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Abstract. Let α(x) be a measurable function taking values in [α1, α2] for 0 < α1 6 α2 < 2, and κ(x, z) be
a positive measurable function that is symmetric in z and bounded between two positive constants. Under
uniform Hölder continuous assumptions on α(x) and x 7→ κ(x, z), we obtain existence, upper and lower bounds,
and regularity properties of the heat kernel associated with the following non-local operator of variable order

Lf(x) =

∫
Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

) κ(x, z)

|z|d+α(x)
dz.

In particular, we show that the operator L generates a conservative Feller process on Rd having strong Feller
property, which is usually assumed a priori in the literature to study analytic properties of L via probabilistic
approaches. Our near-diagonal estimates and lower bound estimates of the heat kernel depend on the local
behavior of index function α(x). When α(x) ≡ α ∈ (0, 2), our results recover some results by Chen and
Kumagai (2003) and Chen and Zhang (2016).
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1. Introduction and Main Results

1.1. Goal and Setting. In this paper, we study existence, uniqueness and two-sided global estimates for
the fundamental solutions of a class of state-dependent non-local operators on Rd that contains the following
fractional Laplacian of variable orders as special cases:

L = −(−∆)α(x)/2, (1.1)

where α(x) is a Hölder continuous function on Rd that takes values in a compact subset of (0, 2). The non-
local operator L in (1.1) can be rigorously defined as a pseudo-differential operator −p(x,D) with symbol
p(x, ξ) = −|ξ|α(x) via Fourier transform; that is,

Lf(x) =
1

(2π)d

∫
Rd
e〈ix,ξ〉p(x, ξ)f̂(ξ) dξ =

1

(2π)d

∫
Rd×Rd

ei〈x−y,ξ〉p(x, ξ)f(y) dy dξ.

When α(x) is a constant α ∈ (0, 2), L = −(−∆)α/2 is the usual fractional Laplacian of order α, which is also
the infinitesimal generator of the rotationally symmetric α-stable Lévy process in Rd. We call α(x) the order
of the non-local operator L of (1.1) at the point x ∈ Rd. One can write (−∆)α(x)/2 as an integro-differential
operator:

(−∆)α(x)/2f(x) =

∫
Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

) κ(x)

|z|d+α(x)
dz, f ∈ C2

c (Rd),

where κ(x) = α(x)2α(x)−1Γ((α(x)+d)/2)

πd/2 Γ(1−(α(x)/2))
.

The non-local operators with variable order we will consider in this paper are extensions of above and are
given by

Lf(x) =

∫
Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

) κ(x, z)

|z|d+α(x)
dz, f ∈ C2

c (Rd), (1.2)

where α : Rd → (0, 2) is a Hölder continuous function such that

0 < α1 6 α(x) 6 α2 < 2 for x ∈ Rd,

|α(x)− α(y)| 6 c1(|x− y|β1 ∧ 1) for x, y ∈ Rd,
(1.3)
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for some constants c1 ∈ (0,∞) and β1 ∈ (0, 1], and κ : Rd×Rd → (0,∞) is a measurable function satisfying

κ(x, z) = κ(x,−z) for x, z ∈ Rd,

0 < κ1 6 κ(x, z) 6 κ2 <∞ for x, z ∈ Rd,

|κ(x, z)− κ(y, z)| 6 c2(|x− y|β2 ∧ 1) for x, y, z ∈ Rd,

(1.4)

for some constants c2 ∈ (0,∞) and β2 ∈ (0, 1]. Set β0 = β1 ∧ β2. Clearly (1.3) and (1.4) hold with β0 in
place of β1 and β2, respectively.

1.2. Background. Non-local operators arise naturally in the study of stochastic processes with jumps.
Various properties of the non-local operator L have been intensively investigated both from the analytic and
the probabilistic point of view.

We first recall some known results for the constant order case, i.e. α(x) ≡ α ∈ (0, 2) for all x ∈ Rd.
The regularity properties of the operator L of (1.2) including the Hölder continuity of harmonic functions,
the Schauder estimates and the Lp estimates were studied in [2, 10, 11, 12, 18, 29, 47, 48, 52]. When the
operator L is symmetric with respect to the Lebesgue measure, existence and two-sided estimates of the
heat kernel associated with L were obtained in [16, 17], and the corresponding parabolic Harnack inequality
was also established there. For general κ(x, z) satisfying (1.4), the associated heat kernel was constructed
by Levi’s method in [20], where the corresponding two-sided estimates and gradient estimates were given,
and the parabolic equation (see (1.5) below) was also verified. Recently the extension of [20] from the
Lévy kernel 1/|z|d+α to that of a class of subordinate Brownian motions was presented in [32]. See also
[9, 26, 31, 33, 34, 36, 38, 40, 49] for the construction of certain Lévy type processes via Levi’s (parametrix)
method. Besides, existence and uniqueness (i.e. well-posedness) of the martingale problem for L were proved
in [5, 23, 28] under some mild continuous conditions on κ(x, z).

Existence and well-posedness of the martingale solution for variable order fractional Laplacian L =
−(−∆)α(x)/2 were established in Bass [1], which immediately yields that there is a strong Markov process
corresponding to −(−∆)α(x)/2. (This process was called the stable-like process in [1]). A few properties for
such stable-like process (including existence of heat kernel, sample path properties and the long-time behavi-
ors) have been investigated in [6, 25, 30, 44, 45, 46] by using the theory of pseudo-differential operators and
Fourier analysis. When κ(x, z) = κ(x) is independent of z and both α(x) and κ(x) have uniformly bounded
continuous derivatives, the heat kernel for L was constructed formally in [35, Section 5] via Duhamel’s for-
mula, and some upper bound estimates for heat kernel were also given there. However it seems that there are
some problems in [35, Section 2], which are used in the rest of that paper. (The issue is that for symmetric
stable Lévy processes, the estimate (3.6) in [35, Proposition 3.1] would imply that the Lévy measure µ(dz)

has a density j(z) with respect to the Lebesgue measure that is comparable to |z|−(d+α). This is stronger
than and certainly can not be deduced from the assumption (2.4) in [35] as claimed there, even if one assumes
a priori that the Lévy measure µ(dz) has a smooth density.) Duhamel’s formula has also been adopted in
[19, 50] to study the fundamental solution to fractional Laplacian or Laplacian perturbed by non-local oper-
ators. We also mention that there are some results for the case that κ(x, z) depends only on z. For instance,
the regularity for harmonic functions or the semigroups associated with L were studied in [3, 41, 47], and
the elliptic Harnack inequality was obtained in [4]. Recently, the existence and uniqueness of the martingale
problem, as well as the existence of Feller process enjoying the strong Feller property have been investigated
in [39] for a class of locally α-stable Lévy-type operators.

From all the results mentioned above, we can see that there are already a lot of developments related to
non-local operators of variable order. However, the following questions, which should be fundamental and
interesting, were still unknown.

(1) When α(x) is not a constant, how can we construct a fundamental solution of L that really satisfies
the parabolic equation (1.5) below? What are upper and lower bound estimates for this solution (if
it exists)? We point out that it had not been established that, even under additional smoothness
assumptions on α(x) and κ(x), the heat kernel constructed in [35] by Duhamel formula is actually a
solution to the equation (1.5).

(2) When α(x) is not a constant and κ(x, z) depends on z, is there a strong Markov process associated
with L? In literature, the existence of strong Markov process was always assumed a priori in the
study of regularity of harmonic functions and elliptic Harnack inequalities for such non-local operator
L, see [3, 4, 41] for examples.

(3) In existing literature, regularity for the solution to parabolic equation (1.5) associated with L usually
depends on the uniform bounds α1 and α2 in (1.3). Can one establish regularity of the fundamental
solution in some neighborhood of x0 (such as gradient estimate) in terms of α(x0) under some special
settings?
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1.3. Main results. The aim of this paper is to address these questions. We show that there is a Feller
process associated with L and it has strong Feller property. We establish the existence and uniqueness of
fundamental solutions to L as well as their regularity properties.

For x0 ∈ Rd and r > 0, define B(x0, r) := {x ∈ Rd : |x − x0| < r0}. Let Cb,u(Rd) denote the set of all
bounded and uniformly continuous functions on Rd. The following are two of the main results of our paper.

Theorem 1.1. Suppose that conditions (1.3) and (1.4) hold. If κ(x, z) = κ(x) is independent of z, then
there exists a jointly continuous non-negative function p : (0, 1] × Rd × Rd → R+ := [0,∞) such that for
every t ∈ (0, 1] and x, y ∈ Rd,

∂p(t, x, y)

∂t
= Lp(t, ·, y)(x), (1.5)

and has the following properties.
(i) (Upper bounds) For every γ, c0 > 0, there exist positive constants c1 = c1(α, κ, c0) and c2 =

c2(α, κ, γ, c0) such that for all t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) 6


c1t
−d/α(x), |x− y| < c0t

1/α(x),
c1t

|x−y|d+α2 ∧
c2t1−γ

|x−y|d+α(x) , c0t
1/α(x) 6 |x− y| < 1,

c1t
|x−y|d+α1 , |x− y| > 1.

(1.6)

If, in addition, there are some x0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(x0) for all z ∈ B(x0, r0),
then there is a positive constant c3 = c3(α, κ, r0) such that for every t ∈ (0, 1] and y ∈ Rd,

p(t, x0, y) 6

{
c3t

(t1/α(x0)+|y−x0|)d+α(x0)
, |y − x0| < r0/2,

c3t
|y−x0|d+α1

, |y − x0| > r0/2;
(1.7)

(Lower bounds) There exists a constant c4 = c4(α, κ) > 0 such that for all t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) >
c4t

(t1/α(x) + |x− y|)d+α(x)
. (1.8)

(ii) (Hölder regularity and gradient estimates) For any γ ∈ (0, α2], there exist positive constants
c5 = c5(α, κ, γ) and R1 = R1(α, κ, γ) such that for all t ∈ (0, 1] and x, x′, y ∈ Rd with |x− x′| 6 R1,∣∣p(t, x, y)− p(t, x′, y)

∣∣ 6 c5|x− x′|(α(x)−γ)+∧1
(
ρy,0γ0 (t, x− y) + ρy,0γ0 (t, x′ − y)

)
, (1.9)

where γ0 = γ/(2α2) and

ρy,βγ (t, x) = tγ(|x|β ∧ 1)

{
1

(t1/α(y)+|x|)d+α(y) , |x| 6 1,
1

|x|d+α1 , |x| > 1.
(1.10)

If moreover β̃0(x0) :=
(
α1β0/α(x0))∧α1 > 1−α(x0) for some x0 ∈ Rd, then for every fixed t ∈ (0, 1]

and y ∈ Rd, p(t, ·, y) is differentiable at x = x0. In this case, for every γ > 0, t ∈ (0, 1] and y ∈ Rd,

|∇p(t, ·, y)(x0)| 6 c6 ρ
y,0
1−(1/α(x0))+(β∗0/α2)−(β∗0/α1)−γ(t, x0 − y) (1.11)

for some c6 = c6(α, κ, γ, x0) > 0, where β∗0 := β0 ∧ α2.
(iii) (Chapman-Kolmogorov equation) For every s, t ∈ (0, 1] with s+ t 6 1,∫

Rd
p(s, x, z)p(t, z, y) dz = p(s+ t, x, y), x, y ∈ Rd. (1.12)

(iv) (Conservativeness) For every (t, x) ∈ (0, 1]×Rd,∫
Rd
p(t, x, y) dy = 1. (1.13)

(v) (Strong continuity and generator) For every f ∈ Cb,u(Rd), let

uf (t, x) :=

∫
Rd
p(t, x, y)f(y) dy.

Then
Luf (t, ·)(x) exists pointwise, t 7→ Luf (t, )(x) is continuous, (1.14)

∂uf (t, x)

∂t
= Luf (t, ·)(x), t ∈ (0, 1], x ∈ Rd, (1.15)
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and
lim
t↓0

sup
x∈Rd

|uf (t, x)− f(x)| = 0. (1.16)

For every f ∈ C2
b,u(Rd) := Cb,u(Rd) ∩ C2(Rd), we also have

∂uf (t, x)

∂t
=

∫
Rd
p(t, x, y)Lf(y) dy, t ∈ (0, 1], x ∈ Rd (1.17)

and

lim
t↓0

sup
x∈Rd

∣∣∣1
t
·
(
uf (t, x)− f(x)

)
− Lf(x)

∣∣∣ = 0. (1.18)

(vi) (Uniqueness) Jointly continuous function p(t, x, y) on (0, 1] × Rd × Rd that is bounded for each
t > 0 and satisfies (1.9) and (1.14)-(1.16) is unique.

Remark 1.2. (1) From (1.6) and (1.8), we know that both upper and lower bounds of near-diagonal
estimates for p(t, x, y) enjoy the same order t−d/α(x), which typically depends on x. In particular,
along with (1.8), when r0 = ∞ in (1.7) (i.e. α(x) ≡ α ∈ (0, 2) for all x ∈ Rd), we arrive at the
two-sided heat kernel estimates obtained in [20]. Furthermore, by (1.9) and (1.11), the regularity of
p(t, ·, y) at x = x0 only depends on x0.

(2) Compared with these results yielded by Duhamel’s formula in [35], Theorem 1.1(v) shows that the
function uf (t, x) :=

∫
Rd
p(t, x, y)f(y) dy solves the Cauchy problem for L. In particular, by (1.5) and

(1.16), we have {
∂
∂tp(t, x, y) = Lp(t, ·, y)(x)

limt↓0 p(t, x, y) = δy(x),

which means that p(t, x, y) is the fundamental solution associated with L. It is easy to deduce from
(1.9), (1.12), (1.13), (1.15) and (1.17) that there is a conservative Feller process having the strong
Feller property associated with the operator L; cf. Proposition 5.7 below. Recall that a Markov
process on Rd is said to be a Feller process if its transition semigroup is a strongly continuous
semigroup in the Banach space of continuous functions that vanish at infinity equipped with the
uniform norm. A Markov process is said to have the strong Feller property if its transition semigroup
maps bounded measurable functions to bounded continuous functions.

Theorem 1.3. Let β∗∗0 ∈ (0, β0] ∩ (0, α2/2). For general κ(x, z) satisfying (1.3) and (1.4), if (α2/α1)− 1 <
β∗∗0 /α2, there exists a jointly continuous non-negative function p : (0, 1] × Rd × Rd → R+ such that all the
conclusions in Theorem 1.1 hold except that the upper bounds (1.6)-(1.7) in (i) and Hölder regularity and
gradient estimates (1.9) and (1.11) in (ii) are to be replaced by the following estimates.

(i) (Upper bounds) For any γ, c0 > 0, there exist constants c1 = c1(α, κ, c0) > 0 and c2 = c1(α, κ, γ, c0) >
0 such that for all t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) 6


c1t
−d/α(x), |x− y| < c0t

1/α(x),

c1t2−(α2/α1)

|x−y|d+α2 ∧
c2t2−(α2/α1)−γ

|x−y|d+α(x) , c0t
1/α(x) 6 |x− y| < 1,

c1t2−(α2/α1)

|x−y|d+α1 , |x− y| > 1.

(1.19)

If, in addition, there are some x0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(x0) for all z ∈ B(x0, r0),
then for any c0 > 0 there is a positive constant c3 := c3(α, κ, r0, c0) so that for every t ∈ (0, 1] and
y ∈ Rd,

p(t, x0, y) 6


c3t
−d/α(x0), |y − x0| < c0t

1/α(x0),

c3t2−(α2/α1)

|y−x0|d+α(x0)
, c0t

1/α(x0) 6 |y − x0| < r0/2,

c3t2−(α2/α1)

|x−y0|d+α1
, |y − x0| > r0/2.

(1.20)

(ii) (Hölder regularity and gradient estimates) For every γ ∈ (0, α1], there exist constants c5 =
c5(α, κ, γ) and R1 = R1(α, κ, γ) > 0 such that for all t ∈ (0, 1] and x, x′, y ∈ Rd with |x− x′| 6 R1,∣∣p(t, x, y)− p(t, x′, y)

∣∣ 6 c5|x− x′|(α1−γ)+∧1
(
ρy,0γ1 (t, x− y) + ρy,0γ1 (t, x′ − y)

)
, (1.21)

where γ1 := 1− (α2/α1) + (γ/(2α2)). Let β∗0 and β̃0(x0) be the same constants in Theorem 1.1 (ii).
If moreover β̃0(x0) − (α1α2/α(x0))

(
(α2/α1) − 1

)
> 1 − α1 for some x0 ∈ Rd, then for every fixed
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t ∈ (0, 1] and y ∈ Rd, p(t, ·, y) is differentiable at x = x0. In this case, for every γ > 0, there exists
a constant c6 := c6(α, κ, γ, x0) such that for all t ∈ (0, 1] and y ∈ Rd,

|∇p(t, ·, y)(x0)| 6 c6ρ
x,0
1−(1/α1)+(β∗0/α2)−(β∗0/α1)−γ2(t, x0 − y), (1.22)

where γ2 = (α2/α1)− 1 + γ.

Remark 1.4. (1) According to Theorem 1.3 above, when α(x) is not a constant function and κ(x, z)
depends on z, we can construct heat kernel associated with the operator L when (α2/α1)−1 < β∗∗0 /α2,
which indicates that the oscillation of the index function α(x) could not be too large. We note that
in [4], the elliptic Harnack inequality for L was established under similar assumptions on the index
function α(x). Note that by (1.20) and (1.8), when α(x) ≡ α ∈ (0, 2) for all x ∈ Rd, two-sided
estimates of heat kernel in Theorem 1.3 are reduced to those in [20].

(2) As mentioned in Remark 1.2(2), Theorem 1.3 indeed provides us some sufficient conditions for the
existence of a strong Markov process (in fact a Feller process having the strong Feller property)
associated with L when κ(x, z) depends on z. Note that, the existence of such strong Markov process
is required and assumed a prior in the proofs of the Hölder continuity of harmonic functions in [3]
and the elliptic Harnack inequality for L in [4].

We conclude this part with the following remarks on some possible extensions of Theorems 1.1 and 1.3.

Remark 1.5. (1) By carefully checking the arguments of Theorem 1.1, one can see that Theorem 1.1
still holds true if the condition that κ(x, z) is independent of z is replaced by the following two
assumptions on κ(x, z):
(i) For every fixed x ∈ Rd, κ(x, ·) : Rd → R+ is a radial function, i.e., κ(x, z) only depends on |z|.
(ii) Let j(x, r) = κ̃(x, r)r−d−α(x) for x ∈ Rd and r > 0, where κ̃(x, r) := κ(x, z) with |z| = r.

For every x ∈ Rd, j(x, ·) is non-increasing and differentiable on (0,∞) such that the function
r 7→ −1

r
∂j(x,r)
∂r is non-increasing.

(2) Let L̃f(x) = Lf(x)+〈b(x),∇f(x)〉, where b : Rd → Rd is bounded and uniformly Hölder continuous.
It is possible to extend Theorems 1.1 and 1.3 to L̃ under the assumption that α1 > 1, When α1 > 1,
the gradient perturbation 〈b(x),∇〉 is of lower order than L. We refer the readers to [8, 13, 14, 27,
42, 43, 51] on heat kernel estimates associated with non-local operators under gradient perturbation.
For heat kernel estimates associated with non-local operators under non-local perturbations, see
[19, 50, 15].

(3) By combining with the approach from [23], it is possible to remove the symmetry assumption of
κ(x, z) in z. But we will not pursue this extension in this paper.

1.4. Idea of the proofs: Levi’s method. In this paper, we will apply the Levi’s method to construct the
fundamental solution p(t, x, y) for L. Some ideas of our approach are inspired by those in [20, 35].

We first introduce some notation which will be frequently used in this article, and then briefly mention
the ideas of our approach. Due to the symmetry assumption κ(x, z) = κ(x,−z), it is easy to see that

Lf(x) = lim
ε↓0

1

2

∫
{|z|>ε}

(
f(x+ z) + f(x− z)− 2f(x)

) κ(x, z)

|z|d+α(x)
dz. (1.23)

For simplicity, throughout this paper we write Lf(x) as

Lf(x) =
1

2

∫
Rd

(
f(x+ z) + f(x− z)− 2f(x)

) κ(x, z)

|z|d+α(x)
dz.

Note that the above integral is absolutely convergent for bounded C2 functions.
For fixed y ∈ Rd, define

Lyf(x) :=

∫
Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|61}

) κ(y, z)

|z|d+α(y)
dz. (1.24)

Then Ly is the generator of a pure jump symmetric Lévy process Xy := (Xy
t )t>0 with jump measure

νy(dz) = κ(y,z)

|z|d+α(y) dz. We denote the fundamental solution for Ly by py : (0,∞) × Rd → R+, which is just
the transition density of the process Xy. The fundamental solution py satisfies that

∂py(t, x)

∂t
= Lypy(t, ·)(x) for every (t, x) ∈ (0, 1]×Rd.

We remark here that although the operator Ly is clearly well defined on C2
c (Rd). It is also pointwisely well

defined for the function x 7→ py(t, x); see the estimates in [20, Theorem 2.4].
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Throughout the paper, we define for f : Rd → R,

δf (x; z) := f(x+ z) + f(x− z)− 2f(x), x, z ∈ Rd.

δpy(t, x; z) := py(t, x+ z) + py(t, x− z)− 2py(t, x), t ∈ (0,∞), x, y, z ∈ Rd.
Then, for every x, y, w ∈ Rd,

Lwpy(t, ·)(x) =
1

2

∫
Rd
δpy(t, x; z)

κ(w, z)

|z|d+α(w)
dz. (1.25)

According to the Levi’s method (cf. [24, pp. 310–311]), we look for the fundamental solution to (1.5) of
the following form:

p(t, x, y) = py(t, x− y) +

∫ t

0

∫
Rd
pz(t− s, x− z)q(s, z, y) dz ds, (1.26)

where q(t, x, y) solves

q(t, x, y) = q0(t, x, y) +

∫ t

0

∫
Rd
q0(t− s, x, z)q(s, z, y) dz ds (1.27)

with q0(t, x, y) = (Lx−Ly)py(t, ·)(x−y). So the main task of the remainder of this paper is to solve equation
(1.26), show it is indeed the unique fundamental solution of L, and derive its various properties. The next
three sections are devoted to the estimates for q0(t, x, y), q(t, x, y) and p(t, x, y) respectively. The proofs of
main results are presented in Section 5.

We will mainly follow the approach of [20], where the jumping kernel is of type κ(x, z)/|z|d+α for some
α ∈ (0, 2). However, due to the variable order nature of the operator L given by (1.2), there are many new
challenges and difficulties. In order to obtain good estimates and regularity of heat kernel for L in terms of
the local behavior of the index function α(x), we need to introduce the key function ρy,βγ (see (1.10)), which
involves the variable order α(x). This brings us a lot of difficulties from the beginning of applying the Levi’s
method. In comparison to [20, Section 2.1], we need take into account the variable index function α(x) in
some key convolution inequalities, see Section 3.1 for more details. In the derivation of explicit upper bounds
for q0(t, x, y) in Proposition 2.5, we need consider the variation of both κ(x, z) and α(x) in dealing with
the difference between Lxpy(t, ·) and Lypy(t, ·). These causes a lot of complications in proofs for the crucial
Proposition 3.4, Proposition 4.6 and Proposition 4.7.

Notation For any a, b ∈ R+, a ∧ b := min{a, b} and a ∨ b := max{a, b}. For every measurable function
f, g : (0, 1] × Rd × Rd → R+, the notation f � g means that there exists a constant 1 6 c0 < ∞ such
that c−1

0 g(t, x, y) 6 f(t, x, y) 6 c0g(t, x, y) for every (t, x, y) ∈ (0, 1] × Rd × Rd, and the notation f � g
(resp. f � g) means that there exists a constant 0 < c1 < ∞ such that f(t, x, y) 6 c1g(t, x, y) (resp.
f(t, x, y) > c1g(t, x, y)) for every (t, x, y) ∈ (0, 1]×Rd ×Rd.

2. Estimates for q0(t, x, y)

2.1. Preliminary estimates. For each fixed y ∈ Rd, β ∈ [0,∞), γ ∈ R and R ∈ (0,∞), we define a
function ρy,βγ,R : (0, 1]×Rd → (0,∞) as follows

ρy,βγ,R(t, x) := tγ
(
|x|β ∧ 1

){(t1/α(y) + |x|
)−(d+α(y))

, |x| 6 R,
|x|−(d+α1), |x| > R,

where α(x) is the index function in (1.2) and α1 is the lower bound of α(x) in (1.3). It is easy to see that
for any 0 < R1 6 R2 < ∞, there is a constant c > 1 such that c−1ρy,βγ,R1

6 ρy,βγ,R2
6 cρy,βγ,R1

for all y ∈ Rd
and β ∈ [0,∞). Therefore, without loss of generality, we may and do assume that R = 1 in the definition of
ρy,βγ,R, and we write ρy,βγ,1 as ρy,βγ , which is exactly the one defined by (1.10).

For every y ∈ Rd and s > 0, define α(y; s) := sup{α(z) : |z−y| 6 s} and α(y; s) := inf{α(z) : |z−y| 6 s}.
For simplicity, we write α(y; |x− y|) and α(y; |x− y|) as α(y;x) and α(y;x), respectively.

We begin with the following simple lemma.

Lemma 2.1. For every β ∈ [0, α2), t ∈ (0, 1] and x ∈ Rd,∫
Rd
ρz,β0 (t, x− z) dz �

(
t(β/α(x))−1 ∨ 1

)(
1 + | log t|1{β=α(x)}

)
� t(β/α2)−1 ∨ 1. (2.1)
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Proof. Since β ∈ (0, α2), it suffices to prove the first inequality in (2.1).
For every x, z ∈ Rd with |x− z| 6 1,

|x− z|−α(z) = |x− z|−α(x)|x− z|α(x)−α(z) � |x− z|−α(x) · exp (|log |x− z|| |α(x)− α(z)|)

� |x− z|−α(x) · exp
(
C |log |x− z|| · |x− z|β0

)
� |x− z|−α(x),

(2.2)

where in the last inequality we have used

sup
z∈Rd:|z|61

exp
(
C| log |z|| · |z|β0

)
<∞.

Then, for all t ∈ (0, 1] and x, z ∈ Rd,

1

(t1/α(z) + |x− z|)d+α(z)
�

{
|x− z|−d−α(z), |x− z| 6 1,

t−1−(d/α(x;t1/α2 )), |x− z| 6 t1/α(x),

�

{
|x− z|−d−α(x), |x− z| 6 1,

t−1−(d/α(x;t1/α2 )), |x− z| 6 t1/α(x).

Therefore, by the definition of ρz,β0 (see (1.10)), for all t ∈ (0, 1] and x ∈ Rd, we have∫
Rd
ρz,β0 (t, x− z) dz �

∫
{|z−x|>1}

1

|x− z|d+α1
dz +

∫
{t1/α(x)<|z−x|61}

|x− z|β

|x− z|d+α(x)
dz

+ t−1−(d/α(x;t1/α2 ))

∫
{|z−x|6t1/α(x)}

|x− z|β dz

= : J1 + J2 + J3.

It is easy to verify that J1 � 1 and J2 �
(
t(β−α(x))/α(x) ∨ 1

)(
1 + | log t|1{β=α(x)}

)
, due to the assumption

that β ∈ [0, α2). At the same time,

J3 � t−1−(d/α(x;t1/α2 )) · t(β+d)/α(x) � t(β−α(x))/α(x) exp

(
d| log t|α(x)− α(x; t1/α2)

α(x)α(x; t1/α2)

)
� t(β−α(x))/α(x) exp

(
c| log t|tβ0/α2

)
� t(β−α(x))/α(x),

where in the forth inequality we have used

α(x)− α(x; t1/α2)

α(x)α(x; t1/α2)
� tβ0/α2 ,

thanks to (1.3). Combining all the estimates above, we get the first inequality in (2.1). The proof is
complete. �

Remark 2.2. By the proof of [20, Lemma 2.1(i)], we can obtain that for every β ∈ [0, α2), t ∈ (0, 1] and
x ∈ Rd, ∫

Rd
ρx,β0 (t, x− z) dz �

(
t(β/α(x))−1 ∨ 1

)(
1 + | log t|1{β=α(x)}

)
� t(β/α2)−1 ∨ 1. (2.3)

Note that although the definition of ρx,β0 (t, x) here is a little different from that in [20] when |x| > 1, the
proof of [20, Lemma 2.1] still works for the first inequality in (2.3). We emphasize that in the present setting
we need estimate (2.1), where in the integrand ρz,β0 the index α(z) depends on z.

Lemma 2.3. For every t ∈ (0, 1] and x, y, w ∈ Rd, define

I1(t, x, y, w) :=

∫
{|z|61}

[(
t−2/α(y)|z|2

)
∧ 1
]
ρy,01 (t, w + z)

1 + | log |z||
|z|d+α(y;x)

dz,

I2(t, x, y, w) :=

∫
{|z|>1}

ρy,01 (t, w + z)
1 + | log |z||
|z|d+α(y;x)

dz,

I3(t, x, y) :=

∫
Rd

[(
t−2/α(y)|z|2

)
∧ 1
](1 + | log |z||
|z|d+α(y;x)

1{|z|61} +
1 + | log |z||
|z|d+α(y;x)

1{|z|>1}

)
dz.

(2.4)

Then there exists a constant c1 := c1(α, κ) such that for every x, y, w ∈ Rd and t ∈ (0, 1],

I1(t, x, y, w) 6

{
c1(1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w), |w| 6 1/2,

c1

[
1 + | log |w||+ (1 + | log t|)t1−(α(y;x)/α(y))

]
ρy,00 (t, w), |w| > 1/2;

(2.5)
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I2(t, x, y, w) 6

{
c1ρ

y,0
1 (t, w), |w| 6 1/2,

c1

(
1 + | log |w||

)
ρy,00 (t, w), |w| > 1/2;

(2.6)

and
I3(t, x, y) 6 c1(1 + | log t|)t−(α(y;x)/α(y)). (2.7)

Proof. We only prove (2.5) and (2.6), since the proof of (2.7) is similar and more direct. We denote
I1(t, x, y, w) and I2(t, x, y, w) by I1 and I2, respectively. Write

I1 =

∫
{|z|6t1/α(y)}

(
t−2/α(y)|z|2

)
ρy,01 (t, w+z)

1 + | log |z||
|z|d+α(y;x)

dz +

∫
{t1/α(y)<|z|61}

ρy,01 (t, w+z)
1 + | log |z||
|z|d+α(y;x)

dz

=: I11 + I12.

We will divide the proof into the following three subcases.
Case (a): 0 6 |w| 6 2t1/α(y).
Since, by (1.10),

ρy,01 (t, w+z) � t−d/α(y) for all t ∈ (0, 1] and y, z, w ∈ Rd, (2.8)
we have

I11 � t−(d+2)/α(y)

∫
{|z|6t1/α(y)}

(1 + | log |z|)|z|2

|z|d+α(y;x)
dz

� (1 + | log t|)t−(d+α(y;x))/α(y) � (1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w),

where in the last inequality we have used the fact that

t−d/α(y) � ρy,01 (t, w) when |w| 6 2t1/α(y). (2.9)

Applying (2.8) and (2.9) to I12 and I2 again, we get

I12 � t−d/α(y)

∫
{t1/α(y)<|z|61}

1 + | log |z||
|z|d+α(y;x)

dz � (1 + | log t|)t−(d+α(y;x))/α(y)

� (1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w)

and

I2 � t−d/α(y)

∫
{|z|>1}

1 + log |z|
|z|d+α1

dz � ρy,01 (t, w).

Case (b): 2t1/α(y) < |w| 6 1/2.
When |w| > 2t1/α(y) and |z| 6 t1/α(y), |w+z| > |w| − |w|/2 > |w|/2, which along with (1.10) implies that

ρy,00 (t, w+z) � 1

(t1/α(y) + |w+z|)d+α(y)
� 1

(t1/α(y) + |w|)d+α(y)
. (2.10)

Therefore,

I11 �
t1−2/α(y)

(t1/α(y) + |w|)d+α(y)

∫
{|z|6t1/α(y)}

(1 + | log |z||)|z|2

|z|d+α(y;x)
dz

� (1 + | log t|)t1−(α(y;x)/α(y)) 1

(t1/α(y) + |w|)d+α(y)
� (1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w),

where the last step is due to the fact that
1

(t1/α(y) + |w|)d+α(y)
� ρy,00 (t, w) when |w| > 2t1/α(y). (2.11)

On the other hand, we have the following decomposition for I12:

I12 =

∫
{t1/α(y)<|z|6|w|/2}

ρy,01 (t, w+z)
1 + | log |z||
|z|d+α(y;x)

dz +

∫
{|w|/26|z|61}

ρy,01 (t, w+z)
1 + | log |z||
|z|d+α(y;x)

dz

=: I121 + I122.

If |z| 6 |w|/2, then |w+z| > |w|/2, and so (2.10) still holds. Hence, we have

I121 �
t

(t1/α(y) + |w|)d+α(y)

∫
{|z|>t1/α(y)}

1 + | log |z||
|z|d+α(y;x)

dz

� (1 + | log t|)t−α(y;x)/α(y) t

(t1/α(y) + |w|)d+α(y)
� (1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w),
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where the last step follows from (2.11). Meanwhile,

I122 �
1 + | log |w||
|w|d+α(y;x)

∫
Rd
ρy,01 (t, w+z) dz � 1 + | log |w||

|w|d+α(y;x)

� (1 + | log |w||)|w|α(y)−α(y;x)

(t1/α(y) + |w|)d+α(y)
� (1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w),

where the second inequality is due to (2.3), in the third inequality we have used the fact that

|w|−d−α(y) � (t1/α(y) + |w|)−d−α(y) when 2t1/α(y) < |w| 6 1/2,

and the fourth inequality follows from

(1 + | log |w||)|w|α(y)−α(y;x) � (1 + | log t|)t1−(α(y;x)/α(y)) when 2t1/α(y) < |w| 6 1/2.

Combining with all the estimates above, we obtain

I1 � (1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w).

Furthermore, note that if |w| 6 1/2 and |z| > 1, then |w+z| > |z| − |w| > 2|w| − |w| = |w|. Therefore, for
every y, z, w ∈ Rd and t ∈ (0, 1] with |z| > 1 and 2t1/α(y) 6 |w| 6 1/2,

ρy,00 (t, w+z) �

{
|w|−d−α(y), |w+z| 6 1,

|w|−d−α1 , |w+z| > 1

� |w|−d−α(y),

which implies that

I2 �
t

|w|d+α(y)

∫
{|z|>1}

1 + log |z|
|z|d+α1

dz � t

|w|d+α(y)
� ρy,01 (t, w).

Case (c): |w| > 1/2.
By adjusting the constants properly, it is easy to verify that

I1 + I2 �
∫
{|z|61/4}

[(
t−2/α(y)|z|2

)
∧ 1
]
ρy,01 (t, w+z)

1 + | log |z||
|z|d+α(y;x)

dz +

∫
{|z|>1/4}

ρy,01 (t, w+z)
1 + | log |z||
|z|d+α(y;x)

dz

=: J1 + J2.

Note that when |w| > 1/2 and |z| 6 1/4, |w+z| > |w| − |z| > |w|/2 > 1/4, which implies that

ρy,01 (t, w+z) � t

|w|d+α1
.

On the other hand,∫
{|z|61}

[(
t−2/α(y)|z|2

)
∧ 1
]1 + | log |z||
|z|d+α(y;x)

dz

�
∫
{|z|6t1/α(y)}

(
t−2/α(y)|z|2

)1 + | log |z||
|z|d+α(y;x)

dz +

∫
{t1/α(y)<|z|61}

1 + | log |z||
|z|d+α(y;x)

dz

� (1 + | log t|)t−α(y;x)/α(y).

Therefore, we obtain

J1 �
t

|w|d+α1

∫
{|z|61/4}

[(
t−2/α(y)|z|2

)
∧ 1
]1 + | log |z||
|z|d+α(y;x)

dz

�
(
1 + | log t|

)
t1−(α(y;x)/α(y))

|w|d+α1
�
(
1 + | log t|

)
t1−(α(y;x)/α(y))ρy,00 (t, w).

Meanwhile,

J2 �
∫
{|z|>|w|/2}

ρy,01 (t, w+z)
1 + | log |z||
|z|d+α(y;x)

dz +

∫
{1/4<|z|<|w|/2}

ρy,01 (t, w+z)
1 + | log |z||
|z|d+α(y;x)

dz

� 1 + | log |w||
|w|d+α(y;x)

∫
{|z|>|w|/2}

ρy,01 (t, w+z) dz +
t

|w|d+α1

∫
{|z|>1/4}

1 + | log |z||
|z|d+α1

dz

� 1 + | log |w||
|w|d+α1

� (1 + | log |w||)ρy,00 (t, w),
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where the second step above follows from the following property

ρy,00 (t, w+z) � |w|−d−α1 when |z| < |w|/2 and |w| > 1/2,

and the third step is due to (2.3). Hence, for all w ∈ Rd with |w| > 1/2,

I1 � J1 + J2 �
[
1 + | log |w||+ (1 + | log t|)t−α(y;x)/α(y)

]
ρy,00 (t, w)

and
I2 � J2 � (1 + | log |w||)ρy,00 (t, w).

Combining all the three cases together, we finish the proof. �

Remark 2.4. Following the arguments of (2.5) and (2.6) for case (c) above, we can get the following for
every c0 > 0, t ∈ (0, 1] and x, y, w ∈ Rd with |w| > 2c0:

(i) ∫
{|z|6c0}

[(
t−2/α(y)|z|2

)
∧ 1
](
ρy,01 (t, w+z) + ρy,01 (t, w)

) 1

|z|d+α2
dz � t1−α2/α1

|w|d+α1
(2.12)

and ∫
{|z|6c0}

[(
t−2/α(y)|z|2

)
∧ 1
](
ρy,01 (t, w + z) + ρy,01 (t, w)

)1 + | log |z||
|z|d+α2

dz

�
(
1 + | log t|+ | log |w||

) t1−α2/α1

|w|d+α1
.

(2.13)

(ii) ∫
{|z|>c0}

(
ρy,01 (t, w ± z) + ρy,01 (t, w)

) 1

|z|d+α1
dz � 1

|w|d+α1
(2.14)

and ∫
{|z|>c0}

(
ρy,01 (t, w+z) + ρy,01 (t, w)

)1 + | log |z||
|z|d+α1

dz � log(1 + |w|) 1

|w|d+α1
. (2.15)

2.2. Upper bounds for q0(t, x, y).

Proposition 2.5. (1) Suppose κ(x, z) = κ(x) is independent of z. Then for any γ > 0, there exist
constants R0 := R0(α, κ, γ) ∈ (0, 1) and c0 := c0(α, κ, γ) > 0 such that for all t ∈ (0, 1] and
x, y ∈ Rd,

|q0(t, x, y)| 6c0

(
|x− y|β0 ∧ 1

)
·

{
t−γ

(t1/α(y)+|x−y|)d+α(y) , |x− y| < R0,
1

|x−y|d+α1 , |x− y| > R0

�ρy,β0−γ (t, x− y).

(2.16)

Suppose, in addition, that there are some y0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(y0) for all
z ∈ B(y0, r0). Then there exists a constant c1 := c1(α, κ, γ, r0) > 0 such that for every t ∈ (0, 1] and
x ∈ Rd,

|q0(t, x, y0)| 6 c1

(
|x− y0|β0 ∧ 1

)
·

{
1

(t1/α(y0)+|x−y0|)d+α(y0)
, |x− y0| < r0,

1
|x−y0|d+α1

, |x− y0| > r0.
(2.17)

(2) For general κ(x, z) and for any γ > 0, there are constants R0 := R0(α, κ, γ) ∈ (0, 1) and c0 :=
c0(α, κ, γ) > 0 such that for all t ∈ (0, 1] and x, y ∈ Rd,

|q0(t, x, y)| 6c0

(
|x− y|β0 ∧ 1

)
·

{
t−γ

(t1/α(y)+|x−y|)d+α(y) , |x− y| < R0,

t1−(α2/α1)

|x−y|d+α1 , |x− y| > R0

�ρy,β01−(α2/α1)−γ(t, x− y).

(2.18)

Suppose, in addition, that there are some y0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(y0) for all
z ∈ B(y0, r0). Then for every t ∈ (0, 1] and x ∈ Rd,

|q0(t, x, y0)| 6 c1

(
|x− y0|β0 ∧ 1

)
·

{
1

(t1/α(y0)+|x−y0|)d+α(y0)
, |x− y0| < r0,

t1−(α2/α1)

|x−y0|d+α1
, |x− y0| > r0.

(2.19)
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To prove Proposition 2.5, we need some regularity estimates for py(t, ·) taken from [20]. For simplicity, we
use the following abbreviation for a function f :

f(x± y) := f(x+ y) + f(x− y).

Lemma 2.6. ([20, Lemmas 2.2 and 2.3]) The following statements hold.
(1) If κ(x, z) = κ(x) is independent of z, then for any j ∈ Z+ := {0, 1, . . .}, there exists a constant

c1 := c1(α, κ, j) > 0 such that for every t ∈ (0, 1] and x, y ∈ Rd,

|∇jpy(t, ·)(x)| 6 c1t
(
t1/α(y) + |x|

)−d−α(y)−j
. (2.20)

(2) For general κ(x, z), there exists a constant c2 := c2(α, κ) > 0 such that for every t ∈ (0, 1] and
x, x′, y, z ∈ Rd,

py(t, x) 6 c2ρ
y,0
1 (t, x), (2.21)

|δpy(t, x; z)| 6 c2

[(
t−2/α(y)|z|2

)
∧ 1
]
·
(
ρy,01 (t, x± z) + ρy,01 (t, x)

)
, (2.22)

|py(t, x)− py(t, x′)| 6 c2

[(
t−1/α(y)|x− x′|

)
∧ 1
]
·
(
ρy,01 (t, x′) + ρy,01 (t, x)

)
, (2.23)

and
|δpy(t, x; z)− δpy(t, x′; z)| 6 c2

[(
t−1/α(y)|x− x′|

)
∧ 1
]
·
[(
t−2/α(y)|z|2

)
∧ 1
]

×
(
ρy,01 (t, x± z) + ρy,01 (t, x) + ρy,01 (t, x′ ± z) + ρy,01 (t, x′)

)
.

(2.24)

Lemma 2.7. For every γ > 0, there exist constants R1 := R1(α, κ, γ) ∈ (0, 1/2) and c1 := c1(α, κ, γ) > 0
such that for every t ∈ (0, 1] and x, y, w ∈ Rd with |x− y| 6 R1∣∣(Lx − Ly

)
py(t, w)

∣∣ 6 c1

(
|x− y|β0 ∧ 1

)
·

{
t−γρy,00 (t, w), |w| 6 1/2,

(t−γ + | log |w||)ρy,00 (t, w), |w| > 1/2.
(2.25)

In particular, for every t ∈ (0, 1] and x, y ∈ Rd with |x− y| 6 R1,∣∣q0(t, x, y)
∣∣ � ρy,β0−γ (t, x− y). (2.26)

If, in addition, there are some y0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(y0) for all z ∈ B(y0, r0), then
there exists a constant c2 := c2(α, κ, γ, r0) > 0 such that for every t ∈ (0, 1] and x ∈ Rd with |x− y0| < r0,

|q0(t, x, y0)| 6 c2

(
|x− y0|β0 ∧ 1

)
· 1

(t1/α(y0) + |x− y0|)d+α(y0)
. (2.27)

Proof. (i) Applying the mean value theorem to the function r 7→ ar, we find that for every x, y, z ∈ Rd with
|z| > 0, ∣∣∣∣ κ(x, z)

|z|d+α(x)
− κ(y, z)

|z|d+α(y)

∣∣∣∣
� |α(x)− α(y)|

(
| log |z||
|z|d+α(y;x)

1{|z|61} +
log |z|
|z|d+α(y;x)

1{|z|>1}

)
+
|κ(x, z)− κ(y, z)|
|z|d+α(y)

�
(
|x− y|β0 ∧ 1

)(1 + | log |z||
|z|d+α(y;x)

1{|z|61} +
1 + log |z|
|z|d+α(y;x)

1{|z|>1}

)
,

(2.28)

where in the last inequality we have used (1.4), (1.3) and the fact that
1

|z|d+α(y)
� 1

|z|d+α(y;x)
1{|z|61} +

1

|z|d+α(y;x)
1{|z|>1}.

Combining (2.28) with (1.25), we can obtain that∣∣(Lx − Ly
)
py(t, w)

∣∣ � (|x− y|β0 ∧ 1
) ∫

Rd
|δpy(t, w; z)|

(
1 + | log |z||
|z|d+α(y;x)

1{|z|61} +
1 + | log |z||
|z|d+α(y;x)

1{|z|>1}

)
dz

�
(
|x− y|β0 ∧ 1

)
·
(
I1(t, x, y, w) + I2(t, x, y, w) + ρy,01 (t, w)I3(t, x, y)

)
,

where in the second inequality we have used (2.22), and I1, I2 and I3 are defined in (2.4). Hence, Lemma
2.3 yields that∣∣(Lx − Ly

)
py(t, w)

∣∣
�
(
|x− y|β0 ∧ 1

)
·

{
(1 + | log t|)t1−(α(y;x)/α(y))ρy,00 (t, w), |w| 6 1/2,(
1 + | log |w||+ (1 + | log t|)t1−(α(y;x)/α(y))

)
ρy,00 (t, w), |w| > 1/2.

(2.29)
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Note that due to (1.3),

α(y;x) 6 α(y) + c0|x− y|β0 6 α(y) + c0R
β0
1 for all x, y ∈ Rd with |x− y| 6 R1.

Therefore, choosing R1 ∈ (0, 1/2) small enough such that c0R
β0
1 /α1 < γ, we have

(1 + | log t|)t1−(α(y;x)/α(y)) � t−γ when |x− y| 6 R1.

This, along with (2.29), immediately implies (2.25).
Estimate (2.26) follows from (2.25) by taking w = x− y.
(ii) Suppose, in addition, that there are some y0 ∈ Rd and r0 ∈ (0,∞] such that α(x) = α(y0) for all

x ∈ B(y0, r0). Then (2.28) is reduced to∣∣∣∣ κ(x, z)

|z|d+α(x)
− κ(y0, z)

|z|d+α(y0)

∣∣∣∣ � (|x− y|β0 ∧ 1
)
·
(

1

|z|d+α(y0)
1{|z|61} +

1

|z|d+α(y0)
1{|z|>1}

)
for all x ∈ B(y0, r0). Having this at hand and repeating the same argument as above, we can easily see that
the second assertion holds in this case. �

Now, we are in the position to present the

Proof of Proposition 2.5. Let R1 = R1(α, κ, γ), where R1(α, κ, γ) is the constant in Lemma 2.7. According
to Lemma 2.7, we only need to treat the case that |x− y| > R1.

(1) We first assume that κ(x, z) is independent of z.
By (1.25), for every t ∈ (0, 1] and x, y ∈ Rd with |x− y| > R1, we have

|Lxpy(t, ·)(x− y)| �
∫
{|z|6R1/2}

|δpy(t, x− y; z)| 1

|z|d+α(x)
dz

+

∫
{|z|>R1/2}

(
py(t, x− y ± z) + py(t, x− y)

) 1

|z|d+α(x)
dz

=: J1 + J2.

(2.30)

Applying (2.20) and using the mean value theorem, we can get

J1 �
∫
{|z|6R1/2}

|∇2py(t, ·)(x− y + θx,y,zz)||z|2−d−α(x) dz

�
∫
{|z|6R1/2}

t

(t1/α(y) + |x− y + θx,y,zz|)d+α(y)+2
|z|2−d−α(x) dz

� t

|x− y|d+α(y)+2

∫
{|z|6R1/2}

|z|2−d−α(x) dz � t

|x− y|d+α(y)+2
� 1

|x− y|d+α1
= ρy,00 (t, x− y),

where in the first inequality θx,y,z is a constant depending on x, y, z such that |θx,y,z| 6 1, and the third
inequality follows from the fact that

|x− y + θx,y,zz| > |x− y|/2 > R1/2 > C0t
1/α(y) for any z ∈ Rd with |z| 6 R1/2.

On the other hand, according to (2.21) and (2.14), we have

J2 �
∫
{|z|>R1/2}

ρy,01 (t, x− y ± z) 1

|z|d+α(x)
dz + ρy,01 (t, x− y)

∫
{|z|>R1/2}

1

|z|d+α(x)
dz � ρy,00 (t, x− y). (2.31)

Hence, for every t ∈ (0, 1] and x, y ∈ Rd with |x− y| > R1,

|Lxpy(t, ·)(x− y)| � ρy,00 (t, x− y).

Following the same argument above, we have for every t ∈ (0, 1] and x, y ∈ Rd with |x− y| > R1,

|Lypy(t, ·)(x− y)| � 1

|x− y|d+α1
� ρy,00 (t, x− y). (2.32)

Therefore, for every t ∈ (0, 1] and x, y ∈ Rd with |x− y| > R1,

|q0(t, x, y)| 6 |Lxpy(t, ·)(x− y)|+ |Lypy(t, ·)(x− y)| � ρy,00 (t, x− y).

By now we have shown the second case in the estimate (2.16). From (2.27) and (2.16), we arrive at (2.17)
immediately.
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(2) Now we suppose the general case that κ(x, z) may depend on z. We still define J1 and J2 by those
in (2.30). It is not difficult to verify that (2.31) also holds for this case. On the other hand, according to
(2.22), it holds that

J1 �
∫
{|z|6R1/2}

[
(t−2/α(y)|z|2) ∧ 1

]
· ρy,01 (t, x− y ± z) 1

|z|d+α(x)
dz

+ ρy,01 (t, x− y)

∫
{|z|6R1/2}

[
(t−2/α(y)|z|2) ∧ 1

]
· 1

|z|d+α(x)
dz

� t1−2/α(y)

|x− y|d+α1

∫
{|z|6t1/α(y)}

|z|2−d−α(x) dz +
t

|x− y|d+α1

∫
{t1/α(y)6|z|6R1/2}

|z|−d−α(x) dz

+
t

|x− y|d+α1

∫
{|z|6R1/2}

[
(t−2/α(y)|z|2) ∧ 1

]
|z|−d−α(x) dz

� t1−(α(y;x)/α(y))

|x− y|d+α1
6

t1−(α2/α1)

|x− y|d+α1
.

(2.33)

Here the second step follows from

ρy,00 (t, x− y + z) � 1

|x− y|d+α1
when |x− y| > R1 and |z| 6 R1/2,

which is due to the fact that for |x− y| > R1 and |z| 6 R1/2

|x− y + z| > |x− y| − |z| > |x− y|/2 > R1/2 > C0t
1/α(y).

Note also that (2.32) is still true for this case. Combining all the estimates above, we obtain

|q0(t, x, y)| � |Lxpy(t, x− y)|+ |Lypy(t, x− y)| � J1 + J2 + |Lypy(t, x− y)| � t1−(α2/α1)ρy,00 (t, x− y),

where in the last step we used the fact that t−α(y;x)/α(y) 6 t−α2/α1 for all t ∈ (0, 1]. Thus, the second case of
(2.18) is proved. �

According to the proof of Proposition 2.5, we also have the following estimates for q0(t, x, y).

Proposition 2.8. (1) Suppose κ(x, z) is independent of z. Then there exists a constant c1 := c1(α, κ) >
0 such that for every t ∈ (0, 1] and x, y ∈ Rd,

|q0(t, x, y)| 6

{
c1t
−1−(d/α(y)), |x− y| 6 t1/α(y),
c1

|x−y|d+α(x) + c1
|x−y|d+α(y) , |x− y| > t1/α(y)

6

{
c1t
−1−(d/α(y)), |x− y| 6 t1/α(y),

c1
|x−y|d+α2∧|x−y|d+α1 , |x− y| > t1/α(y).

(2.34)

(2) Suppose κ(x, z) depends on z and β0/α2 > (α2/α1)−1. Then there exists a constant c2 := c2(α, κ) > 0
such that for every t ∈ (0, 1] and x, y ∈ Rd,

|q0(t, x, y)| 6

{
c2t
−1−(d/α(y)), |x− y| 6 t1/α(y),
c1t1−(α2/α1)

|x−y|d+α2∧|x−y|d+α1 , |x− y| > t1/α(y).
(2.35)

Proof. (1) We first suppose that κ(x, z) is independent of z.
Case (a): |x− y| 6 t1/α(y).
According to (2.26), we can choose 0 < γ < β0/α2 and adjust the constants properly to get that

|q0(t, x− y)| � ρy,β0−γ (t, x− y) � t−γ |x− y|β0 · ρy,00 (t, x− y)

� t(β0/α2)−γρy,00 (t, x− y) � ρy,00 (t, x− y) � t−(d/α(y))−1,
(2.36)

where in the third inequality we have used the fact that |x− y| 6 t1/α(y) 6 t1/α2 , and the fourth inequality
follows from γ < β0/α2.
Case (b): |x− y| > t1/α(y).
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By (1.25), it holds that

|Lxpy(t, ·)(x− y)| �
∫
{|z|6|x−y|/2}

|δpy (t, x− y; z)| 1

|z|d+α(x)
dz

+

∫
{|z|>|x−y|/2}

|δpy (t, x− y; z)| 1

|z|d+α(x)
dz

=: J1 + J2.

(2.37)

Then, using the mean value theorem, we have

J1 �
∫
{|z|6|x−y|/2}

∣∣∇2py(t, x− y + θx,y,zz)
∣∣ · |z|2 1

|z|d+α(x)
dz

�
∫
{|z|6|x−y|/2}

t(
t1/α(y) + |x− y + θx,y,zz|

)d+α(y)+2
· |z|2−d−α(x) dz

� t(
t1/α(y) + |x− y|

)d+α(y)+2

∫
{|z|6|x−y|/2}

|z|2−d−α(x) dz

� |x− y|α(y)

|x− y|d+α(y)+2
· |x− y|2−α(x) � 1

|x− y|d+α(x)
,

where in the first inequality θx,y,z is a constant depending on x, y, z such that |θx,y,z| 6 1, in the second
inequality we have used (2.20), the third inequality follows from the fact that |x−y+θx,y,zz| > |x−y|−|z| >
|x− y|/2, and the fourth inequality is due to the fact that t 6 |x− y|α(y).

On the other hand, by (2.22) and the fact that |z| > |x− y|/2 > t1/α(y)/2, we have |δpy(t, x− y; z)| �
ρy,01 (t, x− y ± z) + ρy,01 (t, x− y), and so

J2 �
∫
{|z|>|x−y|/2}

ρy,01 (t, x− y ± z) 1

|z|d+α(x)
dz + ρy,01 (t, x− y)

∫
{|z|>|x−y|/2}

1

|z|d+α(x)
dz =: J21 + J22.

It holds that

J21 �
1

|x− y|d+α(x)

∫
{|z|>|x−y|/2}

ρy,01 (t, x− y ± z) dz � 1

|x− y|d+α(x)

∫
ρy,01 (t, x− y ± z) dz � 1

|x− y|d+α(x)
,

where in the first inequality we have used following fact

1

|z|d+α(x)
� 1

|x− y|d+α(x)
for |z| > |x− y|/2,

and the last inequality follows from (2.3). Furthermore, it is easy to verify that

J22 � ρy,01 (t, x− y)

∫
{|z|>|x−y|/2}

1

|z|d+α(x)
dz � t

|x− y|d+α(x)+α(y)
� 1

|x− y|d+α(x)
,

where in the last inequality we used |x− y| 6 t1/α(y).
Combining all these estimates above, we arrive at

|Lxpy(t, ·)(x− y)| � 1

|x− y|d+α(x)
.

Following the same arguments as above, we also have

|Lypy(t, ·)(x− y)| � 1

|x− y|d+α(y)
.

Hence,

|q0(t, x, y)| � |Lxpy(t, ·)(x− y)|+ |Lypy(t, ·)(x− y)| � 1

|x− y|d+α(x)
+

1

|x− y|d+α(y)
,

from which we can get (2.34) immediately.
(2) Next we consider the case that κ(x, z) depends on z. With the estimate (2.18) and the condition

β0/α2 > (α2/α1) − 1 at hand, we can follow the same argument as in (2.36) to verify the upper bound in
(2.35) for the case that |x− y| 6 t1/α(y).
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When |x− y| > t1/α(y), we still define J1 and J2 via (2.37). By carefully tracking the proof above, we find
that the argument for the estimates of J2 in part (1) still works. So it remains to consider upper bound for
J1. According to (2.22), we have

J1 �
∫
{|z|6|x−y|/2}

[(
t−2/α(y)|z|2

)
∧ 1
]
·
(
ρy,01 (t, x− y ± z) + ρy,01 (t, x− y)

) 1

|z|d+α(x)
dz

� t

|x− y|d+α(y)

∫ [(
t−2/α(y)|z|2

)
∧ 1
]
· 1

|z|d+α(x)
dz

� t

|x− y|d+α(y)
·
(∫
{|z|6t1/α(y)}

t−2/α(y)|z|2−d−α(x) dz +

∫
{|z|>t1/α(y)}

|z|−d−α(x) dz

)
� t1−(α(x)/α(y)) · 1

|x− y|d+α(y)
� t1−(α2/α1) · 1

|x− y|d+α(y)
,

where the second inequality above follows from

ρy,01 (t, x− y ± z) � t

|x− y|d+α(y)
for any |z| 6 |x− y|/2.

Combining this with the estimate of J2 in part (1) yields

|q0(t, x, y)| � |Lxpy(t, ·)(x− y)|+ |Lxpy(t, ·)(x− y)| � t1−(α2/α1) ·
(

1

|x− y|d+α(x)
+

1

|x− y|d+α(y)

)
,

which implies that (2.35) holds for every x, y ∈ Rd with |x− y| > t1/α(y). The proof is complete. �

2.3. Continuity of q0(t, x, y).

Proposition 2.9. (1) If κ(x, z) = κ(x) is independent of z, then for any γ, θ > 0 with γ < θ < β0/α2

and any ε > 0, there exists a positive constant c1 := c1(α, κ, γ, θ, ε) such that for every (t, x, x′, y) ∈
(0, 1]×Rd ×Rd ×Rd,

|q0(t, x, y)− q0(t, x′, y)|

6 c1

(
|x− x′|α1(β0−α2θ)/α(x) ∧ 1

)
×
[ (
ρy,0θ−γ + ρy,β0θ−γ−(β0/α(x))

)
(t, x− y) +

(
ρy,0θ−γ + ρy,β0θ−γ−(β0/α(x′))

)
(t, x′ − y)

+ |x− y|ε1{|x−y|>R0}ρ
y,0
θ−γ(t, x− y) + |x′ − y|ε1{|x′−y|>R0}ρ

y,0
θ−γ(t, x′ − y)

]
.

(2.38)

(2) For general κ(x, z), if (α2/α1) − 1 < β0/α2, then for any γ, θ > 0 such that (α2/α1) − 1 + γ =:
γ2 < θ < β0/α2 and ε > 0, there exists a positive constant c2 := c2(α, κ, γ, θ, ε) such that for every
(t, x, x′, y) ∈ (0, 1]×Rd ×Rd ×Rd,

|q0(t, x, y)− q0(t, x′, y)|

6 c2

(
|x− x′|α1(β0−α2θ)/α(x) ∧ 1

) [(
ρy,0θ−γ2 + ρy,β0θ−γ2−(β0/α(x))

)
(t, x− y)

+
(
ρy,0θ−γ2 + ρy,β0θ−γ2−(β0/α(x′))

)
(t, x′ − y) + |x− y|ε1{|x−y|>R0}ρ

y,0
θ−γ2(t, x− y)

+ |x′ − y|ε1{|x′−y|>R0}ρ
y,0
θ−γ2(t, x′ − y)

]
.

(2.39)

Proof. In the remainder of this paper, we denote ∇py(t, ·)(x) by ∇py(t, x) for simplicity.
(1) We first consider the case that κ(x, z) is independent of z. Let R1 := R1(α, κ, γ) be a positive constant

to be determined later. The proof is split into the following five different cases.
Case (a): |x− x′| > R1.
By (2.16) and the condition β0 > α2θ, it holds that

|q0(t, x, y)− q0(t, x′, y)| 6 |q0(t, x, y)|+ |q0(t, x′, y)| � ρy,β0−γ (t, x− y) + ρy,β0−γ (t, x′ − y)

�
(
|x− x′|α1(β0−α2θ)/α(x) ∧ 1

)(
ρy,β0−γ (t, x− y) + ρy,β0−γ (t, x′ − y)

)
.

Case (b): C0t
1/α(y) 6 |x− x′| 6 R1 for some small constant C0 > 0.

According to (2.16) again, we have

|q0(t, x, y)| �ρy,β0−γ (t, x− y) � t(β0−α(x)θ)/α(x)ρy,β0−γ+θ−(β0/α(x))(t, x− y)

�|x− x′|α(y)(β0−α(x)θ)/α(x)ρy,β0−γ+θ−(β0/α(x))(t, x− y)
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�|x− x′|α1(β0−α2θ)/α(x)ρy,β0−γ+θ−(β0/α(x))(t, x− y),

where the third inequality is due to t � |x− x′|α(y). Then

|q0(t, x, y)− q0(t, x′, y)|
6 |q0(t, x, y)|+ |q0(t, x′, y)|

� |x−x′|α1(β0−α2θ)/α(x)ρy,β0−γ+θ−(β0/α(x))(t, x− y) + |x−x′|α1(β0−α2θ)/α(x′)ρy,β0−γ+θ−(β0/α(x′))(t, x
′− y)

� |x−x′|α1(β0−α2θ)/α(x)
(
ρy,β0−γ+θ−(β0/α(x))(t, x− y) + ρy,β0−γ+θ−(β0/α(x′))(t, x

′− y)
)
.

Here in the last inequality we have used the fact that for x, x′ ∈ Rd with |x− x′| 6 R1,

|x− x′|α1(β0−α2θ)/α(x′) � |x− x′|α1(β0−α2θ)/α(x), (2.40)

which can be verified by following the argument of (2.2).
Next, we mainly treat the case that |x− x′| 6 C0t

1/α(y), which we divide into three cases.
Case (c): |x− x′| 6 C0t

1/α(y) and |x− y| > R1.
By the definition of q0(t, x, y),

|q0(t, x, y)− q0(t, x′, y)| = 1

2

∣∣∣∣ ∫
Rd
δpy(t, x− y; z)

(
κ(x, z)

|z|d+α(x)
− κ(y, z)

|z|d+α(y)

)
dz

−
∫
Rd
δpy(t, x

′ − y; z)

(
κ(x′, z)

|z|d+α(x′)
− κ(y, z)

|z|d+α(y)

)
dz

∣∣∣∣
6

1

2

∫
Rd
|δpy(t, x− y; z)− δpy(t, x′ − y; z)|

∣∣∣∣ κ(x, z)

|z|d+α(x)
− κ(y, z)

|z|d+α(y)

∣∣∣∣ dz
+

1

2

∫
Rd
|δpy(t, x′ − y; z)|

∣∣∣∣ κ(x′, z)

|z|d+α(x′)
− κ(x, z)

|z|d+α(x)

∣∣∣∣ dz
=: J1 + J2.

(2.41)

Note that
δpy(t, x; z) =py(t, x+ z) + py(t, x− z)− 2py(t, x)

=

∫ 1

0

d

dθ

(
py(t, x+ θz) + py(t, x− θz)

)
dθ

=

∫ 1

0
〈∇py(t, x+ θz)−∇py(t, x− θz), z〉 dθ

=

∫ 1

0

〈∫ 1

−1

d

dθ′
(
∇py(t, x+ θ′θz)

)
dθ′, z

〉
dθ

=

∫ 1

0

∫ 1

−1
∇2py(t, x+ θ′θz)(θz, z)dθ′ dθ,

(2.42)

and so

δpy(t, x; z)− δpy(t, x′; z) =

∫ 1

0

∫ 1

−1

(
∇2py(t, x+ θ′θz)−∇2py(t, x′ + θ′θz)

)
(θz, z) dθ′ dθ

=

∫ 1

0

∫ 1

−1

∫ 1

0

d

dθ′′

(
∇2py(t, x′ + θ′′(x− x′) + θ′θz)

)
(θz, z) dθ′′dθ′ dθ

=

∫ 1

0

∫ 1

−1

∫ 1

0
∇3py(t, x′ + θ′′(x− x′) + θ′θz)(x− x′, θz, z) dθ′′dθ′ dθ,

which implies that

|δpy(t, x; z)− δpy(t, x′; z)| 6
(∫ 1

0

∫ 1

−1

∫ 1

0
|∇3py(t, x′ + θ′′(x− x′) + θ′θz)| dθ′′dθ′ dθ

)
· |z|2|x− x′|.

For every x, x′, z ∈ Rd with |x − x′| 6 C0t
1/α(y), |x| > cR1, |x′| > cR1 and |z| 6 cR1/4 for C0 small

enough, there exists a constant c′ > 0 such that for every θ ∈ (0, 1), θ′ ∈ (−1, 1) and θ′′ ∈ (0, 1), we have
|x′ + θ′′(x− x′) + θ′θz| > c′|x′| > c′′R1, which along with (2.20) yields that

|∇3py(t, x′ + θ′′(x− x′) + θ′θz)| � t

|x′|d+α(y)+3
.
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Combining with all the estimates above, we arrive at that for |x− x′| 6 C0t
1/α(y), |x| > cR1, |x′| > cR1 and

|z| 6 cR1/4,

|δpy(t, x; z)− δpy(t, x′; z)| �
t|z|2|x− x′|
|x′|d+α(y)+3

. (2.43)

Since |x − x′| 6 C0t
1/α(y) 6 C0, |x′ − y| > cR1 holds for some constant c > 0. By taking x = x − y and

x′ = x′ − y in (2.43), we obtain that for all z ∈ Rd with |z| 6 cR1/4,

|δpy(t, x− y; z)− δpy(t, x′ − y; z)| � t|z|2|x− x′|
|x′ − y|d+α(y)+3

. (2.44)

Let

J1 =
1

2

∫
{|z|6cR1/4}

|δpy(t, x− y; z)− δpy(t, x′ − y; z)|
∣∣∣∣ κ(x, z)

|z|d+α(x)
− κ(y, z)

|z|d+α(y)

∣∣∣∣ dz
+

1

2

∫
{|z|>cR1/4}

|δpy(t, x− y; z)− δpy(t, x′ − y; z)|
∣∣∣∣ κ(x, z)

|z|d+α(x)
− κ(y, z)

|z|d+α(y)

∣∣∣∣ dz
= : J11 + J12.

(2.45)

By (2.44),

J11 �|x− x′|
t

|x′ − y|d+α(y)+3

∫
{|z|6cR1/4}

(
|z|2

|z|d+α(x)
+

|z|2

|z|d+α(y)

)
dz

�|x− x′| t

|x′ − y|d+α(y)+3
� |x− x′| 1

|x′ − y|d+α1
,

where the last inequality is due to |x′− y| > cR1 and t 6 1. On the other hand, according to (2.14), we have
for any x, y ∈ Rd with |x− y| > R1,∫

{|z|>cR1/4}
ρy,01 (t, x− y ± z) 1

|z|d+α(x)
dz � 1

|x− y|d+α1
,∫

{|z|>cR1/4}
ρy,01 (t, x− y)

1

|z|d+α(x)
dz � 1

|x− y|d+α1
.

(2.46)

Combining (2.24) with (2.46) and the fact that |z| > cR1/4 implies |z| > C1t
1/α(y), we arrive at

J12 � t−1/α(y)|x− x′|
∫
{|z|>cR1/4}

(
ρy,01 (t, x− y ± z) + ρy,01 (t, x− y)

+ ρy,01 (t, x′ − y ± z) + ρy,01 (t, x′ − y)
)( 1

|z|d+α(x)
+

1

|z|d+α(y)

)
dz

� t−1/α(y)|x− x′|
(

1

|x− y|d+α1
+

1

|x′ − y|d+α1

)
.

By both of the estimates above, we obtain that

J1 � t−1/α(y)|x− x′|
(
ρy,00 (t, x− y) + ρy,00 (t, x′ − y)

)
� |x− x′|

(
ρy,β0−1/α(y)(t, x− y) + ρy,β0−1/α(y)(t, x

′ − y)
)
,

where the last inequality follows from the facts that |x− y| > cR1 and |x′ − y| > cR1.
Let

J2 =

∫
{|z|6cR1/4}

|δpy(t, x′ − y; z)|
∣∣∣∣ κ(x′, z)

|z|d+α(x′)
− κ(x, z)

|z|d+α(x)

∣∣∣∣ dz
+

∫
{|z|>cR1/4}

|δpy(t, x′ − y; z)|
∣∣∣∣ κ(x′, z)

|z|d+α(x′)
− κ(x, z)

|z|d+α(x)

∣∣∣∣ dz
= : J21 + J22.

(2.47)

Since |x′ − y| > cR1, by (2.42) and (2.20), we find that for any |z| < cR1/4,

|δpy(t, x′ − y; z)| 6 |z|2
∫ 1

0

∫ 1

−1
|∇2py(t, x′ − y + θ′θz)| dθ′ dθ � |z|2 t

|x′ − y|d+α(y)+2
.

Thus, due to (2.28),

J21 �|x− x′|β0
t

|x′ − y|d+α(y)+2

∫
{|z|6cR1/4}

1 + | log |z||
|z|d+α(x;x′)

|z|2 dz � |x− x′|β0 1

|x′ − y|d+α1
,



18 XIN CHEN, ZHEN-QING CHEN AND JIAN WANG

where we have used the facts that |x′ − y| > cR1 and t < 1 in the second inequality. On the other hand,
when |z| > cR1/4,

|δpy(t, x′ − y; z)| � py(t, x′ − y ± z) + py(t, x′ − y).

Having this at hand and using (2.15) and (2.21), we know that∫
{|z|>cR1/4}

|δpy(t, x′ − y; z)|1 + | log |z||
|z|d+α(x;x′)

dz � log(1 + |x′ − y|)
|x′ − y|d+α1

.

Then, by (2.28), we find that

J22 � |x− x′|β0 ·
∫
{|z|>cR1/4}

|δpy(t, x′ − y; z)|1 + | log |z||
|z|d+α(x;x′)

dz � |x− x′|β0 log(1 + |x′ − y|)
|x′ − y|d+α1

.

By the estimates for J21 and J22, we have

J2 � |x− x′|β0 log(1 + |x′ − y|)ρy,00 (t, x′ − y).

Putting the estimates of J1 and J2 together, we finally arrive at

|q0(t, x, y)− q0(t, x′, y)| �|x− x′|
(
ρy,β0−1/α(y)(t, x− y) + ρy,β0−1/α(y)(t, x

′ − y)
)

+ |x− x′|β0 log(1 + |x′ − y|)ρy,00 (t, x′ − y).

Case (d): |x− x′| 6 C0t
1/α(y) and t1/α(y) 6 |x− y| < R1.

We still define J1 and J2 by those in (2.41). Combining (2.24) with (2.28), we arrive at

J1 �t−1/α(y)|x− x′||x− y|β0
[∫

Rd

[(
t−2/α(y)|z|2

)
∧ 1
]

×
(
ρy,01 (t, x− y) + ρy,01 (t, x′ − y) + ρy,01 (t, x− y ± z) + ρy,01 (t, x′ − y ± z)

)
×
(

1 + | log |z||
|z|d+α(y;x)

1{|z|61} +
1 + | log |z||
|z|d+α(y;x)

1{|z|>1}

)
dz

]
.

Noting that t1/α(y) 6 |x− y| < R1 and using (2.5)–(2.7), we obtain that∫
Rd

[(
t−2/α(y)|z|2

)
∧ 1
] (
ρy,01 (t, x− y ± z) + ρy,01 (t, x− y)

)
×
(

1 + | log |z||
|z|d+α(y;x)

1{|z|61} +
1 + | log |z||
|z|d+α(y;x)

1{|z|>1}

)
dz

� (1 + | log t|) t−(α(y;x)−α(y))/α(y)ρy,00 (t, x− y) � ρy,0−γ(t, x− y),

(2.48)

where the last step is due to the fact that we can choose the constant R1 small enough such that

α(y;x)− α(y)

α(y)
6
C|x− y|β0

α1
< γ for every |x− y| 6 R1.

Since |x − x′| 6 C0t
1/α(y) for some C0 small enough, C2t

1/α(y) 6 |x′ − y| 6 C3R1 holds for some positive
constants C2 and C3. Hence, (2.48) still holds with x replaced by x′. Therefore, combining both the estimates
above together, we arrive at

J1 � |x− x′| · |x− y|β0 ·
(
ρy,0−γ−(1/α(y))(t, x− y) + ρy,0−γ−(1/α(y))(t, x

′ − y)
)

� |x− x′|
(
ρy,β0−γ−(1/α(y))(t, x− y) + ρy,β0−γ−(1/α(y))(t, x

′ − y)
)
,

where in the last step we have used the fact that

|x′ − y| > |x− y| − |x− x′| > |x− y| − C0t
1/α(y) > (1− C0)|x− y|.

Now we are going to estimate J2. (2.22) along with (2.28) yields that

J2 � |x− x′|β0
∫
Rd

[(
t−2/α(y)|z|2

)
∧ 1
]
·
(
ρy,01 (t, x′− y)+ ρy,01 (t, x′− y ± z)

)
×
(
| log |z||+ 1

|z|d+α(x;x′)
1{|z|61}+

| log |z||+ 1

|z|d+α(x;x′)
1{|z|>1}

)
dz.

(2.49)
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As noted above, it holds that C2t
1/α(y) 6 |x′ − y| 6 C3R1. Although the indexes α(y;x) and α(y;x) are

replaced by α(x;x′) and α(x;x′) respectively, we can still follow the proof of Lemma 2.3 to obtain that∫
Rd

[(
t−2/α(y)|z|2

)
∧ 1
]
·
(
ρy,01 (t, x′ − y) + ρy,01 (t, x′ − y ± z)

)
×
(

1 + | log |z||
|z|d+α(x;x′)

1{|z|61} +
1 + | log |z||
|z|d+α(x;x′)

1{|z|>1}

)
dz

� (1 + | log t|) t1−(α(x;x′)/α(y))ρy,00 (t, x′ − y).

(2.50)

Note that when |x− y| 6 R1 and |x− x′| 6 C0t
1/α(y),

|α(x;x′)− α(y)| 6 |α(x;x′)− α(x)|+ |α(x)− α(y)| 6 C4(tβ0/α(y) +Rβ01 ).

So, by changing R1 properly such that

t−(α(x;x′)−α(y))/α(y) � exp(C5t| log t|) · t−C4R
β0
1 � t−γ/2

and putting all these estimates into (2.49), we arrive at

J2 � |x− x′|β0ρy,0−γ(t, x′ − y).

Therefore, according to the estimates for J1 and J2, we have

|q0(t, x, y)− q0(t, x′, y)| �|x− x′|
(
ρy,β0−γ−(1/α(y))(t, x− y) + ρy,β0−γ−(1/α(y))(t, x

′ − y)
)

+ |x− x′|β0ρy,0−γ(t, x′ − y).

Case (e): |x− x′| 6 C0t
1/α(y) and |x− y| 6 t1/α(y).

We still define J1 and J2 by those in (2.41). It is easy to see that (2.48) and (2.50) still hold for such case.
Note that |x′− y| 6 |x− y|+ |x−x′| 6 (1 +C0)t1/α(y). Using (2.48) and (2.50), and repeating the argument
in Case (d), we have

J1 � |x− x′| · |x− y|β0 ·
(
ρy,0−γ−(1/α(y))(t, x− y) + ρy,0−γ−(1/α(y))(t, x

′ − y)
)
,

J2 � |x− x′|β0ρy,0−γ(t, x′ − y).

Then, we arrive at

|q0(t, x, y)− q0(t, x′, y)|

� |x− x′|ρy,β0−γ−(1/α(y))(t, x− y) + |x− x′||x− y|β0ρy,0−γ−(1/α(y))(t, x
′ − y) + |x− x′|β0ρy,0−γ(t, x′ − y)

� |x− x′|ρy,β0−γ−(1/α(y))(t, x− y) + |x− x′|β0ρy,0−γ(t, x′ − y),

where the last step follows from the property that

|x− x′||x− y|β0 = |x− x′|β0 |x− x′|1−β0 |x− y|β � t1/α(y)|x− x′|β0 .
Combining all Cases (c)–(e) together, we can find a constant C0 > 0 small enough such that for every

|x− x′| 6 C0t
1/α(y)

|q0(t, x, y)− q0(t, x′, y)| � |x− x′|
(
ρy,β0−γ−(1/α(y))(t, x− y) + ρy,β0−γ−(1/α(y))(t, x

′ − y)
)

+ |x− x′|β0
(
1 + log(1 + |x′ − y|)1{|x′−y|>R0}

)
ρy,0−γ(t, x′ − y).

Furthermore, for 0 < γ < θ < β0/α2, we have

|x− x′|β0ρy,0−γ(t, x′ − y) = |x− x′|β0−α(y)θ|x− x′|α(y)θρy,0−γ(t, x′ − y)

� |x− x′|β0−α(y)θρy,0θ−γ(t, x′− y)� |x− x′|β0−α2θρy,0θ−γ(t, x′− y),

where the second step above follows from |x− x′| 6 C0t
1/α(y). On the other hand, it holds that

|x− x′|ρy,β0−γ−(1/α(y))(t, x
′ − y) = |x− x′|α1(β0−α(x′)θ)/α(x′)|x− x′|1−(α1(β0−α(x′)θ)/α(x′))ρy,β0−γ−(1/α(y))(t, x

′ − y)

� |x− x′|α1(β0−α2θ)/α(x′)t(1/α(y))−(α1(β0−α(x′)θ)/(α(x′)α(y)))ρy,β0−γ−(1/α(y))(t, x
′ − y)

� |x− x′|α1(β0−α2θ)/α(x)ρy,β0−γ−((α1/α(y))((β0/α(x′))−θ))(t, x
′ − y)

� |x− x′|α1(β0−α2θ)/α(x)ρy,β0−γ+θ−(β0/α(x′))(t, x
′ − y),

where in the first inequality we have used again that |x− x′| 6 C0t
1/α(y), and the second inequality follows

from (2.40). Similarly, it holds that

|x− x′|ρy,β0−γ−(1/α(y))(t, x− y) � |x− x′|α1(β0−α2θ)/α(x)ρy,β0−γ+θ−(β0/α(x))(t, x− y).
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Hence, we arrive at that for every |x− x′| 6 C0t
1/α(y) and ε > 0

|q0(t, x, y)− q0(t, x′, y)|

� |x− x′|α1(β0−α2θ)/α(x)
(
ρy,β0−γ+θ−(β0/α(x))(t, x− y) + ρy,β0−γ+θ−(β0/α(x′))(t, x

′ − y)

+ ρy,0θ−γ(t, x′ − y) + |x′ − y|ε1{|x′−y|>R0}ρ
y,0
θ−γ(t, x′ − y)

)
.

(2.51)

Therefore, according to all the five different cases above, (2.38) holds for q0(t, x, y).

(2) Now we study the estimate for |q0(t, x, y)− q0(t, x′, y)| under the assumption that κ(x, z) depends on
z. Recall that, by (2.18), we have

|q0(t, x, y)| � ρy,β0−γ2 (t, x− y), (t, x, y) ∈ (0, 1]×Rd ×Rd, (2.52)

where γ2 =: γ + (α2/α1)− 1.
Using (2.52) and following the arguments in Case (a) and Case (b) of part (1) above, we derive that

for every (t, x, y) ∈ (0, 1] × Rd × Rd such that |x − x′| > C0t
1/α(y) (which includes both |x − x′| > R1

and C0t
1/α(y) 6 |x − x′| 6 R1, and where as in (1) the constant C0 is chosen to be small enough) and

γ2 < θ < β0/α2,

|q0(t, x, y)− q0(t, x′, y)| �
(
|x− x′|α1(β0−α2θ)/α(x) ∧ 1

)
×
(
ρy,β0−γ2+θ−(β0/α(x))(t, x− y) + ρy,β0−γ2+θ−(β0/α(x′))(t, x

′ − y)
)
.

Note that in the proofs of Case (d) and Case (e) above, we do not need the assumption that κ(x, z)
is independent of z, so the conclusions there are still true, which in particular means that (2.39) holds for
Case (d) and Case (e). Now we turn to the case that |x− x′| 6 C0t

1/α(y) and |x− y| > R1, i.e., the Case
(c) above. We still define J11, J12, J21 and J22 as those in (2.41), (2.45) and (2.47), respectively.

For J11, we apply (2.24) instead of (2.44) in part (1), and derive that

J11 � t−1/α(y)|x− x′|
∫
{|z|6cR1/4}

[(t−2/α(y)|z|2) ∧ 1]

×
(
ρy,01 (t, x− y) + ρy,01 (t, x′ − y) + ρy,01 (t, x− y ± z) + ρy,01 (t, x′ − y ± z)

)
·
(

1

|z|d+α(x)
+

1

|z|d+α(y)

)
dz.

Note that |x− y| > R1. By (2.12), we arrive at∫
{|z|6cR1/4}

[(t−2/α(y)|z|2) ∧ 1]
(
ρy,01 (t, x− y) + ρy,01 (t, x− y ± z)

)( 1

|z|d+α(x)
+

1

|z|d+α(y)

)
dz � t1−(α2/α1)

|x− y|d+α1
,

which yields that
J11 � |x− x′|

(
ρy,β0−γ2−(1/α(y))(t, x− y) + ρy,β0−γ2−(1/α(y))(t, x

′ − y)
)
.

Similarly, using (2.22) instead of (2.20) in the estimate of J21 and applying (2.13), we obtain

J21 � |x− x′|β0 ·
(∫
{|z|6cR1/4}

[(t−2/α(y)|z|2) ∧ 1]
[
ρy,01 (t, x′ − y ± z) + ρy,01 (t, x′ − y)

]1 + | log |z||
|z|d+α(x;x′)

dz

)
� |x− x′|β0(1 + | log t|+ | log |x′ − y||)ρy,01−(α2/α1)(t, x

′ − y).

As explained before, the proofs for estimates of J12 and J22 in (1) do not require the condition that κ(x, z)
is independent of z, so those estimates still hold here.

By the estimates for J11, J12, J21 and J22, we know that for every |x− x′| 6 C0t
1/α(y) and |x− y| > R1,

|q0(t, x, y)− q0(t, x′, y)| �|x− x′| ·
[
ρy,β0−γ2−(1/α(y))(t, x− y) + ρy,β0−γ2−(1/α(y))(t, x

′ − y)
]

+ |x− x′|β0
(
1 + log(1 + |x′ − y|)

)
ρy,0−γ2(t, x′ − y).

Combining the estimates above for all the cases, we can find a constant C0 > 0 small enough such that for
every |x− x′| 6 C0t

1/α(y) and γ, ε > 0,

|q0(t, x, y)− q0(t, x′, y)| �|x− x′| ·
[
ρy,β0−γ2−(1/α(y))(t, x− y) + ρy,β0−γ2−(1/α(y))(t, x

′ − y)
]

+ |x− x′|β0 |x− y|ε1{|x−y|>R0}ρ
y,0
−γ2(t, x− y)

+ |x− x′|β0 |x′ − y|ε1{|x′−y|>R0}ρ
y,0
−γ2(t, x′ − y).

Then, by the same argument for (2.51) and all the conclusions above, we can immediately show that (2.39)
holds. �
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3. Estimates for q(t, x, y)

3.1. Convolution inequalities. In this subsection, we will establish a convolution inequality involving ρy,βγ ,
which will be frequently used in the remainder of our paper. Although the proofs in this subsection are partly
inspired by those of [20, 35], essential and non-trivial modifications are needed to adapt them to non-local
operators with variable orders.

Lemma 3.1. (1) For every θ1, θ2 ∈ R and β1, β2 ∈ (0, 1), it holds for all 0 < s < t 6 1 and x, y ∈ Rd
that ∫

Rd
ρz,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz

�
[
(t− s)θ1+[((β1+β2)/α(x))∧1]−1sθ2

(
1 + | log(t− s)|1{β1+β2=α(x)}

)
+ (t− s)θ1sθ2+[((β1+β2)/α(y))∧1]−1

(
1 + | log s|1{β1+β2=α(y)}

)]
ρy,00 (t, x− y)

+ (t− s)θ1+[(β1/α(x))∧1]−1sθ2
(
1 + | log(t− s)|1{β1=α(x)}

)
ρy,β20 (t, x− y)

+ (t− s)θ1sθ2+(β2/α(y))∧1−1
(
1 + | log s|1{β2=α(y)}

)
ρy,β10 (t, x− y).

(3.1)

(2) For every θ1, θ2 ∈ R and β1, β2 ∈ (0, 1), it holds for every x, y ∈ Rd and 0 < s < t 6 1 that∫
Rd
ρz,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz

�
[
(t− s)θ1+[((β1+β2)/α2)∧1]−1sθ2

(
1 + | log(t− s)|1{β1+β2=α2}

)
+ (t− s)θ1sθ2+[((β1+β2)/α2)∧1]−1

(
1 + | log s|1{β1+β2=α2}

)]
ρy,00 (t, x− y)

+ (t− s)θ1+[(β1/α2)∧1]−1sθ2
(
1 + | log(t− s)|1{β1=α2}

)
ρy,β20 (t, x− y)

+ (t− s)θ1sθ2+[(β2/α2)∧1]−1
(
1 + | log s|1{β2=α2}

)
ρy,β10 (t, x− y).

(3.2)

Proof. (1) The proof is split into three cases.
Case (a): |x− y| > 2.
It holds that∫

Rd
ρz,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz 6

∫
{|z−y|>|x−y|/2}

ρz,β1θ1
(t− s, x− z)ρy,β2θ2

(s, z − y) dz

+

∫
{|z−y|6|x−y|/2}

ρz,β1θ1
(t− s, x− z)ρy,β2θ2

(s, z − y) dz

=: J1 + J2.

(3.3)

If |z − y| > |x− y|/2 > 1 > s1/α(y), then

ρy,00 (s, z − y) � 1

|z − y|d+α1
� 1

|x− y|d+α1
� ρy,00 (t, x− y). (3.4)

Observe that (see e.g. the proof of [20, Lemma 2.2]) for any x, y, z ∈ Rd,(
|x− z|β1 ∧ 1

)(
|z − y|β2 ∧ 1

)
6
(
|x− z|β1+β2 ∧ 1

)
+
(
|x− z|β1 ∧ 1

)(
|x− y|β2 ∧ 1

)
. (3.5)

Combining this with (3.4) and the first inequality in (2.1), we get that for β1, β2 ∈ (0, 1),

J1 � (t− s)θ1sθ2ρy,00 (t, x− y)

∫
Rd
ρz,β1+β2

0 (t− s, x− z) dz

+ (t− s)θ1sθ2ρy,β20 (t, x− y)

∫
Rd
ρz,β10 (t− s, x− z) dz

� (t− s)θ1+[((β1+β2)/α(x))∧1]−1sθ2
(
1+| log(t− s)|1{β1+β2=α(x)}

)
ρy,00 (t, x− y)

+ (t− s)[θ1+(β1/α(x))∧1]−1sθ2
(
1 + | log(t− s)|1{β1=α(x)}

)
ρy,β20 (t, x− y).

(3.6)

If |z − y| 6 |x− y|/2, then |x− z| > |x− y|/2 > 1 > (t− s)1/α(z), and so

ρz,00 (t− s, x− z) � 1

|x− z|d+α1
� 1

|x− y|d+α1
� ρy,00 (t, x− y).

Combining this with(
|x− z|β1 ∧ 1

)(
|z − y|β2 ∧ 1

)
6
(
|z − y|β1+β2 ∧ 1

)
+
(
|z − y|β2 ∧ 1

)(
|x− y|β1 ∧ 1

)
, (3.7)
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we arrive at

J2 � (t− s)θ1sθ2ρy,00 (t, x− y)

∫
Rd
ρy,β1+β2

0 (s, z − y) dz

+ (t− s)θ1sθ2ρy,β10 (t, x− y)

∫
Rd
ρy,β20 (s, z − y) dz

� (t− s)θ1sθ2+[((β1+β2)/α(y))∧1]−1
(
1 + | log s|1{β1+β2=α(y)}

)
ρy,00 (t, x− y)

+ (t− s)θ1sθ2+[(β2/α(y))∧1]−1
(
1 + | log s|1{β2=α(y)}

)
ρy,β10 (t, x− y),

(3.8)

where the second inequality follows from the first inequality in (2.3).
According to the above estimates for J1 and J2, (3.2) holds in this case.
Case (b): 2t1/α(y;t1/α2 ) 6 |x− y| 6 2.
Let J1 and J2 be defined by (3.3). If |z − y| > |x− y|/2 and 0 < s < t < 1, then we have

ρy,00 (s, z − y) �

{
|z − y|−d−α(y), |z − y| 6 1,

|z − y|−d−α1 , |z − y| > 1

�

{
|x− y|−d−α(y), |z − y| 6 1,

|x− y|−d−α1 , |z − y| > 1

� |x− y|−d−α(y) � ρy,00 (t, x− y),

(3.9)

where the second inequality is due to |z − y| > |x− y|/2, in the third inequality we have used the fact that

|x− y|−d−α1 � |x− y|−d−α(y) for all |x− y| 6 2,

and the last inequality follows from

|x− y|−d−α(y) � ρy,00 (t, x− y) for all |x− y| > 2t1/α(y;t1/α2 ) > 2t1/α(y).

Using (3.9) and following the same argument of (3.6), we know that (3.6) is satisfied too.
If |z − y| < |x− y|/2, then |x− z| > |x− y|/2, and so we obtain

ρz,00 (t− s, x− z) �

{
|x− z|−d−α(z), |x− z| 6 1,

|x− z|−d−α1 , |x− z| > 1

� |x− y|−d−α(z) � |x− y|α(y)−α(z) · |x− y|−d−α(y)

� |x− y|−|α(y)−α(z)| · |x− y|−d−α(y)

� |x− y|−C|x−y|β0 · |x− y|−d−α(y)

� exp
(
C| log |x− y|| · |x− y|β0

)
· |x− y|−d−α(y)

� |x− y|−d−α(y) � ρy,00 (t, x− y),

(3.10)

where in the second inequality we used the fact that if |x−z| > |x− y|/2 and |x−y| 6 2, then |x−z|−d−α1 �
|x− y|−d−α1 � |x− y|−d−α(z), the fifth inequality follows from the fact that

|α(y)− α(z)| � |z − y|β0 6 C|x− y|β0 for all |z − y| 6 |x− y|/2,

in the seventh inequality we used

sup
z∈Rd:|z|62

exp
(
C| log |z|| · |z|β0

)
<∞,

and the last inequality is due to the same argument of the last one in (3.9).
Using the above inequality for ρz,00 (t− s, x− z) and following the same procedure of (3.8), we know that

(3.8) still holds.
Therefore, according to the estimates for J1 and J2, (3.2) also holds in this case.
Case (c): |x− y| 6 2t1/α(y;t1/α2 ).
Note that for any t ∈ (0, 1] and y ∈ Rd,

1 6
t1/α(y;t1/α2 )

t1/α(y)
6 t
−α(y;t

1/α2 )−α(y)
α(y)α(y;t1/α2 ) 6 t

−Ct
β0/α2

α21 6 exp
(
C| log t| · tβ0/α2

)
6 C1, (3.11)

hence |x− y| 6 2t1/α(y;t1/α2 ) implies that |x− y| 6 C2t
1/α(y) for some constant C2 > 0.
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On the other hand,∫
Rd
ρz,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz 6

∫
{|z−y|>t1/α(y)}

ρz,β1θ1
(t− s, x− z)ρy,β2θ2

(s, z − y) dz

+

∫
{|z−y|6t1/α(y)}

ρz,β1θ1
(t− s, x− z)ρy,β2θ2

(s, z − y) dz

=: J1 + J2.

If |z − y| > t1/α(y) > s1/α(y), then

ρy,00 (s, z − y) � |z − y|−d−α(y) � t−(d+α(y))/α(y) � ρy,00 (t, x− y),

where the second inequality follows from |z − y| > t1/α(y), and the last inequality is due to t−(d+α(y))/α(y) �
ρy,00 (t, x−y) for all |x−y| 6 C2t

1/α(y). Applying the above estimate for ρy,00 (s, z−y) and following the same
argument of (3.6), we can find that (3.6) still holds for J1 here.

Now we turn to estimate for J2, which is divided into the following two subcases:
Subcase (c1): s > t/2.
If |z − y| 6 t1/α(y), then

ρy,00 (s, z − y) � s−(d/α(y))−1 � t−(d/α(y))−1 � ρy,00 (t, x− y),

where the second inequality follows from s > t/2, and in the last inequality we have used the fact that
t−(d/α(y))−1 � ρy,00 (t, x− y) for all |x− y| 6 C2t

1/α(y).
Having the above estimate for ρy,00 (s, z− y) at hand, we also can follow the same procedure of (3.6) to get

that

J2 � (t− s)θ1+((β1+β2)/α(x))−1sθ2ρy,00 (t, x− y) + (t− s)θ1+(β1/α(x))−1sθ2ρy,β20 (t, x− y).

Subcase (c2): s 6 t/2.
If |z − y| 6 t1/α(y), then we have

ρz,00 (t− s, x− z) � (t− s)−(d/α(z))−1 � t−(d/α(z))−1 � t−|(d/α(z))−(d/α(y))| · t−(d/α(y))−1

� t−Ctβ0/α2 · t−(d/α(y))−1 � t−(d/α(y))−1 � ρy,00 (t, x− y),

where the second inequality is due to (t−s) > t/2, in the fourth inequality we used the fact that |α(y)−α(z)| �
|z − y|β0 � tβ0/α(y) � tβ0/α2 , the fifth inequality follows from

sup
t∈(0,1]

t−Ct
β0/α2 � sup

t∈(0,1]
exp

(
C| log t|tβ0/α2

)
<∞,

and the last inequality is again due to the fact that t−(d/α(y))−1 � ρy,00 (t, x− y) for all |x− y| 6 C2t
1/α(y).

Using the above estimate for ρz,00 (t− s, x− z) and following the same procedure of (3.8), we can also get
(3.8).

Combining both estimates for J1 and J2, we know (3.2) holds for Case (c). Therefore, the proof of (3.1)
is complete.

(2) We can apply the second inequality in (2.1) in the proofs of (3.6) and (3.8), and follow the same
arguments as above to prove (3.2). �

According to Lemma 3.1, we can immediately derive the following statement.

Corollary 3.2. Let B(γ, β) denote the Beta function with respect to γ and β. Then, the following two
statements hold.

(1) For any θ1, θ2 ∈ R and β1, β2 ∈ (0, 1), there is a constant c > 0 such that for all t ∈ (0, 1] and
x, y ∈ Rd with β1 + β2 < α∗(x, y) := α(x) ∧ α(y), θ1 + (β1/α(x)) > 0 and θ2 + (β2/α(y)) > 0,∫ t

0

∫
Rd
ρz,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz ds

6cB
(
(β1/α2) + θ1, (β2/α2) + θ2

)
×
(
ρy,0θ1+θ2+((β1+β2)/α∗(x,y)) + ρy,β2θ1+θ2+(β1/α(x)) + ρy,β1θ1+θ2+(β2/α(y))

)
(t, x− y),

(3.12)

where α∗(x, y) := α(x) ∨ α(y).
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(2) For any θ1, θ2 ∈ R and β1, β2 ∈ (0, 1) such that β1 +β2 < α2, θ1 + (β1/α2) > 0 and θ2 + (β2/α2) > 0,
it holds for any t ∈ (0, 1] and x, y ∈ Rd that∫ t

0

∫
Rd
ρz,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz ds

�B
(
(β1/α2) + θ1, (β2/α2) + θ2

)
×
(
ρy,0θ1+θ2+((β1+β2)/α2) + ρy,β2θ1+θ2+(β1/α2) + ρy,β1θ1+θ2+(β2/α2)

)
(t, x− y).

(3.13)

Proof. Note that ∫ t

0
(t− s)γ−1sβ−1 ds = tγ+β−1B(γ, β), γ > 0, β > 0.

This, along with (3.1), (3.2) and the decreasing property of B(γ, β) with respect to γ and β, yields the
desired assertions (3.12) and (3.13). �

At the end of this subsection, we make some remarks.

Remark 3.3. (1) According to the proofs of [20, Lemma 2.1 (ii) and (iii)], we know that for 0 6 s 6 t 6 1,
x, y ∈ Rd and β1, β2 ∈ (0, 1), θ1, θ2 ∈ R, it holds that∫

Rd
ρy,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz

�
[
(t− s)θ1+[((β1+β2)/α(y))∧1]−1sθ2

(
1 + | log(t− s)|1{β1+β2=α(y)}

)
+ (t− s)θ1sθ2+[((β1+β2)/α(y))∧1]−1

(
1 + | log s|1{β1+β2=α(y)}

)]
ρy,00 (t, x− y)

+ (t− s)θ1+[(β1/α(y))∧1]−1sθ2
(
1 + | log(t− s)|1{β1=α(y)}

)
ρy,β20 (t, x− y)

+ (t− s)θ1sθ2+[(β2/α(y))∧1]−1
(
1 + | log s|1{β2=α(y)}

)
ρy,β10 (t, x− y).

(3.14)

If, in addition, β1 + β2 < α(x), (β1/α(y)) + θ1 > 0 and (β2/α(y)) + θ2 > 0, then it also holds∫ t

0

∫
Rd
ρy,β1θ1

(t− s, x− z)ρy,β2θ2
(s, z − y) dz ds

� B
(
(β1/α(y)) + θ1, (β2/α(y)) + θ2

)
×
(
ρy,0θ1+θ2+((β1+β2)/α(y)) + ρy,β1θ1+θ2+(β2/α(y))(t, x− y) + ρy,β2θ1+θ2+(β1/α(y))

)
(t, x− y).

(3.15)

Note that in (3.14) and (3.15) the index α(y) is independent of the integrand variable z. However, in the
present setting we also need (3.1) and (3.2) as well as the convolution inequalities (3.12) and (3.13), where
the index α(z) will depend on the integrand variable z.

(2) For every fixed ε > 0 small enough, γ ∈ R, θ ∈ R+ and x, y ∈ Rd, define

ρ̃y,θγ,ε(t, x) = tγ(|x|θ ∧ 1)

{
1

(t1/α(y)+|x|)d+α(y) , |x| 6 1,
1

|x|d+α1−ε , |x| > 1.
(3.16)

By carefully tracking the proofs of Lemma 2.1, Lemma 3.1, Corollary 3.2 and [20, Lemma 2.1 (ii) and (iii)],
we know that the inequalities (2.1), (2.3), (3.1), (3.2), (3.12), (3.13), (3.14) and (3.15) are valid with ρ
replaced by ρ̃. (In particular, (3.9) holds true.) For simplicity, in the remainder of this paper we often omit
the parameter ε in ρ̃.

3.2. Existence, upper bounds and continuity of q(t, x, y). We will prove the existence and some es-
timates for the solution q(t, x, y) to the equation (1.27). For this, we first define qn(t, x, y) inductively by

qn(t, x, y) :=

∫ t

0

∫
Rd
q0(t− s, x, z)qn−1(s, z, y) dz ds, n > 1, t ∈ (0, 1]. (3.17)

Then we can construct q(t, x, y) as follows.

Proposition 3.4. Let β∗0 ∈ (0, β0]∩ (0, α2) and β∗∗0 ∈ (0, β0]∩ (0, α2/2). Then, the following two statements
hold.

(1) If κ(x, z) is independent of z, then q(t, x, y) :=
∑∞

n=0 qn(t, x, y) is absolutely convergent on (0, 1] ×
Rd × Rd, it solves equation (1.27) and satisfies that for any 0 < γ < θ < β∗0/α2 and ε > 0, there
exists a positive constant c1 := c1(α, κ, γ, θ, ε) such that for every (t, x, x′, y) ∈ (0, 1]×Rd×Rd×Rd,

|q(t, x, y)| 6 c1

(
ρy,0(β∗0/α2)−γ + ρ

y,β∗0
−γ

)
(t, x− y) (3.18)
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and if, moreover, β∗0 < α(x), then

|q(t, x, y)− q(t, x′, y)| 6c1

(
|x− x′|α1(β∗0−α2θ)/α(x) ∧ 1

)
×
[(
ρ̃y,0θ−γ+(β∗0/α2)−(β∗0/α1)(t, x− y) + ρ̃y,0θ−γ+(β∗0/α2)−(β∗0/α1)(t, x

′ − y)
]
.

(3.19)

Suppose, in addition, that there are y0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(y0) for any
z ∈ B(y0, r0). Then there is a constant c3 := c3(α, κ, r0) > 0 such that for every t ∈ (0, 1] and
x ∈ Rd,

|q(t, x, y0)| 6 c3

(
ρy0,0β∗0/α2

+ ρ
y0,β∗0
0

)
(t, x− y0). (3.20)

(2) If κ(x, z) depends on z and (α2/α1) − 1 < β∗∗0 /α2 holds true, then q(t, x, y) =:
∑∞

n=0 qn(t, x, y) is
still absolutely convergent, solves the equation (1.27), and satisfies that for every γ, θ > 0 such that
(α2/α1)− 1 + γ =: γ2 < θ < β∗∗0 /α2 and ε > 0, there exists a positive constant c2 := c2(α, κ, γ, θ, ε)
such that for every (t, x, x′, y) ∈ (0, 1]×Rd ×Rd ×Rd,

|q(t, x, y)| 6 c2

(
ρy,0(β∗∗0 /α2)−γ2 + ρ

y,β∗∗0
−γ2

)
(t, x− y) (3.21)

and if, moreover, β∗0 < α(x), then

|q(t, x, y)− q(t, x′, y)| 6 c2

(
|x− x′|α1(β∗0−α2θ)/α(x) ∧ 1

)
×
[
ρ̃y,0θ−γ2+(β∗0/α2)−(β∗0/α1)(t, x− y) + ρ̃y,0θ−γ2+(β∗0/α2)−(β∗0/α1)(t, x

′ − y)
]
.

(3.22)

If additionally there are some y0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(y0) for all z ∈ B(y0, r0),
then there is a constant c4 := c4(α, κ, r0) > 0 such that for every t ∈ (0, 1] and x ∈ Rd,

|q(t, x, y0)| 6 c4

(
ρy0,01−(α2/α1)+(β∗∗0 /α2) + ρ

y0,β∗∗0
1−(α2/α1)

)
(t, x− y0). (3.23)

Proof. Without loss of generality, throughout the proof we will assume that β0 < α2 and β∗0 = β0; otherwise,
we will replace β0 by β∗0 .

(i) According to (2.16), if κ(x, z) is independent of z, then

|q0(t, x, y)| � ρy,β0−γ (t, x− y), t ∈ (0, 1] and x, y ∈ Rd.
Therefore, by Corollary 3.2,

|q1(t, x, y)| �
∫ t

0

∫
ρz,β0−γ (t− s, x− z)ρy,β0−γ (s, z − y) dz ds

�B
(
(β̂0/α2)− γ, (β0/α2)− γ

)(
ρy,0

2((β̂0/α2)−γ)
+ ρy,β0−γ+((β0/α2)−γ)

)
(t, x− y),

where β̂0 := β0 ∧ (α2/2).
Suppose now that

|qn(t, x, y)| 6 ωn
(
ρy,0

(n+1)((β̂0/α2)−γ)
+ ρy,β0−γ+n((β0/α2)−γ)

)
(t, x− y), n > 0,

where the constant ωn is to be determined later. Hence, according to Corollary 3.2 again,

|qn+1(t, x, y)| 6C
∫ t

0

∫
ρz,β0−γ (t− s, x− z)ωn

(
ρy,0

(n+1)((β̂0/α2)−γ)
+ ρy,β0−γ+n((β0/α2)−γ)

)
(s, z − y) dz ds

6CωnB((β0/α2)− γ, (n+ 1)((β̂0/α2)− γ))
(
ρy,0

(n+2)((β̂0/α2)−γ)
+ ρy,β0−γ+(n+1)((β0/α2)−γ)

)
(t, x− y)

= : ωn+1

(
ρy,0

(n+2)((β̂0/α2)−γ)
+ ρy,β0−γ+(n+1)((β0/α2)−γ)

)
(t, x− y),

where
ωn+1 = CB

(
(β0/α2)− γ, (n+ 1)((β̂0/α2)− γ)

)
ωn,

and C is a constant independent of t, n, x and y. Note that ω0 6 C and B(γ, β) = Γ(γ)Γ(β)
Γ(γ+β) , where Γ is the

standard Gamma function. By iteration procedure we have

ωn 6C
n+1B

(
(β0/α2)− γ, n((β̂0/α2)− γ)

)
×B

(
(β0/α2)− γ, (n− 1)((β̂0/α2)− γ)

)
· · ·B

(
(β0/α2)− γ, (β̂0/α2)− γ

)
=

[
CΓ((β0/α2)− γ)

]n+1

Γ
(
(n+ 1)((β̂0/α2)− γ)

) .
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Therefore,

|qn(t, x, y)| 6
[
CΓ((β0/α2)− γ)

]n+1

Γ
(
(n+ 1)((β̂0/α2)− γ)

)(ρy,0
(n+1)((β̂0/α2)−γ)

+ ρy,β0−γ+n((β0/α2)−γ)

)
(t, x− y), (3.24)

and so combing all estimates together
∞∑
n=0

|qn(t, x, y)| 6

( ∞∑
n=0

[
CΓ((β0/α2)− γ)

]n+1

Γ
(
(n+ 1)((β̂0/α2)− γ)

))(ρy,0
2((β̂0/α2)−γ)

+ ρy,β0−γ

)
(t, x− y),

which means that q(t, x, y) :=
∑∞

n=0 qn(t, x, y) is absolutely convergent, and

|q(t, x, y)| 6 C1

(
ρy,0

2((β̂0/α2)−γ)
+ ρy,β0−γ

)
(t, x− y).

Thus, (3.18) is proved by using the fact that β0 6 2β̂0 and changing the constant γ properly. From (3.17)
and the fact q(t, x, y) =

∑∞
n=0 qn(t, x, y), it is easy to see that q(t, x, y) solves the equation (1.27).

(ii) Suppose that there are some y0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(y0) for all z ∈ B(y0, r0).
According to (2.17), it is easy to verify that for every z ∈ Rd,

|q0(s, z, y0)| �
(
|z − y0|β0 ∧ 1

)
·

{
1

(s1/α(y0)+|z−y0|)d+α(y0)
, |z − y0| 6 r0,

1
|z−y0|d+α1

, |z − y0| > r0

� ρy0,β00 (s, z − y0).

(3.25)

This along with the fact that |q0(t−s, x, z)| � ρz,β0−γ (t−s, x−z) for every x, z ∈ Rd yields that for all x ∈ Rd,

|q1(t, x, y0)| �
∫ t

0

∫
Rd
ρz,β0−γ (t− s, x− z)ρy0,β00 (s, z − y0) dz ds

6 CB
(
(β̂0/α2)− γ, (β0/α2)− γ

)(
ρy0,0

(β̂0/α2)+((β̂0/α2)−γ)
+ ρy0,β0(β0/α2)−γ

)
(t, x− y0).

Following the same arguments in part (i), we find that for every n > 0,

|qn(t, x, y0)| 6
[
CΓ((β0/α2)− γ)

]n+1

Γ
(
(n+ 1)((β̂0/α2)− γ)

)(ρy0,0
(β̂0/α2)+n((β̂0/α2)−γ)

+ ρy0,β0n((β0/α2)−γ)

)
(t, x− y0),

which implies q(t, x, y) :=
∑∞

n=1 qn(t, x, y) is absolutely convergent and gives us (3.20) immediately.
(iii) It suffices to prove (3.19) for the case that |x− x′| 6 R1 holds with some R1 > 0, since the case that

|x − x′| > 1 follows from (3.18) immediately. For any (fixed) ε > 0 small enough, let ρ̃y,βγ be defined by
(3.16). By (2.38), we have

|q0(t, x, y)− q0(t, x′, y)|

� (|x− x′|θ̃ ∧ 1)×
[(
ρ̃y,0θ−γ + ρ̃y,β0θ−γ−(β0/α(x))

)
(t, x− y) +

(
ρ̃y,0θ−γ + ρ̃y,β0θ−γ−(β0/α(x′))

)
(t, x′ − y)

]
,

(3.26)

where θ̃ := α1(β0 − α2θ)/α(x). Since β∗0 = β0 < α(x), by (1.3) we can find a constant R1 > 0 small enough
such that β0 < α(x) ∧ α(x′) for any x′ ∈ Rd with |x− x′| 6 R1. Then, according to (1.27), it holds that

|q(t, x, y)− q(t, x′, y)|

6 |q0(t, x, y)− q0(t, x′, y)|+
∫ t

0

∫
Rd
|q0(t− s, x, z)− q0(t− s, x′, z)||q(s, z, y)| dz ds

� (|x− x′|θ̃ ∧ 1)

×
{[(

ρ̃y,0θ−γ + ρ̃y,β0θ−γ−(β0/α(x))

)
(t, x− y) +

(
ρ̃y,0θ−γ + ρ̃y,β0θ−γ−(β0/α(x′))

)
(t, x′ − y)

]
+

∫ t

0

∫
Rd

[(
ρ̃z,0θ−γ + ρ̃z,β0θ−γ−(β0/α(x))

)
(t− s, x− z)

+
(
ρ̃z,0θ−γ + ρ̃z,β0θ−γ−(β0/α(x′))

)
(t− s, x′ − z)

][(
ρ̃y,0(β0/α2)−γ + ρ̃y,β0−γ

)
(s, z − y)

]
dz ds

}
� (|x− x′|θ̃ ∧ 1) ·

[
ρ̃y,0θ−2γ+(β0/α2)−(β0/α1)(t, x− y) + ρ̃y,0θ−2γ+(β0/α2)−(β0/α1)(t, x

′ − y)
]
.
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Here the second inequality follows from (3.18) and (3.26), thanks to the fact that β0 < α(x)∧α(x′), and the
last inequality is due to Remark 3.3(2) (which indicates that the convolution inequality (3.12) holds for ρ̃)
and the fact that γ < θ.

(iv) Now we are going to prove the case that κ(x, z) depends on z. Due to the assumption (α2/α1)− 1 <
β∗∗0 /α2, we can choose γ > 0 small enough such that γ + (α2/α1) − 1 =: γ2 < β∗∗0 /α2. Using (2.18) and
following the same arguments in part (i) with γ2 instead of γ, we can obtain that for every n > 1 and
(t, x, y) ∈ (0, 1]×Rd ×Rd,

|qn(t, x, y)| 6
[
CΓ((β∗∗0 /α2)− γ2)

]n+1

Γ
(
(n+ 1)((β∗∗0 /α2)− γ2)

)(ρy,0(n+1)((β∗∗0 /α2)−γ2) + ρy,β0−γ2+n(β∗∗0 /α2−γ2)

)
(t, x− y). (3.27)

Using this and (2.18), we find immediately that
∑∞

n=0 |qn(t, x, y)| <∞ and so (3.21) is true.
Note that, according to Proposition 2.9(2), in this case (3.26) holds with γ2 in place of γ. (Note that here

β0 is not replaced by β∗∗0 .) This along with (3.21) and the same argument in (iii) gives us (3.22).
(v) Suppose that the assumptions in part (2) of the Proposition hold, and that there are some y0 ∈ Rd

and r0 ∈ (0,∞] such that α(z) = α(y0) for all z ∈ B(y0, r0). Then, using (2.19) and repeating the arguments
in part (ii) above, we can prove (3.23). �

Furthermore, according to Proposition 2.8, we also have the following estimates for q(t, x, y).

Proposition 3.5. (1) Suppose that κ(x, z) is independent of z. Then there exists a constant c5 :=
c5(α, κ) > 0 such that for every t ∈ (0, 1] and x, y ∈ Rd,

|q(t, x, y)| 6


c5t
−1−(d/α(y)), |x− y| 6 t1/α(y),
c5

|x−y|d+α2 , t1/α(y) < |x− y| 6 1,
c5

|x−y|d+α1 , |x− y| > 1.

(3.28)

(2) Let β∗∗0 ∈ (0, β0] ∩ (0, α2/2). Suppose that κ(x, z) depends on z, and β∗∗0 /α2 > (α2/α1) − 1. Then
exists a constant c6 := c6(α, κ) > 0 such that for every t ∈ (0, 1] and x, y ∈ Rd,

|q(t, x, y)| 6


c6t
−1−(d/α(y)), |x− y| 6 t1/α(y),

c6t1−(α2/α1)

|x−y|d+α2 , t1/α(y) < |x− y| 6 1,

c6t1−(α2/α1)

|x−y|d+α1 , |x− y| > 1.

(3.29)

Proof. Without loss of generality, throughout the proof we still assume that β0 < α2/2 and β∗∗0 = β0.
We first suppose that κ(x, z) is independent of z. As in the proof of Proposition 3.4(1), we know that

q(t, x, y) =
∑∞

n=0 qn(t, x, y) is absolutely convergent. In particular,

|q(t, x, y)| 6 |q0(t, x, y)|+
∞∑
n=1

|qn(t, x, y)|. (3.30)

According to (3.24), we have
∞∑
n=1

|qn(t, x, y)| 6

( ∞∑
n=1

[
CΓ((β0/α2)− γ)

]n+1

Γ
(
(n+ 1)((β0/α2)− γ)

))(ρy,03((β0/α2)−γ) + ρy,β0(β0/α2)−2γ

)
(t, x− y) � ρy,00 (t, x− y),

where in the last inequality we choose γ > 0 small enough such that γ < β0/(2α2). Combining this estimate
with (2.34) and (3.30), we obtain (3.28) immediately.

If κ(x, z) depends on z and β0/α2 > (α2/α1)− 1, then one can use (2.35) and follow the same procedure
above to prove (3.29). �

4. Estimates for p(t, x, y)

4.1. Existence and upper bounds for p(t, x, y). By making full use of the estimates for q(t, x, y) in
Proposition 3.4, we now can prove that p(t, x, y) is well defined by (1.26).

Proposition 4.1. (1) If κ(x, z) is independent of z, then p(t, x, y) is well defined by (1.26), and for
every γ, c0 > 0, there exist positive constants c1 := c1(α, κ, γ, c0) and R0 := R0(α, κ, γ, c0) such that
for any t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) 6


c1t
−d/α(x), |y − x| 6 c0t

1/α(x),
c1t1−γ

|x−y|d+α(x) , c0t
1/α(x) 6 |y − x| 6 R0,

c1t1−γ

|x−y|d+α1 , |y − x| > R0.

(4.1)
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Suppose additionally that there are some x0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(x0) for every
z ∈ B(x0, r0). Then we can find a constant c2 := c2(α, κ, γ, r0) > 0 such that for every t ∈ (0, 1] and
y ∈ Rd,

p(t, x0, y) 6

{
c2t

(t1/α(x0)+|x0−y|)d+α(x0)
, |x0 − y| 6 r0/2,

c2t1−γ

|x0−y|d+α1
, |x0 − y| > r0/2.

(4.2)

(2) If κ(x, z) depends on z and (α2/α1)− 1 < min{β0/α2, 1/2}, then p(t, x, y) is well defined by (1.26),
and for every γ, c0 > 0, there exist constants c1 := c1(α, κ, γ, c0) and R0 := R0(α, κ, γ, c0) such that
for any t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) 6


c1t
−d/α(x), |y − x| 6 c0t

1/α(x),
c1t1−γ̃

|x−y|d+α(x) , c0t
1/α(x) 6 |y − x| 6 R0,

c1t1−γ̃

|x−y|d+α1 , |y − x| > R0,

(4.3)

where γ̃ := (α2/α1) − 1 + γ. Suppose additionally there exist some x0 ∈ Rd and r0 ∈ (0,∞]
such that α(z) = α(x0) for every z ∈ B(x0, r0). Then, for any c0 > 0, we can find a constant
c2 := c2(α, κ, γ, r0, c0) > 0 such that for every t ∈ (0, 1] and y ∈ Rd,

p(t, x0, y) 6


c2t
−d/α(x0), |y − x0| < c0t

1/α(x0),
c2t2−(α2/α1)

|y−x0|d+α(x0)
, c0t

1/α(x0) 6 |y − x0| < r0/2,

c2t1−γ̃

|x−y0|d+α1
, |y − x0| > r0/2.

(4.4)

Proof. Without loss of generality, throughout this proof we will assume that 2β0 < α2 and β∗∗0 = β0;
otherwise, we will replace β0 by β∗∗0 ∈ (0, β0] ∩ (0, α2/2). For simplicity, we only verify the case that c0 = 1.

(i) We first consider the case that κ(x, z) is independent of z. Note that

pz(t, x− z) � ρz,01 (t, x− z), t ∈ (0, 1], x, z ∈ Rd.
This, along with (3.18) and (3.13), yields that for every (t, x, y) ∈ (0, 1] × Rd × Rd and any constant
0 < γ < β0/α2, ∫ t

0

∫
Rd
pz(t− s, x− z)q(s, z, y) dz ds �

(
ρy,β01−γ + ρy,01+(β0/α2)−γ

)(
t, x− y

)
.

Therefore, p(t, x, y) is well defined by (1.26), and

p(t, x, y) �
(
ρy,01 + ρy,β01−γ + ρy,01+(β0/α2)−γ

)(
t, x− y

)
�
(
ρy,01 + ρy,β01−γ

)(
t, x− y

)
. (4.5)

When |x− y| 6 t1/α(x) 6 t1/α2 ,

ρy,β01−γ
(
t, x− y

)
� t−γ |x− y|β0ρy,01

(
t, x− y

)
� t(β0/α2)−γρy,01

(
t, x− y

)
.

Hence, due to γ < β0/α2, we get

p(t, x, y) � ρy,01

(
t, x− y

)
� t−d/α(y) � t−d/α(y;t1/α2 ) � t−d/α(x), (4.6)

where the third inequality follows from (3.11).
Next, we will verify the other two cases in the upper bound (4.1). Observe that for every t ∈ (0, 1] and

x, y, z ∈ Rd such that |x− y| 6 1 and |z| 6 1,
1

(t1/α(y) + |z|)d+α(y)
=

1

(t1/α(x)t(1/α(y))−(1/α(x)) + |z|)d+α(y)
� 1

(t1/α(x)t|α(x)−α(y)|/α2
1 + |z|)d+α(y)

� 1

(t1/α(x)t|α(x)−α(y)|/α2
1 + |z|t|α(x)−α(y)|/α2

1)d+α(y)

= t−|α(x)−α(y)|(d+α(y))/α2
1 · 1

(t1/α(x) + |z|)α(y)−α(x)
· 1

(t1/α(x) + |z|)d+α(x)

� t−(d+α2)|α(x)−α(y)|/α2
1 · t−|α(x)−α(y)|/α1 · 1

(t1/α(x) + |z|)d+α(x)
� t−C1R

β0
0

(t1/α(x) + |z|)d+α(x)
,

where the second inequality we used t|α(x)−α(y)|/α2
1 6 1, and the third inequality follows from the fact that

for all t ∈ (0, 1] and x, y, z ∈ Rd with |z| 6 1,
1

(t1/α(x) + |z|)α(y)−α(x)
� t−|α(y)−α(x)|/α(x).
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Thus, choosing R0 := R0(α, γ) small enough such that C1R
β0
0 < γ and using the definition of ρx,00 , we can

get that for every t ∈ (0, 1] and x, y, z ∈ Rd with |x− y| 6 R0 and |z| 6 1,

ρy,00 (t, z) � t−γρx,00 (t, z). (4.7)

By the definition of (1.10), we know immediately that (4.7) still holds for every |x − y| 6 R0 and |z| > 1.
This is, (4.7) holds for all x, y, z ∈ Rd with |x− y| 6 R0.

Hence, combining (4.5), (4.6) with (4.7) and changing the constant γ properly, we find that

p(t, x, y) �
(
ρy,01 + ρy,β01−γ

)(
t, x− y

)
�


t−d/α(x), |y − x| 6 t1/α(x),

t1−γ

|x−y|d+α(x) , t1/α(x) 6 |y − x| 6 R0,
t1−γ

|x−y|d+α1 , |y − x| > R0.

(ii) If there are some x0 ∈ Rd and r0 ∈ (0,∞] such that α(z) = α(x0) for all z ∈ B(x0, r0), then for every
y ∈ B(x0, r0/2) and z ∈ B(y, r0/2), α(z) = α(y) = α(x0). Hence, by (3.20), we have

|q(t, x, y)| �
(
ρy,0β0/α2

+ ρy,β00

)
(t, x− y) for all x ∈ Rd and y ∈ B

(
x0, r0/2

)
.

Based on the inequality above, the computation in part (i) is valid with γ = 0 for x = x0 and y ∈ B(x0, r0/2),
which proves (4.2) for the case that y ∈ B(x0, r0/2). The upper bound for the case |y − x0| > r0/2 is just
the same as that of (4.1).

(iii) If κ(x, z) depends on z and (α2/α1) − 1 < β0/α2, then, according to (3.21), we know that the
computation in part (i) holds with γ replaced by γ̃. Thus, following the argument in part (i), we can obtain
(4.3). Similarly as in (ii), (4.4) could be verified by using (3.23). �

Remark 4.2. The estimate (4.2) indicates that if α(x) is a constant α ∈ (0, 2) locally, then we can get
a upper bound for p(t, x, y) which is also locally comparable with that for the heat kernel of rotationally
symmetric α-stable process. In particular, when α(x) ≡ α for all x ∈ Rd, (4.4) coincides with the upper
bound given in [20, Therem 1.1].

Besides Proposition 4.1, we also can obtain the following upper bound for p(t, x, y), which is based on
Proposition 3.5.

Proposition 4.3. (1) If κ(x, z) is independent of z, then for any c0 > 0, there exists a positive constant
c1 := c1(α, κ, c0) such that for every t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) 6


c1t
−d/α(x), |x− y| 6 c0t

1/α(x),
c1t

|x−y|d+α2 , c0t
1/α(x) < |x− y| 6 1,

c1t
|x−y|d+α1 , |x− y| > 1.

(4.8)

(2) Let β∗∗0 ∈ (0, β0] ∩ (0, α2/2). Suppose that κ(x, z) depends on z and β∗∗0 /α2 > (α2/α1) − 1. Then,
for any c0 > 0, there exists a positive constant c2 := c2(α, κ, c0) such that for every t ∈ (0, 1] and
x, y ∈ Rd,

p(t, x, y) 6


c2t
−d/α(x), |x− y| 6 c0t

1/α(x),
c2t2−(α2/α1)

|x−y|d+α2 , c0t
1/α(x) < |x− y| 6 1,

c2t2−(α2/α1)

|x−y|d+α1 , |x− y| > 1.

(4.9)

Proof. Throughout the proof, we assume that β0 < α2/2 and that β0 = β∗∗0 . We only verify the case that
c0 = 1.

(1) We first suppose that κ(x, z) is independent of z.
Case (a): |x− y| 6 t1/α(x).
According to (4.1), we can easily see that (4.8) holds.
Case (b): |x− y| > 2.
We have ∣∣∣∣∫

Rd
pz(t− s, x− z)q(s, z, y) dz

∣∣∣∣ 6 ∫
{|z−y|>|x−y|/2}

pz(t− s, x− z)|q(s, z, y)| dz

+

∫
{|z−y|6|x−y|/2}

pz(t− s, x− z)|q(s, z, y)| dz

=: J1 + J2.

(4.10)
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When |z − y| > |x− y|/2 > 1, it follows from (3.28) that for any s ∈ (0, 1] and y, z ∈ Rd,

|q(s, z, y)| � 1

|z − y|d+α1
� 1

|x− y|d+α1
.

Therefore, by (2.21) and (2.1),

J1 �
1

|x− y|d+α1

∫
Rd
ρz,01 (t− s, x− z) dz � 1

|x− y|d+α1
.

Meanwhile, it is not difficult to see that condition |z − y| 6 |x− y|/2 implies |z − x| > |x− y|/2 > 1, and so

pz(t− s, x− z) � t− s
|x− z|d+α1

� t

|x− z|d+α1
.

This, along with (3.18) and (2.3), yields that

J2 �
t

|x− y|d+α1

∫
Rd

(
ρy,0(β0/α2)−γ + ρy,β0−γ

)
(s, z − y) dz � t

|x− y|d+α1
· s−1+(β0/α2)−γ .

Combining all the estimates above together and choosing 0 < γ < β0/α2, we find that∣∣∣∣∫ t

0

∫
Rd
pz(t− s, x− z)q(s, z, y) dz ds

∣∣∣∣ � ∫ t

0
(J1 + J2) ds � t

|x− y|d+α1
·
(
1 + t(β0/α2)−γ)� t

|x− y|d+α1
.

Then, the desired assertion (4.8) immediately follows from the estimate above and (1.26).
Case (c): t1/α(x) 6 |x− y| 6 2.
We still define J1 and J2 by those in (4.10). If |z − y| > |x− y|/2, then, by (3.28), we have

|q(s, z, y)| �


s−d/α(y), |z − y| 6 s1/α(y),

|z − y|−d−α2 , s1/α(y) 6 |z − y| 6 1,

|z − y|−d−α1 , |z − y| > 1

�


|x− y|−d−α(y), |z − y| 6 s1/α(y),

|x− y|−d−α2 , s1/α(y) 6 |z − y| 6 1,

|x− y|−d−α1 , |z − y| > 1

� |x− y|−d−α2 ,

where in the second inequality we have used that fact that if |z − y| 6 s1/α(y) and |x− y| � |z − y|, then

s−d/α(y) � |z − y|−d−α(y) � |x− y|−d−α(y),

the last inequality follows from the fact that |x− y|−d−α1 � |x− y|−d−α2 , thanks to |x− y| 6 2. Hence,

J1 �
1

|x− y|d+α2

∫
Rd
ρz,01 (t− s, x− z) dz � 1

|x− y|d+α2
.

At the same time, if |z − y| 6 |x− y|/2, then

pz(t− s, x− z) � t− s
|x− z|d+α(z)

� t

|x− y|d+α(z)
� t

|x− y|d+α2
,

where the last inequality follows from |x−y|−d−α(z) � |x−y|−d−α2 since |x−y| 6 2. Combining this estimate
with (3.18), we arrive at

J2 �
t

|x− y|d+α2

∫
Rd

(
ρy,0(β0/α2)−γ + ρy,β0−γ

)
(s, z − y) dz � t

|x− y|d+α2
· s−1+(β0/α2)−γ .

Using all the estimates above and choosing 0 < γ < β0/α2, we get∣∣∣∣∫ t

0

∫
Rd
pz(t− s, x− z)q(s, z, y) dz ds

∣∣∣∣ � ∫ t

0
(J1 + J2) ds � t

|x− y|d+α2
·
(

1 + t(β0/α2)−γ
)
� t

|x− y|d+α2
.

This, along with (1.26) immediately yields (4.8).
(2) If κ(x, z) depends on z and β0/α2 > (α2/α1) − 1, then, applying (3.29) and following the same

arguments as above, we can prove (3.19). The details are omitted here. �
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4.2. Hölder regularity and gradient estimates of p(t, x, y). In this part, we consider the Hölder regu-
larity and gradient estimates of p(t, ·, y).

Lemma 4.4. There exists a constant c1 := c1(α, κ) > 0 such that for all x, x′, y ∈ Rd and t ∈ (0, 1],∣∣∇py(t, x)−∇py(t, x′)
∣∣ 6c1

[(
t−1/α(y)|x− x′|

)
∧ 1
] (
ρy,01−(1/α(y))(t, x) + ρy,01−(1/α(y))(t, x

′)
)
. (4.11)

Proof. We write Ly = L
y
κ1/2

+ L
y
κ̂ with

L
y
κ1/2

f(x) =
1

2

∫
Rd
δf (x; z)

κ1

2

1

|z|d+α(y)
dz, f ∈ C2

c (Rd),

L
y
κ̂f(x) =

1

2

∫
Rd
δf (x; z)

κ̂(y, z)

|z|d+α(y)
dz, f ∈ C2

c (Rd),

where κ1 > 0 is the constant in (1.4), κ̂(y, z) := κ(y, z)− κ1/2 and

δf (x; z) = f(x+ z) + f(x− z)− 2f(x).

Then, we have

py(t, x) =

∫
Rd
pyκ1/2(t, x− z)pyκ̂(t, z) dz, x ∈ Rd, t ∈ (0, 1], (4.12)

where pyκ1/2 and pyκ̂ denote the fundamental solutions (i.e. heat kernels) associated with the operators Lyκ1/2
and L

y
κ̂, respectively.

We first show that (4.11) holds for pyκ1/2. Indeed, for every x, x
′ ∈ Rd such that |x− x′| 6 1,∣∣∇pyκ1/2(1, x)−∇pyκ1/2(1, x′)

∣∣ =

∣∣∣∣∫ 1

0

d

dθ

(
∇pyκ1/2

(
1, x+ θ(x′ − x)

))
dθ

∣∣∣∣
6 |x− x′| ·

∫ 1

0

∣∣∣∇2pyκ1/2
(
1, x+ θ(x′ − x)

)∣∣∣ dθ
� |x− x′| ·

∫ 1

0

(
1 +

∣∣x+ θ(x′ − x)
∣∣)−d−α(y)−2

dθ

� |x− x′| · (1 + |x|)−d−α(y)−2 ,

where in the third inequality we have used (2.20), and the last inequality is due to the fact that for all
θ ∈ [0, 1] and x, x′ ∈ Rd with |x− x′| 6 1(

1 +
∣∣x+ θ(x′ − x)

∣∣)−1 � (1 + |x|)−1 .

Also by (2.20), we have that for every x, x′ ∈ Rd with |x− x′| > 1,∣∣∇pyκ1/2(1, x)−∇pyκ1/2(1, x′)
∣∣ 6 ∣∣∇pyκ1/2(1, x)

∣∣+
∣∣∇pyκ1/2(1, x′)

∣∣
� (1 + |x|)−d−α(y)−1 + (1 + |x′|)−d−α(y)−1.

Combining both estimates above yields that for all x, x′ ∈ Rd,∣∣∇pyκ1/2(1, x)−∇pyκ1/2(1, x′)
∣∣ � (|x− x′| ∧ 1

) (
(1 + |x|)−d−α(y) + (1 + |x′|)−d−α(y)

)
. (4.13)

Since the Markov process (X
y,κ1/2
t )t>0 associated with L

y
κ1/2

is a constant time-change of standard rotation-
ally invariant α(y)-stable process, by the scaling property, for all t > 0 and x ∈ Rd,

pyκ1/2(t, x) = t−d/α(y)pyκ1/2(1, t−1/α(y)x).

This along with (4.13) yields that for all x, x′ ∈ Rd and t ∈ (0, 1],∣∣∇pyκ1/2(t, x)−∇pyκ1/2(t, x′)
∣∣ � [(t−1/α(y)|x− x′|

)
∧ 1
] (
ρy,01−(1/α(y))(t, x) + ρy,01−(1/α(y))(t, x

′)
)
. (4.14)

Therefore, for every x, x′ ∈ Rd and t ∈ (0, 1],∣∣∇py(t, x)−∇py(t, x′)
∣∣

=

∣∣∣∣∫
Rd

(
∇pyκ1/2(t, x− z)−∇pyκ1/2(t, x′ − z)

)
· pyκ̂(t, z) dz

∣∣∣∣
6
∫
Rd

∣∣∇pyκ1/2(t, x− z)−∇pyκ1/2(t, x′ − z)
∣∣ · pyκ̂(t, z) dz
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�
[(
t−1/α(y)|x− x′|

)
∧ 1
]
·

(∫
Rd
ρy,01−(1/α(y))(t, x− z)ρ

y,0
1 (t, z) dz +

∫
Rd
ρy,01−(1/α(y))(t, x

′ − z)ρy,01 (t, z) dz

)
�
[(
t−1/α(y)|x− x′|

)
∧ 1
]
·
(
ρy,01−(1/α(y))(t, x) + ρy,01−(1/α(y))(t, x

′)
)
,

where the equality above is due to (4.12), the second inequality follows from (4.14) and (2.21), and in the
last inequality we have used (3.14). By now we have finished the proof. �

Lemma 4.5. For every 0 < ε, θ < α1 and 0 < γ < (θ/α2)∧((1−(θ/α1))/2), there exist R1 := R1(α, κ, γ, θ) ∈
(0, 1] and c1 := c1(α, κ, γ, θ, ε) > 0 such that for all t ∈ (0, 1] and x, y, z, w ∈ Rd with |x− y| 6 R1,

|px(t, z)− py(t, z)| 6 c1|x− y|β0 ρ̃x,01−2γ−(θ/α1)(t, z), (4.15)

|∇px(t, z)−∇py(t, z)| 6 c1|x− y|β0 ρ̃x,01−(1/α(x))−2γ−(θ/α1)(t, z) (4.16)

and
|Lwpx(t, z)− Lwpy(t, z)| 6 c1|x− y|β0 ρ̃x,0−2γ−(θ/α1)(t, z), (4.17)

where ρ̃ is defined by (3.16).

Proof. (i) Note that for all t ∈ (0, 1] and x, y, z ∈ Rd,

px(t, z)− py(t, z) =

∫ t

0

d

ds

(∫
Rd
px(s, w)py(t− s, z − w) dw

)
ds

=

∫ t

0

(∫
Rd

(
Lxpx(s, w) py(t− s, z − w)− px(s, w)Lypy(t− s, z − w)

)
dw

)
ds

=

∫ t/2

0

∫
Rd

(
Lx − Ly

)
px(s, w) py(t− s, z − w) dw ds

+

∫ t

t/2

∫
Rd
px(s, w)

(
Lx − Ly

)
py(t− s, z − w) dw ds

=

∫ t/2

0

(∫
Rd

(
Lx − Ly

)
px(s, w)

(
py(t− s, z − w)− py(t− s, z)

)
dw

)
ds

+

∫ t

t/2

(∫
Rd

(
px(s, w)− px(s, z)

)(
Lx − Ly

)
py(t− s, z − w) dw

)
ds

=: J1 + J2.

(4.18)

Here, the first equality is due to the following estimate∫ t

0

∣∣∣∣ dds
(∫

Rd
px(s, w)py(t− s, z − w) dw

) ∣∣∣∣ ds <∞,
which can be verified by the proofs of (4.22) and (4.23) below. By estimates for px(·, ·) and py(·, ·) in Lemma
2.6, we can change the order of derivatives and integrals in the second equality. The third and the fourth
equalities above follow from the following facts respectively∫

Rd
Lxf(z1)g(z1) dz1 =

∫
Rd
f(z1)Lxg(z1) dz1, f, g ∈ C∞c (Rd),

∫
Rd

Lyf(z1)g(z1) dz1 =

∫
Rd
f(z1)Lyg(z1) dz1, f, g ∈ C∞c (Rd)

and ∫
Rd

Lxf(z1) dz1 =

∫
Rd

Lyf(z1) dz1 = 0, f ∈ C∞c (Rd).

Note that, also due to estimates for px(·, ·) and py(·, ·), the equalities above are still true for px(t, ·) and
py(t, ·).

By Lemma 2.7, for any γ > 0 there is a constant R0 := R0(α, κ, γ) ∈ (0, 1) such that for all t ∈ (0, 1] and
x, y, w ∈ Rd with |x− y| 6 R0,∣∣(Lx − Ly

)
px(t, w)

∣∣ � (|x− y|β0 ∧ 1) · ρ̃x,0−γ(t, w). (4.19)
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On the other hand, for any θ ∈ (0, 1) and γ ∈ (0, 1), there exists a constant R1 := R1(α, κ, γ) ∈ (0, R0) such
that for all x, y, z ∈ Rd with |x− y| 6 R1, 0 < s 6 t 6 1,∣∣py(t− s, z − w)− py(t− s, z)

∣∣ � [((t− s)−1/α(y)|w|
)
∧ 1
]
·
[
ρy,01 (t− s, z − w) + ρy,01 (t− s, z)

]
�
[(

(t− s)−1/α(y)|w|
)θ ∧ 1

]
·
[
ρy,01 (t− s, z − w) + ρy,01 (t− s, z)

]
�
[(

(t− s)−1/α1 |w|
)θ ∧ 1

]
·
[
ρx,01−γ(t− s, z − w) + ρx,01−γ(t− s, z)

]
�
(
|w|θ ∧ 1

)
·
[
ρx,01−γ−(θ/α1)(t− s, z − w) + ρx,01−γ−(θ/α1)(t− s, z)

]
,

(4.20)

where the first inequality follows from (2.23) and in the third inequality we have used (4.7).
Next, we choose θ ∈ (0, 1 ∧ α1) and 0 < γ < (θ/α2) ∧ ((1 − (θ/α1))/2). Then, according to (4.19) and

(4.20), for any t ∈ (0, 1] and x, y, z ∈ Rd with |x− y| 6 R1,

J1 � |x− y|β0 ·
(∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w)ρ̃x,01−γ−(θ/α1)(t− s, z − w) dw ds

+

∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w)ρ̃x,01−γ−(θ/α1)(t− s, z) dw ds

)
=: |x− y|β0 ·

(
J11 + J12

)
.

As mentioned in Remark 3.3(2), (3.15) holds for ρ̃, from which we can obtain that

J11 � ρ̃x,01−2γ−(θ/α1)(t, z).

At the same time, observe that for every 0 < s < t/2,

ρ̃x,01−γ−(θ/α1)(t− s, z) � ρ̃
x,0
1−γ−(θ/α1)(t, z),

then we have

J12 � ρ̃x,01−γ−(θ/α1)(t, z)

∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w) dw ds

� ρ̃x,01−γ−(θ/α1)(t, z)

∫ t/2

0
s−1−γ+(θ/α2) ds � ρ̃x,01−2γ−(θ/α1)(t, z),

(4.21)

where in the second inequality we used the fact that (2.3) is true for ρ̃, see again Remark 3.3(2). By both
estimates for J11 and J12, we get that for any t ∈ (0, 1] and x, y, z ∈ Rd with |x− y| 6 R1,

J1 � |x− y|β0 · ρ̃x,01−2γ−(θ/α1)(t, z). (4.22)

For J2, we need to handle the singularity near s = t. As the same way as before, we can obtain that for all
t ∈ (0, 1] and x, y, z, w ∈ Rd with |x− y| 6 R1,∣∣(Lx − Ly

)
py(t− s, z − w)

∣∣ � (|x− y|β0 ∧ 1
)
· ρ̃y,0−γ(t− s, z − w) �

(
|x− y|β0 ∧ 1

)
· ρ̃x,0−2γ(t− s, z − w)

and ∣∣px(s, w)− px(s, z)
∣∣ � (|z − w|θ ∧ 1

)
·
(
ρx,01−(θ/α1)(s, z) + ρx,01−(θ/α1)(s, w)

)
.

Using both estimates above and following the same argument as that for J1, we can get that for any t ∈ (0, 1]
and x, y, z ∈ Rd with |x− y| 6 R1,

J2 � |x− y|β0 ρ̃x,01−2γ−(θ/α1)(t, z). (4.23)

Then, (4.15) is proved.
(ii) Following the argument of (4.18), we can verify that for all t ∈ (0, 1] and x, y, z ∈ Rd,

∇px(t, z)−∇py(t, z)

=

∫ t

0

d

ds

(∫
Rd
∇px(s, w)py(t− s, z − w) dw

)
ds

=

∫ t

0

(∫
Rd

(
Lxpx(s, w)∇py(t− s, z − w)−∇px(s, w)Lypy(t− s, z − w)

)
dw

)
ds

=

∫ t/2

0

∫
Rd

(
Lx − Ly

)
px(s, w)∇py(t− s, z − w) dw ds

+

∫ t

t/2

∫
Rd
∇px(s, w)

(
Lx − Ly

)
py(t− s, z − w) dw ds
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=

∫ t/2

0

(∫
Rd

(
Lx − Ly

)
px(s, w)

(
∇py(t− s, z − w)−∇py(t− s, z)

)
dw

)
ds

+

∫ t

t/2

(∫
Rd

(
∇px(s, w)−∇px(s, z)

)(
Lx − Ly

)
py(t− s, z − w) dw

)
ds

=: I1 + I2,

where in the first and the second equalities we used the integration by part formula and in the second equality
we also used the fact that ∇Lxpy(t, w) = Lx∇py(t, w).

Observe that

t−d/α(y) 6 t−d/α(x)t
−
∣∣ d
α(y)
− d
α(x)

∣∣
6 t−d/α(x)t

− |α(x)−α(z)|
α21 6 t−d/α(x)t−C|x−z|

β0
.

Then, according to (4.11) and the proof of (4.20), for any θ ∈ (0, 1), γ ∈ (0, 1), there exists a constant
R1 := R1(α, κ, γ) ∈ (0, R0) such that for all 0 < t 6 1 and x, y ∈ Rd with |x− y| 6 R1,

|∇py(t, z − w)−∇py(t, z)|

�
(
|w|θ ∧ 1

)
·
[
ρx,01−(1/α(x))−γ−(θ/α1)(t, z − w) + ρx,01−(1/α(x))−γ−(θ/α1)(t, z)

]
.

(4.24)

Choosing θ ∈ (0, 1 ∧ α1) and 0 < γ < (θ/α2) ∧ ((1 − (θ/α1))/2), and using (4.19) and (4.24), we arrive at
that for any t ∈ (0, 1] and x, y, z ∈ Rd with |x− y| 6 R1,

I1 � |x− y|β0 ·
(∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w)ρ̃x,01−(1/α(x))−γ−(θ/α1)(t− s, z − w) dw ds

+

∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w)ρ̃x,01−(1/α(x))−γ−(θ/α1)(t− s, z) dw ds

)
=: |x− y|β0 ·

(
I11 + I12

)
.

Noticing that, by Remark 3.3(2), (3.14) still holds for ρ̃, we have

I11 � ρ̃x,00 (t, z)

∫ t/2

0

(
s−γ(t− s)−(1/α(x))−γ−(θ/α1) + s−1+θ/α2−γ(t− s)1−(1/α(x))−γ−(θ/α1)

)
ds

� ρ̃x,00 (t, z) · t1−(1/α(x))−2γ−(θ/α1) � ρ̃x,01−(1/α(x))−2γ−(θ/α1)(t, z).

On the other hand, following the argument of (4.21), we can obtain that

I12 � ρ̃x,01−(1/α(x))−γ−(θ/α1)(t, z) ·
∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w) dw ds � ρ̃x,01−(1/α(x))−2γ−(θ/α1)(t, z).

By the same argument as that for I1, we can also obtain that for every t ∈ (0, 1] and x, y, z ∈ Rd with
|x− y| 6 R1,

I2 � |x− y|β0 ρ̃x,01−(1/α(x))−2γ−(θ/α1)(t, z).

Combining all estimates together, we have shown (4.16).
(iii) Following the same procedure as these of (4.15) and (4.16), we can also verify (4.17). �

Proposition 4.6. (1) Suppose that κ(x, z) is independent of z. Then, for every γ > 0 small enough,
there exist positive constants c1 := c1(α, κ, γ) and R1 := R1(α, κ, γ) such that for all t ∈ (0, 1] and
x, x′, y ∈ Rd with |x− x′| 6 R1∣∣p(t, x, y)− p(t, x′, y)

∣∣ 6 c1|x− x′|(α(x)−γ)+∧1
(
ρy,0γ/(2α2)(t, x− y) + ρy,0γ/(2α2)(t, x

′ − y)
)
. (4.25)

(2) Let β∗∗0 ∈ (0, β0]∩ (0, α2/2). If κ(x, z) depends on z and (α2/α1)− 1 < β∗∗0 /α2, then for every γ > 0,
there exist positive constants c1 := c1(α, κ, γ) and R1 := R1(α, κ, γ) such that for all t ∈ (0, 1] and
x, x′, y ∈ Rd with |x− x′| 6 R1∣∣p(t, x, y)− p(t, x′, y)

∣∣ 6c1|x− x′|(α1−γ)+∧1
(
ρy,0γ1 (t, x− y) + ρy,0γ1 (t, x′ − y)

)
, (4.26)

where γ1 := 1− (α2/α1) + (γ/(2α2)).

Proof. For simplicity, we assume that β0 < α2/2 and β∗∗0 = β0 as before.
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(1) We first suppose that κ(x, z) is independent of z. According to (2.23), for any γ > 0,∣∣pz(t− s, x− z)− pz(t− s, x′ − z)∣∣
�
[(

(t− s)−1/α(z)|x− x′|
)
∧ 1
]
·
[
ρz,01 (t− s, x− z) + ρz,01 (t− s, x′ − z)

]
�
[(

(t− s)−1/α(z)|x− x′|
)(α(x)−γ)+∧1 ∧ 1

][
ρz,01 (t− s, x− z) + ρz,01 (t− s, x′ − z)

]
� |x− x′|(α(x)−γ)+∧1(t− s)−(α(x)−γ)+/α(z) ×

[
ρz,01 (t− s, x− z) + ρz,01 (t− s, x′ − z)

]
.

(4.27)

On the one hand, observing that
α(x)− γ
α(z)

6 1 +
|α(x)− α(z)|

α1
− γ

α2
6 1 +

C|x− z|β0
α1

− γ

α2
,

we can find a constant R2 := R2(α, γ) > 0 such that for every x, x′, z ∈ Rd satisfying |x − x′| 6 R2 and
|x− z| 6 2R2 (which imply that |x′ − z| 6 3R2), it holds

α(x)− γ
α(z)

6 1− 2γ

3α2
,

which in turn yields that for every 0 < s 6 t 6 1 and x, x′, z ∈ Rd with |x− x′| 6 R2 and |x− z| 6 2R2∣∣pz(t− s, x− z)− pz(t− s, x′ − z)∣∣ � |x− x′|(α(x)−γ)+∧1
(
ρz,02γ/(3α2)(t− s, x− z) + ρz,02γ/(3α2)(t− s, x

′ − z)
)
.

On the other hand, when |x − x′| 6 R2 and |z − x| > 2R2 (which imply that |z − x′| > R2), we obtain
from (2.20) and the mean value theorem that

|pz(t− s, x− z)− pz(t− s, x′ − z)| 6 |x− x′| · |∇pz(t− s, x− z + θ̃x,x′,z(x
′ − x))|

� |x− x′| · t− s
((t− s)1/α(z) + |x− z|)d+α(z)+1

� |x− x′| · t− s
|x− z|d+α1

� |x− x′| · ρz,01 (t− s, x− z).

where in the first inequality |θ̃x,x′z| 6 1 is a constant (which may depend on x, x′ and z), in the second
inequality we have used the fact that

|x− z + θ̃x,x′,z(x
′ − x)| > |x− z| − |x′ − x| > |x− z|/2,

and the fourth inequality follows from |z − x| > R2 > C(t− s)1/α(z).
As a result, we obtain that for all x, x′, z ∈ Rd with |x− x′| 6 R2,∣∣pz(t, x− z)− pz(t, x′ − z)∣∣ � |x− x′|(α(x)−γ)+∧1

(
ρz,02γ/(3α2)(t, x− z) + ρz,02γ/(3α2)(t, x

′ − z)
)
. (4.28)

Then, using (3.18) and (3.13) and changing the constant γ properly, we arrive at for every |x− x′| 6 R2,∫ t

0

∫
Rd
|pz(t− s, x− z)− pz(t− s, x′ − z)||q(s, z, y)| dz ds

� |x− x′|(α(x)−γ)+∧1 ·
[(
ρy,0(β0/α2)+(γ/(2α2)) + ρy,β0γ/(2α2)

)
(t, x− y)+

(
ρy,0(β0/α2)+(γ/(2α2)) + ρy,β0γ/(2α2)

)
(t, x′ − y)

]
.

Combining all the estimates together with (1.26) and using again (4.28), we can prove (4.25) immediately.
(2) Now we assume that κ(x, z) depends on z and (α2/α1)−1 < β0/α2. Replacing α(x) by α(z) in (4.27),

we find that for every x, x′ ∈ Rd,∣∣pz(t− s, x− z)− pz(t− s, x′ − z)∣∣
� (|x− x′|(α1−γ)+∧1 ∧ 1)(t− s)−(α(z)−γ)+/α(z)

(
ρz,01 (t− s, x− z) + ρz,01 (t− s, x′ − z)

)
� (|x− x′|(α1−γ)+∧1 ∧ 1)

[
ρz,0γ/α2

(t− s, x− z) + ρz,0γ/α2
(t− s, x′ − z)

]
.

Combining this with (1.26), (3.21) and (3.13), and following the same arguments as above, we arrive at for
all x, x′ ∈ Rd with |x− x′| 6 R2,∣∣p(t, x, y)− p(t, x′, y)

∣∣ � |x− x′|(α1−γ)+∧1

×
[(
ρy,0γ/α2

(t, x− y) + ρy,0γ/α2
(t, x′ − y)

)
+

∫ t

0

∫
Rd

(
ρz,0γ/α2

(t− s, x− z) + ρz,0γ/α2
(t− s, x′ − z)

)
×
(
ρy,0(β0/α2)−[(α2/α1)−1+γ/(2α2)] + ρy,β0−[(α2/α1)−1+γ/(2α2)]

)
(s, z − y) dz ds

]
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� |x− x′|(α1−γ)+∧1
[(
ρy,0β0/α2+γ1

+ ρy,β0γ1

)
(t, x− y) +

(
ρy,0β0/α2+γ1

+ ρy,β0γ1

)
(t, x′ − y)

]
,

where γ1 := 1− α2/α1 + γ/(2α2). By now we have verified (4.26). The proof is complete. �

Furthermore, we have the following gradient estimates for p(t, x, y).

Proposition 4.7. (1) Suppose that κ(x, z) is independent of z. Let β∗0 := β0 ∧ α2. If β̃0(x0) :=
(α1β0/α(x0)) ∧ α1 > 1 − α(x0) for some x0 ∈ Rd, then for every fixed t ∈ (0, 1] and y ∈ Rd,
p(t, ·, y) is differentiable at x = x0. Moreover, for every γ > 0,

|∇p(t, ·, y)(x0)| 6 c1ρ
y,0
1−(1/α(x0))+(β∗0/α2)−(β∗0/α1)−γ(t, x0 − y) (4.29)

holds for some c1 := c1(α, κ, γ, x0) > 0.
(2) Suppose that κ(x, z) depends on z and (α2/α1)− 1 < β∗∗0 /α2, where β∗∗0 := β0 ∧ (α2/2). If β̃0(x0)−

(α1α2/α(x0))((α2/α1)−1) > 1−α1 for some x0 ∈ Rd with β̃0(x0) defined in (i), then for every fixed
t ∈ (0, 1] and y ∈ Rd, p(t, ·, y) is differentiable at x0 ∈ Rd. Furthermore, for every γ > 0, there exists
a constant c2 := c2(α, κ, γ, x0) > 0 such that

|∇p(t, ·, y)(x0)| 6 c2ρ
y,0
1−(1/α1)+(β∗0/α2)−(β∗0/α1)−γ2(t, x0 − y), (4.30)

where γ2 := (α2/α1)− 1 + γ.

Proof. (1) We first assume that κ(x, z) is independent of z. For simplicity, we assume that β0 < α(x0), and
so β∗0 = β0 and β̃0(x0) = α1β0/α(x0). We will show that we can take the gradient with respect to variable
x in the equation (1.26). Note that∫ t

0

∣∣∣∣∫
Rd
∇pz(t− s, x0 − z)q(s, z, y) dz

∣∣∣∣ ds
6
∫ t/2

0

∣∣∣∣∫
Rd
∇pz(t− s, x0 − z)q(s, z, y) dz

∣∣∣∣ ds
+

∫ t

t/2

∣∣∣∣∫
Rd
∇pz(t− s, x0 − z) (q(s, z, y)− q(s, x0, y)) dz

∣∣∣∣ ds
+

∫ t

t/2

∣∣∣∣∫
Rd

(∇pz(t− s, x0 − z)−∇px0(t− s, x0 − z)) q(s, x0, y) dz

∣∣∣∣ ds
=:

∫ t/2

0

∣∣∣∣∫
Rd
J1(s, z) dz

∣∣∣∣ ds+

∫ t

t/2

∣∣∣∣∫
Rd
J2(s, z) dz

∣∣∣∣ ds+

∫ t

t/2

∣∣∣∣∫
Rd
J3(s, z) dz

∣∣∣∣ ds,
where in the inequality above we used the fact that for any s ∈ (t/2, t),∫

Rd
∇px0(t− s, x0 − z)q(s, x0, y) dz = q(s, x0, y)

∫
Rd
∇px0(t− s, x0 − z) dz = 0.

According to (2.20),

|∇pz(t, x− z)| � t

(t1/α(z) + |x− z|)d+α(z)+1
. (4.31)

Observing that ∣∣∣ 1

α(z)
− 1

α(x)

∣∣∣ 6 |α(x)− α(z)|
α2

1

6 C|x− z|β0 ,

we find by (4.31) that for every (small enough) γ > 0, there is a constant R1 := R1(α, κ, γ) > 0 such that

|∇pz(t, x− z)| �

{
ρz,01−(1/α(z))(t, x− z), |x− z| 6 R1,

t
|x−z|d+α1+1 , |x− z| > R1

� ρz,01−(1/α(x))−γ(t, x− z).

(4.32)

Thus, choosing γ > 0 small enough such that γ < β0/α2, and using (3.1), (3.18) and (4.32), we can find
that ∫ t/2

0

∫
Rd
|J1(s, z)| dz ds

�
∫ t/2

0

∫
Rd
ρz,01−(1/α(x0))−γ(t− s, x0 − z)

(
ρy,0(β0/α2)−γ(s, z − y) + ρy,β0−γ (s, z − y)

)
dz ds
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� ρy,00 (t, x0 − y)

(∫ t/2

0
(t−s)−(1/α(x0))−γs(β0/α2)−γ+(t−s)1−(1/α(x0))−γs−1+(β0/α2)−γ ds

)
� ρy,01−(1/α(x0))−2γ(t, x− y).

On the other hand, according to (3.19), (4.32) and the fact that β0 < α(x0), we arrive at∫ t

t/2

∫
Rd
|J2(s, z)| dz ds �

∫ t

t/2

∫
Rd

(
ρz,β̂01−(1/α(x0))−γ(t− s, x0 − z)ρ̃y,0θ−γ+(β0/α2)−(β0/α1)(s, z − y)

+ ρz,β̂01−(1/α(x0))−γ(t− s, x0 − z)ρ̃y,0θ−γ+(β0/α2)−(β0/α1)(s, x0 − y)

)
dz ds

=:

∫ t

t/2

∫
Rd

(J21(s, z) + J22(s, z)) dz ds,

where β̂0 = β̂0(θ) := α1(β0 − α2θ)/α(x0).
Since β̃0(x0) > 1−α(x0), we can choose θ, γ > 0 small enough such that 1+(β̂0/α(x0))−(1/α(x0))−γ > 0,

which along with (3.1) yields∫ t

t/2

∫
Rd
J21(s, z) dz ds � ρ̃y,00 (t, x0 − y) ·

(∫ t

t/2
(t− s)1−(1/α(x0))−γs−1+θ−γ+(β0/α2)−(β0/α1)

+ (t− s)(β̂0/α(x0))−(1/α(x0))−γsθ−γ+(β0/α2)−(β0/α1) ds
)

� ρ̃y,01−(1/α(x0))+(β0/α2)−(β0/α1)−2γ(t, x0 − y).

On the other hand, noting that for t/2 < s 6 t, it holds that

ρ̃y,β0θ−γ+(β0/α2)−(β0/α1)(s, x0 − y) � ρ̃y,β0−γ+(β0/α2)−(β0/α1)(t, x0 − y). (4.33)

Since β̃0 > 1− α(x0), by (2.1) we have∫ t

t/2

∫
Rd
J22(s, z) dz ds � ρ̃y,β0−γ+(β0/α2)−(β0/α1)(t, x0 − y)

∫ t

t/2

∫
Rd
ρz,β̂01−(1/α(x0))−γ(t− s, x0 − z) dz ds

� ρ̃y,0
1+(β̂0/α(x0))−(1/α(x0))+(β0/α2)−(β0/α1)−2γ

(t, x0 − y).

According to (4.16) for the case that |x0 − z| 6 R1 and (4.32) for the case that |x0 − z| > R1), we arrive
at that (by changing the constant γ properly) for any t > 0 and x0, z ∈ Rd,

|∇px0(t, x0 − z)−∇pz(t, x0 − z)| � ρ̃z,β01−1/α(x0)−γ(t, x0 − z).

This, along with (3.18) yields∫ t

t/2

∫
Rd
|J3(s, z)| dz ds � ρ̃y,0−γ(t, x0 − y)

∫ t

t/2

∫
Rd
ρz,β01−(1/α(x0))−γ(t− s, x0 − z) dz ds

� ρ̃y,01+(β0/α(x0))−1/α(x0)−2γ(t, x0 − y),

where in the last inequality we used the fact that β0 > β̃0(x0) > 1− α(x0).
Combining all estimates together, we obtain that∫ t

0

∣∣∣∣∫
Rd
∇pz(t− s, x0 − z)q(s, z, y) dz

∣∣∣∣ ds � ρ̃y,01−(1/α(x0))+(β0/α2)−(β0/α1)−2γ(t, x0 − y).

According to the estimate above and the dominated convergence theorem, we know that ∇p(t, ·)(x0) exists,
and (4.29) holds by changing θ and γ properly.

(2) Suppose that κ(x, z) depends on z and (α2/α1) − 1 < β∗∗0 /α2. If for some x0 ∈ Rd, β̃0(x0) −
(α1α2/α(x0))

(
(α2/α1)− 1

)
> 1− α1, then, by (4.16) and (4.31),

|∇pz(t, x− z)| � t−1/α(z)ρz,01 (t, x− z) � ρz,01−(1/α1)(t, x− z)

and
|∇px(t, x− z)−∇pz(t, x− z)| � ρ̃z,β01−(1/α1)−γ(t, x− z).

In the following, we choose θ, γ small enough such that

β̂0 := α1

(
β0 − α2θ

)
/α(x0) > −1 + (1/α1) + γ.
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Using estimates and following the same argument in part (1), we can obtain that for every fixed t ∈ (0, 1]
and y ∈ Rd, p(t, ·, y) is differentiable at x0 ∈ Rd and (4.30) holds. �

Remark 4.8. Propositions 4.6 and 4.7 show that, the regularity of p(t, ·, y) at x = x0 depends on the index
α(x0).

Proposition 4.9. Suppose that κ(x, z) is independent of z, or that κ(x, z) depends on z and (α2/α1)− 1 <
β∗∗0 /α2, where β∗∗0 := β0 ∧ (α2/2). Then, p : (0, 1]×Rd ×Rd → R+ is continuous.

Proof. We only consider the case that κ(x, z) is independent of z. Then other case can be verified similarly.
According to (1.26), (3.18) and (4.1), we know immediately the continuity of p with respect to time

variable. It remains to show the continuity of p with respect to space variables.
For any x, y, z1 and z2 ∈ Rd,

|py+z2(t, x+ z1 − y − z2)− py(t, x− y)|
6 |py+z2(t, x+ z1 − y − z2)− py+z2(t, x− y)|+ |py+z2(t, x− y)− py(t, x− y)|.

According to (2.23) and (4.15),

lim
|z1|,|z2|→0

|py+z2(t, x+ z1 − y − z2)− py+z2(t, x− y)| = 0

and
lim
|z2|→0

|py+z2(t, x− y)− py(t, x− y)| = 0,

respectively. Hence, we can show that (x, y) 7→ py(t, x − y) is continuous. On the other hand, (2.24),
(2.38) and (4.17) imply that (x, y) 7→ q0(t, x, y) is continuous. By the iteration estimates in Proposition
3.4 and the dominated convergence theorem, we also can verify that (x, y) 7→ q(t, x, y) is continuous. Due
to the expression (1.26) and again the dominated convergence theorem, we know that (x, y) 7→ p(t, x, y) is
continuous. The proof is finished. �

5. Existence and Uniqueness of the Solution to (1.5)

5.1. Existence. The purpose of this subsection is to prove rigorously that p(t, x, y) defined by (1.26) satisfies
(1.5). First, as a direct consequence of Lemma 4.5, we have the following statement.

Lemma 5.1. Let β∗0 ∈ (0, β0] ∩ (0, α2). Then, for any 0 < θ < β∗0α1/α2 and 0 < γ < (θ/α2) ∧ ((β∗0/α2 −
θ/α1)/2), t ∈ (0, 1] and x ∈ Rd,∣∣∣∣ ∫

Rd
py(t, x− y) dy − 1

∣∣∣∣ � t+ t(β
∗
0/α2)−2γ−(θ/α1). (5.1)

In particular,

lim
t↓0

sup
x∈Rd

∣∣∣∣ ∫
Rd
py(t, x− y) dy − 1

∣∣∣∣ = 0. (5.2)

Proof. Throughout the proof, we will assume that β0 < α2 and β∗0 = β0 for simplicity. Noting that∫
Rd
px(t, x− y) dy = 1 for all x ∈ Rd and t ∈ (0, 1], we have∣∣∣∣ ∫

Rd
py(t, x− y) dy − 1

∣∣∣∣ =

∣∣∣∣ ∫
Rd
py(t, x− y) dy −

∫
Rd
px(t, x− y) dy

∣∣∣∣
6
∫
Rd
|px(t, x− y)− py(t, x− y)| dy

6
∫
{|x−y|6R1}

|px(t, x− y)− py(t, x− y)| dy

+

∫
{|x−y|>R1}

|px(t, x− y)− py(t, x− y)| dy

=: J1 + J2,

where R1 is the constant in Lemma 4.5.
On the one hand, (4.15) yields that

J1 �
∫
Rd
ρ̃x,β01−2γ−(θ/α1)(t, x− y) dy � t(β0/α2)−2γ−(θ/α1),

where the last inequality follows from the fact that (2.3) holds for ρ̃.
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On the other hand,

J2 �
∫
{|x−y|>R1}

(
ρx,01 (t, x− y) + ρy,01 (t, x− y)

)
dy

�
∫
{|x−y|>R1}

(
t

|x− y|d+α(x)
+

t

|x− y|d+α(y)

)
dy � t

∫
{|x−y|>R1}

1

|x− y|d+α1
dy � t.

Combining with both estimates for J1 and J2, we prove (5.1).
Choosing γ, θ > 0 small enough such that 2γ + (θ/α1) < β0/α2, we immediately get (5.2). �

Lemma 5.2. For every 0 < ε, θ < α1 and 0 < γ < (θ/α2) ∧ ((1 − (θ/α1))/2), there are constants R1 :=
R1(α, κ, γ, θ) ∈ (0, 1) and c1 := c1(α, κ, γ, θ, ε) > 0 such that for every t ∈ (0, 1] and x, y ∈ Rd with
|x− y| 6 R1, ∫

Rd

∣∣δpx(t, x− y; z)− δpy(t, x− y; z)
∣∣ · 1

|z|d+α(x)
dz 6 c1ρ̃

x,β0
−2γ−(θ/α1)(t, x− y), (5.3)

where ρ̃ is defined by (3.16).

Proof. By using (4.18), we can verify that

δpx(t, x− y; z)− δpy(t, x− y; z)

=

∫ t/2

0

(∫
Rd

(
Lx − Ly

)
px(s, w)

(
δpy(t− s, x− y − w; z)− δpy(t− s, x− y; z)

)
dw

)
ds

+

∫ t

t/2

(∫
Rd

(
Lx − Ly

)
py(t− s, x− y − w)

(
δpx(s, w; z)− δpx(s, x− y; z)

)
dw

)
ds.

Therefore,∫
Rd

∣∣δpx(t, x− y; z)− δpy(t, x− y; z)
∣∣ · 1

|z|d+α(x)
dz

6
∫ t/2

0

[ ∫
Rd

∣∣(Lx − Ly
)
px(s, w)

∣∣( ∫
Rd

∣∣δpy(t− s, x− y − w; z)− δpy(t− s, x− y; z)
∣∣ · 1

|z|d+α(x)
dz

)
dw

]
ds

+

∫ t

t/2

[ ∫
Rd

∣∣(Lx − Ly
)
py(t− s, x− y − w)

∣∣( ∫
Rd

∣∣δpx(s, w; z)− δpx(s, x− y; z)
∣∣ · 1

|z|d+α(x)
dz

)
dw

]
ds

=: J1 + J2.

According to (2.24) and (4.7), for every θ ∈ (0, 1) and γ > 0, there exists a constant R1 := R1(α, κ, γ) > 0
such that for every 0 < s < t < 1 and x, y ∈ Rd with |x− y| 6 R1,∣∣δpy(t− s, x− y − w; z)− δpy(t− s, x− y; z)

∣∣
�
[ (

(t− s)−1/α(y)|w|
)θ
∧ 1
]
·
[(

(t− s)−2/α(y)|z|2
)
∧ 1
]

×
[
ρy,01 (t− s, x− y) + ρy,01 (t− s, x− y − w) + ρy,01 (t− s, x− y ± z) + ρy,01 (t− s, x− y − w ± z)

]
�
(
|w|θ ∧ 1

)
·
[(

(t− s)−2/α(x)|z|2
)
∧ 1
]
·
[
ρx,01−γ−(θ/α1)(t− s, x− y) + ρx,01−γ−(θ/α1)(t− s, x− y − w)

+ ρx,01−γ−(θ/α1)(t− s, x− y ± z) + ρx,01−γ−(θ/α1)(t− s, x− y − w ± z)
]
.

(5.4)

Furthermore, following the argument of Lemma 2.3, we can derive that for every t ∈ (0, 1] and x, y ∈ Rd∫
Rd

[(
t−2/α(x)|z|2

)
∧ 1
]
· ρx,01 (t, y ± z) · |z|−d−α(x) dz � ρx,00 (t, y),∫

Rd

[(
t−2/α(x)|z|2

)
∧ 1
]
· ρx,01 (t, y) · |z|−d−α(x) dz � ρx,00 (t, y).

(5.5)

Combining (4.19) with (5.4) and (5.5), we find that for all t ∈ (0, 1] and x, y ∈ Rd with |x− y| 6 R1,

J1 � |x− y|β0 ·
[ ∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w) · ρ̃x,0−γ−(θ/α1)(t− s, x− y − w) dw ds

+

∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w) · ρ̃x,0−γ−(θ/α1)(t− s, x− y) dw ds

]
=: |x− y|β0 · (J11 + J12).
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Since (3.14) holds true for ρ̃ as mentioned in Remark 3.3(2), for every 0 < θ < α1 and 0 < γ < (θ/α2) ∧
((1− (θ/α1))/2), we have

J11 � ρ̃x,00 (t, x− y)

∫ t/2

0

(
s−1−γ+(θ/α2)(t− s)−γ−(θ/α1) + s−γ(t− s)−1−γ−(θ/α1)

)
ds

� ρ̃x,00 (t, x− y)

(
t−γ−(θ/α1)

∫ t/2

0
s−1−γ+(θ/α2) ds+ t−1−γ−(θ/α1)

∫ t/2

0
s−γ ds

)
� ρ̃x,0−2γ−(θ/α1)(t, x− y).

(5.6)

On the other hand, note that for every 0 < s < t/2,

ρ̃x,0−γ−(θ/α1)(t− s, x− y) � ρ̃x,0−γ−(θ/α1)(t, x− y).

Then, it holds that

J12 � ρ̃x,0−γ−(θ/α1)(t, x− y) ·
∫ t/2

0

∫
Rd
ρ̃x,θ−γ(s, w) dw ds � ρ̃x,0−2γ−(θ/α1)(t, x− y),

where (2.3) was used in the last inequality. Hence, we find that for every t ∈ (0, 1] and x, y ∈ Rd with
|x− y| 6 R1,

J1 � ρ̃x,β0−2γ−(θ/α1)(t, x− y).

By estimates for the terms ∣∣(Lx − Ly
)
py(t− s, x− y − w)

∣∣
and ∣∣δpx(s, w; z)− δpx(s, x− y; z)

∣∣,
we can deal with the singularity as s near t by the same arguments above and obtain that for all t ∈ (0, 1]
and x, y ∈ Rd with |x− y| 6 R1,

J2 � ρ̃x,β0−2γ−(θ/α1)(t, x− y).

Combining both of the estimates for J1 and J2, we finally obtain that (5.3) holds true. �

The following result is a consequence of Lemma 5.2.

Lemma 5.3. Let β∗0 ∈ (0, β0] ∩ (0, α2). Then, we have the following two statements.
(1) If κ(x, z) is independent of z, then for every positive constants γ, θ ∈ (0, 1) such that γ < θ/α2 and

2γ + (θ/α1) < β∗0/α2, there exists a constant c1 := c1(α, κ, γ, θ) > 0 such that for all t ∈ (0, 1] and
x ∈ Rd, ∣∣∣ ∫

Rd
Lxpy(t, x− y) dy

∣∣∣ 6 c1t
−1+(β∗0/α2)−2γ−(θ/α1). (5.7)

(2) If κ(x, z) depends on z, then for every positive constants γ, θ ∈ (0, 1) such that γ < θ/α2 and
2γ + (θ/α1) < β∗0/α2, the estimate (5.7) will be replaced by∣∣∣ ∫

Rd
Lxpy(t, x− y) dy

∣∣∣ 6 c1

(
t−1+(β∗0/α2)−2γ−(θ/α1) + t1−(α2/α1)

)
. (5.8)

Proof. We assume that β0 < α2 and β∗0 = β0 for simplicity. Observe that∫
Rd

Lxpy(t, x− y) dy =

∫
Rd

(
Lxpy(t, x− y)− Lxpx(t, x− y)

)
dy

=

∫
Rd

∫
Rd

(
δpy(t, x− y; z)− δpx(t, x− y; z)

)
· κ(x, z)

|z|d+α(x)
dz dy.

Therefore, for all t ∈ (0, 1] and x ∈ Rd,∣∣∣ ∫
Rd

Lxpy(t, x− y) dy
∣∣∣ � ∫

{|y−x|6R1}

∫
Rd
|δpy(t, x− y; z)− δpx(t, x− y; z)| · 1

|z|d+α(x)
dz dy

+

∫
{|y−x|>R1}

∫
Rd
|δpy(t, x− y; z)− δpx(t, x− y; z)| · 1

|z|d+α(x)
dz dy

=: J1 + J2,

where R1 is the constant in Lemma 5.2. According to (5.3), we have for all t ∈ (0, 1] and x ∈ Rd,

J1 �
∫
{|y−x|6R1}

ρ̃x,β0−2γ−(θ/α1)(t, x− y) dy � t−1+(β∗0/α2)−2γ−(θ/α1),
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where we used the fact that (2.3) holds for ρ̃.
(1) Suppose that κ(x, z) is independent of z. Then, according to the argument for J1 in (2.30), for every

t ∈ (0, 1] and x, y ∈ Rd with |x− y| > R1,∫
Rd
|δpy(t, x− y; z)| · 1

|z|d+α(x)
dz � 1

|x− y|d+α1
,∫

Rd
|δpx(t, x− y; z)| · 1

|z|d+α(x)
dz � 1

|x− y|d+α1
,

(5.9)

which imply that for all t ∈ (0, 1] and x ∈ Rd,

J2 �
∫
{|y−x|>R2}

∫
Rd
|δpy(t, x− y; z)| · 1

|z|d+α(x)
dz dy +

∫
{|y−x|>R2}

∫
Rd
|δpx(t, x− y; z)| · 1

|z|d+α(x)
dz dy

6 C1.

Combining both the estimates for J1 and J2, we prove (5.7).
(2) When κ(x, z) depends on z, by the argument of (2.33), the first inequality in (5.9) will be changed

into ∫
Rd
|δpy(t, x− y; z)| · 1

|z|d+α(x)
dz � t1−(α2/α1)

|x− y|d+α1
.

Using this inequality and following the same line as above, we will obtain (5.8). �

The statement below is the main result in this subsection.

Proposition 5.4. The following two statements hold.
(1) If κ(x, z) is independent of z, then p(t, x, y) defined by (1.26) satisfies the equation (1.5) pointwise.
(2) If κ(x, z) depends on z and (α2/α1)− 1 < min{β0/α2, 1/2}, then p(t, x, y) also satisfies the equation

(1.5) pointwise.

Proof. For simplicity, we assume that β0 < α2/2 and β∗0 = β0.
(1) We first assume that κ(x, z) is independent of z. The proof is split into four parts.
(i) For every 0 < s < t < 1 and x, y ∈ Rd, define

φ(t, s, x, y) :=

∫
Rd
pz(t− s, x− z)q(s, z, y) dz,

where q(t, x, y) is constructed in Proposition 3.4. By (1.26), it holds that

p(t, x, y) = py(t, x− y) +

∫ t

0
φ(t, s, x, y) ds. (5.10)

Note that for every t ∈ (0, 1], x, y ∈ Rd and ε > 0,

1

ε

∫ t+ε

t
φ(t+ ε, s, x, y) ds− q(t, x, y) =

1

ε

∫ t+ε

t

∫
Rd
pz(t+ ε− s, x− z)q(s, z, y) dz ds− q(t, x, y)

=
1

ε

∫ t+ε

t

∫
Rd
pz(t+ ε− s, x− z)

(
q(s, z, y)− q(s, x, y)

)
dz ds

+
1

ε

∫ t+ε

t

(∫
Rd
pz(t+ ε− s, x− z) dz

)
·
(
q(s, x, y)− q(t, x, y)

)
ds

+ q(t, x, y) · 1

ε

∫ t+ε

t

(∫
Rd
pz(t+ ε− s, x− z) dz − 1

)
ds

=: J1(ε) + J2(ε) + J3(ε).

First, by (3.19), for every t > 0, x, y ∈ Rd and σ > 0, there exists a constant ε1 := ε1(t, x, y, σ) > 0 such
that for all z ∈ Rd with |z − x| 6 ε1,

|q(s, z, y)− q(s, x, y)| 6 σ (5.11)

holds for all t < s < t+ ε and 0 < ε < 1. Let

|J1(ε)| � 1

ε

∫ t+ε

t

∫
{|z−x|6ε1}

pz(t+ ε− s, x− z)
∣∣q(s, z, y)− q(s, x, y)

∣∣ dz ds
+

1

ε

∫ t+ε

t

∫
{|z−x|>ε1}

pz(t+ ε− s, x− z)
∣∣q(s, z, y)− q(s, x, y)

∣∣ dz ds
=: J11(ε) + J12(ε).
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According to (5.11) and (2.1), we know immediately that

J11(ε) � σ · 1

ε

∫ t+ε

t

∫
Rd
ρz,01 (t+ ε− s, x− z) dz ds � σ

ε
·
∫ t+ε

t
ds 6 C1σ,

where C1 > 0 is a constant independent of ε and σ. At the same time, it holds that for any γ < β0/α2,

|J12(ε)| � 1

ε
·
(∫ t+ε

t

(
t+ ε− s

) ∫
{|z−x|>ε1}

|q(s, z, y)|+ |q(s, x, y)|
|x− z|d+α1

dz ds

)
� ε−d−α1

1

∫ t+ε

t

∫
Rd

(
ρy,0(β0/α2)−γ + ρy,β0−γ

)
(s, z − y) dz ds

+

∫ t+ε

t

∫
{|z−x|>ε1}

(
ρy,0(β0/α2)−γ + ρy,β0−γ

)
(s, x− y)

|z − x|d+α1
dz ds

� ε−d−α1
1

(∫ t+ε

t
s−1+(β0/α2)−γ ds+ εd1t

−1−(d/α1)−γ
∫ t+ε

t
ds

)
6 C(ε1)t−1−(d/α1)−γε,

where in the first inequality we used the fact that pz(t, x) � t
|x|d+α1 for every t ∈ (0, 1] and x ∈ Rd with

|x| > ε1, the second inequality follows from (3.18), and in the third inequality we used (2.3) and the fact
that ρy,0−γ(s, x) � t−1−(d/α1)−γ for all t < s < t+ ε and x ∈ Rd.

Second, note that for every fixed x, y ∈ Rd, q0(·, x, y) is continuous in (0, 1]. Then, by (1.27), (3.18) and
the dominated convergence theorem, we know that q(·, x, y) is continuous in (0, 1]. Thus, for every t ∈ (0, 1],
x, y ∈ Rd and σ > 0, there exists a constant ε2 := ε2(t, x, y, σ) > 0 such that for all |s− t| < ε2,

|q(s, x, y)− q(t, x, y)| 6 σ,

from which we have that when ε < ε2,

|J2(ε)| � σ

ε
·
(∫ t+ε

t

∣∣∣ ∫
Rd
pz(t+ ε− s, x− z) dz

∣∣∣ ds) 6 C2σ,

where in the last inequality we have used Lemma 5.1, and C2 > 0 is a constant independent of ε and σ.
Third, according to Lemma 5.1, we arrive at

lim
ε↓0
|J3(ε)| 6 |q(t, x, y)| ·

(
lim
ε↓0

1

ε
·
∫ t+ε

t

∣∣∣ ∫
Rd
pz(t+ ε− s, x− z) dz − 1

∣∣∣ ds)
6 |q(t, x, y)| ·

(
lim
ε↓0

sup
s∈(0,ε)

∣∣∣ ∫
Rd
pz(s, x− z) dz − 1

∣∣∣) = 0.

Combining all the estimates together, we arrive at for every σ > 0,

lim
ε↓0

∣∣∣1
ε

∫ t+ε

t
φ(t+ ε, s, x, y) ds− q(t, x, y)

∣∣∣ 6 C3σ,

where C3 is independent of ε and σ. Since σ is arbitrary, we finally obtain that

lim
ε↓0

∣∣∣1
ε

∫ t+ε

t
φ(t+ ε, s, x, y) ds− q(t, x, y)

∣∣∣ = 0. (5.12)

(ii) By the proof of (5.5) (also see [20, Theorem 2.4]), it holds that

|Lzpz(t− s, x− z)| � ρz,00 (t− s, x− z), (5.13)

and so we can verify that for every 0 < s < t < 1 and x, y ∈ Rd,∫
Rd
|Lzpz(t− s, x− z)||q(s, z, y)| dz <∞.
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Thus, by the dominated convergence theorem, for every 0 < s < t and x, y ∈ Rd,

∂tφ(t, s, x, y) =

∫
Rd

Lzpz(t− s, x− z)q(s, z, y) dz

=

∫
Rd

Lzpz(t− s, x− z)(q(s, z, y)− q(s, x, y)) dz

+ q(s, x, y)

∫
Rd

(Lz − Lx)pz(t− s, x− z) dz

+ q(s, x, y)

∫
Rd

Lxpz(t− s, x− z) dz

=: J̃1 + J̃2 + J̃3.

(5.14)

Combining (5.13) with (3.19) yields that for any 0 < γ < θ < β0/α2,

|J̃1| �
∫
Rd
ρ̃z,θ̃0 (t− s, x− z) · ρ̃y,0θ−γ+(β0/α2)−(β0/α1)(s, z − y) dz

+

∫
Rd
ρ̃z,θ̃0 (t− s, x− z) · ρ̃y,0θ−γ+(β0/α2)−(β0/α1)(s, x− y) dz

=: J̃11 + J̃12,

where θ̃ := α1(β0 − α2θ)/α2. According to (3.2) (which holds for ρ̃), we obtain that for every t/2 6 s 6 t,

J̃11 � ρ̃y,00 (t, x− y) ·
[
(t− s)−1+(θ̃/α2)sθ−γ+(β0/α2)−(β0/α1)−1

]
� t−γ−(β0/α1)−(d/α1)−2(t− s)−1+(θ̃/α2),

where in the last inequality we have used the fact that ρ̃y,00 (t, x−y) � t−1−d/α1 and s−1 � t−1 for t/2 6 s 6 t.
Note that ρ̃y,β0θ−γ−(β0/α1)(s, x− y) � t−γ−(β0/α1)−(d/α1)−1 for every t/2 6 s 6 t, and (2.1) holds for ρ̃, then we
have

J̃12 � t−γ−(β0/α1)−(d/α1)−1

∫
Rd
ρ̃z,θ̃0 (t− s, x− z) dz � t−γ−(β0/α1)−(d/α1)−1(t− s)−1+(θ̃/α2).

By (2.16) and (3.18), we arrive at that for any 0 < γ < θ < β0/α2 and every t/2 6 s 6 t,

|(Lz − Lx)pz(t− s, x− z)| � |q0(t− s, x, z)| � ρz,β0−γ (t− s, x− z)

and
|q(s, x, y)| �

(
ρy,0(β0/α2)−γ + ρy,β0−γ

)
(s, x− y) � t−γ−(d/α1)−1.

Hence, combining both estimates above with (2.1), we obtain

|J̃2| � t−γ−(d/α1)−1

∫
Rd
ρz,β0−γ (t− s, x− z) dz � t−γ−(d/α1)−1(t− s)−1+(β0/α2)−γ .

Furthermore, (3.18) and (5.7) yield that for every t/2 6 s 6 t and constants γ, θ ∈ (0, 1) such that γ < θ/α2

and 2γ + (θ/α1) < β0/α2,
|J̃3| � t−γ−(d/α1)−1(t− s)−1+(β0/α2)−2γ−(θ/α1).

On the other hand, when 0 < s 6 t/2, it follows from (5.13), (3.18) and (3.2) that∣∣∂tφ(t, s, x, y)
∣∣ � ∫

Rd

∣∣Lzpz(t− s, x− z)∣∣∣∣q(s, z, y)
∣∣ dz

�
∫
Rd
ρz,00 (t− s, x− z) ·

(
ρy,0(β0/α2)−γ + ρy,β0−γ

)
(s, z − y) dz

� ρy,00 (t, x− y) ·
[
(t− s)−1s(β0/α2)−γ + (t− s)−1+(β0/α2)s−γ + s−1+(β0/α2)−γ]

+ ρy,β00 (t, x− y) · (t− s)−1s−γ

� t−2−(d/α1)s−1+(β0/α2)−γ ,

where in the last inequality we have used the facts that ρy,00 (t, x − y) � t−1−(d/α1) and (t − s)−1 � t−1

for every 0 < s 6 t/2. Therefore, choosing γ, θ ∈ (0, 1) such that γ < θ/α2 and 2γ + (θ/α1) < β0/α2,
and combining all the estimates above, we know that (5.14) is well defined, and that for every t ∈ (0, 1),
supt0∈(t,t+ε1) |∂tφ(t0, s, x, y)| 6 η(t, s), where η is a non-negative measurable function such that

∫ t
0 η(t, s) ds <
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∞ and ε1 > 0 is a constant small enough (which may depend on t). Now, according to the dominated
convergence theorem, for every t ∈ (0, 1] and x, y ∈ Rd,

lim
ε↓0

1

ε
·
(∫ t

0

(
φ(t+ ε, s, x, y)− φ(t, s, x, y)

)
ds

)
=

∫ t

0
∂tφ(t, s, x, y) ds. (5.15)

(iii) We obtain by (5.12) and (5.15) that for every t ∈ (0, 1) and x, y ∈ Rd,

lim
ε↓0

∣∣∣∣∣1ε · (
∫ t+ε

0
φ(t+ ε, s, x, y) ds−

∫ t

0
φ(t, s, x, y) ds

)
− q(t, x, y)−

∫ t

0
∂tφ(t, s, x, y) ds

∣∣∣∣∣
6 lim

ε↓0

∣∣∣∣∣1ε · (
∫ t+ε

t
φ(t+ ε, s, x, y) ds

)
− q(t, x, y)

∣∣∣∣∣
+ lim

ε↓0

∣∣∣∣∣1ε · (
∫ t

0
(φ(t+ ε, s, x, y)− φ(t, s, x, y)) ds

)
−
∫ t

0
∂tφ(t, s, x, y) ds

∣∣∣∣∣
= 0.

By the same way, it is not difficult to verify

lim
ε↑0

∣∣∣∣∣1ε · (
∫ t+ε

0
φ(t+ ε, s, x, y) ds−

∫ t

0
φ(t, s, x, y) ds

)
− q(t, x, y)−

∫ t

0
∂tφ(t, s, x, y) ds

∣∣∣∣∣ = 0.

Hence, we have for any t0 ∈ (0, 1] and x, y ∈ Rd,

∂t

(∫ ·
0
φ(·, s, x, y) ds

)
(t0) = q(t0, x, y) +

∫ t0

0
∂tφ(t0, s, x, y) ds.

Combining all estimates above with (5.10), (1.27) and (5.14), we have for every t ∈ (0, 1] and x, y ∈ Rd,

∂p(t, x, y)

∂t
= Lypy(t, x− y) + q(t, x, y) +

∫ t

0
∂tφ(t, s, x, y) ds

= Lypy(t, x− y) + (Lx − Ly)py(t, x− y)

+

∫ t

0

∫
Rd

(Lx − Lz)pz(t− s, x− z) · q(s, z, y) dz ds

+

∫ t

0

∫
Rd

Lzpz(t− s, x− z)q(s, z, y) dz ds

= Lxpy(t, x− y) +

∫ t

0

∫
Rd

Lxpz(t− s, x− z)q(s, z, y) dz ds.

(5.16)

Furthermore, by the same arguments for estimates of J̃1, J̃2 and J̃3 above, we have∫ t

0

∫
Rd
|Lxpz(t− s, x− z)q(s, z, y)| dz ds

�
∫ t

0

∫
Rd

∣∣Lzpz(t− s, x− z)q(s, z, y)
∣∣ dz ds+

∫ t

0

∫
Rd
|(Lx − Lz)pz(t− s, x− z)q(s, z, y)| dz ds

<∞

(5.17)

and so ∫ t

0
Lx(φ(t, s, ·, y))(x) ds =

∫ t

0

∫
Rd

Lxpz(t− s, x− z)q(s, z, y) dz ds,

which in turn implies that (5.16) is well defined.
(iv) For any ε, σ > 0 small enough,∫
{|z|>σ}

δ∫ t
0 φ(t,s,·,y) ds(x; z) · κ(x, z)

|z|d+α(x)
dz

=

∫ t−ε

ε

∫
{|z|>σ}

δφ(t,s,·,y)(x; z) · κ(x, z)

|z|d+α(x)
dz ds+

∫
{(0,ε)∪(t−ε,t)}

∫
{|z|>σ}

δφ(t,s,·,y)(x; z) · κ(x, z)

|z|d+α(x)
dz ds

=: Ĵ1(ε, σ) + Ĵ2(ε, σ).
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Note that for the integral with respect to time variable in Ĵ1(ε, σ), there is not any singularity. According
to the dominated convergence theorem, we have

lim
σ↓0

J1(ε, σ) =

∫ t−ε

ε
Lx(φ(t, s, ·, y))(x) ds =

∫ t−ε

ε

∫
Rd

Lxpz(t− s, x− z)q(s, z, y) dz ds,

Meanwhile, according to the proof of (5.17) and Fatou’s lemma we arrive at

lim sup
σ↓0

|Ĵ2(ε, σ)| 6
∫
{(0,ε)∪(t−ε,t)}

|Lx(φ(t, s, ·, y)(x)| ds.

Hence, combining all the estimates above with (1.25) yields∣∣∣Lx(∫ t

0
φ(t, s, ·, y) ds

)
(x)−

∫ t

0
Lx(φ(t, s, ·, y))(x) ds

∣∣∣
6 lim sup

σ↓0

∣∣∣∣ ∫
{|z|>σ}

δ∫ t
0 φ(t,s,·,y) ds(x; z) · κ(x, z)

|z|d+α(x)
dz −

∫ t

0
Lx(φ(t, s, ·, y))(x) ds

∣∣∣∣
6 2

∫
{(0,ε)∪(t−ε,t)}

|Lx(φ(t, s, ·, y))(x)| ds.

Then, letting ε→ 0, we know that for every t ∈ (0, 1) and x, y ∈ Rd,

Lx
(∫ t

0
φ(t, s, ·, y) ds

)
(x) =

∫ t

0
Lx(φ(t, s, ·, y))(x) ds =

∫ t

0

∫
Rd

Lxpz(t− s, x− z)q(s, z, y) dz ds,

which along with (5.16) yields (1.5) immediately.
(2) Suppose that κ(x, z) depends on z. Then, using (2.18), (3.21) and (3.22), and following the same

arguments above, we can also show (1.5) holds true. The details are omitted here. �

5.2. Maximum principle and uniqueness. Adopting the approach of [20, Theorem 4.1], we will prove
the following maximum principle for non-local parabolic PDEs associated with the operator L, which is
crucial for the uniqueness of solution to the corresponding Cauchy problem.

Theorem 5.5. Let u ∈ Cb([0, 1]×Rd) be the solution of the following equation

∂tu(t, x) = Lu(t, x), (t, x) ∈ (0, 1]×Rd. (5.18)

Suppose
lim
t↓0

sup
x∈Rd

∣∣u(t, x)− u(0, x)
∣∣ = 0, (5.19)

and for every x ∈ Rd, t 7→ Lu(t, x) is continuous in t ∈ (0, 1]. Assume that there exists a function θ(x) ∈
(0, 1) such that infx∈Rd

(
θ(x) + 1− α(x)

)
> 0 and for every ε ∈ (0, 1),

sup
t∈(ε,1)

∣∣u(t, x)− u(t, x′)
∣∣ 6 c1(ε)|x− x′|θ(x), x, x′ ∈ Rd. (5.20)

Then for every t ∈ (0, 1],
sup
x∈Rd

u(t, x) 6 sup
x∈Rd

u(0, x).

Proof. Throughout the proof, the constant C denotes a positive constant that is independent of R and x
whose exact value may change from line to line. Since (5.19) holds, it suffices to prove that for any ε ∈ (0, 1)
and t ∈ (ε, 1],

sup
x∈Rd

u(t, x) 6 sup
x∈Rd

u(ε, x). (5.21)

For every R > 1, we can choose a smooth cut-off function lR : Rd → R such that

lR(x) =


1, |x| 6 R,
∈ [0, 1], R < |x| < 2R,

0, |x| > 2R,

and
|∇lR(x)|2 + |∇2lR(x)| 6 C

R2
, x ∈ Rd. (5.22)

For every R, δ > 0 and ε ∈ (0, 1), define

uδR(t, x) = u(t, x)lR(x)− (t− ε)δ, x ∈ Rd, t ∈ (ε, 1).
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Then, it follows from the fact ∂tu(t, x) = Lu(t, x) that

∂tu
δ
R(t, x) = LuδR(t, x) + gδR(t, x), (5.23)

where gδR(t, x) := Lu(t, x) · lR(x)− L(u · lR)(t, x)− δ.
Observe that

L(u · lR)(t, x)− Lu(t, x) · lR(x)− LlR(x) · u(t, x)

=

∫
Rd

(u(t, x+ z)− u(t, x)) · (lR(x+ z)− lR(x))
κ(x, z)

|z|d+α(x)
dz

�
∫
{|z|61}

(u(t, x+ z)− u(t, x)) · (lR(x+ z)− lR(x))
1

|z|d+α(x)
dz

+

∫
{|z|>1}

(u(t, x+ z)− u(t, x)) · (lR(x+ z)− lR(x))
1

|z|d+α(x)
dz

=: J1 + J2.

On the one hand, by (5.20) and (5.22),

J1 6
C(ε)

R

∫
{|z|61}

|z|1+θ(x)

|z|d+α(x)
dz 6

C(ε)

R
,

where in the last inequality we used infx∈Rd
(
θ(x)+1−α(x)

)
> 0. On the other hand, for every 0 < γ < α1∧1,

J2 6 2‖u‖∞‖lR‖1−γ∞
∫
{|z|>1}

|lR(x+ z)− lR(x)|γ

|z|d+α(x)
dz 6

C‖u‖∞
Rγ

∫
{|z|>1}

|z|−d−α(x)+γ dz 6 C‖u‖∞R−γ .

According to the argument above, it is easy to verify that

|LlR(x)| 6 CR−γ .

Combining all the estimates above yields

gδR(t, x) 6 C(ε, u)R−γ − δ. (5.24)

Now we are going to verify that for every fixed R large enough,

sup
x∈Rd

uδR(t, x) 6 sup
x∈Rd

uδR(ε, x), t ∈ (ε, 1]. (5.25)

Suppose (5.25) does not hold. Then for every large enough R, there exists (t0, x0) ∈ (ε, 1]×Rd (which may
depend on R, ε and δ > 0) such that

sup
(t,x)∈(ε,1)×Rd

uδR(t, x) = uδR(t0, x0). (5.26)

Note that the existence of (t0, x0) follows from the fact that uδR(t, x) = 0 for every t ∈ (ε, 1] and |x| > 2R.
Therefore, by (5.23), we have for every h ∈ (0, t0 − ε),

0 6
uδR(t0, x0)− uδR(t0 − h, x0)

h
=

1

h

∫ t0

t0−h
LuδR(s, x0) ds+

1

h

∫ t0

t0−h
gδR(s, x0) ds.

Letting h ↓ 0, we arrive at
0 6 LuδR(t0, x0) + gδR(t0, x0), (5.27)

thanks to the assumption that the function t 7→ Lu(t, x) is continuous on (0, 1]. Furthermore, from (5.26) it
is easy to see

LuδR(t0, x0) =

∫
Rd

(
uδR(t0, x0 + z) + uδR(t0, x0 − z)− 2uδR(t0, x0)

) κ(x0, z)

|z|d+α(x0)
dz 6 0.

Combining this with (5.24), we get that for every R >
(2C(ε,u)

δ

)1/γ ,
LuδR(t0, x0) + gδR(t0, x0) 6 −δ/2,

which contradicts with (5.27). Hence, the assumption above fails and so (5.25) holds. Letting R → ∞ in
(5.25), we obtain (5.21) immediately. �

Now, we are in a position to prove Theorems 1.1 and 1.3.
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Proofs of Theorems 1.1 and 1.3. (i) We first assume that κ(x, z) is independent of z. We will prove that
p(t, x, y) constructed by (1.26) satisfies all the assertions.

According to Proposition 5.4, (1.5) holds. By Propositions 4.1 and 4.3, (1.6) and (1.7) hold true. Proposi-
tions 4.6 and 4.7 imply (1.9) and (1.11), respectively. By Proposition 4.9, we know that p : (0, 1]×Rd×Rd →
R+ is continuous. The lower bounds (1.8) will be shown in Corollary 5.10, which is a consequence of Pro-
positions 5.6 and 5.9 in the next subsection.

(ii) According to the proof of Proposition 5.4, we can obtain that for every ε ∈ (0, 1), there exist a constant
C(ε) > 0 and a measurable function η : Rd → R+ such that

∫
Rd
η(y) dy <∞,

sup
t∈(ε,1)

∣∣∣∂p(t, x, y)

∂t

∣∣∣ 6 C(ε)η(x− y)

and

sup
t∈(ε,1),σ>0

∣∣∣∣ ∫
{|z|>σ}

(
p(t, x+ z, y) + p(t, x− z, y)− 2p(t, x, y)

) κ(x, z)

|z|d+α(x)
dz

∣∣∣∣ 6 C(ε)η(x− y).

Thus, by the dominated convergence theorem, it is easy to verify that Luf (t, ·)(x) exists for each t > 0 and
x ∈ Rd, t 7→ Luf (t, ·)(x) is continuous, and that (1.15) holds.

(iii) We have by (1.26) that

uf (t, x)− f(x) =

∫
Rd
py(t, x− y)

(
f(y)− f(x)

)
dy + f(x)

(∫
Rd
py(t, x− y) dy − 1

)
+

∫
Rd
f(y)

∫ t

0

∫
Rd
pz(t− s, x− z)q(s, z, y) dz ds dy

=: J1 + J2 + J3.

For any f ∈ Cb,u(Rd) and for every ε > 0, there exists a constant δ := δ(ε) > 0 such that |f(x)−f(y)| < ε

for all x, y ∈ Rd with |x− y| 6 δ. Thus,

|J1| 6
∫
{|y−x|6δ}

py(t, x− y)|f(y)− f(x)| dy +

∫
{|y−x|>δ}

py(t, x− y)|f(y)− f(x)| dy

6 ε
∫
Rd
ρy,01 (t, x− y) dy + C(ε)‖f‖∞

∫
{|y−x|>δ}

t

|x− y|d+α1
dy 6 Cε+ C(ε, δ)t,

where in the last inequality we have used (2.1). According to (5.2), it holds that limt↓0 supx∈Rd |J2| = 0.
Furthermore, by (3.18) and (3.13), we obtain that for γ < β∗0/α2 with β∗ ∈ (0, β] ∩ (0, α2/2),

|J3| � ‖f‖∞

[∫
Rd

∫ t

0

∫
Rd
ρz,01 (t− s, x− z)

(
ρy,0(β∗0/α2)−γ(s, z − y) + ρ

y,β∗0
−γ (s, z − y)

)
dz ds dy

]

� ‖f‖∞
∫
Rd

(
ρy,01+(β∗0/α2)−γ + ρ

y,β∗0
1−γ

)
(t, x− y) dy � t(β∗0/α2)−γ‖f‖∞.

Combining all the estimates above together, we arrive at

lim
t↓0

sup
x∈Rd

∣∣uf (t, x)− f(x)
∣∣ 6 ε.

Since ε is arbitrary, we know that (1.16) holds.

(iv) Denote by Cεb (Rd) the set of bounded Hölder continuous functions, and by C2,ε
b (Rd) the set of bounded

twice differentiable functions whose second derivatives are uniformly Hölder continuous. We first suppose
that f ∈ C2,ε

b (Rd). Let

ũf (t, x) := f(x) +

∫ t

0

∫
Rd
p(s, x, y)Lf(y) dy ds = f(x) +

∫ t

0
uLf (s, x) ds.

Since Lf ∈ Cεb (Rd), it is easy to see that

∂ũf (t, x)

∂t
=

∫
Rd
p(t, x, y)Lf(y) dy = uLf (t, x), t ∈ (0, 1]

and
lim
t↓0

sup
x∈Rd

|ũf (t, x)− f(x)| = 0.
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On the other hand, due to Lf ∈ Cεb (Rd) again, it follows from (1.15) that LuLf (t, x) =
∂uLf (t,x)

∂t . Further-
more, following the proof of Proposition 5.4, we will get∫ t

0

∣∣∣ ∫
Rd

Lxpz(t− s, x− z)Lf(z) dz
∣∣∣ ds 6 ∫ t

0

∣∣∣ ∫
Rd

Lzpz(t− s, x− z)Lf(z) dz
∣∣∣ ds

+

∫ t

0

∣∣∣ ∫
Rd

(Lx − Lz)pz(t− s, x− z)Lf(z) dz
∣∣∣ ds <∞

and so ∫ t

0
LuLf (s, x) ds

is well defined. Hence,

Lũf (t, x) = Lf(x) +

∫ t

0
LuLf (s, x) ds = Lf(x) +

∫ t

0

∂uLf (s, x)

∂s
ds

= Lf(x) + uLf (t, x)− Lf(x) = uLf (t, x),

where in the third equality we used limt↓0 supx∈Rd |uLf (t, x)−Lf(x)| = 0, thanks to (1.16). Therefore, both
uf and ũf are solutions of the following PDE{

∂u(t,x)
∂t = Lu(t, x),

limt↓0 supx∈Rd |u(t, x)− f(x)| = 0.
(5.28)

Let wf (t, x) := uf (t, x) − ũf (t, x). Then, (5.18) and (5.19) hold for wf with wf (0, x) ≡ 0. At the same
time, it is easy to verify from (1.26) that the function t 7→ Lwf (t, x) is continuous on (0, 1], and that (1.9)
implies (5.20) holds for wf . Thus, by Theorem 5.5, we have

wf (t, x) 6 wf (0, x) = 0, (t, x) ∈ (0, 1]×Rd.

Furthermore, applying the argument above to −wf , we finally get that

wf (t, x) ≡ 0, (t, x) ∈ (0, 1]×Rd.

Therefore, uf (t, x) = ũf (t, x) for any t ∈ (0, 1] and x ∈ Rd, which further implies that∫
Rd

Lp(t, ·, y)(x)f(y) dy =
∂uf (t, x)

∂t
=
∂ũf (t, x)

∂t
=

∫
Rd
p(t, x, y)Lf(y) dy.

Thus, (1.17) holds. Observe that

uf (t, x) = ũf (t, x) = f(x) +

∫ t

0
uLf (s, x) ds.

According to (1.16), we arrive at (1.18) immediately. By the standard approximation procedure, we know
that (1.17) and (1.18) still hold for every f ∈ C2

b,u(Rd).

(v) Let u(t, x) =:
∫
Rd
p(t, x, y) dy. Then, according to (1.15) and (1.16), we know that u satisfies the

following equation {
∂u(t,x)
∂t = Lu(t, x),

limt↓0 supx∈Rd
∣∣u(t, x)− 1

∣∣ = 0.
(5.29)

At the same time, v(t, x) ≡ 1 satisfies the equation (5.29) above. Note that (5.20) and the time continuity
condition hold for both u(t, x) and v(t, x). Then, using the same argument as in (iv) and applying Theorem
5.5, we obtain ∫

Rd
p(t, x, y) dy = u(t, x) = 1, (t, x) ∈ (0, 1]×Rd,

which is (1.13).
For every fixed s ∈ (0, 1) and y ∈ Rd, we define

us,y(t, x) :=

∫
Rd
p(t, x, z)p(s, z, y) dz.

Again by (1.15) and (1.16), the following equation holds for us,y:{
∂us,y(t,x)

∂t = Lus,y(t, x),

limt↓0 supx∈Rd |us,y(t, x)− p(s, x, y)| = 0.
(5.30)
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On the other hand, it is easy to verify that vs,y(t, x) := p(t + s, x, y) satisfies (5.30), and (5.20) and the
time continuity condition hold for both us,y(t, x) and vs,y(t, x). Following the procedure above and applying
Theorem 5.5, we arrive at∫

Rd
p(t, x, z)p(s, z, y) dz = us,y(t, x) = vs,y(t, x) = p(t+ s, x, y),

which is (1.12).
(vi) Suppose that p̂(t, x, y) is another jointly continuous function on (0, 1]×Rd ×Rd that is bounded for

each t > 0 and satisfies (1.9) and (1.14)-(1.16). For every f ∈ Cb,u(Rd), let

ûf (t, x) :=

∫
Rd
p̂(t, x, y)f(y) dy and ŵf (t, x) := uf (t, x)− ûf (t, x).

Then both uf and ûf satisfy (1.15). By the same argument above, we have ŵf (t, x) = 0 for each (t, x) ∈
(0, 1]×Rd. This implies that for every f ∈ Cb,u(Rd),∫

Rd
p(t, x, y)f(y) dy =

∫
Rd
p̂(t, x, y)f(y) dy.

Consequently, p(t, x, y) = p̂(t, x, y) for a.e. y ∈ Rd and hence for every y ∈ Rd.
(vii) Suppose that κ(x, z) depends on z. The desired upper and lower estimates and the regularity can

be proved in a similar way as before. On the other hand, the condition (α2/α1)− 1 < β∗/α2 < 1/2 implies
that α2 − α1 < α1/2 < 1, which ensures that (5.20) holds with uf (t, x) :=

∫
Rd
p(t, x, y)f(y) dy for every

f ∈ Cb,u(Rd). Therefore, following the arguments in steps (i)-(vi), we can verify that (1.12)-(1.18) hold in
such case. �

Sketch of the Proof for Remark 1.5(1). In Theorem 1.1 we assume that κ(x, z) is independent of z. According
to its proof, the reason why we need such condition is only due to that this implies the gradient estimate
(2.20). Thus, for the upper bound estimates for |∇py(t, x)| and |∇2py(t, x)|, the time singularity factor
t−1/α(y) will not appear when |x| is large and t is small. This point is crucial for estimates (2.16) and (2.38),
which yield Theorem 1.1.

Now, we turn to these two assumptions in Remark 1.5(1). According to [37, Theorem 1.5] and [7, Corollary
7 and Theorem 21], the following gradient estimate

|∇kpy(t, x)| � t

|x|d+α(y)+k
, k = 1, 2

holds for all t ∈ (0, 1] and x ∈ Rd with |x| is large, which also ensures that the required estimates (2.16) and
(2.38) hold true. �

5.3. Lower bound estimates. In this subsection, we will establish lower bound estimates for p(t, x, y).
The idea of the arguments below is inspired by that in [20, Subsection 4.4]. Throughout this part, we will
always suppose that either of two conditions below is satisfied:

(1) κ(x, z) is independent of z.
(2) κ(x, z) depends on z, and (α2/α1)− 1 < β∗∗0 /α2, where β∗∗0 ∈ (0, β0] ∩ (0, α2/2).

Proposition 5.6. (On diagonal lower bounds) There exists a positive constant c1 := c1(α, κ) such that
for all t ∈ (0, 1] and x, y ∈ Rd with |x− y| 6 5(t1/α(x) ∨ t1/α(y)),

p(t, x, y) > c1t
−d/α(x). (5.31)

Proof. For simplicity, we only prove the case that κ(x, z) depends on z and (α2/α1)− 1 < β∗∗0 /α2, since the
other case can be tackled similarly and easily.

First, according to (3.11), for any t ∈ (0, 1] and x, y ∈ Rd with |x− y| 6 5(t1/α(x) ∨ t1/α(y)) 6 5t1/α2 ,

t1/α(x) � t1/α(y). (5.32)

It is well known that for any t > 0 and x, y ∈ Rd,

py(t, x− y) � t

(t1/α(y) + |x− y|)d+α(y)
.

Thus, for all t ∈ (0, 1] and x, y ∈ Rd,

py(t, x− y) � t−d/α(y) when |x− y| 6 5(t1/α(x) ∨ t1/α(y)). (5.33)



50 XIN CHEN, ZHEN-QING CHEN AND JIAN WANG

Second, (3.21) and (3.13) yield that for all t ∈ (0, 1] and x, y ∈ Rd with |x− y| 6 5t1/α2 ,∫ t

0

∫
Rd
pz(t− s, x− z)|q(s, z, y)| dz ds

�
∫ t

0

∫
Rd
ρz,01 (t− s, x− z) ·

(
ρy,0(β∗∗0 /α2)−γ2 + ρ

y,β∗∗0
−γ2

)
(s, z, y) dz ds

� ρy,β
∗∗
0

1−γ2 (t, x− y) + ρy,01+(β∗∗0 /α2)−γ2(t, x− y)

� |x− y|β∗∗0 t−d/α(y)−γ2 + t−(d/α(y))+(β∗∗0 /α2)−γ2 � t−(d/α(y))+(β∗∗0 /α2)−γ2 ,

(5.34)

where in the first inequality γ2 := (α2/α1) − 1 + γ and the fourth inequality follows from the fact that
|x− y| 6 5t1/α2 .

The assumption (α2/α1) − 1 < β∗∗0 /α2 ensures that we can choose γ > 0 small enough such that γ2 <
β∗∗0 /α2. Combining (5.34) with (5.33), (1.26) and (5.32), we arrive at that there is a constant t0 ∈ (0, 1] such
that for all t ∈ (0, t0] and x, y ∈ Rd with |x− y| 6 5(t1/α(x) ∨ t1/α(y)),

p(t, x, y) � t−d/α(y) � t−d/α(x). (5.35)

Note that, according to the argument above, (5.35) still holds for all t ∈ (0, t0] and x, y ∈ Rd with |x −
y| � (t1/α(x) ∨ t1/α(y)). Furthermore, due to (5.32), for any y, z ∈ Rd with |z − y| 6 5t1/α(y), we have
|x− z| 6 |z − y|+ |x− y| � t1/α(x) for any x ∈ Rd with |x− y| � (t1/α(x) ∨ t1/α(y)), and so

p(t, x, z) � t−d/α(z) � t−d/α(x), t ∈ (0, t0],

thanks to (5.32) again. Therefore, according to the Chapman-Kolmogorov equation (1.12) and (5.35), for
every t ∈ [t0, 2t0] and x, y ∈ Rd with |x− y| 6 5t1/α(x),

p(t, x, y) =

∫
Rd
p(t0, x, z)p(t− t0, z, y) dz � (t− t0)−d/α(y)

∫
{|z−y|65(t−t0)1/α(y)}

p(t0, x, z) dz

� (t− t0)−d/α(y)t
−d/α(x)
0 (t− t0)d/α(y) � t−d/α(x).

Iterating the arguments above [1/t0] + 1 times, we can obtain (5.31). �

To consider off-diagonal lower bounds for the heat kernel p(t, x, y), we will make use of a strong Markov
process, in particular the corresponding Lévy system, associated with the operator L. Note that, from
the Chapman-Kolmogorov equation (1.12) and the properties (1.15) and (1.17), it is standard to prove the
following result. Since the proof is almost the same as [20, Theorem 4.5], we omit it here.

Proposition 5.7. (1) There is a strong Markov process X :=
(
(Xt)t>0; (Px)x∈Rd

)
such that for every

f ∈ C2
b (Rd),

Mf
t := f(Xt)− f(X0)−

∫ t

0
Lf(Xs) ds, t ∈ (0, 1] (5.36)

is a martingale with respect to the natural filtration Ft := σ{Xs, 0 6 s 6 t} under probability measure Px
for all x ∈ Rd. Moreover, X has the strong Feller property.

(2) For every non-negative measurable function g : (0, 1] × Rd × Rd → R+ vanishing on {(s, x, y) ∈
(0, 1]×Rd ×Rd : x = y} and any stopping time T , we have

Ex

 ∑
s6T∧1

g(s,Xs−, Xs)

 = Ex

(∫ T∧1

0

∫
Rd
g(s,Xs, y)J(Xs, y) dy ds

)
, (5.37)

where

J(x, y) :=
κ(x, y − x)

|y − x|d+α(x)
, x, y ∈ Rd.

For any subset D ⊆ Rd, define

σD := inf{t > 0 : Xt ∈ D}, τD := inf{t > 0 : Xt /∈ D}.

Lemma 5.8. There exist constants R1, A0 ∈ (0, 1) such that for every r ∈ (0, R1),

Px
(
τB(x,A0r) 6 r

α(x)
)
6 1/2, x ∈ Rd. (5.38)
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Proof. Choose a function f ∈ C2
b (Rd) such that f(0) = 0 and f(x) = 1 for every |x| > 1. For each r > 0 and

x ∈ Rd, define fr,x(y) := f
(y−x

r

)
. Then, by (5.36), for every 0 < r < 1, A > 0 and x ∈ Rd,

Px
(
τB(x,Ar) 6 r

α(x)
)
6 ExfAr,x

(
XτB(x,Ar)∧rα(x)

)
= Ex

(∫ τB(x,Ar)∧rα(x)

0
LfAr,x(Xs) ds

)
. (5.39)

Observe that for every y ∈ B(x,Ar) and λ > 1,

|LfAr,x(y)| �
∫
{|z|6λr}

|δfAr,x(y; z)| · dz

|z|d+α(y)
+

∫
{|z|>λr}

|δfAr,x(y; z)| · dz

|z|d+α(y)

� ‖∇
2f‖∞

(Ar)2

∫
{|z|6λr}

|z|2−d−α(y) dz + ‖f‖∞
∫
{|z|>λr}

|z|−d−α(y) dz

�
(
‖∇2f‖∞λ2−α(y)

A2
+
‖f‖∞
λα(y)

)
· r−α(y).

Hence, first taking λ large enough and then A large enough, we can find a constant A0 > 0 such that

|LfA0r,x(y)| 6 1

4
r−α(y) for all y ∈ B(x,A0r).

Since for every y ∈ B(x,A0r) and r ∈ (0, 1),

r−α(y) = r−α(x)r−(α(y)−α(x)) 6 r−|α(x)−α(y)|r−α(x) 6 r−C1(A0r)β0 r−α(x) 6 exp(C2| log r|rβ0)r−α(x),

there exists a constant r0 > 0 small enough such that r−α(y) 6 2r−α(x) for all r ∈ (0, r0) and y ∈ B(x,A0r).
Hence, we have for every r ∈ (0, r0) and y ∈ B(x,A0r),

|LfA0r,x(y)| 6 1

2
r−α(x).

Therefore, putting this estimate into (5.39), we obtain (5.38). �

We now show the following off-diagonal lower bound estimates for p(t, x, y).

Proposition 5.9. (Off-diagonal lower bound estimates) There exists a constant c1 := c1(α, κ) > 0

such that for every t ∈ (0, 1] and x, y ∈ Rd with |x− y| > 5 max{t1/α(x), t1/α(y)}

p(t, x, y) >
c1t

|x− y|d+α(x)
. (5.40)

Proof. For any t ∈ (0, 1] and x, y ∈ Rd, it holds that

Px
(
Xλt ∈ B(y, t1/α(y))

)
> Px

(
σB(y,t1/α(y)/2) 6 λt; sup

s∈(σ
B(y,t1/α(y)/2)

,λt)

∣∣Xs −Xσ
B(y,t1/α(y)/2)

∣∣ 6 t1/α(y)/2
)

> Px
(
σB(y,t1/α(y)/2) 6 λt;PXσ

B(y,t1/α(y)/2)

(
sup

06s6λt
|Xs −X0| 6 t1/α(y)/2

))
> Px

(
σB(y,t1/α(y)/2) 6 λt

)
· inf
z∈B(y,t1/α(y)/2)

Pz
(
τB(z,t1/α(y)/2) > λt

)
,

(5.41)

where in the second inequality we have used the strong Markov property.
Following the proof of (3.11), we know that t1/α(y) > C1t

1/α(z) for every z ∈ B(y, t1/α(y)/2). Hence, there
exists a constant 0 < λ0 < 1 such that for all 0 < λ < λ0 and z ∈ B(y, t1/α(y)/2),

Pz
(
τB(z,t1/α(y)/2) > λt

)
> Pz

(
τB(z,C1t1/α(z)/2) > λt

)
> 1/2, (5.42)

where the last inequality follows from (5.38). On the other hand, by the Lévy system (5.37), for λ > 0 small
enough and for any x, y ∈ Rd with |x− y| > 5 max{t1/α(x), t1/α(y)},

Px
(
σB(y,t1/α(y)/2) 6 λt

)
> Px

(
Xλt∧τ

B(x,t1/α(x))
∈ B(y, t1/α(y)/2)

)
= Ex

(∫ λt∧τ
B(x,t1/α(x))

0

∫
B(y,t1/α(y)/2)

du

|Xs − u|d+α(Xs)
ds

)
� λt1+(d/α(y)) · inf

z∈B(x,t1/α(x))

1

|x− y|d+α(z)
· Px

(
τB(x,t1/α(x)) > λt

)
� t1+(d/α(y))

|x− y|d+α(x)
,

(5.43)
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where in the first inequality we used the fact that |x − y| > 5 max{t1/α(x), t1/α(y)} implies B(x, t1/α(x)) ∩
B(y, t1/α(y)/2) = ∅, the second inequality follows from the fact that |z−u| � |x−y| for any z ∈ B

(
x, t1/α(x)

)
and u ∈ B

(
y, t1/α(y)/2

)
, and in the last inequality we used (5.38) and the fact that for any x, y, z ∈ Rd with

|x− y| > 5t1/α(x) and z ∈ B(x, t1/α(x)) and for every 0 < t 6 1,

|x− y|−d−α(z) � |x− y|−d−α(x)+C2|x−z|β0 � tC2tβ0/α1 |x− y|−d−α(x) � |x− y|−d−α(x).

According to (5.41), (5.42) and (5.43), we obtain that for any |x− y| > 5t1/α(x) and λ small enough,

Px
(
Xλt ∈ B(y, t1/α(y))

)
� t1+(d/α(y))

|x− y|d+α(x)
. (5.44)

Hence, we arrive at

p(t, x, y) =

∫
Rd
p(λt, x, z)p((1− λ)t, z, y) dz

>
∫
B(y,t1/α(y))

p(λt, x, z)p((1− λ)t, z, y) dz

> inf
|z−y|6t1/α(y)

p((1− λ)t, z, y)

∫
B(y,t1/α(y))

p(λt, x, z) dz

� inf
|z−y|6C3t1/α(z)

p((1− λ)t, z, y)

∫
B(y,t1/α(y))

p(λt, x, z) dz

� t−d/α(y)Px
(
Xλt ∈ B(y, t1/α(y))

)
� t

|x− y|d+α(x)
,

where the third inequality follows from the fact that t1/α(y) � t1/α(z) for every |y − z| 6 t1/α(y), in the forth
inequality we used (5.31), and in the last inequality we used (5.44). Therefore, (5.40) has been proved. �

According to Propositions 5.6 and 5.9, we immediately get the following

Corollary 5.10. There exists a constant c0 := c0(α, κ) > 0 such that for every t ∈ (0, 1] and x, y ∈ Rd,

p(t, x, y) >
c0t(

t1/α(x) + |y − x|
)d+α(x)

.
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