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QUENCHED INVARIANCE PRINCIPLE FOR LONG RANGE RANDOM WALKS

IN BALANCED RANDOM ENVIRONMENTS

XIN CHEN ZHEN-QING CHEN TAKASHI KUMAGAI JIAN WANG

Abstract. We establish via a probabilistic approach the quenched invariance principle for a class of
long range random walks in independent (but not necessarily identically distributed) balanced random

environments, with the transition probability from x to y on average being comparable to |x− y|−(d+α)

with α ∈ (0, 2]. We use the martingale property to estimate exit time from balls and establish tightness of
the scaled processes, and apply the uniqueness of the martingale problem to identify the limiting process.
When α ∈ (0, 1), our approach works even for non-balanced cases. When α = 2, under a diffusive with
the logarithmic perturbation scaling, we show that the limit of scaled processes is a Brownian motion.
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1. Introduction and main result

Let (Ω,F ,P) be a probability space. We will use E to denote the mathematical expectation taken
under P. Let Z and Z+ denote the set of integers and non-negative integers, respectively. For d > 1, let
Zd be the d-dimensional integer lattice, and Zd

0
:= Zd \ {0}, where 0 := (0, · · · , 0) is the zero element

in Zd (or Rd). Here and in what follows, we use := as way of definition. For each fixed ω ∈ Ω, we
consider a continuous time random walk Xω := (Xω

t )t>0 on Zd with the infinitesimal generator

L
ωf(x) :=

∑

z∈Zd
0

(

f(x+ z)− f(x)
)κ(x, z)(ω)

|z|d+α
, f ∈ Bb(Z

d),

where 0 < α 6 2 and κ(x, z)(ω) satisfies the following balanced condition

κ(x, z)(ω) = κ(x,−z)(ω) > 0 for all x ∈ Z
d, z ∈ Z

d
0

and ω ∈ Ω. (1.1)

In other words, Xω is a continuous time Markov process on Zd such that conditioned on Xω
t = x, Xω

waits an exponentially distributed random amount of time with parameter

λω(x) :=
∑

z∈Zd
0

κ(x, z)(ω)|z|−(d+α)

before it jumps to x+ z with probability κ(x, z)(ω)|z|−(d+α)/λω(x). When α ∈ (0, 2) and κ(x, z)(ω) is
uniformly elliptic, i.e., there exist (non-random) constants 0 < c1 6 c2 <∞ such that c1 6 κ(x, z)(ω) 6
c2 for all x ∈ Zd, z ∈ Zd

0
, and ω ∈ Ω, the process Xω is called an α-stable-like (balanced but not

necessarily symmetric) random walk in the literature.
If κ(x, z)(ω) = 0 for all ω ∈ Ω, x ∈ Zd and z ∈ Zd with |z| > 1, then the process Xω is reduced

into a nearest neighbor random walk in balanced random environments (NNBRW). In particular, a
NNBRW can be viewed as the discrete counterpart corresponding to an Rd-valued diffusion process in
balanced random environments, which was initially considered by Papanicolaou and Varadhan [13]. The
NNBRW was first introduced by Lawler [12], where the quenched invariance principle was established
under some uniformly elliptic condition on the conductance in ergodic environments. Thirty years later,
Guo and Zeitouni [11] proved the quenched invariance principle for NNBRWs under some inverse moment
condition on the conductance in balanced random environments. When the environment is i.i.d., (that
is, {κ(x, ·)}x∈Zd are i.i.d. across the sites x ∈ Zd under P,) the quenched invariance principle for
NNBRWs was established by Berger and Deuschel [5] under the so-called “genuinely d-dimensional”
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condition, where the environment is allowed to be degenerate. More recently, under such “genuinely
d-dimensional” condition, Berger, Cohen, Deuschel and Guo [4] obtained some quantitative estimates
for the solution to elliptic equations, as well as the elliptic Harnack inequality. For the NNBRW in time-
dependent balanced environments, the quenched invariance principle has been proven by Deuschel, Guo
and Ramirez in [9], while the quenched local central limit theorem was established by Deuschel and Guo
in [8].

The goal of this paper is to establish the quenched invariance principle for long range random walks in
balanced random environments, i.e., κ(x, z)(ω) does not vanish when |z| > 1. The following assumption
will be in force in the paper.

Assumption (A0) {κ(x, z) : x ∈ Zd, z ∈ Zd
+,∗} is a sequence of independent non-negative random

variables, where

Z
d
+,∗ :=

{

x = (x1, · · · , xd) ∈ Z
d : xi0 > 0 for i0 := min{1 6 i 6 d : xi 6= 0}

}

.

Note that Zd
0
= Zd

+,∗ ∪ (−Zd
+,∗), and κ(x, z) satisfies the balanced condition (1.1) (i.e. κ(x, z) is

symmetric in z ∈ Zd
0

for each fixed x ∈ Zd). So κ(x, z) on Zd × Zd
0

is determined by its values on
Zd ×Zd

+,∗.

We will consider the following assumption when α ∈ (0, 2).

Assumption (A1) Assume α ∈ (0, 2) and d > 4− 2α.

(i) There is some constant p > max
{

2(d+1)
d , d+1

2−α

}

so that

sup
x∈Zd,z∈Zd

0

E [κ(x, z)p] <∞. (1.2)

(ii) There exists a bounded continuous function K : Rd × Rd
0
→ R+ := [0,∞) such that for every

large integer R > 1 and small ε ∈ (0, 1),

lim
n→∞

sup
x∈Zd,z∈Zd

0
:

|x|6nR,εn<|z|<n/ε

∣

∣E[κ(x, z)] −K(x/n, z/n)
∣

∣ = 0, (1.3)

and that the solution to the martingale problem for (L̄, C2
c (R

d)) is unique, where for f ∈ C∞
c (Rd)

L̄f(x) : = p.v.

∫

Rd
0

(

f(x+ z)− f(x)
)K(x, z)

|z|d+α
dz

=

∫

Rd
0

(

f(x+ z)− f(x)−∇f(x) · z1{|z|61}
)K(x, z)

|z|d+α
dz,

(1.4)

Rd
0
:= Rd \ {0}, and p.v. stands for principal value.

Remark 1.1. (i) Condition (1.3) along with the continuity of K(x, z) on Rd ×Rd
0

implies that

K(λx, λz) = K(x, z) for every x, z ∈ R
d and λ > 0, (1.5)

and if we write z = rθ ∈ Rd
0

in spherical coordinates with r = |z| and θ = z/|z| ∈ Sd−1, then for
every x ∈ Rd,

lim
r→∞

K(x, rθ) = lim
r→∞

K(x/r, θ) = K(0, θ).

In particular, (1.5) says that K(x, z) is uniquely determined by its value on the unit sphere in
R2d and hence K(x, z) is bounded on Rd ×Rd.



LONG RANGE RANDOM WALKS IN BALANCED RANDOM ENVIRONMENTS 3

(ii) Observe that conditions (1.1) and (1.3) along with the continuity of K(x, z) on Rd ×Rd
0

imply
that K(x, z) is balanced in the sense that

K(x, z) = K(x,−z) for all x ∈ R
d, z ∈ R

d
0. (1.6)

Moreover, by (1.2), (1.3) and the continuity of K(x, z) on Rd ×Rd
0
,

sup
x∈Rd,z∈Rd

0

K(x, z) 6 sup
x∈Zd,z∈Zd

0

Eκ(x, z).

Note also that here we only assume the uniqueness of the martingale problem for (L̄, C2
c (R

d)),
since the boundedness and the continuity of K(x, z) on Rd × Rd

0
ensure that the existence of

the martingale problem for (L̄, C2
c (R

d)); see [2, Theorem 4.1]. Some sufficient conditions for
the uniqueness of the solution to the martingale problem for L̄ defined by (1.4) are known; for
example, when K(·, ·) satisfies 0 < K1 6 K(x, z) 6 K2 < ∞ for all x ∈ Rd and z ∈ Rd

0
, and

∫ 1
0 r

−1ψK(r) dr <∞, where

ψK(r) = sup
z∈Rd

0
,x,y∈Rd with |x−y|6r

|K(x, z) −K(y, z)|,

see [2, Theorem 1.2], [7, Theorem 4.6] and [14, Theorem 1.3] for related work.

We need the following assumption instead of Assumption (A1) when α = 2.

Assumption (A2) Assume α = 2 and d > 1.

(i) There are some constants c∗ > 0 and η ∈ (1, 2) such that

sup
x∈Zd,z∈Zd

0

E [exp (c∗κ(x, z)
η)] <∞. (1.7)

(ii) There is a constant matrix A := (aij)16i,j6d so that for every R > 1 and 1 6 i, j 6 d,

lim
n→∞

sup
x∈n−1Zd:|x|6R

∣

∣

∣

∣

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

zizjE[κ(nx, z)]

|z|d+2
− aij

∣

∣

∣

∣

= 0. (1.8)

For every n > 1 and t > 0, let

Xω,n
t :=

{

n−1Xω
nαt, α ∈ (0, 2),

n−1Xω
n2t/log(n+1), α = 2.

For any T > 0, denote by Pω
x (for simplicity we omit T in the notation) the distribution of Xω :=

(Xω
t )06t6T on the Skorohod space D([0, T ];Rd) with initial starting point x ∈ Zd, and denote by P

ω,n
x

the distribution of Xω,n := (Xω,n
t )06t6T on D([0, T ];Rd) starting at x ∈ n−1Zd.

Theorem 1.2. (i) Suppose that α ∈ (0, 2), and that Assumptions (A0) and (A1) hold. Then for

every T > 0 and a.s. ω ∈ Ω, P
ω,n
0

converges weakly to P̄0 on D([0, T ];Rd), where P̄0 is the

distribution of the unique solution to the martingale problem for (L̄, C2
c (R

d)) defined by (1.4)
starting at 0.

(ii) Suppose that α = 2, and that Assumptions (A0) and (A2) hold. Then for every T > 0 and a.s.

ω ∈ Ω, P
ω,n
0

converges weakly to P̄0 on D([0, T ];Rd), where P̄0 is the distribution of Brownian

motion starting at 0 with a deterministic non-negative definite covariance matrix A.

We have the following sufficient condition for (1.8) in Assumption (A2)(ii).

Proposition 1.3. Suppose that α = 2, d > 1 and supx∈Zd,z∈Zd
0

E [κ(x, z)] < ∞. If there exists a

bounded and continuous function K : Rd
0
→ R+ such that for every integer R > 1 and ε ∈ (0, 1),

lim
n→∞

sup
x∈n−1Zd,z∈n−1Zd

0

|x|6nR,nε6|z|6n

∣

∣E[κ(x, z)] −K(z/n)
∣

∣ = 0, (1.9)
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then (1.8) holds with

aij =

∫

Sd−1

K(θ)θiθj dθ,

where S
d−1 := {z ∈ Rd : |z| = 1} and dθ is the standard Lebesgue surface measure on S

d−1.

Remark 1.4. (i) Just as that in Remark 1.1, condition (1.9) together with the continuity of the
function K(z) on Rd

0
implies that K(z) is a homogenous function of degree 0; that is,

K(z) = K(z/|z|) for every z ∈ R
d
0.

(ii) To the best of our knowledge, all the existing literature including references [4, 5, 8, 9, 11, 12]
quoted above are concerned with nearest neighbor random walks in balanced random environ-
ments. This is the first paper to investigate the quenched invariance principle for long range
random walks in balanced random environments. The reader is referred to [6] for the correspond-
ing work on random conductance models with (symmetric) α-stable-like jumps. Compared with
assumptions in [4, 5, 8, 9, 11, 12], our method can be applied to non-ergodic environments since
{κ(x, z)(ω) : x ∈ Zd, z ∈ Zd

+,∗, ω ∈ Ω} are not required to be identically distributed.
(iii) The essential character of long range random walk in the present paper is that, the probability

of jump from x to y is of the order |x− y|−d−α with some α ∈ (0, 2]. In particular, this indicates
that the second moment of the process X is infinite. Therefore, we can not expect the scaling
process to be a Brownian motion, or can not take the diffusive scaling to study the invariance
principle. Note that, when α ∈ (0, 2), |x − y|−d−α is a typical transition density for α-stable
random walk on Zd. So, in this case it is natural to adopt the α-stable scaling and expect the
limit process to be a stable-like process. Also due to this observation, the average of the sum
for κ(x, z) in large scale, which converges to E[κ(x, z)] by the Borel-Cantelli arguments under
the independent property of κ(x, z) and some moments conditions on κ(x, z), will be directly
involved into the jumping kernel of limit process. The case that α = 2 is distinct from α ∈ (0, 2).
However, by the similar method for α ∈ (0, 2), it holds that with proper scaling (which is not
the diffusive scaling) the limit process is a Brownian motion, whose coefficients are determined
by E[κ(x, z)] as well. We should emphasize that the framework for α > 2 is completely different.
Roughly speaking, when α > 2 the second moment of the process X is finite. Even it is believed
that by taking the diffusion scaling the limit process should be a Brownian motion, we do not
know how to prove it in general. See Subsection 4.2 for more remarks.

(iv) In order to establish the quenched invariance principle and related results for NNBRWs in
either ergodic environments or i.i.d. environments, some analytic tools, in particular the so-
called Aleksandrov-Bakelman-Pucci (ABP) type estimates, play a crucial role; see [4, 5, 8, 9, 11,
12]. However, for the non-symmetric α-stable-like operator L̄ defined by (1.4), the ABP type
estimates are still unknown except for a very special class of coefficients K(x, z), see [10] for
more details. In this paper, we use a probabilistic approach to tackle the quenched invariant
principle. This approach is completely different from those in the above mentioned papers.
We believe that our paper provides another reasonable approach to study quenched invariance
principle for random walks in balanced random environments. In particular, our approach can
efficiently handle the α = 2 case, which is of interest in its own.

(v) We emphasize that, unlike random conductance models as considered in [6, Theorem 1.1], in this
paper we do not require the inverse moment condition such as supx∈Zd,z∈Zd

0

E [κ(x, z)−q] < ∞

for some q > 0. Some kind of non-degenerate condition is partly implied by the uniqueness
assumption of the martingale problem for (L̄, C2

c (R
d)) of (1.4). For instance, all the literature

we know concerning the uniqueness of the martingale problem for the non-local operator L̄

defined by (1.4) are proved under some kind of non-degeneracy of the associated coefficients.
In particular, the uniqueness of the martingale problem for the operator L̄ defined by (1.4)
along with (1.3) could indicate non-degeneracy of the function x 7→ limz∈Zd

0
with |z|→∞E[κ(x, z)].

Moreover, we do not need to assume the balanced condition (1.1) for 0 < α < 1; see Subsection
2.2 below.
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(vi) By (1.3) and the continuity of K(x, z), it is easy to verify that K(x, z) = K(sx, sz) for every
x ∈ Rd, z ∈ Rd

0
and s > 0, which imply that the process (Yt)t>0 whose distribution is the

unique solution to the martingale problem for (L̄, C2
c (R

d)) on D([0,∞);Rd) as in Theorem 1.2
(i) satisfies the following scaling property

(λYλ−αt)t>0
d
= (Yt)t>0, λ > 0.

Here
d
= means the distribution of two processes are the same. Moreover, the limiting operator L̄

defined by (1.4) may not be symmetric with respect to the Lebesgue measure, which is different
from the behavior of NNBRWs studied in [4, 5, 8, 9, 11, 12]. This non-symmetry nature of the
limit operator L̄ is due to the fact that {κ(x, z)(ω) : x ∈ Zd, z ∈ Zd

+,∗, ω ∈ Ω} may not be
identically distributed.

(vii) By the proof below, we see that the conclusion of Theorem 1.2 (ii) holds true if the condition
(1.8) is replaced by the following

lim
n→∞

sup
x∈n−1Zd:|x|6R

∣

∣

∣

∣

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

zizjE[κ(nx, z)]

|z|d+2
− aij(x)

∣

∣

∣

∣

= 0 (1.10)

for all integer R > 1 and 1 6 i, j 6 d, where aij(x) : Rd → R is a bounded and continuous
function. It further follows from (1.10) and the continuity of aij that

aij(sx) = aij(x) for every x ∈ R
d and s > 0.

In particular, for any x ∈ Rd, aij(x) = lims→0 aij(sx) = aij(0); that is, ai,j(x) is a constant
function. Hence, (1.10) is essentially equivalent to (1.8).

(viii) Note that by (1.8), for every ξ = (ξ1, · · · , ξd) ∈ Rd and x ∈ Zd, it holds that

d
∑

i,j=1

aijξiξj = lim
n→∞

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

d
∑

i,j=1

ξiξjzizjE[κ(x, z)]

|z|d+2

= lim
n→∞

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

(

d
∑

i=1

ξizi

)2
E[κ(x, z)]

|z|d+2
> 0.

(1.11)

This immediately implies that A = (aij)16i,j6d is non-negative definite. Furthermore, by (1.8)

and (1.11), it is not difficult to verify that if lim inf |z|→∞E[κ(x, z)] > 0 for every x ∈ Zd, then
∑d

i,j=1 aijξiξj > 0 for every non-zero ξ ∈ Rd, and so A is non-degenerate. Similarly, if the

function K : Rd
0
→ R+ in Proposition 1.3 satisfies that K(θ0) > 0 for some θ0 ∈ S

d−1, then A
is also non-degenerate. Indeed, by the continuity of K, there exists an open neighborhood of
U ⊂ S

d−1 containing θ0 such that infθ∈U K(θ) > 0. On the other hand, for any non-zero ξ ∈ Rd,

we can find an open subset U0 ⊂ U satisfying that infθ∈U0 |〈ξ, θ〉| > 0, where 〈ξ, θ〉 :=
∑d

i=1 ξiθi.
Therefore, by Proposition 1.3,

d
∑

i,j=1

aijξiξj =

∫

Sd−1

K(θ)|〈ξ, θ〉|2 dθ >

∫

U0

K(θ)|〈ξ, θ〉|2 dθ > inf
θ∈U0

(

K(θ)|〈ξ, θ〉|2
)

∫

U0

dθ > 0.

The rest of the paper is organized as follows. In the next section, we consider a deterministic
environment and establish the invariance principle for long range balanced random walks. The main
result for α ∈ (0, 2) is Theorem 2.4. Our approach is based on the tail probability estimates for the
exit time of stable-like balanced random walks and the martingale method. When α ∈ (0, 1), we can
get rid of the balanced condition (1.1) with some slight modifications of the proof of Theorem 2.4; see
Theorem 2.6. When α = 2, the main idea of the proof for Theorem 2.4 still works; see Theorem 2.7.
Section 3 is devoted to the proofs of Theorem 1.2 and Proposition 1.3. Some extensions and remarks of
our main results are given in the last section.
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2. Invariance principle for long range balanced random walks

In this section, we fix the environment ω in {κ(x, z)(ω) : x, z ∈ Zd}; in other words, we consider a
deterministic environment and discuss the invariance principle for its corresponding purely discontinuous
Markov process on Zd.

Let X := (Xt)t>0 be a Markov process on Zd associated with the following infinitesimal generator

Lf(x) :=
∑

z∈Zd
0

(

f(x+ z)− f(x)
)κ(x, z)

|z|d+α
, f ∈ Bb(Z

d),

where α ∈ (0, 2] and κ(·, ·) : Zd × Zd
0
→ [0,∞). Denote by Px the distribution of X on D([0,∞);Zd)

endowed with the Skorohod topology and with initial point x ∈ Zd.
For any α ∈ (0, 2] and n > 1, consider the scaled process

Xn := {Xn
t : t > 0} :=

{

{n−1Xnαt : t > 0}, α ∈ (0, 2),
{

n−1Xn2t/log(1+n) : t > 0
}

, α = 2,

which takes values in n−1Zd. Clearly Xn is a strong Markov process on n−1Zd, and it is easy to check
that it has the corresponding infinitesimal generator

Lnf(x) :=















n−d
∑

z∈n−1Zd
0

(f(x+ z)− f(x)) κ(nx,nz)
|z|d+α , α ∈ (0, 2),

(nd log(1 + n))−1
∑

z∈n−1Zd
0

(f(x+ z)− f(x)) κ(nx,nz)
|z|d+2 , α = 2

(2.1)

acting on f ∈ Bb(n
−1Zd). Denote by Pn

x the distribution of Xn on D([0,∞);n−1Zd) starting at x ∈
n−1Zd.

2.1. Balanced case for α ∈ (0, 2). Throughout this subsection, we assume α ∈ (0, 2) and the balanced
condition (1.1).

Assumption (B1). There exist constants θ ∈ (0, 1), C1 > 0 and R0 > 1 such that for every R > R0

and r ∈ [Rθ, R],

sup
x∈B(0,2R)

∑

z∈Zd:16|z|6r

κ(x, z)

|z|d+α−2
6 C1r

2−α, (2.2)

and

sup
x∈B(0,2R)

∑

z∈Zd:|z|>r

κ(x, z)

|z|d+α
6 C1r

−α. (2.3)

Lemma 2.1. Suppose that Assumption (B1) holds. Then, we have

(i) There is a constant c > 0 that depends only on the constant C1 in Assumption (B1) so that for

every R > R0, r ∈ [Rθ, R], x ∈ B(0, R) and t > 0,

Px(τB(x,r) 6 t) 6 c t/rα. (2.4)

Here and in what follows, for any subset A ⊂ Zd, τA = inf{t > 0 : Xt /∈ A} is the first exit time from

A by the process X.

(ii) {Pn
0
}∞n=1 is tight in D([0, T ];Rd) for any T > 0.

Proof. (i) For any r > 0 and x ∈ Rd, take fx,r ∈ C2
b (R

d) such that

fx,r(z) =











0, 0 6 |z − x| 6 r/2,

∈ [0, 1], r/2 < |z − x| < r,

1, |z − x| > r,
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supz∈Rd |∇fx,r(z)| 6 c0r
−1, and supz∈Rd |∇2fx,r(z)| 6 c0r

−2 for some constant c0 > 0 independent of r
and x. Then, for every x ∈ B(0, R),

Px(τB(x,r) 6 t) 6 Exfx,r(Xt∧τB(x,r)
) = Ex

[∫ t∧τB(x,r)

0
Lfx,r(Xs) ds

]

.

Let R0 > 1 be the constant in Assumption (B1). For every R > R0, r ∈ [Rθ, R], x ∈ B(0, R) and
y ∈ B(x, r),

Lfx,r(y) =
∑

z∈Zd:16|z|6r

(

fx,r(y + z)− fx,r(y)−∇fx,r(y) · z
)κ(y, z)

|z|d+α

+
∑

z∈Zd:|z|>r

(

fx,r(y + z)− fx,r(y)
)κ(y, z)

|z|d+α

= : I1,r + I2,r,

(2.5)

where we used (1.1) in the first equality.
According to (2.2), for every R > R0, r ∈ [Rθ, R], x ∈ B(0, R) and y ∈ B(x, r),

|I1,r| 6
1

2
‖∇2fx,r‖∞

∑

z∈Zd:16|z|6r

κ(y, z)

|z|d+α−2
6
c0
2
r−2 sup

y∈B(0,2R)

∑

z∈Zd:16|z|6r

κ(y, z)

|z|d+α−2
6
c0C1

2
r−α.

Similarly, we have by (2.3),

sup
x∈B(0,R), y∈B(x,r)

|I2,r| 6 2C1r
−α.

Hence, for every R > R0 and r ∈ [Rθ, R],

sup
x∈B(0,R),y∈B(x,r)

|Lfx,r(y)| 6 2(1 + c0/4)C1r
−α. (2.6)

Combining all the estimates above, we obtain (2.4).
(ii) For a Borel subset A ⊂ n−1Zd, let τnA := inf{t > 0 : Xn

t /∈ A} be the first exit time from A by the
process Xn. By the fact that Xn

t = n−1Xnαt and (2.4), for every fixed integer R > 1 and n > R0/R,
we have

P
n
0

(

sup
t∈[0,T ]

|Xn
t | > R

)

6 P
n
0

(

τnB(0,R) 6 T
)

= P0

(

τB(0,nR) 6 nαT
)

6 c nαT (nR)−α = cT/Rα.

Consequently,

lim
R→∞

lim sup
n→∞

P
n
0

(

sup
t∈[0,T ]

|Xn
t | > R

)

= 0. (2.7)

On the other hand, for any η > 0, any sequence of stopping times {τn}n>1 of {Xn}n>1 such that
τn 6 T , and any sequence {εn}n>1 such that limn→∞ εn = 0, it follows from the strong Markov property
of Xn that

P
n
0

(

|Xn
τn+εn −Xn

τn | > η
)

= E
n
0

[

P
n
Xn

τn

(

|Xn
εn −Xn

0 | > η
)]

6 P
n
0

(

τnB(0,R) 6 T
)

+ sup
x∈B(0,R)

P
n
x

(

τnB(x,η) 6 εn
)

= P0

(

τB(0,nR) 6 nαT
)

+ sup
x∈B(0,nR)

Px

(

τB(0,nη) 6 nαεn
)

,

where in the first inequality we used the fact τn 6 T for the second term. Taking n large enough so
that nR > R0 and nη > (nR)θ, we get from (2.4) that

lim sup
n→∞

P
n
0

(

|Xn
τn+εn −Xn

τn | > η
)

6 c lim sup
n→∞

(

nαT

(nR)α
+
nαεn
(nη)α

)

6 cT/Rα,
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which, by taking R→ ∞, yields

lim sup
n→∞

P
n
0

(

|Xn
τn+εn −Xn

τn | > η
)

= 0. (2.8)

The desired tightness assertion now follows from (2.7), (2.8) and [1, Theorem 1]. �

Lemma 2.2. Under Assumption (B1), for every f ∈ C2
c (R

d),

sup
n>1

sup
x∈n−1Zd

|Lnf(x)| <∞, (2.9)

and

lim
R→∞

lim sup
n→∞

sup
x∈n−1Zd:|x|>R

|Lnf(x)| = 0. (2.10)

Proof. Fix f ∈ C2
c (R

d). Suppose that supp(f) ⊂ B(0, N0) for some N0 > 1. Then for every x ∈
B(0, 4N0) ∩ n

−1Zd, we have by (2.1) that for n large enough,

|Lnf(x)| 6 n−d
∑

z∈n−1Zd
0
:|z|61

∣

∣

∣
f(x+ z)− f(x)−∇f(x) · z

∣

∣

∣

κ(nx, nz)

|z|d+α

+ n−d
∑

z∈n−1Zd:|z|>1

∣

∣

∣
f(x+ z)− f(x)

∣

∣

∣

κ(nx, nz)

|z|d+α

6
1

2
nα−2‖∇2f‖∞ sup

x∈B(0,4nN0)

∑

z∈Zd
0
:|z|6n

κ(x, z)

|z|d+α−2

+ 2nα‖f‖∞ sup
x∈B(0,4nN0)

∑

z∈Zd:|z|>n

κ(x, z)

|z|d+α

6
C1

2
nα−2‖∇2f‖∞ n2−α + 2C1n

α‖f‖∞n
−α = 2C1(‖∇

2f‖∞ + ‖f‖∞),

(2.11)

where we used (1.1) in the first inequality, and (2.2) and (2.3) in the last inequality.
On the other hand, since f is supported in B(0, N0), if |x| > 4N0, then f(x + z) − f(x) = 0 when

|x+ z| > N0. Hence for any |x| > 4N0 and n large enough, we have by (2.1) that

|Lnf(x)| 6 ‖f‖∞ n−d
∑

z∈n−1Zd
0
: |x+z|6N0

κ(nx, nz)

|z|d+α
6 ‖f‖∞ n−d

∑

z∈n−1Zd: |x|/26|z|62|x|

κ(nx, nz)

|z|d+α

6 ‖f‖∞ nα
∑

z∈Zd:n|x|/26|z|62n|x|

κ(nx, z)

|z|d+α
6 4‖f‖∞ nα|nx|−2

∑

z∈Zd
0
: |z|62n|x|

κ(nx, z)

|z|d+α−2

6 4C1‖f‖∞ nα−2|x|−2(2n|x|)2−α = c1‖f‖∞|x|−α,

(2.12)

where we have used (2.2) in the last inequality. This proves (2.10), and along with (2.11) also yields
(2.9). �

We need the following assumption for the convergence of {Xn}n>1.

Assumption (B2). There exists a bounded continuous function K(x, z) : Rd ×Rd
0
→ (0,∞) such that

K(x, z) = K(x,−z) for all x ∈ Rd and z ∈ Rd
0
, and that for any integer R > 1 and any f ∈ C2

c (R
d),

lim inf
ε→0

lim
n→∞

nα sup
x∈Zd:
|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd:
nε<|z|<n/ε

(

f
(x+ z

n

)

− f
(x

n

)

)(

κ(x, z) −K(xn ,
z
n)

|z|d+α

)

∣

∣

∣

∣

∣

= 0. (2.13)

Clearly in the above assumption, the phase “for any integer R > 1” can be replaced by “for any
constant R > 0”.
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Lemma 2.3. Suppose that Assumptions (B1) and (B2) hold. Then for any f ∈ C2
c (R

d),

lim
n→∞

sup
x∈n−1Zd

|Lnf(x)− L̄f(x)| = 0, (2.14)

where the operator L̄ is defined by (1.4).

Proof. For every η ∈ (0, 1), set for x ∈ n−1Zd

Ln,ηf(x) : = n−d
∑

z∈n−1Zd:
η<|z|<1/η

(

f(x+ z)− f(x)
)κ(nx, nz)

|z|d+α

= nα
∑

z∈Zd:nη<|z|<nη−1

(

f
(

x+
z

n

)

− f(x)
)κ(nx, z)

|z|d+α
,

L̄n,ηf(x) : = n−d
∑

z∈n−1Zd:
η<|z|<1/η

(

f(x+ z)− f(x)
)K(x, z)

|z|d+α

= nα
∑

z∈Zd:nη<|z|<nη−1

(

f
(

x+
z

n

)

− f(x)
)K(x, z/n)

|z|d+α

and for x ∈ Rd,

L̄ηf(x) :=

∫

{z∈Rd:η<|z|<η−1}

(

f(x+ z)− f(x)
)K(x, z)

|z|d+α
dz. (2.15)

For every R > 1 and η ∈ (0, 1),

sup
x∈n−1Zd

|Lnf(x)− L̄f(x)|

6 sup
x∈n−1Zd:|x|6R

|Ln,ηf(x)− L̄ηf(x)|+ sup
x∈n−1Zd:|x|>R

|Lnf(x)|+ sup
x∈n−1Zd:|x|>R

|L̄f(x)|

+ n−d sup
x∈n−1Zd:|x|6R

∣

∣

∣

∑

z∈n−1Zd
0
:|z|6η

(

f(x+ z)− f(x)−∇f(x) · z
)κ(nx, nz)

|z|d+α

∣

∣

∣

+ n−d sup
x∈n−1Zd:|x|6R

∣

∣

∣

∑

z∈n−1Zd:|z|>η−1

(

f(x+ z)− f(x)
)κ(nx, nz)

|z|d+α

∣

∣

∣

+ sup
x∈n−1Zd:|x|6R

∣

∣

∣

∫

{0<|z|6η}∪{|z|>η−1}

(

f(x+ z)− f(x)−∇f(x) · z1{|z|61}
)K(x, z)

|z|d+α
dz
∣

∣

∣

=: In,R,η
1 + In,R2 + In,R3 + In,R,η

4 + In,R,η
5 + In,R,η

6 . (2.16)

Note that due to balanced conditions (1.1) and (1.6), we may add the gradient term ∇f(x) · z in the
summation.

By (2.13), there is a sequence of positive numbers {εk}k>1 ⊂ (0, 1) that decreases to 0 so that

lim
k→∞

lim
n→∞

nα sup
x∈Zd:
|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd:
nεk<|z|<n/εk

(

f
(x+ z

n

)

− f
(x

n

)

)(

κ(x, z) −K(xn ,
z
n)

|z|d+α

)

∣

∣

∣

∣

∣

= 0. (2.17)

Thus we have
lim inf
k→∞

lim
n→∞

sup
x∈n−1Zd:|x|6R

|Ln,εkf(x)− L̄n,εkf(x)| = 0.

Since K(x, z) is uniformly continuous on {(x, z) ∈ R2d : |x| 6 R and εk < |z| < ε−1
k } for fixed k > 1, it

is routine to show that for any f ∈ C2
c (R

d) and k > 1,

lim
n→∞

sup
x∈n−1Zd:|x|6R

|L̄n,εkf(x)− L̄εkf(x)| = 0.
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Hence, for any R > 1,

lim inf
k→∞

lim
n→∞

In,R,εk
1 = 0.

On the other hand, by (2.10),

lim
R→∞

lim sup
n→∞

In,R2 = 0.

Following the proof for (2.9), and applying (2.2) and (2.3) respectively, we can get

lim sup
n→∞

In,R,η
4 6 c1η

2−α, and lim sup
n→∞

In,R,η
5 6 c1η

α.

Since K is bounded, it is obvious that

lim
R→∞

lim sup
n→∞

In,R3 = 0, and lim sup
n→∞

In,R,η
6 6 c2

(

η2−α + ηα
)

.

Now, we take η = εk in the estimate (2.16). Combining all estimates above with (2.16), first letting
n→ ∞, then taking R→ ∞ and k → ∞, we obtain (2.14). �

Now, we can state the main result in this subsection.

Theorem 2.4. Suppose that Assumptions (B1) and (B2) hold, and the solution of the martingale

problem for (L̄, C2
c (R

d)) defined by (1.4) is unique. Then, for every T > 0, Pn
0

converges weakly to P̄0,

where P̄0 denotes the distribution (restricted on the time interval [0, T ]) of the unique solution to the

martingale problem of the operator (L̄, C2
c (R

d)).

Proof. According to Lemma 2.1, {Pn
0
}n>1 is tight. Then, there exists a weakly convergent subsequence

{Pnk
0
}k>1 (which we also denote by {Pn

0
}n>1 for simplicity) with a weak limit P̃0. By our assumption,

the solution of martingale problem for (L̄, C2
c (R

d)) is unique. Therefore, it suffices to prove the weak

limit P̃0 solves the martingale problem for (L̄, C2
c (R

d)) with initial value 0.

By the Skorohod theorem, we can find a probability space (Ω,F , P̂) and a family of processes (Xn
t )t>0

and (Xt)t>0 on this space such that

(i) The laws of (Xn
t )t>0 and (Xt)t>0 under P̂ are Pn

0
and P̃0, respectively;

(ii) For every T > 0, P̂-a.s. the process Xn
· converges to X· on D([0, T ];Rd).

Since (Xn
t )t>0 is a solution to the martingale problem of (Ln, Bb(n

−1Zd)), for every 0 6 s1 6 · · · 6
sk 6 s 6 t 6 T , f ∈ C2

c (R
d) and G ∈ Cb((R

d)k) with k > 1,

Ê

[(

f(Xn
t )− f(Xn

s )−

∫ t

s
Lnf(X

n
r ) dr

)

G
(

Xn
s1 , · · ·X

n
sk

)

]

= 0. (2.18)

Note that by (2.9), the random variable inside the above expectation is uniformly bounded in n > 1.

As P̂-a.s. the process Xn
· converges to X· on D([0, T ];Rd), by the bounded convergence theorem,

lim
n→∞

Ê

[∣

∣

∣G
(

Xn
s1 , · · ·X

n
sk

)

−G
(

Xs1 , · · ·Xsk

)

∣

∣

∣

]

= 0.

On the other hand,

Ê

[∣

∣

∣

∣

∫ t

s
Lnf(X

n
r ) dr −

∫ t

s
L̄f(Xr) dr

∣

∣

∣

∣

]

6 (t− s) sup
x∈n−1Zd

|Lnf(x)− L̄f(x)|+ Ê

[∣

∣

∣

∣

∫ t

s
L̄f(Xn

r )dr −

∫ t

s
L̄f(Xr) dr

∣

∣

∣

∣

]

.

We next claim that L̄f ∈ Cb(R
d) for any f ∈ C2

c (R
d). Indeed, it follows from the boundedness of

K(x, z) that L̄f is bounded in Rd for any f ∈ C2
c (R

d). On the other hand, by the continuity and the
boundedness of K(x, z), we know L̄ηf ∈ Cb(R

d) for all f ∈ C2
c (R

d) and η > 0, where L̄ηf is defined by
(2.15). Following the proof of Lemma 2.3, we can obtain

sup
x∈Rd

|L̄f(x)− L̄ηf(x)| 6 c1
(

η2−α + ηα
)

.
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Hence L̄f is the uniform limit of L̄η as η → 0, and it follows that L̄f ∈ Cb(R
d) for any f ∈ C2

c (R
d).

By the bounded convergence theorem,

lim
n→∞

Ê

[∣

∣

∣

∣

∫ t

s
L̄f(Xn

r ) dr −

∫ t

s
L̄f(Xr) dr

∣

∣

∣

∣

]

= 0,

which together with (2.14) yields

lim
n→∞

Ê

[∣

∣

∣

∣

∫ t

s
Lnf(X

n
r ) dr −

∫ t

s
L̄f(Xr) dr

∣

∣

∣

∣

]

= 0.

Putting all the estimates above into (2.18), and letting n→ ∞, we obtain

Ê

[(

f(Xt)− f(Xs)−

∫ t

s
L̄f(Xr) dr

)

G (Xs1 , · · ·Xsk)

]

= 0.

This shows that P̃0 is a solution to the martingale problem (L̄, C2
c (R

d)) and clearly P̃0(X0 = 0) = 1.
This completes the proof. �

Remark 2.5. As the above proofs show, we can replace the balanced condition (1.1) by the following
slightly weaker condition: there is some large r0 > 1 so that for all r > r0 and x ∈ Zd,

∑

z∈Zd
0
: |z|6r

zκ(x, z)/|z|d+α = 0. (2.19)

Note that under (2.19) the generator of the process X can be written as

Lf(x) =
∑

z∈Zd
0
:|z|6r

(f(x+ z)− f(x)−∇f(x) · z)
κ(x, z)

|z|d+α
+

∑

z∈Zd
0
:|z|>r

(f(x+ z)− f(x))
κ(x, z)

|z|d+α

for all f ∈ Bb(Z
d) and r > r0. This indicates that the process X is almost driftless in large scale, and

so the drift term does not contribute to the scaling process. On the other hand, when α ∈ (0, 1) the
tail of long range jumps for the process X is up to the order r−α, which would dominate the drift term
when we do the scaling. Based on this observation, we can expect that, when α ∈ (0, 1), the invariance
principle still holds without the balanced condition (1.1) (or (2.19)). The details are given in the next
subsection.

2.2. Non-balanced case for α ∈ (0, 1). In this subsection, we restrict ourselves to the case 0 < α < 1,
and obtain similar results as in the previous subsection but without the balanced condition (1.1).

Assumption (B1∗). There exist constants θ ∈ (0, 1), C1 > 0 and R0 > 1 such that for every R > R0

and r ∈ [Rθ, R],

sup
x∈B(0,2R)

∑

z∈Zd
0
:|z|6r

κ(x, z)

|z|d+α−1
6 C1r

1−α, (2.20)

and

sup
x∈B(0,2R)

∑

z∈Zd:|z|>r

κ(x, z)

|z|d+α
6 C1r

−α. (2.21)

Clearly, condition (2.20) implies condition (2.2), while (2.21) is the same as (2.3) in Assumption
(B1).

The following result corresponds to Theorem 2.4 in the balanced conductance case for α ∈ (0, 2).

Theorem 2.6. Let 0 < α < 1. Suppose that Assumptions (B1∗) and (B2) hold, and the solution of

the martingale problem for (L̄, C2
c (R

d)) defined by (1.4) is unique. Then the conclusion of Theorem 2.4
holds.
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Proof. In the proof of Theorem 2.4 and related lemmas, there are three places where condition (1.1)
is used. Below, we explain how to modify the corresponding parts of the proof. The rest part goes
through exactly as that for Theorem 2.4.

The first part is the estimates of (2.5) in the proof of Lemma 2.1. In the current non-balanced case,

Lfx,r(y) =
∑

z∈Zd
0
: |z|6r

(

fx,r(y + z)− fx,r(y)
)κ(y, z)

|z|d+α
+

∑

z∈Zd:|z|>r

(

fx,r(y + z)− fx,r(y)
)κ(y, z)

|z|d+α

= : I1,r + I2,r.

By (2.20), for every for every R > R0, r ∈ [Rθ, R], x ∈ B(0, R) and y ∈ B(x, r),

|I1,r| 6 ‖∇fx,r‖∞
∑

z∈Zd
0
:|z|6r

κ(y, z)

|z|d+α−1
6 c2r

−1 sup
y∈B(0,2R)

∑

z∈Zd
0
: |z|6r

κ(y, z)

|z|d+α−1
6 c3r

−α.

By the same way as that in the proof of Lemma 2.1, we have |I2,r| 6 c4r
−α for all x ∈ B(0, R) and

y ∈ B(x, r). Thus (2.6) holds and, consequently, (2.4) holds.
The second part is (2.11) and (2.12) in the proof of Lemma 2.2. In the non-balanced case, estimate

(2.11) can be done in the following way. For n large enough, in view of (2.1), (2.20) and (2.21),

|Lnf(x)| 6 n−d
∑

z∈n−1Zd
0
:|z|61

‖∇f‖∞ |z|
κ(nx, nz)

|z|d+α
+ n−d

∑

z∈n−1Zd:|z|>1

2‖f‖∞
κ(nx, nz)

|z|d+α

6 nα−1‖∇f‖∞
∑

z∈Zd
0
:|z|6n

κ(nx, z)

|z|d+α−1
+ 2nα‖f‖∞

∑

z∈Zd:|z|>n

κ(nx, z)

|z|d+α

6 C1‖∇f‖∞ + 2C1‖f‖∞.

(2.22)

Hence (2.11) holds. On the other hand, the fourth inequality of (2.12) should be replaced by

4‖f‖∞ nα|nx|−1
∑

z∈Zd
0
: |z|62n|x|

κ(nx, z)

|z|d+α−1
.

Then, by (2.20), the end estimate in (2.12) holds.

The third place is the estimates for In,R,η
4 and In,R,η

6 in (2.16). Without the balanced condition, we

can not insert the item ∇f(x) · z into the definitions of In,R,η
4 and In,R,η

6 . Since 0 < α < 1, we do it
directly. That is,

In,R,η
4 = n−d sup

x∈n−1Zd:|x|6R

∣

∣

∣

∑

z∈n−1Zd
0
:|z|6η

(

f(x+ z)− f(x)
)κ(nx, nz)

|z|d+α

∣

∣

∣.

Then, by the same argument as (2.22), we get

lim
η↓0

lim sup
n→∞

In,R,η
4 6 c5 lim

η↓0
η1−α = 0.

Similarly, we have

lim
η↓0

lim sup
n→∞

In,R,η
6 6 c6 lim

η↓0
(η1−α + ηα) = 0.

With the above modifications, the proof of Lemma 2.3 goes through. Hence the conclusion of Theorem
2.4 holds under the condition of this theorem. �

2.3. Balanced case for α = 2. In this subsection, we consider the case α = 2 under the balanced
condition (1.1). We will make the following two assumptions instead of Assumptions (B1) and (B2),
respectively.
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Assumption (C1). There exist constants θ ∈ (0, 1), C1 > 0 and R0 > 1 such that for every R > R0

and r ∈ [Rθ, R],

sup
x∈B(0,2R)

∑

z∈Zd:16|z|6r

κ(x, z)

|z|d
6 C1 log(1 + r), (2.23)

and

sup
x∈B(0,2R)

∑

z∈Zd:|z|>r

κ(x, z)

|z|d+2
6 C1r

−2. (2.24)

Assumption (C2). For any n > 1, there exists a function Φn(x, z) : n−1Zd × n−1Zd
0
→ (0,∞) with

Φn(x, z) = Φn(x,−z) for all x ∈ n−1Zd and z ∈ n−1Zd
0
, so that supn>1 ‖Φn‖∞ < ∞, and for any

integer R > 1 and any f ∈ C2
c (R

d),

lim
n→∞

n2

log(1 + n)
sup
x∈Zd:
|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd:
16|z|6n

(

f
(x+ z

n

)

− f
(x

n

)

)(

κ(x, z) − Φn(x/n, z/n)

|z|d+2

)

∣

∣

∣

∣

∣

= 0, (2.25)

and that for any integer R > 1 and 1 6 i, j 6 d,

lim
n→∞

sup
x∈n−1Zd:|x|6R

∣

∣

∣

∣

∣

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

zizjΦn(x, z/n)

|z|d+2
− aij

∣

∣

∣

∣

∣

= 0 (2.26)

for some constant matrix A := (aij)16i,j6d on Rd.

Corresponding to Theorem 2.4, we have the following result.

Theorem 2.7. Let α = 2. Assume that the balanced condition (1.1), and Assumptions (C1) and (C2)
hold. Then the conclusion of Theorem 2.4 holds with

L̄f(x) :=
1

2

∑

16i,j6d

aij
∂2f(x)

∂xi∂xj
, f ∈ C2

c (R
d). (2.27)

Proof. The proof follows from that of Theorem 2.4 with some necessary modifications. For the conve-
nience of the reader, we highlight all main differences here.

(1) First, under Assumption (C1), there is a constant c > 0 that depends only on the constant C1

in Assumption (C1) so that for every R > R0, r ∈ [Rθ, R], x ∈ B(0, R) and t > 0,

Px(τB(x,r) 6 t) 6 c tr−2 log(1 + r).

Consequently, {Pn
0
}∞n=1 is tight in D([0, T ];Rd) for any T > 0.

Under Assumption (C1), we have that for every f ∈ C2
c (R

d),

sup
n>1

sup
x∈n−1Zd

|Lnf(x)| <∞, lim
R→∞

lim sup
n→∞

sup
x∈n−1Zd:|x|>R

|Lnf(x)| = 0. (2.28)

The proofs of the above conclusions are similar to these of Lemmas 2.1 and 2.2, so they are omitted.

(2) Next, we claim that under Assumptions (C1) and (C2), for any f ∈ C3
c (R

d),

lim
n→∞

sup
x∈n−1Zd

|Lnf(x)− L̄f(x)| = 0, (2.29)

where the operator L̄ is defined by (2.27). Indeed, for any n > 1 and x ∈ n−1Zd, define

Ln,1f(x) : =
1

nd log(1 + n)

∑

z∈n−1Zd:0<|z|61

(

f(x+ z)− f(x)
)κ(nx, nz)

|z|d+2

=
n2

log(1 + n)

∑

z∈Zd:16|z|6n

(

f
(

x+
z

n

)

− f(x)
)κ(nx, z)

|z|d+2
,
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L̄n,1f(x) : =
1

nd log(1 + n)

∑

z∈n−1Zd:0<|z|61

(

f(x+ z)− f(x)
)Φn(x, z)

|z|d+2

=
n2

log(1 + n)

∑

z∈Zd:16|z|6n

(

f
(

x+
z

n

)

− f(x)
)Φn(x, z/n)

|z|d+2
.

For every R > 1,

sup
x∈n−1Zd

|Lnf(x)− L̄f(x)| 6 sup
x∈n−1Zd:|x|6R

|Ln,1f(x)− L̄f(x)|+ sup
x∈n−1Zd:|x|6R

|Lnf(x)− Ln,1f(x)|

+ sup
x∈n−1Zd:|x|>R

|Lnf(x)|+ sup
x∈Rd:|x|>R

|L̄f(x)|

=: In,R1 + In,R2 + In,R3 + IR4 .

According to (2.25), for every R > 1,

lim
n→∞

sup
x∈n−1Zd:|x|6R

|Ln,1f(x)− L̄n,1f(x)| = 0.

On the other hand, for any f ∈ C3
c (R

d) and x ∈ n−1Zd with |x| 6 R

|L̄n,1f(x)− L̄f(x)| =

∣

∣

∣

∣

∣

∣

n2

log(1 + n)

∑

z∈Zd:16|z|6n

(

f
(

x+
z

n

)

− f(x)−∇f(x) ·
z

n

)Φn(x, z/n)

|z|d+2
− L̄f(x)

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

1

2 log(1 + n)

∑

z∈Zd:16|z|6n

〈∇2f(x), z ⊗ z〉
Φn(x, z/n)

|z|d+2
− L̄f(x)

∣

∣

∣

∣

∣

∣

+
c1‖∇

3f‖∞
n log(1 + n)

∑

z∈Zd:16|z|6n

|z|3

|z|d+2
.

Here in the equality above we can add the gradient term ∇f(x) · z
n in the summation, thanks to the

property that Φn(x, z) = Φn(x,−z) for all x ∈ n−1Zd, z ∈ n−1Zd
0

and n > 1; and the inequality
above follows from the Taylor formula and the fact that supn>1 ‖Φn‖∞ < ∞. Hence by (2.26) and the

definition of the operator L̄ given by (2.27), we can see that

lim
n→∞

sup
x∈n−1Zd:|x|6R

|L̄n,1f(x)− L̄f(x)| = 0.

Therefore for any R > 1,

lim
n→∞

In,R1 = 0.

By (2.24), for any R > 1,

lim sup
n→∞

In,R2 6 2‖f‖∞ lim sup
n→∞

sup
x∈Zd:|x|6nR

n2

log(1 + n)

∑

|z|>n

κ(x, z)

|z|d+2
= 0.

According to (2.28),

lim
R→∞

lim sup
n→∞

In,R3 = 0.

By the definition of the operator L̄ given by (2.27) again, it is obvious that

lim
R→∞

IR4 = 0.

Therefore, (2.29) is a consequence of all estimates above, by first letting n→ ∞ and then taking R→ ∞.
(3) According to (2.26), A := (aij)16i,j6d given in Assumption (C2) is non-negative definite. Note

that the solution of the martingale problem for (L̄, C2
c (R

d)) defined by (2.27) is always unique, since it
corresponds to Brownian motion with a deterministic covariance matrix A. With (1) and (2) at hand,
we can follow the argument of the proof of Theorem 2.4 to obtain the desired assertion. �
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3. Random walks in balanced random environments

Proof of Theorem 1.2(i). First, we claim that Assumptions (A0) and (A1) imply that for a.s. ω ∈ Ω,
Assumption (B1) holds, and that for every integer R > 1, rational constant ε > 0 and f ∈ C2

c (R
d),

lim
n→∞

nα sup
x∈Zd:
|x|6nR

∣

∣

∣

∑

z∈Zd

nε<|z|<n/ε

(

f
(x+ z

n

)

− f
(x

n

)

)(

κ(x, z) − E[κ(x, z)]

|z|d+α

)

∣

∣

∣
= 0. (3.1)

The proof is mainly based on that of [6, Proposition 5.6]. For the convenience of the reader, we give
the details here. Set J(x, z) := E[κ(x, z)]. For x ∈ Zd, R, δ, ε > 0 and h : Zd ×Zd → R, define

q1(x, δ, h, ε) := P

(∣

∣

∣

∑

z∈Zd:
nε6|z|6n/ε

h(x, z)
(κ(x, z) − J(x, z))

|z|d+α

∣

∣

∣ > δ(nε)−α
)

,

q2(x,R, δ) := P

(∣

∣

∣

∑

z∈Zd
0
:|z|6R

(

κ(x, z)− J(x, z)
)

∣

∣

∣ > δRd
)

,

q3(x,R, δ) := P

(∣

∣

∣

∑

z∈Zd
0
:|z|6R

(κ(x, z) − J(x, z))

|z|d+α−2

∣

∣

∣ > δR2−α
)

.

Note that for a series of independent random variables {ηi}16i6n with E[ηi] = 0 for all 1 6 i 6 n and
M := sup16i6nE[|ηi|

q] <∞ for some q > 1, by the Burkholder-Davis-Gundy inequality,

E

[∣

∣

∣

∣

∣

n
∑

i=1

ηi

∣

∣

∣

∣

∣

q]

6 c0E





(

n
∑

i=1

η2i

)q/2


 6 c1 max{nq/2−1, 1}

n
∑

i=1

E [|ηi|
q] 6 c2n

max{q/2,1}M, (3.2)

where c0, c1, c2 are positive constants that depend only on q.
For every m ∈ R+, let

Sm(i) := E









∑

z∈Zd
0
:|z|62i

(

κ(x, z) − J(x, z)
)

|z|d+α−2





m

 = 2mE









i
∑

j=1

ξ(j)





m

 ,

where

ξ(j) =
∑

z∈Zd
+,∗:2

j−1<|z|62j

(κ(x, z) − J(x, z))

|z|d+α−2
.

Recall that J(x, z) = E[κ(x, z)] and {κ(x, z) : x ∈ Zd, z ∈ Zd
+,∗} are independent. For every m ∈ [2, p],

by (3.2), there is a constant c3 > 0 depending only on m and d so that

E







∣

∣

∣

∣

∣

∣

∣

∑

z∈Zd
+,∗:|z|=k

κ(x, z) − J(x, z)

|z|d+α−2

∣

∣

∣

∣

∣

∣

∣

m




6 c3k

−m(d+α−2)k
(d−1)m

2 sup
x∈Zd,z∈Zd

0

E[κ(x, z)m]

= c3k
m(3−2α−d)

2 sup
x∈Zd,z∈Zd

0

E[κ(x, z)m].

Hence by (3.2) again,

E[|ξ(j)|m] = E







∣

∣

∣

∣

∣

∣

∣

2j
∑

k=2j−1+1

∑

z∈Zd
+,∗:|z|=k

κ(x, z) − J(x, z)

|z|d+α−2

∣

∣

∣

∣

∣

∣

∣

m





6 c42
jm
2 2

jm(3−2α−d)
2 sup

x∈Zd,z∈Zd
0

E[κ(x, z)m] = c42
jm(4−d−2α)

2 sup
x∈Zd,z∈Zd

0

E[κ(x, z)m],

(3.3)
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where c4 > 0 is a constant that depends only on m and d. Consequently, according to the first inequality
in (3.2) and the Hölder inequality as well as Assumption (A1)(i), we know that for each ε ∈ (0, d−4+2α)
(thanks to the assumption that d > 4− 2α)

sup
i>0

|Sp(i)| 6 c5 sup
i>0

E







∣

∣

∣

∣

∣

∣

i
∑

j=1

ξ(j)2

∣

∣

∣

∣

∣

∣

p/2





6 c5 sup

i>0
E











i
∑

j=1

2
εjp
2 |ξ(j)|p









i
∑

j=1

2−
εjp
p−2





p/2−1






6 c6 sup
i>0

i
∑

j=1

2
εjp
2 E[|ξ(j)|p] 6 c7

∞
∑

j=1

2
jp(4+ε−d−2α)

2 <∞.

Then, using the Markov inequality and the fact that p > d+1
2−α , we can find a constant θ ∈ (0, 1) such

that
∞
∑

R=1

∑

x∈B(0,2R)∩Zd

q3(x,R
θ, δ) 6 c8(δ)

∞
∑

R=1

Rd−(2−α)θp <∞. (3.4)

Similarly, since p > 2(d+1)
d , we can also show that

∞
∑

R=1

∑

x∈B(0,2R)∩Zd

∞
∑

r=Rθ/2

q2(x, r, δ) 6 c9(δ)
∞
∑

R=1

Rd
∞
∑

r=Rθ

r−dp/2 <∞. (3.5)

Thus, according to (3.4), (3.5) and the Borel-Cantelli lemma, for a.s. ω ∈ Ω there exists R0(ω) > 2
such that for all R > R0(ω), x ∈ B(0, 2R) ∩Zd and r > Rθ/2,

∑

z∈Zd
0
:|z|6Rθ

κ(x, z)

|z|d+α−2
6 c10R

θ(2−α) and
∑

z∈Zd
0
:|z|6r

κ(x, z) 6 c11r
d.

Therefore, for R > R0(ω), every r ∈ [Rθ, R] and x ∈ B(0, 2R),

∑

16|z|6r

κ(x, z)

|z|d+α−2
6

∑

16|z|6Rθ

κ(x, z)

|z|d+α−2
+

∑

Rθ6|z|6r

κ(x, z)

|z|d+α−2
6 c10R

θ(2−α) +

[ log r
log 2

]
∑

i=[ θ logR
log 2

]

∑

2i6|z|<2i+1

κ(x, z)

|z|d+α−2

6 c10R
θ(2−α) + c11

[ log r
log 2

]
∑

i=[ θ logR
log 2

]

2−i(d+α−2)2(i+1)d
6 c12r

2−α,

and

∑

|z|>r

κ(x, z)

|z|d+α
6

∞
∑

i=[ log r
log 2

]

∑

2i6|z|<2i+1

κ(x, z)

|z|d+α
6

∞
∑

i=[ log r
log 2

]

2−i(d+α)
∑

z∈Zd
0
:|z|<2i+1

κ(x, z)

6 c11

∞
∑

i=[ log r
log 2

]

2−i(d+α)2(i+1)d
6 c12r

−α.

(3.6)

This shows that Assumption (B1) holds for a.s. ω ∈ Ω.
For any fixed f ∈ C2

c (R
d) and n > 1, let

fn(x, z) := f

(

x+ z

n

)

− f
(x

n

)

.

Then, for any R > 1 and ε, δ > 0,
∞
∑

n=1

∑

x∈B(0,nR)∩Zd

q1(x, δ, fn, ε) 6
∞
∑

n=1

∑

x∈B(0,nR)∩Zd

δ−p(εn)αp(nε)−p(d+α)
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×E





∣

∣

∣

∣

∣

∣

∑

z∈Zd:nε6|z|6n/ε

fn(x, z)(nε)
d+α (κ(x, z) − J(x, z))

|z|d+α

∣

∣

∣

∣

∣

∣

p



6 c13δ
−p(εn)−pd(nR)d(n/ε)dp/2‖fn‖

p
∞ sup

x∈Zd,z∈Zd
0

E [κ(x, z)p]

6 c14δ
−pε−

3pd
2 Rd‖f‖p∞

∞
∑

n=1

n−(p
2
−1)d <∞.

Here the first inequality is due to the Markov inequality, the second inequality follows from (1.1),

(3.2) and Assumption (A1)(i), and in the last inequality we have used the fact that p > 2(d+1)
d .

By the Borel-Cantelli lemma, there is a subset Ωf of Ω of full probability (which may depend on f)
so that for every ω ∈ Ωf and every positive rational constants ε, δ and integer R > 1, there exists
N0 := N0(ω,R, δ, ε, ‖f‖∞) > 1 such that for every n > N0 and ω ∈ Ωf ,

nα sup
x∈B(0,nR)∩Zd

∣

∣

∣

∑

z∈Zd:
nε6|z|6n/ε

fn(x, z)
(κ(x, z) − J(x, z))

|z|d+α

∣

∣

∣
6 δε−α.

Taking δ → 0 in the inequality above, we can obtain that for every given f ∈ C2
c (R

d), (3.1) holds for
each ω ∈ Ωf .

Now we are going to show that (3.1) holds on some subset Ω0 of Ω having full probability that is
independent of f .

Let Υ ⊂ C2
c (R

d) be a countable dense subset in (Cc(R
d), ‖ · ‖∞), and set Ω1 :=

⋂

f∈Υ Ωf . Then Ω1

is of full probability.
Given some R > 0 and ε > 0, define (for simplicity, we omit the parameter ω in Tn(f))

Tn(f) = nα sup
x∈Zd:|x|6nR

Qn(f, x), f ∈ C2
c (R

d),

where

Qn(f, x) =
∣

∣

∣

∑

z∈Zd:nε6|z|6nε−1

(

f
(x+ z

n

)

− f
(x

n

))κ(x, z) − J(x, z)

|z|d+α

∣

∣

∣.

Therefore, for every f, g ∈ C2
c (R

d),

|Tn(f)− Tn(g)| 6 nα sup
x∈Zd:|x|6nR

|Qn(f, x)−Qn(g, x)|

6 nα sup
x∈Zd:|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd:nε6|z|6nε−1

[

(f − g)
(x+ z

n

)

− (f − g)
(x

n

)

]

κ(x, z) − J(x, z)

|z|d+α

∣

∣

∣

∣

∣

6 2nα‖f − g‖∞

(

sup
x∈Zd:|x|6nR

∑

|z|>nε

κ(x, z)

|z|d+α
+ sup

x∈Zd:|x|6nR

∑

|z|>nε

J(x, z)

|z|d+α

)

.

By (3.6), there exists a subset Ω2 ⊂ Ω having full probability such that for all ω ∈ Ω1, integer R > 1,
rational constant ε > 0 and n > N0(ω) large enough,

sup
x∈Zd:|x|6nR

∑

|z|>nε

κ(x, z)

|z|d+α
6 c15(nε)

−α.

Meanwhile, since J(x, z) is uniformly bounded,

sup
x∈Zd:|x|6nR

∑

|z|>nε

J(x, z)

|z|d+α
6 c16(nε)

−α.
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Combining all the estimates above together yields that for all f, g ∈ C∞
c (Rd) and ω ∈ Ω1,

lim sup
n→∞

|Tn(f)− Tn(g)| 6 c17(ε)‖f − g‖∞,

where c17 is independent of f, g and n.
For any f ∈ C∞

c (Rd), we can find a sequence {fk}
∞
k=1 ⊂ Υ such that limk→∞ ‖fk − f‖∞ = 0. Let

Ω0 := Ω1 ∩Ω2. Obviously Ω0 has full probability. For every ω ∈ Ω0,

lim
n→∞

Tn(f) 6 lim
n→∞

Tn(fk) + lim sup
n→∞

|Tn(f)− Tn(fk)| 6 c17(ω)‖f − fk‖∞,

where in the second inequality we used the fact that (3.1) holds for every ω ∈ Ω0 and every g ∈ Υ. Then,
letting k → ∞ in the inequality above, we know that (3.1) is true for every ω ∈ Ω and f ∈ C2

c (R
d).

Therefore, by (3.1) and Assumption (A1)(ii) (in particular, (1.3)), we conclude that

lim
n→∞

nα sup
x∈Zd:
|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd:
nε<|z|<n/ε

(

f
(x+ z

n

)

− f
(x

n

)

)(

κ(x, z) −K(xn ,
z
n)

|z|d+α

)

∣

∣

∣

∣

∣

= 0

holds for every ω ∈ Ω0, rational constant ε > 0 small enough, integer R > 1 large enough and any
f ∈ C2

c (R
d). In particular, this implies that (2.13) holds for every ω ∈ Ω0, integer R > 1 large enough

and any f ∈ C2
c (R

d). Hence, Assumption (B2) holds for every ω ∈ Ω0. The conclusion of Theorem
1.2(i) now follows from Theorem 2.4. �

Proof of Theorem 1.2(ii). Suppose that Assumptions (A0) and (A2) hold. We will show that Assump-
tions (C1) and (C2) are satisfied for a.s. ω ∈ Ω. For any x ∈ Zd and z ∈ Zd

0
, set J(x, z) := E[κ(x, z)].

We set for x ∈ Zd, R, δ > 0 and h : Zd ×Zd → R,

q4(x, δ, h) := P

(∣

∣

∣

∑

z∈Zd:16|z|6n

h(x, z)
(κ(x, z) − J(x, z))

|z|d+2

∣

∣

∣
> δ

log(n+ 1)

n2

)

,

q5(x,R, δ) := P

(∣

∣

∣

∑

z∈Zd
0
:|z|6R

(κ(x, z) − J(x, z))

|z|d

∣

∣

∣ > δ log(R+ 1)
)

.

For any fixed f ∈ C2
c (R

d) and n > 1, let fn(x, z) := f(x+z
n ) − f

(

x
n

)

. Then for any R,n > 1,

x ∈ B(0, nR) ∩Zd and δ > 0,

q4(x, δ, fn)

6 P

(∣

∣

∣

∑

z∈Zd
+,∗:16|z|6n

fn(x, z)
(κ(x, z) − J(x, z))

|z|d+2

∣

∣

∣ >
δ

2

log(1 + n)

n2

)

+ P

(∣

∣

∣

∑

z∈Zd
+,∗:16|z|6n

fn(x,−z)
(κ(x, z) − J(x, z))

|z|d+2

∣

∣

∣
>
δ

2

log(1 + n)

n2

)

6 P

(∣

∣

∣

∑

z∈Zd
+,∗:16|z|6n

〈

∇2f(x∗(z, n)),
z

|z|
⊗

z

|z|

〉

(κ(x, z) − J(x, z))

|z|d

∣

∣

∣
> δlog(n+ 1)

)

+ P

(∣

∣

∣

∑

z∈Zd
+,∗:16|z|6n

〈

∇2f(x∗(−z, n)),
z

|z|
⊗

z

|z|

〉

(κ(x, z) − J(x, z))

|z|d

∣

∣

∣> δlog(n+ 1)
)

.

(3.7)

Here in the first inequality we used the balanced condition (1.1), in the second inequality we applied the
Taylor formula and x∗(z, n) = x/n + θ0(x, z, n)z/n with θ0(x, z, n) ∈ [0, 1] being a constant depending
only on x, z and n. By (1.7) in Assumption (A2)(i), for c0 := c∗/(2‖∇2f‖∞)η,

C∗ := sup
x∈Zd,z∈Zd

0
,n>1

Ee
c0|〈∇2f(x∗(z,n)), z

|z|⊗
z
|z| 〉(κ(x,z)−J(x,z))|η

<∞.
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This along with the Markov inequality implies that there exist constants c1, c2 > 0 such that for all
x ∈ Zd, z ∈ Zd

0
, n > 1 and t > 0,

E

[

exp

(

t

∣

∣

∣

∣

〈

∇2f(x∗(z, n)),
z

|z|
⊗

z

|z|

〉

(κ(x, z) − J(x, z))

∣

∣

∣

∣

)]

= 1 + t

∫ ∞

0
etrP

(∣

∣

∣

∣

〈

∇2f(x∗(z, n)),
z

|z|
⊗

z

|z|

〉

(κ(x, z) − J(x, z))

∣

∣

∣

∣

> r

)

dr

6 1 + C∗t
∫ ∞

0
etr−c0rη dr 6 c1 exp

(

c2t
η/(η−1)

)

.

(3.8)

Hence by (3.7), (3.8), η ∈ (1, 2), the independence of {κ(x, z) : x ∈ Zd, z ∈ Zd
+,∗} (due to Assumption

(A0)) and [3, (2.95) in Theorem 2.51, p. 45], we get

q4(x, δ, fn) 6 c3 exp (−c4 log
η(1 + n)) .

We emphasize that the constants ci (i = 1, · · · , 4) above are independent of R and n (but may depend
on ‖f‖∞ and δ). Hence, for any R > 1 and δ > 0,

∞
∑

n=1

∑

x∈B(0,nR)∩Zd

q4(x, δ, fn) 6 c5

∞
∑

n=1

exp(−c6 log
η(1 + n)) <∞. (3.9)

Similarly, we can prove that for any θ ∈ (0, 1),

∞
∑

R=1

∑

x∈B(0,2R)∩Zd

R
∑

r=Rθ

q5(x, r, δ) 6 c7

∞
∑

R=1

exp(−c8 log
η(1 +R)) <∞.

By the Borel-Cantelli lemma, for a.s ω ∈ Ω, there exists R0(ω) > 1 such that for all R > R0(ω),
x ∈ B(0, 2R) ∩Zd and r ∈ [Rθ, R],

∑

z∈Zd
0
:|z|6r

κ(x, z)

|z|d
6 c9 log(1 + r). (3.10)

By the proof of (3.5), we can show that for a.s. ω ∈ Ω there exists R0(ω) > 1 such that for all
R > R0(ω), x ∈ B(0, 2R) ∩Zd and r > Rθ/2,

∑

z∈Zd
0
:|z|6r

κ(x, z) 6 c10r
d,

which along with the same argument for (3.6) gives us that (2.24) holds for a.s. ω ∈ Ω. Thus, we know
that Assumption (C1) holds for a.s. ω ∈ Ω.

To show that Assumption (C2) holds for a.s. ω ∈ Ω as well, we return to (3.9). By the Borel-
Cantelli lemma, there is a set Ωf ⊂ Ω of full probability such that for every ω ∈ Ωf and for every
rational constant δ and integer R > 1, there exists an integer N0 := N0(ω,R, δ, ‖f‖∞) > 2 such that
for all n > N0 and x ∈ B(0, nR) ∩Zd,

n2

log(n+ 1)

∣

∣

∣

∑

z∈Zd:16|z|6n

fn(x, z)
κ(x, z) − J(x, z)

|z|d+2

∣

∣

∣ 6 δ.

Taking δ → 0 in the inequality above, we can obtain that for every ω ∈ Ωf and every integer R > 1,

lim
n→∞

n2

log(1 + n)
sup
x∈Zd:
|x|6nR

∣

∣

∣

∑

z∈Zd:16|z|6n

fn(x, z)
κ(x, z) − E[κ(x, z)]

|z|d+2

∣

∣

∣ = 0. (3.11)
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It is known that there is a countable subset Υ of C2
c (R

d) that is dense in (C2
c (R

d), ‖ · ‖2,∞) (with
‖f‖2,∞ := ‖f‖∞ + ‖∇f‖∞ + ‖∇2f‖∞)1. Set Ω1 :=

⋂

f∈ΥΩf . Clearly, Ω1 has full probability.

Given some R > 0, define (for simplicity, we omit the parameter ω in Tn(f))

Tn(f) =
n2

log(1 + n)
sup

x∈Zd:|x|6nR

Qn(f, x), f ∈ C2
c (R

d),

where

Qn(f, x) =
∣

∣

∣

∑

z∈Zd:16|z|6n

(

f
(x+ z

n

)

− f
(x

n

))κ(x, z) − J(x, z)

|z|d+2

∣

∣

∣
.

Therefore, for every f, g ∈ C2
c (R

d),

|Tn(f)− Tn(g)|

6
n2

log(1 + n)
sup

x∈Zd:|x|6nR

|Qn(f, x)−Qn(g, x)|

6
n2

log(1 + n)
sup

x∈Zd:|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd:16|z|6n

(

(f − g)
(x+ z

n

)

− (f − g)
(x

n

)

)

κ(x, z) − J(x, z)

|z|d+2

∣

∣

∣

∣

∣

6
1

2 log(1 + n)
‖∇2(f − g)‖∞

(

sup
x∈Zd:|x|6nR

∑

16|z|6n

κ(x, z)

|z|d+2
+ sup

x∈Zd:|x|6nR

∑

16|z|6n

J(x, z)

|z|d+2

)

,

where in the last inequality we used (1.1) and the mean value theorem. By (3.10) we know there exists
a set Ω2 of full probability such that for all ω ∈ Ω2, any integer R > 1 and n > N0(ω) large enough,

sup
x∈Zd:|x|6nR

∑

|z|6n

κ(x, z)

|z|d+2
6 c11 log(1 + n).

Meanwhile, since J(x, z) is uniformly bounded,

sup
x∈Zd:|x|6nR

∑

16|z|6n

J(x, z)

|z|d+2
6 c12 log(1 + n).

Combining all the estimates above together yields that for all f, g ∈ C2
c (R

d) and ω ∈ Ω2,

lim sup
n→∞

|Tn(f)− Tn(g)| 6 c13(ε)‖∇
2(f − g)‖∞,

where c13 is independent of f, g and n. With this assertion at hand, we can then follow the proof of
Theorem 1.2(i) to deduce that (3.11) holds for all f ∈ C2

c (R
d) and every ω ∈ Ω0 := Ω1 ∩ Ω2. This

implies that (2.25) holds for every ω ∈ Ω0 with Φn(x, y) := J(nx, nz) for each x ∈ n−1Zd, z ∈ n−1Zd
0
.

Clearly (1.8) implies that (2.26) holds for the function Φn(x, z) defined above. It is also obvious that
Φn(x, z) = Φn(x,−z) for x ∈ n−1Zd, z ∈ n−1Zd

0
and n > 1, and that supn>1 ‖Φn‖∞ < ∞ thanks to

(1.7). Thus we have established that Assumption (C2) holds for every ω ∈ Ω0. Therefore by Theorem
2.7, we get the conclusion for α = 2 in Theorem 1.2. �

Next, we present the

1For reader’s convenience, we present a proof of this fact in this footnote. Denote by C∞(Rd) the space of continuous

functions on R
d that vanish at infinity, and C2

∞(Rd) the space of C2-smooth functions on R
d that together with their

derivatives up to second orders vanish at infinity. Observe that C∞(Rd) is a separable Banach space under the uniform

norm ‖ · ‖∞. Denote by Φ the isometric map from (C2
∞(Rd), ‖ · ‖2,∞) into (C∞(Rd)1+d+d2 , ‖ · ‖∞) defined by Φ(f) =

(f,∇f,∇2f). Note that Φ(C2
∞(Rd)) is a closed subspace of (C∞(Rd)1+d+d2 , ‖ · ‖∞) and hence is separable under the

norm ‖ · ‖∞. It follows that (C2
∞(Rd), ‖ · ‖2,∞) is separable. Let {gn;n > 1} be a countable dense subsequence in

(C2
∞(Rd), ‖ · ‖2,∞), and {ϕk; k > 1} a sequence of smooth functions with compact support on R

d so that ϕk(x) = 1 for
|x| 6 k and ϕk(x) = 0 for |x| > k + 1 with supk>1 ‖ϕk‖2,∞ < ∞. Then {gnϕk;n, k > 1} is a countable dense sequence in

(C2
c (R

d), ‖ · ‖2,∞).
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Proof of Proposition 1.3. By (1.9) and the continuity of K in Rd
0
, we have

K(sz) = K(z), z ∈ R
d
0, s > 0. (3.12)

Therefore, the function K : Rd
0
→ R+ can be viewed as a function defined on S

d−1.
According to (1.9), for every integer R > 1,

lim
n→∞

sup
x∈n−1Zd:|x|6R

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

∣

∣

∣

zizjE[κ(nx, z)]

|z|d+2
−
zizjK(z/n)

|z|d+2

∣

∣

∣ = 0. (3.13)

Indeed, (1.9) implies that for any integer R > 1 and ε ∈ (0, 1),

lim
n→∞

sup
x∈n−1Zd:|x|6R

1

log(1 + n)

∑

z∈Zd
0
:nε6|z|6n

∣

∣

∣

zizjE[κ(nx, z)]

|z|d+2
−
zizjK(z/n)

|z|d+2

∣

∣

∣ = 0.

On the other hand, it follows from the boundedness of K and supx∈Zd,z∈Zd
0

E[κ(x, z)] <∞ that for any

integer R > 1 and ε ∈ (0, 1),

sup
x∈n−1Zd:|x|6R

1

log(1 + n)

∑

z∈Zd
0
:|z|6nε

∣

∣

∣

zizjE[κ(nx, z)]

|z|d+2
−
zizjK(z/n)

|z|d+2

∣

∣

∣

6
supx∈Zd,z∈Zd

0

E[κ(x, z)] + ‖K‖∞

log(1 + n)

∑

z∈Zd
0
:|z|6nε

|zi||zj |

|z|d+2

6 c0
ε log(1 + n)

log(1 + n)
→ c0ε as n→ ∞.

Putting both estimates above together and letting ε→ 0, we get (3.13). Hence, in order to verify (1.8)
it suffices to show

lim
n→∞

∣

∣

∣

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

zizjK(z/n)

|z|d+2
− aij

∣

∣

∣
= 0, 1 6 i, j 6 d,

where aij =
∫

Sd−1 K(θ)θiθj dθ.
It follows from (3.12) that

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

zizjK(z/n)

|z|d+2
=

1

nd log(1 + n)

∑

z∈n−1Zd:0<|z|61

zizjK(z)

|z|d+2

=
1

log(1 + n)

∑

z∈n−1Zd:0<|z|61

∫

Qn(z)

zizjK(z)

|z|d+2
dy,

(3.14)

where Qn(z) := Π16i6d(zi−1/2n, zi+1/(2n)] for z := (z1, · · · , zd) ∈ n
−1Zd. By the mean value theorem

and the fact that K is uniformly bounded, for any z ∈ n−1Zd with
√
d
n 6 |z| 6 1 and any y ∈ Qn(z),

∣

∣

∣

∣

zizjK(z)

|z|d+2
−
yiyjK(y)

|y|d+2

∣

∣

∣

∣

6 c1

(

1

n(|z| −
√
d

2n )
d+1

+
ξn

(|z| −
√
d

2n )
d

)

, (3.15)

where

ξn := sup
0<|y|,|z|61,|y−z|6

√
d

2n

|K(z)−K(y)|.

Therefore,

I(n) :=

∣

∣

∣

∣

1

log(1 + n)

∑

z∈n−1Zd:0<|z|61

∫

Qn(z)

zizjK(z)

|z|d+2
dy −

1

log(1 + n)

∫

{1/n6|y|61}

yiyjK(y)

|y|d+2
dy

∣

∣

∣

∣
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6
1

nd log(1 + n)

∑

z∈n−1Zd:|z|<
√
d

n

∣

∣

∣

∣

zizjK(z)

|z|d+2

∣

∣

∣

∣

+
1

log(1 + n)

∫

{(
√

d
2n

∧ 1
n
)6|y|6 3

√
d

2n
}∪{16|y|61+

√
d

2n
}

∣

∣

∣

∣

yiyjK(y)

|y|d+2

∣

∣

∣

∣

dy

+
1

nd log(1 + n)

∑

z∈Zd:
√
d

n
6|z|61

∫

Qn(z)

∣

∣

∣

∣

zizjK(z)

|z|d+2
−
yiyjK(y)

|y|d+2

∣

∣

∣

∣

dy

=: In1 + In2 + In3 .

It is clear that
In1 6

c1
log(1 + n)

, In2 6
c2

log(1 + n)
,

and, by (3.15),

In3 6
c1

nd log(1 + n)

n
∑

k=[
√
d]

∑

z∈n−1Zd:|z|= k
n

(

nd

(k −
√
d
2 )d+1

+
ndξn

(k −
√
d
2 )d

)

6 c3

( 1

log(1 + n)
+ ξn

)

.

Since K(·) is a continuous function on Rd
0

and satisfies (3.12), limn→∞ ξn = 0. Hence we deduce from
the above estimates that

lim
n→∞

I(n) = 0.

This along with (3.14) gives us

lim
n→∞

∣

∣

∣

∣

1

log(1 + n)

∑

z∈Zd
0
:|z|6n

zizjK(z/n)

|z|d+2
−

∫

Sd−1

θiθjK(θ) dθ

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

1

log(1 + n)

∫

{1/n6|y|61}

yiyjK(y)

|y|d+2
dy −

∫

Sd−1

θiθjK(θ) dθ

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

1

log(1 + n)

∫ 1

1/n
r−1

∫

Sd−1

θiθjK(θ) dθ dr −

∫

Sd−1

θiθjK(θ) dθ

∣

∣

∣

∣

= 0,

where in the second equality we used (3.12). In particular, we have verified that the limit in (1.8) exists
with aij =

∫

Sd−1 θiθjK(θ) dθ. �

4. Extensions and remarks

4.1. Extensions. From the proof for the case α ∈ (0, 2) in Theorem 1.2, one can see that, at the
expense of a higher moments condition on κ(x, z), it is possible to relax the independence Assumption
(A0) to a block independence condition that

{

{

κ(x, z) : z ∈ Z
d
+,∗ with |z| = r

}

: x ∈ Z
d, r > 1

}

are independent.

When α ∈ (0, 1), since 1/|z|d+α is integrable over the unit ball B(0, 1) in Rd, we can drop the balanced
condition (1.1) on κ(x, z). In this case, Theorem 1.2(i) holds with Assumption (A0) and Assumption
(A1)(i) being replaced by

Assumption (A0∗) {κ(x, z) : x ∈ Zd, z ∈ Zd
0
} is a sequence of independent non-negative random

variables.

Assumption (A1∗)(i) d > 2− 2α and there is some p > max{2(d+1)
d , d+1

1−α} such that

sup
x∈Zd,z∈Zd

0

E [κ(x, z)p] <∞.
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Indeed, as is shown in the proof of [6, Proposition 5.6], we know that Assumption (A0∗) and (A1∗)(i)
together imply Assumption (B1∗). Hence the conclusion of Theorem 1.2(i) still holds by following the
proof of Theorem 1.2(i) and by using Theorem 2.6.

4.2. Remarks. Now suppose α > 2. We consider the following two conditions.

Assumption (D1).

sup
x∈Zd

∑

z∈Zd
0

κ(x, z)

|z|d+α−2
<∞.

Assumption (D2). For any n > 1, there exists a function Φn(x, z) : n
−1Zd × n−1Zd

0
→ (0,∞) with

Φn(x, z) = Φn(x,−z) for all x ∈ n−1Zd and z ∈ n−1Zd
0
, so that supn>1 ‖Φn‖∞ < ∞, and for any

integer R > 1 and every f ∈ C2
c (R

d),

lim
n→∞

n2 sup
x∈Zd:
|x|6nR

∣

∣

∣

∣

∣

∑

z∈Zd
0

(

f
(x+ z

n

)

− f
(x

n

)

)(

κ(x, z) − Φn(x/n, z/n)

|z|d+α

)

∣

∣

∣

∣

∣

= 0,

and that for any integer R > 1 and 1 6 i, j 6 d,

lim
n→∞

sup
x∈n−1Zd:|x|6R

∣

∣

∣

∣

∣

∑

z∈Zd
0

zizjΦn(x, z/n)/|z|
d+2 − aij

∣

∣

∣

∣

∣

= 0

for some constant matrix A := (aij)16i,j6d on Rd.

We can establish the following theorem by a similar argument as that of Theorem 2.7.

Theorem 4.1. Let α > 2. Assume that the balanced condition (1.1), and Assumptions (D1) and (D2)
hold. Then the conclusion of Theorem 2.7 holds.

However, we are unable obtain the corresponding result of Theorem 1.2 for α > 2 in random envi-
ronments under the Assumption (A0) and (1.8) (but with |z|−d−α in place of |z|−d−2 and without the
(log n)−1 factor). It appears that the Borel-Cantelli argument to verify Assumptions (D1) and (D2)
fails in this setting. This is because when α > 2, the behavior of the limiting process for the scaled
processes is not determined merely by the expectation of random coefficients κ(x, z) as in the the case
of NNBRWs in random environments (see, for instance, [5]).
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