2 < R) sup [ks(z) — k(z)].
zeR
Letting 6 — 0 in the right hand side of the inequality above proves the result. O

7. EXAMPLES AND COMMENTS

7.1. Examples. In this subsection, we first give the proof of the assertions in Example 1.1, and then
present two additional examples to further illustrate the applications of our main results. Example 1.1
together with two examples below show that the periodic homogenization of jump processes is very
different from that of diffusion processes. In the homogenization of jump processes, large jumps play
a key role on the homogenized process. The scale function ¢ is determined by the tail of the jumping
kernel.

Proof of Example 1.1. (i) Suppose that o € (0,2) and that k(z, z) is a bounded continuous function on
R? x R? so that x + k(x, z) is multivariate 1-periodic for each fixed z € RY, z + k(x, ) is multivariate
I-periodic for each fixed z € R? and (1.2) is true. Clearly ¢(r) := r® satisfies (3.3). Then it is
easy to see that II(dz) defined by (1.8) has the expression (3.1) with go(df), ¢(r) given above and
#(r,df) = 0. Furthermore, we know by Theorem 6.5 that (3.6) holds with k(z,2) = k(z,2/|z|) given by
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(1.10). Therefore, the claimed assertions in this example follow readily from Theorem 3.2, Theorem 3.4,
Remark 6.6(ii) and Theorem 6.7. B B
(ii) Suppose that o = 2 and lim|,|_, k(2) = ko, where k(2) = [1.4 k(z, 2) p(dx). Then

lim @ /{ oy (@ EE) ko) )| =0
and
1
lim Toge] e 2z 11(dz) = /Sd—l 6;0; 00(db).
Consequently,

. 1 -
gli% Toge] {‘Z‘gl/e}(z ® 2)k(z)I1(dz) = A,
where A = {a;;}1<i j<a With
a;j = ko /Sdl 6;0; 00(db).
Thus, (5.2) and (5.3) hold with ¢(¢) = |loge|. Furthermore, it is easy to see that (5.1) holds for ¢(¢).
Then, the assertion follows from Theorem 5.1.

(i) If @ > 2, then [p,]z[*II(dz) < oo, so the desired assertion immediately follows from Theorem
4.1. U

Remark 7.1. We call a subset I' ¢ R? an unbounded generalized cone, if AI' C T for every A > 0. Note
that I can have several branches starting from the origin, and it can be non-symmetric. Let o(df) denote
the Lebesgue surface measure on $¢1. If

1 1
Ly>y1I(dz) = Wﬂ{\zm;zer} dz = Tra L{r>16er} dr o (do)

for some generalized cone I' with o(I' N $%~) > 0 in Example 1.1(i), then the generator £ of the limit
process (X¢)=o is given by

[ e+ 2) = f@) () d o€ (0,1)
Cof@) =4 [ (Fla+2) = @) = (VF@). o) Tamrlel@)ds. a1,
[ (@t~ 1) = (V(@).2) e tr(z) = ae(1,2)

This gives us another concrete example that the jumping kernel limiting process (X;);>0 can be degen-
erate.

In the following, we always suppose that Assumptions (A1), (A2) and (A3) hold, and that k(zx, z)
is a non-negative bounded function on R? x R? such that = + k(x, ) is multivariate 1-periodic for each
fixed 2 € R? and (1.2) is true. We refer the reader to Subsection 7.2 for conditions on small jumps of
the jumping kernel such that all (A1), (A2) and (A3) are satisfied. Let (X});>0 be the strong Markov
process corresponding to the operator £ given by (1.1). Let u(dx) be the stationary probability measure
for the quotient process of X on T¢. Let br(z), boo(), br (with R > 1) and by, be defined by (1.6),
(1.7) and (1.9), respectively. Let o(df) denote the Lebesgue surface measure on $9-1.

Example 7.2. Let ag(f) be a non-negative bounded function defined on the unit sphere $¢~1. Suppose
that
ao(z/|z])
L=y d2) = P s Lel>1y 424

where
as
D(r) ::/ r* v(do) (7.1)
a1
for constants 0 < a3 < @y < 2 and a non-negative finite measure v on [aq, as| such that ag € supplv]
(that is, v((az — &, az]) > 0 for any € > 0). Suppose also that for every fixed z € R?, k(x,-) : R — R
is multivariate 1-periodic and satisfies (1.2).
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For any ¢ € (0, 1], define (X7 )iz0 = (e Xa(1/e)¢)i=0, and (Y )i=0 by

Xf? 0<an < 1,
Yi=1¢ X —e®(1/e)(by /6 +b)t, ag=1,
X7 —e®(1/e)(boo +b)t, 1< g <2

Then, the process (Y;")i>0 converges weakly in Z([0, ) ), as € = 0, to a (possibly non-symmetric)
ag-stable process with jumping measure koag(z/|z ])]z\ ~2 dz, where ko := [pa [pa k(2 2) dz p(dz).

Proof. Let p(r) = ®(r). Clearly, ¢(r) is a strictly increasing function on (1, 00). We claim that it satisfies
condition (3.3) with a = ap. For any 7 € (0, ), since v((ae — 1, as]) > 0,

a2
o(r) < / r*v(da) forr > 1.
g =)
Thus forr >1and A > 1
a2 a2
A2 p(r) < )\0‘2’7/ v(da) < o(Ar) = )\0‘2/ r®uv(da) < A*2o(r).
az—n az—n

Hence we have shown that for any n € (0, az), there is a positive constant ¢y = co(n) < 1 so that

R
co(R/r)*?* ™" < % <cg'(R/r)* forany R>r > 1. (7.2)

Furthermore, for any n > 0 sufficiently small, clearly we have for every r > 1,
(A1) [22 A v(da) _

lim sup = lim su a— <r
A—00 (P()‘) A—00 f Ay dOé)

On the other hand, since v((ag — n, ag]) > 0,
f;;*n A v(do)

Ay _
1 f =1 f > o271 o 1.
P e(A) e f;;*n A v(da) " orr=

a2

Since the above holds for every sufficiently small > 0, passing  — 0 yields that liin inf p(Ar)/p(A) = r*?
—00
for r > 1. Hence we get
lim (A7) =7r* forr>1.
A—00 (p()\)
This together with (7.2) proves the claim that (3.3) holds With 042 in place of a there. On the other hand,
it follows from Theorem 6.7 that (3.6) holds with k(z, 2) = Jpa k(z,u) du for all z, 2 € RY. The

desired assertions now follows from Theorems 3.2 and 3.4, after notlclng that H(dz) has the representation
(3.1) with 0o(df) = ag(0) o(df) and k(r,df) = 0, where o(df) denotes the Lebesgue surface measure on
$o-L. O

Remark 7.3. (1) If v(dn) = day(dn) + 0y (dn) with 0 < 8 < a < 2 in (7.1), then 1~y (dz) in
Example 7.2 is reduced to
ao(z/|z])

T2[@Fo  [o|d¥B Lisl>1) 42

In this case, 1|1} II(dz) admits the expression (3.1) with ¢(r) = 7% + 2, 00(d) = ao(0)o(dh) and
k(r,df) = 0. If we take p1(r) = r®, 0o(df) = ao(8)o(df) and ky(r,dd) := ﬁao(ﬁ)a(dﬁ), then
1{2>1311(d2) can be also represented by (3.1) with ¢1 and x1(r, df)) in place of  and (r,df). Thus the
homogenization result for X holds with both ¢ and ¢; as its time scaling function.

(2) If v(dn) is the Lebesgue measure on [a/2, ] for some « € (0,2), then
ao(z/|z)
|2[4(|2* — |2]%/%) log 2]

In this case, 1y.51}11(dz) admits the expression (3.1) with p(r) = ®(r) = (r* — /2 logr, 00(df) =
ao(0) o(df) on $91 and k(r,dd) = 0. If we take

Lyjz>131(dz) = 121y d2.

p1(r) = r*logrigs1y,
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then clearly lim, o ¢1(r)/¢(r) = 1. Thus by Remark 3.1, 1{,~13II(dz) can also be represented by (3.1)
with 1 in place of ¢ (but with different x(r,df)); that is, we can write

aop(0) + k1(r,do)
rdt+alog r

LyjzsnyIl(dz) = 15y o(df) dr,

where k1(r, @) satisfies (3.2). In particular, the homogenization result for X holds with both ¢ and ¢
as its time scaling function.

(3) Similar to these of Example 1.1, we can get the assertion when the jumping measure II(dz) enjoys
the form

ao(2/|z[)
]]'{|z|>1}H(dZ) - ]l{\z\>1}| |d+a log |Z| dZ

with a > 2. In details, when o = 2, define
Y;t = 6X5—2‘ logloge|t — 671| log 10g6|(l_)oo + l_))t, t=0.

Suppose that (1.11) holds for some kg > 0. Then, as ¢ — 0, (Y;);=0 converges weakly in 2([0, 00); RY)
to Brownian motion (B;);>0 with the covariance matrix A = {a;;}1<; j<d, where

Qi5 = k‘o/ 92‘9]'0,0(9) a(dﬂ)
Gd—1

When « > 2, we define

Vii=eXyee —e (b +b)E, t>0.
Then, as € — 0, (Y§)¢=0 converges weakly in 2(]0,00); R?) to Brownian motion (By)¢o with the covari-
ance matrix A defined by (1.13).

The following example is concerned with the homogenization for jump process with a singular jumping
kernel.
Example 7.4. Suppose that
d

1
1oy TI(dz) =) O (AO) 151y o, (7.3)
=1

where {e;}, is the standard orthonormal basis of R? and &g, (df) denotes the Dirac measure on $9!
concentrated at 6 € $9-1.
(i) Suppose that z + k(x,z) is multivariate 1-periodic for each fixed z € R?. For any ¢ € (0, 1),
define (Y;%)¢>0 by
eXy/ea, 0<a<l,
VP = qeXijea — (51/5 +b)t, a=1,
eXpjeo — 7 boo + D), 1< <2

Then the process (Y)eo converges weakly in 2([0,00); RY), as ¢ — 0, to a non-symmetric
a-stable process (Xy);>0 with infinitesimal generator £y as follows

Z/ f(z+ zie;) — f(z)) %dzi, a € (0,1),

i

0 ki
Lof(x) = Z/o <f(~’U + ziei) — f(z) — (J;g(c 7) Zilfo<z< 1}) Zlkm dz; a=1,
i=1 v

Zd:/ooo (f(w + ziei)) — f(x) — agg) Zz) jja dz; o€ (1,2),

i=1 i

ks ;:/Td/olk(x,(o,--- 2, 0)) de p(d).

(ii) When a = 2, we define
Yy = eXo2|10ge)t — e loge|(boo + b)t, t>0.

where
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Suppose that (1.11) holds for some ky > 0. Then, as ¢ — 0, (Y7);>0 converges weakly in
2([0,00); R%) to Brownian motion (By)¢=o with the covariance matrix A := kolgxg, where Ijg
denotes the d x d identity matrix.

(iii) When o > 2, we define

Vii=eXye —e H(boo +0)E, t=0.

Then, as € — 0, (Y;¥)=0 converges weakly in 2(]0, 00); R?) to Brownian motion (By)¢o with the
covariance matrix A defined by (1.13).

Proof. By (7.3) we know that (3.1) holds with ¢(r) = %, go(df) = 00(df) and k(r,df) = 0. According to
Corollary 6.3 below we know that (3.6) holds with k(xz,e;) = fol k(x, (0, ,z,---,0)) dz for 1 <i<d,
and k(x,0) = 0 for any 0 € $1\{e;}1<i<q. Hence the desired assertion in (i) follows from Theorems 3.2
and 3.4. The proofs of (ii) and (iii) are similar to these of Example 1.1. O

7.2. Comments on assumptions (Al), (A2) and (A3). Assumptions (A1), (A2) and (A3) are
closely related with recent developments on the fundamental solution of the Lévy type operators. For
example, in [13] the authors considered the following Lévy-type operator on R¢:

k(z, z)

Lf(.%') = ;l_)r% {‘Z‘>5}(f(x + Z) - f(.%')) |Z|d+a dZ,

where 0 < ky < k(x,2) < ko, k(,2) = k(x, —2) and |k(z,2) — k(y, 2)| < ks|z — y|? for some constants
ki >0 (i =1,2,3) and 5 € (0,1). Later the results of [13| are extended to time-dependent cases in
[14] such that the symmetric assumption in z for the function k(zx,z) are not required; moreover, the
corresponding results for the perturbation by a drift term b(z) belonging to some Kato’s class when
a € (1,2) are also considered there, see [14, Theorem 1.5]. For the critical case (i.e., @« = 1), one can
refer to [42]. See [27, 30, 12] and the references therein for more recent progress on this topic, including
the case that a large class of symmetric Lévy processes are considered instead of rotationally symmetric
a-stable processes, and the case that the index function a(x) depends on z.

Proposition 7.5. Let £ be the operator given by (1.1) such that the coefficients satisfy all the assumptions
below (1.1), k(x, z) is bounded between two positive constants, and that there is a constant 5 € (0,1) so
that b(x) € C’?(Rd) and

sup |k(x,2) — k(y, 2)| < colz —y|?, =,y e RY

zeR4
for some ¢y > 0. Assume that

1

for some ag € (0,2). For ag € (0,1), we assume in addition that b(z) = f{‘z‘<1}z(j|§—;2 dz; for ag =1,

we assume in addition that k(z,z) = k(zx,—2) for all x,z € R%. Then assumptions (A1) and (A2) are
satisfied.

Proof. For simplicity, we only prove the case that ag € (1,2), since the proofs of the cases ap € (0,1)
and ag = 1 are similar.

(1) We first assume that II(dz) = |z|797%0 dz. According [14, Theorem 1.5] (see also [27, Theorem
1.4]), there is a unique fundamental solution p(t,z,%) : Ry x R? x R? — R, of the operator £. Then,
the existence and the uniqueness of the Feller process X = ((X¢)i=0; (IP¥),cre) associated with the
operator £ was mentioned in [14, Remark 1.6]. In particular, p(t,z,y) is the transition density function
of the process X with respect to the Lebesgue measure. By two-sided estimates and gradient estimates of
p(t, z,y) stated in [14, Theorem 1.5, (i) and (vi)|, we can easily see that the process X is irreducible and
enjoys the strong Feller property; that is, the associated semigroup (P;)¢>o maps measurable bounded
functions into continuous bounded functions.

Concerning assumption (A1), it is clear that the probability law of X solves the martingale problem
for (£,C°(R?)) in the sense that for every f € C(R?) and x € R,

F(X0) - () /0 CF(X)ds, t30

is a P?-martingale, see [14, Remark 1.2 (iv)]. By our assumptions on k(x, z) and b(z) again and the process
X being conservative (see [14, Theorem 1.1, (iv)]), X solves the martingale problem for (£, CZ(R%)) as
well. If we regard X as a T%valued process, then the associated semigroup is still irreducible and has
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the strong Feller property by the statements above, see, for example, the proof of [21, Proposition 1] or
the argument of [37, Section 4]. This along with [43, Theorem 1.1] gives us Assumption (A2).
(2) Let £ be the operator given in Proposition 7.5. Set II(dz) := |z|~97?0 dz and

Lof(x) == /}Rd (f(@+2) = f&) = (Vf(@), 2)z<ny) bz, 2) T(dz) + (b(z), V f(2)). (7.5)

Then,
Lf(x) =Lof(x) + Af(x),

where
Af®%=/ (Fla+ 2) — f(2)k(z, =) (II(d2) — T1(d2)). (7.6)
{lz[>1}

It is clear that, under assumptions on k(x, z) and II(dz), there is a constant ¢; > 0 such that || Af||c <
c1]|flloo for all f € By(RY). By bounded perturbation results for martingale problems, one can deduce
that assumption (A1) holds for the operator £; see, e.g., [18, Chapter 4, Section 10, p. 253|.

By the proof of Proposition 6 and Remark 8 in [10], we know that the process (X;);>0 is irreducible.
On the other hand, let (P;);>0 and (P):>0 be the semigroups associated with the operator (£, CZ(R?))
and (Lo, CZ(R%)), respectively. It holds that

t
Pf =PPf +/ PYAP,_ fds, t>0,f e By(RY).
0

This along with the fact that (P?)s0 has the strong Feller property yields that (P)s~0 also enjoys the
strong Feller property. Thus Assumption (A2) holds, thanks to [43, Theorem 1.1| again. O

Proposition 7.6. Let £ be the operator given in Proposition 7.5. If ag € (1,2), then assumption (A3)
s also satisfied.

Proof. Similar to the proof of Proposition 7.5, let Lo be defined by (7.5). We write

Cof@) = [ (Flo+2) = f@) = (V1) 2)) b, 2) () + (b (o). V@),

where )
[(dz) := ———dz, boo(a) := b(x) + /
| 2] &+ > {l1>1}
Let po(t, =, y) and P? be the fundamental solution and Markov semigroup associated with £ respectively.

Note that b € Cf(Rd;Rd). By [14, Theorem 1.5], for any ¢ € (0,1] and z,y € R,

k(x,z)
2

t
po(t,z,y) < = T
(tl/ao _|_ |1E _ y|) +ao
Vopolt 4@ € coti—1/e0 (7.7)
2P\l Y ) T)| S Pt
(tl/ao+|x_y|)d+ 0

(Note that in our setting we can take n = 0 in [13, Theorem 1.5], see also |27, Theorem 1.4].) For any
A >0, let RY be the A-resolvent of the semigroup (P?)s=o, i.e.,

RSf(x) := / e MPYf(x)dt, feC(T)x e R
0
According to (7.7), we can see that R is an operator such that RS : C'(T%) — C1(T9) so that
C1
1B lloo + IV Flloe < 1 flloe £ € C(T).

where ¢; is a positive constant independent of A and f. Here, we used the fact that oy € (1,2).
Furthermore, It is well known that R} = (A — £o)~!. Thus, (A — £o)~! : C(T¢) — C(T?) and

_ _ c
1A= £0)™ flloo + V(A = £0) ™ flloe < Xl“f“om feo(T). (7.8)
Let Af be defined by (7.6). By the assumption on k(z, z), A : C(T%) — C(T9) satisfies that
I lloe < 2l flles  f € C(TY). (7.9)

Note that £ = Ly + A. Then, for each A > 0,
A=L) P =(A—Lo) t (1—AN—Lo) ).
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Therefore, combining (7.8) with (7.9), we find that for every A > A\ := cjco > 0, (A — £)~!: C(T?) —
C(T?) is well defined such that
1A=L) flloo + IV = L) flloo < c3(W)l|flloss A > Ao, f € C(TY). (7.10)

For every f € C(T%) with u(f) =0, let Vo= — fooo P, f dt, which is well defined by (1.3). Moreover,

vy € P(L), Lpy = f, p(vy) =0 and [|9f]loc < 4| flloo- In particular, for every A > Ao, it holds that
by ==L (wy — f).
Hence by (7.10), for any A > g we obtain
[Pfllco + IV lloo < e3sMIMy = Flloo < (M) f oo

Let (X{)i>0 be the process associated with the martingale problem for (£, CZ(R%)) with initial value z.
Let f € C(']I‘d) such that ,u(f) = 0. Then, for every ¢ € Z(L) satisfying L1 = f and ,u(¢) =0, we have

E[y(X}F)] = )+ fo )] ds. Letting t — oo and applying (1.3), we get ¢(z) = — [;° Psf(x
This means there exists a umque P € P(L) satistying L) = f. Therefore, according to all the conclusmns
above, we prove that Assumption (A3) holds. O

Remark 7.7. For simplicity, in Proposition 7.5 we require II(dz) and b(z) to have special forms; for
instance, II(dz) satisfies (7.4) and b(z) = [ga zﬁﬁc—fa)o dz when ag € (0,1). These conditions are used

to verify Assumption (A3) under minimal regularity requirements on k(zx, z) and b(x). Indeed, under

more general assumptions on k(z, z) and b(x) (that is, it is not required that b(x f]Rd z ‘k‘(f +i)0 dz when
ap € (0,1)), we can still verify (A1), (A2) (see [32] for details) and weaken (1.5) into
[¥lloc + [V lloo < Crllfllcs- (7.11)

Then, under the conditions above, Theorems 3.4, 4.1 and 5.1 still hold true with some small modifications
in their proofs. We note that (7.11) is closely related to the Schauder estimates for Lévy-type operators,
see [4, 5, 16, 31, 33| and references therein for more details.

Moreover, suppose that k € C;* (R? x R?) and b € Cy (R% R?). Then, by using the theory of pseudo-
differential operators, we can prove the existence of the Feller process X := ((X¢)i=0; (Pz),ere) associated
with (£,C°(R?)), and moreover the process X can be written explicitly via a solution of a stochastic
differential equation with jumps; see |9, Chapter 3| for more details. Hence, we may obtain the following
estimates for the associated semigroup (FP;):>o through the Bismut-type formula (see [34| and references
therein):

IVEflloo < 1V, 0<t<1,
IVEflloo < 2l fllo,  1/2 <t <1

According to these estimates and (1.3), we can find that for every f € C'(T?) with u(f) = 0, there exists
a unique ¥ € (L) such that Ly = f, u(¢») = 0 and

[Plloe + 11V3lloo < €3 ([[flloc + IV o) -

This also suffices to prove Theorems 3.4, 4.1 and 5.1 with some modifications in the proofs.
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