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HOMOGENIZATION OF SYMMETRIC STABLE-LIKE PROCESSES IN STATIONARY

ERGODIC MEDIUM

XIN CHEN, ZHEN-QING CHEN, TAKASHI KUMAGAI AND JIAN WANG

Abstract. This paper studies homogenization of symmetric non-local Dirichlet forms with α-stable-like
jumping kernels in one-parameter stationary ergodic environment. Under suitable conditions, we establish
homogenization results and identify the limiting effective Dirichlet forms explicitly. The coefficients of the
jumping kernels of Dirichlet forms and symmetrizing measures are allowed to be degenerate and unbounded;
and the coefficients in the effective Dirichlet forms can be degenerate.
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1. Introduction and results

1.1. Background. The aim of homogenization theory is to provide the macroscopic rigorous characteriza-
tions of microscopically heterogeneous media, which usually involve rapidly oscillating functions of the form
a = a(x/ε) with ε being a small positive parameter that characters the microscopic length scale of the media.
Homogenization has been a very active research area for a long time, and there is now a vast literature on
this topic, see e.g. [1, 8, 31, 46].

Homogenization problems for random structures are widely studied. The first rigorous result for sec-
ond order elliptic operators in divergence forms with stochastically homogeneous random coefficients was
independently obtained by Kozlov [36] and by Papanicolaou and Varadhan [38]. The crucial point of their
approaches is to construct the so-called corrector (i.e., the solution of certain associated elliptic equations)
and prove that it grows sub-linearly. Later on a lot of homogenization problems were investigated for various
elliptic and parabolic differential equations as well as system of equations in random stationary media. In
particular, Bourgeat et al. in [11] introduced the stochastic version of the two-scale convergence method. Caf-
farelli, Souganidis and Wang in [13] studied the stochastic homogenization in the context of fully non-linear
uniformly elliptic equations in stationary ergodic environment.

The goal of this paper is to address homogenization problem for non-local operators with random coef-
ficients and to give a characterization of the homogenized limiting operators. We start with a brief review
of some recent work on homogenization problems for non-local operators. Piatnitski and Zhizhina in [40]
studied homogenization problem for integral operators of convolution type with dispersal kernels (or jumping
kernels) that have random stationary ergodic coefficients and finite second moment. For discrete operators
with ergodic weights associated with unbounded-range of jumps (but still having finite second moment), we
refer to [27]. In these two cases the scaling order is naturally a Brownian scaling, and the limiting operator is
a Laplacian. One key element in their approaches is that the corrector method or the two-scale convergence
approach works when the jumping kernel has finite second moments. However, when the jumping kernel
has infinite second moment, the scaling order and limiting process are completely different. Chen, Kim and
Kumagai in [18] proved the Mosco convergence of non-local Dirichlet forms associated with symmetric stable-
like random walks in independent long-range conductance model. They showed that the limiting process is a
symmetric α-stable Lévy process. Kassmann, Piatnitski and Zhizhina in [33] investigated homogenization of
a class of symmetric stable-like processes in ergodic environment whose jumping kernels are of product form.
Homogenization problem of symmetric stable-like processes in two-parameter ergodic environment was also
studied in [33]. We shall mention that in [33] random coefficients of the jumping kernel are assumed to be
uniformly elliptic and bounded. Recently, Flegel and Heida [28] considered the corresponding problem in the
discrete setting under some moment conditions on coefficients in two-parameter ergodic environment. The
stochastic homogenization of a class of fully non-linear integral-differential equations in ergodic environment
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was studied by Schwab [45]. We refer the reader to [7, 12, 39, 44] and references therein for homogenization
of integral equations (or jump processes) with periodic coefficients.

As mentioned above, known results concerning stochastic homogenization of stable-like Dirichlet forms
in one-parameter ergodic environment require the coefficients enjoying very special forms (for examples,
the product form). The contribution of this paper is to systematically study homogenization problem for
symmetric non-local operators in one-parameter ergodic environment under more general settings, where the
corresponding random coefficients can be degenerate and unbounded.

1.2. Setting. Let d > 1, and (Ω,F,P) be the probability space that describes the random environment on
which a measurable group of transformations {τx}x∈Rd is defined with τ0 = id, the identity map on Ω, and
τx ◦ τx = τx+y for every x, y ∈ Rd. One may think of τxω := τx(ω) as a translation of the environment ω ∈ Ω

in the direction x ∈ Rd. We assume that {τx}x∈Rd is stationary and ergodic; that is,

(i) P(τxA) = P(A) for all A ∈ F and x ∈ Rd;
(ii) if A ∈ F and τxA = A for all x ∈ Rd, then P(A) ∈ {0, 1};
(iii) the function (x, ω) 7→ τxω is B(Rd)× F-measurable.

Consider a random variable µ : Ω → [0,∞) so that for every ω ∈ Ω, µ(τxω) > 0 for a.e. x ∈ Rd and
E[µ] = 1, and a random function κ : Rd ×Rd × Ω → [0,∞) so that for every ω ∈ Ω,

κ(x, y;ω) = κ(y, x;ω), κ(x+ z, y + z;ω) = κ(x, y; τzω) for any x, y, z ∈ R
d, (1.1)

and

x 7→

∫
(1 ∧ |z|2)

κ(x, x+ z;ω)

|z|d+α
dz ∈ L1

loc(R
d; dx), P-a.e. (1.2)

For each ω ∈ Ω, these two functions determine a regular symmetric Dirichlet form (Eω,Fw) on
L2(Rd;µ(τxω) dx) as follows.

Denote by ∆ := {(x, x) ∈ Rd} the diagonal of Rd ×Rd and µω(dx) := µ(τxω) dx, which has full support
on Rd. Let Γ be an infinite cone in Rd having non-empty interior that is symmetric with respect to the
origin; that is, Γ is a non-empty open subset of Rd so that rx ∈ Γ for every x ∈ Γ and r ∈ R. For α ∈ (0, 2),
define

E
ω(f, g) :=

1

2

∫∫

Rd×Rd\∆
(f(x)− f(y))(g(x) − g(y))

κ(x, y;ω)

|x − y|d+α
1{y−x∈Γ} dx dy, f, g ∈ F

ω, (1.3)

where F
ω the closure of C1

c (R
d) with respect to the norm (Eω(·, ·) + ‖ · ‖2

L2(Rd;µω(dx))
)1/2. Note that under

(1.2), Eω(f, f) < ∞ for all f ∈ C1
c (R

d). Here and in what follows, C1
c (R

d) (respectively, Cc(R
d)) denotes

the space of C1-smooth (respectively, continuous) functions on Rd with compact support. Clearly, (Eω,Fw)
is a regular symmetric Dirichlet form on L2(Rd;µω(dx)). So there exist a Borel subset N

ω ⊂ Rd having
zero E

ω-capacity, and a symmetric Hunt process Xω :=
{
Xω
t , t > 0;Px, x ∈ Rd \Nω

}
on the state space

Rd \ Nω; see [29, Chapter 7]. Note that Xω is a time change of the process corresponding to the Dirichlet
form (Eω,Fω) on L2(Rd; dx). When Γ = Rd and κ(x, y;ω) is bounded between two positive constants, this
Hunt process is a symmetric α-stable-like process studied in [19].

For any ε > 0, set Xε,ω = (Xε,ω
t )t>0 := (εXω

t/εα)t>0. The following simple lemma characterizes the scaled

processes {Xε,ω : ε > 0}. Its proof is postponed to the appendix of this paper.

Lemma 1.1. For any ε > 0, the scaled process Xε,ω has a symmetrizing measure µε,ω(dx) = µ(τx/εω
)
dx,

and the associated regular Dirichlet form (Eε,ω,Fε,ω) on L2(Rd;µε,ω(dx)) is given by

E
ε,ω(f, g) =

1

2

∫∫

Rd×Rd\∆
(f(x)− f(y))(g(x) − g(y))

κ(x/ε, y/ε;ω)

|x− y|d+α
1{x−y∈Γ} dx dy, f, g ∈ F

ε,ω, (1.4)

where F
ε,ω is the closure of C1

c (R
d) with respect to the norm

(
E
ε,ω(·, ·) + ‖ · ‖2

L2(Rd;µε,ω(dx))

)1/2
.

Let (Lω,Dom(Lw)) and (Lε,ω,Dom(Lε,ω)) be the L2-generator of the Dirichlet form (Eω,Fω) on L2(Rd;µω)
and the Dirichlet form (Eω,Fω) on L2(Rd;µε,ω), respectively. That is,

L
ωf(x) = lim

δ→0

1

µ(τxω)

∫

{y∈Rd:|y−x|>δ}
(f(y)− f(x))

κ(x, y, ω)

|y − x|d+α
1{y−x∈Γ} dy for f ∈ Dom(Lw) (1.5)
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and

L
ε,ωf(x) = lim

δ→0

1

µ(τx/εω)

∫

{y∈Rd:|y−x|>δ}
(f(y)− f(x))

κ(x/ε, y/ε, ω)

|y − x|d+α
1{y−x∈Γ} dy for f ∈ Dom(Lε,ω). (1.6)

It is easy to see that for each ε > 0, g ∈ Dom(Lε,ω) if and only of g(ε) ∈ Dom(Lω), where g(ε)(x) = g(εx),
and

L
ε,ωg(x) = ε−αLωg(ε)(x/ε).

For any λ > 0 and f ∈ Cc(R
d), let uε,ωf be the solution to

(λ− L
ε,ω)uε,ωf = f

in L2(Rd;µε,ω(dx)). The main goal of homogenization problem in our paper is to show, under suitable
conditions, that almost surely, uε,ωf converges to a deterministic function uf as ε→ 0 for every f ∈ Cc(R

d),
and that uf is the solution of

(λ− L)uf = f,

where L is the L2-generator of certain regular symmetric Dirichlet form (E,F) on L2(Rd; dx) whose jumping
kernel can be degenerate. The convergence of uε,ωf → uf as ε → 0 is in the resolvent topology; that is, for
a.s. ω ∈ Ω,

lim
ε→0

‖uε,ωf − uf‖L2(Rd;µε,ω(dx)) = 0.

See [42, 46] for background and [7, 12, 33] for recent study on homogenization problems related to non-local
operators.

Let K(z) be a non-negative bounded measurable even function on Rd (that is, K(z) = K(−z) for all
z ∈ Rd). Define a regular Dirichlet form (EK ,FK) on L2(Rd; dx) by

E
K(f, g) =

1

2

∫∫

Rd×Rd\∆
(f(x)− f(y))(g(x) − g(y))

K(x− y)

|x − y|d+α
1{x−y∈Γ} dx dy, f, g ∈ F

K , (1.7)

where F
K is the closure of C1

c (R
d) in with respect to the norm

(
E
K(·, ·) + ‖ · ‖2

L2(Rd;dx)

)1/2
. The limiting

Dirichlet form (E,F) for homogenization problem considered in this paper is of this type. We emphasis that
the symmetric cone Γ in (1.4) can be a proper subset of Rd in our paper.

1.3. Main results. Our main results are divided into two cases, according to the explicit form of the
coefficient κ(x, y;ω) in (1.3). The first one is concerned on the case that κ(x, y;ω) is of the summation form,
and the second one on the case that is of a product form.

1.3.1. κ(x, y;ω) of summation form. To state the statement of this part, we need the following assumption
(A) for κ(x, y;ω).

(A1) For a.s. ω ∈ Ω,

κ(x, y;ω) = ν(y − x; τxω) + ν(x− y; τyω) for every x, y ∈ R
d, (1.8)

where ν : Rd × Ω → [0,∞) is a measurable random function such that

(i) There is a constant l > 0 such that for any n > 0 and x, z1, z2 ∈ Rd,

|Cov (νn(z1; ·), νn(z2; τx(·))) | : =
∣∣E [νn(z1; ·) · νn(z2; τx(·))]− E[νn(z1; ·)]E[νn(z2; ·)]

∣∣

6 C1(n)
(
1 ∧ |x|−l

)
,

(1.9)

where νn = ν ∧ n and C1(n) is a positive constant depending on n.
(ii) There is a non-negative measurable function ν̄ on Rd such that E[ν(z/ε; ·)] converges weakly to ν̄(z)

in L1
loc(R

d; dx) as ω → 0; that is,

lim
ε→0

∫

Rd

h(z)E[ν(z/ε; ·)] dz =

∫

Rd

h(z)ν̄(z) dz for every h ∈ L∞
loc(R

d; dx). (1.10)
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(A2) There are non-negative random variables Λ1 6 Λ2 on (Ω,F,P) with

E[Λ−1
1 + Λp2] <∞, (1.11)

for some constant p > 1 so that for a.s. ω ∈ Ω,

Λ1(τxω) + Λ1(τyω) 6 κ(x, y;ω) 6 Λ2(τxω) + Λ2(τyω) for every x, y ∈ R
d. (1.12)

(A2’) There are non-negative random variables Λ1 6 Λ2 on (Ω,F,P) so that (1.12) holds for a.s. ω ∈ Ω,

and that

E[Λ−1
1 ] <∞.

It is obvious that condition (A2’) is weaker than condition (A2). Here are some comments on assumption
(A).

Remark 1.2. (i) It is easy to see that any κ(x, y;ω) of form (1.8) enjoys the property (1.1). On the
contrary, any κ(x, y;ω) satisfying (1.1) admits a representation of the form (1.8). This is because
κ(x, y;ω) = κ(0, y − x; τxω) and so by the symmetry of κ(x, y;ω) in (x, y) we have

κ(x, y;ω) = 1
2(κ(x, y;ω) + κ(y, x;ω)) = 1

2 (κ(0, y − x; τxω) + κ(0, y − x; τyω)).

Hence we can write κ(x, y;ω) as

κ(x, y;ω) = ν(y − x; τxω) + ν(x− y; τyω),

where
ν(x;ω) := κ(0, x;ω)/2. (1.13)

Thus (1.1) is a symmetrized and long-range analogy of nearest neighborhood random walk models
with balanced random conductance; see e.g. [9, 24, 25, 30]. Representing κ(x, y;ω) via (1.8) by a
general ν(z;ω) rather than that of (1.13) allows more flexibility in satisfying the mixing condition
(1.9) on νn = ν ∧ n.

(ii) Unlike elliptic differential operators, we have a variable (y − x)/ε by shifting operators τx/ε and τy/ε
in the coefficient

κ(x/ε, y/ε;ω) = κ(0, (y − x)/ε; τx/εω) = κ(0, (x − y)/ε; τy/εω)

of the scaled process Xε which corresponds to the long range property of the jumping kernel (see
(1.4)). This prevents us to directly applying the ergodic theorem to deduce the almost sure conver-
gence as indicated below. We thus assume some kind of mixing condition (1.9) on νn, uniformly in
z1, z2 ∈ Rd, to guarantee this convergence. Similar assumption (without the variable zi ∈ Rd and
on ν itself) has been used in [32, Assumption A3] to establish the quenched functional central limit
theorem for random walks on Rd where the random environment is i.i.d. in time and polynomially
mixing in space, and in [2, Assumption A5] in the study of invariance principle for diffusions in
time-space ergodic random environment. We mention that (1.9) includes the so-called “unit range of
dependence” condition used in [3, p. xii, (0.6)].

(iii) Suppose that (1.9) holds with C∗
1 := lim supn→∞C1(n) <∞. Then, for any x, z1, z2 ∈ Rd,

|Cov(ν(z1; ·), ν(z2, τx(·)))| 6 C∗
1

(
1 ∧ |x|−l

)
.

This, along with the symmetry of of κ(x, y;ω) in (x, y), yields that for every x1, y1, x2, y2 ∈ Rd,

Cov(κ(x1, y1; ·), κ(x2, y2; ·)) 6 4C∗
1

(
1 ∧

(
|x1 − x2| ∧ |x1 − y2| ∧ |y1 − x2| ∧ |y1 − y2|

)−l)
. (1.14)

Thus, the mixing condition (1.14) is weaker than the mutually independent stable-like random con-
ductance models investigated in [18, 16]. In details, (1.14) only requires the mixing condition on the
position variable x, not on the jumping size variable z; while in [18, 16] the mutual independence
is imposed on both variables x and z, which was crucial to verify (A4*) (ii) in [18] (see also [16,
Section 4]). In some sense the mutually independent assumption adopted in [18, 16] corresponds to
the following mixing condition: there are constants l, C2 > 0 so that for every x1, x2, y1, y2 ∈ Rd,

Cov(κ(x1, y1; ·), κ(x2, y2; ·)) 6 C2

(
1 ∧

(
|x1 − x2|+ |y1 − y2|) ∧ (|x1 − y2|+ |x2 − y1|)

)−l)
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which is stronger than (1.14). Since in the present paper the mixing condition is of the weaker form
(1.9) and acting on νn instead of ν, the arguments in [18, 16] does not work. We use a different
approach in this paper to deal with the homogenization problem.

(iv) It follows from (1.10) that ν̄(z) is a radial process; that is, ν̄(λz) = ν̄(z) for any λ > 0. Moreover,
under condition (A2), there are positive constants C3 6 C4 so that

C3 6 ν̄(z) + ν̄(−z) 6 C4 for all z ∈ R
d.

Note also that in our setting we always assume that (1.2) holds true. In fact, (1.2) is a consequence
of assumption (A2). Indeed, suppose (A2) holds. Then by the Fubini theorem, for any R > 1,

E

(∫

B(0,R)

∫

Rd

(1 ∧ |z|2)
κ(x, x + z;ω)

|z|d+α
dz dx

)
6

∫

B(0,R)

∫

Rd

(1 ∧ |z|2)
E[Λ2(τx(·))] + E[Λ2(τx+z(·)))]

|z|d+α
dz dx

6 2E[Λ2]

∫

B(0,R)

∫

Rd

1 ∧ |z|2

|z|d+α
dz dx <∞.

In particular, we have P-a.s.,
∫

B(0,R)

∫

Rd

(1 ∧ |z|2)
κ(x, x + z;ω)

|z|d+α
dz dx <∞

for every R > 0.

Theorem 1.3. Suppose that (A1) and (A2) hold, and that E[µp] <∞ for some p > 1. For ε > 0, let U ε,ωλ
be the λ-order resolvent of the Dirichlet form (Eε,ω,Fε,ω) given by (1.4). There is Ω0 ⊂ Ω of full probability

measure so that for every ω ∈ Ω0, every λ > 0 and f ∈ Cc(R
d),

U ε,ωλ f converges to UKλ f in L1(B(0, r); dx) as ε→ 0

for any r > 1, and

lim
ε→0

‖U ε,ωλ f − UKλ f‖L2(Rd;µε,ω) = 0, (1.15)

where UKλ is the λ-order resolvent of the symmetric Dirichlet form (EK ,FK) on L2(Rd; dx) given by (1.7)
with

K(z) := ν̄(z) + ν̄(−z).

Clearly, by taking the smaller one, we can assume p > 1 in the condition E[µp] < ∞ is the same as the
p > 1 in (A2). Note that by Remark 1.2(iv), K(z) is a radial even function on Rd that is bounded between
two positive constants. So the limiting Dirichlet form (EK ,FK) is that of a symmetric, but not necessary
rotationally symmetric α-stable process on Rd. Since for any g ∈ C1

c (R
d),

E
ε,ω(U ε,ωλ f, g) + λ〈U ε,ωλ f, g〉L2(Rd;µε,ω(dx)) = 〈f, g〉L2(Rd;µε,ω(dx)),

E
K(UKλ f, g) + λ〈UKλ f, g〉L2(Rd;dx) = 〈f, g〉L2(Rd;dx),

and by the Birkhoff ergodic theorem (see Proposition 2.1 below),

lim
ε→0

〈UKλ f, g〉L2(Rd;µε,ω(dx)) = 〈UKλ f, g〉L2(Rd;dx) and lim
ε→0

〈f, g〉L2(Rd;µε,ω(dx)) = 〈f, g〉L2(Rd;dx),

we conclude from (1.15) that

lim
ε→0

E
ε,ω(U ε,ωλ f, g) = E

K(UKλ f, g) for every g ∈ C1
c (R

d).

1.3.2. κ(x, y;ω) of product form. Motivated by [33, (Q1)], we next consider the the case where the coef-
ficient κ(x, y;ω) of (1.1) is of a product form. (We note that [33, (Q2)] is essentially an approximation of
[33, (Q1)], under some additional assumptions on the random environment (Ω,F,P) and on the coefficient
κ(x, y;ω) of the jumping kernel.) We consider the following Assumption (B).

(B1) For a.s. ω ∈ Ω,

κ(x, y;ω) = ν1(τxω)ν2(τyω) + ν1(τyω)ν2(τxω) for every x, y ∈ R
d, (1.16)

where ν1 and ν2 are non-negative random variables on (Ω,F,P).
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(B2) There are non-negative random variables Λ1 6 Λ2 on (Ω,F,P) so that for a.s. ω ∈ Ω,

Λ1(τxω)Λ1(τyω) 6 κ(x, y;ω) 6 Λ2(τxω)Λ2(τyω) for every x, y ∈ R
d, (1.17)

and that

E
[
Λ−1
1 + Λ2

2

]
<∞. (1.18)

(B2’) There are non-negative random variables Λ1 6 Λ2 on (Ω,F,P) so that (1.17) holds for a.s. ω ∈ Ω,

and that

E
[
Λ−1
1

]
<∞.

Clearly condition (B2) is stronger than condition (B2’). Conditions (B2) and (B2’) are equivalent to
the following, whose proof is postponed into the appendix of this paper.

Proposition 1.4. Suppose that κ(x, y;ω) is given by (1.16) for some non-negative random variables ν1 and

ν2 on (Ω,F,P). Then condition (B2’) holds if and only if E
[
(ν1ν2)

−1/2
]
<∞, and condition (B2) holds if

and only if

E

[
(ν1ν2)

−1/2 + (ν1 + ν2)
2
]
<∞. (1.19)

Remark 1.5. Following the argument in Remark 1.2(iv) and using the elementary inequality ab 6 (a2+b2)/2
for a, b > 0, we can easily verify that (1.2) is a consequence of assumption (B2). Moreover, if (1.17) holds
and the function x 7→ Λ2(τxω) is locally bounded for a.s. ω ∈ Ω, we can estahblish (1.2) just under the first
moment condition of Λ2 (i.e. under the condition that E[Λ2] <∞). Indeed, for any R > 1 and a.s. ω ∈ Ω,

∫

B(0,R)

∫

Rd

(1 ∧ |z|2)
κ(x, x + z;ω)

|z|d+α
dz dx

6

[
sup

x∈B(0,2R)
Λ2(τxω)

2

]
·

∫

B(0,R)

∫

B(0,R)

|z|2

|z|d+α
dz dx

+

∞∑

k=[logR/ log 2]

2−k(d+α)
∫

B(0,R)

∫

{2k6|z|62k+1}
Λ2(τxω)Λ2(τx+zω) dz dx

6 C1(R;ω) +

∞∑

k=[logR/ log 2]

2−k(d+α)

(∫

B(0,R)
Λ2(τxω) dx

)
·

(∫

B(0,2k+2)
Λ2(τyω) dy

)

6 C1(R;ω) +C2(R;ω)
∞∑

k=[logR/ log 2]

2−k(d+α)2(k+2)d <∞,

where in the third inequality we used the Birkhoff ergodic theorem (see Proposition 2.1 below) and the last
inequality follows from the local boundedness of Λ2(τxω). The assumption such as the local boundedness
of x 7→ Λ2(τxω) was assumed in [15] (see (a.3) on p.1536) to study the invariance principle for symmetric
diffusions in a degenerate and unbounded stationary and ergodic random medium.

Note that any κ(x, y;ω) of form (1.16) enjoys the property (1.1). When the coefficient κ(x, y;ω) of the
jumping kernel is of the product form (1.16), the corresponding symmetric Dirichlet form (Eω,Fω) has the
expression

E
ω(f, f) :=

1

2

∫∫

Rd×Rd\∆
(f(x)− f(y))2

ν1(τxω)ν2(τyω)

|x− y|d+α
1{y−x∈Γ} dx dy for f ∈ F

ω.

In this case, we are able to drop the mixing condition (1.9) from Theorem 1.3.

Theorem 1.6. Suppose that assumptions (B1) and (B2) hold, and that E[µp] < ∞ for some p > 1. Then

the conclusion of Theorem 1.3 holds with constant

K(z) := E[ν1]E[ν2].
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1.4. Comments on main results. To the best of our knowledge, only two cases have been studied in
literature concerning homogenization of α-stable-like processes (or α-stable-like operators) in ergodic random
environment. The first one is [33], where the infinitesimal generator is given by (1.5) with Γ = Rd and
κ(x, y, ω) = λ1(τxω)λ2(τyω) in one-parameter ergodic random environment. The second one is [28], which is
under two-parameters ergodic environment. The setting of our paper is more general, and it also includes the
symmetrization of those in [24, 30, 45]; see (A1) introduced above. Besides, as we will explain in Example 1.7
below, assumption (B) is also related to random conductance models associated with mutually independent
site percolations.

As far as we know, for all the results in literature, the limiting process is always non-degenerate with
Γ = Rd, even if the coefficients of scaled processes are degenerate – see for instance [9, 15, 16, 18, 33, 28].
Our paper provides examples for symmetric jump processes that both coefficients of scaled processes and the
limiting process are degenerate. In details, in our paper not only the cone Γ can be a proper subset of Rd but
also the coefficient κ(x, y, ω) of jumping kernel can be degenerate and unbounded. Moreover, the coefficient
K(z) of jumping kernel for the limiting process can be a non-constant function, which in particular implies
that the limiting process does not need to be a rotationally symmetric α-stable process, but a more general
symmetric α-stable Lévy process on Rd that enjoying the scaling property.

Under assumption (A), we only assume the finiteness of negative 1-moment and positive p-moment with
p > 1 for bounds of the coefficient κ(x, y;ω) to study the homogenization problem. We believe that the
negative moment integrability condition is optimal and the positive moment integrability condition is almost
optimal, since they are necessary to apply the ergodic theorem. We emphasis that under assumption (B),
we also only require the finiteness of negative 1-moment. We also note that, under both negative 1-moment
and positive 1-moment conditions, the annealed invariance principle for nearest neighbor random walks on
random conductances was established in [22], and the quenched invariance principle was proven in [10] when
d = 1, 2. For random divergence forms, one may follow the two-scale convergence method adopted in [47] to
prove the L2-convergence of associated resolvents under similar conditions.

It is natural to consider further the weak convergence of the scaled processes on the path space. Strong
convergence of the resolvents that we have established so far corresponds to the convergence of the finite
dimensional distributions of the scaled processes when the initial measure is absolutely continuous with
respect to an invariant measure. In order to obtain the weak convergence of the scaled processes, we need
to establish the tightness (with respect to the Skorohod topology) of the scaled processes. In fact, if the
initial distribution is an invariant measure (or more generally it is absolutely continuous with respect to an
invariant measure), then the tightness can be obtained by using the so-called forward-backward martingale
decomposition (see [18, Proposition 3.4] for the corresponding statement in the discrete setting). Hence
one can obtain the convergence of the processes on the path space under such initial condition (or under
some weaker topology), see [18, Theorems 2.2 and 2.3] for more discussions in the discrete case. When
(x, y) 7→ κ(x, y; ·) is bounded between two positive constants, we can use heat kernel estimates from [19]
when Γ = Rd or parabolic Harnack inequality from [21] when Γ ( Rd to establish the tightness and therefore
the weak convergence of the scaled processes starting from any point. However, it is highly non-trivial to
prove such convergence if the process starts at any fixed point (in other word, if the initial distribution is a
Dirac measure) when (x, y) 7→ κ(x, y; ·) is not bounded between two positive constants. We will address this
problem in a separate paper.

1.5. Example. A typical example of infinite symmetric cone for degenerate non-local Dirichlet forms given
by (1.3) is

Γ =
{
z ∈ R

d : 〈z, z0〉 > η|z|
}

for some z0 ∈ Sd−1 and η ∈ [0, 1). In the deterministic case, the regularity estimates for non-local operators
associated with such kind of degenerate Dirichlet forms have been studied in [26, 21]; see [26, Example 3] or
[21, Example 1.2] for more details.

As an application of Theorem 1.6, we take the following example that improves [33, Theorem 3, Case
(Q1)], where the coefficients λi(τxω) (i = 1, 2) are assumed to be uniformly bounded from above and below
and Γ = Rd.
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Example 1.7. Suppose that Γ is an infinite symmetric cone in Rd that has non-empty interior. For any

ε > 0, let Lε,ω be the Lévy-type operator given by

L
ε,ωf(x) = p.v.

∫

Rd

(f(y)− f(x))
λ1(τx/εω)λ2(τy/εω)

|y − x|d+α
1Γ(y − x) dy, (1.20)

where λ1 and λ2 are non-negative measurable functions on (Ω,F,P) such that

λ−1
2 ∈ L1(Ω;P), λ2 ∈ L2(Ω;P) and λ2/λ1 ∈ Lp(Ω;P),

for some p > 1. Then, as ε→ 0, Lε,ω converges in the resolvent topology to

Lf(x) = p.v.

∫

Rd

(f(y)− f(x))
C0

|y − x|d+α
dy,

where

C0 =
(E[λ2])

2

E [λ2/λ1]
(1.21)

in the following sense. There is Ω0 ⊂ Ω of full probability measure so that for every ω ∈ Ω0, λ > 0 and

f ∈ Cc(R
d),

lim
ε→0

‖U ε,ωλ f − Uλf‖L2(Rd;µ̄ε;ω(dx)) = 0,

where µ̄ε,ω(dx) := (λ2/λ1)(τx/εω) dx, and U ε,ωf and Uλf are the λ-order resolvent function of Lε,ω and L,

respectively. In addition, U ε,ωλ f converges to Uλf in L1(B(0, r); dx), as ε→ 0, for every r > 1.

The operator (1.20) can be seen as a random long range randomly weighted site model. Indeed, if
λ1(τxω) and λ2(τxω) are regarded as random weight at the site x for initiating a jump and receiving a jump,
respectively, then the long range effect of the media for the coefficient of the jump intensity from x to y is
given by the product λ1(τxω)λ2(τyω). At the first sight, the constant coefficient C0 for the limiting operator
L should be E[λ1λ2], but with the idea of the time change as used in the proof of the assertion of Example
1.7 below, it turns out the correct one should be the one given by formula (1.21). We emphasize again that
in this site model the mixing condition (1.9) of the media given in Assumption (A1) is not needed.

1.6. Organization of the paper. The rest of the paper is organized as follows. In Section 2, we will
prove homogenization of stable-like Dirichlet forms under general sufficient conditions. The main results
are Theorems 2.2 and 2.3. In Section 3, we study the weak convergence of non-local symmetric bilinear
forms, and the L1-precompactness of bounded functions with bounded Dirichlet energies. Both of them are
of interest in their own. With those two at hand, we give proofs of Theorems 1.3 and 1.6, and the assertion
of Example 1.7 in Subsection 3.3. In the appendix of this paper, in addition to presenting the proofs for
Lemma 1.1 and Proposition 1.4, we study the Mosco convergence for (Eε,ω,Fε,ω).

1.7. Notations. We use := as a way of definition. Let R+ := [0,∞), Z+ := {0, 1, 2, · · · }, Sd−1 be the unit
sphere in Rd. For all x ∈ Rd and r > 0, set B(x, r) = {z ∈ Rd : |z − x| < r}. For p ∈ [1,∞] and Lebesgue
measurable A ⊂ Rd, we use |A| to denote the d-dimensional Lebesgue measure of A, Cb(A) the space of
bounded and continuous functions on A, Lp(A; dx) the space of Lp-integrable functions on A with respect to
the Lebesgue measure, and Lploc(R

d; dx) the space of locally Lp-integrable functions on Rd with respect to

the Lebesgue measure. Denote 〈·, ·〉L2(Rd;µ(dx)) the inner product in L2(Rd;µ(dx)). Denote by B(Rd) the set

of locally bounded measurable functions on Rd, by Bb(R
d) the set of bounded measurable functions on Rd,

and by Bc(R
d) the set of bounded measurable functions on Rd with compact support. C1

c (R
d) (respectively,

Cc(R
d) or C∞

c (Rd)) denotes the space of C1-smooth (respectively, continuous or C∞-smooth) functions on
Rd with compact support.

2. Homogenization of stable-like Dirichlet forms: general results

For any ε > 0, let Lε,ω be the generator of the Dirichlet form (Eε,ω,Fε,ω) on L2(Rd;µε,ω(dx)) given by (1.6).
Let LK be the generator of the Dirichlet form (EK ,FK) of (1.7) on L2(Rd; dx). The goal of homogenization
theory is to construct homogenized characteristics and clarify whether the solutions for the operators L

ε,ω
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are close to the solution for the operator L
K . In this paper, we are concerned with the following question:

how to prove that the solution to the equation

(λ− L
ε,ω)uε,ω = f (2.1)

on L2(Rd;µε,ω(dx)) for any λ > 0 and f ∈ Cc(R
d) converges in the resolvent topology, as ε → 0, to the

solution to the equation
(
λ− L

K
)
u = f (2.2)

on L2(Rd; dx).
The section is devoted to addressing this question under the following assumption.

Assumption (H): There is Ω0 ⊂ Ω of full probability measure so that the following hold for every ω ∈ Ω0.

(i) If {fε : ε ∈ (0, 1]} is a sequence of functions on Rd such that fε ∈ F
ε,ω for any ε ∈ (0, 1] and

lim sup
ε→0

(‖fε‖∞ + E
ε,ω(fε, fε)) <∞,

then {fε : ε ∈ (0, 1]} is pre-compact as ε→ 0 in L1(B(0, r); dx) for every r > 1 in the sense that for

any sequence {εn : n > 1} ⊂ (0, 1] with limn→0 εn = 0, there are a subsequence {εnk
: k > 1} and a

function f ∈ L1
loc(R

d; dx) so that fnk
converges to f in L1(B(0, r); dx) for every r > 1.

(ii) For any g ∈ C∞
c (Rd),

lim
η→0

lim sup
ε→0

∫∫

Rd×Rd\∆
(g(x) − g(y))2

κ(x/ε, y/ε;ω)

|x− y|d+α
1{|x−y|6η} dx dy = 0 (2.3)

and

lim
η→0

lim sup
ε→0

∫∫

Rd×Rd

(g(x) − g(y))2
κ(x/ε, y/ε;ω)

|x− y|d+α
1{|x−y|>1/η} dx dy = 0. (2.4)

(iii) There is a constant p > 1 such that

lim sup
ε→0

∫

B(0,R)

(∫

B(0,R)
κ(x/ε, y/ε;ω) dy

)p
dx <∞ for every R > 1.

(iv) For every η > 0, f ∈ Bb(R
d) and g ∈ C∞

c (Rd),

lim
ε→0

∫∫

Rd×Rd

(f(x)− f(y))(g(x) − g(y))
κ(x/ε, y/ε;ω)

|x− y|d+α
1{η<|x−y|<1/η,x−y∈Γ} dx dy

=

∫∫

Rd×Rd

(f(x)− f(y))(g(x) − g(y))
K(x− y)

|x − y|d+α
1{η<|x−y|<1/η,x−y∈Γ} dx dy,

where K(z) is a measurable even function on Rd such that C1 6 K(z) 6 C2 for some constants

C1, C2 > 0.

The section is divided into two parts. We first consider the weak convergence of resolvents in the Dirichlet
norm, and then study the strong convergence of resolvents in the L2-norm.

We will use the following Birkhoff ergodic theorem (see, for example, [31, Theorem 7.2]) several times in
this paper.

Proposition 2.1. Suppose that ν > 0 is a random variable on (Ω,F,P) with E[ν] < ∞. There is a subset

Ω1 ⊂ Ω of full probability measure so that for every ω ∈ Ω1, the function x 7→ ν(τx/εω) converges weakly to

E[ν] in L1
loc(R

d; dx) as ε→ 0; that is, for every ω ∈ Ω1, every bounded Lebesgue measurable set K ⊂ Rd and

every ϕ ∈ L∞(K; dx),

lim
ε→0

∫

K
ϕ(x)ν(τx/εω) dx = E[ν]

∫

K
ϕ(x) dx.

Furthermore, if E[νp] < ∞ for some p > 1, then for every ω ∈ Ω1, the function x 7→ ν(τx/εω) converges

weakly to E[ν] in Lploc(R
d; dx) as ε→ 0.
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2.1. Weak convergence of resolvents. Recall that µ is a random variable on (Ω,F,P) so that E[µ] = 1
and for any ω ∈ Ω, µ(τxω) > 0 for a.e. x ∈ Rd. Denote by U ε,ωλ the λ-order resolvent of the regular Dirichlet

form (Eε,ω,Fε,ω) on L2(Rd;µε,ω(dx)), and UKλ the λ-order resolvent of the regular Dirichlet form (EK ,FK)

on L2(Rd; dx). It is well known that U ε,ωλ f and UKλ f are the unique solution to (2.1) and (2.2), respectively.

Theorem 2.2. Suppose that assumption (H) holds and that E[µp] < ∞ for some p > 1. Then there is a

subset Ω2 ⊂ Ω of full probability measure so that for every ω ∈ Ω2 and any f ∈ Cc(R
d),

U ε,ωλ f converges to UKλ f in L1(B(0, r); dx) as ε→ 0 (2.5)

for every r > 1,

lim
ε→0

〈U ελf, g〉L2(Rd;µε(dx)) = 〈UKλ f, g〉L2(Rd;dx) for every g ∈ Cc(R
d), (2.6)

and

lim
ε→0

E
ε,ω(U ε,ωλ f, g) = E

K(UKλ f, g) for every g ∈ C∞
c (Rd), (2.7)

where K(z) is the function in assumption (H)(iv).

Proof. Let Ω2 = Ω0 ∩ Ω1, where Ω0 and Ω1 are the subset of Ω in assumption (H) and in Proposition 2.1,
respectively, both of them having full probability measure. Let ω ∈ Ω2. For simplicity, throughout the proof
we omit the parameter ω from U ε,ωλ and µε,ω.

Fix λ > 0. For any ε > 0 and f ∈ Cc(R
d), U ελf is the unique element in F

ε,ω so that

λ〈U ελf, g〉L2(Rd;µε(dx)) + E
ε(U ελf, g) = 〈f, g〉L2(Rd;µε(dx)) for g ∈ F

ε,ω. (2.8)

We first treat the limits for the right hand side and the first term in the left hand side in (2.8). Note that
‖U ελf‖L2(Rd;µε(dx)) 6 λ−1‖f‖L2(Rd;µε(dx)) for ε ∈ (0, 1]. Thus by (2.8),

λ‖U ελf‖
2
L2(Rd;µε(dx)) + E

ε(U ελf, U
ε
λf) = 〈f, U ελf〉L2(Rd;µε(dx)) 6 λ−1‖f‖2L2(Rd;µε(dx)). (2.9)

Hence, according to E[µ] = 1 and Proposition 2.1,

lim sup
ε→0

(
E
ε(U ελf, U

ε
λf) + ‖U ελf‖

2
L2(Rd;µε(dx))

)
<∞.

Note also that ‖U ελf‖∞ 6 λ−1‖f‖∞ for all ε ∈ (0, 1]. By assumption (H)(i), {U ελf : ε ∈ (0, 1]} is pre-
compact as ε → 0 in L1(B(0, r); dx) for every r > 1. In particular, for any sequence {εn : n > 1} ⊂ (0, 1]
with limn→∞ εn = 0, we can find a subsequence {εnk

: k > 1} (for simplicity we will still denote it by
{εn : n > 1}) and a function U∗

λf ∈ L1
loc(R

d; dx) (which indeed may depend on ω) so that

lim
n→∞

∫

B(0,r)
|U εnλ f(x)− U∗

λf(x)| dx = 0 for every r > 1. (2.10)

Since supε∈(0,1] ‖U
ε
λf‖∞ 6 λ−1‖f‖∞, we in fact have ‖U∗

λf‖∞ 6 λ−1‖f‖∞ and so for every q ∈ [1,∞),

lim
n→∞

∫

B(0,r)
|U εnλ f(x)− U∗

λf(x)|
q dx = 0 for every r > 1. (2.11)

We next show that U∗
λf = UKλ f , where UKλ is the λ-order resolvent associated with the operator L

K .

Fix g ∈ Cc(R
d). We choose R > 0 such that supp[g] ⊂ B(0, R0). Then, by the Hölder inequality with

p > 1 from assumption (H)(iii),
∫

Rd

|U εnλ f(x)− U∗
λf(x)|g(x)µ(τx/εnω) dx

6 ‖g‖∞

(∫

B(0,R0)
|U εnλ f(x)− U∗

λf(x)|
p/(p−1) dx

)(p−1)/p(∫

B(0,R0)
µ(τx/εnω)

p dx

)1/p

.

Since E[µp] <∞, we get by Proposition 2.1 that for ω ∈ Ω2 ⊂ Ω1,

lim sup
n→∞

∫

B(0,R0)
µp(τx/εnω) dx <∞.
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This along with (2.11) yields

lim
n→∞

∫

Rd

|U εnλ f(x)− U∗
λf(x)|g(x)µ(τx/εnω) dx = 0.

On the other hand, since E[µ] = 1, we have again by Proposition 2.1,

lim
n→∞

∫

Rd

U∗
λf(x)g(x)µ(τx/εnω) dx = lim

n→∞

∫

B(0,R0)
U∗
λf(x)g(x)µ(τx/εnω) dx

=

∫

B(0,R0)
U∗
λf(x)g(x)E [µ] dx =

∫

Rd

U∗
λf(x)g(x) dx.

Putting both estimates above together yields that for any f, g ∈ Cc(R
d)

lim
n→∞

λ〈U εnλ f, g〉L2(Rd;µεn (dx)) = λ〈U∗
λf, g〉L2(Rd;dx). (2.12)

Similarly, according to E[µ] = 1 and Proposition 2.1, we have for every f, g ∈ Cc(R
d),

lim
n→∞

〈f, g〉L2(Rd;µεn (dx)) = 〈f, g〉L2(Rd;dx). (2.13)

In particular, by (2.12) and (2.13), we obtain that for every g ∈ Cc(R
d),

〈U∗
λf, g〉L2(Rd;dx) = lim

n→∞
〈U εnλ f, g〉L2(Rd;µεn (dx))

6 lim
n→∞

(‖U εnλ f‖L2(Rd;µεn (dx)) · ‖g‖L2(Rd;µεn(dx)))

6 λ−1 lim
n→∞

(‖f‖L2(Rd;µεn (dx)) · ‖g‖L2(Rd;µεn (dx)))

= λ−1‖f‖L2(Rd;dx) · ‖g‖L2(Rd;dx),

which implies immediately that U∗
λf ∈ L2(Rd; dx) and ‖U∗

λf‖L2(Rd;dx) 6 λ−1‖f‖L2(Rd;dx).

We now treat the second term in the left hand side of (2.8) with g ∈ C∞
c (Rd). According to Lemma 1.1,

it holds that for any 0 < η 6 1,

2Eεn(U εnλ f, g) =

∫∫

Rd×Rd\∆
(U εnλ f(x+ z)− U εnλ f(x))(g(x + z)− g(x))

κ(0, z/εn ; τx/εnω)

|z|d+α
1Γ∩{|z|6η} dzdx

+

∫∫

Rd×Rd

(U εnλ f(x+ z)− U εnλ f(x))(g(x+ z)− g(x))
κ(0, z/εn ; τx/εnω)

|z|d+α
1Γ∩{|z|>1/η} dzdx

− 2〈U εnλ f,Lnηg〉L2(Rd;dx)

=: In,η1 + In,η2 − 2In,η3 ,

where

L
n
ηf(x) =

∫

Rd

(f(x+ z)− f(x))
κ(0, z/εn; τx/εnω)

|z|d+α
1Γ∩{η<|z|<1/η} dz.

Note that

L
n
0f(x) := p.v.

∫

Rd

(f(x+ z)− f(x))
κ(0, z/εn; τx/εnω)

|z|d+α
1Γ(z) dz

typically is the generator of the Dirichlet form (Eεn,ω,Fεn,ω) on L2(Rd; dx).
By the Cauchy-Schwarz inequality,

In,η1 6

√
2Eεn(U εnλ f, U εnλ f)

√∫∫

Rd×Rd\∆
(g(x + z)− g(x))2

κ(0, z/εn; τx/εnω)

|z|d+α
1{|z|6η} dz dx.

This along with (2.9) and assumption (H)(ii) yield that

lim
η→0

lim
n→∞

In,η1 = 0.

Similarly, we can verify

lim
η→0

lim
n→∞

In,η2 = 0.
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Set

L
K
η g(x) :=

∫

Rd

(g(x + z)− g(x))
K(z)

|z|d+α
1Γ∩{η<|z|<1/η} dz.

It is obvious that
lim
η→0

L
K
η g(x) = L

Kg(x), g ∈ C∞
c (Rd),

where

L
Kg(x) := p.v.

∫

Rd

(g(x+ z)− g(x))
K(z)

|z|d+α
1Γ(z) dz

is the infinitesimal generator with respect to (EK ,FK) on L2(Rd; dx). We find that

|In,η3 − 〈U∗
λf,L

K
η g〉L2(Rd;dx)| 6 |〈U εnλ f − U∗

λf,L
n
ηg〉L2(Rd;dx)|+ |〈U∗

λf, (L
n
ηg − L

K
η g)〉L2(Rd;dx)|

=: In,η3,1 + In,η3,2 .

Observe that, for every x ∈ Rd,

|Lnηg(x)| 6 2‖g‖∞η
−d−α

(∫

B(0,R0+1/η)
κ(x/εn, y/εn;ω) dy

)
1{B(0,R0+1/η)}(x).

This along with the Hölder inequality with p > 1 in assumption (H)(iii) yields that

In,η3,1 6c11(η, ω)

(∫

B(0,R0+1/η)
|U εnλ f(x)− U∗

λf(x)|
p/(p−1) dx

)1−1/p

×
( ∫

B(0,R0+1/η)

(∫

B(0,R0+1/η)
κ(x/εn, y/εn;ω) dy

)p
dx

)1/p

.

Hence, by (2.11) and assumption (H)(iii), for each fixed η > 0, limn→∞ In,η3,1 = 0. On the other hand,
∫

Rd

U∗
λf(x)L

n
ηg(x) dx

=−
1

2

∫∫

Rd×Rd

(U∗
λf(x+ z)− U∗

λf(x)) (g(x+ z)− g(x))
κ(x/εn, (x+ z)/εn;ω)

|z|d+α
1Γ∩{η<|z|<1/η} dz dx.

Then, by applying assumption (H)(iv), we have

lim
n→∞

∫

Rd

U∗
λf(x)L

n
ηg(x) dx

= −
1

2

∫∫

Rd×Rd

(U∗
λf(x+ z)− U∗

λf(x))(g(x + z)− g(x))
K(z)

|z|d+α
1Γ∩{η<|z|<1/η} dz dx

=

∫

Rd

U∗
λf(x)L

K
η g(x) dx,

which implies limn→∞ In,η3,2 = 0.

Combining all the estimates for In,ηi , i = 1, 2, 3 with the fact that U∗
λf ∈ L2(Rd; dx), first letting n → ∞

and then letting η → 0, we obtain

lim
n→∞

E
εn
(
U εnλ f, g

)
= −

∫

Rd

U∗
λf(x)L

Kg(x) dx. (2.14)

Putting this with (2.8), (2.12) and (2.13) together, we see that for any f ∈ Cc(R
d) and g ∈ C∞

c (Rd),

〈(λ− L
K)g, U∗

λf〉L2(Rd;dx) = 〈f, g〉L2(Rd;dx).

In particular, since the above holds for any g ∈ C∞
c (Rd), we have U∗

λf = UKλ f ; that is, U∗
λ is the λ-order

resolvent corresponding to the operator L
K . For every f ∈ Cc(R

d) and g ∈ C∞
c (Rd),

lim
n→∞

E
εn
(
U εnλ f, g

)
= E

K(UKλ f, g),

and by (2.10), U εnλ f converges to UKλ in L1(B(0, r); dx), as n→ ∞, for every r > 1. Since these hold for any
sequence {εn}n>1 that converges to 0, we get (2.7) and (2.5). The property (2.6) follows from (2.12). �
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2.2. Strong convergence of resolvents.

Theorem 2.3. Suppose that assumption (H) holds and E[µp] <∞ for some p > 1. Let Ω2 be the subset of

Ω in Theorem 2.2 that is of full probability measure. Then for every ω ∈ Ω2 and every f ∈ Cc(R
d),

lim
ε→0

‖UKλ f‖L2(Rd;µε,ω(dx)) = ‖UKλ f‖L2(Rd;dx) (2.15)

and

lim
ε→0

‖U ε,ωλ f − UKλ f‖L2(Rd;µε,ω(dx)) = 0. (2.16)

In particular,

lim
ε→0

‖U ε,ωλ f‖L2(Rd;µε,ω(dx)) = ‖UKλ f‖L2(Rd;dx). (2.17)

To prove Theorem 2.3, we need the following lemma. Recall that Γ is an infinite symmetric cone in Rd

that has non-empty interior. We define the Dirichlet form (E0,F0) on L2(Rd; dx) as follows

E0(f, f) =

∫∫

Rd×Rd\∆

(f(y)− f(x))2

|y − x|d+α
1Γ(x− y) dx dy, f ∈ F0, (2.18)

where F0 is the closure of C∞
c (Rd) under the norm

(
E0(·, ·) + ‖ · ‖2

L2(Rd;dx)

)1/2
.

Lemma 2.4. There exists a constant c0 > 0 such that for all f ∈ C1
c (R

d),

‖f‖2L2(Rd;dx) 6 c0E0(f, f)
d/(d+α)‖f‖

2α/(d+α)

L1(Rd;dx)
.

Proof. This inequality is well-known when Γ = Rd (see, for instance, [19, Proposition 3.1]). By [6, Theorem
1.1], there is a constant c1 > 0 which may depend on Γ so that for every f ∈ L2(Rd; dx),

∫∫

Rd×Rd\∆

(f(y)− f(x))2

|y − x|d+α
dx dy 6 c1

∫∫

Rd×Rd\∆

(f(y)− f(x))2

|y − x|d+α
1Γ(x− y) dx dy. (2.19)

This immediately gives the desired result. In fact, the result of [6, Theorem 1.1] is more general which shows
that (2.19) holds with Rd being replaced by any ball B in Rd on both sides of (2.19). In the Rd case, one
can establish (2.19) directly by using the Fourier transform. For reader’s convenience, we give a such proof
below.

For f ∈ C1
c (R

d), let

f̂(ξ) := (2π)−d/2
∫

Rd

ei〈ξ,y〉f(y) dy

be the Fourier transform of f . Then,
∫

Rd

f(x)2 dx =

∫

Rd

|f̂(ξ)|2 dξ, E0(f, f) =

∫

Rd

|f̂(ξ)|2φ(ξ) dξ,

where

φ(ξ) =

∫

Γ

1− ei〈ξ,z〉

|z|d+α
dz =

∫

Γ

1− cos〈ξ, z〉

|z|d+α
dz. (2.20)

Let Sd−1 be the unit sphere in Rd and Θ = Γ ∩ Sd−1. Denote by z = (r, θ) the spherical coordinates for
0 6= z ∈ Rd, and σ the Lebesgue surface measure on Sd−1. Since Θ has non-empty interior, there are positive
constants δ1 and δ2 such that for any η ∈ Sd−1, there exists A(η) ⊂ Θ (which may depend on η) so that
σ(A(η)) > δ1 and

1− cos(r〈η, θ0〉) > δ2 for all 1/2 6 r 6 1 and θ0 ∈ A(η).

Thus for any ξ ∈ Rd,

φ(ξ) = c2|ξ|
α

∫ ∞

0
r−1−α

∫

Θ

(
1− cos(r〈ξ/|ξ|, θ〉)

)
σ(dθ) dr

> c3|ξ|
α

∫ 1

1/2

∫

A(ξ/|ξ|)

(
1− cos(r〈ξ/|ξ|, θ〉)

)
dθ dr >

c3δ1δ2
2

|ξ|α.

(2.21)
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Therefore, for every f ∈ C1
c (R

d),

E0(f, f) > c4

∫

Rd

|f̂(ξ)|2|ξ|α dξ = c4

∫∫

Rd×Rd\∆

(f(y)− f(x))2

|y − x|d+α
dx dy.

This establishes (2.19). �

Proof of Theorem 2.3. Throughout this proof, we again suppress the parameter ω for simplicity. We claim
that (2.15) holds for any f ∈ Cc(R

d) and ω ∈ Ω2. Indeed, let X := {Xt, t > 0} be the symmetric Lévy
process associated with the Dirichlet form (EK ,FK) on L2(Rd; dx). The Lévy process X has Lévy exponent

ψ(ξ) =

∫

Γ
(1− cos〈ξ, z〉)

K(z)

|z|d+α
dz, ξ ∈ R

d.

Since 0 < C1 6 K(z) 6 C2, we have by (2.20) and (2.21) that ψ(ξ) > c0|ξ|
α on Rd. Hence the Lévy process

X has a jointly continuous transition density function p(t, x, y) = p(t, x − y) with respect to the Lebesgue
measure on Rd, where

p(t, x) := (2π)−d/2
∫

Rd

e−i〈ξ,x〉e−tψ(ξ) dξ, x ∈ R
d.

Since

E0(g, g) 6 C−1
1 E

K(g, g) for any g ∈ C1
c (R

d),

we have by Lemma 2.4 that

‖g‖2L2(Rd;dx) 6 c1
(
E
K(g, g)

)d/(d+α)
‖g‖

2α/(d+α)

L1(Rd;dx)
, g ∈ C1

c (R
d).

This along with [14, Theorems (2.1) and (2.9)] yields

p(t, x− y) 6 c2t
−d/α for every t > 0 and x, y ∈ R

d.

Since K(z) 6 C2 on Rd, by the proof of [5, Theorem 1.4], we in fact have

p(t, x− y) 6 c3

(
t−d/α ∧

t

|x− y|d+α

)
for t > 0 and x, y ∈ R

d.

In the following, we fix f ∈ Cc(R
d). Choose R0 > 1 so that supp[f ] ⊂ B(0, R0). For any x ∈ Rd with

|x| > 2R0,

UKλ f(x) =

∫ ∞

0

∫

Rd

e−λtp(t, x− y)f(y) dy dt

6 c4‖f‖∞

∫ ∞

0

∫

B(0,R0)
e−λt

(
t−d/α ∧

t

|x− y|d+α

)
dy dt 6 c5 |x|

−d−α.

(2.22)

where c5 > 0 is a constant that depends on ‖f‖∞, λ and R0.
As mentioned in the beginning of Theorem 2.2, Ω2 = Ω0 ∩ Ω1, where Ω0 and Ω1 are the subset of Ω in

assumption (H) and in Proposition 2.1, respectively. According to Proposition 2.1, for every ω ∈ Ω2, k > 0
and every ϕ ∈ L∞(B(0, 2k); dx)

lim
ε→0

∫

B(0,2k)
ϕ(x)µ(τx/εω) dx = E[µ]

∫

B(0,2k)
ϕ(x) dx =

∫

B(0,2k)
ϕ(x) dx. (2.23)

In particular, taking ϕ ≡ 1 and k = 0 yields that

lim
ε→0

εd
∫

B(0,1/ε)
µ(τxω) dx = lim

ε→0

∫

B(0,1)
µ(τx/εω) dx = |B(0, 1)|.

Hence, for every ω ∈ Ω2, there exists ε0(ω) > 0 such that
∫

B(0,1/ε)
µ(τxω) dx 6 2ε−d|B(0, 1)| for all ε ∈ (0, ε0(ω)). (2.24)
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Let Qk :=
{
x ∈ Rd : 2k−1 6 |x| < 2k

}
for k > 1. Therefore, by (2.22) and (2.24), we obtain for every ω ∈ Ω2

and N > 1 with 2N > max{2R0, ε0(ω)
−1},

lim sup
ε→0

∫

{|x|>2N}
UKλ f(x)

2µ(τx/εω) dx = lim sup
ε→0

∞∑

k=N+1

∫

Qk

UKλ f(x)
2µ(τx/εω) dx

6 c25 lim sup
ε→0

∞∑

k=N+1

2−2(k−1)(d+α)

∫

B(0,2k+1)
µ(τx/εω) dx

= c25 lim sup
ε→0

∞∑

k=N+1

2−2(k−1)(d+α)εd
∫

B(0,2k+1/ε)
µ(τxω) dx

6 c6

∞∑

k=N

2−2k(d+α)εd
(
2k+1/ε

)d
6 c72

−(d+2α)N .

(2.25)

On the other hand, according to (2.23), for every ω ∈ Ω2,

lim
ε→0

∫
UKλ f(x)

2
1{|x|<2N}µ(τx/εω) dx =

∫
UKλ f(x)

2
1{|x|<2N} dx for every N > 1.

This together with (2.25) and by taking N → ∞ gives us (2.15).
For λ > 0, define

E
ε
λ(u, v) = E

ε(u, v) + λ〈u, v〉L2(Rd;µε(dx)) for u, v ∈ F
ε,

and

E
K
λ (u, v) = E

K(u, v) + λ〈u, v〉L2(Rd;dx) for u, v ∈ F
K .

For f ∈ Cc(R
d) and g ∈ C∞

c (Rd),

〈U ελf, f〉L2(Rd;µε(dx)) = E
ε
λ

(
U ελf, U

ε
λf
)

= E
ε
λ

(
U ελf − g, U ελf − g

)
+ E

ε
λ

(
g, g
)
+ 2Eελ

(
U ελf − g, g

)

= E
ε
λ

(
U ελf − g, U ελf − g

)
+ 2〈f, g〉L2(Rd;µε(dx)) − E

ε
λ

(
g, g
)
.

(2.26)

By (ii) and (iv) of assumption (H) and Proposition 2.1,

lim
ε→0

E
ε
λ(g, g) = E

K
λ (g, g) and lim

ε→0
〈f, g〉L2(Rd;µε(dx)) = 〈f, g〉L2(Rd;dx).

Hence after taking ε→ 0 in (2.26), we get together with (2.6) that

lim
ε→0

E
ε
λ

(
U ελf − g, U ελf − g

)
= −2〈f, g〉L2(Rd;dx) + E

K
λ (g, g) + 〈UKλ f, f〉L2(Rd;dx). (2.27)

Take {gk; k > 1} ⊂ C∞
c (Rd) so that gk → UKλ f in

√
EK1 -norm. Then

lim
k→∞

(
2〈f, gk〉L2(Rd;dx) − E

K
λ (gk, gk)− 〈UKλ f, f〉L2(Rd;dx)

)

= 2〈f, UKλ f〉L2(Rd;dx) − E
K
λ (UKλ f, U

K
λ f)− 〈UKλ f, f〉L2(Rd;dx) = 0.

In particular, we have by (2.27) that

lim
k→∞

lim
ε→0

‖U ελf − gk‖L2(Rd;µε(dx)) = 0. (2.28)

On the other hand, by Proposition 2.1, (2.6) and (2.15),

lim
ε→0

‖gk − UKλ f‖
2
L2(Rd;µε(dx)) = lim

ε→0

(
‖gk‖

2
L2(Rd;µε(dx)) − 2〈UKλ f, gk〉L2(Rd;µε(dx)) + ‖UKλ f‖

2
L2(Rd;µε(dx))

)

= ‖gk‖
2
L2(Rd;dx) − 2〈UKλ f, gk〉L2(Rd;dx) + ‖UKλ f‖

2
L2(Rd;dx).

Hence we have

lim
k→∞

lim
ε→0

‖gk − UKλ f‖
2
L2(Rd;µε(dx)) = 0.

This together with (2.28) gives (2.16).
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Consequently, we have by (2.15) that

lim
ε→0

‖U ελf‖L2(Rd;µε(dx)) = lim
ε→0

‖UKλ f‖L2(Rd;µε(dx)) = ‖UKλ f‖L2(Rd;dx).

This completes the proof of the theorem. �

The proof for the property (2.16) (in particular see (2.28) and (4.3) below) immediately implies the
following.

Corollary 2.5. Assume that assumption (H) holds and E[µp] < ∞ for some p > 1. Let Ω2 ⊂ Ω be as

in Theorem 2.2 of full probability measure. Then for every ω ∈ Ω2 and every f ∈ Cc(R
d), U ελf strongly

converges in L2-spaces to UKλ f as ε→ 0.

The definition of strong convergence in L2-spaces with changing reference measures can be found in the
appendix of this paper. Corollary 2.5 can also be proved by using the Mosco convergence of Dirichlet forms
– See Subsection 4.2 in the appendix for this alternative approach.

3. Either assumption (A) or (B) implies assumption (H)

In the section, we will prove that either assumption (A) or (B) implies assumption (H). For this, we first
consider the weak convergence of non-local bilinear forms, and then study the compactness of functions with
uniformly bounded Dirichlet forms. We need the following lemma, which is an extension of Proposition 2.1.

Lemma 3.1. Let (Ω,F,P) be a probability space on which there is a stationary and ergodic measurable group

of transformations {τx}x∈Rd with τ0 = id.

(i) Suppose that ν(z;ω) is a non-negative measurable function on Rd × Ω such that the function z 7→
E [ν(z; ·)p] is locally integrable for some p > 1. Then there is a subset Ω0 ⊂ Ω of full probability

measure so that for every ω ∈ Ω0 and every compactly supported f ∈ Lq(Rd × Rd; dx dy) with

q = p/(p − 1),

lim
ε→0

∫∫

Rd×Rd

f(x, z)ν(z; τx/εω) dz dx =

∫∫

Rd×Rd

f(x, z)E [ν(z; ·)] dz dx. (3.1)

(ii) Suppose that ν1 and ν2 are two non-negative random variables on (Ω,F,P) so that E [νp1 + νp2 ] < ∞
for some p > 1. Then there is a subset Ω0 ⊂ Ω of full probability measure so that for every ω ∈ Ω0

and every compactly supported f ∈ Lq(Rd ×Rd; dx dy) with q = p/(p − 1),

lim
ε→0

∫∫

Rd×Rd

f(x, y)ν1(τx/εω)ν2(τy/εω) dx dy = E [ν1]E [ν2]

∫∫

Rd×Rd

f(x, y) dx dy. (3.2)

Proof. (i) By the Fubini theorem and Proposition 2.1, for any bounded A,B ∈ B(Rd) and a.s. ω ∈ Ω,

lim
ε→0

∫∫

Rd×Rd

1A×B(x, z)ν(z; τx/εω) dz dx = lim
ε→0

∫

A

(∫

B
ν(z; τx/ε) dz

)
dx =

∫

A
E

[∫

B
ν(z; ·) dz

]
dx

=

∫∫

Rd×Rd

1A×B(x, z)E [ν(z; ·)] dz dx.

(3.3)

The above also holds with ν(z;ω)p in place of ν(z;ω).
Let

S :=

{
f(x, z) =

m∑

i=1

ai1Ai×Bi(x, z) : m ∈ {1, 2, · · · }, ai ∈ Q, Ai, Bi ∈ BQ(R
d)

}
.

Here Q denotes the set of all rational numbers, and BQ(R
d) denotes the collection of all bounded cubes in

Rd whose end points are rational numbers. Then there is a set Ω0 ⊂ Ω of full probability measure so that
for every ω ∈ Ω0, (3.1) holds for every f ∈ S , and

lim
ε→0

∫∫

Rd×Rd

1A×B(x, z)ν(z; τx/εω)
p dz dx =

∫∫

Rd×Rd

1A×B(x, z)E [ν(z; ·)p] dz dx. (3.4)



HOMOGENIZATION OF SYMMETRIC STABLE-LIKE PROCESSES 17

For general compactly supported f ∈ Lq(Rd ×Rd; dx dy), take A,B ∈ BQ(R
d) so that supp[f ] ⊂ A×B.

Since Cb(A×B) is dense in Lq(A×B; dx dy) and S is dense in Cb(A×B) under the uniform norm, we can
find a sequence {ϕn}n>1 ⊂ S such that

lim
n→∞

‖ϕn − f‖Lq(A×B;dx dy) = 0.

Note that q = p/(p − 1) > 1 is the conjugate of p > 1. It follows (3.3) and (3.4), as well as the fact (3.1)
holds for every f ∈ S and ω ∈ Ω0, that for every ω ∈ Ω0,

lim sup
ε→0

∣∣∣∣
∫∫

Rd×Rd

f(x, z)ν(z; τx/εω) dz dx−

∫∫

Rd×Rd

f(x, z)E [ν(z; ·)] dz dx

∣∣∣∣

6 lim sup
ε→0

∣∣∣∣
∫∫

Rd×Rd

(f(x, z)− ϕn(x, z))ν(z; τx/εω) dz dx−

∫∫

Rd×Rd

(f(x, z)− ϕn(x, z))E [ν(z; ·)] dz dx

∣∣∣∣

+ lim sup
ε→0

∣∣∣∣
∫∫

A×B
ϕn(x, z)ν(z; τx/εω) dz dx−

∫∫

A×B
ϕn(x, z)E [ν(z; ·)] dz dx

∣∣∣∣

6 lim sup
ε→0

∫∫

A×B
|f(x, z)− ϕn(x, z)|ν(z; τx/εω) dz dx+

∫∫

A×B
|f(x, z)− ϕn(x, z)|E [ν(z; ·)] dz dx

6 ‖f − ϕn‖Lq(A×B;dx dy)

[
lim sup
ε→0

(∫∫

A×B
ν(z; τx/εω)

p dz dx

)1/p

+

(∫∫

A×B
(E [ν(z; ·)])p dz dx

)1/p
]

6 2‖f − ϕn‖Lq(A×B;dx dy)

(∫∫

A×B
E [ν(z; ·)p] dz dx

)1/p

.

By taking n→ ∞, we get

lim sup
ε→0

∣∣∣∣
∫∫

Rd×Rd

f(x, z)ν(z; τx/εω) dz dx−

∫∫

Rd×Rd

f(x, z)E [ν(z; ·)] dz dx

∣∣∣∣ = 0.

This establishes (3.1).
(ii) Note that by Proposition 2.1 that there is a subset Ω0 ⊂ Ω of full probability measure so that for

every ω ∈ Ω0, any bounded A,B ∈ B(Rd) and γ = 1 or p,

lim
ε→0

∫∫

Rd×Rd

1A×B(x, z)
(
ν1(τx/εω)ν2(τy/εω)

)γ
dx dy = lim

ε→0

(∫

A
ν1(τx/εω)

γ dx

)(∫

B
ν2(τy/εω)

γ dy

)

= E [νγ1 ]E [νγ2 ] |A×B|.

With this at hand, the assertion can be proved in exactly the same way as that for (i). �

In the proof of Proposition 3.3(i) below, we need the following maximal ergodic theorem for multiplicative
additive processes with continuous parameter.

Proposition 3.2. Suppose that 0 6 F ∈ L1(Ω;P). Then, there is a constant C > 0 such that for all

λ,R0 > 0,

P

({
ω ∈ Ω : sup

ε∈(0,1)

∫

[0,R0]d
F (τx/εω) dx > λ

})
6 CRd0 E[F ]/λ. (3.5)

Although the maximal ergodic theorem for multiplicative additive processes has been used in some liter-
ature, we can not find a suitable reference for its proof in the continuous parameter setting. For safe of the
completeness, here we will provide the

Proof of Proposition 3.2. Without loss of generality, we assume R0 = 1 in (3.5).
Let I = {[x, x+ k2m]d : x ∈ Zd,m, k ∈ Z+}, and define

FI(ω) :=

∫

I
F (τxω) dx, I ∈ I .

It is easy to verity {FI(ω)}I∈I satisfies (2.1)–(2.3) in [37, Page 201] (indeed, (2.2) in [37, Page 201] holds with
equality), and so {FI(ω)}I∈I is a (discrete) additive process on the integer lattice Zd. Let Qm := [0, 2m]d
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for m > 0, and

F̄∗(ω) := sup
m>0

1

2md

∫

Qm

F (τxω) dx.

According to [37, Page 205, Corollary 2.7], there is a constant c0 > 0 so that for all λ > 0,

P
(
F̄∗(ω) > λ

)
6 c0λ

−1
E[F ]. (3.6)

Now, we define

F∗(ω) := sup
ε∈(0,1)

[
εd
∫

[0,ε−1]d
F (τxω) dx

]
= sup

ε∈(0,1)

∫

[0,1]d
F (τx/εε) dx.

Then, for any m > 0 and ε ∈ (2−(m+1), 2−m],
∣∣∣∣∣2

−md

∫

Qm

F (τxω) dx− εd
∫

[0,ε−1]d
F (τxω) dx

∣∣∣∣∣

6 2−md
∫

Qm+1\Qm

F (τxω) dx+ (2−md − 2−(m+1)d)

∫

Qm+1

F (τxω) dx

6 (2d+1 − 1)

∫
Qm+1

F (τxω) dx

|Qm+1|
6 (2d+1 − 1)F̄∗(ω).

Hence, for any m > 0,

sup
ε∈(2−(m+1),2−m]

[
εd
∫

[0,ε−1]d
F (τxω) dx

]
6 2−md

∫

Qm

F (τxω) dx+ (2d+1 − 1)F̄∗(ω) 6 2d+1F̄∗(ω),

which implies that

F∗(ω) = sup
m>0

sup
ε∈(2−(m+1),2−m]

[
εd
∫

[0,ε−1]d
F (τxω) dx

]
6 2d+1F̄∗(ω).

Therefore, by (3.6), we obtain

P ({ω ∈ Ω : F∗(ω) > λ}) 6 P

({
ω ∈ Ω : F̄∗(ω) > 2−(d+1)λ

})
6 c02

d+1
E[F ]/λ.

This proves (3.5). �

3.1. Weak convergence of bilinear forms. Recall that Γ ⊂ Rd is an infinite symmetric cone that has
non-empty interior. When d = 1, Γ is just R.

Proposition 3.3. (i) Suppose that (A1) holds and that there is a non-negative random variables Λ on

(Ω,F,P) so that E[Λp] <∞ for some p > 1 and

κ(x, y;ω) 6 Λ(τxω) + Λ(τyω) for every ω ∈ Ω, x, y ∈ R
d. (3.7)

Then there is a subset Ω1 ⊂ Ω of full probability measure so that for every ω ∈ Ω1, any η > 0,
f ∈ B(Rd) and g ∈ Bc(R

d),

lim
ε→0

∫

Rd

∫

{η<|z|<1/η, z∈Γ}

(f(x+ z)− f(x))(g(x + z)− g(x))

|z|d+α
κ(x/ε, (x + z)/ε;ω) dz dx

=

∫

Rd

∫

{η<|z|<1/η, z∈Γ}

(f(x+ z)− f(x))(g(x + z)− g(x))

|z|d+α
(ν̄(z) + ν̄(−z)) dz dx,

where ν̄ is a non-negative measurable function given in assumption (A1).
(ii) Let ν1 and ν2 be non-negative random variables on (Ω,F,P) such that E [νp1 + νp2 ] < ∞ for some

p > 1. Then there is a subset Ω2 ⊂ Ω of full probability measure so that for every ω ∈ Ω2, any η > 0,
f ∈ B(Rd) and g ∈ Bc(R

d),

lim
ε→0

∫

Rd

∫

{η<|x−y|<1/η, x−y∈Γ}

(f(y)− f(x))(g(y) − g(x))

|x− y|d+α
ν1(τx/εω)ν2(τy/εω) dx dy
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=

∫

Rd

∫

{η<|x−y|<1/η, x−y∈Γ}

(f(y)− f(x))(g(y) − g(x))

|x− y|d+α
E[ν1]E[ν2] dx dy.

Proof. We first prove the assertion (ii), and then (i).
(ii) Note that for every η > 0, f ∈ B(Rd) and g ∈ Bc(R

d),

F (x, y) := 1{η<|x−y|<1/η, x−y∈Γ}
(f(x)− f(y))(g(x) − g(y))

|x− y|d+α

is a bounded and compactly supported function on Rd ×Rd. Since
∫

Rd

∫

{η<|x−y|<1/η, x−y∈Γ}

(f(x)− f(y))(g(x) − g(y))

|x− y|d+α
ν1(x/ε;ω)ν2(y/ε;ω) dx dy

= 2

∫∫

Rd×Rd

F (x, y)ν1(τx/εω)ν2(τy/εω) dx dy.

Proposition 3.3(ii) follows directly from Lemma 3.1(ii).
(i) Let F (x, y) be the bounded and compactly supported function defined above. Note that

∫

Rd

∫

{η<|z|<1/η, z∈Γ}

(f(x+ z)− f(x))(g(x + z)− g(x))

|z|d+α
ν
(
z/ε; τx/εω

)
dz dx

=

∫∫

Rd×Rd

F (x, x+ z)ν
(
z/ε; τx/εω

)
dz dx,

and by Proposition 2.1 and condition (3.7), for P-a.s. w ∈ Ω,

lim sup
ε→0

∫∫

A×B
ν
(
z/ε; τx/εω

)p
dz dx 6 2p lim sup

ε→0

∫∫

A×B

(
Λ(τx/εω)

p + Λ(τ(x+z)/εω)
p
)
dz dx

= 2p(|A×B|+ |(A+B)×B|)E [Λp] <∞,

where A+B = {x+ y ∈ Rd : x ∈ A, y ∈ B}. Note also that by (A1) and (3.7),

sup
x∈Rd

E[ν(x; ·)] 6 sup
x∈Rd

E[κ(x, 0; ·)] 6 E [Λ] + sup
x∈Rd

E [Λ(τx(·))] = 2E[Λ] 6 2(E[Λp])1/p <∞

and so, by (1.10), the function ν̄ in (A1) is bounded. Proposition 3.3(i) can be proved in exactly the same
way as that of Lemma 3.1(i) once one can verify that there is a subset Ω2 ⊂ Ω of full probability measure so
that for every ω ∈ Ω2 and any A,B ∈ BQ(R

d),

lim
ε→0

∫∫

A×B
ν(z/ε; τx/εω) dz dx =

∫∫

A×B
ν̄(z) dz dx. (3.8)

Furthermore, by (1.10), in order to verify (3.8) it suffices to prove that there is a subset Ω3 ⊂ Ω2 of full
probability measure so that for every ω ∈ Ω3 and any A,B ∈ BQ(R

d),

lim
ε→0

∣∣∣
∫∫

A×B
(ν(z/ε; τx/εω)− E[ν(z/ε; ·)]) dz dx

∣∣∣ = 0. (3.9)

For notational convenience, we will prove the above for A = B = [0, 1]d. The proof for the general case is
similar.

Recall that νk(z;ω) := ν(z;ω) ∧ k. Fix δ > 1. For any ε > 0, choose m > 1 such that δm−1 6 1/ε < δm.
Then,

∣∣∣
∫∫

[0,1]d×[0,1]d

(
νk(z/ε; τx/εω)− E[νk(z/ε; ·)]

)
dz dx

∣∣∣

=
∣∣∣ε2d

∫∫

[0,ε−1]d×[0,ε−1]d

(
νk(z; τxω)− E[νk(z; ·)]

)
dz dx

∣∣∣

6 δ−2(m−1)d
∣∣∣
∫∫

[0,δm−1]d×[0,δm−1]d

(
νk(z; τxω)− E[νk(z; ·)]

)
dz dx

∣∣∣

+ δ−2(m−1)d
∣∣∣
∫∫

[0,ε−1]d×[0,ε−1]d\[0,δm−1]d×[0,δm−1]d

(
νk(z; τxω)− E[νk(z; ·)]

)
dz dx

∣∣∣
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6

∣∣∣δ−2(m−1)d

∫∫

[0,δm−1]d×[0,δm−1]d

(
νk(z; τxω)− E[νk(z; ·)]

)
dz dx

∣∣∣

+ δ−2(m−1)d

∫∫

[0,δm]d×[0,δm]d\[0,δm−1]d×[0,δm−1]d
νk(z; τxω) dz dx

+ δ−2(m−1)d

∫∫

[0,δm]d×[0,δm]d\[0,δm−1]d×[0,δm−1]d
E[νk(z; ·)] dz dx

=:

3∑

i=1

Imi .

We consider Im1 first. For any m ∈ Z+ and x = (x(1), x(2), · · · , x(d)) ∈ δ−mZd, set

Qmx =
∏

16i6d

[x(i), x(i) + δ−m].

Define

Sm ={x ∈ δ−mZd : Qmx ⊂ [0, 1]d},

Tm ={x ∈ δ−mZd : Qmx ∩ [0, 1]d 6= ∅, Qmx ∩ ([0, 1]d)c 6= ∅},

Fm(ω) =

∫

[0,1]d
νk(δ

mz;ω) dz.

We have

δ−2md

∫∫

[0,δm]d×[0,δm]d
νk(z; τxω) dz dx

=

∫∫

[0,1]d×[0,1]d
νk(δ

mz; τδmxω) dz dx =

∫

[0,1]d
Fm(τδmxω) dx

=
∑

i:xi∈Sm

∫

Qm
xi

Fm(τδmxω) dx+
∑

j:xj∈Tm

∫

Qm
xj

∩[0,1]d
Fm(τδmxω) dx

=: Lm1 + Lm2 .

(3.10)

For x ∈ δ−mZd, let

Fx,m(ω) =

∫

Qm
x

Fm(τδmzω) dz.

Since 0 6 νk(z; ·) 6 k for all z ∈ Rd, there is a constant c1(k) > 0 (which may depend on k) such that

sup
x∈δ−mZd

Var(Fx,m) 6 sup
x∈δ−mZd

E
[
F 2
x,m

]
6 c1(k)δ

−2md. (3.11)

Hence,

Var(Lm1 ) = Var
( ∑

i:xi∈Sm

Fxi,m

)
=

[δm]∑

n=0

∑

i,j:xi,xj∈Sm,dnδ−m6|xi−xj |6d(n+1)δ−m

Cov(Fxi,m, Fxj ,m)

=
∑

i,j:xi,xj∈Sm,|xi−xj |6dδ−m

Cov(Fxi,m, Fxj ,m)

+

[δm]∑

n=1

∑

i,j:xi,xj∈Sm,dnδ−m<|xi−xj |6d(n+1)δ−m

Cov(Fxi,m, Fxj ,m)

=: Jm1 + Jm2 .

Note that |{(i, j) : xi, xj ∈ Sm, |xi − xj| 6 dδ−m}| 6 c2δ
md for some constant c2 > 0. Then, by (3.11) and

the Cauchy-Schwarz inequality,

|Jm1 | 6 c3(k)δ
−md.
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On the other hand, it follows from (1.9) that when dnδ−m < |xi − xj | 6 d(n + 1)δ−m for some n > 1,

Cov(Fxi,m, Fxj ,m) =

∫

Qm
xi

∫

Qm
xj

Cov (Fm(τδmx(·)), Fm(τδmy(·))) dy dx

=

∫

Qm
xi

∫

Qm
xj

Cov
(
Fm(τδmx(·)), Fm(τδm(y−x) ◦ τδmx(·))

)
dy dx

6 c4(k)

∫

Qm
xi

∫

Qm
xj

|δm(y − x)|−l dy dx 6 c5(k)n
−lδ−2md,

where the first inequality follows from (1.9), and the second one is due to (3.11) and the fact that |x− y| >
c6nδ

−m for all x ∈ Qmxi and y ∈ Qmxj with |xi − xj| > dnδ−m. Since

|{(i, j) : xi, xj ∈ Sm, dnδ
−m < |xi − xj | 6 d(n + 1)δ−m}| 6 c7δ

mdnd−1

for some constant c7 > 0 independent of m and n, we get

|Jm2 | 6 c8(k)δ
−md

[δm]∑

n=1

n−(l+1−d) 6 c9(k)mδ
−m(d∧l) log δ.

Therefore, according to these two estimates for Jm1 and Jm2 , we obtain

Var(Lm1 ) 6 c10(k)mδ
−m(d∧l) log δ.

In particular, by the Markov inequality, for any γ > 0,

∞∑

m=1

P

(∣∣∣
∑

i:xi∈Sm

Fxi,m −
∑

i:xi∈Sm

E[Fxi,m]
∣∣∣
2
> γ

)
<∞.

Hence, by the Borel-Cantelli lemma, for a.s. ω ∈ Ω,

lim
m→∞

Lm1 = lim
m→∞

∑

i:xi∈Sm

Fxi,m = lim
m→∞

∑

i:xi∈Sm

E[Fxi,m] = lim
m→∞

∫

∪i:xi∈SmQ
m
xi

∫

[0,1]d
E[νk(δ

mz; ·)] dz dx

= lim
m→∞

∫

[0,1]d×[0,1]d
E[νk(δ

mz; ·)] dz dx = lim
m→∞

δ−2md

∫

[0,δm]d×[0,δm]d
E[νk(z; ·)] dz dx,

where the fourth equality we have used the fact limm→∞ ∪i:xi∈SmQ
m
xi = [0, 1]d. Note that

|{xi ∈ δ−mZd : Qmxi ∩ [0, 1]d 6= ∅, Qmxi ∩ ([0, 1]d)c 6= ∅}| 6 c11δ
m(d−1).

This along with (3.11) and the Cauchy-Schwarz inequality gives us

E[|Lm2 |2] 6 |{xi ∈ δ−mZd : Qmxi ∩ [0, 1]d 6= ∅, Qmxi ∩ ([0, 1]d)c 6= ∅}|2 sup
xi∈δ−mZd

E[F 2
xi,m] 6 c12(k)δ

−2m,

which in turn implies that for any γ > 0,

∞∑

m=1

P
(
|Lm2 | > γ

)
<∞.

Hence by the Borel-Cantelli lemma, limm→∞Lm2 = 0 a.s.
Combining both estimates for Lm1 and Lm2 with (3.10) yields that

lim
m→∞

δ−2md

∫∫

[0,δm]d×[0,δm]d
νk(z; τxω) dz dx = lim

m→∞
δ−2md

∫

[0,δm]d×[0,δm]d
E[νk(z; ·)] dz dx;

that is,

lim
m→∞

Im1 = lim
m→∞

δ−2(m−1)d

∣∣∣∣∣

∫∫

[0,δm−1]d×[0,δm−1]d
(νk(z; τxω)− E[νk(z; ·)]) dz dx

∣∣∣∣∣ = 0.
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By the argument for Im1 (in particular, by applying the Borel-Cantelli lemma), we have that for a.s. ω ∈ Ω
and every k > 1, there exists a constant m0(k, ω) > 0 such that for every m > m0(k, ω),
∫∫

[0,δm]d×[0,δm]d\[0,δm−1]d×[0,δm−1]d
νk(z; τxω) dz dx 6

∫∫

[0,δm]d×[0,δm]d\[0,δm−1]d×[0,δm−1]d
(E[νk(z; ·)] + 1) dz dx

6 c13(k)(δ
2md − δ2(m−1)d) = c14(k)δ

2md(1− δ−2d).

In particular, for a.s. ω ∈ Ω,

lim sup
m→∞

Im2 6 c14(k)(δ
2d − 1).

Since 0 6 νk(z;ω) 6 k, it is obvious that

lim sup
m→∞

Im3 6 c15(k)(δ
2d − 1).

Putting all the above estimates together, we conclude that for every fixed δ > 1 and k > 1, there exists a
P-null set Nδ,k such that for every ω ∈ Ω \Nδ,k,

lim sup
ε→0

∣∣∣
∫∫

[0,1]d×[0,1]d
(νk(z/ε; τx/εω)− E[νk(z/ε; ·)]) dz dx

∣∣∣ 6 lim sup
m→∞

3∑

i=1

Imi 6 c16(k)(δ
2d − 1). (3.12)

Let N := ∪∞
n=1∪

∞
k=1N1+1/n,k and Ω2 := Ω \N. Clearly P(Ω2) = 1, and (3.12) holds for every δ = 1+1/n,

k > 1 and ω ∈ Ω2. Letting n→ ∞, we have for every ω ∈ Ω2,

lim
ε→0

∣∣∣
∫∫

[0,1]d×[0,1]d
(νk(z/ε; τx/εω)− E[νk(z/ε; ·)]) dz dx

∣∣∣ = 0 for every k ∈ Z+. (3.13)

For k > 1, let

Ak :=

{
ω ∈ Ω : sup

ε∈(0,1)

∣∣∣∣∣

∫∫

[0,1]d×[0,1]d
ν2k(z/ε; τx/εω) dz dx−

∫∫

[0,1]d×[0,1]d
ν(z/ε; τx/εω) dz dx

∣∣∣∣∣ > 1/k

}
.

According to (1.8) and (3.7),

P (Ak) 6 P

({
ω ∈ Ω : sup

ε∈(0,1)

∫∫

[0,1]d×[0,1]d
ν(z/ε; τx/εω)1{ν(z/ε;τx/εω)>2k} dz dx > 1/k

})

6 P

({
ω ∈ Ω : sup

ε∈(0,1)

∫∫

[0,1]d×[0,1]d

ν(z/ε; τx/εω)
p

2k(p−1)
dz dx > 1/k

})

6 P

({
ω ∈ Ω : sup

ε∈(0,1)

∫∫

[0,1]d×[0,1]d

(
Λ(τx/εω) + Λ(τ(x+z)/εω)

)p
dz dx > k−12k(p−1)

})

6 P

({
ω ∈ Ω : sup

ε∈(0,1)

∫

[0,2]d
Λ(τx/εω)

p dx > 2−pk−12k(p−1)

})
.

Here p > 1 is given in the assumption of Proposition 3.3(i), and in the last inequality we used the facts that
(a+ b)p 6 2p−1(ap + bp) for a, b > 0 and that

∫∫

[0,1]d×[0,1]d
Λ(τ(x+z)/εω)

p dz dx 6

∫

[0,2]d
Λ(τx/εω)

p dx.

Hence by Proposition 3.2 ,

P

({
ω ∈ Ω : sup

ε∈(0,1)

∫

[0,2]d
Λ(τx/εω)

p dx > 2−pk−12k(p−1)

})
6 c17k2

−k(p−1)
E[Λp],

where c17 > 0 is independent of k. Putting all the estimates above together, we get
∑∞

k=1P(Ak) < ∞. By
the Borel-Cantelli lemma again, we can find a subset Ω3 ⊂ Ω2 with full probability measure such that for
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every ω ∈ Ω3, there exists k0(ω) > 0 such that
∣∣∣∣∣

∫∫

[0,1]d×[0,1]d
ν2k(z/ε; τx/εω) dz dx−

∫∫

[0,1]d×[0,1]d
ν(z/ε; τx/εω) dz dx

∣∣∣∣∣ 6 1/k

for every k > k0(ω) and ε ∈ (0, 1).
Combining this with (3.13) yields (first letting ε→ 0 and then k → ∞) that for every ω ∈ Ω3,

lim
ε→0

∣∣∣∣∣

∫∫

[0,1]d×[0,1]d
ν(z/ε; τx/εω) dz dx−

∫∫

[0,1]d×[0,1]d
E[ν(z/ε; ·)] dz dx

∣∣∣∣∣ = 0.

Thus (3.9) holds with A = B = [0, 1] for every ω ∈ Ω3. This completes the the proof of assertion (i) in
Proposition 3.3. �

3.2. Pre-compactness in L1-spaces. In this part, we give the compactness for a sequence of uniformly
bounded functions whose associated scaled Dirichlet forms are also uniformly bounded. The following is the
main result of this subsection.

Proposition 3.4. Suppose that either (A2’) or (B2’) holds. Then there is a subset Ω0 ⊂ Ω of full probability

measure so that, for every ω ∈ Ω0 and any collection of functions {fε : ε ∈ (0, 1]} with fε ∈ F
ε,ω for any

ε ∈ (0, 1] having

lim sup
ε→0

(‖fε‖∞ + E
ε,ω(fε, fε)) <∞,

{fε : ε ∈ (0, 1]} is pre-compact as ε→ 0 in L1(B(0, r); dx) for all r > 1.

Lemma 3.5. Suppose that either (A2’) or (B2’) holds. Then there is subset Ω0 ⊂ Ω of full probability

measure so that the following holds for every ω ∈ Ω0. Suppose that {fε : ε ∈ (0, 1]} is a collection of

functions with fε ∈ F
ε,ω for ε ∈ (0, 1] and

lim sup
ε→0

E
ε,ω(fε, fε) <∞.

Then, for every r > 1 and 0 < |h| 6 r/3,

lim sup
ε→0

sup
x0∈B(0,r)

∫

B2h(x0,r)
|fε(x+ hei)− fε(x)| dx 6 c0(r)h

α/2 lim sup
ε→0

E
ε,ω(fε, fε)

1/2, 1 6 i 6 d, (3.14)

where {ei : 1 6 i 6 d} is the orthonormal basis of Rd, B2h(x0, r) := {y ∈ B(x0, r) : |y − ∂B(x0, r)| > 2h}
and c0(r) is a positive constant depending on r but independent of h, f , ε and ω.

Proof. It suffices to prove (3.14) for every fixed ei and the case that h > 0. The argument below is partially
motivated by the proof of the compact embeddings in fractional Sobolev spaces; see [23, Theorem 4.54, p.
216].

For any z ∈ Rd, denote by (r(z), θ(z)) ∈ R+ × Sd−1 its spherical coordinate. Let Θ := Γ ∩ Sd−1, which

has non-empty interior. Hence there are a non-empty open set Θ̃ ⊂ Θ and a constant N > 1 large enough
so that {

θ
(
z −

ei
N

)
: 1 6 r(z) 6 2, θ(z) ∈ Θ̃

}
⊂ Θ.

Consequently, θ(z − hei) = θ(z/(hN) − ei/N) ∈ Θ for any z = (r(z), θ(z)) with Nh 6 r(z) 6 2Nh and

θ(z) ∈ Θ̃. Let

Gh,Θ̃ :=
{
z ∈ R

d : Nh 6 r(z) 6 2Nh, θ(z) ∈ Θ̃
}

and Gh,Θ :=
{
z ∈ R

d : Nh 6 r(z) 6 2Nh, θ(z) ∈ Θ
}
.

Clearly Gh,Θ̃ ⊂ Gh,Θ and |Gh,Θ̃| ≍ |Gh,Θ| ≍ hd.
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For every x0 ∈ B(0, r), 0 < h < r/3 and fε given in the statement, we have

∫

B2h(x0,r)
|fε(x+ hei)− fε(x)| dx

6 c1h
−d

∫

B2h(x0,r)

∫

x+G
h,Θ̃

|fε(x+ hei)− fε(x)| dz dx

6 c1h
−d

(∫

B2h(x0,r)

∫

x+G
h,Θ̃

|fε(x+ hei)− fε(z)| dz dx+

∫

B2h(x0,r)

∫

x+G
h,Θ̃

|fε(x)− fε(z)| dz dx

)

=: c1h
−d (Ix0,h,1(fε) + Ix0,h,2(fε)) .

(3.15)

By a change of variables,

Ix0,h,1(fε) 6

∫

B(0,2r)

∫

G
h,Θ̃

−hei

|fε(x+ z + hei)− fε(x+ hei)| dz dx

6

∫

B(0,2r)

∫

Gh,Θ

|fε(x+ z + hei)− fε(x+ hei)| dz dx

6

∫

B(0,3r)

∫

Gh,Θ

|fε(x+ z)− fε(x)| dz dx.

(3.16)

Similarly, we have

Ix0,h,2(fε) 6

∫

B(0,2r)

∫

Gh,Θ

|fε(x+ z)− fε(x)| dz dx.

(i) Assume that (A2’) holds. By (3.16), the Hölder inequality and Proposition 2.1,

lim sup
ε→0

sup
x0∈B(0,r)

Ix0,h,1(fε) 6 lim sup
ε→0

( ∫

B(0,3r)

∫

Gh,Θ

(fε(x+ z)− fε(x))
2

|z|d+α
Λ1(τx/εω) dz dx

)1/2

× lim sup
ε→0

(∫

B(0,3r)

∫

Gh,Θ

|z|d+αΛ1(τx/εω)
−1 dz dx

)1/2

6 c2 lim sup
ε→0

[(∫

B(0,3r)
Λ1(τx/εω)

−1 dx

)1/2

E
ε,ω(fε, fε)

1/2

]
hd+α/2

= c2h
d+α/2

(
|B(0, 3r)|E[Λ−1

1 ]
)1/2

lim sup
ε→0

E
ε,ω(fε, fε)

1/2

= c3h
d+α/2 lim sup

ε→0
E
ε,ω(fε, fε)

1/2,

where c2, c3 are positive constants independent of x0, h and ε, but may depend on N and r.
Similarly, we have

lim sup
ε→0

sup
x0∈B(0,r)

Ix0,h,2(fε) 6 c4h
d+α/2 lim sup

ε→0
E
ε,ω(fε, fε)

1/2,

where c4 is a positive constant independent of x0, h and ε. Thus we have by (3.15),

lim sup
ε→0

sup
x0∈B(0,r)

∫

B2h(x0,r)
|fε(x+ hei)− fε(x)| dx 6 c5h

α/2 lim sup
ε→0

E
ε,ω(fε, fε)

1/2,

which establishes (3.14).
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(ii) Next we assume that (B2’) holds. According to (3.16) and the Hölder inequality, for any 0 < h < r/3,

lim sup
ε→0

sup
x0∈B(0,r)

Ix0,h,1(fε)

6 lim sup
ε→0

(∫

B(0,3r)

∫

Gh,Θ

(fε(x+ z)− fε(x))
2

|z|d+α
Λ1(τx/εω)Λ1(τ(x+z)/εω) dz dx

)1/2

× lim sup
ε→0

(∫

B(0,3r)

∫

Gh,Θ

|z|d+αΛ1(τx/εω)
−1Λ1(τ(x+z)/εω)

−1 dz dx

)1/2

6 c7h
(d+α)/2 lim sup

ε→0

(
E
ε,ω(fε, fε)

∫

B(0,3r)

∫

x+Gh,Θ

Λ1(τx/εω)
−1Λ1(τy/εω)

−1 dy dx

)1/2

.

(3.17)

Here c7 is a positive constant independent of h and ε.
Below, denote

Kh := {(x, y) : x ∈ B(0, 3r), y ∈ x+Gh,Θ} ⊂ R
d ×R

d.

If we directly apply Lemma 3.1(ii) to estimate
∫∫
Kh

Λ1(τx/εω)
−1Λ1(τy/εω)

−1 dx dy, then it requires that

Λ−1
1 ∈ Lp(Ω;P) for some p > 1. Instead we will adopt a different approach under the weak condition

Λ−1
1 ∈ L1(Ω;P) as in (1.17) of assumption (B2’). For every 0 < h 6 r/3, we can find {xi}

m
i=1 ⊂ Rd such

that B(0, 3r) ⊂ ∪mi=1B(xi, h) and
∑m

i=1 |B(xi, h)| 6 c0|B(0, 3r)|, where c0 is independent of h, r, m and
{xi}

m
i=1, but the integer m and {xi}

m
i=1 may depend on h. It is easy to verify that

Kh ⊂
m⋃

i=1

B(xi, h) × (B(xi, (2N + 1)h) \B(xi, (N − 1)h)).

Hence,

lim
ε→0

∫∫

Kh

Λ1(τx/εω)
−1Λ1(τy/εω)

−1 dx dy

6 lim
ε→0

m∑

i=1

∫

B(xi,h)

∫

B(xi,(2N+1)h)\B(xi,(N−1)h)
Λ1(τx/εω)

−1Λ1(τy/εω)
−1 dx dy

=

m∑

i=1

(
lim
ε→0

∫

B(xi,h)
Λ1(τx/εω)

−1 dx

)
·

(
lim
ε→0

∫

B(xi,(2N+1)h)\B(xi ,(N−1)h)
Λ1(τy/εω)

−1 dy

)

=
m∑

i=1

E[Λ−1]2 · |B(xi, h)| · |B(xi, (2N + 1)h)\B(xi, (N − 1)h)| 6 c8h
d
m∑

i=1

|B(xi, h)| 6 c9h
d,

where c8 and c9 are positive constants independent of h (but may depend on N and r). Here, in the second
equality above we have used Proposition 2.1 (so only Λ−1

1 ∈ L1(Ω;P) is required), and the last inequality is
due to the fact

∑m
i=1 |B(xi, h)| 6 c0|B(0, 3r)|. Therefore, combining this estimate with (3.17), we find that

lim sup
ε→0

sup
x0∈B(0,r)

Ix0,h,1(fε) 6 c10

(
lim sup
ε→0

E
ε,ω(fε, fε)

1/2
)
hd+α/2.

Similarly, we can obtain

lim sup
ε→0

sup
x0∈B(0,r)

Ix0,h,2(fε) 6 c11

(
lim sup
ε→0

E
ε,ω(fε, fε)

1/2
)
hd+α/2.

Thus we have by (3.15),

lim sup
ε→0

sup
x0∈B(0,r)

∫

B2h(x0,r)
|fε(x+ hei)− fε(x)| dx 6 c12h

α/2 lim sup
ε→0

E
ε,ω(fε, fε)

1/2,

which establishes (3.14). �
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Proof of Proposition 3.4. We first claim that for every r > 1 and h ∈ Rd with |h| < r/3

lim sup
ε→0

∫

B2|h|(0,r)
|fε(x+ h)− fε(x)| dx 6 c0(r;ω)h

α/2. (3.18)

Indeed, writing h = (h(1), · · · , h(i), · · · , h(d)) ∈ Rd, we have for any 0 6 i 6 d,
∫

B2|h|(0,r)
|fε(x+ (h(1), · · · , h(i), h(i+1), 0, · · · , 0)) − fε(x+ (h(1), · · · , h(i), 0, · · · , 0))| dx

=

∫

B2|h|((h(1),··· ,h(i),0,··· ,0),r)
|fε(x+ (0, · · · , 0, h(i+1), 0, · · · , 0)) − fε(x)| dx

6

∫

B
2|h(i+1)|

((h(1),··· ,h(i),0,··· ,0),r)
|fε(x+ (0, · · · , 0, h(i+1), 0, · · · , 0))− fε(x)| dx.

Here, we set (h(1), · · · , h(i), 0, · · · , 0) = 0 when i = 0. This along with (3.14) gives (3.18).
On the other hand, for any δ > 0,

lim sup
ε→0

∫

B(0,r)\B2δ(0,r)
|fε(x)| dx 6

(
lim sup
ε→0

‖fε‖∞
)
|B(0, r) \B2δ(0, r)| 6 c1(r)δ,

where c1(r) is a positive constant independent of δ and ε.
Therefore, for every r > 1 and ζ > 0, there exists a constant δ := δ(r, ζ;ω) such that for every h ∈ Rd

with |h| < δ,

lim sup
ε→0

∫

Bδ(0,r)
|fε(x+ h)− fε(x)| dx 6 ζ (3.19)

and

lim sup
ε→0

∫

B(0,r)\Bδ(0,r)
|fε(x)| dx 6 ζ. (3.20)

It then follows from (3.19), (3.20) and [23, Theorem 1.95, p. 37] that {fε : ε ∈ (0, 1]} is pre-compact as
ε→ 0 in L1(B(0, r); dx) for all r > 1. The proof is complete. �

3.3. Proofs of Theorems 1.3 and 1.6, and the assertion of Example 1.7.

Proof of Theorem 1.3. According to Theorems 2.2 and 2.3, we only need to verify that assumption (A)
implies assumption (H). By Propositions 3.3 and 3.4, assumptions (A) implies properties (i) and (iv) in
assumption (H). So it remains to show that properties (ii) and (iii) in assumption (H) hold as well.

Suppose assumption (A2) holds. There is a subset Ω1 ⊂ Ω so that Proposition 2.1 holds with Λ2 in place
of ν. For g ∈ C1

c (R
d), let R0 > 1 be such that supp[g] ⊂ B(0, R0). For every ω ∈ Ω1 and η ∈ (0, 1/(2R0)),

lim sup
ε→0

∫∫

{|x−y|6η}
(g(x) − g(y))2

κ(x/ε, y/ε;ω)

|x− y|d+α
dx dy

6 2 lim sup
ε→0

∫∫

{|x−y|6η}
(g(y) − g(x))2

Λ2

(
τx/εω

)

|x− y|d+α
dx dy

6 2‖∇g‖2∞ lim sup
ε→0

∫

B(0,R0+η)

( ∫

{|z|6η}

1

|z|d+α−2
dz
)
Λ2

(
τx/εω

)
dx

6 c1η
2−α|B(0, R0 + η)|E[Λ2].

(3.21)

In particular, we have for every ω ∈ Ω1,

lim
η→0

lim sup
ε→0

∫∫

{|x−y|6η}
(g(x)− g(y))2

κ(x/ε, y/ε;ω)

|x− y|d+α
dx dy = 0.
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On the other hand, noting that 1/η > 2R0, we have

lim sup
ε→0

∫∫

{|x−y|>1/η}
(g(y) − g(x))2

κ
(
τx/εω, τy/εω;ω

)

|x− y|d+α
dx dy

6 2 lim sup
ε→0

∫∫

{|x−y|>1/η}
(g(y) − g(x))2

Λ2

(
τx/εω

)

|x− y|d+α
dx dy

6 2 lim sup
ε→0

∫

B(0,R0)

(∫

{|y−x|>1/η}

1

|y − x|d+α
dy

)
g(x)2Λ2

(
τx/εω

)
dx

+ 2 lim sup
ε→0

∫

B(0,R0)c

(∫

{y∈B(0,R0):|y−x|>1/η}

g(y)2

|y − x|d+α
dy

)
Λ2

(
τx/εω

)
dx

6 c2‖g‖
2
∞|B(0, R0)|η

α/2

(
ηα/2E[Λ2] + lim sup

ε→0

∫

B(0,R0)c

Λ2

(
τx/εω

)

|x|d+α/2
dx

)
.

(3.22)

Recall that, by Proposition 2.1, for every ω ∈ Ω1,

lim
ε→0

εd
∫

B(0,1/ε)
Λ2(τxω) dx = lim

ε→0

∫

B(0,1)
Λ2(τx/εω) dx = |B(0, 1)|E[Λ2].

Hence, for every ω ∈ Ω1, there exists ε0(ω) > 0 such that
∫

B(0,1/ε)
Λ2(τxω) dx 6 2E[Λ2]|B(0, 1)|ε−d, ε ∈ (0, ε0(ω)). (3.23)

Next, we choose k0 := k0(ω) > 1 such that 2k0 > ε0(ω)
−1. Thus, for every ω ∈ Ω1,

lim sup
ε→0

∫

B(0,R0)c

Λ2

(
τx/εω

)

|x|d+α/2
dx 6 lim sup

ε→0

∫

B(0,2k0 )\B(0,R0)

Λ2

(
τx/εω

)

|x|d+α/2
dx+ lim sup

ε→0

∞∑

k=k0+1

∫

Qk

Λ2

(
τx/εω

)

|x|d+α/2
dx

=: lim sup
ε→0

Iε1 + lim sup
ε→0

Iε2 ,

where Qk = {x ∈ Rd : 2k−1 < |x| 6 2k}. According to Proposition 2.1 again, we obtain

lim sup
ε→0

Iε1 =

∫

B(0,2k0 )\B(0,R0)

E[Λ2]

|x|d+α/2
dx 6

∫

B(0,R0)c

E[Λ2]

|x|d+α/2
dx <∞.

Meanwhile, by (3.23), it holds that

lim sup
ε→0

Iε2 6 lim sup
ε→0

∞∑

k=k0+1

2−(k−1)(d+α/2)

∫

B(0,2k)
Λ2

(
τx/εω

)
dx

= lim sup
ε→0

∞∑

k=k0+1

2−(k−1)(d+α/2)εd
∫

B(0,2k/ε)
Λ2

(
τxω

)
dx

6 2|B(0, 1)|E[Λ2] lim sup
ε→0

∞∑

k=k0+1

2−(k−1)(d+α/2)εd(2k/ε)d

= c4

∞∑

k=k0+1

2−kα/2 6 c4

∞∑

k=1

2−kα/2 <∞.

Combining all the estimates above with (3.22) shows that for every ω ∈ Ω1,

lim
η→0

lim sup
ε→0

∫∫

{|x−y|>1/η}
(g(x) − g(y))2

κ(x/ε, y/ε;ω)

|x− y|d+α
dx dy = 0;

that is, property (ii) of assumption (H) holds.
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Evidently, there is Ω2 ⊂ Ω1 of full probability measure so that the conclusion of Proposition 2.1 holds
with Λp2 in place of ν. In view of (1.12) of assumption (A2), for every ω ∈ Ω2, by Hölder’s inequality,

lim sup
ε→0

∫

B(0,R)

(∫

B(0,R)
κ(x/ε, y/ε;ω) dy

)p
dx 6 c5R

(p−1)d/p lim sup
ε→0

∫∫

B(0,R)×B(0,R)
κ(x/ε, y/ε;ω)p dx dy

6 2p+1c5R
(p−1)d/p lim sup

ε→0

∫

B(0,R)

∫

B(0,R)
Λ2(τx/εω)

p dx dy

= 2p+1c5R
(p−1)d/p|B(0, R)|2E[Λp2] <∞.

Hence property (iii) of assumption (H) holds as well. This shows that assumption (A2) yields properties
(ii) and (iii) of assumption (H), and so proves Theorem 1.3. �

Proof of Theorem 1.6. By Propositions 3.3 and 3.4, assumption (B) implies properties (i) and (iv) in as-
sumption (H). So it remains to show that properties (ii) and (iii) in assumption (H) hold as well. Note that
under assumption (B2), for any ω ∈ Ω and x, y ∈ Rd,

κ(x, y;ω) 6 Λ2(τxω)Λ2(τyω) 6
1

2
(Λ2(τxω)

2 + Λ2(τyω)
2).

With this at hand, we can follow the argument in the proof of Theorem 1.3 to show that assumption (B2)
implies property (ii) of assumption (H). Furthermore, an analogous argument also shows that assumption
(B2) implies property (iii) of assumption (H).

We point out that the second moment condition on Λ2 in assumption (B2) is only used in establishing (2.3)
(and (1.2)). The remaining properties in (ii) and (iii) of assumption (H) hold under a weaker assumption
that E[Λp2] < ∞ for some p > 1. In particular, (2.4) follows from the corresponding argument in the proof
of Theorem 1.3 by using Lemma 3.1(ii) instead of Proposition 2.1. �

Proof of the assertion in Example 1.7. Define

µ :=
1

Zµ

λ2
λ1
, where Zµ := E [λ2/λ1] .

Clearly, E[µ] = 1, and we can rewrite (1.20) as

L
ε,ωf(x) =

1

Zµµ(τx/εω)
p.v.

∫

Rd

(f(y)− f(x))
λ2(τx/εω)λ2(τy/εω)

|y − x|d+α
1Γ(y − x) dy.

Thus, the operator Lε,ω is symmetric in L2(Rd;µ(τx/εω) dx), and is associated with the symmetric Dirichlet

form (Eε,ω,Fε,ω) on L2(Rd;µ(τx/εω) dx) given by

E
ε,ω(f, g) =

1

2Zµ

∫∫

Rd×Rd

(f(x)− f(y))(g(x) − g(y))
λ2(τx/εω)λ2(τy/εω)

|x− y|d+α
1Γ(y − x) dx dy.

Under assumptions of the example, we see that (1.16) and (1.19) are satisfied with

ν1 = ν2 =
1√
Zµ
λ2,

and E[µp] < ∞. Hence, by Proposition 1.4, assumption (B) is fulfilled. Therefore, the conclusion of the
example follows readily from Theorem 1.6. �
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4. Appendix

4.1. Proofs of Lemma 1.1 and Proposition 1.4.

Proof of Lemma 1.1. Let Lω and (Pωt )t>0 be the generator and the semigroup of the process Xω, respectively.
Let L

ε,ω and (P ε,ωt )t>0 be the generator and the semigroup of the process Xε,ω, respectively. Then, for any
f ∈ C∞

c (Rd),

P ε,ωt f(x) = E
ω
x [f(εX

ω
t/εα)] = Pωt/εαf

(ε)(x/ε),

where f (ε)(x) = f(εx). Thus,

L
ε,ωf(x) =

dP ε,ωt f(x)

dt

∣∣∣
t=0

= ε−αLωf (ε)(x/ε).

For any f, g ∈ C∞
c (Rd), by the facts that the operator L

ω is symmetric on L2(Rd;µω(dx)) and

−

∫

Rd

L
ωf(x)g(x)µω(dx) = E

ω(f, g),

we find that

−

∫

Rd

L
ε,ωf(x)g(x)µε,ω(dx)

= −

∫

Rd

ε−αLωf (ε)(x/ε)g(x)µ(τx/εω) dx

= −

∫

Rd

ε−αLωf (ε)(x/ε)g(ε)(x/ε)µ(τx/εω) dx

= −εd−α
∫

Rd

L
ωf (ε)(x)g(ε)(x)µ(τxω) dx

=
εd−α

2

∫∫

Rd×Rd\∆

(
f (ε)(y)− f (ε)(x)

)(
g(ε)(y)− g(ε)(x)

) κ(x, y;ω)
|x− y|d+α

1{x−y∈Γ} dx dy

=
εd−α

2

∫∫

Rd×Rd\∆

(
f(εy)− f(εx)

)(
g(εy) − g(εx)

) κ(x, y;ω)
|x− y|d+α

1{x−y∈Γ} dx dy

=
1

2

∫∫

Rd×Rd\∆

(
f(y)− f(x)

)(
g(y)− g(x)

)κ
(
x/ε, y/ε;ω

)

|x− y|d+α
1{x−y∈Γ} dx dy.

In particular, ∫

Rd

L
ε,ωf(x)g(x)µε,ω(dx) =

∫

Rd

L
ε,ωg(x)f(x)µε,ω(dx).

Hence, the desired assertion follows. �

Proof of Proposition 1.4. (i) Suppose that (1.19) holds. Clearly (1.18) and (1.17) hold by taking Λ1(ω) :=√
2ν1(ω)ν2(ω) and Λ2(ω) := ν1(ω) + ν2(ω).
(ii) Conversely, suppose that there are non-negative random variables Λ1 6 Λ2 on (Ω,F,P) so that (1.18)

and (1.17) hold. Taking x = y = 0 in (1.17) yields from (1.16) that

Λ2
1(ω) 6 2ν1(ω)ν2(ω) 6 Λ2(ω)

2. (4.1)

This in particular implies that

E[(ν1ν2)
−1/2] 6 21/2E[Λ−1

1 ] <∞.

We claim that there is a constant C > 0 so that

νi(ω) 6 CΛ2(ω) P-a.s. for i = 1, 2. (4.2)

This together with (4.1) will imply that (1.19) holds. Since P(0 < Λ1 6 Λ2 < ∞) = 1, there are constants
0 < a < b so that P(Ω1) > 3/4, where

Ω1 := {ω ∈ Ω : a 6 Λ1(ω) 6 Λ2(ω) 6 b and a 6 min{ν1(ω), ν2(ω)} 6 max{ν1(ω), ν2(ω)} 6 b} .

Define
A = {ω ∈ Ω : τxω ∈ Ω1 for some x ∈ R

d}.
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Clearly, Ω1 ⊂ A and τxA ⊂ A for every x ∈ Rd. Since τx ◦ τy = τx+y for every x, y ∈ Rd and τ0 = id, we

have τxA = A for every x ∈ Rd. Hence P(A) = 1 as the family of shift operators {τx;x ∈ Rd} is ergodic.
By (1.16) and (1.17),

ν1(τxω)ν2(τyω) + ν1(τyω)ν2(τxω) 6 Λ2(τxω)Λ2(τyω).

For every ω ∈ A, take x = 0 and y ∈ Rd so that τyω ∈ Ω1 in the above display. Then this implies that

ν1(ω) + ν2(ω) 6 (b/a)Λ2(ω).

This proves the claim (4.2), and hence completes the proof of the Proposition. �

4.2. Mosco convergence of Dirichlet forms. In this part, we will study the Mosco convergence for the
Dirichlet forms (Eε,ω,Fε,ω), which yields the strong convergence of the associated semigroups and resolvents
in L2-senses along any fixed sequence {εn}n>1 with εn → 0 as n→ ∞.

For this, we first recall some known results from [41, 34, 35] on Mosco convergence with changing reference
measures, and adapt them to our setting. Consider the Hilbert spaces L2(Rd;µε,ω(dx)) and L2(Rd; dx)
as these in the present paper. For simplicity, we drop the parameter ω, and write L2(Rd;µεn,ω(dx)) as
L2(Rd;µεn(dx)). Then, by Proposition 2.1 and E[µ] = 1, there is Ω0 ⊂ Ω of full probability measure so that
for all ω ∈ Ω0 and f ∈ C∞

c (Rd),

lim
n→∞

‖f‖L2(Rd;µεn (dx))
= ‖f‖L2(Rd;dx);

that is, L2(Rd;µεn(dx)) converges to L2(Rd; dx) in the sense of [41], see [41, p. 611] or [35, Definition 2.1].
Following [41, Definitions 2.4 and 2.5] or [35, Definitions 2.2 and 2.2], we say that a sequence of functions

{fn}n>1 with fn ∈ L2(Rd;µεn(dx)) for all n > 1 strongly converges in L2-spaces to f ∈ L2(Rd; dx), if there
exists a sequence of functions {gm}m>1 ⊂ C∞

c (Rd) such that

lim
m→∞

‖gm − f‖L2(Rd;dx) = 0, lim
m→∞

lim sup
n→∞

‖gm − fn‖L2(Rd;µεn (dx))
= 0; (4.3)

we say that a sequence of functions {fn}n>1 with fn ∈ L2(Rd;µεn(dx)) for all n > 1 weakly converges in

L2-spaces to f ∈ L2(Rd; dx), if for every sequence {gn}n>1 with gn ∈ L2(Rd;µεn(dx)) for all n > 1 and
strongly convergent to g ∈ L2(Rd; dx),

lim
n→∞

〈fn, gn〉L2(Rd;µεn (dx))
= 〈f, g〉L2(Rd;dx).

It is obvious that strong convergence in L2-spaces is stronger than weak convergence in L2-spaces; see [41,
Lemma 2.1(4)].

For any ε > 0, let (Eε,ω,Fε,ω) be a regular Dirichlet form on L2(Rd;µε,ω(dx)) given by (1.4), and (EK ,FK)
be a regular Dirichlet form on L2(Rd; dx) given by (1.7). Following [41, Definition 2.11], a sequence of Dirich-
let forms {(Eεn ,Fεn)}n>1 on L2(Rd;µεn(dx)) is said to be Mosco convergent to a Dirichlet form (EK ,FK)
on L2(Rd; dx), if

(i) for every sequence {fn}n>1 with fn ∈ L2(Rd;µεn(dx)) for all n > 1 and converging weakly to
f ∈ L2(Rd; dx),

lim inf
n→∞

E
εn(fn, fn) > E

K(f, f).

(ii) for any f ∈ L2(Rd; dx), there is a sequence {fn}>1 with fn ∈ L2(Rd;µεn(dx)) for all n > 1 and
converging strongly to f such that

lim sup
n→∞

E
εn(fn, fn) 6 E

K(f, f).

In the above definition, we have extended the definition of Eεn(f, f) and E
K(f, f) by E

εn(f, f) = ∞ for
f ∈ L2(Rd;µεn(dx))\F

εn and E
K(f, f) = ∞ for f ∈ L2(Rd; dx)\FK , respectively.

Remark 4.1. (i) The condition (i) in the definition of Mosco convergence holds true, if for every se-
quence {fn}n>1 with fn ∈ L2(Rd;µεn(dx)) for all n > 1 and converging weakly to f ∈ L2(Rd; dx),
then lim infn→∞ E

εn(fn, f) > E
K(f, f). See [18, p. 726, the proof Theorem 4.7] for the proof.
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(ii) Note that C∞
c (Rd) ⊂ F is a core of both Dirichlet forms (Eεn ,Fεn) and (EK ,FK). According to [35,

Lemma 2.8], the condition (ii) in the definition of Mosco convergence holds true, if and only if for
any f ∈ C∞

c (Rd), limn→∞ E
εn(f, f) = E

K(f, f). See [4, Theorem 2.3] or [18, Lemma 8.2] for the case
of the Mosco convergence without changing reference measures.

Theorem 4.2. Under assumption (H), there is Ω0 ⊂ Ω of full probability measure so that for any ω ∈ Ω0

and any {εn}n>1 with εn → 0 as n→ ∞, Dirichlet forms (Eεn,ω,Fεn,ω) convergence to (EK ,FK) in the sense

of Mosco as limn→∞ εn = 0.

Proof. Throughout the proof, we drop the parameter ω. According to (ii) and (iv) of assumption (H) and
Proposition 2.1, we know that there is Ω0 ⊂ Ω of full probability measure so that for any ω ∈ Ω0 and
f ∈ C∞

c (Rd),

lim
n→∞

E
εn(f, f) = E

K(f, f).

By Remark 4.1(ii), property (ii) in the definition of Mosco convergence holds true. So it remains to verify
property (i).

Let {fn}n>1 be such that fn ∈ L2(Rd;µεn(dx)) for any n > 1 and converging weakly to f in L2(Rd; dx).
Without loss of generality, we assume that E

εn(fn, fn) converges and

sup
n>1

(
E
εn(fn, fn) + ‖fn‖

2
L2(Rd;µεn (dx))

)
<∞, (4.4)

thanks to [41, Lemma 2.3]. For any N > 0, let fN (x) := (−N) ∨ (f(x) ∧N). Note that E
εn(fNn , f

N
n ) 6

E
εn(fn, fn). According to (4.4), the fact ‖fNn ‖∞ 6 N and (i) in assumption (H), {fNn }n>1 is a pre-compact

set in L1
loc(R

d; dx). So there exist a measurable function f∗,N ∈ L1
loc(R

d; dx) and a subsequence {fnk
}k>1 of

{fn}n>1 such that for all r > 1,

lim
k→∞

‖fNnk
− f∗,N‖L1(B(0,r);dx) = 0.

Since ‖fNn ‖∞ 6 N for all n > 1, ‖f∗,N‖∞ 6 N and so for any r > 1, N > 0 and 1 < q <∞,

lim
k→∞

‖fNnk
− f∗,N‖Lq(B(0,r);dx) = 0. (4.5)

Moreover, it is easy to see that f∗,N(x) = f∗,M(x) for all N 6 M and a.e. x ∈ Rd with |f∗,N (x)| 6 N .
Therefore, we can find a measurable function f0 ∈ L1

loc(R
d; dx) such that fN0 (x) = f∗,N(x) for a.e. x ∈ Rd

and N > 0. Combining this with (4.5) and the fact that fn converges weakly to f yields that f0 = f a.e.
and (4.5) holds with f∗,N replaced by fN . That is, for any r > 1, N > 0 and 1 < q <∞,

lim
k→∞

‖fNnk
− fN‖Lq(B(0,r);dx) = 0. (4.6)

For notational simplicity, in the following we denote the subsequence {fnk
}k>1 by {fn}n>1.

We first suppose that f ∈ C∞
c (Rd). Take N > ‖f‖∞; that is, f(x) = fN (x). Then, following the argument

for (2.14) in the proof of Theorem 2.2 line by line,

lim
n→∞

E
εn(fNn , f) = E

K(f, f),

which along with Remark 4.1(i) gives us that

lim
n→∞

E
εn(fn, fn) > lim

n→∞
E
εn(fNn , f

N
n ) > E

K(f, f).

For the general case, we partly follow the proof of [18, Theorem 4.7]. Without loss of generality, we assume
that f ∈ F

K . For fixed γ > 0, we choose f∗ ∈ C∞
c (Rd) such that

E
K(f − f∗, f − f∗) + ‖f − f∗‖

2
L2(Rd;dx) 6 γ2.

For any η ∈ (0, 1), denote by

E
εn
η (f, f) =

1

2

∫∫

{η<|z|<1/η, z∈Γ}
(f(x+ z)− f(x))2

κ(0, z/εn; τx/εnω)

|z|d+α
dz dx

and

L
n
ηf(x) =

∫

{η<|z|<1/η, z∈Γ}
(f(x+ z)− f(x))

κ(0, z/εn; τx/εnω)

|z|d+α
dz.
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Similarly, we can define E
K
η (f, f) and L

K
η f. Then,

∣∣Eεnη (fNn , f∗)− E
K
η (f∗, f∗)

∣∣ 6
∣∣〈fN , (Lnη −L

K
η )f∗〉L2(Rd;dx)

∣∣+
∣∣〈fNn − fN ,Lnηf∗〉L2(Rd;dx)

∣∣

+
∣∣〈fN − f,LKη f∗〉L2(Rd;dx)

∣∣+
∣∣〈f − f∗,L

K
η f∗〉L2(Rd;dx)

∣∣
=: I1 + I2 + I3 + I4.

By the Cauchy-Schwarz inequality,

I4 6
√
EKη (f − f∗, f − f∗)EKη (f∗, f∗) 6 γ

√
EKη (f, f) + γ2.

Since f∗ ∈ C∞
c (Rd), LKη f∗ has a compact support. Due to (4.6), the argument for In,η3,1 in the proof of Theorem

2.2 yields that limn→∞ I2 = 0, thanks to (iii) in assumption (H). Similarly, using (iv) in assumption (H)
and following the argument for In,η3,2 in the proof of Theorem 2.2, we can also verify that limn→∞ I1 = 0.
Obviously, by the Cauchy-Schwarz inequality again,

I3 6 ‖fN − f‖L2(Rd;dx)‖L
K
η f∗‖L2(Rd;dx) = ‖f1{|f |>N}‖L2(Rd;dx)‖L

K
η f∗‖L2(Rd;dx).

Therefore, putting all the estimates together, we find that

E
K
η (f∗, f∗) 6 lim sup

n→∞
E
εn
η (fNn , f∗) + γ

√
EKη (f, f) + γ2 + ‖f1{|f |>N}‖L2(Rd;dx)‖L

K
η f∗‖L2(Rd;dx)

6

√
lim sup
n→∞

E
εn
η (fNn , f

N
n )
√

EKη (f∗, f∗) + γ
√

EKη (f, f) + γ2 + ‖f1{|f |>N}‖L2(Rd;dx)‖L
K
η f∗‖L2(Rd;dx)

6

√
lim sup
n→∞

E
εn
η (fn, fn)

√
EKη (f∗, f∗) + γ

√
EKη (f, f) + γ2 + ‖f1{|f |>N}‖L2(Rd;dx)‖L

K
η f∗‖L2(Rd;dx),

where in the second inequality we used the Cauchy-Schwarz inequality and (iv) in assumption (H). Letting
N → ∞, we obtain

E
K
η (f∗, f∗) 6

√
lim sup
n→∞

E
εn
η (fn, fn)

√
EKη (f∗, f∗) + γ

√
EKη (f, f) + γ2.

Note that

E
K
η (f∗, f∗)− γ 6 E

K
η (f, f) 6 E

K
η (f∗, f∗) + γ.

Then, combining two inequalities above together, and letting γ → 0 and η → 0,

lim
n→∞

E
εn(fn, fn) > E

K(f, f).

The proof is complete. �

We say that a sequence of bounded operators {Tn} on L2(Rd;µεn(dx)) strongly converges to an operator
T on L2(Rd; dx), if for every sequence {un}n>1 with un ∈ L2(Rd;µεn(dx)) for all n > 1 and strongly
converging in L2-spaces to u ∈ L2(Rd; dx), the sequence {Tnun}n>1 strongly converges in L2-spaces to Tu;
see [41, Definition 2.6] or [35, Definition 2.4].

Let (P εn,ωt )t>0 and (U εn,ωλ )λ>0 be the semigroup and the resolvent associated with the Dirichlet form

(Eεn,ω,Fεn,ω), respectively. Let (PKt )t>0 and (UKλ )λ>0 be the semigroup and the resolvent associated with

the Dirichlet form (EK ,FK), respectively. Then, by Theorem 4.2 and [41, Theorem 2.4], (also thanks to the
fact that Theorem 4.2 holds for any {εn}n>1 that converges to 0 which is independent of ω ∈ Ω0), we have

Corollary 4.3. Under assumption (H), there is Ω0 ⊂ Ω of full probability measure so that for every ω ∈ Ω0,

P ε,ωt strongly converges in L2-spaces to PKt for every t > 0 as ε → 0; equivalently, U ε,ωλ strongly converges

in L2-spaces to UKλ for every λ > 0 as ε→ 0.
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