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Preface

The celebrated limit theorem of DeMoivre and Laplace concerns the convergence
of the law of simple random walk on the integers, properly rescaled, to Gauss
law. It serves as the starting point of many of probability theory’s most important
developments. In 1963, Ulf Grenander published a little book [31] titledProbabilities
on Algebraic Structures, which, among other things, spelled out the natural problem
of extending basic limit theorems to the case when addition of numbers is replaced
by a more general group law.When taken literally, such extensions face several major
difficulties that are easy to explain.

The most natural extensions of simple random on the integers are random walks
on countable groups (in particular, finitely generated groups). On the one hand, the
classical limit theorems of probability theory are based on the the fact that proper
rescaling allows us to approximate the real axis (or Euclidean space of dimension d)
by finer and finer embeddings of the integers (or the square lattice of dimension d).
On the other hand, it is relatively rare that a finitely generated group embeds into a
Lie group, and even rarer that such an embedding can be done at smaller and smaller
scales. Indeed, limits obtained though “rescaling” typically inherit an invariance
property under the considered rescaling and this applies to both the underlying limit
space and the limit stochastic process. Very few connected Lie groups admit rescaling
structures of any sort as only certain nilpotent groups do (see, e.g., Theorem 2.1.2
in [36]).

Triangular arrays provide an ingenious way to state results that contain classical
limit theorems on abelian groups as special cases and circumvent the difficulties just
explained. The tread-off is that such results are not directly applicable to the study of
random walks on finitely generated groups unless one finds a way to “rescale” those
random walks into a proper triangular array, which bring us back to the previous
difficulties.

The most basic example of a non-abelian discrete random walk for which limit
theorems through rescaling have been obtained is simple randomwalk on the Heisen-
berg group H3(Z) of 3 by 3 upper triangular matrices with diagonal entries equal to
1. This group is generated by the four matrices
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s±1
1 =

©«
1 ±1 0
0 1 0
0 0 1

ª®¬ , s±1
2 =

©«
1 0 0
0 1 ±1
0 0 1

ª®¬
because

s3 = s−1
1 s−1

2 s1s2 =
©«
1 0 1
0 1 0
0 0 1

ª®¬ .
The (lazy) simple random walk on this group (associated with the symmetric gen-
erating set S = {e, s±1

1 , s±1
2 } where e stands for the identity matrix) is driven by the

probability measure

µ =
1
5
1S .

If (ξi)∞1 is an i.i.d. sequence of matrices distributed according to µ, then, at time n,
the position of this random walk started at the identity is the matrix ξ1ξ2 . . . ξn.

What makes it easy to state limit theorems in this case is the combination of the
following two facts:

1. The discreteHeisenberg groupH3(Z) embeds as a subgroup of the real Heisenberg
group H3(R);

2. The maps

δt : ©«
1 x z
0 1 y

0 0 1

ª®¬ 7→ ©«
1 t x t2z
0 1 ty
0 0 1

ª®¬ , t > 0,

form a group of group automorphisms of H3((R).

Sophisticated versions of the classical limit theorems for this example follow (func-
tional limit theorem, local limit theorem, Edgeworth expansions), see [3, 12, 23, 38,
50, 52, 53] and the references therein. Some of these works treat random walks of
finite range or having finite moments of high order on finitely generated nilpotent
groups in much greater generality and involve the consideration of more complicated
scaling mechanisms.

This monograph is concerned with the extensions of these ideas in the context
of stable-like random walks. The simplest family of examples of such walks on the
Heisenberg group H3(Z) is obtained by considering the measures

µα =
1
3

3∑
1=1

∑
k∈Z

cαi

(1 + |k |)1+αi
1ski

with α = (α1, α2, α3) ∈ (0,2)3.

In words, the walk associated with one of these measures on H3(Z), takes random
long-range steps along each of the one dimensional subgroups of H3(Z) associated
with the matrices s1, s2, s3. In the direction of si , these random long-range steps
are stable-like with index αi ∈ (0,2). Obviously, the rescaling mechanism used to
study such a walk must be properly adapted to its structural parameters (i.e., to α =
(α1, α2, α3)). One interesting phenomenon is that the limit group structure supporting
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the corresponding limit process also depends on these parameters. Namely, in this
case, it is H3(R) when 1/α1 + 1/α2 ≤ 1/α3 and it is R3 otherwise.

The aim of the authors is to develop limit theorems for stable-like randomwalks in
the context of torsion free finitely generated nilpotent groups, theorems that naturally
cover these examples and many others.
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Chapter 1
Setting the stage

Abstract In this opening chapter, we set the stage for later chapters by recalling the
very general statements of some basic limit theorems inRn. Considering the simplest
non abelian nilpotent group, the Heisenberg group, in its discrete and Lie versions,
and using the abelian results, we provide a first glimpse at the form limit theorems
have to take in this context when they involve stable-like long range random walks.

The aim of this work is to present limit theorems (of both functional and local
types) for certain long jump randomwalks on nilpotent groups. Recall that a nilpotent
group is a group G with identity element e that has a central series of finite length,
that is, there is a finite sequence of normal subgroups so that

{e} = K0 � K1 � · · ·� Kn = G

with Ki+1/Ki contained in the center of G/Ki for 0 ≤ i ≤ n − 1. See the Appendix
for a very brief introduction to nilpotent groups.

Before we explain our particular setup and the tools and techniques that we will
use, we attempt to put this research in perspective by discussing a small selection
of related results concerning random walks and limit theorems in finite dimensional
vector spaces (i.e., the torsion free abelian case), and applications of these classical
results to the simplest example of non-abelian nilpotent groups, the (discrete and
continuous) Heisenberg groups H3(Z) ⊆ H3(R).

The “limit theorems” that concern us always have three key ingredients: The
first ingredient is a discrete random walk S = {Sn; n = 1,2, . . .} on a group G
with independent identically distributed (i.i.d. in short) increments of probability
distribution µ. The second ingredient is a method of renormalization via some sort
of “dilations” acting on the underlying space G. We remain vague here on purpose.
The third ingredient is a continuous time process that appears in the limit, call it Z .
Hopefully, Z has properties that make it relatively easy to study although this entire
story can also be viewed as a way to understand Z in terms of the more elementary
process S. The following fundamental questions arise:

1. What is the nature of those limiting processes Z that may appear through such a
scheme?

2. Given a limit process Z , what are all the one-step increment probability distribu-
tions µ whose associated random walk converges to Z after renormalization?

3. Given a one-step increment probability distribution, how to find a renormalization
procedure that leads to an interesting non-trivial limit process Z , if any exists?

1



2 1 Setting the stage

1.1 Review of some abelian results

In this chapter, we discuss some aspects of these vaguely stated questions in the
context of finite dimensional vector spaces where detailed answers to the first two
questions are well-known and understood. The answer to the first question involves
the notions of infinitely divisible probability distribution and Lévy process, and the
additional notion of operator stability which relates directly to the “normalization
procedure” that allows us to pass from S to Z . See, e.g., [26, Chapter 6], [36, Section
1.6] and [47, Chapter 8]. The second question concerns the “domain of operator-
attraction” of the limit Z and falls outside the scope of our interest. The third
question is not easily answered in general (see [32]) but it plays an important role
in the results we develop in this work for nilpotent groups. Indeed, for the particular
class of examples we treat on nilpotent groups, a key step consists in identifying
appropriate renormalization procedures.

Recall that anRd-valued random variableY (or its probability distribution) is said
to be infinitely divisible if, for each integer n ≥ 1, there are i.i.d Rd-valued random
variables {X1, . . . ,Xn} such that

∑n
k=1 Xk has the same distribution as Y . It is well

known (see, e.g., [10, 39, 47, 56]) that the distribution ofY is infinitely divisible if and
only if it is the distribution at time 1 of a Lévy process Z = {Zt ; t ≥ 0} with Z0 = 0.
An infinitely divisible probability is uniquely characterized by the Lévy exponent
φ of its characteristic function φ(λ) := − logE

[
eiλ·Y

]
, which takes the following

form. There are a symmetric non-negative definite constant matrix A = (ai j)1≤i, j≤d ,
a constant vector b = (b1, . . . , bd), and a non-negative Borel measure ν on Rd \ {0}
satisfying

∫
Rd
(1 ∧ |z |2)ν(dz) < ∞ so that

φ(λ) =
1
2

d∑
i, j=1

ai jλiλj +
d∑
i=1

biλi +
∫
Rd

(
1 − eiλ·z + iλ · z1{ |z | ≤1}

)
ν(dz) (1.1)

for any λ = (λ1, . . . , λd) ∈ R
d . The triplet (A, b, ν) and the measure ν are called

the Lévy triplet and the Lévy measure of the infinitely divisible distribution of Y ,
respectively. They are uniquely determined byY , and vice-versa. See, e.g., [36, 1.3.2].
The expression (1.1) is called the Lévy-Khintchine formula for the infinitely divisible
distribution ofY .We say the randomvariableY has noGaussian part if A = 0. Clearly,
if the distribution of Y is symmetric, that is, −Y has the same distribution as Y , then
b = 0 and the Lévy measure ν is symmetric. We say that an Rd-valued random
variable X is full if there is no non-zero λ ∈ Rd so that λ · X is a constant, that is,
if the distribution of X is not supported on any (d − 1)-dimensional affine subspace
of Rd . An infinite divisible probability distribution having no Gaussian part is full
if and only if its Lévy measure ν is not supported on any d − 1 dimensional linear
subspace ofRd ; see [47, Proposition 3.1.20]. In this work, we are interested in results
involving limits that are symmetric with no Gaussian part (symmetric random walks
with jumps having heavy tails).

We start with the following elegant result. Let S = {Sn; n ≥ 0} be a random walk
in Zd with i.i.d. steps {ξk ; k ≥ 1} having distribution µ. That is,
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P(ξk = ( j1, . . . , jd)) = µ(( j1, . . . , jd)) for ( j1, . . . , jd) ∈ Zd, (1.2)

and Sn = ξ1 + · · · + ξn.

Proposition 1.1 ([47, Corollary 8.2.12]) Let η be a full infinitely divisible proba-
bility distribution on Rd with no Gaussian part and Lévy measure ν. Let {Sn; n ≥ 0}
be a random walk in Rd driven by a probability measure µ as above.

There are linear operators An : Rd → Rd and vectors bn ∈ Rd such that AnSn+bn
converges in distribution to η if and only if

n µ ◦ A−1
n converges vaguely to ν on Rd \ {0}. (1.3)

In this case, limn→∞ ‖An‖ = 0. �

Here, µ ◦ A−1
n is the probability measure on Rd defined by

µ ◦ A−1
n (B) = µ({x ∈ R

d : Anx ∈ B}) for every B ∈ B(Rd).

Denote by Cc(R
d \ {0}) the space of continuous functions on Rd \ {0} with compact

support. Then (1.3) means that

lim
n→∞

n
∫
Rd

f (Anx)µ(dx) =
∫
Rd

f (x)ν(dx) for any f ∈ Cc(R
d \ {0}), (1.4)

Note that from the Lévy-Khintchine formula (1.1), two infinitely divisible random
variables without Gaussian components and having the same Lévy measure ν can
only differ by a constant vector.

If (1.3) holds, we say the Lévy measure ν is operator-stable (see below) and the
measure µ (or equivalently ξ1) belongs to the generalized domain of attraction of η
(or ν, by abuse of language). The matrix An is automatically invertible for all large
n. See [47, Lemma 3.3.25].

Remark 1.2 Suppose (1.3) holds with the Lévy measure ν not supported in a (d−1)-
dimensional vector subspace and µ being symmetric (that is, µ(A) = µ(−A)).

(i) The vector bn in Proposition 1.1 can be taken to be the zero vector in Rd and the
limiting distribution η is symmetric. This is because in this case, {Sn; n ∈ N} has
the same distribution as {−Sn; n ∈ N}, and so, {AnSn − bn; n ∈ N} has the same
distribution as {−(AnSn + bn); n ∈ N}. Consequently, {AnSn − bn; n ∈ N} also
converges weakly. It then follows from the characterization of weak convergence
that {AnSn; n ∈ N} converges weakly to a symmetric random variable η.

(ii) By [47, Theorem 8.1.5] and its proof, there are a sequence of invertible d × d
matrices (Mn)n≥1 that keeps the distribution of η invariant (that is, Mnη has the
same distribution as η for each n ≥ 1) and a d × d-matrix E with real entries such
that Ãn := MnAn satisfies

lim
n→∞

Ã[λn] Ã−1
n = λ

E for all λ > 0, (1.5)
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and ÃnSn converges in distribution to η as n→∞. Here, [a] stands for the largest
integer not exceeding the real a.
Using the independent stationary increments property of random walks, we can
easily deduce from Proposition 1.1that both {AnS[nt]; t ≥ 0} and { ÃnS[nt]; t ≥ 0}
converge in finite dimensional distributions to the symmetric Lévy process Z =
{Zt ; t ≥ 0} with Z1 having the same distribution as η; see the proof of Proposition
1.3. Further, Z has the following scaling property by (1.5): for any λ > 0,

{Zλt ; t ≥ 0} has the same distribution as λE Z = {λE Zt ; t ≥ 0}.

See [47, Example 11.2.18] and [48, p.625]. For this reason, the Lévy process
Z is called an operator-stable process (or operator-Lévy motion) and its Lévy
measure, ν, is also said to be operator-stable in the literature. If E = α−1Id×d ,
where Id×d denotes the d × d identity matrix, λE = λ1/α Id×d . In this case, Z is
an α-stable Lévy process on Rd .

(iii) Thematrices {An; n ∈ N} and the limiting Lévymeasure ν in (1.3) are not unique.
Suppose (1.3) holds. Then for any non-degenerate matrix M , we clearly have that
n µ ◦ (M An)

−1 converges vaguely to ν ◦ M−1 on Rd \ {0}. Thus ν depends not
only on µ but also on the “dilation structure" An. 2

Denote by D([0,∞);Rd) the space of right continuous Rd-valued functions on
[0,∞) having left limits. We refer the reader to [28] for the definition of J1-topology
on the Skorohod space D([0,∞);Rd).

Proposition 1.3 Suppose that the one step distribution µ of the randomwalk {Sn; n =
0,1,2, . . .} is symmetric and satisfies condition (1.3). Let η be an infinitely divisible
symmetric probability distributionwith noGaussian component andLévymeasure ν.
Let Z = {Zt ; t ≥ 0} be the symmetric Lévy process on Rd so that Z1 has distribution
η. Then {AnS[nt]; t ≥ 0} converges weakly in the Skorohod space D([0,∞);Rd)
equipped with J1-topology to the Lévy process Z as n→∞. �

Proof Let Ãn = MnAn be defined as in Remark 1.2(ii), where (Mn)n≥1 is a sequence
of invertible matrices that keeps the distribution of η invariant. We know from
[48, Theorem 4.1] that { ÃnS[nt]; t ≥ 0} converges weakly in the Skorohod space
D([0,∞);Rd) equipped with J1-topology to Z as n→∞. By [47, Theorem 3.2.10],
(Mn)n≥1 is relatively compact in the spaces of invertible d×d-matrices. Thus for any
subsequence of (n)n≥1, there is a sub-subsequence (n′)n′≥1 so that Mn′ converges to a
non-degenerate d×d-matrix M that also keeps the distribution of η and hence its Lévy
measure ν invariant. Note that An = M−1

n Ãn and the Lévy process M−1Z is of the
same distribution as that of Z . It follows that {An′S[n′t]; t ≥ 0} converges weakly in
the Skorohod spaceD([0,∞);Rd) equipped with J1-topology to Z as n′→∞. Since
this holds for any subsequence of n, we conclude that {AnS[nt]; t ≥ 0} converges
weakly to Z as n→∞. 2

The two propositions above and the accompanying remarks tell us that, if we ex-
pect that a given symmetric measure µ on Zd drives a randomwalk whose functional
limit process Z = {Zt ; t ≥ 0} has no Gaussian part and Lévy measure ν, we should



1.2 Illustrative examples on nilpotent matrix groups 5

concentrate on finding the sequence of invertible matrices An such that (1.3) holds.
Indeed, that property is necessary and sufficient for the desired limit theorems to
hold.

1.2 Illustrative examples on nilpotent matrix groups

In this section, we describe some illustrative examples, let us emphasize that, al-
though one can easily formulate versions of Proposition 1.1 in the context of certain
nilpotent groups, it is not known if such generalizations hold true. In a similar vein,
inRd , a full operator-stable Lévy process always admits a smooth density whereas in
the context of nilpotent group, it is not known if a full operator-stable Lévy process
always has a density. For details on how to formulate these questions more precisely
on nilpotent groups, see [36, Chapter 2].

Example 1.4 In this example, we consider a random walk on Z3 with i.i.d. steps
{ξk ; k ≥ 1} distributed according to the probability measure µ concentrated along
the coordinate axes of Z3 given by

µ((i1, i2, i3)) =
κ1

(1 + |i1 |)1+α1
1{i2=i3=0} +

κ2

(1 + |i2 |)1+α2
1{i1=i3=0}

+
κ3

(1 + |i3 |)1+α3
1{i1=i2=0} for (i1, i2, i3) ∈ Z3 \ {0}.

We assume αi ∈ (0,2), i = 1,2,3. Let An =
©«
n−1/α1 0 0

0 n−1/α2 0
0 0 n−1/α3

ª®¬. It is easy to

check that
nµ ◦ A−1

n converges vaguely to ν on R3 \ {0},

where

ν(dx) =
3∑
i=1

κi

|xi |1+αi
dxi ⊗j∈{1,2,3}\{i } δ{0}(dxj).

Here δ{0} is the Dirac measure concentrated at 0. Since µ is symmetric, by Propo-
sition 1.1and Remark 1.2(i), AnSn converges weakly to a random vector whose
distribution is symmetric infinite divisible with no Gaussian part and Lévy measure
ν. By Proposition 1.3, {AnS[nt]; t ≥ 0} converges weakly in the Skorohod space
D([0,∞);R3) equipped with J1-topology to the purely discontinuous symmetric
Lévy process Z = {Zt ; t ≥ 0} having ν as its Lévy measure. Note that the coor-
dinate processes of Z = (Z (i))31 are independent with Z (i) being a one-dimensional
symmetric αi-stable process, 1 ≤ i ≤ 3.

As pointed out earlier in Remark 1.2(iii), it is worth noting that the choice of An

above is not unique even though it seems most natural in this example. To simplify
the discussion, assume that α1 < α2 < α3. Let (e1, e2, e3) be the canonical basis
of R3 used implicitly above. Construct a linear operator Bn as follows. First, set
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Bne1 = n−1/α1 e1. Second, pick an arbitrary vector e′2 which is linearly independent
from e1 and belongs to the plane spanned by e1 and e2, and set Bne′2 = n−1/α2 e′2.
Finally, pick an arbitrary non-zero vector e′3 that does not belong to the plane spanned
by e1 and e2, and set Bne′3 = n−1/α3 e′3. Then nµ ◦ B−1

n converges vaguely to a Lévy
measure ν′ having essentially the same form as ν but carried by the axes associated
with e1, e′2, e

′
3. More precisely,

ν′(dx) =
3∑
i=1

ci
|x ′i |

1+αi
dx ′i ⊗j∈{1,2,3}\{i } δ{0}(dx ′j),

where (x ′1, x
′
2, x
′
3) is the coordinate of x ∈ R3 under the coordinate system (e1, e′2, e

′
3).

Note that the Lévy measure ν′ is thus a linear transformation of ν.

Example 1.5 (Random walk on the Heisenberg group H3(Z)) Recall that the dis-
crete Heisenberg group H3(Z) is the family of upper triangle matrices of the form©«
1 x z
0 1 y

0 0 1

ª®¬, with x, y, z ∈ Z, equipped with matrix multiplication; that is

©«
1 x1 z1
0 1 y1
0 0 1

ª®¬ · ©«
1 x2 z2
0 1 y2
0 0 1

ª®¬ = ©«
1 x1 + x2 z1 + z2 + x1y2
0 1 y1 + y2
0 0 1

ª®¬ .
For a = ©«

1 x z
0 1 y

0 0 1

ª®¬, its inverse a−1 is ©«
1 −x xy − z
0 1 −y

0 0 1

ª®¬. Ifwe identifymatrix awith (x, y, z),

then the discrete Heisenberg group H3(Z) can be identified with Z3 equipped with
the group multiplication

(x1, y1, z1) · (x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + x1y2). (1.6)

We will use this realization of H3(Z). This is one of the simplest example of a
non-abelian nilpotent group.

Let e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1), which are generators of H3(Z).
Note that for k ∈ Z \ {0}, ek1 = (k,0,0), e2 = (0, k,0) and ek3 = (0,0, k). Let
αk ∈ (0,2) be a constant, 1 ≤ k ≤ 3, and write α = (α1, α2, α3). Consider the
following probability measure on H3(Z) = Z

3:

µα(g) =

3∑
i=1

∑
n∈Z

κi

(1 + |n|)1+αi
1{eni }

(g), g ∈ H3(Z),

where κj , 1 ≤ j ≤ 3, are appropriate positive constants. Let
(
ξk = (ξ

(1)
k
, ξ
(2)
k
, ξ
(3)
k
)

)
k≥1

be an i.i.d sequence of random variables taking values in H3(Z) of distribution µα.
Then Sn = S0 · ξ1 · . . . · ξn, n ≥ 1, defines a random walk on the Heisenberg group
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H3(Z). Write Sn as (Xn,Yn, Zn). By (1.6),

Xn+1 = Xn + ξ
(1)
n+1, Yn+1 = Yn + ξ

(2)
n+1, Zn+1 = Zn + ξ

(3)
n+1 + Xnξ

(2)
n+1. (1.7)

If we define Ẑn = Z0 +
∑n

k=1 ξ
(3)
k
, then

Zn = Ẑn +

n∑
k=1

Xk−1ξ
(2)
k
= Ẑn +

n∑
k=1

Xk−1(Yk − Yk−1), n ≥ 1. (1.8)

We know from Example 1.4 that{ (
n−1/α1 X[nt], n−1/α2Y[nt], n−1/α3 Ẑ[nt],

)
; t ≥ 0

}
=⇒ {(X̄t,Ȳt, Z̄t ), t ≥ 0} (1.9)

weakly in the Skorohod space D([0,∞),R3) equipped with J1-topology as n → ∞,
where X̄ , Ȳ , Z̄ are symmetric α1-, α2- and α3-stable processes on R, respectively,
and they are independent. For simplicity, let

X̃n
t := n−1/α1 X[nt], Ỹn

t := n−1/α2Y[nt] and Z̃n
t := n−1/α2 Ẑ[nt].

Now, we can use the following key facts. Lévy processes are semimartingales
so stochastic integrals such as Lévy area

∫ t

0 X̄s−dȲs are well-defined. Furthermore,

[44, Theorem 7.10] shows that
{(

X̃n
t ,Ỹ

n
t , Z̃

n
t ,

∫ t

0 X̃n
s−dỸn

s

)
; t ≥ 0

}
converges weakly

in the Skorohod space D([0,∞);R4) equipped with J1-topology as n→∞ to{(
X̄t,Ȳt, Z̄t,

∫ t

0
X̄s−dȲs

)
; t ≥ 0

}
. (1.10)

Indeed, to prove (1.10), for any δ > 0, let hδ(r) = (1 − δ/r)+. Define

X̃n,δ
t = X̃n

t −
∑

0<s≤t
hδ(|∆X̃n

s |)∆X̃n
s and Ỹn,δ

t = Ỹn
t −

∑
0<s≤t

hδ(|∆Ỹn
s |)∆Ỹn

s .

One can define Z̃n,δ in a similar way. Observe that X̃n,δ , Ỹn,δ and Z̃n,δ are again
symmetric random walks but with i.i.d step sizes{(

1 − hδ(n−1/αj n−1/αj ξ
(j)
k
)

)
n−1/αj ξ

(j)
k

; k ≥ 1
}

for j = 1,2,3,

respectively. Let [X̃n,δ], [Ỹn,δ] and [Z̃n,δ] denote the quadratic variation processes
of the square integrable martingales X̃n,δ , Ỹn,δ and Z̃n,δ , respectively. Note that

E
( [

X̃n,δ
]
t

)
= [nt]E

[(
1 − hδ(n−1/α1ξ

(1)
1 )

)2 (
n−1/α1ξ

(1)
1

)2
]
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≤ c1κ1n−2/α1 [nt] ©«
[n1/α1 δ]∑
k=1

k2

(1 + k)1+α1
+

∞∑
[n1/α1 δ]+1

n2/α1δ2

k2
k2

(1 + k)1+α1

ª®¬
≤ c1κ1n−2/α1 [nt]

(
[n1/α1δ]2−α1

2 − α1
+

n2/α1δ2

α1(1 + [n1/α1δ])α1

)
≤ c1κ1n1−2/α1 t

(
(n1/α1δ)2−α1

2 − α1
+

n2/α1δ2

α1(n1/α1δ)α1

)
=

2c1κ1δ
2−α1

α1(2 − α1)
t,

where c1 > 0 is a constant independent of n and δ. In the same way, there is a
constant ck > 0, k = 2,3, independent of n and δ so that

E
( [

Ỹn,δ
]
t

)
≤

2c2κ2δ
2−α2

α2(2 − α2)
t and E

( [
Z̃n,δ

]
t

)
≤

2c3κ3δ
2−α3

α3(2 − α3)
t

for all n ≥ 1 and t > 0. So these three sequences of square integrable mar-
tingales {X̃n; n ≥ 1}, {Ỹn; n ≥ 1} and {Z̃n; n ≥ 1} have uniformly con-
trolled variations in the sense of [44, Definition 7.5]. Thus by taking (X̃n

t ,0) and
(Ỹn, Z̃n) for the vector-valued process Hn and Xn in [44, Theorem 7.10], we con-
clude {(X̃n

t ,Ỹ
n
t , Z̃

n
t ,

∫ t

0 X̃n
s−dỸn

s ); t ≥ 0} converges weakly in the Skorohod space
D([0,∞);R4) equipped with J1-topology to {(X̄t,Ȳt, Z̄t,

∫ t

0 X̄s−dȲs); t ≥ 0}. This
proves the claim (1.10).

Using the almost sure Skorohod representation theorem, we can assume with-
out loss of generality that

{(
X̃n
t ,Ỹ

n
t , Z̃

n,
∫ t

0 X̃n
s−dỸn

s

)
; t ≥ 0

}
converges a.s. in the

Skorohod space D([0,∞);R4) as n→∞ to
{(

X̄t,Ȳt, Z̄t,
∫ t

0 X̄s−dȲs
)
; t ≥ 0

}
. Conse-

quently, we have the following conclusions. The weak convergence below (denoted
by =⇒) is in the Skorohod space D([0,∞);R3) equipped with J1-topology.

(i) If 1/α3 < 1/α1 + 1/α2,{ (
n−1/α1 X[nt], n−1/α2Y[nt], n−1/α1−1/α2 Z[nt]

)
; t ≥ 0

}
=⇒

{(
X̄t,Ȳt,

∫ t

0
X̄s−dȲs

)
; t ≥ 0

}
as n→∞;

(ii) If 1/α3 = 1/α1 + 1/α2,{ (
n−1/α1 X[nt], n−1/α2Y[nt], n−1/α3 Z[nt]

)
; t ≥ 0

}
=⇒

{(
X̄t,Ȳt, Z̄t +

∫ t

0
X̄s−dȲs

)
; t ≥ 0

}
as n→∞;

(iii) If 1/α3 > 1/α1 + 1/α2,
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n−1/α1 X[nt], n−1/α2Y[nt], n−1/α3 Z[nt]

)
; t ≥ 0

}
=⇒

{(
X̄t,Ȳt, Z̄t

)
; t ≥ 0

}
as n→∞. �

Let us interpret the results above in group theoretical terms. In the treatment
above, we have taken the coordinate components of the measure µ and considered
the one-dimensional random walks, X , Y , Z , independently of each other. We have
then reconstructed the group law effect of the random walk on H3(Z) by considering
the Lévy area generated by the X and Y components. This is easy to do in this case
because the Z component commutes with anything else (it is in the center of the
group). Now, the renormalization process involved is to make particular somewhat
ad-hoc choices of scalings.

In the first two cases, (i)-(ii), we used the anisotropic dilations

δt ((x, y, z)) = (t−1/α1 x, t−1/α2 y, t−(1/α1+1/α2)z), t > 0.

This one parameter group of diffeomorphisms has the very special property of being
a one parameter group of automophisms of H3(R). That is,

δt ((x, y, z) · (x ′, y′, z′)) = δt ((x, y, z)) · δt ((x ′, y′, z′)).

The consequence of this property is that the limit processes obtained above,{(
X̄t,Ȳt,

∫ t

0 X̄s−dȲs
)
; t ≥ 0

}
in case (i),

{(
X̄t,Ȳt, Z̄t +

∫ t

0 X̄s−dȲs
)
; t ≥ 0

}
in case (ii),

are symmetric Lévy processes on the real nilpotent groupH3(R)which are operator-
stable with respect to the one parameter group of automorphisms {δt : t > 0}. See
[36, Chapter 2, Definition 2.3.13].

In the third case when 1/α + 1/α2 < 1/α3, we used

δt ((x, y, z)) = (t−1/α1 x, t−1/α2 y, t−1/α3 z), t > 0.

These diffeomorphisms are not automorphisms of H3(R) and it follows that using
them in rescaling the random walk driven by µ on H3(Z) ⊂ H3(R) produces a non-
trivial change in the underlying group structure. This is visible in the nature of the
limiting process,

{(
X̄t,Ȳt, Z̄t

)
; t ≥ 0

}
, which is not a Lévy process on H3(R) but a

Lévy process on the abelian group R3.
Although it is certainly possible to push this approach further in specific examples,

there are serious difficulties in treating large classes of examples in this way. For
this reason, the approach presented in this monograph is quite different. It does
not involve explicitly the stochastic calculus involved in studying the Lévy area and
higher degree functionals of the same type that are known to appear when expressing
random walks on nilpotent groups in coordinates. The interested reader might try
the following two informal exercises before reading further.

Exercise 1.6 Pick a tuple of 10 elements (s1, . . . , s10) in either Z3 or in H3(Z),
si = (xi, yi, zi), and a tuple of ten reals αi ∈ (0,2), 1 ≤ i ≤ 10. Consider the
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probability measure

µ(g) =

10∑
i=1

∑
n∈Z

κi

(1 + |n|)1+αi
1{sni }

(g).

What to do to formulate a limit theorem? in Z3? in H3(Z)? �

Exercise 1.7 Repeat Exercise 1.6 with H3(Z) replaced by the group of four by four
upper-triangular matrices with diagonal entries equal to 1 (this group is nilpotent).�

As the reader will see, the approach developed in this work is amenable to detailed
computation in concrete cases. Using the theory developed in this monograph, we
will revisit Example 1.5 in Section 7.3.

We close this preliminary chapter by describing the organization of this mono-
graph. The next chapter provides an introduction to our main results while avoiding
most technical details. In particular, Section 2.3 describes special cases which we
hope the reader will find both interesting and informative, and Section 2.5 discusses
prior results. Section 3.1 introduces polynomial coordinate systems and the key no-
tions of group dilation and approximate group dilation relative to such a coordinate
system. Approximate group dilations lead to the definition of “limit group struc-
tures” and we present some basic properties of these limit group structures that are
important for our purpose. Chapter 4 introduces the vague convergence of a proba-
bility measures under rescaling by an approximate group dilation and how the vague
limit and the limit group structure interact (see Proposition 4.7). Chapter 5 describes
our main technical results concerning functional limit theorem. It identifies a list of
strong hypothesss that allows us to state such a theorem. See Theorem 5.10. Chapter
6 presents the corresponding local limit theorem, Theorem 6.2. Chapter 7 describes
how to identify in concrete terms (in coordinates), the limiting Lévy process (on the
associated limit group). They are then used together with the main results of this
monograph to give several examples on the weak convergence of long range random
walks on various nilpotent groups. Chapter 8 describes the main class of probability
measures, SM, to which we want to apply the results obtained in previous chapters.
Chapter 9 shows how to choose appropriate coordinate systems and dilations for
measures in SM whereas Chapter 10 demonstrates that the hypotheses needed in
Chapters 5 -6 are essentially satisfied by measures in SM.

Notation

We use := as a way of definition. For a, b ∈ R, a ∧ b := min{a, b}. We use δ{x0 } to
denote the Dirac measure concentrated at x0 ∈ R

d , and 1A for the indicator function
of a Borel measurable set A ⊂ Rd . For an open subset D ⊂ Rd , the space of bounded
continuous functions on D and the space of continuous functions on D with compact
support will be denoted by Cb(D) and Cc(D), respectively.



Chapter 2
Introduction

Abstract This chapter introduces the particular problems studied in this book. A
set of compelling special cases are presented in order to describe the ingredients
used in our study and to illustrate the results we obtained. The chapter ends with a
quick review of what is known and how it differs from what is presented in the book.

2.1 Basic question

The aim of this work is to prove limit theorems for a class of random walks on
nilpotent groups driven by probability measures allowing for long jumps in certain
directions. The class of probability measures we study can be described roughly as
follows. Let Γ be a finitely generated nilpotent group with neutral element e. Assume
that we are given a finite family of subgroups of Γ, H1, . . . ,Hk , each equipped with
a finite symmetric generating set Si and the associated word-length | · |Hi ,Si = | · |i .
For each i ∈ {1, . . . , k}, fix αi ∈ (0,2). On each Hi , set Vi(r) = #{g ∈ Hi : |g |i ≤ r}
and consider the probability measure on Hi:

µi(g) =
ci

(1 + |g |i)αiVi(|g |i)
, g ∈ Hi .

Now, on Γ, consider the symmetric probability measure

µ =

k∑
i=1

λiµi,

where λi’s are positive constants with
∑k

i=1 λi = 1. The class of measures we
will treat is slightly larger than what we just described. Two special cases of this
construction are particularly compelling. The first is the case when k = 1, H1 = Γ,
S1 = S is a finite symmetric generating set for Γ, and µ(g) = cΓ

(1+ |g |S )αVΓ( |g |S ) . This
is reminiscent of radially symmetric α-stable process. The second is the case when
each Hi is an infinite cyclic subgroup in Γ, a case reminiscent of more singular
symmetric operator-stable process whose coordinate processes are independent to
each other. See [15, 39, 47, 55].

In an earlier work [20], we proved that there are a positive constant γ0 = γ0(µ)
(which can be computed relatively easily from the data) and positive constants
c = c(µ),C = C(µ) such that

11
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cn−γ0 ≤ µ(n)(e) ≤ Cn−γ0 .

Here µ(n) is the n-fold convolution power of the measure µ. One motivation for the
present work is to provide the more precise asymptotic

lim
n→∞

nγ0 µ(n)(e) = a(µ)

with, hopefully, a description of the constant a(µ). One classical approach to such
problems is to find a way to rescale the randomwalk on Γ so as to obtain some sort of
limit theorem proving convergence of the law of the rescaled random walk towards
the law of a limit process on an appropriate limit space. Typically, the limit space
and the limit process will have some self-similarity properties with respect to some
scaling structure. In the most classical cases, e.g., when µ is a symmetric probability
measure on Zd which drives a symmetric random walk converging towards some
symmetric stable process on Rd , the limit space supporting the limit process, and
its group law, are always the same, (Rd,+), independently of µ. In the present
context, one interesting new phenomenon is that the group structure of the limit
space supporting the limit process depends not only of the discrete group Γ but also
on the measure µ.

2.2 Description of the basic ingredients and results

For simplicity, in this work, we restrict ourselves to random walks on torsion-free
finitely generated nilpotent groups, that is, finitely generated nilpotent groups whose
only element of finite order is the identity element. These countable groups are
both similar to and more complicated than the square lattice Zd in Rd . Let Γ be
such a group. By a celebrated theorem of Malcev [46], the countable group Γ can be
realized as a co-compact discrete subgroup of a simply connected nilpotent Lie group
G. Moreover, any simply connected nilpotent Lie group G can be identified with the
d-dimensional coordinate space Rd equipped with an appropriate group structure
whose (multiplication) law is given, in coordinates, by polynomial functions. This
accounts for the similarity with the square lattice in dimension d. Note however that
the description of G asRd equipped with a polynomial product is very far from being
unique (and it may sometimes be difficult to recognize that two such descriptions
give the same group G up to isomorphism). One way to understand the complexity
of such structures is to attempt to give a list of all non-isomorphic simply connected
nilpotent groups in a fix dimension d. No such lists exist for relatively large d (we
are not aware of such lists when d is greater than 8). See [11] and the references
therein.

Once Γ is represented as a subset of Rd , a probability measure µ on Γ can be
viewed as a weighted series of Dirac masses onRd . For such a measure µ in a certain
relatively large class of “stable-like” probability measures on Γ, we are going to find
an adapted dilation structure (δµt )t>0, expressed in coordinates over G = (Rd, ·) by
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δ
µ
t (u) = (t

1/αµi ui)d1 , with carefully chosen exponents α
µ
i ∈ (0,2), so that the measure

µt = tδµ1/t (µ) : φ 7→ t
∫
Rd
φ(δ

µ

1/t (u))µ(du)

has a vague limit µ• (a non-negative Radon measure) on Rd \ {0} as t tends to ∞.
By construction, the limit µ• will satisfy the self-similar property

(µ•)t = µ• for any t > 0.

At the same time, the rescaled group laws

x ·t y = δ
µ

1/t
(
δ
µ
t (x) · δ

µ
t (y)

)
, x, y ∈ Rd, t > 0,

will have a limit as t tends to infinity

lim
t→∞

x ·t y = x •µ y,

which defines a group law •µ onRd . Most of the time, we will drop the reference to µ
and write •µ = • but it is an essential feature of this work that this limit law actually
depends on µ via the choice of a proper dilation structure. It will automatically have
the self-similar property

x •µ y = δ
µ

1/t
(
δ
µ
t (x) •

µ δ
µ
t (y)

)
for every x, y ∈ Rd and t > 0.

Of course, we are most interested in cases when this can be done in such a way that
the symmetric measure µ• is not supported on a proper closed connected subgroup
of G• = (Rd,•µ). In general, the limit measure µ• defines a left-invariant jump
process on the group G• and the key results of this monograph are:

1. A “stable-like” limit theorem expressing the convergence of the rescaled long
jump random walk on Γ associated with µ to the left-invariant Lévy process on
the group (Rd,•µ) associated with µ•.

2. A characterization of the left-invariant Lévy process on the nilpotent group
(Rd,•µ) associated with µ•.

3. A companion local limit theorem providing a proper statement of convergence
relating the densities of the distributions of these processes.

The reader should be warned that, given µ, the choice of the appropriate dilation
structure (δµt )t>0 is not unique and that, consequently, we have made various abuse
of notation in the explanations given above.

The simplest instances of these results are the well-known convergence theorems
relating the “stable-like” random walk on Z associated with the probability measure
µ(x) = cα(1 + |x |)−1−α, x ∈ Z, α ∈ (0,2), to the symmetric α-stable process on
R, and its rather rich and complex extension to higher dimensions which includes
both rotationally symmetric stable processes and some more singular operator stable
processes as illustrated in Chapter 1. See also [39, 47, 48]. We note that, in so far as
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this monograph focusses on a particular class of probability measures, it only offers
a limited extension of these classical abelian theories to nilpotent groups.

2.3 Detailed description of some special cases

In this section, we spell out in an informal way how our results of this monograph
apply to a series of specific examples that are of particular interest. These cases all
illustrate our main result, Theorem 10.1, which follows from Theorems 5.10 and 6.2,
and the discussions in Sections 10.2-10.4.

Word length radial stable walks

On a finitely generated group Γ equipped with a symmetric finite generating set S,
the word length |g |S is the minimal length k of a string (g1, . . . ,gk) of elements
of S such that g is equal to the product of that string, g = g1 . . . gk . By Gromov’s
polynomial volume growth theorem [34], to say that Γ has polynomial volume growth
is equivalent to the fact that there are an integer D (independent of S) and constants
0 < cS ≤ CS < ∞ such that

cSrD ≤ #{g ∈ Γ : |g |S ≤ r} ≤ CSrD for all r ≥ 1.

This is known to hold for any finitely generated nilpotent group; see Section A.4. In
this context, we callword length radial stable probability measure of index α ∈ (0,2)
the probability measure

µS,α(g) =
c(Γ,S, α)
(1 + |g |S)α+D

, g ∈ Γ.

It is known (see [55, Section 5.1] and [49, Theorem 1,1] as well as the references
given therein) that there are constants 0 < a = a(Γ,S) ≤ A = A(Γ,S) < ∞ such that
the iterated convolutions of this measure satisfy

an
(n + |g |α

S
)1+D/α

≤ µ
(n)
S,α
(g) ≤

An
(n + |g |α

S
)1+D/α

, g ∈ Γ, n ∈ N.

So, one has a remarkably good control of the behavior of the associated random
walk. However, there are no existing limit theorems in the literature for such walks,
even if we assume that Γ is a torsion free nilpotent group (such groups are basic
examples of groups with polynomial volume growth). Our results provide limit
theorems (functional, and also local) for any random walk driven by a word length
radial stable probability measure µS,α, α ∈ (0,2), on a torsion free finitely generated
nilpotent group. We now briefly describe these results.
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First, because we assume that Γ is a finitely generated torsion free nilpotent group,
there is a simply connected nilpotent Lie group G = (Rd, ·) which contains Γ as a
co-compact discrete subgroup. The Lie algebra, g, of this Lie group is equipped with
its central descending series

g1 = g ⊇ g2 = [g,g] ⊇ · · · ⊇ gj = [gj−1,g] ⊇ · · · ⊇ {0},

and this series become trivial (i.e., constant equal to {0}) after finitelymany steps. Let
j∗ be the smallest j such that gj+1 = {0}. One can choose a direct sum decomposition
by vector subspaces, ni , 1 ≤ i ≤ j∗, compatible with the central descending series
above, so that

Rd = g = ⊕
j∗

i=1ni and gj =
∑
i≥ j

ni, j ∈ {1, . . . , j∗}.

The linear invertible maps

δt (x) = ti x if x ∈ ni, 1 ≤ i ≤ j∗, t > 0

form an approximate Lie dilation structure in the sense that

[x, y]• = lim
t→∞

δ−1
t ([δt (x), δt (y)])

is a Lie bracket on Rd with the property that δt ([x, y]•) = [δt (x), δt (y)]•. Using
exponential coordinate (of the first type) to represent G as (Rd, ·), the approximate
Lie dilations δt, t > 0, define approximate group dilations on G for which we use the
same notation. The limit group G• is the simply connected Lie group associated with
the Lie algebra (Rd, [·, ·]•) defined above. It follows from (A.1) of the Appendix that
the volume growth exponent D of the original group Γ is given by D =

∑j∗

i=1 i dim(ni).
Thus we have det(δt ) = tD for every t > 0 In [51], Pansu proves the fundamental
results that there is a norm ‖ · ‖• on (Rd,•), homogeneous with respect to (δt )t>0,
such that the geometry of (Γ, | · |S) is well approximated at large scale by that of
(Rd, ‖ · ‖•) in the sense that

lim
g∈Γ,g→∞

|g |S

‖g‖•
= 1.

Further, one has
lim
r→∞

#{g ∈ Γ : |g |S ≤ r}
|{x ∈ Rd : ‖x‖• ≤ r}|

= 1,

where |Ω| is the Haar volume ofΩ ⊂ G•. See also, [13]. Haar measures on G and G•
are both Lebesgue measure dx on Rd . When considering densities on these groups,
we mean densities with respect to dx.

The importance of these results for us is that they enable us to establish the
convergence of the measure tδ1/t1/α (µS,α), vaguely on Rd \ {0}, to the radial stable
jump measure µ•,α with density
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φ•,α(x) =
c(Γ,S, α)
‖x‖α+D•

.

This measure is the jumping measure of a left-invariant (strong) Markov pro-
cess (X•t )t>0 on (Rd,•) which is self-similar in the sense that (X•s )s>0 equals
(δ1/t1/α (X•ts))s>0 in distribution. In a proper global coordinate system, the coordi-
nates of this process can be expressed in terms of suitable stable processes and their
(possibly iterated) Lévy areas. The Lévy process X• admits a continuous convolution
density with respect to the Lebesgue measure on Rd:

p•,α(t, x), (t, x) ∈ (0,∞) × Rd .

This density satisfies

p•,α(t, x) = t−D/αp•,α(1, δ1/t1/α (x)), (t, x) ∈ (0,∞) × Rd,

and

at
(t + ‖x‖α• )1+D/α

≤ p•,α(t, x) ≤
At

(t + ‖x‖α• )1+D/α
, (t, x) ∈ (0,∞) × Rd .

In this context, the results developed in this work establish two limit theorems for
the random walk (Xn)n≥0 on Γ driven by µS,α. These limit theorems capture the fact
that, after proper rescaling in time and space, the limit of the random walk (Xn)n≥0
is the Markov process (X•s )s>0. Namely, the functional limit theorem establishes the
convergence of (δ1/t1/α (X[st]))s>0 to (X•s )s>0 as t tends to infinity. In particular, for
any continuous function φ with compact support on Rd ,∑

g∈Γ

φ(δt1/α (g))µ
[(ts])
S,α
(g) →

∫
Rd
φ(x)p•,α(s, x)dx

as t tends to infinity. For any compact set K ⊂ Rd and any functions gn : K → Γ,
n = 1,2, . . . , such that the sequence of functions δ1/n1/α ◦gn : K → Rd , n = 1,2, . . . ,
converges uniformly over K to the identity function, the local limit theorem of this
monograph establishes the uniform convergence to zero over K of

nD/αµ
(n)
S,α
(gn(x)) − p•,α(1, x)

when n tends to infinity. In particular, this shows that, for any fixed g ∈ Γ (e.g.,
g = e),

lim
n→∞

nD/αµ(n)(g) = p•,α(1, e).
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Walks taking stable-like steps along one parameter subgroups

Let Γ be a torsion free finitely generated nilpotent subgroup of a simply connected
nilpotent group G. One of the cases that motivates our study can be described as
follows: We are given a tuple S = (s1, . . . , sk) of elements of Γ, which, together with
their inverses, generates Γ. We are also given a tuple of reals α = (α1, . . . , αk) ∈
(0,2)k . Note that the letter S is used here in a slightly different way than in the
previous case. Now, set

µS,α(g) =
1
k

k∑
i=1

∑
m∈Z

cαi

(1 + |m|)1+αi
1{smi }

(g).

It was proved in [55] that, for any such probability measure, there exist 0 < a =
a(Γ,S,α) ≤ A = A(Γ,S,α) < ∞ and γ0 = γ0(Γ,S,α) such that

an−γ0 ≤ µ
(n)
S,α(e) ≤ An−γ0 . (2.1)

InChapter 8 , we introduce the space of probabilitymeasuresSM1(Γ), seeDefinition
8.2, which contains all such measures. We then explain how to choose a coordinate
system of polynomial type, G = (Rd, ·), and an approximate dilation structure (δt )t>0
with limit group G• = (Rd,•), which are adapted to the pair (S,α), and such that,
with µt := tδ1/t (µS,α), the family of measures (‖z‖22 ∧ 1)µt (dz) converges weakly
on Rd \ {0} to a measure (‖z‖22 ∧ 1)µ•(dz) as t →∞, that is,

lim
t→∞

∫
Rd\{0}

f (z)(‖z‖22 ∧ 1)µt (dz) =
∫
Rd\{0}

f (z)(‖z‖22 ∧ 1)µ•(dz)

for any f ∈ Cb(R
d\{0}). HereCb(R

d\{0}) denotes the space of bounded continuous
functions on Rd \ {0}. The measure µ• is supported on the union of a finite number
of one parameters subgroups ofG• and its support generatesG•. It can be interpreted
as the Lévy measure of a convolution semigroup of probability measures, associ-
ated with a left-invariant Lévy process on G•. The convolution transition kernel of
this semigroup admits a continuous density, p•(t, x), with respect to the Lebesgue
measure on (Rd,•) and satisfies

p•(t, x) = t−γ0 p•(1, δ1/t (x)) for (t, x) ∈ (0,∞) × Rd .

Note that the limit objects introduced here, e.g., G• and p•, all depend on S and α,
even so we did not capture that dependence in the notation used above. A notable
difference with the earlier description of the radial stable-like case is that, in general,
there are no particular canonical choices of the approximate dilation structure (δt )t>0
andwe have notmade a canonical choice of coordinates either. To a certain extent, the
entire results and the associated limit objects depend on the choices of coordinates
and adapted dilation structure while, of course, there are great commonalities shared
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by all the limit objects obtained based on these different choices. This, however, will
not be deeply investigated here.

As in the case of radial stable walks, the results of this monograph establish the
convergence of the discrete time random walk driven by µS,α, properly rescaled in
time and space, to the left-invariant Lévy process (X•s )s>0 with convolution density
p•(t, x) mentioned above. More precisely, the functional limit theorem establishes
the weak convergence of (δ1/t (X[st]))s>0 to (X•s )s>0 as t tends to infinity. In particular,
for any continuous function φ with compact support on Rd ,∑

g∈Γ

φ(δt (g))µ
[(ts])
S,α
(g) →

∫
Rd
φ(x)p•(s, x)dx

as t tends to infinity. The local limit theorem asserts that

lim
n→∞

sup
x∈K

���nγ0 µ
(n)
S,α(gn(x)) − p•(1, x)

��� = 0, (2.2)

where K is a compact in Rd and gn : K → Γ is a sequence of functions such that
δ1/n ◦ gn : K → Rd converges uniformly over K to the identity function. Of course,
the non-negative real γ0 appearing in (2.1) and in (2.2) is the same in both equations.
It is also given by det(δt ) = tγ0 .

Walks associated with measure in SM(Γ)

In Chapter 8 , we introduce a particular set of “stable-like” measures on Γ, SM(Γ),
which interpolates between the radially symmetric measures considered above and
the convex combinations of one dimensional measures described in the last section.
These measures were studied in our earlier work [20]. With any measure in SM(Γ)
we can associate in a natural way a (non-unique) polynomial coordinate system
G = Rd and a family of dilations (δt )t>0 which define a limit group structure
G• = (Rd,•). The approximate dilation structure (δt )t>0 is built so that the family
µt = tδ1/t (µ), t > 0, has well defined limit points which are all Lévy measures
of (δt )t>0-stable symmetric convolution semigroups of probability measures on G•
with continuous positive densities on G•. One of the key contributions of this work is
to describe explicitly how one can construct such an approximate dilation structure
based on a proper description of µ on Γ. If it is the case that, with µt := tδ1/t (µ),
the measure (‖z‖22 ∧ 1)µt (dz) converges weakly to a finite measure (‖z‖22 ∧ 1)µ•(dz)
on Rd \ {0} as t → ∞, then we obtain both a functional theorem and local limit
theorem. The results described in the previous two paragraphs are, in fact, special
cases of these more general theorems. The structure of the Lévy measures of the
limit Lévy processes on G• appearing in these limit theorem is described at the end
of the next section.
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2.4 Symmetric continuous convolution semigroup of probability
measure and Lévy processes

For this very minimal vocabulary review, we follow [36]. Let G be a connected
Lie group. Recall that there is a one-to-one correspondence between symmetric
continuous convolution semigroups of probability measures on G and symmetric
Lévy processes onG. Here (µt )t>0 is a symmetric continuous convolution semigroup
of probabilitymeasures onG if themap t 7→ µt is continuous, µt ∗µs = µt+s, s, t > 0,
µ0 = δe, and µt (φ) = µt (φ̌) for any continuous function φ on G with compact
support, where φ̌(y) := φ(y−1) for y ∈ G. A symmetric Lévy process X on G
is a G-valued time-homogeneous càdlàg Markov process (Xt )t≥0 with stationary
independent increments, started at e and such that X−1

t = Xt in distribution for every
t > 0. In this setting, the notion of infinitesimal generator of X can be captured in
a more elementary way via the so-called generating functional (defined on smooth
compactly supported functions): if the infinitesimal generator of the symmetric Lévy
process X isL, the associated generating functional is simply φ 7→ Lφ(e). The Lévy-
Khinchin-Hunt formula provides a description of the generating functional of a Lévy
process. Under the symmetry condition, the generating functional has two parts, a
diffusion part, and a jump part described by a symmetric measure ν on G \ {e} in
the form φ 7→ p.v.

∫
G\{e}

(φ(y) − φ(e))ν(dy) with∫
G\{e}

min{1, ‖y‖22 }ν(dy) < ∞. (2.3)

Here, ‖y‖2 is the Riemannian distance between e and y in some fixed left-invariant
metric on G, and

p.v.
∫
G\{e}

(φ(y) − φ(e))ν(dy) :=
1
2

∫
G\{e}

(φ(y) + φ(y−1) − 2φ(e))ν(dy).

In this work, we are only interested in pure-jump symmetric Lévy processes, that
is, generating functional of the form

φ 7→ Lφ(e) = p.v.
∫
G\{e}

(φ(y) − φ(e))ν(dy)

where ν is a symmetric measure on G \ {e} satisfying (2.3). Equivalently, the
infinitesimal generator is given on smooth compactly supported functions by

〈−Lu, v〉 =
1
2

∫
G

∫
G\{e}

(u(xy) − u(x))(v(xy) − v(x))ν(dy)dx.

This, of course, is also a description of the associated Dirichlet form (on a dense
subspace of its domain).

In this work, these objects come about through a limit procedure which implies
that they have additional properties. First, the underlying Lie group is a simply
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connected nilpotent Lie group which we call G•. Second, by construction, G• carries
a group of dilations, (δt )t>0, δt : G → G, δ1 = Id, δts = δt ◦ δs = δs ◦ δt , s, t > 0,
where δt is also a group isomorphism for every t > 0, and limt→0 δt (x) = e for all
x ∈ G. In addition, the convolution semigroups and associated Lévy processes of
interest to us are self-similar with respect to such a dilation structure, that is, (Xs)s>0
equals (δ1/t (Xts))s>0, in distribution, for any t > 0. Moreover, there is a linear basis
ε = (ε1, . . . , εd) of the Lie algebra of G• in which the dilation δt has the form
δt (εi) = t1/βi εi , βi ∈ (0,2), 1 ≤ i ≤ d. This last condition, βi ∈ (0,2), 1 ≤ i ≤ d,
is related to the fact the processes in question are pure-jump operator-stable Lévy
processes. See, e.g., [36, Theorem 2.3.17]. Finally, when the original random walk
is driven by a probability measure µ in SM(Γ) (a class of stable-like measures on Γ
described in Chapter 8 ), the Lévy measure

µ• = lim
t→∞

tδ1/t (µ) = lim
t→∞

tµ ◦ δt

of our limit process has a particular structure that it inherits from the facts that
µ ∈ SM(Γ). Namely, there is a finite family of closed Lie subgroups of G•, call
them H•,i , 1 ≤ i ≤ k, which are each invariant under (δt )t>0, and functions ψi :
H•,i → (0,∞) satisfying tψi(δt (x)) = ψi(x), and ψi(x−1) = ψi(x), x ∈ H•,i , such
that

µ•(dx) =
m∑
1
νi(dx), νi(φ) =

∫
H•,i

φ(x)ψi(x)dH•,i x for 1 ≤ i ≤ m,

where dH•,i x is the Haar measure on H•,i; see Proposition 10.8. Each νi satisfies
(2.3). The group generated by the union ∪m1 H•,i of the subgroups {H•,i,1 ≤ i ≤ m}
is G•.

2.5 Prior results

To put our results in perspective, we briefly review limit theorems (functional and/or
local) relating random walks on discrete groups to Lévy processes on a related Lie
group. Very few results of this type exist outside the setting of nilpotent groups (and
closely related groups such as groups of polynomial volume growth). The classical
(functional) limit theorems can be interpreted in two distinct ways:

(i) As providing approximation of a (continuous time) Lévy process by a discrete time
process. This can be motivated by the desire to actually construct the limiting
process, or to simulate it, or to understand it in more concrete terms. In this
case, one should read the limit theorem as follows: at each stage, we take a
greater number of smaller steps to approximate the behavior of a continuous time
process on a fix bounded time interval. A natural setup for this interpretation is
the triangular array setup.
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(ii) As a result illuminating the long term behavior of a discrete time process by
providing a continuous time scaling limit. In this case, at each stage we take a
greater number of identically distributed steps and approximate the probability
of larger and larger scale events for the discrete time process by the probability
of the same large scale events for the limiting continuous time process, at a large
time. Whenever that limiting process is self-similar, the limit computation can
be rephrased as a computation within a fixed bounded time interval. There is
more rigidity in this viewpoint than in the first as we cannot choose the different
individual steps taken as one possibly can in a triangular array formulation of the
first viewpoint.

For random walks in Rn, it is somewhat difficult to see the differences between
these two interpretations. The reason is that we have a relatively obvious way to
turn the identically distributed steps appearing in the second interpretations into
smaller and smaller steps appearing in the first interpretation. Indeed, we typically
assume that the limiting process is self-similar with respect to a dilation structure that
commute with addition and this dilation structure can be used to turn the fixed-size
steps of (ii) into the small-size steps of (i).

Both viewpoints are present in this work. Our main focus is on using (ii) to study
long term behavior of a class of discrete long range random walks on a finitely
generated torsion free nilpotent group Γ. One can then use (i) to better understand
the limiting self-similar Lévy processes on the limit nilpotent group G•. See Chapter
7 .

2.5.1 Functional type limit theorems

On a general Lie group, there are results stated in terms of triangular arrays that
go back to Wehn [60, 61]. Later, Stroock and Varadhan [58] rediscovered Wehn’s
results. These works concern the case when the limit Lévy process is a diffusion.
These triangular array results have been extended to cover the case when the limit
Lévy process may have jumps. An exposition of such results is found in [36] which
contains a very long list of references. They are also found in work by Kunita
[40, 41, 42, 43]. These results must be understood as an extension of the first
interpretation of the classical limit theorem discussed above. From this viewpoint,
the title of the Stroock-Varadhan paper, Limit Theorems for Random Walks on Lie
Groups, is somewhat misleading.What the results ofWehn and Stroock-Varadhan do
is to provide discrete time steps approximations of diffusions on Lie groups. They do
not, in general, help us understand the behavior of randomwalks on Lie groups. That
is because, on a general Lie group, there is no clear way to turn identically distributed
steps into small-size steps. There are, however, many ways to create arrays of smaller
and smaller size steps, not related to any identically distributed model. The theorems
described by Wehn, Stroock-Varadhan, Hazod and Siebert, Kunita, and others thus
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provide functional limit theorems along the line of the first interpretation. See the
excellent discussion in [12].

There is one setting in which these triangular array limit theorems provide an
understanding of random walk (in the sense of a process taking repeated identically
distributed steps). This is, informally, when the limiting continuous time process is
self-similar with respect to a dilation structure that preserve the multiplication law of
the underlying group. Unfortunately, this is a rather rare occurrence as the only Lie
groups admitting such dilation structures are simply connected nilpotent Lie groups
of a very special kind. Moreover, outside the case of diffusion limit, whether or not
a dilation structure exists that is suitable for a given random walk on a given group
depends, to a large extend, on the particular random walk in question. In fact, given
a driving measure µ, constructing a proper dilation structure for µ (deciding if such
exists!) is a major problem, one that is completely ignored by the triangular array
formulation of limit theorems. This is illustrated by the results of the present work.

Somewhat independently of the above circle of ideas, Crepel, Raugi, and others,
obtained rather satisfying randomwalk limit theorems for general nilpotent groups in
the case the limit is a diffusion [23, 53, 54]. The proofs in these works can be viewed
as using two steps: the first step proves the result in the presence of a canonical
adapted dilation structure (that is, in the case of stratified nilpotent groups). The
second step is closely related to one of the key ingredients we will use here and
involves the idea behind our definition of an approximate group dilation structure, a
dilation structure that does not preserve the group structure of the original underlying
Lie group. In general, because of the second step, the original group carrying the
randomwalk has a group structure that is different from that of the Lie group carrying
the limit diffusion. This, clearly, takes us outside the realm of Wehn-type results.

One key point in the results by Crépel and Raugi is that the structure of the group
carrying the limit diffusion depend only on the original group, not of the particular
(diffusive) random walk one wants to study. In general, this cannot be the case when
the random walk to be studied calls for a limit process that has jumps as we do here.
As we shall see, in this case, the limit structure depends on both the original group
and the particular probability measure that drive the given random walk. One thus
has to discover what this proper limit structure is for each studied random walk.

2.5.2 Local limit theorems

The first local limit theorem in the context of general nilpotent groups and groups of
polynomial volume growth is due to G. Alexopoulos [2, 3, 4]. See also the discussion
in [12]. It concerns centered random walks driven by a finitely supported measure.
For nilpotent groups, following a very different approach, and covering random
walks driven by measures that have a high enough finite moment (much higher than
2, in general), the best known results are due to R. Hough [38] which provides an
informative review of earlier results. We do not know of references treating cases
when the limit is not a diffusion process.



Chapter 3
Polynomial coordinates and approximate
dilations

Abstract This chapter introduces the notions of polynomial coordinate systems
and approximate group dilations relative to such coordinate systems. Rescaling via
suitable dilation structures is key to the formulation of limit theorems for random
walks on groups. One of the main tools used in this book is the notion of approximate
group dilations. The limit group structures that appear when one use rescaling
associated with approximate group dilations are discussed.

3.1 Polynomial coordinate systems

Even though some related results can be stated in an intrinsic manner, in practice,
limit theorems are coordinate dependent. This applies to the results of thismonograph
and, consequently, we discuss in some details the notion of global coordinate system
for simply connected nilpotent Lie groups. A number of different choices are possible
for this purpose. In this chapter, we outline basic characteristics of the coordinate
systems we will use. A given group G can be described via many different such
global polynomial coordinate charts and it is often desirable to allow for such a
choice to be made by circumstances. This is discussed further in Chapter 9 .

A simply connected nilpotent Lie group G can always be described by a global
coordinate chart Rd → G, 0 → e, in which the group multiplication and inverse
map are given by polynomials

x · y = P(x, y) = (p1(x, y), . . . , pd(x, y)) , x−1 = Q(x) = (q1(x), . . . ,qd(x)) .

As P(x,0) = x and P(0, y) = y for any x, y ∈ Rd , we have

pi(x, y) = xi + yi + p̄i(x, y), 1 ≤ i ≤ d, (3.1)

where p̄i(x, y)’s are polynomials having no constant nor first order terms. Moreover,
for any compact K ⊂ Rd , there is a constant CK such that

‖x−1 · y‖2 := ‖P(Q(x), y)‖2 ≤ CK ‖x − y‖2 for every x, y ∈ K, (3.2)

because P(Q(x), x) = 0. Here ‖ · ‖2 is the canonical Euclidean norm in Rd . Similarly,
for any compact K ⊂ Rd , there is a constant C ′K such that

‖x − y‖2 ≤ C ′K ‖x
−1 · y‖2 for every x, y ∈ K . (3.3)

23
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Indeed, this is the same as ‖x − x · z‖2 ≤ C ′K ‖z‖2 and the polynomial x − P(x, z)
vanishes at z = 0.

We assume throughout that the Jacobian of the maps y 7→ x · y, x ∈ G, is 1 so that
the Lebesgue measure on Rd is a Haar measure for our group G. This assumption
follows from the much more demanding assumption that (3.1) has the additional
property that

p̄1(x, y) = 0 and p̄i(x, y) = p̄i((xj)i−1
1 , (yj)

i−1
1 ) for 2 ≤ i ≤ d. (3.4)

In other word, the polynomial

p̄i(x, y) = pi(x, y) − xi − yi

depends only on the first i − 1 coordinates of x and y and has no constant nor first
order terms. Clearly, this triangular structure implies that the Jacobian of the map
y 7→ x · y is 1. Morever, for x−1 = Q(x) = (q1(x), . . . ,qd(x)), we deduce from
P(Q(x), x) = 0 that

q1(x) = −x1 and qi(x) = −xi + q̄i(x1, . . . , xi−1) for 2 ≤ i ≤ d, (3.5)

where q̄i(x1, . . . , xi−1), 2 ≤ i ≤ d, are polynomials having no constant nor first order
terms.

Example 3.1 (Matrix coordinates) Themost commonly used coordinate system (as
Molière’s Mr. Jourdain with prose, we may use it without realizing we do!) comes
from matrix groups. Indeed, the group G is often given as a subgroup of a group of
invertible matrices of a certain dimension, say N . In particular, a nilpotent group is
often given as a subgroup of the group of unipotent upper-triangular matrices. The
most obvious example is when G is the group of unipotent upper-triangular matrices
itself

UN =


©«

1 x12 x13 . . . x1N
0 1 x23 . . . x2N
0 0 1 . . . x3N
...
...

...
...

...
0 0 0 . . . 1

ª®®®®®®¬
: xi j ∈ R,1 ≤ i < j ≤ d


.

This group has dimension d =
(N

2
)
. In the case N = 3, this is the Heisenberg group

H3(R) in its matrix form with

P(x, y) = (x1 + y1, x2 + y2, x3 + y3 + x1y2), Q(x1, x2, x3) = (−x1,−x2,−x3 + x1x2)

and
P(x−1, y) = (y1 − x1, y2 − x2, y3 − x3 − x1(y2 − x2)).

Example 3.2 (Exponential coordinates of the first type) The secondmost commonly
encountered coordinate system is given by the canonical exponential map
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exp : g→ G

between the Lie algebra g of the group G and G itself. We can think of g = Rd as the
tangent space at e. Given a tangent vector x ∈ Rd , we first consider the (unique) left
invariant vector field X on G such that X(e) = x and the solution γx : [0,1] → G of
d
dt γx(t) = X(γx(t)) with initial condition γx(0) = e, and set

exp(x) = γx(1).

Using the fact that, for any two left-invariant vector fields X,Y , the well defined
differential operator XY − Y X is a left-invariant vector field, we obtain the Lie
bracket (x, y) 7→ [x, y] = (XY − Y X)(e). Moreover,

[x, y] = ∂s∂t (exp(t x) · exp(sy) · exp (−t x))|s=t=0 .

In the case of simply connected Lie group, the exponential map is a global invertible
diffeomorphism and the multiplication is given in universal form by the famous
Campbell-Hausdorff formula

exp(x) · exp(y) = exp (PCH(x, y)) ,

where

PCH(x, y) = x + y +
1
2
[x, y] +

1
12
([x, [x, y]] + [y, [y, x]]) + · · · . (3.6)

In other words, in the exponential coordinate system, the group law is

x · y = PCH(x, y) = x + y +
1
2
[x, y] +

1
12
([x, [x, y]] + [y, [y, x]]) + · · · .

This has the desirable polynomial form because iterated Lie brackets with more than
r entries are equal to 0 if r is the nilpotency class of G. In these coordinates, it is
always the case that

x−1 = −x.

Applying this to the Heisenberg group we obtain the often-used description ofH3(R)
as R3 equipped with the product

x · y = PCH(x, y) =
(
x1 + y1, x2 + y2, y3 + x3 +

1
2 (x1y2 − x2y1)

)
and

PCH(x−1, y) =
(
y1 − x1, y2 − x2, y3 − x3 +

1
2 (x2(y1 − x1) − x1(y2 − x2))

)
.

Example 3.3 (Exponential coordinates of the second kind) For a simply connected
nilpotent Lie group G, exponential coordinate systems of the second kind are typi-
cally associated with a filtration of the Lie algebra g by subalgebras (resp. ideals)
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g = g1 ⊃ g2 ⊃ · · · ⊃ g` ⊃ {0}

with gj of dimension mj , and a linear basis (εi)d1 such that the linear span of (εi)i≥ j
is a subalgebra (resp. ideal) for all 1 ≤ j ≤ d := m1, and (εi)dd−m j+1 is a basis of gj .
In such a situation, the maps from Rd to G defined by

Φ(x1, . . . , xd) = exp(x1ε1) · · · · · exp(xdεd)

and
Ψ(x1, · · · , xd) = exp(xdεd) · · · · · exp(x1ε1)

give two distinct global polynomial coordinate systems for G.
For example, the matrix coordinate system of the group of n × n upper-triangular

matrices with entries equal to 1 on the diagonal, is an exponential coordinate system
of the second kind associated with the lower central series

g = g1, gi+1 = [gi,g], 1 ≤ j ≤ n,

which, in this case, has last non-trivial member gn−1 corresponding to the upper-right
corner entry. Here, we can realize g as the algebra of the strictly upper-triangular
matrix. We then enumerate the entries (xi)d1 , d = n(n− 1)/2, going down along each
upper-diagonal in order so that xd is the entry in the upper-right corner, and consider
the corresponding map Ψ. For instance, in the 4 × 4 case,

©«
1 x1 x4 x6
0 1 x2 x5
0 0 1 x3
0 0 0 1

ª®®®¬ =
©«
1 0 0 x6
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬
©«
1 0 0 0
0 1 0 x5
0 0 1 0
0 0 0 1

ª®®®¬ · · ·
©«
1 x1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ .
Each of the matrices on the right is the matrix exponential of the corresponding
strictly triangular matrix. Note that Φ defined above leads to a different coordinate
system. �

These classical constructions concerning exponential coordinates of the first and
second kinds are explained in more details in [22, Section 1.2]. See also [21, 30, 46].

3.2 Dilations, approximate dilations, and G•

Straight dilations

LetG be a nilpotent simply connected Lie group given in a global polynomial coordi-
nate systemG = (Rd, ·). Call straight dilations with exponents a = (a1, . . . ,ad) ∈ R

d
+,

the group of diffeomorphisms

φt (x) = (ta1 x1, . . . , tad xd), t > 0.
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Note that φs ◦ φt = φst , s, t > 0, and φ1 = Id.

Definition 3.4 We say that (φt )t>0 as above is a straight group dilation structure if

φt (x · y) = φt (x) · φt (y), t > 0, x, y ∈ G. (3.7)

This, of course, is a very restrictive property and not every simply connected nilpotent
Lie group G admits such a structure. In the case of the Heisenberg group in matrix
form, for given a, b, c ≥ 0, set

φt
©«©«

1 x z
0 1 y

0 0 1

ª®¬ª®¬ = ©«
1 tax tcz
0 1 tby
0 0 1

ª®¬ , t > 0, x, y, z ∈ R.

These straight dilations structures are group dilation structures if and only if a+b = c.

Remark 3.5 More generally, without reference to any coordinate system, a group
of diffeomorphisms (φt )t>0, φt : G → G, φ1 = Id, satisfying (3.7) and such that
limt→0 φt (g) = e is called an expanding group dilation structure. See [36, 45]. By a
theorem of Siebert [57], a connected locally compact group carrying such a structure
must be a simply connected nilpotent Lie group (and not every simply connected
nilpotent groups admit such a structure). �

Definition 3.6 Let Rd be equipped with a straight dilation structure

(φt )t>0, φt (x) = (tai xi)d1 , ai > 0, 1 ≤ i ≤ d.

A positive function N on Rd is called homogeneous with respect to (φt )t>0 if
N(φt (x)) = tN(x). �

Example 3.7 The function x 7→ N(x) = max1≤i≤d{|xi |1/ai } is homogenous with
respect to (φt )t>0, φt (x) = (tai xi)d1 , ai > 0, 1 ≤ i ≤ d. It is a norm on (Rd,+)
(i.e., satisfies the triangle inequality) if ai ≥ 1 for all 1 ≤ i ≤ d. If M is another
homogeneous function with respect to (φt )t>0, such that the set x : M(x) ≤ 1 is
compact, then there are constants 0 < c ≤ C < ∞ such that cN ≤ M ≤ CN . �

Approximate group dilations and G•

Let G be a simply connected nilpotent Lie group given in a global polynomial chart
G = (Rd, ·) and equipped with a straight dilation (not necessarily a group dilation
structure) (φt )t>0. For each t > 0, we obtain a new group structure ·t onRd by setting

x ·t y = φ1/t (φt (x) · φt (y)), x, y ∈ Rd .

Moreover,
φ1/t : (Rd, ·) → (Rd, ·t )
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is a group isomorphism between G = (Rd, ·) and Gt = (R
d, ·t ). Additionally, (φt )t>0

is a group dilation structure if and only if ·t = · for all t > 0.

Definition 3.8 (Approximate group dilation structure) Let G be a simply con-
nected nilpotent Lie group described by a global polynomial chart (Rd, ·). Let (φt )t>0
be a straight dilation structure. We say that this dilation structure is an approximate
group dilation structure if, for any x, y ∈ Rd , the limits

lim
t→∞

φ1/t (φt (x)−1) = x−1
• and lim

t→∞
φ1/t (φt (x) · φt (y)) = x • y

exist. �

Lemma 3.9 The pairing (x, y) 7→ x • y yields a nilpotent Lie group G• = (Rd,•)
and x−1

• is the inverse of x for the group law •, that is x−1
• • x = x • x−1

• = e•. For the
group (Rd,•), the straight dilations {φt ; t > 0} form a group dilation structure, i.e.,
satisfy (3.7). �

Proof By construction, the maps Pt (x, y) = φ1/t (φt (x) · φt (y)) and It (x) =
φ1/t (φt (x)−1) are polynomial maps in x, y with coefficients equal to linear com-
binations of power functions of t with exponents in R. If the limits limt→∞ Pt (x, y)
and limt→∞ It (x) exist for all x, y, it means that only non-positive powers of t occur
and this implies that the families Pt, It are uniformly equicontinuous on compact
sets. A sequence of simple considerations then yields that

x • (y • z) = lim
t→∞

φ1/t (φt (x) · φt (y) · φt (z)) = (x • y) • z

and
x−1
• • x = x • x−1

• = e• = 0.

Note that this also implies

lim
t→∞

φ1/t

(
φt (x)−1 · φt (y)

)
= x−1
• • y. (3.8)

Lemma 3.10 Let (φt )t>0 be a straight approximate group dilation structure on (Rd, ·).
For any compact K ⊂ Rd there is a constant CK such that, for any x, y ∈ K and
t ≥ 1,

‖φ1/t

(
φt (x)−1 · φt (y)

)
‖2 ≤ CK ‖y − x‖2

and
‖φ1/t

(
φt (x)−1 · φt (y)

)
‖2 ≤ CK ‖x−1

• • y‖2.

Proof The function (t, x, y) 7→ φ1/t
(
φt (x)−1φt (y)

)
is a polynomial in

(x, y) = (x1, . . . , xd, y1, . . . , yd)

with coefficients equal to linear combinations of powers of t with exponents in R. By
(3.8), only non-positive powers of t appear. The desired inequality follows because
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this polynomial function equals 0 when x = y. The second inequality follows from
the first and (3.3) applied to (Rd,•). �

Remark 3.11 When working in exponential coordinates, we have the extra structure
of the Lie bracket [·, ·] at our disposal and we can replace the conditions in Definition
3.8 by the condition that

lim
t→∞

φ1/t ([φt (x), φt (y)]) = [x, y]•

exists. Call this an approximate Lie dilation structure. Note that, in this case, x−1 =
x−1
• = −x and φt (x)−1 = φt (x−1) so that the inverse map condition is automatically
satisfied. �

Remark 3.12 If (φt )t>0 is a group dilation structure (resp. an approximate group
dilation structure) then so is (φta )t>0, for any a > 0. Moreover, in the case of an
approximate group dilation structure, this change does not affect the limit structure.�

Remark 3.13 The basic idea behind Definition 3.8 is well-known in two different
related contexts. It appears in the study of the large scale geometry of groups of poly-
nomial volume growth, see, e.g., [13, Section 2.2], and in the work of Alexopoulos
on local limit theorems in the context of groups of polynomial volume growth, see
[4, Section 5.2]. In these works, there is a unique relevant structure at infinity and
it follows that the “dilation structures” considered there are very special examples
of those defined here. Various forms of the same idea play an important role in the
local study of sub-elliptic second order operators but in that context the limit is taken
when the parameter t goes to 0. See for instance [59, Chapter V]. �

The following lemma is not used explicitly but serves as an exercise in manipu-
lating the notion introduced above. See also Section 10.3.

Lemma 3.14 Let H be a subgroup of G = (Rd, ·) and (φt )t>0 be an approximate
group dilation structure with limit law •. Set

H• =
{

x ∈ Rd : there exists (xk)∞1 ⊂ H so that lim
k→∞

φ1/k(xk) = x
}
.

Then H• is a subgroup of G• = (Rd,•).

Proof Let x, y ∈ H• with witness sequences (xk)∞1 , (yk)∞1 in H. Fix ε > 0. By
the continuity of •, there exists δ > 0 such that ‖x − x ′‖2 < δ and ‖y − y′‖2 ≤ δ
imply ‖x • y − x ′ • y′‖2 < ε/2. By the efinition of H•, there exists N > 0 such
that ‖x − φ1/k(xk)‖2 < δ and ‖y − φ1/k(yk)‖2 < δ for all k ≥ N . By the uniform
convergence of φ1/t (φt (u) · φt (v)) to u • v on compact sets, there exists N ′ such that,
for all k ≥ N and k ′ ≥ N ′,

‖φ1/k(xk) • φ1/k(yk) − φ1/k′(φk′(φ1/k(xk)) · φk′(φ1/k(yk)))‖2 < ε/2.

Hence, for k ≥ max{N,N ′},
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‖x • y − φ1/k(φk(φ1/k(xk)) · φk(φ1/k(y)))‖2 < ε,

and thus, ‖x • y − φ1/k(xk · yk)‖2 < ε. Because xk · yk ∈ H, this proves that
x • y = limk→∞ φ1/k(xk · yk) ∈ H•. A similar proof applies to show that x−1

• ∈ H•
for x ∈ H•. �

Example 3.15 Consider the Heisenberg group viewed as the group of matrices

H3(R) =

©«
1 x z
0 1 y

0 0 1

ª®¬ : (x, y, z) ∈ R3
 .

Here, the product of the matrices associated with (x, y, z) and (x ′, y′, z′) is associated
with the triplet

(x + x ′, y + y′, z + z′ + xy′).

The inverse of (x, y, z) is

(x, y, z)−1 = (−x,−y,−z + xy). (3.9)

This is isomorphic but different from the “exponential coordinate description” dis-
cussed earlier where

(u, v, w) · (u′, v ′, w ′) = (u + u′, v + v ′, w + w ′ + 1
2 (uv

′ − u′v)).

The map
q : (x, y, z) → q(x, y, z) = (u, v, w) = (x, y, z − 1

2 xy) (3.10)

provides the group isomorphism between these two descriptions.
Now, consider the group of diffeomorphisms (φt )t>0 (straight dilations in that

system) given in the (x, y, z) matrix-coordinates by

φt (x, y, z) = (tax, tby, tcz) for some fixed a, b, c > 0.

These are group diffeomorphisms for all t > 0 if and only if c = a + b. They form
an approximate group dilation structure at infinity if and only if c ≥ a + b. When
c > a + b,

(x, y, z) • (x ′, y′, z′) = (x + x ′, y + y′, z + z′)

and
(x, y, z)−1

• = (−x,−y,−z) , (x, y, z)−1.

If we write down these same diffeomorphisms in the “exponential coordinate"
description (u, v, w) they are given by the maps

ψt (u, v, w) = q−1 ◦ φt ◦ q(u, v, w) = (tau, tbv, tcw + 1
2 (t

c − ta+b)uv).

In the (u, v, w) global coordinate chart exp = log = id, and if we assume c ≥ a + b,
the straight dilations
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δt (u, v, w) = (tau, tbv, tcw), t > 0,

give both an approximate Lie dilation structure and an associated approximate group
dilation structure which are distinct from the φt/ψt approximate group dilation struc-
ture even so they share the same differential at the identity. They lead to isomorphic
limit group structures. �

Example 3.16 Consider the group

G =


©«
1 x12 x13 x14
0 1 x23 x24
0 0 1 x34
0 0 0 1

ª®®®¬ : xi j ∈ R


and the straight dilation structures associated with any tuple

1/αi j, i j = (i, j) ∈ {12,13,14,23,24,34}

so that

δt

©«
©«
1 x12 x13 x14
0 1 x23 x24
0 0 1 x34
0 0 0 1

ª®®®¬
ª®®®¬ =

©«
1 y12 y13 y14
0 1 y23 y24
0 0 1 y34
0 0 0 1

ª®®®¬ , yi j = t1/αi j xi j .

Such a (δt )t>0 is a group dilation structure if and only if

1/αk` = 1/αk j + 1/αj` for all 1 ≤ k < j < ` ≤ 4,

that is,

(1) : 1/α13 = 1/α12 + 1/α23, (2) : 1/α24 = 1/α23 + 1/α34

and
(3) : 1/α14 = 1/α12 + 1/α24, (4) : 1/α14 = 1/α13 + 1/α34.

The group (φt )t>0 is an approximate group dilation structure at infinity if and only if

1/αk` ≥ 1/αk j + 1/αj` for all 1 ≤ k < j < ` ≤ 4. (3.11)

We now list all the possible Lie structures that appear as a limit of such an
approximate group dilation structure on G.

1. When equality holds in all of the inequalities (3.11), we have G• = G.
2. When strict inequality holds in all of the inequalities (3.11), we have G• = R6

(abelian).
3. When equations (1) and (2) are equalities then equations (3) and (4) become

equivalent. Assume a strict inequality holds in (3) and (4). Then the limit G• is
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1 x12 x13
0 1 x23
0 0 1

ª®¬ ,©«
1 x23 x24
0 1 x34
0 0 1

ª®¬ ,
(
x14

)ª®¬ : xi j ∈ R
 .

Here multiplication for these triplets of matrices is matrix-coordinate by matrix-
coordinate. Note how the same x23 appears in the first and second matrix-
coordinates.

4. When strict inequality holds in both equations (1) and (2) and equality holds in
both (3) and (4), then the limit G• is

©«
©«
1 x12 x13 x14
0 1 0 x24
0 0 1 x34
0 0 0 1

ª®®®¬ ,
(
x23

)ª®®®¬ : xi j ∈ R


(this is the direct product of the 5 dimensional Heisenberg group H5(R) and a
copy of R).

5. When strict inequality holds in both equations (1) and (2) and equality holds in
(3) but not in (4) (resp. (4) but not in (3)), then the limit G• is©«©«

1 x12 x14
0 1 x24
0 0 1

ª®¬ ,
(
x13

)
,
(
x23

)
,
(
x34

)ª®¬ : xi j ∈ R


(resp. exchange the roles of pairs x12, x24 and x13, x34). This is the direct product
of a copy of H3(R) and R3).

6. When strict inequality holds in (1) (resp. (2)) and equality holds in (2) (resp. (1))
then strict inequality must hold in (3) (resp. (4)). If equality holds in (4) (resp.
(3)), the limit group is isomorphic to

©«
(
x12

)
,
©«
1 0 x13 x14
0 1 x23 x24
0 0 1 x34
0 0 0 1

ª®®®¬
ª®®®¬ : xi j ∈ R


(resp. exchange the roles of x12 and x34, the limit groups in both cases are
isomorphic).

7. When strict inequality holds in (1) (resp. (2)) and equality holds in (2) (resp. (1))
and strict inequality holds in each of (3) and (4), the limit group is isomorphic to©«©«

1 x23 x24
0 1 x34
0 0 1

ª®¬ ,
(
x12

)
,
(
x13

)
,
(
x14

)ª®¬ : xi j ∈ R


(resp. replace the triplet (x23, x24, x34)with (x12, x13, x23) and the triplet (x12, x13, x14)
with (x34, x24, x14)). This is the direct product of a copy of H3(R) and R3). �



Chapter 4
Vague convergence and change of group law

Abstract This short chapter is devoted to a key technical result which consists in
passing from the vague convergence of the family of rescaled measures associated
with the driving probability measure of a long-range random walk to the vague
convergence of the associated jump kernels. This involves taking into account the
change of group law induced by the rescaling of space through an approximate group
dilation.

4.1 Vague convergence under rescaling

We consider a rather general situation pertaining to the problem we want to study.
We are given the following data:

(a) A finitely generated torsion free nilpotent group Γ given as a co-compact closed
subgroup of a simply connected nilpotent Lie group G. It is useful for our purpose
to be more explicit and write G = (Rd, ·) where this coordinate system is a
polynomial coordinate system as explained earlier.

(b) A probability measure µ on Γ.
(c) An approximate group dilation structure (δt )t>0 on G with Lie group limit G• =
(Rd,•).

Definition 4.1 We say that the approximate group dilation structure (δt )t>0 is ad-
missible for µ if the family of measures

µt = tδ1/t (µ) defined by µt (φ) := t
∫
Rd
φ(δ1/t (u))µ(du) (4.1)

converge vaguely to a Radon measure µ• on Rd \ {0} as t → ∞. Recall that, by
definition, this means that, for any continuous function φ with compact support in
Rd \ {0},

lim
t→∞

∫
φ(x)dµt (x) =

∫
φ(x)dµ•(x).

Remark 4.2 Note the following identities:

µt (A) = tµ(δt (A)) = t
∑
y∈Γ

1δt A(y)µ(y) = t
∑

x∈δ−1
t Γ

1A(x)µ(δt x)

33
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and ∫
φ(x)dµt (x) = t

∫
φ(δ−1

t y)dµ(y) = t
∑

x∈δ−1
t Γ

φ(x)µ(δt x).

Remark 4.3 The normalization by a factor of t in µt = tδ1/t (µ) is less restrictive
than it may first appear because of Remark 3.12. If there is an approximate Lie
dilation structure (δt )t>0 (with limit law •) such that the measure µt = taδ−1

t (µ)
converges vaguely to µ• on Rd \ {0} then the modified approximate Lie dilation
structure (δt1/a )t>0 gives the same limit law • and is admissible for µ. In this sense,
the choice of the linear t factor in the definition of µt amounts, more or less, to a
scaling normalization. �

Example 4.4 Fix α ∈ (0,2) and let µ be the probability measure on Z ⊂ R with

µ(k) = cα(1 + |k |)−α−1.

Let δt (x) = t1/αx. Then tδ−1
t (µ) converges vaguely on R \ {0} as t → ∞ to the

measure µ• with density cα |x |−α−1 with respect to the Lebesgue measure on R. �

Example 4.5 Fix α ∈ (0,2) and β ∈ (0, α). Let µ be the probability measure on Z2

given by
µ((x, y)) = c(1 + |x | + |y |)−α−2, (x, y) ∈ Z2 ⊂ R2.

Let δt ((x, y)) = (t1/αx, t1/βy). Then tδ−1
t (µ) converges vaguely on R2 \ {(0,0)} as

t → ∞ to the measure µ•(dxdy) = f•(x)dx ⊗ δ0(dy) supported on the x-axis with
f•(x) = c′ |x |−α−1, where c′ = c

∫
R
(1 + u)−α−2du. �

Example 4.6 On the Heisenberg group H3(Z) viewed as the group of matrix©«
1 x1 x3
0 1 x2
0 0 1

ª®¬ : x1, x2, x3 ∈ Z

 , (4.2)

consider the measure

µ((x1, x2, x3)) =
cα(

1 +
√

x2
1 + x2

2 + |x3 − x1x2/2|
)α+4 , (4.3)

(note that this is a symmetric measure). Consider an approximate Lie dilation struc-
ture (δt )t>0 of the form δt ((xi)31) = (t

1/γi xi)31. For this to be an approximate Lie
dilation structure, it must be that 1/γ3 ≥ 1/γ1 + 1/γ2 which we assume. For the
measure tδ−1

t (µt ) to have a vague limit, it is necessary that 1/γ1 ≥ 1/α,1/γ2 ≥ 1/α
and 1/γ3 ≥ 2/α. Note that the roles of x and y are the same so that we can assume
for the sake of the computations described below that 1/γ1 ≤ 1/γ2.

1. Assume that 1/γ2 ≥ 1/γ1 > 1/α. Then 1/γ3 > 2/α and it is not hard to see that
tδ−1

t (µ) converges vaguely to 0 as t →∞.
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2. Assume γ1 = γ2 = γ3/2 = α. Then (δt )t>0 is a group dilation structure and
tδ−1

t (µ) converges vaguely as t →∞ to

µ•((dx1, dx2, dx3)) =
cαdx1dx2dx3(√

x2
1 + x2

2 + |x3 − x1x2/2|
)α+4 .

3. Assume that 1/γ1 = 1/γ2 = 1/α and 1/γ3 > 2/α. Then tδ−1
t (µ) ⇒ µ• as t →∞,

where
µ•(dx1dx2dx3) =

c′(√
x2

1 + x2
2

)α+2 dx1dx2 ⊗ δ0(dx3)

with c′ = 2c
∫ ∞

0 (1 + s)−(2+α/2)ds.
4. Assume that 1/γ2 > 1/γ1 = 1/α. It follows that 1/γ3 ≥ 1/γ1 + 1/γ2 > 2/α. In

this case tδ−1
t (µ) ⇒ µ• as t →∞, where

µ•(dx1dx2dx3) = c′ |x1 |
−α+1dx1 ⊗ δ0(dx2) ⊗ δ0(dx3)

with
c′ = 2c

∫ ∞

−∞

(∫ ∞

0

(√
1 + u2 + v

)−(α+4)
dv

)
du.

We provide details for the third case (the fourth case is similar). Let f be a
continuous function with compact support in R3 \ {0}. We want to show that

lim
t→∞

∫
f (x)dµt (x) = lim

t→∞
t
∑
x∈Z3

cα f (δ−1
t (x))(

1 +
√

x2
1 + x2

2 + |x3 − x1x2/2|
)α+4

=

∫
R3

c′ f (x)(√
x2

1 + x2
2

)α+2 dx1dx2 ⊗ δ0(dx3)

=

∫
R2

c′ f (x1, x2,0)(√
x2

1 + x2
2

)α+2 dx1dx2.

Recall that γ1 = γ2 = α and 2γ3 < α and write∫
f (x)tδ−1

t (µ(dx)) = t
∑
x∈Z3

f (δ−1
t (x))

cα(
1 +

√
x2

1 + x2
2 + |x3 − x1x2/2|

)α+4

= t
∑

z∈δ−1
t (Z

3)

f (z)
cα(

1 +
√

t2/γ1 z2
1 + t2/γ2 z2

2 + |t
1/γ3 z3 − t1/γ1+1/γ2 z1z2/2|

)α+4
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= t−4/α
∑

z∈δ−1
t (Z

3)

f (z)
cα(

t−1/α +
√

z2
1 + z2

2 + |t
1/γ3−2/αz3 − z1z2/2|

)α+4

= t−4/α
∑

z∈(t−1/αZ)2×t−2/αZ

cα f ((z1, z2,0))(
t−1/α +

√
z2

1 + z2
2 + |z3 − z1z2/2|

)α+4

+ t−4/α
∑

z∈(t−1/αZ)2×t−2/αZ

cα( f ((z1, z2, t−1/γ3+2/αz3)) − f ((z1, z2,0)))(
t−1/α +

√
z2

1 + z2
2 + |z3 − z1z2/2|

)α+4 .

The first term is, essentially, a (multivariate, generalized) Riemann sum of a
uniformly continuous integrable function on R3 over the lattice (t−1/αZ)2 × t−2/αZ
and, consequently, it converges when t tends to infinity to∫

R3

cα f (x1, x2,0)(√
x2

1 + x2
2 + |x3 − x1x2/2|

)α+4 dx1dx2dx3 =

∫
R2

c′α f (z1, z2,0)
(z2

1 + z2
2)
(α+2)/2

dx1dx2,

where c′α = 2cα
∫ ∞

0
du

(1+u)(α+4)/2 .

The second term goes to 0 when t tends to∞ because f is uniformly continuous
and 1/γ3 − 2/α > 0: for any ε > 0 there is a Tε such that for all t > Tε ,

|((z1, z2, t−1/γ3+2/αz3)) − f ((z1, z2,0))| < ε.

This gives

t−4/α
∑

(t−1/αZ)2×t−2/αZ

cα | f ((z1, z2, t−1/γ3+2/αz3)) − f ((z1, z2,0))|(√
z2

1 + z2
2 + |z3 − z1z2/2|

)α+4

≤ εt−4/α
∑

(t−1/αZ)2×t−2/αZ

cα(√
z2

1 + z2
2 + |z3 − z1z2/2|

)α+4 .

When t tends to infinity, the limit of the right-hand side is

ε

∫
R3

cα(√
x2

1 + x2
2 + |x3 − x1x2/2|

)α+4 dx1dx2dx3.

As ε > 0 is arbitrary, this proves that

lim
t→∞

t−4/α
∑

(t−1/αZ)2×t−2/αZ

cα( f ((z1, z2, t1/γ3 z3)) − f ((z1, z2,0)))(
t−1/α +

√
z2

1 + z2
2 + |z3 − z1z2/2|

)α+4 = 0
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as desired. �

4.2 Vague convergence of jump measures and kernels

Next, we relate the vague convergence of µt to µ• to the vague convergence of jump
kernels.
Proposition 4.7 Let Γ ⊂ G be a discrete co-compact subgroup of the simply con-
nected nilpotent Lie group G = (Rd, ·). Let c(Γ,G) be the Haar volume of G/Γ (i.e.,
of a fundamental domain for Γ in G). Let µ be a probability measure on Γ, (δt )t>0
be an approximate group dilation structure on G which is admissible for µ, and let
µt := tδ1/t (µ). Suppose that µt converges vaguely on Rd \ {0} to a Radon measure
µ• as t tends to infinity. Then, for any continuous and compactly supported function
φ in Rd × Rd \ ∆, the positive Radon measure Jt (dxdy) on Rd × Rd \ ∆ defined by∬

Rd×Rd\∆
φ(x, y)Jt (dxdy) =

c(Γ,G)t det(δ1/t )
∑

x,y∈δ1/t (Γ), x,y

φ(x, y)µ(δt (x)−1 · δt (y))

converges vaguely as t tends to infinity to the positive Radon measure J• defined on
(Rd × Rd) \ ∆ by∬

Rd×Rd\∆
φ(x, y)J•(dxdy) =

∬
Rd×Rd\∆

φ(x, x • y)dxµ•(dy),

where • is the limit law x • y = limt→∞ δ
−1
t (δt (x) · δt (y)) for the approximate Lie

dilation structure (δt )t>0. �

Remark 4.8 Of course, in the group G• = (Rd,•), we can write∬
Rd×Rd\∆

φ(x, x • y)dxµ•(dy) =
∬
Rd×Rd\∆

φ(x, y)dxµ•(x−1
• • dy)

(the inverse operation is in (G,•)) so that

J•(dxdy) = dxµ•(x−1
• • dy).

Remark 4.9 Note that the measure J1
t (dx) defined by∫

φ(x)J1
t (dx) = c(Γ,G) det(δ1/t )

∑
x∈δ1/t (Γ)

φ(x)

obviously converges to
∫
φ(x)dx as t tends to infinity. That is, the vague limit of

J1
t (dx) is the Lebesgue (=Haar) measure on Rd . �
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Proof Observe that
x ·t y = δ−1

t (δt (x) · δt (y)) (4.4)

is a group law which turns Rd into a Lie group Gt = (R
d, ·t ) (this group is actually

isomorphic to G). For any fixed x ∈ δ1/t (Γ), consider

t
∑

y∈δ1/t (Γ)\{x }

φ(x, y)µ(δt (x)−1 · δt (y)) = t
∑

y∈δ1/t (Γ)\{x }

φ(x, y)µ(δt (x−1 ·t y))

= t
∑

y∈δ1/t (Γ)\{x }

φ(x, x ·t y)µ(δt (y)).

Now, write∬
Rd×Rd\∆

φ(x, y)Jt (dxdy) −
∬
Rd×Rd\∆

φ(x, y)J•(dxdy)

=

∬
Rd×Rd\∆

φ(x, y)Jt (dxdy) −
∑

y∈δ1/t (Γ)\{e}

∫
Rd
φ(x, x • y)tµ(δt (y))dx

+
∑

y∈δ1/t (Γ)\{e}

∫
Rd
φ(x, x • y)tµ(δt (y))dx −

∬
Rd×Rd\∆

φ(x, y)J•(dxdy)

= I1(t) + I2(t).

To bound |I1 |, write ct = c(Γ,G) det(δ1/t ) and

|I1(t)| =

������ ∑
y∈δ1/t (Γ)\{e}

tµ(δt (y))
©«ct

∑
x∈δ1/t (Γ)

φ(x, x ·t y) −
∫

φ(x, x • y)dxª®¬
������ .

Note that φ is continuous and compactly supported in Rd × Rd \ ∆ and x ·t y
converges (uniformly on compact sets) to x • y. It follows that there is a compact set
K = Kφ in Rd \ {0} with the property that, for any ε > 0, there is T such that, for all
y ∈ Rd and all t > T ,������ct ∑

x∈δ−1
t Γ

φ(x, x ·t y) −
∫

φ(x, x • y)dx

������ ≤ ε1K (y).

Also, there exist CK and T ′ such that for all t > T ′, tµ(δt (K)) ≤ CK . It follows that
|I1(t)| ≤ εCK . As for |I2(t)|, the fact that it converges to 0 is a consequence of the
vague convergence of tδ−1

t (µ) to µ• on Rd \ {0}. �

The jump kernel Jt introduced above is defined on Rd × Rd \ ∆ and acts on
functions of x, y ∈ Rd × Rd \ ∆. It is useful to consider also a related discrete jump
kernel supported on

Γt × Γt \ ∆,



4.2 Vague convergence of jump measures and kernels 39

where Γt = δ−1
t (Γ) (by abuse of notation, we use the letter ∆ to demote the diagonal

on R × R for any space R, e.g., R = R or R = Γt ). Note that Γt is a co-compact
subgroup of the group Gt = (R

d, ·t ) defined at (4.4) and that δt provides a group
isomorphism from Γt onto Γ. We equipped Γt with the rescaled counting measure

mt (A) = c(Γ,G) det(δ−1
t )|A|, where |A| = #A (4.5)

for any finite subset A ⊂ Γt . On Γt , we consider the jump kernel measure jt defined
by

jt (x, y) = c(Γ,G)t det(δ1/t )µ(δt (x)−1 · δt (y)), (x, y) ∈ Γt × Γt \ ∆. (4.6)

We now assume that the probability measure µ on Γ is symmetric. Then jt (x, y) is
symmetric in (x, y) and it gives arise to an associated symmetric Dirichlet form in
L2(Γt,mt ) with domain F (t) := L2(Γt,mt ) defined by

E(t)(u, v) =
1
2

∑
x,y∈Γt

(u(x) − u(y))(v(x) − v(y)) jt (x, y), u, v ∈ F (t). (4.7)

The infinitesimal generator of this Dirichlet form on L2(Γt,mt ) is

f 7→ −t( f − f ∗Γt δ
−1
t (µ)) (4.8)

on Γt .
Recall that Γt ⊂ Rd . For each x ∈ Rd , let [x]t ∈ Γt be the point closest to x in

the ‖ · ‖-norm (if there are more than two such points, we choose one arbitrary and
fix it). When needed, extend a function f on Γt to a function f̃ on Rd by setting
f (x) = f ([x]t ) for each x ∈ Rd . We say a family of functions { ft : Γt → R}t≥1
converges uniformly to a function f on Rd if f̃ converges uniformly to f .

The following is an easy consequence of Proposition 4.7 that relates to jt . It is
stated for continuous limit but it obviously holds as well for sequential limits based
on an arbitrary sequence tk tending to infinity.

Lemma 4.10 Let { ft : Γt → R}t>0 (resp. {gt : Γt → R}t ) be a family of continuous
functions that converges uniformly to a continuous function f (resp. g) on Rd . Then,
under the assumptions of Proposition 4.7, for any open set U ⊂ Rd × Rd \ {(x, y) :
‖x−1
• • y‖2 ≤ η} with η > 0 whose closure is compact, it holds that

lim
t→∞

∑
(x,y)∈(Γt×Γt )∩U

( ft (x) − ft (y))(gt (x) − gt (y)) jt (x, y)

=

∬
U

( f (x) − f (y))(g(x) − g(y))J•(dxdy). �

Proof Setψt (x, y) := ( ft (x)− ft (y))(gt (x)−gt (y)) andψ(x, y) := ( f (x)− f (y))(g(x)−
g(y)). Then



40 4 Vague convergence and change of group law��� ∑
(x,y)∈(Γt×Γt )∩U

ψt (x, y) jt (x, y) −
∬

U

ψ(x, y)J•(dxdy)
���

≤

��� ∑
(x,y)∈(Γt×Γt )∩U

(ψt (x, y) − ψ(x, y)) jt (x, y)
���

+

���∬
U

(ψ(x, y)Jt (dxdy) − ψ(x, y)J•(dxdy))
��� =: I1 + I2.

ByProposition 4.7, supt≥1
∑
(x,y)∈(Γt×Γt )∩U jt (x, y) < ∞. It follows that limt→∞ I1 =

0 because ψt converges uniformly to ψ. By the proof of Proposition 4.7 (and the fact
that U is compact in Rd × Rd \ ∆), limk→∞ I2 = 0. �



Chapter 5
Weak convergence of the processes

Abstract This chapter is devoted to our main functional limit theorem for sym-
metric long range random walks on finitely generated torsion free nilpotent groups.
A set of technical conditions are identified as sufficient conditions to establish a
functional limit theorem by adapting established techniques in the present setting.
These conditions are phrased mostly in terms of the given random walk but also
involve the existence of an appropriate approximate dilation. All together, they are
rather strong conditions and finding ways to work under less stringent hypotheses is
an interesting open problem.

5.1 Assumption (A)

In this chapter and next, we prove limit theorems involving

(a) A finitely generated torsion free nilpotent group Γ embedded as a co-compact
lattice in a simply connected nilpotent Lie group G;

(b) A symmetric probability measure µ on Γ;
(c) A polynomial coordinate system for G = (Rd, ·) and straight dilation structure

δt, t > 0, δt ((ui)d1 ) = (t
1/βi ui)d1 , βi ∈ (0,2), i = 1, . . . , d, (5.1)

which is an approximate group dilation structure for G with limit group G• =
(Rd,•).

The key hypothesis we will make that links together the probability measure µ,
the dilation structure (δt )t>0 and the limit group G• is that

(A) The straight dilation structure (δt )t>0 is admissible for the probability measure
µ, that is, the (positive) measure µt = tδ1/t (µ), t ≥ 1, defined at (4.1) converges
vaguely to a non-trivial Radon measure µ• on Rd \ {0} as t tends to infinity.

Remark 5.1 (i) The Radon measure µ• appeared in (A) is on Rd \ {0} and is ex-
pressed under the global coordinate system we use for the nilpotent group G and
hence for G•. It induces a Radon measure of G• through this global coordinate
system. By abusing the notations, we use the same notation µ• for the induced
measure on G•.

(ii) Under assumption (A), it follows from the definition of µt that µ• is a symmetric
measure on G• \ {e} and has the following scaling property

41
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δr (µ•) = rµ• for every r > 0; (5.2)

that is, for any Borel measurable set A ⊂ Rd \ {0}, µ•(A) = µ•(A−1
• ), where

A−1
• := {x ∈ Rd : x−1

• ∈ A}, and

µ•(δ
−1
r (A)) = µ•(δ1/r (A)) = rµ•(A) for every r > 0.

We are most interested in the case the limit measure µ• is not supported on a
proper closed connected subgroup ofG•. In that case, the condition that the exponents
{βi,1 ≤ i ≤ d} for the straight dilation structure {δt ; t ≥ 0} of (5.1) are in (0,2)
means that the original measure µ must have some sort of heavy tail characteristics,
i.e., µ has to be “stable-like”.

Geometries on Rd and G•

Fix β ≥ max1≤i≤d{βi}. By [37], there is a norm ‖ · ‖ on G• = (Rd,•) (this means
that ‖x • y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ Rd , ‖x−1

• ‖ = ‖x‖ and ‖x‖ = 0 if and only if
x = 0) such that

‖δt (u)‖ = t1/β ‖u‖ for every t > 0 and u = (ui)d1 ∈ R
d . (5.3)

This implies, of course, that there are constants c,C ∈ (0,∞) such that

c max
1≤i≤d

{|ui |βi/β} ≤ ‖u‖ ≤ C max
1≤i≤d

{|ui |βi/β} for u = (ui)d1 ∈ R
d . (5.4)

Note that max1≤i≤d{|ui |βi/β} itself is a norm on (Rd,+) but not necessarily on
G• = (Rd,•) (it may not be symmetric onG• and only satisfies the triangle inequality
up to a multiplicative constant in general). Set

B(r) =
{

x ∈ Rd : ‖x‖ < r
}
.

Obviously, we have

‖δt (u)‖ = t1/β ‖u‖ and δt (B(r)) = B(rt1/β).

This means that the volume (the Lebesgue measure) of B(r) is

m(B(r)) = m(δrβ (B(1))) = m(B(1)) det(δrβ ) = m(B(1))rβ(
∑d

i=1 1/βi ).

Recall that Rd is also equipped with the Euclidean norm ‖u‖2 =
√∑d

1 |ui |
2. Let

β− = min
1≤i≤d

βi and β+ = max
1≤i≤d

βi .

From the definition, it is clear that
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c min{‖u‖β/β−, ‖u‖β/β+ } ≤ ‖u‖2 ≤ C max{‖u‖β/β−, ‖u‖β/β+ }. (5.5)

Similarly, for any u ∈ Rd with ‖u‖ ≤ C1r1/β , we have

c2

(
‖u‖2

r

)β+/β
≤
‖u‖
r1/β ≤ C2

(
‖u‖2

r

)β−/β
. (5.6)

We will need the following version of Lemma 3.10 with respect to the norm ‖ · ‖.

Lemma 5.2 For any compact K ⊂ Rd there is a constant CK such that, for any
x, y ∈ K and t ≥ 1,

‖δ1/t

(
δt (x)−1 · δt (y)

)
‖ ≤ CK ‖y − x‖β−/β+

and
‖δ1/t

(
δt (x)−1 · δt (y)

)
‖ ≤ CK ‖x−1

• • y‖
β−/β+ .

Proof In view of (3.1) and (3.5), the function (t, x, y) 7→ δ1/t
(
δt (x)−1δt (y)

)
is a

polynomial in
(x, y) = (x1, . . . , xd, y1, . . . , yd)

with coefficients equal to linear combination of powers of t with exponents in R. By
(3.8), only non-positive powers of t appear. The desired inequality follows from (5.5)
because this polynomial function equals 0 when x = y. For the second inequality,
we first note from (5.5) again that for x, y ∈ K ,

‖δ1/t

(
δt (x)−1 · δt (y)

)
‖ ≤ CK ‖x − y‖

β−/β
2

and then observe that ‖x − y‖2 ≤ C ′K ‖x
−1
• • y‖

β/β+ . �

5.2 Further hypotheses

Under the general circumstances described above, in order to obtain limit theorems
relating the random walk on Γ driven by µ to the continuous time left-invariant
jump process on G• associated with the jump measure J• of Proposition 4.7, we
need several additional hypotheses which we now spell out in details. One important
feature of the various hypotheses described in this section is that they do not involve
the precise limit behavior of µt as t tends to infinity. In a non-technical sense, they
are of a coarser, more robust nature. In Chapter 10, we will exhibit a large class
of “stable-like” measures on Γ, all of which satisfy these hypotheses thanks to the
results of [55, 20].
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The random walk on Γ (regularity)

A bounded function u on Γ is called µ-harmonic in a subset U if it satisfies

u ∗ µ = u in U.

Consider the following basic regularity assumption regarding µ-harmonic functions.
Note that we consider that Γ as a subgroup of G = (Rd, ·) and use the G•-norm ‖ · ‖
to state this property.

(R1) There are constants C1 and κ such that, for any bounded function u defined on Γ
and µ-harmonic in B(r) = {x ∈ Rd : ‖x‖ < r}, r > 0, and all x, y ∈ Γ ∩ B(r/2),
we have

|u(y) − u(x)| ≤ C1‖u‖∞

(
‖x−1 · y‖

r

)κ
. (5.7)

Remark 5.3 For any fixed a > 0, changing ‖ · ‖ to ‖ · ‖a (including in the definition
of balls) amounts to changing κ to κ/a > 0. �

Exit time estimates

We consider the following exit time hypotheses formulated in terms of the norm ‖ · ‖
and the scaling exponent β > 0 associated with it in (5.3). In particular, the balls
appearing in the definition below are the balls B(r) = {x ∈ Rd : ‖x‖ < r}, r ≥ 0,
even so the exit probability estimates below concern the random walk on Γ.

(E1) There exists A > 1 such that the following holds: for any ε ∈ (0,1), there exists
γ = γ(A, ε) > 0 such that for any r > 0, we have

Px
(
τB(Ar) ≤ γrβ

)
≤ ε for all x ∈ Γ ∩ B(r).

(E2) There exists 0 < C < ∞ such that for any r > 0, we have

Ex
[
τB(r)

]
≤ Crβ for all x ∈ Γ ∩ B(r).

Here, Px and Ex refer to the random walk on Γ starting from x driven by the
probability measure µ.

Remark 5.4 One can esily check that Assumptions (E1)-(E2), together, are equiva-
lent to Ex[τB(r)] � rβ for any x ∈ Γ ∩ B(r/2). �

Remark 5.5 For our limit theorems to hold, the exponent β > 0 in (E1) and (E2)
needs to be the same exponent β in (5.3). Thus, in this context, conditions (E1)
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and (E2) as well as condition (R1) are not only a condition on the measure µ
(which determines the random walk Xn on Γ and hence its harmonic functions)
but also a condition on its comparability with the dilation structure (δt )t>0, scaled
measure µt = tδ1/t (µ), and norm ‖ · ‖ on Rd . We expect the rescaled random walks
(δ1/k(X[kt]))t>0 to converge when k tends to infinity to a self-similar process (Zt )t>0
satisfying δ1/s(Zst ) = Zt for all s, t > 0. From the definition of ‖ · ‖ at (5.3), the
expected exit time out of a ball of radius r for this process should scale as rβ .
Moreover, the random walk exit time of the ball of radius r is

τB(r) = inf{n : Xn < B(r)} = rβ inf
{
n/rβ : δ1/rβ (Xrβ (n/rβ )) < B(1)

}
and we expect that, as r tends to infinity,

inf
{
n/rβ : δ1/rβ (Xrβ (n/rβ )) < B(1)

}
→ inf{s : Zs ∈ B(1)}

so that Ee
[
τB(r)

]
should indeed behave as rβ . �

Tails properties for Jt and J•

We now discuss two related sets of hypotheses that are more technical but essential to
obtain the desired results. They concern the limit jump measure J• and the rescaled
jump measures Jt for large t > 0. Theses hypotheses will have a natural flavor to
anyone familiar with Lévy processes and Dirichlet forms. They complement the
vague convergence of Jt to J on (Rd × Rd) \ ∆.

Set
B•(x,r) = x • B(r) =

{
y ∈ Rd : ‖x−1

• • y‖ < r
}
.

Concerning the limit Radon measure

J•(dxdy) = dxµ•(x−1
• • dy)

on (Rd ×Rd) \∆ from Proposition 4.7, which is symmetric by Remark 5.1, consider
the hypothesis that

(T•) For any fixed compact set K ⊂ Rd ,

lim
η→0

∬
{(x,y)∈K×K :‖x−1

• •y ‖2≤η }
‖x−1
• • y‖

2
2 J•(dx, dy) = 0, (5.8)

lim
R→∞

∫
x∈K

∫
y∈B•(x,R)c

J•(dx, dy) = 0. (5.9)

Note that, because J•(dxdy) = dxµ•(x−1
• dy), where µ• is a Radon measure on

G• \ {e} = Rd \ {0}, condition (T•) is equivalent to
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G•

min{1, ‖z‖22 } µ•(dz) < ∞, (5.10)

which is (2.3) for ν = µ•.
Under this hypothesis, J• is the jump measure of a symmetric bilinear form

E•(u, v) :=
1
2

∬
Rd×Rd\∆

(u(x) − u(y))(v(x) − v(y))J•(dx, dy) (5.11)

on Lipc(Rd), which is the space of Lipschitz functions with compact support. More-
over, this form is closable in L2(G•; dx) and its closure is a regular conservative
Dirichlet form (E•,F•) – see, e.g., [27, Example 1.2.4] and [33, Theorem 1.3].
Hence by [18, Corollary 6.6.6],

F• =
{
u ∈ (F•)loc ∩ L2(G•; dx) : E•(u,u) < ∞

}
. (5.12)

Recall that by Lemma 3.9, the straight dilation {δt, t > 0} is a group dilation
structure for the group (G•,•). Denote by (L•,Dom(L•)) the infinitesimal generator
of (E•,F•) on L2(G•; dx). Under the hypothesis (T•), we haveC2

b
(Rd)∩L2(Rd; m) ⊂

Dom(L•) and

L• f (x) = lim
ε→0

∫
{z∈G•:‖z ‖≥ε }

( f (x • z) − f (x))µ•(dz) for f ∈ Dom(L•). (5.13)

For f ∈ Dom(L•) and r > 0, we have by (5.2) and (5.3) that for x ∈ G•,

L•( f ◦ δr )(x) = lim
ε→0

∫
{z∈G•:‖z ‖≥ε }

( f (δr (x • z)) − f (δr (x)))µ•(dz)

= lim
ε→0

∫
{z∈G•:‖w ‖≥ε }

( f (δr (x) • δr (z)) − f (δr (x)))µ•(dz)

= lim
ε→0

∫
{z∈G•:‖w ‖≥ε }

( f (δr (x) • w) − f (δr (x)))(δr µ•)(dw)

= r lim
ε→0

∫
{z∈G•:‖w ‖≥ε }

( f (δr (x) • w) − f (δr (x)))µ•(dw)

= rL• f (δr (x)). (5.14)

In particular, we have for f ∈ C2
c(R

d) and r > 0,

L•( f ◦ δr )(e) = rL• f (e). (5.15)

Remark 5.6 Under the hypothesis (T•), let X• be the symmetric Hunt process on
G• associated with the regular Dirichlet form (E•,F•) on L2(G•, dx); see [18, 27].
In view of (5.13), X• has stationary independent increment property; that is, for any
t > s ≥ 0, (X•s )−1

• • X•t is independent of σ(X•r ; r ≤ s) and has the same distribution
as (X•0 )

−1
• • X•t−s . Thus X• can be refined to start from every point in G•. Moreover,
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it follows from (5.14) that if X•0 = e, then

{δr (X•t ); t ≥ 0} has the same distribution as {X•rt ; t ≥ 0}. (5.16)

We know from Lemma 3.9 the straight dilations {φt, t > 0} form a group dilation
structure for the nilpotent group (G•,•). Thus in the terminology of [41, p.170], the
Lévy process X• is stable with respect to the dilations {φt, t > 0}. �

Remark 5.7 In the terminology of [29, p.31], the scaling property (5.15) says that
the generating functional f → L• f (e) is a kernel of order β+ = max1≤i≤d βi .
Observe that in [29], the exponents {dj,1 ≤ j ≤ d} for the straight dilation structure
{δt, t > 0} are our {1/βj,1 ≤ j ≤ d} and the smallest dj there (which corresponds
our β+, the largest of βj) is normalized to 1; see Remark 3.12 for the procedure of
doing such a normalization. Note also that the norm | · | defined on [29, (1.1)] is
comparable to our norm ‖ · ‖. �

Regarding the scaled jump kernel Jt , consider the property

(TΓ) For any fixed compact set K ⊂ Rd ,

lim
η→0

lim sup
t→∞

∬
{(x,y)∈K2:‖x−1

• •y ‖2≤η }
‖x−1
• • y‖

2
2 Jt (dx, dy) = 0, (5.17)

lim
R→∞

lim sup
t→∞

∫
x∈K

∫
y∈B•(x,R)c

Jt (dx, dy) = 0. (5.18)

Remark 5.8 In the estimates (5.8) and (5.17), it is crucial to use the norm ‖ · ‖2 in
the integrant in order to measure the strength of small jumps allowed by theses jump
kernels in a classical fashion. In the estimates (5.9) and (5.18), it is natural to use the
norm ‖ · ‖ due to the scaling property of {δt }, but we may also use ‖ · ‖2 if desired
because of (5.5). �

Remark 5.9 Recalling (5.10), one can check that conditions (A), (T•) and (TΓ)
combined are equivalent to the following condition:

(A′) The straight dilation structure (δt )t>0 is admissible for the probability measure µ
in the sense that the finite positive measure (‖z‖22 ∧ 1) µt (dz) converges weakly
on Rd \ {0} to a finite measure (‖z‖22 ∧ 1) µ• as t tends to infinity, where µt is the
measure defined at (4.1). �

Note that Examples 4.4-4.6 satisfy any of these conditions (A), (T•), (TΓ), (R1)-
(R2) and (E1)-(E2).
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5.3 Weak convergence

Throughout this section, we generally assume that (A)-(R1)-(E1)-(E2) and (T•)-
(TΓ) are all satisfied even so we will list exactly which properties are used for
different results stated in this section.

Because of assumptions (A) and (T•), we can consider the (continuous time)
Markov semigroup of operators

{P•,s}s≥0

corresponding to (E•,F•) at (5.11). Let {Uλ
• ; λ > 0}, and {Px• ; x ∈ G•} be the re-

solvent, and probabilities corresponding to the regular Dirichlet form (E•,F•) on
L2(G•; dx). Our goal is to prove that the continuous time conservative Markov pro-
cess associated with this regular Dirichlet form is the limit of the properly rescaled
discrete time random walk on Γ driven by the probability measure µ. We let (Xn)n≥0
denote this random walk. Assumptions (R1) and (E1)-(E2) are assumptions regard-
ing the behavior of this discrete time random walk on Γ.

Fix an arbitrary sequence of positive reals {Tk} that goes to ∞. We write
(E(k),F (k)) for (E(Tk ),F (Tk )) defined by (4.7) with Tk in place of t there, which
corresponds to the rescaled discrete time process by

(X (k)n := δ−1
Tk
(XTkn))n∈(1/Tk )N∪{0} .

Note that this is just discrete time random walk on ΓTk where time has been rescaled
linearly according to the scaling sequenceTk . Let {Pk

n ; n ∈ (1/Tk)N∪{0}}, {Uλ
k

; λ >
0}, and {Px

k
; x ∈ ΓTk } be the associated semigroup, resolvent, and probabilities. For

t ≥ 0, we write

X̂ (k)t := δ−1
Tk
(X[Tk t]) = X (k)

[Tk t]/Tk
, P̂k

t := Pk
[Tk t]/Tk

(5.19)

and denote the corresponding probabilities by {P̂x
k
; x ∈ ΓTk }. So for x, y ∈ ΓTk , and

n = m/Tk, m ∈ N ∪ {0},

Pxk (X
(k)
n = y) = µ(m)(δTk (x)

−1 · δTk (y)),

and for x, y ∈ ΓTk , and t > 0,

P̂xk (X̂
(k)
t = y) = µ([tTk ])(δTk (x)

−1 · δTk (y)). (5.20)

For a constant M0 > 0, let D([0,M0],R
d) be the space of right continuous

functions on [0,M0] having left limits and taking values in Rd that is equipped with
the Skorohod J1 topology. Our goal is to prove the following theorem. Recall that
βi ∈ (0,2), 1 ≤ i ≤ d, are the parameters in (5.1) for the straight dilation structure
{δt ; t > 0} and β+ = max{βi : 1 ≤ i ≤ d}.
Theorem 5.10 Referring to the setup and notation introduced above, assume that
(5.3), (A)-(R1)-(E1)-(E2) and (T•)-(TΓ) are all satisfied with the same exponent
β > 0. Then
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(i) The symmetric Hunt process X• associated with the regular Dirichlet form
(E•,F•) on L2(G•; dx) is a Lévy process on G•. The Lévy process X•t has a
bounded, strictly positive, jointly continuous transition density function p(t, x, y) =
p(t, x−1

• • y) with respect to dy that has the following properties.

(a) Let γ0 :=
∑d

i=1 1/βi . For every (t, x) ∈ (0,∞) × G•,

p(t, x) = t−γ0 p(1, δ1/t (x)). (5.21)

In particular, there is a constant C1 > 0 so that p(t, x) ≤ C1t−γ0 for every
(t, x) ∈ (0,∞) × G•.

(b) For every γ ∈ (0, β+ ∧ 1), there is a constant C2 > 0 so that

|p(1, x) − p(1, y)| ≤ C2‖x−1
• • y‖

γ for x, y ∈ G•. (5.22)

(c) For every α ∈ (0, β+), there is a constant C3 > 0 so that for every (t, x) ∈
(0,∞) × G•,

p(t, x) ≤ min
{
C1t−γ0, C3

tα/β+

‖x‖d+α

}
. (5.23)

(ii) For any bounded continuous function f on Rd , P̂k
s f converges uniformly on

compacts to P•,s f . Furthermore, for each M0 > 0, for every x ∈ Rd , P̂[x]k
k

converges weakly to Px• on the space D([0,M0],R
d). �

Remark 5.11 Note that under its conditions, Theorem 5.10 in particular implies
that the Lévy process X• is always non-degenerate in the sense that it has a strictly
positive convolution density kernel p(t, x) with respect to the Haar measure dx on
G•. Consequently, the support of its Lévy measure µ• generates the whole group
G•. �

5.4 Proof of Theorem 5.10

In this section, we prove Theorem 5.10. The main part of the argument is based on
Section 4 of [7]. Similar arguments for discrete setting (including a diffusion term
in the limit) are given in [9, Theorem 5.5].

Recall that X (k)n = δ−1
Tk
(XTkn), n ∈ T−1

k
N ∪ {0}. We first state a lemma that is an

easy consequence of rescaling, and assumptions (R1)-(E1)-(E2), and Lemma 5.2
(with φt = δt ). For x0 ∈ ΓTk , let

BTk (x0,r) = x0 ·Tk B(r).

Note that this is different from B•(x0,r) = x0 • B(r) which we have used earlier.
Also, y ∈ BTk (x0,r) if and only if δ1/Tk (δTk (x0)

−1) ·Tk y ∈ B(r) (i.e., we have to take
the inverse of x0 in (Γt, ·t ) with t = Tk).
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Lemma 5.12 (i) Assume (E1). Then, there exists A > 1 such that the following
holds: for any ε ∈ (0,1), there exists γ = γ(A, ε) > 0 such that for all k ≥ 1,
x0 ∈ ΓTk , r ∈ (0,1) and x ∈ BTk (x0,r) ∩ ΓTk ,

Pxk

(
τBTk

(x0 ,Ar)(X
(k)) ≤ γrβ

)
≤ ε.

(ii) Under (E2), there exists c1 > 0 such that the following hold for all k ≥ 1, x0 ∈ ΓTk ,
r ∈ (0,1), and all x ∈ BTk (x0,r) ∩ ΓTk ,

Exk

[
τBTk

(x0 ,r)(X
(k))

]
≤ c1rβ .

(iii) Under (R1), there exists κ ∈ (0,∞) such that, for any compact set K ⊂ Rn, there
is c2,K > 0 for which, for any k ≥ 1, x0 ∈ K ∩ ΓTk and r ∈ (0,1), if hk is
bounded in ΓTk and harmonic with respect to X (k) in a ball BTk (x0,r) ∩ ΓTk then,
for x, y ∈ BTk (x0,r/2) ∩ K ∩ ΓTk ,

|hk(x) − hk(y)| ≤ c2,K

(
‖x−1
• • y‖

β−/β+

r

)κ
‖hk ‖∞.

Proof In view of the scaling property (5.3) of the norm ‖ · ‖ on G•, properties (i)
and (ii) are just reformulation of conditions (E1) and (E2), respectively, under the
approximate dilation δTk .

(iii) follows from condition (R1) under the approximate dilation δTk and Lemma
5.2. 2

Recall that for λ > 0, the resolvent Uλ
k
is given by

Uλ
k f (x) = (λI − Tk(P − I))−1 f (δ−1

Tk
(x))

= (Tk + λ)
−1
∞∑
n=0

( 1
1 + λT−1

k

)n
Pn f (δ−1

Tk
(x)) for x ∈ ΓTk = δTk (Γ),

where P is the transition matrix for the random walk {Xn}n on Γ.

The following proposition is based on [17, Proposition 2.4] (see also [7, Proposi-
tion 3.3]). We outline the proof for the reader’s convenience.

Proposition 5.13 Under (R1) and (E2), for any compact set K , there exist Cλ,K ∈
(0,∞) and γ ∈ (0, (β ∧ κ)/2] such that the following holds for any bounded function
f on ΓTk , for any k ≥ 1 and any x, y ∈ K ∩ ΓTk with ‖x−1

• • y‖ ≤ 1,

|Uλ
k f (x) −Uλ

k f (y)| ≤ Cλ,K ‖x−1
• • y‖

γ ‖ f ‖∞. (5.24)

In particular, we have

lim
δ→0

sup
k≥1

sup
x,y∈K∩ΓTk :
‖x−1
• •y ‖<δ

|Uλ
k f (x) −Uλ

k f (y)| = 0. (5.25)



5.4 Proof of Theorem 5.10 51

Proof Recall the notation BTk (z,r) = z ·Tk B(r). Let x, y ∈ K ∩ ΓTk and let r ∈ (0,1]
be such that ‖x−1

• • y‖ ≤ r . By Lemma 5.2, y ∈ BTk (x, ρ), ρ = CKrβ−/β+ . Set
τkr := τBTk

(x,2ρ)(X (k)). In what follows the constant CK depend only on K and can
change from line to line. By the strong Markov property,

Uλ
k f (x) = (Tk + λ)

−1Exk

[ ∑
n∈N∪{0}

n∈[0,τkr Tk ]

( 1
1 + λT−1

k

)n
Pn f (δ−1

Tk
(x))

]
+ Exk

[( 1
1 + λT−1

k

)τkr Tk
Uλ
k f (X (k)

τkr
)

]
= (Tk + λ)

−1Exk

[ ∑
n∈N∪{0}

n∈[0,τkr Tk ]

( 1
1 + λT−1

k

)n
Pn f (δ−1

Tk
(x))

]
+ Exk

[(( 1
1 + λT−1

k

)τkr Tk
− 1

)
Uλ
k f (X (k)

τkr
)

]
+ Exk

[
Uλ
k f (X (k)

τkr
)

]
=: I1 + I2 + I3,

and similarly when x is replaced by y. Because of Lemma 5.12(ii) and the fact that
‖P f ‖∞ ≤ ‖ f ‖∞, we have

|I1 | ≤
Tk

Tk + λ
Exk

[
τkr

]
‖ f ‖∞ ≤ c1rζ ‖ f ‖∞, where ζ := ββ−/β+.

Note that
‖Uλ

k f ‖∞ ≤ (Tk + λ)
−1 1

1 − 1
1+λT−1

k

‖ f ‖∞ = λ−1‖ f ‖∞.

Using this and applying 1 − e−s ≤ s, s ≥ 0, with s = τkr Tk log(1 + λT−1
k
), we have

|I2 | ≤ E
x
k

[
τkr

]
Tk log(1 + λT−1

k )‖U
λ
k f ‖∞ ≤ Exk

[
τkr

]
TkλT−1

k λ−1‖ f ‖∞ ≤ c1rζ ‖ f ‖∞.

Similar statements also hold when x is replaced by y. So,��Uλ
k f (x) −Uλ

k f (y)
�� ≤

c1rζ ‖ f ‖∞ +
���Exk [

Uλ
k f (X (k)

τkr
)

]
− E

y
k

[
Uλ
k f (X (k)

τkr
)

] ��� . (5.26)

But z → Ez
k

[
Uλ
k

f (X (k)
τkr
)

]
is bounded in ΓTk and harmonic in BTk (x,2ρ) ∩ ΓTk . By

Lemma 5.12(iii), for y ∈ BTk (x, ρ), the second term in (5.26) is bounded by

CK (‖x−1
• • y‖

β−/β+/rβ−/β+ )κ ‖Uλ
k f ‖∞.

So using ‖Uλ
k

f ‖∞ ≤ λ−1‖ f ‖∞ again, for y ∈ B•(x, ρ) ∩ ΓTk we have
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k f (x) −Uλ

k f (y)
�� ≤ CK

(
rββ−/β+ + λ−1

(
‖x−1
• • y‖

β−/β+

rβ−/β+

)κ )
‖ f ‖∞. (5.27)

Now choose r such that r = ‖x−1
• • y‖

1/2 (then ‖x−1
• • y‖ = r2 ≤ r ≤ 1). For this

choice of r , we obtain��Uλ
k f (x) −Uλ

k f (y)
��

≤ CK

(
‖x−1
• • y‖

ββ−/(2β+) + λ−1‖x−1
• • y‖

κβ−/(2β+)
)
‖ f ‖∞

≤ CK (1 + λ−1)‖x−1
• • y‖

γ ‖ f ‖∞,

where γ = min
{
ββ−
2β+ ,

κβ−
2β+

}
∈ (0, (β ∧ κ)/2]. 2

The first part of the next proposition is based on [17, Proposition 2.8] (see also
[8, Proposition 6.2] and [5, Section 6]). In the following, m denotes the Lebesgue
measure on Rd .

Proposition 5.14 Assume (A)-(R1)-(E1)-(E2). For every subsequence {k j}, there
exist a sub-subsequence {k j(l)} and a conservative m-symmetric Hunt process
(X̃, P̃x, x ∈ Rd), which is a Lévy process on (G•,•), such that for every xk j(l) → x,
P̂
xk j (l)

k j(l)
converges weakly in D([0,∞),Rd) to P̃x . Moreover, the resolvents of the con-

servative Hunt process X̃ map bounded functions on Rd into bounded local Hölder
continuous functions onRd and so for each t > 0, X̃t has a transition density function
p(t, x, y) = p(t, e, x−1

• • y) with respect to dy. �

Proof For simplicity, denote by the subsequence {k j} by {k}. LetT0 > 0 an arbitrary
constant and xk ∈ Γk . For any stopping time ηk of X (k) that is bounded by T0 and any
positive constant δk → 0, it follows from Proposition 5.12(i) and the strong Markov
property of X (k) that for any ε > 0,

lim sup
k→∞

Pxk
k

(
‖δ1/k(δk((X

(k)
ηk )
−1)) ·k X (k)ηk+δk ‖ > ε

)
≤ lim sup

k→∞

E xk
k

[
P
X
(k)
ηk

k
(τ

Bk (X
(k)
0 ,ε)

< δk)

]
= 0.

Thus by [1], the probability laws {P̂xk
k

; k ≥ 1} are tight on D([0,T0),R
d). Under

conditions (R1)-(E1)-(E2), the proof of the first part of this proposition (on weak
convergence) is then similar to that of [17, Proposition 2.8], modulo modifying the
arguments for continuous time processes there to discrete time processes, so we omit
this part of the proof. Since X (k) has stationary independent increments on Γk , so
does X̃ on (G•,•).

That the resolvents of X̃ maps bounded functions on Rd into bounded Hölder
continuous functions on Rd follows readily from Proposition 5.13. For λ > 0, denote
by Ũλ the λ-resolvent of X̃ . For any Borel measurable set A ⊂ Rd having m(A) =
0, by the m-symmetry and conservativeness of X̃ , we have

∫
Rd

Ũλ(x, A)m(dx) =
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λ−1m(A) = 0 for every λ > 0. As Ũλ(x, A) is continuous in x ∈ Rd , we conclude
that Ũλ(x, A) = 0 for every x ∈ Rd . By [27, Theorem 4.2.4], this implies that
the law of Xt under P̃x is absolutely continuous with respect to m for each t > 0
and x ∈ Rd . Denote its density by p(t, x, y). By the Lévy property of X•, we have
p(t, x, y) = p(t, e, x−1

• • y). 2

Proof of Theorem 5.10. In view of Proposition 5.14, it suffices to show that the
Dirichlet form in L2(G•; dx) of the conservative m-symmetric process X̃ in Propo-
sition 5.14 is (E•,F•) and establish (i). As in the proof of Proposition 5.13, we know
that any subsequence {k j} has a further subsequence {k jl } such thatUλ

k jl
f converges

uniformly on compacts whenever e λ > 0 and f is bounded and continuous on Rd .
Now suppose we have a subsequence {k ′} such that the Uλ

k′
f on ΓTk′ are equi-

continuous and converge uniformly on compacts whenever λ > 0 and f is bounded
and continuous with compact support on Rd . Fix λ > 0 and such an f , and let
H ∈ Cb(R

d) be the limit of Uλ
k′

f . We will show that H ∈ F• and

E•(H,g) = 〈 f ,g〉 − λ〈H,g〉 (5.28)

whenever g is a Lipschitz function on Rd with compact support, where (E•,F•) is
the Dirichlet form of (5.11) and 〈·, ·〉 is the L2-inner product with respect to the
Lebesgue measure m on Rd . This will prove that H is the λ-resolvent of f with
respect to (E•,F•) in L2(Rd; dx), that is, H = Uλ f . We can then conclude that the
full sequence Uλ

k
f converges to Uλ f whenever f is bounded and continuous with

compact support. The assertions about the convergence of Pk
t and Px

k
then follow by

Proposition 5.14.
So we need to prove H satisfies (5.28). We drop the primes for legibility. We

know

E(k)(Uλ
k f ,Uλ

k f ) = 〈 f ,Uλ
k f 〉

L2(ΓTk ,mTk
)
− λ〈Uλ

k f ,Uλ
k f 〉

L2(ΓTk ,mTk
)
, (5.29)

where for t > 0, mt is the measure on Γt defined by (4.5). Since

‖Uλ
k f ‖L2(ΓTk ,mTk

) ≤ (1/λ)‖ f ‖L2(ΓTk ,mTk
),

we have by the Cauchy-Schwarz inequality that

sup
k

E(k)(Uλ
k f ,Uλ

k f ) ≤ sup
k

λ−1‖ f ‖2
L2(ΓTk ,mTk

)
≤ c < ∞.

Set B2(r) = {x : ‖x‖2 < r}. Since Uλ
k

f converge uniformly to H on B2(1/η) for
every η ∈ (0,1), it follows from Lemma 4.10 that∬

Dη

(H(y) − H(x))2J•(dx, dy)

≤ lim sup
k→∞

∑
(x,y)∈(ΓTk ×ΓTk )∩Dη

(Uλ
k f (x) −Uλ

k f (y))2 jk(x, y)
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≤ lim sup
k→∞

E(k)(Uλ
k f ,Uλ

k f ) ≤ c < ∞,

where Dη := {(x, y) ∈ B2(e, η−1) × B2(e, η−1) : η < ‖x−1
• • y‖2 ≤ η−1}. Letting

η→ 0, we have ∬
Rd×Rd\∆

(H(y) − H(x))2J•(dx, dy) ≤ c < ∞.

Since H ∈ Cb(R
d), the above in particular implies that H ∈ (F•)loc. Note that by

Fatou’s lemma, H ∈ L2(Rd; dx) as it is the pointwise limit ofUλ
k

f . Thus we conclude
from (5.12) that

H ∈ F• with E•(H,H) < ∞. (5.30)

Fix a Lipschitz function g on Rd with compact support, and choose r0 > 0 large
enough so that the support of g is contained in the L2-ball B2(e,r0). Then, setting
H≥η−1 := {‖x−1

• • y‖2 ≥ η
−1},��� ∑

(x,y)∈(ΓTk ×ΓTk )∩H≥η−1

(Uλ
k f (y) −Uλ

k f (x))(g(y) − g(x)) jk(x, y)
���

≤

( ∑
(x,y)

(Uλ
k f (y) −Uλ

k f (x))2 jk(x, y)
)1/2

×

( ∑
(x,y)∈(ΓTk ×ΓTk )∩H≥η−1

(g(y) − g(x))2 jk(x, y)
)1/2

.

The first factor is (E(k)(Uλ
k

f ,Uλ
k

f ))1/2, while the second factor is bounded by

√
2 ‖g‖∞

( ∫
B2(e,r0)

∫
‖x−1
• •y ‖2≥η

−1
Jk(dx, dy)

)1/2
,

which, in view of (5.18) in (TΓ), will be small if η is small. Similarly, setting
H≤η := {‖x−1

• • y‖2 ≤ η}, it holds that��� ∑
(x,y)∈(ΓTk ×ΓTk )∩H≤η

(Uλ
k f (y) −Uλ

k f (x))(g(y) − g(x)) jk(x, y)
���

≤

( ∑
(x,y)

(Uλ
k f (y) −Uλ

k f (x))2 jk(x, y)
)1/2

×

( ∑
(x,y)∈(ΓTk ×ΓTk )∩H≤η

(g(y) − g(x))2 jk(x, y)
)1/2

.

The first factor is as before, while the second is bounded by

‖g‖Lip

( ∫
B2(e,r0)

∫
‖x−1
• •y ‖2≤η

‖x−1
• • y‖

2
2 Jk(dx, dy)

)1/2
,
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where
‖g‖Lip := sup

x,y∈Rd

|g(x) − g(y)|
‖x−1
• • y‖2

< ∞.

In view of (5.17) in (TΓ), the second factor will be small if η is small. Similarly,
using (5.30), we have���∬

‖x−1
• •y ‖2<(η,η

−1)
(H(y) − H(x))(g(y) − g(x))J•(dx, dy)

���
will be small if η is taken small enough, due to Remark 5.8.

Note that Uλ
k

f are equi-continuous and converge to H uniformly on compacts,
and g is a compactly supported function. For η > 0 we have by Lemma 4.10,∑

(x,y)∈(ΓTk ×ΓTk )∩{ ‖x
−1
• •y ‖2∈(η,η

−1)}

(Uλ
k f (y) −Uλ

k f (x))(g(y) − g(x)) jk(x, y)

→

∬
‖x−1
• •y ‖2∈(η,η

−1)
(H(y) − H(x))(g(y) − g(x))J•(dx, dy).

It follows that
lim
k→∞
E(k)(Uλ

k f ,g) = E•(H,g). (5.31)

But as k →∞,

E(k)(Uλ
k f ,g) = 〈 f ,g〉L2(ΓTk ,mTk

) − λ〈U
λ
k f ,g〉

L2(ΓTk ,mTk
)
→ 〈 f ,g〉 − λ〈H,g〉.

Combining this with (5.31) proves (5.28). This proves that X̃ has the same distri-
bution as the Lévy process X• associated with the regular Dirichlet form (E•,F•)
on L2(G•; m), which in particular establishes part (ii) of the theorem by Proposition
5.14.

We next show part (i) of the theorem. By Proposition 5.14, X•t has transition
density function p(t, x−1

• • y) with respect to the Lebesgue measure dy on G•.
By Remark 5.7, the generating functional f 7→ L f (e) is a kernel of order β+.
Thus by [29, Theorem 2.2], p(t, x) is square-integrable for every t > 0 and so
ct := p(t, e) =

∫
Rd

p(t/2, x)2dx < ∞. By the Cauchy-Schwarz inequality, for any
x ∈ G•,

p(t, x) = p(t, e, x) =
∫
Rd

p(t/2, e, z)p(t/2, z, x)dz

≤ ‖p(t/2, e, ·)‖2 ‖p(t/2, ·, x)‖2 ≤ ct .

That is, p(t, x) is bounded on G• for every t > 0. Property (5.21) follows from the
self-similarity property (5.16) of X•, and Hölder regularity (5.22) follows from [29,
Corollary 3.12]. The joint continuity of p(t, x, y) = p(t, x−1

• • y) in (t, x, y) follows
from the scaling property (5.21) and the Hölder continuity of p(t, x) in x. Note that
p(t, e) =

∫
G•

p(t/2, y)2dy > 0 and limt→∞ δ1/t (x) = e uniformly on every compact
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subset of G•. Thus by (5.21), for any n ≥ 1, there is some tn > 0 so that p(t, x) > 0
for every (t, x) ∈ (0, tn] × B(0,n). It then follows from the Chapman-Kolmogorov
equation that p(t, x) > 0 for every (t, x) ∈ (0,∞) × G•.

For any α ∈ (0, β+), by [29, Theorem 5.1], there is a constant C3 so that p(t, x) ≤
C3tα/β+/‖x‖d+α for every t > 0 and x ∈ G•. Together with (5.21), it gives the
estimate (5.23). This establishes part (i) of the theorem, and thus completes the
proof of the theorem. 2



Chapter 6
Local limit theorem

Abstract Continuing in the same vein as in the previous chapter where the
functional limit theorems are treated, sufficient conditions on the original long range
randomwalk are provided in order to apply and adapt existing local limit theorems to
the problems considered here. The local theorem presented in this chapter, Theorem
6.2, is one of the central results of this monograph.

6.1 Assumption (R2)

In this chapter, we discuss the local limit theorem for (X (k)
nT−1

k

)n∈N ∪{0} based on [24,
Theorem 1] and [16, Theorem 4.5] (c.f. [6, Section 4] for the case the limit heat
kernel is Gaussian).

For this purpose, we introduce an additional hypothesis, (R2), which reads as
follows. Let µ(n) be the n-th convolution power of the probability measure µ on Γ.
This is the law at time n of the random walk driven by µ, started at the identity
element on Γ.

(R2) There are positive constants C2 > 0 and β > 0 such that, for all n,m ∈ N and
x, y ∈ Γ,

|µ(n+m)(xy) − µ(n)(x)| ≤
C2

V(n1/β)

(
m

n + 1
+

√
‖y‖β

n + 1

)
, (6.1)

where V(r) := ]{g ∈ Γ : ‖g‖ < r}.

For our local limit theorem to hold, the exponent β > 0 in (R2) should be the same
as those in (5.3) and in (E1)-(E2). We start with verifying the needed convergence
of the volume of appropriate balls.

6.2 Convergence of volume

Recall that Γt := δ−1
t (Γ) = δ1/t (Γ),

B(r) = {x : ‖x‖ < r} and B•(x,r) = x • B(r) =
{
y ∈ Rd : ‖x−1

• • y‖ < r
}
.

57
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Recall also that m is the Lebesgue measure on Rd and

mt (A) = c(Γ,G) det(δ−1
t )#A

for any finite subset A of Γt , where c(Γ,G) is given in Proposition 4.7 (see also
below). We need the following lemma.

Lemma 6.1 For all x ∈ Rd,r ≥ 0,

lim
t→∞

mt (B•(x,r) ∩ Γt ) = m(B•(x,r)). (6.2)

Proof Fix x ∈ Rd and r ≥ 0. Recall that B•(x,r) = x • B(r) and

δt (x • B(r)) = δt (x) • B(rt1/β) = B•(δt (x),rt1/β),

so that B•(x,r) ∩ Γt is the finite set of all points y ∈ Rd such that

z = δt (y) ∈ B•(δt (x),rt1/β) ∩ Γ.

Let dist• be a left-invariant Riemannian metric on the Lie group G = (Rd, ·) and take
the Voronoi cell for the discrete subgroup Γ:

U =
{

x ∈ Rd : dist•(x, e) = min
γ∈Γ

dist•(x, γ)
}

so that
Rd =

⋃
γ∈Γ

γ ·U

and (γ · U) ∩ (γ′ · U) ⊂ ∂U and thus m((γ · U) ∩ (γ′ · U)) = 0 for any γ , γ′ ∈ Γ.
Note that this definition is based on the law · of the Lie group G = (Rd, ·) and its
closed subgroup Γ, not on the rescaled limit law •. Since m(∂U) = 0, by definition,
c(Γ,G) = m(U). For any S ⊂ Rd , we have

c(Γ,G)#{z ∈ Γ ∩ S} ≤ m(S ·U).

In particular, for S = B•(δt (x),rt1/β) = δt (B•(x,r)),

c(Γ,G)#{z ∈ Γ ∩ B•(δ(x),rt1/β)} ≤ m(δt [δ1/t (δt (B•(x,r)) · δt (δ1/t (U)))]).

Note that since Γ is a co-compact closed subgroup of G, U is bounded and closed
and hence compact. Consequently, δ1/t (U) converges uniformly to {e} as t → ∞.
By the uniform convergence of the product ·t to • on compact sets (e.g., see Lemma
5.2), for any fixed ε > 0, there exists a constant T > 0 large enough such that, for all
t > T , the set [δ1/t (δt (B•(x,r)) · δt (δ1/t (U)))] is contained in an ε neighborhood for
the norm ‖ · ‖ in the group (G,•) of the set B•(x,r) • δ1/t (U). This means that, for t
large enough,
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δ1/t (δt (B•(x,r)) · δt (δ1/t (U))) ⊂ B•(x,r + 2ε).

Hence,

det(δ1/t )c(Γ,G)#{z ∈ Γ ∩ B•(δ(x),rt1/β)} ≤ det(δ1/t )m(δt (B•(x,r + 2ε)))
= m(B•(x,r + 2ε)).

Take the limsup in t → ∞, note that m(B•(x,r + 2ε)) = c(r + 2ε)
∑d

1 β/βi , and let ε
tend to 0, to obtain

lim sup
t→∞

mt (B•(x,r) ∩ Γt ) ≤ m(B•(x,r)).

To prove the complementing inequality, namely,

lim inf
t→∞

mt (B•(x,r) ∩ Γt ) ≥ m(B•(x,r)),

we use the same line of reasoning as above to see that, for any fixed ε > 0 and all t
large enough,

B•(δt (x), (r − 2ε)t1/β) ⊂
⋃

γ∈B•(δt (x),rt1/β )

γ ·U.

From this, it follows that, for all t large enough,

m(B•(x,r − 2ε)) ≤ det(δ1/t )c(Γ,G)#{z ∈ Γ ∩ B•(δ(x),rt1/β)}.

The desired lower bound follows. �

6.3 Statement and proof of the LLT

Given an arbitrary sequence of positive reals Tk tending to infinity and t > 0, let µ̂(t)
k

be the probability distribution of (X̂ (k)t )t>0, i.e.,

µ̂
(t)
k
(x) = Pe(X̂ (k)t = x) = µ[tTk ](δTk (x)), x ∈ ΓTk .

Recall that for each x ∈ Rd , [x]k ∈ ΓTk is the point closest to x in the ‖ · ‖-norm.
We know fromTheorem 5.10 that the Lévy process X• s corresponding to (E•,F•)

has a jointly continuous convolution kernel

(t, x) 7→ p•(t, x) = t−γ0 p•(1, δ1/t (x))

with t > 0, x ∈ Rd .

Theorem 6.2 (Local limit theorem) Assume (5.3), (A)-(R1)-(R2)-(E1)-(E2) and
(T•)-(TΓ) with the same exponent β > 0. Then, for any U2 > U1 > 0 and r > 1,
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lim
k→∞

sup
x∈Rd :‖x ‖≤r

sup
t∈[U1 ,U2]

���det(δTk )µ
([tTk ])
k

(δTk ([x]k)) − p•(t, x)
��� = 0.

Proof We adopt the notations in [24]. Let E = Rd with dE (x, y) = ‖x−1
• • y‖, and

Gk = δ−1
Tk
(Γ) ⊂ Rd = E with the same distance dGk (x, y) = ‖x−1

• • y‖. (Note that
dGk (·, ·) is a graph distance on Gk in [24]. However, the proof of [24, Theorem 1]
works for any distance on Gk .) Then, conditions (a) and (b) in [24, Assumption 1]
hold with α(k) = 1. Let ν = m and νk = mTk . Then by (6.2), (c) in [24, Assumption
1] holds with β(k) = det(δTk ). Set

qk
t (x) = µ̂

(t)
k
(x) and qt (·) = p•(t, ·).

It suffices to prove that the conclusion of [24, Theorem 1] holds for qk
t (x). We now

check that (d) in [24, Assumption 1] holds. Let U0 > 0 be a fixed constant. By
Theorem 5.10, for every bounded and continuous function f on Rd , t ∈ (0,U0] and
x ∈ Rd , we have

lim
k→∞

����Ê[x]kk

[
f (X̂ (k)t )

]
−

∫
Rd

f (z)qt (x−1
• • z) dz

���� = 0. (6.3)

We need to prove that this convergence is uniform in t over any compact time interval
in (0,∞). This would easily follow if we could prove the equi-uniform continuity of
the function t 7→ Ê[x]k

k

[
f (X̂ (k)t )

]
on compact time intervals. However, because we

are dealing with what is essentially a discrete time process, these functions are not
even continuous. Nevertheless, condition (R2) says that, for all non-negative integers
n,m and all x, z ∈ Γ (inverse and multiplication are in Γ), we have

|µ(n+m)(z) − µ(n)(x)| ≤ C2

(
m

n + 1
+
‖x−1 · z‖β/2
√

n + 1

)
.

1
V(n1/β)

. (6.4)

It follows that, for 0 < s < t,���µ([tTk ])([δTk ([x]k)]−1 · δTk (y)) − µ
([sTk ])([δTk ([x]k)]

−1 · δTk (y))
���

≤ C2
[Tk(t − s)] + 1
[Tk s] + 1

1
V([Tk s]1/β)

≤ C2
t − s + T−1

k

s
1

V([Tk s]1/β)
.

For any fixed time interval [U1,U2], 0 < U1 < U2, this is a version of “equi-uniform
continuity," call it “equi-uniform continuity moduloT−1

k
." Together with the fact that

t 7→
∫
Rd

f (z)qt (x−1
• • z) dz is uniformly continuous for t ∈ [U1,U2], and (6.3), this

equi-uniform continuity modulo T−1
k

yields

lim
k→∞

sup
t∈[U1 ,U2]

����Ê[x]kk

[
f (X̂ (k)t )

]
−

∫
Rd

f (z)qt (x−1
• • z) dz

���� = 0. (6.5)
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By the joint continuity of qt (x), we have
∫
∂B(x0 ,r)

qt (x−1
• • z) dz = 0 for every

x, x0 ∈ E and r > 0. Hence, (6.5) yields that

lim
k→∞

sup
t∈[U1 ,U2]

����P[x]kk

(
X (k)
[Tk t]/Tk

∈ B(x0,r)
)
−

∫
B(x0 ,r)

qt (x−1
• • z) dz

���� = 0,

and (d) in [24, Assumption 1] is satisfied with γ(k) = Tk .
On the other hand, by (6.4) again, we have for x, z ∈ B(2r) ∩ δ−1

Tk
(Γ),

det(δTk )|q
k
[Tk t]
(z) − qk

[Tk t]
(x)| = det(δTk )|µ

([Tk t])(δTk (z)) − µ
([Tk t])(δTk (x))|

≤ C2
‖δTk (x)

−1 · δTk (z)‖
β/2

√
Tk t

det(δTk )
V((Tk t)1/β)

≤ C3‖x−1
• • z‖β−β/(2β+)t−1/2−γT−1/2

k
.

For the last inequality, we have used Lemma 5.2, and the fact thatV(t1/β) � det(δt ) �
tγ for γ =

∑d
1 1/βi > 0. Hence it holds that for any 0 < U1 < U2, r > 0, δ ∈ (0,r]

and k ≥ 1,

sup
x ,y∈B

Gk (0,r ),
d
Gk (z ,x)≤δ

sup
t∈[U1 ,U2]

det(δTk )|q
k
[Tk t]
(z) − qk

[Tk t]
(x)| ≤ C4

δβ−β/(2β+)

U1/2+γ
1

.

Taking limδ→0 lim supk→∞, we obtain [24, Assumption 2]. Therefore, the desired
assertion follows from [24, Theorem 1]. �

Remark 6.3 It is well known (see, e.g., [14, 19]) that if a Nash’s inequality holds
for (E•,F•), then (E•,F•) has transition density function p(t, x, y) that is bounded
for each t > 0. It follows from Theorem 5.10, p(t, x, y) is jointly locally Hölder
continuous in (x, y) for each fixed t > 0. Since X• is a Lévy process on (G•,•) and
{δt ; t > 0} is a group dilation structure for (G•,•), we have

p(t, x, y) = p(t, e, x−1
• • y) = det(δ−1

t )p(1, e, δ−1
t (x

−1
• • y)).

Define p•(t, x) = det(δ−1
t )p(1, e, δ−1

t (x
−1
• • y)). Then p•(t, x) is jointly continuous in

(t, x), symmetric in x ∈ G• (that is, p•(t, x) = p•(t, x−1
• )) and is the convolution

kernel for (E•,F•). Moreover, for any t > 0 and x ∈ G•,

p•(t, x) = det(δ−1
t )p•(1, δ−1

t (x)) = det(δ1/t )p•(1, δ1/t (x)).

2





Chapter 7
Symmetric Lévy processes on nilpotent groups

Abstract This chapter anticipates on later results that show how the limit theorems
of Chapters 5 and 6 apply to certain long range random walks. It focuses on the
problem of identifying the limit Lévy process that is obtained through these limit
theorems when applied to a given explicit long-range random walk. This is done
by drawing interesting links between variations on established results regarding
approximations of Lévy processes on Lie groups on one hand, and the limit theorems
obtained inChapters 5 and 6 on the other hand. Several examples are given to illustrate
the limit theorems explicitly using this approach. Examples discussed in Chapter 1
are also revisited in this new light.

7.1 The problem of identifying the limit process

Theorem 5.10 gives the functional central limit theorem for a class of random walks
on simply connected nilpotent groups driven by probability measures µ, which are
the distributions of the one-step increments of the random walks. However, the
limit symmetric Lévy process X• is characterized in an abstract way by a non-
local pure jump Dirichlet form (E•,F•) on L2(G•; dx) of the form (5.11) with
J•(dx, dy) = dxµ•(x−1

• •dy). A natural question is whether we can use Theorem 5.10
to give explicit limit theorems in concrete examples as those studied in Examples
1.4 and 1.5. This amounts to ask whether we can explicitly identity or describe
the Lévy process X• in concrete cases. These are the questions we are going to
address in this chapter and the answer is affirmative. In fact, we will do this in a
more general context for any symmetric Lévy measure µ• on any simply connected
nilpotent groupG•; that is, (G•,•) does not need to be the limit group obtained from a
simply connected nilpotent group G through an approximate group dilation structure
{φt ; t > 0} on G, and µ• does not need to be the weak limit of µt = tδ1/t (µ) of some
symmetric probability measure µ on a discrete subgroup Γ of G as in condition (A).
This is achieved in Theorem 7.3. Then we use this concrete description to illustrate
our convergence theorem, Theorem 5.10, by revisiting Example 1.5 and presenting
several more examples through this approach, without using the limit results for
operator stable processes on Rd , Propositions 1.1 and 1.3, from the literature.
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7.2 Symmetric Lévy processes and their approximations

Let N be any simply connected nilpotent group. As mentioned in Section 3.1, there is
a global polynomial coordinate system on N satisfying (3.4)-(3.5). Unless mentioned
otherwise, this is the default coordinate system we use on N in this section. Through
this global system Φ : Rd → N with Φ(0) = e, N can be identified with Rd and
dx is a Haar measure for N . The coordinate system also induces a function on
N: ‖σ‖2 := ‖Φ−1(σ)‖2 for σ ∈ N , where ‖Φ−1(σ)‖2 is the Euclidean norm of
Φ−1(σ) ∈ Rd . As we already see from Section 3.1, there are many choices of the
global coordinate systems for N . One of the commonly used coordinate system is the
exponential map. However, sometimes it is more convenient or more natural to use
other coordinate systems, for example, matrix coordinates in the Heisenberg group
case. Thus with this in mind, we do not fix a particular choice of the polynomial
coordinate systems, except for the assumption that (3.4)-(3.5).

Let ν be any non-zero symmetric Lévy measure on N; that is, ν is a non-negative
Borel measure on N satisfying 0 <

∫
N
(1 ∧ ‖x‖22 )ν(dx) < ∞ and ν(A) = ν(A−1) for

any A ⊂ N \ {e}, where A−1 = {x ∈ N : x−1 ∈ A}. Note that we do not impose any
additional conditions on ν. Define

E(u, v) :=
1
2

∬
N×N\∆

(u(xz) − u(x))(v(xz) − v(x))dxν(dz), (7.1)

and F is the closure of Lipc(N), which is the space of Lipschitz functions on N

with compact support, with respect to the norm
√
E(u,u) +

∫
N

u(x)2dx. Here xz is
the group multiplication of two elements x, z ∈ N . Let X be the symmetric Hunt
process associated with the regular Dirichlet form (E,F ) on L2(N; dx); cf. [18, 27].
Note that in this section, as mentioned above, we do not assume the Lévy measure
ν on N generates N .

Lemma 7.1 The Hunt process X is a Lévy process on N . �

Proof For each fixed σ ∈ N\{e}, the process Yσ = {Yσt , t ≥ 0}, with Yσt = σXt

for any t > 0, is a symmetric Hunt process on N as dx is a left Haar measure on N
and its transition semigroup

Pσt f (x) = E
[

f (Yσt )|Y
σ

0 = x
]
= E

[
f (σXt )|X0 = σ

−1x
]
= (Pt fσ)(σ−1x),

where fσ(η) := f (ση). Thus

lim
t→0

1
t
( f − Pσt f , f )L2(N ;dx)

= lim
t→0

1
t

∫
N

( fσ(σ−1x) − (Pt fσ)(σ−1x)) fσ(σ−1x)dx

= lim
t→0

1
t

∫
N

( fσ(y) − (Pt fσ)(y)) fσ(y)dy
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=
1
2

∬
N×N\∆

( fσ(xz) − fσ(x))2ν(dz)dx

=
1
2

∬
N×N\∆

( f (xz) − f (x))2ν(dz)dx = E( f , f ).

This shows that Yσ is a symmetric Hunt process associated with the Dirichlet
form (E,F ) on L2(N; dx) and so it has the same distribution as X . In other words,
{σXt ; t ≥ 0} with X0 = x ∈ N has the same distribution as {Xt ; t ≥ 0} starting from
σx. This combined with the Markov property of X shows that X is a symmetric
Lévy process on N . 2

We next investigate how the Lévy process X is determined by ν in a more
explicit way; that is, given a symmetric Lévy measure ν on N , how to construct or
approximate its corresponding symmetric Lévy process X in a concrete way. We
will show in Theorem 7.3 that X can be approximated by a sequence of random
walks on N whose one-step increments are from the small increments of a common
Lévy process Z on Rd through the identification of the global coordinate system Φ.
The key is to identify the Lévy measure and the drift of the Lévy process Z on Rd .
Our approach uses Hunt’s characterization for Lévy processes on Lie groups and
Kunita’s triangular array type limit result for random walks on Lie groups, which we
recall in Theorem 7.2.

We identify each element σ ∈ N with its global coordinate

Φ
−1(σ) =: x = (x1, . . . , xd) ∈ Rd .

For each 1 ≤ j ≤ d, let Xj be the left-invariant vector field in the Lie algebra g of
the group N at e determined by the coordinate function xj 7→ Xj ; that is, for any C2

function f (x) on N = Rd ,

(Xj f )(e) =
∂ f (x)
∂xj

���
x=0

.

These vector fields (X1, . . . ,Xd) form a natural base of g at e. On the other hand, it
is well known that the simply connected nilpotent group N admits an exponential
map of first type from its Lie algebra g = Rd to N which is surjective. Under its
exponential coordinates exp: g → N (of first type), x−1 = −x. Let {x1, . . . , xd} be
the exponential coordinate of σ ∈ N with respect to the base {X1, . . . ,Xd}; that is,
exp(

∑d
j=1 x jXj) = σ. Note that x j(σ−1) = −x j(σ) and Xi x j = δi j . Let ‖ · ‖ be the

norm on N defined by

‖σ‖ :=
( d∑
j=1
(x j(σ))2

)1/2
(7.2)

in terms of the exponential coordinates of σ ∈ N . Note that the norm ‖ · ‖ is
symmetric on the group N in the sense that ‖σ−1‖ = ‖σ‖ for any σ ∈ N .

Denote by C the space of real-valued functions on N that are continuous and
have limit at infinity, and C2 be the space of C2 functions f on N so that f ,Xk f and
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XkXj f are all in C. Let ψ ∈ C2 be such that ψ > 0 on G \ {e}, ψ(η) �
∑d

j=1 x j(η)2

near e, and limη→∞ ψ(η) > 0. Note that in view of (3.2)-(3.3),

ψ(η) � 1 ∧ ‖η‖2 � 1 ∧ ‖η‖22 for η ∈ N .

We recall the following triangular array type limit result on N from [42], which
in fact holds for any Lie group.

Theorem 7.2 (Theorem 3 of [42]) In the above setting, suppose the following hold.

(i) For each n ≥ 1, k 7→ S(n)
k
= ξn,1 · · · ξn,k is a discrete time random walk on the

Lie group N , where {ξn,k ; k ≥ 1} are i.i.d N-valued random variables having
distribution νn.

(ii) As n → ∞, the measure nνn converges vaguely to a measure ν on N \ {e}
satisfying

∫
N\{e}

ψ(x)ν(dx) < ∞.
(iii) For ε > 0, let

Uε := {η ∈ N : ‖η‖ < ε} =
{
η ∈ N :

d∑
j=1

x j(η)2 < ε2
}

be an ε-neighborhood of e in N . For each ε > 0,

lim
n→∞

n
∫
Uε

xi(η)x j(η)νn(dη) =: a(ε)i j exists.

Clearly, (a(ε)i j ) is symmetric and non-negative definite, which decreases to (ai j) as
ε → 0.

(iv) For each ε > 0, limn→∞ n
∫
Uε

x(η)νn(dη) =: b(ε) ∈ Rd exists. Here x(η) =
(x1(η), . . . , xd(η)).

Take ε > 0 so that ∂Uε has zero ν-measure. Define

b = bε +
∫
Uc
ε

x(η)ν(dη),

whose value is independent of the choice of ε. Then for each T > 0, {Z (n)t :=
S(n)
[nt]

; t ∈ [0,T]} converges weakly in the Skorokhod space D([0,T]; N) as n→∞ to
a Lévy process Z = {Zt ; t ∈ [0,T]} on N , whose generator is characterized by

L f (η) =
1
2

d∑
i, j=1

ai jXiXj f (η) +
d∑
i=1

biXi f (η)

+

∫
N\{e}

( f (ησ) − f (η) −
d∑
i=1

xi(σ)Xi f (τ))ν(dσ) (7.3)

for any f ∈ C2. �
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Let {ϕ1(σ), · · · , ϕd(σ)} be C2 functions on N such that under exponential coor-
dinates for σ = exp(

∑d
j=1 x jXj) ∈ N , ϕj(σ) is an odd increasing function of x j with

ϕj(σ) = x j for x j ∈ (−1,1). Since N is also identified with Rd through the global
coordinate system Φ satisfying (3.5) mentioned above, sometimes we also write
ϕj(x) for ϕj(σ) through this global coordinate system Φ. Since ν is a symmetric
measure on N and ϕj(σ) = −ϕj(σ

−1) for any σ ∈ N , we have for every 1 ≤ j ≤ d
and every r > 0, ∫

{σ∈N :‖σ ‖>r }
ϕj(σ)ν(dσ) = 0. (7.4)

Through the identification of N with Rd under the global coordinate system Φ,
the Lévy measure ν can also be viewed as a Lévy measure on the Euclidean space
Rd . More precisely, let ν̄ be the Radon measure on Rd \ {0} defined by

ν̄(A) := ν(Φ(A)) for any A ∈ B(Rd \ {0}). (7.5)

Note that ν̄ satisfies
∫
Rd
(1 ∧ ‖z‖22 )ν̄(dz) < ∞ and thus is a Lévy measure on Rd .

However, we point out that even though ν is a symmetric Lévy measure on N , ν̄
may not be a symmetric measure on Rd; see Examples 7.8 and 7.9(i). It is not hard
to see or guess that the Lévy process Z on Rd that will be used to approximate the
Lévy process X on N should have Lévy measure ν̄, however in general it also need
a proper drift correction term. For this, define for 1 ≤ j ≤ d,

b̄j =

∫
{z∈N :‖z ‖2≤1}

(zj − ϕj(z))ν(dz) −
∫
{z∈N :‖z ‖2>1}

ϕj(z)ν(dz), (7.6)

where (z1, . . . , zd) = Φ−1(z) is the coordinates of z ∈ N under the global coordinate
system Φ. Recall that the coordinates of z ∈ N under the exponential coordinate
system is denoted by (z1, . . . , zd). Observe that the integral in (7.6) is well-defined
and is finite, because

∂ϕj

∂zi

���
z=0
= Xiϕj(z)

��
z=0 = Xiz

j
��
z=0 = δi j

and so
|zj − ϕj(z)| = |zj − z j(z)| ≤ c‖z‖22 for ‖z‖2 ≤ 1.

In view of (7.4), we can rewrite (7.6) as

b̄j = lim
r→0

∫
{z∈N :‖z ‖2≤1 and ‖z ‖≥r }

zj ν(dz). (7.7)

Since the Lévy measure ν is symmetric on N , we have from (7.7) that

b̄j =
1
2

∫
{z∈N : ‖z ‖2≤1 and ‖z−1 ‖2≤1}

(zj + (z−1)j)ν(dz)
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+

∫
{z∈N :‖z ‖2≤1 and ‖z−1 ‖2>1}

zjν(dz). (7.8)

Here z−1 denotes the group inverse of z ∈ N , and (z−1)j is the j-th coordinate
of the element z−1 ∈ N under the original global coordinate system Φ. Note that
both integrals in (7.8) are absolutely convergent. This is because under the global
coordinate system Φ, we know from (3.5) that

z−1 = −z + (0, q̄2(z1), . . . , q̄d(z1, . . . , zd−1)),

where for 2 ≤ j ≤ d, q̄j(z1, · · · , zj−1) is polynomial having no constant and first
order terms. Thus on any compact set K ⊂ N , there is a constant CK > 0 so that

‖z + z−1‖2 ≤ CK ‖z‖22 for every z ∈ K, (7.9)

and {z ∈ N : ‖z‖2 < 1 and ‖z−1‖2 < 1} is an open neighborhood of e ∈ N . Since∫
N\{e}

(1 ∧ ‖z‖22 )ν(dz) < ∞, both integrals in (7.8) are absolutely convergent. In
general, the constant vector b̄ := (b1, . . . , b̄d) may not be zero. However, if Φ is the
exponential coordinate system, then b̄j = 0 for every 1 ≤ j ≤ d as z−1 = −z for
every z ∈ N and ‖z‖2 = ‖z‖.

Let Z := {Zt : t ≥ 0} be the Lévy process on the Euclidean space Rd with Lévy
triplet (0, b̄, ν̄), see (1.1), where b̄ = (b̄1, · · · , b̄d). In other words,

Zt = b̄t +
∫ t

0
1{ ‖z ‖2≤1}z (N(ds, dz) − dsν̄(dz)) +

∫ t

0
1{ ‖z ‖2>1}zN(ds, dz), (7.10)

where N(ds, dz) is the Poisson randommeasure on [0,∞)×Rd with intensitymeasure
dsν̄(dz).

Recall that Φ : Rd → N is the global polynomial coordinate system for the
simply connected nilpotent group N . Most of the time, we identify x ∈ Rd with
σ := Φ(x) ∈ N and use the notations interchangeably. In the next theorem and its
proof, to be absolutely clear, we explicitly use the notation Φ(x) for emphasis when
x ∈ Rd is viewed as an element in the group N .

Theorem 7.3 Let Z be the Lévy process on Rd with Z0 = 0, Lévy measure ν̄ of
(7.5) and drift b̄ of (7.8). For each T > 0, the random walk

Z (n)t := Φ(Z1/n)Φ(Z2/n − Z1/n) · · ·Φ(Z[nt]/n − Z([nt]−1)/n) (7.11)

on N converges weakly in the Skorokhod space D([0,T]; N) as n → ∞ to the left-
invariant Hunt process {(Y0)

−1Yt ; t ∈ [0,T]} on N . The Hunt process Y has the
same distribution as the symmetric Lévy process X on N having Lévy measure ν
determined by the Dirichlet form (E,F ) of (7.1) on L2(N; dx). �

Proof By Ito’s formula, for any f ∈ C2
b
(Rd),

f (Zt ) − f (Z0)



7.2 Symmetric Lévy processes and their approximations 69

=

∫ t

0
b̄ · ∇ f (Zs)ds +

∫ t

0

∫
{ ‖z ‖2≤1}

( f (Zs− + z) − f (Zs−)) (N(ds, dz) − dsν̄(dz))

+

∫ t

0

∫
{ ‖z ‖2>1}

( f (Zs− + z) − f (Zs−))N(ds, dz)

+

∫ t

0

∫
{ ‖z ‖2≤1}

( f (Zs + z) − f (Zs) − ∇ f (Zs) · z) ν̄(dz)ds.

Thus

E f (Zt ) − f (0)

= E

∫ t

0
b̄ · ∇ f (Zs)ds + E

∫ t

0

∫
{ ‖z ‖2>1}

( f (Zs− + z) − f (Zs−) N(ds, dz)

+ E

∫ t

0

∫
{ ‖z ‖2≤1}

( f (Zs + z) − f (Zs) − ∇ f (Zs) · z) ν̄(dz)ds

= E

∫ t

0
b̄ · ∇ f (Zs)ds + E

∫ t

0

∫
{ ‖z ‖2>1}

( f (Zs− + z) − f (Zs−) ν̄(dz)ds

+ E

∫ t

0

∫
{ ‖z ‖2≤1}

( f (Zs + z) − f (Zs) − ∇ f (Zs) · z) ν̄(dz)ds

= E

∫ t

0

∫
Rd
( f (Zs− + z) − f (Zs−) − ∇ f (Zs) · ϕ(Φ(z))) ν̄(dz)ds, (7.12)

where ϕ(σ) := (ϕ1(σ), . . . , ϕd(σ)) for σ ∈ N , and the last equality is due to the
definition of b̄.

For f0 ∈ C2 on N with f0(e) = 0 and Xj f0(e) = 0 for 1 ≤ j ≤ d, the function
f := f0 ◦ Φ is C2

b
on Rd with f (0) = 0 and ∇ f (0) = 0. Applying (7.4) and (7.12) to

this f , we have by the dominated convergence theorem that

lim
t→0

1
t
E f0(Φ(Zt )) = lim

t→0

1
t
E f (Zt ) =

∫
Rd\{0}

f (z)ν̄(z) =
∫
N\{e}

f0(σ)ν(dσ).

(7.13)
If we denote the law of Φ(Zt ) on N by ν̃t , then the above in particular implies that
t−1 ν̃t converges vaguely to ν on N \ {e} as t → 0.

Since ϕj is an odd function on N , taking f0 = ϕj in (7.13) in particular yields that

lim
t→0

1
t
E ϕj(Φ(Zt )) = 0 for every 1 ≤ j ≤ d. (7.14)

On the other hand, since ν is a symmetric measure on N and ϕ is an odd Rd-valued
function on N , we have from (7.12) that for any f ∈ C2

b
(Rd),

E f (Zt ) − f (0) = E
∫ t

0

∫
Rd

(
f (Zs− + z−1) − f (Zs−) + ∇ f (Zs) · ϕ(Φ(z))

)
ν̄(dz)ds

and so
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E f (Zt ) − f (0) =
1
2
E

∫ t

0

∫
Rd

(
f (Zs + z) + f (Zs− + z−1) − 2 f (Zs−)

)
ν̄(dz)ds.

(7.15)
Note that by (7.9), ∫

Rd
| f (z) + f (z−1) − 2 f (0)| ν̄(dz) < ∞.

It follows from (7.15) and the dominated convergence theorem that for any f ∈
C2
b
(Rd),

lim
t→0

1
t
E [ f (Zt ) − f (0)] =

1
2

∫
Rd\{0}

(
f (z) + f (z−1) − 2 f (0)

)
ν̄(z). (7.16)

For ε ∈ (0,1), define

Uε = {σ ∈ N : ‖σ‖ < ε} =
{
σ ∈ N :

d∑
i=1

xi(σ)2 < ε2
}
,

where ‖σ‖ is the symmetric normofσ ∈ N as defined by (7.2) and (x1(σ), . . . xd(σ))
is the exponential coordinates of σ ∈ N . By the Lipschitz equivalents (3.2)-(3.3)
between Φ and the exponential coordinates, there is a constant λ0 ≥ 1 so that

λ−1
0 ‖Φ

−1(σ)‖2 ≤ ‖σ‖ ≤ λ0‖Φ
−1(σ)‖2 for σ ∈ N with ‖σ‖ ≤ 1.

Consequently,

Uε ⊂
{
σ ∈ N : ‖Φ−1(σ)‖2 < λ0ε

}
for every ε ∈ (0,1).

For ε ∈ (0,1), let fε ∈ C2
c(R

d) so that fε(z) = ‖z‖22 for |z‖2 < λ0ε, fε(z) = 0 for
‖z‖2 ≥ 2λ0ε, 0 ≤ fε(z) ≤ 2λ2

0ε
2 and |D fε | + |D2 fε | ≤ C for some constant C > 0

independent of ε. Then we have by (7.16) and the Taylor expansion, that

lim sup
t→0

1
t
E

[
1{Φ(Zt )∈Uε }‖Φ(Zt )‖

2]
≤ lim sup

t→0

λ2
0
t
E

[
1{ ‖Zt ‖2≤λ0ε }‖Zt ‖

2
2
]

≤ lim sup
t→0

λ2
0
t
(E fε(Zt ) − fε(Z0))

= λ2
0

∫
Rd

fε(z)ν̄(dz)

≤ λ2
0 ‖D

2 fε ‖∞

∫
{ ‖z ‖2≤2λ0ε }

‖z‖22 ν̄(dz), (7.17)

which tends to 0 as ε → 0.
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For ε ∈ (0,1) so that ∂Uε has zero ν-measure, it follows from (7.13) that

lim
t→0

1
t

∫
Uc
ε

ϕj(z)νt (dz) =
∫
Uc
ε

ϕj(z)ν(dz) = 0. (7.18)

This together with (7.14) shows that

lim
t→0

1
t

∫
Uε

ϕj(σ)νt (dσ) = 0. (7.19)

Properties (7.13), (7.17) and (7.18)-(7.19) show that the conditions of Theorems 7.2
are all satisfied for the sequence of random walks on N whose one-step increment
distributions are νn := ν̃1/n for n ∈ N with (ai j) = 0 and b = 0. Thus for each T > 0,
the random walk

Z (n)t := Φ(Z1/n)Φ(Z2/n − Z1/n) · · ·Φ(Z[nt]/n − Z([nt]−1)/n)

converges weakly in the Skorokhod space D([0,T]; G) as n → ∞ to a symmetric
Lévy process Y = {Yt ; t ∈ [0,T]} on N with Lévy measure ν in the following sense:
Denote by (L,D(L)) the infinitesimal generator of Y . Then C2 ⊂ D(L) and for any
f ∈ C2,

L f (σ) =
∫
N\{e}

(
f (σz) − f (σ) −

d∑
j=1

ϕj(z)Xi f (σ)
)
ν(dz).

We next show that Y has the same distribution as the Lévy process X on N
defined through the Dirichlet form (E,F ) of (7.1) on L2(N; dx). Denote by L0 the
L2-generator of the symmetric Lévy process X . It is easy to check by definition (cf.
[18, 27]) that C2 ⊂ D(L0) and

L0 f (σ) = p.v.
∫
N\{e}

( f (σz) − f (σ)) ν(dz)

=

∫
N\{e}

(
f (σz) − f (σ) −

d∑
i=1

ϕj(z)Xi f (σ)

)
ν(dz)

= L f (σ).

By the uniqueness of infinitesimal generator characterization of Lévy processes on
N (see, e.g., [42, Theorem 1] due to Hunt), we conclude that the Lévy processes X
and Y have the same law. This completes the proof of the theorem. 2

Remark 7.4 When Φ is the exponential coordinate system of the first type for N ,
Theorem 7.3 follows from Theorem 4.2 and the proof of Theorem 4.1 of [41]. The
main point of Theorem 7.3 is that it is valid for any global coordinate system Φ

of N , not just the exponential coordinate system of first type. This is important in
applications as many times it is more natural or convenient to work in other global
coordinate systems such as the matrix coordinate system for Heisenberg groups. In
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theory, one could translate the global coordinate system into exponential coordinate
system, apply Kunita’s result in exponential coordinate system, and then translate
the results back to the original global coordinate system. But this is not always easy
to carry out and it needs to be performed on a case by case basis. Interested reader
may try the following two exercises.

Exercise 7.5 Let N be the continuous Heisenberg group H3(R) and ν be a Lévy
measure on H3(R) whose expression under the matrix coordinate (x, y, z) is given by

ν̄(dx, dy, dz) =
κ1

|x |1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) +

κ2

|y |1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz)

for some positive constants αi ∈ (0,2) and κi > 0, i = 1,2. What is the expression
of ν in the exponential coordinates (x1, x2, x3) of the first type for H3(R)? The group
isomorphism between the matrix coordinate system and the exponential coordinate
system on H3(R) is given in (3.10). �

Exercise 7.6 Repeat Exercise 7.5 with the Lévy measure ν on N being replaced in
the matrix coordinate system by

ν̄(dx, dy, dz) =
κ1

(|x |2 + |y |2)1+β1
dx ⊗ dy⊗ δ0(dz)+

κ2

(|y |2 + |z |2)1+β2
δ0(dx) ⊗ dy⊗ dz

for some positive constants βi ∈ (0,1) and κi > 0, i = 1,2. �

7.3 Examples

To illustrate the main results of this work, in this section, we first revisit Example
1.5 of random walks on the Heisenberg group H3(Z). Here, we will not use the
limit results for operator stable processes from the literature; that is, we will not use
Propositions 1.1 and 1.3. We will use instead Theorems 5.10 and 7.3 developed in
this monograph. We will then present some more examples.

Exampe 1.5 (revisited) We use the matrix coordinate system Φ on the discrete
Heisenberg groupH3(Z), through which it is identified with Z3. Denote by e1, e2 and
e3 the elements in H3(Z) that has matrix coordinates (1,0,0), (0,1,0) and (0,0,1),
respectively. Recall that µα is the probability measure on H3(Z) = Z

3 given by

µα(g) =

3∑
i=1

∑
n∈Z

κi

(1 + |n|)1+αi
1{eni }

(g), g ∈ H3(Z),

where 0 < αj < 2 and κj , 1 ≤ j ≤ 3, are positive constants. The measure µα is
in SM on H3(Z) and the matrix coordinate system Φ is an exponential coordinate
system of the second kind described in Section 9.5. The dilation structures {δt ; t > 0}
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considered below in this example are straight approximate group dilations of (9.3)
adapted to the measure µα. So by Chapter 10 below, the conditions (R1)-(R2), (E1)-
(E2), (T•) and (TΓ) are automatically satisfied for µα and these {δt ; t > 0}. For
simplicity, we write µ for µα. Let {ξk = (ξ(1)k

, ξ
(2)
k
, ξ
(3)
k
); k ≥ 1} be a sequence of i.i.d

random variables taking values in H3(Z) of distribution µ. Then

Sn = S0 · ξ1 · . . . · ξn, n = 0,1,2, . . .

defines a random walk on the Heisenberg group H3(Z). Write Sn as (Xn,Yn, Zn).

(i) If 1/α3 < 1/α1 + 1/α2, we consider straight dilation structure {δt ; t > 0} in
matrix coordinates:

δt (x, y, z) =
(
t1/α1 x, t1/α2 y, t(1/α1)+(1/α2)z

)
.

In this case, {δt ; t > 0} is a straight group dilation structure for the limit group
(G•,•), and (G•,•) is the continuous Heisenberg group H3(R). It is easy to check
that tδ1/t (µ) converges vaguely on R3 \ {0} to µ̄•(dx, dy, dz) as t →∞, where

µ̄•(dx, dy, dz) =
κ1

|x |1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) +

κ2

|y |1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz).

Themeasure µ̄• defines a Lévymeasuremeasure µ• on the continuousHeisenberg
group (G•,•) through the matrix coordinate system; see Remark 5.1(i). In other
words, µ̄• is the pull-back measure of µ• under the matrix coordinate system.
When there is no danger of confusions, we simply use the same notation µ• for
µ̄•. Thus by Theorem 5.10, for any T > 0, the rescaled random walk on H3(Z) in
matrix coordinates{ (

n−1/α1 X[nt], n−1/α2Y[nt], n−1/α1−1/α2 Z[nt]
)

; t ∈ [0,T]
}

converges weakly in the Skorohod space D([0,T];R3) to a Lévy process X• on
(G•,•) with Lévy measure µ• as n → ∞. We next identify the Lévy process X•

in the matrix coordinate system of (G•,•) by using Theorem 7.3.
By (3.9) and (3.10), in matrix coordinates (x, y, z) for σ ∈ G•,

σ−1
• = (−x,−y,−z + xy) and ‖σ‖ =

√
x2 + y2 + (z + 1

2 xy)2. (7.20)

So σ+σ−1
• = (0,0, xy). On the support of µ•, since xy = 0, we have ‖σ‖ = ‖σ‖2

and σ+σ−1
• = (0,0,0), that is, σ−1

• = −σ. Hence denoting the matrix coordinates
for σ ∈ G• by (σ1, σ2, σ3) ∈ R

d , it follows from (7.8) that for every 1 ≤ i ≤ 3,

b̄j =
1
2

∫
{σ∈G•:‖σ ‖2≤1}

(
σi + (σ

−1
• )i

)
µ•(dσ) = 0.

Let X̄ be a symmetric α1-stable process on R with Lévy measure κ1 |z |−(1+α1)

and Ȳ be a symmetric α2-stable process on R with Lévy measure κ2 |z |−(1+α2)
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independent of X . Then
X◦ = (X̄,Ȳ,0)

is a driftless Lévy process on R3 with Lévy measure µ̄• corresponding to (7.10).
By Theorem 7.3, X• is the weak limit on D([0,T]; G•) = D([0,T];R3) of

X•,nt := Φ(X◦1/n) • Φ(X
◦
2/n − X◦1/n). • · · · • Φ(X

◦
[nt]/n − X◦

([nt]−1)/n).

Note that in matrix coordinate system on G•,

X•,nt =

(
X̄[nt]/n, Ȳ[nt]/n,

[nt]∑
k=1

X̄(k−1)/n
(
Ȳk/n − Ȳ(k−1)/n

))
, t ≥ 0,

which converges weakly in the Skorohod space D([0,T];R3) equipped with J1-
topology to {(X̄t,Ȳt,

∫ t

0 X̄s−dȲs); t ∈ [0,T]}; see, e.g., [44, Theorem 7.19]. This
shows that {X•t ; t ∈ [0,T]} under the matrix coordinate system of (G•,•) has the
same distribution as {(X̄t,Ȳt,

∫ t

0 X̄s−dȲs); t ∈ [0,T]}.

(ii) If 1/α3 = 1/α1 + 1/α2, we consider straight dilation structure {δt ; t > 0} in
matrix coordinates:

δt (x, y, z) =
(
t1/α1 x, t1/α2 y, t1/α3 z

)
.

As mentioned in (i), {δt ; t > 0} is a straight group dilation structure the limiting
group structure (G•,•) is the continuous Heisenberg group H3(R). It is easy to
check in this case that tδ1/t (µ) converges vaguely on R3 \ {0} to µ̄•(dx, dy, dz) as
t →∞, where

µ•(dx, dy, dz)

=
κ1

|x |1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) +

κ2

|y |1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz)

+
κ3

|z |1+α3
δ0(dx) ⊗ δ0(dy) ⊗ dz.

The abovemeasure µ̄• is the expression of a symmetric Lévymeasure µ• under the
matrix coordinate system on continuous Heisenberg group (G•,•). By Theorem
5.10, for any T > 0, the rescaled random walk on H3(Z) in matrix coordinates{ (

n−1/α1 X[nt], n−1/α2Y[nt], n−1/α3 Z[nt]
)

; t ∈ [0,T]
}

convergesweakly in the Skorohod spaceD([0,T];R3) to a symmetric Lévy process
X• on G• with Lévy measure µ• as n→∞.
To identify the Lévy process X• on (G•,•) in matrix coordinates (x, y, z) of
σ ∈ G•, note that by (7.20), since xy = 0 on the support of µ•, ‖σ‖ = ‖σ‖2 and
σ−1
• = −σ. Thus we have by (7.8) that
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b̄j =
1
2

∫
{σ∈G•:‖σ ‖2≤1}

(
σi + (σ

−1
• )i

)
µ•(dσ) = 0 for every 1 ≤ i ≤ 3.

Let X̄ , Ȳ and Z̄ be independent one-dimensional symmetric α1-, α2- and α3-stable
processes with Lévy measure κi |z |−(1+αi ), 1 ≤ i ≤ 3. Then

X◦ = (X̄,Ȳ, Z̄)

is a driftless Lévy process on R3 with Lévy measure µ• corresponding to (7.10).
By Theorem 7.3, X• is the weak limit on D([0,T]; G•) = D([0,T];R3) of

X•,nt := Φ(X◦1/n) • Φ(X
◦
2/n − X◦1/n). • · · · • Φ(X

◦
[nt]/n − X◦

([nt]−1)/n).

In this case, in matrix coordinates,

X•,nt =

(
X̄[nt]/n, Ȳ[nt]/n, Z̄[nt]/n +

[nt]∑
k=1

X̄(k−1)/n
(
Ȳk/n − Ȳ(k−1)/n

))
,

which converges weakly in the Skorohod space D([0,T];R3) equipped with J1-
topology to {(X̄t,Ȳt, Z̄t +

∫ t

0 X̄s−dȲs); t ∈ [0,T]}. This shows that {X•t ; t ∈ [0,T]}
in thematrix coordinate system of (G•,•) has the same distribution as {(X̄t,Ȳt, Z̄t+∫ t

0 X̄s−dȲs); t ∈ [0,T]}.

(iii) If 1/α3 > 1/α1 + 1/α2, we consider straight dilation structure {δt ; t > 0} in
matrix coordinates:

δt (x, y, z) =
(
t1/α1 x, t1/α2 y, t1/α3 z

)
.

In this case, we see from Example 3.15 that the limit group structure (G•,•) is
just the additive R3. It is easy to check that tδ1/t (µ) converges vaguely on R3 \ {0}
to µ•(dx, dy, dz) as t →∞, where

µ̄•(dx, dy, dz)

=
κ1

|x |1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) +

κ2

|y |1+α2
δ0(dx)d ⊗ dy ⊗ δ0(dz)

+
κ3

|z |1+α3
δ0(dx) ⊗ δ0(dy) ⊗ dz.

Note that the matrix coordinate system on R3 is the identity map so the induced
Lévy measure µ• on the abelian group (G•,•) is just µ̄• itself. By Theorem 5.10,
for any T > 0, the rescaled random walk on H3(Z) in matrix coordinates{ (

n−1/α1 X[nt], n−1/α2Y[nt], n−1/α3 Z[nt]
)

; t ∈ [0,T]
}

convergesweakly in the Skorohod spaceD([0,T];R3) to a symmetric Lévy process
X• on G• with Lévy measure µ• as n→∞. Since (G•,•) is (R3,+), we conclude
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directly that X• has the same distribution as X◦ = (X̄,Ȳ, Z̄), where X̄ , Ȳ and Z̄ are
independent one-dimensional symmetric α1-, α2- and α3-stable processes with
Lévy measure κi |z |−(1+αi ), 1 ≤ i ≤ 3.

We next present a few more examples.

Example 7.7 Let µ = 1
2 (µ1 + µ2) be the probability measure on H3(Z) = Z

3 with

µ1(x, y, z) =
c1

(1 + |x | + |z |)2+α1
and µ2(x, y, z) =

c2

(1 + |y | + |z |)2+α2
,

where 0 < α1, α2 < 2 and cj > 0, j = 1,2, are positive constants. The measure µ
is again in SM on H3(Z). Let {ξk = (ξ(1)k

, ξ
(2)
k
, ξ
(3)
k
); k ≥ 1} be a sequence of i.i.d

random variables taking values in H3(Z) of distribution µ. Then

Sn = S0 · ξ1 · . . . · ξn, n = 0,1,2, . . .

defines a random walk on the Heisenberg group H3(Z). Write Sn as (Xn,Yn, Zn).
We consider straight dilation structure {δt ; t > 0} in matrix coordinates:

δt (x, y, z) = (t1/α1 x, t1/α2 y, t1/α1+1/α2 z).

This dilation structure {δt ; t > 0} is a straight group dilation of (9.3) adapted to the
measure µ so the limiting group (G•,•) is the continuous Heisenberg group H3(R).
Since the matrix coordinate system Φ is an exponential coordinate system of the
second kind described in Section 9.5, by Chapter 10 below, the conditions (R1)-
(R2), (E1)-(E2), (T•) and (TΓ) are automatically satisfied for µ and {δt ; t > 0}. It
is easy to check (cf. Example 4.5) that tδ1/t (µ) converges vaguely on R3 \ {0} to
µ̄•(dx, dy, dz) as t →∞, where

µ̄•(dx, dy, dz) =
κ1

|x |1+α1
dx ⊗ δ0(dy) ⊗ δ0(dz) +

κ2

|y |1+α2
δ0(dx) ⊗ dy ⊗ δ0(dz).

Here κi = ci
∫
R
(1 + |u|)−(2+αi )du for i = 1,2. The measure µ̄• induces a Lévy

measure µ• on (G•,•) via the matrix coordinate system Φ. In part (i) of Example
1.5 (revisited), we have already identified the symmetric Lévy process X• on the
continuous Heisenberg group (G•,•). Thus it follows from Theorem 5.10 that, for
any T > 0, the rescaled random walk on H3(Z) in matrix coordinates{ (

n−1/α1 X[nt], n−1/α2Y[nt], n−1/α1−1/α2 Z[nt]
)

; t ∈ [0,T]
}

converges weakly in the Skorohod space D([0,T];R3) to {(X̄t,Ȳt,
∫ t

0 X̄s−dȲs); t ∈
[0,T]} on the continuous Heisenberg group H3(R) in matrix coordinates, where
X̄ and Ȳ are independent one-dimensional symmetric α1- and α2-stable processes,
respectively.

Example 7.8 Let µ be the probability measure on H3(Z) = Z
3 with
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µ(x, y, z) =
c

(1 +
√

x2 + y2 + |z − xy |)4+α
,

where 0 < α < 2 and c > 0 are positive constants.
The measure µ is again in SM on H3(Z). Let {ξk = (ξ(1)k

, ξ
(2)
k
, ξ
(3)
k
); k ≥ 1} be a

sequence of i.i.d random variables taking values in H3(Z) of distribution µ. Then

Sn = S0 · ξ1 · . . . · ξn, n = 0,1,2, . . .

defines a random walk on the Heisenberg group H3(Z). Write Sn as (Xn,Yn, Zn).
Consider the dilation

δt ((x, y, z)) = (t1/αx, t1/αy, t2/αz).

This dilation structure {δt ; t > 0} is a straight group dilation of (9.3) adapted to the
measure µ so the limiting group structure (G•,•) is the continuous Heisenberg group
H3(R). By Chapter 10 below, the conditions (R1)-(R2), (E1)-(E2), (T•) and (TΓ)
are automatically satisfied for µ and {δt, t > 0}. It is easy to check in this case that
tδ1/t (µ) converges vaguely on R3 \ {0} to µ̄•(dx, dy, dz) as t →∞, where

µ̄•(dx) =
c

(
√

x2 + y2 + |z − xy |)4+α
dxdydz.

The measure µ̄•, though itself is not symmetric on R3, induces a symmetric Lévy
measure µ• on (G•,•) via the matrix coordinate system Φ. Thus by Theorem 5.10,
for any T > 0, the rescaled random walk on H3(Z) in matrix coordinates{ (

n−1/αX[nt], n−1/αY[nt], n−2/αZ[nt]
)

; t ∈ [0,T]
}

converges weakly in the Skorohod space D([0,T];R3) to a purely discontinuous
symmetric Lévy process X• on (G•,•) with Lévy measure µ• as n → ∞. We next
identify the Lévy process X• in the matrix coordinate system of (G•,•) by using
Theorem 7.3.

Recall that for σ = (x, y, z) ∈ H3(R),

σ−1
• = (−x,−y,−z + xy) and σ + σ−1

• = (0,0, xy).

Since ‖σ‖2, ‖σ−1
• ‖2 and µ̄• are invariant under the transformations (x, y, z) 7→

(−x, y,−z) and (x, y, z) 7→ (x,−y,−z), we have by (7.8) that b̄j = 0 for every
1 ≤ j ≤ 3. Let X◦ = (X̄,Ȳ, Z̄) be the Lévy process on R3 with Lévy triplet (0,0, µ̄•).
Note that the Lévy process X◦ is not symmetric on R3 as its Lévy measure µ̄• is not
symmetric on R3. We conclude from Theorem 7.3 with the same calculation as that
in part (ii) of Example 1.5(revisited) that, in matrix coordinate Φ,

X•t =
(
X̄t,Ȳt, Z̄t +

∫ t

0
X̄s−dȲs

)
for t ≥ 0.
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Example 7.9 Consider the group U4(Z) of 4 by 4 upper-triangular matrices with
diagonal entries equal to 1 given in Example 3.16. That is,

Γ = U4(Z) =


©«
1 x1 x4 x6
0 1 x2 x5
0 0 1 x3
0 0 0 1

ª®®®¬ : xi ∈ Z

 .
In matrix coordinates, U4(R) is R6 with multiplication (xi)61(yi)

6
1 = (zi)

6
1 given by

zi =


xi + yi for i = 1,2,3,
x4 + y4 + x1y2 for i = 4,
x5 + y5 + x2y3 for i = 5,
x6 + y6 + x1y5 + x4y3 for i = 6.

This matrix coordinate system Φ is an exponential coordinate system of the second
kind described in Section 9.5; see Example 3.3.

We consider two cases.

(i) Let µ = 1
2 (µ1 + µ2) be the probability measure on U4(Z) = Z

6 with

µ1((xi)61) =
c1

(1 +
√

x2
1 + x2

2 + |x4 − x1x2 |)4+α1

⊗ 1(0,0,0)(x3, x5, x6) (7.21)

and
µ2((xi)61) =

c2

(1 +
√

x2
3 + x2

5 + x2
6)

3+α2

⊗ 1(0,0,0)(x1, x2, x4), (7.22)

where 0 < α1, α2 < 2 and c1, c2 are appropriate positive normalizing constants.
The measure µ is inSM onU4(Z). Let {ξk = (ξ(1)k

, ξ
(2)
k
, ξ
(3)
k
, ξ
(4)
k
, ξ
(5)
k
, ξ
(6)
k
); k ≥ 1}

be a sequence of i.i.d random variables taking values inU4(Z) of distribution µ. Then

Sn = S0 · ξ1 · . . . · ξn, n = 0,1,2, . . .

defines a random walk on U4(Z). Write Sn as

(X (1)n ,X (2)n ,X (3)n ,X (4)n ,X (5)n ,X (6)n ).

Consider the dilation

δt ((xi)61) = (t
1/α1 x1, t1/α1 x2, t1/α2 x3, t2/α1 x4, t1/α1+1/α2 x5, t2/α1+1/α2 x6).

As noted in Example 3.16, this is a group dilation structure so the limit group (G•,•)
is U4(R). It is in fact the straight group dilation of (9.3) adapted to the measure µ
Thus by Chapter 10 below, the conditions (R1)-(R2), (E1)-(E2), (T•) and (TΓ) are
automatically satisfied for µ and {δt, t > 0}.
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The measure µt = tδt (µ) has vague limit µ̄• as t →∞ given by

µ̄•(dx) =
c1

2
(
x2

1 + x2
2 + |x4 − x1x2 |

) (4+α1)/2
dx1dx2dx4 ⊗ δ(0,0,0)(dx3, dx5, dx6)

+
c′2

2|x3 |1+α2
dx3 ⊗ δ(0,0,0,0,0)(dx1, dx2, dx4, dx5, dx6).

Note that though the measure µ̄• is not symmetric on R6, it induces a symmetric
Lévy measure µ• on (G•,•) through the matrix coordinate system Φ.

By a similar reasoning as in the previous example, one can check that the drift b̄
defined by (7.8) is the zero vector in R6. Let

X◦ =
(
X̄ (1), X̄ (2), X̄ (3), X̄ (4), 0, 0

)
,

be the Lévy process on R6 with Lévy triplet (0,0, µ̄•). Note that (X̄ (1), X̄ (2), X̄ (4))
is a Lévy process on R3 with Lévy triplet

(
0,0, c1

2(x2
1+x

2
2+ |x4−x1x2 |)

(4+α1)/2
dx1dx2dx4

)
and X̄ (3) is a one-dimensional symmetric α2-stable process with Lévy measure

c′2
2 |x3 |

1+α2
dx3 independent of (X̄ (1), X̄ (2), X̄ (4)). Thus we have by Theorem 5.10, for

any T > 0, the rescaled random walk {δ1/n(S[nt]); t ∈ [0,T]) on U4(Z) converges
weakly in the Skorohod space D([0,T];R6) to a purely discontinuous symmetric
Lévy process X• on (G•,•) with Lévy measure µ• as n→∞.

We next identify the Lévy process X• in the matrix coordinate system of (G•,•)
by using Theorem 7.3, through the fact that X• is the weak limit of

X•,nt := Φ(X◦1/n) • Φ(X
◦
2/n − X◦1/n). • · · · • Φ(X

◦
[nt]/n − X◦

([nt]−1)/n).

When α1 ≤ α2, (G•,•) is U4(R). By a similar reasoning as in previous examples, we
conclude from Theorem 7.3 that in matrix coordinates, the symmetric Lévy process
X•t on U4(R) has the following six coordinates:

X̄ (1)t , X̄ (2)t , X̄ (3)t , X̄ (4) +
∫ t

0
X̄ (1)s− dX̄ (2)s ,

∫ t

0
X̄ (2)s− dX̄ (3)s ,

and ∫ t

0
X̄ (1)s− X̄ (2)s− dX̄ (3)s +

∫ t

0

(
X̄ (4)r− +

∫
[0,r)

X̄ (1)s− dX̄ (2)s

)
dX̄ (3)r .

Note that Lévy processes are semimartingales so the above stochastic integrals are
all well defined.

(ii) Now let µ = 1
3 (µ1 + µ2 + µ3) be the probability measure on U4(Z) = Z

6 with
µ1 and µ2 given by (7.21) and (7.22) with α1 = α2 ∈ (0,2), and

µ3((xi)61) =
c3(

1 +
√

x2
4 + x2

5 + x2
6

)3+α3
⊗ 1(0,0,0)(x1, x2, x3)
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for some α3 ∈ (0, α1/2). This measure µ is in SM on U4(Z). Let{
ξk =

(
ξ
(1)
k
, ξ
(2)
k
, ξ
(3)
k
, ξ
(4)
k
, ξ
(5)
k
, ξ
(6)
k

)
; k ≥ 1

}
be a sequence of i.i.d random variables taking values in U4(Z) of distribution µ.
Then

Sn = S0 · ξ1 · . . . · ξn, n = 0,1,2, . . .

defines a random walk on U4(Z).
Consider the dilation

δt ((xi)61) =
(
t1/α1 x1, t1/α1 x2, t1/α1 x3, t1/α3 x4, t1/α3 x5, t1/α1+1/α3 x6

)
,

which is a straight group approximate dilation of (9.3) adapted to the measure µ. As
noted in Example 3.16 (the fourth bullet case), this is an approximate group dilation
structure forU4(Z) and the group law • of the limit group (G•,•) is the direct product
of the 5 dimensional Heisenberg group H5(R) and a copy of R, that is,

(xi)61 • (yi)
6
1

= (x1 + y1, x2 + y2, x3 + y3, x4 + y4, x5 + y5, x6 + y6 + x1y5 + x4y3). �

Clearly, (G•,•) is different from fromU4(R). Since themeasure µ is inSM onU4(Z),
the conditions (R1)-(R2), (E1)-(E2), (T•) and (TΓ) are automatically satisfied for µ
and {δt, t > 0} by Chapter 10 below.

The measure µt = tδt (µ) has vague limit µ̄• as t →∞ given by

µ̄•(dx) =
κ1

(x2
1 + x2

2)
(2+α1)/2

dx1dx2 ⊗ δ(0,0,0,0)(dx3, dx4, dx5, dx6)

+
κ2

|x3 |1+α1
dx3 ⊗ δ(0,0,0,0,0)(dx1, dx2, dx4, dx5, dx6)

+
κ3

(x2
4 + x2

5)
(2+α3)/2

dx4dx5 ⊗ δ(0,0,0,0)(dx1, dx2, dx3, dx6).

It induces a symmetric Lévy measure µ• on (G•,•) through the matrix coordinate
system Φ. It is easy to see that the drift b̄ defined by (7.8) is the zero vector in R6

and the Lévy process X◦ on Rd with Lévy triplet (0,0, µ̄•) is

X◦t =
(
X̄ (1)t , X̄ (2)t , X̄ (3)t , X̄ (4)t , X̄ (5)t , 0

)
,

where (X̄ (1), X̄ (2)) is a two-dimensional isotropic α1-stable process, X̄ (3) is an in-
dependent one-dimensional α1-stable process, and (X̄ (4), X̄ (5)) is a two-dimensional
isotropic α3-stable process that is independent of (X̄ (1),X (2),X (3)). In a similar way
as in previous examples, we can conclude from Theorems 5.10 and 7.3 that for any
T > 0, the rescaled random walk

{
δ1/n(S[nt]); t ∈ [0,T]

}
onU4(Z) converges weakly

in the Skorohod space D([0,T];R6) to a purely discontinuous symmetric Lévy pro-
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cess X• on (G•,•) with Lévy measure µ• as n→∞, which in the matrix coordinate
system is given by(

X̄ (1)t , X̄ (2)t , X̄ (3)t , X̄ (4)t , X̄ (5)t ,

∫ t

0
X̄ (1)s− dX̄ (5)s +

∫ t

0
X̄ (4)s− dX̄ (3)s

)
.

Example 7.10 In Example 7.9, now consider the probability measure µ = 1
3 (µ1 +

µ2 + µ3) on U4(Z) = Z
6, where

µ1((xi)61) =
c1(

1 +
√

x2
1 + x2

4 + x2
6 |
)3+α1

⊗ 1(0,0,0)(x2, x3, x5),

µ2((xi)61) =
c2

(1 + |x2 |)1+α2
⊗ 1(0,0,0,0,0)(x1, x3, x4, x5, x6),

and
µ3((xi)61) =

c3(
1 +

√
x2

3 + x2
5 + x2

6

)3+α3
⊗ 1(0,0,0)(x1, x2, x4),

where 0 < α1, α2, α3 < 2 and c1, c2, c3 are appropriate positive normalizing constants.
The measure µ is in SM on U4(Z). Let{

ξk = (ξ
(1)
k
, ξ
(2)
k
, ξ
(3)
k
, ξ
(4)
k
, ξ
(5)
k
, ξ
(6)
k
); k ≥ 1

}
be a sequence of i.i.d random variables taking values in U4(Z) of distribution µ.
Then

Sn = S0 · ξ1 · . . . · ξn, n = 0,1,2, . . .

defines a random walk on U4(Z).
Consider the dilation

δt ((xi)61) =
(
t1/α1 x1, t1/α2 x2, t1/α3 x3, t1/α1+1/α2 x4, t1/α2+1/α3 x5, t1/α1+1/α2+1/α3 x6

)
.

As noted in Example 3.16, this is a group dilation structure so the limiting group G•
is U4(R). It is in fact a straight group dilation of (9.3) adapted to the measure µ.

Since measure µ is in SM on U4(Z), the conditions (R1)-(R2), (E1)-(E2), (T•)
and (TΓ) are again automatically satisfied for µ and {δt, t > 0} by Chapter 10 below.
The measure µt = tδt (µ) has vague limit µ̄• as t →∞ given by

µ̄•(dx) =
κ1

|x1 |1+α1
dx1 ⊗ δ(0,0,0,0,0)(dx2, dx3, dx4, x5, dx6)

+
κ2

|x2 |1+α2
dx2 ⊗ δ(0,0,0,0,0)(dx1, dx3, dx4, dx5, dx6) (7.23)

+
κ3

|x3 |1+α3
dx3 ⊗ δ(0,0,0,0,0)(dx1, dx2, dx4, dx5, dx6).
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It induces a symmetric Lévy measure µ• on (G•,•) through the matrix coordinate
system Φ. It is easy to see that the drift b̄ defined by (7.8) is the zero vector in R6

and the Lévy process X◦ on Rd with Lévy triplet (0,0, µ̄•) is

X◦t =
(
X̄ (1)t , X̄ (2)t , X̄ (3)t , 0, 0, 0

)
,

where X̄ (i) are one-dimensional symmetric αi-stable processes with Lévy measure
κi |z |−1−αi dz for 1 ≤ i ≤ 3, independent to each other. In a similar way as in previous
examples, we can conclude from Theorems 5.10 and 7.3 that for any T > 0, the
rescaled random walk

{
δ1/n(S[nt]); t ∈ [0,T]

}
on U4(Z) converges weakly in the

Skorohod space D([0,T];R6) to a purely discontinuous symmetric Lévy process X•

on (G•,•) with Lévy measure µ• as n→ ∞, which in the matrix coordinate system
is given by

X̄ (1)t , X̄ (2)t , X̄ (3)t ,

∫ t

0
X̄ (1)s− dX̄ (2)s ,

∫ t

0
X̄ (2)s− dX̄ (3)s ,

and ∫ t

0
X̄ (1)s− X̄ (2)s− dX̄ (3)s +

∫ t

0

(∫
[0,r)

X̄ (1)s− dX̄ (2)s

)
dX̄ (3)r .

In the above, if we replace µ2 by

µ′2((xi)
6
1) =

c2(
1 +

√
x2

2 + x2
3 + x2

5

)3+α2
⊗ 1(0,0,0)(x1, x4, x6),

the measure µ is again an SM measure onU4(Z) and µt = tδt (µ) converges vaguely
to the same µ̄• of (7.23) as t → ∞. Thus for any T > 0, the rescaled random
walk {δ1/n(S[nt]); t ∈ [0,T]) on U4(Z) converges weakly in the Skorohod space
D([0,T];R6) to the same purely discontinuous symmetric Lévy process on U4(R).�

Remark 7.11 Since condition (R2) is satisfied, the local limit theorem, Theorem
6.2, holds as well for all the examples in this section. �



Chapter 8
Measures in SM(Γ) and their geometries

Abstract For any torsion free finitely generated nilpotent group Γ, this short but
essential chapter introduces the set SM(Γ), a set of stable-like probability measures
on Γ. For each measure µ in SM(Γ), a particular “geometry” associated to µ is
defined. This geometry will later be the key needed to understand how to define
norms and appropriate approximate dilations adapted to the measure µ in order to
apply the limit theorems of Chapters 5 and 6.

8.1 Probability measures in SM and SM1

Consider a subgroup H ⊂ Γ. Because Γ is nilpotent, H is automatically finitely
generated and we equip H with a finite symmetric generating set S and the associated
word-length | · |S . Let α ∈ (0,2). LetSMα

H (Γ) be the set of all symmetric probability
measures ν on Γ which are supported on H and satisfy

ν(g) �
1

(1 + |g |S)αVH ,S(|g |S)
1H (g),

where VH ,S is the volume growth function of the pair (H,S) and the notation ν � µ
indicates that there are constants 0 < c ≤ C < ∞, which may depend on ν and µ, so
that

cµ(g) ≤ ν(g) ≤ Cµ(g) for every g ∈ Γ.

Note that since H is a subgroup of the finitely generated nilpotent group, its volume
growth is polynomial and there is an integer dH such that VH ,S(k) � kdH , k =
1,2, . . . . Note also that the set SMα

H (Γ) does not depend on the choice of the
generating S for H. These symmetric probability measures are the basic building
blocks of the set SM(Γ) which we now define.

Definition 8.1 (SM(Γ)) The setSM(Γ) is the set of all finite convex combinations
µ of probability measures belonging to the union⋃

α∈(0,2)

⋃
H : subgroup of Γ

SMα
H (Γ)

such that the support of µ generates Γ. �

83
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Definition 8.2 (SM1(Γ)) The subset SM1(Γ) of SM(Γ) is the set of all finite
convex combinations µ of probability measures in⋃

α∈(0,2)

⋃
h∈Γ

SMα
〈h〉(Γ)

such that the support of µ generates Γ. That is, µ ∈ SM1(Γ) if it is the finite convex
combinations of stable-like symmetric probability measures supported on a finite
collection of subgroups of Γ, 〈hi〉, 1 ≤ i ≤ k, with the property that {h±1

i ,1 ≤ i ≤ k}
generates Γ. �

Definition 8.3 (SMα(Γ), α ∈ (0, 2)) For each α ∈ (0,2), the subset SMα(Γ) of
SM(Γ) is the set of all finite convex combinations µ of probability measures in⋃

H : subgroup of Γ
SMα

H (Γ)

such that the support of µ generates Γ. �

So, any probability measure µ in SM(Γ) as the form

µ =

k∑
i=1

piµHi ,αi , (8.1)

where αi ∈ (0,2), pi > 0,
∑k

i=1 pi = 1, each Hi is a subgroup of Γ, and µHi ,αi

is a probability measure in SMαi

Hi
(Γ). In addition, Γ = 〈H1, . . . ,Hk〉. The typical

measures in SM1(Γ) have the more explicit form

µ(g) =

k∑
1

∑
m∈Z

picαi

(1 + |m|)1+αi
1{smi }

(g),

where αi ∈ (0,2), pi > 0,
∑k

1 pi = 1, the finite set {s±1
i : 1 ≤ i ≤ k} is a generating

set of Γ, and c−1
α =

∑
m∈Z

1
(1+ |m |)1+α . There are more measures in SM1(Γ) because

the individual component of the convex combination above do not have to be exactly∑
m∈Z

cαi
(1+ |m |)1+αi 1{s

m
i }
(g), they only have to be �-comparable to such a measure.

Example 8.4 On the Heisenberg group H3(Z) viewed as the group of matrix (4.2),
consider the measures

µ4((x1, x2, x3)) =
cα(

1 +
√

x2
1 + x2

2 + |x3 − x1x2/2|
)4+α4

,

(this is µ from Example 4.6) and

µi((x1, x2, x3)) =
cα1Hi ((x1, x2, x3))

(1 + |xi |)1+αi
, i = 1,2,3,
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where Hi = {(x1, x2, x3) : xj = 0 if j , i}, with α1, α2, α3, α4 ∈ (0,2). The measure
µ = 1

4
∑4

i=1 µi is a good example of a measure in SM(H3(Z)). This is because

the expression
√

x2
1 + x2

2 + |x3 − x1x2/2| is constant under taking inverse and is
comparable to the word-length on H3(Z) (e.g., on the natural minimal symmetric
generating set). �

Example 8.5 On theHeisenberg groupH3(Z) viewed as the group ofmatrix (4.2), for
i = 1,2,αi ∈ (0,2), and H1 = {(x1,0, x3) : x1, x3 ∈ Z}, H2 = {(0, x2, x3) : x2, x3 ∈ Z},
consider the measures

µi((x1, x2, x3)) =
cαi(

1 +
√

x2
i + x2

3

)αi+21Hi (x1, x2, x3).

The measure µ = 1
2 (µ1 + µ2) is another good example of a measure in SM(H3(Z)).

The measure in Example 4.6 is also in SM(H3(Z)). �

8.2 Weight systems on Γ associated to measures in SM(Γ)

Let µ ∈ SM(Γ) be given by (8.1). From the data defining µ, we extract a long
generating tuple

Σ = (σ1, . . . σ`)

by listing one representative of {s, s−1} for each s ∈ Si , 1 ≤ i ≤ k, with repetition
when the same s, s−1 belongs to more than one set Si . Thus, we can think of each
σj as carrying a label that tells us from which Si it comes. Using this label we give
each σj ∈ Σ the positive weight w(σj) = 1/αi if σj comes from Si . Now, consider Σ
as a finite alphabet and consider the set of all finite length formal commutators over
Σ ∪ Σ−1 where Σ−1 is the set of formal inverse letters. We can proceed inductively.
Elements of Σ ∪ Σ−1 are length 1 commutators. After formal commutators of length
at most n have been defined, the formal commutators of length at most n + 1 are all
the formal expressions of the form [τ, θ] where τ and θ are commutators of length s
and t with s + t ≤ n + 1. Recall that each formal commutator σ±1 of length 1 has a
weight w(σ±1) = 1/αi if σ comes originally from Si . Extend the weight function w
to all formal commutators by setting w([τ, θ]) = w(τ) + w(θ).

A priori, there are countably many formal commutators but because Γ is nilpotent
andwewill ultimately consider only the formal commutators that are not trivial when
evaluated in Γ, we only have to deal with finitely many formal commutators, whose
lengths are atmost the nilpotent class of Γ.We nowuseweighted formal commutators
to define a non-increasing equence of subgroups of Γ. Recall that by convention and
abuse of notation, each letter σ in Σ is also a group element in Γ. The following
definition is essentially from [55] where further details can be found. See Definition
1.4 and Proposition 1.5 in [55].
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Definition 8.6 For any s ≥ 0, let ΓΣ,ws be the subgroup of Γ generated by the
elements in Γ of all the formal commutators over the alphabet Σ with weight at least
s. By construction ΓΣ,wt ⊆ Γ

Σ,w
s if s ≤ t. Also, [ΓΣ,ws ,ΓΣ,wt ] ⊆ Γ

Σ,w
s+t . �

Definition 8.7 There is a greatest t such that ΓΣ,wt = Γ, call it w1. By induction,
having defined wj , define wj+1 to be the largest t ∈ (wj,∞] such that ΓΣ,ws = Γ

Σ,w
t

for all wj < s ≤ t. This defines a finite strictly increasing sequence

w1 < w2 < · · · < wj < wj+1 < · · · < wj∗+1 = ∞

such that

Γ
Σ,w
wj+1 ( Γ

Σ,w
wj

, Γ
Σ,w
s = ΓΣ,wwj

for s ∈ (wj−1, wj], and Γ
Σ,w
s = {e} for s > wj∗ .

By construction
[
Γ,ΓΣ,wwj

]
⊂ Γ

Σ,w
wj+1 . Call Awj the abelian group

Awj = Γ
Σ,w
wj
/ΓΣ,wwj+1, 1 ≤ j ≤ j∗.

Definition 8.8 Set γ0(Σ, w) =
∑j∗

1 wjRank(Awj ), where Rank(A) denotes the torsion
free rank of the finitely generated abelian group A. �

That the construction described above and the definition of the positive real
γ0(Σ, w) is relevant to the study of random walks driven by measures in SM(Γ) is
apparent from the following theorem from [55, 20].

Theorem 8.9 ([55, 20]) Let Γ be a finitely generated nilpotent group. For any prob-
ability measure µ in SM(Γ)with associated data (Σ, w) as above, there are constants
c(µ) and C(µ) such that, for all n,

c(µ)n−γ0(Σ,w) ≤ µ(n)(e) ≤ C(µ)n−γ0(Σ,w).

8.3 Quasi-norms on Γ associated with elements of SM(Γ)

The previous section associates to any measure µ ∈ SM(Γ) a weight system built
on the `-tuple of group elements Σ = (σ1, . . . ,σ`) obtained by listing consecutively
with possible repetitions all the elements of the sets Si , 1 ≤ i ≤ k, and the attached
weight w(σ) = 1/αi if σ comes from Si . Recall that in this construction, we view
Σ as an abstract alphabet. This data allows us to construct a quasi-norm on the
countable group Γ based on the writing of any element g of Γ as a word over the
alphabet Σ ∪ Σ−1. For any finite word ω ∈ ∪∞

m=0(Σ ∪ Σ
−1)m, set

degσ(ω) = number of times the letters σ,σ−1 are used in ω.

The following definition is from [55, 20].
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Definition 8.10 Given Γ, Σ = (σ1, . . . ,σ`) and weight w as above, for each element
g ∈ Γ, set

‖g‖Σ,w = inf
{
max
σ∈Σ
{(degσ(ω))

1/w(σ)} : ω ∈ ∪∞m=0(Σ ∪ Σ
−1)m, g = ω in Γ

}
.

By convention, ‖e‖Σ,w = 0. �

Remark 8.11 When w(σ) = w0 for all σ ∈ Σ, the quasi-norm ‖ · ‖Σ,w satisfies

1
`
|g |Σ ≤ ‖g‖

w0
Σ,w ≤ |g |Σ for every g ∈ Γ,

where | · |Σ denotes the usual word length of the finite symmetric generating set
Σ ∪ Σ−1 ⊂ Γ. �

Remark 8.12 It may beworth noting that, in general, it is hard to compute or estimate
‖g‖Σ,w for a given g ∈ Γ. The reference [55] gives many results in this direction
and these results will be useful in the sequel. This is related to the use of coordinate
systems in so far as the question of estimating g ∈ Γ becomes a precise question
only when g is given in terms of some parameter set, i.e., some sort of (possibly
partial) coordinate system, see [55, Theorem 2.10]. To help the reader understand
this comment, we suggest the following question: given a fixed g ∈ Γ, what is the
behavior of ‖gm‖Σ,w as a function of m? See [55, Proposition 2.17 ].





Chapter 9
Adapted approximate group dilations

Abstract Given a probability measure µ in SM(Γ) and its associated geometry,
this chapter discusses the construction of adapted coordinate systems using the group
exponential map (exponential coordinates of the first and second type). Useful prop-
erties of these coordinate systems and their relations with the geometry previously
associated with the measure µ are discussed. Each of these coordinate systems leads
to the definition of an approximate group dilation adapted to the measure µ. In the
next chapter, these constructions are used to show that every µ ∈ SM(Γ) satisfies
all the conditions except condition (A) of the limit theorems of Chapters 5 and 6.

9.1 Searching for adapted dilations

The goal of this chapter is to associate to each probability measure µ in SM(Γ)
an adapted approximate dilation structure. This includes making the choice of an
appropriate polynomial coordinate system for the simply connected nilpotent Lie
group G = (Rd, ·) in which Γ embeds as a co-compact discrete subgroup. The
given measure µ determines uniquely certain features of the appropriate coordinate
systems and associated approximate group dilations but not all. Among the feature
that are determined uniquely (in this case, up to an arbitrary multiplicative positive
constant) is a vector of non-decreasing weight values bj , 1 ≤ j ≤ d, so that, in
the chosen coordinate system u = (ui)d1 ∈ R

d for G, the appropriate approximate
dilation structure is of the form δt (u) = (tbi ui)d1 . Among the exponential coordinates
of the first and second kind, the group structure G• = (Rd,•) defined by

u • u′ = lim
t→∞

δ1/t (δt (u) · δt (u′))

(understood up to isomorphisms) depends only on Γ and µ and not on the particular
choice of a coordinate system. An interesting question is if this remains true beyond
these exponential coordinate systems.

In the next sections, we describe two key constructions: the construction of
adapted exponential coordinates of the first kind and that of adapted coordinate of
the second kind. The essential difference between the two constructions is that, in
the discussion of exponential coordinates of the first kind, we assume that the simply
connected nilpotent Lie group G in which Γ sits as a co-compact subgroup is already
given to us together with its Lie algebra and canonical exponential map. All we need
to construct is an adapted linear basis of this Lie algebra based on the nature of

89



90 9 Adapted approximate group dilations

the measure µ. In the case of exponential coordinates of the second kind, we start
from scratch with only the finitely generated torsion free nilpotent group Γ carrying
the measure µ and, following Malcev and Hall, we construct a “discrete coordinate
system” for Γ which is adapted to µ and, in turn, “generates” for us the simply
connected Lie group G and its adapted exponential coordinates of the second type.
It is only a posteriori (and with some work) that one can check that certain features
of these two constructions are identical.

9.2 Exponential coordinates of the first kind

This section focuses on the situation when the torsion free finitely generated group Γ
is given to us as a co-compact discrete subgroup of a simply connected nilpotent Lie
group G with Lie algebra g = (Rd, [·, ·]) and the group G is given in the (canonical)
exponential coordinates of the first kind. This identifies the group G with (Rd, ·)
where the product · is given by the famous Campbell-Hausdorff formula (3.6).

In the next definition, we are given a probability measure µ ∈ SM(Γ) and the
associated data Σ, w as in Section 8.2 and we transfer the weight system to the Lie
algebra g. Observe that the tuple (use the same ordering as for Σ)

Σg = (ςi ∈ g : exp(ςi) = σi ∈ Σ) = (ς1, . . . , ς`)

must be an algebraically generating set for g in that this set together with all iterated
brackets of its elements generates g linearly. Indeed, because the exponential map
is a global diffeomorphism between g and G, if Σg did not generate g, Γ would be
contained in a proper closed connected Lie subgroup of G. This would contradict
the fact that Γ is co-compact in G.

We now trivially transfer the weight function w : Σ→ (0,∞) to a function defined
on Σg by setting wg(ς) = w(σ) if σ = exp(ς). This leads to the definition of a weight
system wg on the formal (Lie) commutators of the ς’s in a way that is formally
analogous to what we did on Γ.

Definition 9.1 Let gΣ,ws be the Lie sub-algebra of g generated by the evaluation in g
of all formal commutators of the ς ∈ Σg whose weight is at least s. By construction,

g
Σ,w
t ⊆ gΣ,ws if s ≤ t

and
[gΣ,ws ,gΣ,wt ] ⊆ g

Σ,w
s+t .

Definition 9.2 There is a greatest t such that gΣ,wt = g, call it wg1. By induction,
having defined wgj , there is a greatest t ∈ (wgj ,∞] such that gΣ,ws = g

Σ,w
t for all

s ∈ (wgj , t]. Call it w
g

j+1. Let jg? be the largest integer j such that wgj < ∞ so that
wg
jg?+1 = ∞ and gΣ,w

wg
j
g
?+1

= {0}. This defines a finite strictly decreasing sequence of
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sub-Lie algebras
g = g

Σ,w

wg1
⊃ · · · ⊃ g

Σ,w

wg
j
g
?

⊃ {0}

with the property that

[g,gΣ,w
wgj
] ⊆ g

Σ,w

wg
j+1
, j = 1, . . . , jg?.

Definition 9.3 (Adapted direct sum decomposition) We say that a direct sum de-
composition of g,

g = ⊕
jg?
1 n j,

is adapted to (Σ, w) if, for all j ∈ {1, . . . , jg?},

g
Σ,w

wgj
= ⊕

jg?
`=j
n` .

Remark 9.4 To construct an adapted direct sum decomposition, start from the top
and set n jg? = g

Σ,w

wg
j
g
?

. By descending induction, having constructed n j, . . . ,n jg? so that

g
Σ,w

wgj
= ⊕

jg?
`=j
n` , pick a linear complement of gΣ,w

wgj
inside gΣ,w

wg
j−1

and call it n j−1. �

Definition 9.5 (Approximate Lie dilation structure (first kind)) Given a direct sum
decomposition that is adapted to (Σ, w), consider the group of invertible linear maps

δt : g→ g, t > 0,

define by
δt (v) = tw

g

j v for all v ∈ n j,1 ≤ j ≤ jg?.

Let ε = (εi)d1 be a linear basis of Rd adapted to the direct sum g = ⊕
jg?
1 n j , let

u = (ui)d1 be the corresponding coordinate system, and let

bi = w
g

j if εi ∈ n j

so that
δt (u) = (tbi ui)d1 .

We shall see below in Proposition 9.12 and Corollary 9.13 that the important
quantity γ0(Σ, w) is given in terms of the sequences (bi)d1 and (wgj )

jg?
1 by

γ0(Σ, w) =

d∑
1

bi =
jg?∑
1
w
g

j dim(n j).

Proposition 9.6 The maps (δt )t>0 defined above form an approximate Lie dilation
structure on g. In any exponential coordinate system of the first kind adapted to the
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direct sum decomposition g = ⊕ jg?
1 n j, (δt )t>0 is a straight approximate group dilation

structure on G.

Proof By linearity, it suffices to prove that for any vi ∈ n ji , i = 1,2,

δ−1
t ([δt (v1), δt (v2)])

has a limit when t tends to infinity. By construction, δt (vi) = tw
g

ji vi and [v1, v2] ∈
g
Σ,w

wgN
= ⊕`≥Nn` where wgN ≥ w

g

j1
+ wgj2 , namely,

[v1, v2] =

jg?∑̀
=N

f`, f` ∈ n` .

It follows that

δ−1
t ([δt (v1), δt (v2)]) =

jg?∑̀
=N

tw
g

i1
+wgi2

−wg
` f` .

The limit of this expression when t tends to infinity exists because wgi1 +w
g

i2
≤ wgN ≤

wg
`
for all ` ≥ N . If wgN > wgi1 + w

g

i2
, the limit is 0. If wgN = w

g

i1
+ wgi2 , the limit is

fN . �

9.3 Building adapted exponential coordinates of the second kinds
from Γ and µ

In this section, we start with the given discrete torsion free nilpotent group Γ (de-
scribed, perhaps, by generators and relations, or as a subgroup of a bigger group)
and we explain how to construct the Lie group G using well-known ideas related to
exponential coordinate systems of the second kind. This is done in [46, 35] and we
refer the reader to the treatment in [21, Theorem 4.9, Section 4.3].

Hall-Malcev coordinates

Theorem 4.9 of [21] asserts that, for any finitely generated torsion free nilpotent
group Γ, any descending central series (this means that Γi/Γi+1 is central in Γ/Γi+1
for each 1 ≤ i ≤ n)

Γ = Γ1 � Γ2 � · · ·� Γn � Γn+1 = {e}

with Γi/Γi+1 infinite cyclic, and any sequence of elements τi ∈ G such that Γi =
〈Γi+1, τi〉, each element γ ∈ Γ can be written uniquely
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γ = τu1
1 · τ

u2
2 · · · · · τ

un
n , u1,u2, . . . ,un ∈ Z.

Moreover, for any k ∈ Z and any γ′ = τu
′
1

1 · τ
u′2
2 · · · · · τ

u′n
n ,

γk = τ
g1(u,k)
1 · τ

g2(u,k)
2 · · · · · τ

gn(u,k)
n

and
γ · γ′ = τ

f1(u,u
′)

1 · τ
f2(u,u

′)

2 · · · · · τ
fn(u,u

′)
n ,

where u = (u1, . . . ,un), u′ = (u′1, . . . ,u
′
n), and fi,gi , 1 ≤ i ≤ n are polynomials with

rational coefficients in there respective variables.
Furthermore ([21, Theorems 4.11-4.12 ]), by interpreting these coordinates in Rn

instead of Zn, one obtains a simply connected nilpotent Lie group of which Γ is a
discrete co-compact subgroup.

For our present purpose, the task is to produce a descending central series

Γ = Γ1 � Γ2 � · · ·� Γn � Γn+1 = {e}

with Γi/Γi+1 infinite cyclic, which is adapted to the measure µ. Using the sequence
Γ
Σ,w
wj

, 1 ≤ j ≤ j∗ is a good first guess. If each quotient Awj = Γ
Σ,w
wj
/Γ

Σ,w
wj+1 is free

abelian (i.e., has no torsion), then we can produce a descending central series

Γ = Γ1 � Γ2 � · · ·� Γn � Γn+1 = {e}

which refines the sequence ΓΣ,wwj
, 1 ≤ j ≤ j∗, and has Γi/Γi+1 infinite cyclic. In

addition, we can find a sequence of elements τi ∈ Γ, each of which is a commutator
of the elements in Σ, such that Γi = 〈Γi+1, τi〉 and such that

w(τi) = wj if and only if ΓΣ,wwj+1 ⊃ Γi ⊇ Γ
Σ,w
wj

.

The problem we face is that it is NOT always the case that the groups Awj are
torsion free (even in the simplest of all cases when Γ = Z!).

Modified weight system on Γ

Given a measure µ ∈ SM(Γ) as in (8.1), we defined in Section 8.2 a generating set
Σ = (σ1, . . . ,σ`) and a weight system w on formal commutators which generates the
descending central sequence of subgroups ΓΣ,wwj

, 1 ≤ j ≤ j∗.
Consider the finite set of all formal commutators over the alphabet Σ which are

not trivial in Γ and organize that finite set as a long tuple Σcom = (c1, . . . , cL). Let
Σcom = (c1, . . . , cL) be the evaluation of Σcom in Γ.

Let us introduce a (modified) weight function, w, on Σcom by setting, for each c
appearing in the tuple Σcom,
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w(c) = max
{
wj : ∃m ∈ N, cm ∈ ΓΣ,wwj

,1 ≤ j ≤ j∗
}
.

For commutators whose evaluation in Γ is trivial, we can set w(c) = ∞. Following
[55, Section 2.2], we set

core(Σ, w) = {σi : w(σi) = w(σi),1 ≤ i ≤ `}.

The function w is no less than w and has the property that, if c = [c1, c2] is
nontrivial in Γ then

w(c) ≥ w(c1) + w(c2).

It follows that the induced weight of a formal commutator c over the alphabet Σcom

whose evaluation in Γ is not trivial is actually equal to the w weight of the same
commutator view as an element of Σcom. Moreover, core(Σcom, w) = Σcom.

Definition 9.7 For any s ≥ 0, let Γcom
s be the subgroup of Γ generated by the values

in Γ of all the formal commutators over the alphabet Σ with w-weight at least s. By
construction Γcom

t ⊆ Γ
com
s if s ≤ t. Also, [Γcom

s ,Γcom
t ] ⊆ Γ

com
s+t . �

Definition 9.8 There is a greatest t such that Γcom
t = Γ, call it w1. By induction,

having defined w j , define w j+1 to be the largest t ∈ (w j,∞] such that Γcom
t = Γ

com
s for

all w j < s ≤ t. This defines a finite strictly increasing sequence

0 < w1 < w2 < · · · < w j < w j+1 < · · · < w jcom∗ +1 = ∞

such that

Γ
com
w j+1
⊂ Γcom

w j
, Γcom

s = Γ
com
w j

for s ∈ (w j−1, w j], Γ
com
s = {e} for s > w jcom∗

.

By construction [Γ,Γcom
w j
] ⊂ Γcom

w j+1
. Call Acom

w j
the abelian group

Acom
w j
= Γcom

w j
/Γcom

w j+1
, 1 ≤ j ≤ j com∗ .

The following lemma follows immediately from the construction outlined above.

Lemma 9.9 The groups Acom
w j
, 1 ≤ j ≤ j com∗ are free abelian and each is generated by

a finite subset of the commutators c ∈ Σcom. Consequently, there exists a descending
central series

Γ = Γ1 � Γ2 � · · ·� Γd � Γd+1 = {e}

refining the descending central series

Γ = Γcom
w1

� Γ
com
w2

� · · ·� Γ
com
w jcom∗

� Γ = Γcom
w jcom∗ +1

= {e}

and a sequence τi = c`i , 1 ≤ j ≤ d, in Σcom such that Γi/Γi+1 is an infinite cyclic,
Γi = 〈τi,Γi+1〉, 1 ≤ i ≤ d, and

Γ
com
w j
= 〈τi : w(τi) ≥ w j〉.
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Because of this lemma, it is clear that [21, Theorems 4.9, 4.11,4.12] apply and
provide a set of coordinate of the second kind

Γ =
{
γ = τu1

1 · τ
u2
2 · · · · · τ

ud

d
, u1,u2, . . . ,ud ∈ Z

}
for Γ, as well as an embedding of Γ as a co-compact discrete subgroup a simply
connected Lie group G

G ={g = τx1
1 · τ

x2
2 · · · · · τ

xd
d
, x1, x2, . . . , xd ∈ R}

={g = exp(x1ζ1) · exp(x2ζ2) · · · · · exp(xdζd), x1, x2, . . . , xd ∈ R},

where ζi = log τi ∈ g.
Definition 9.10 (Approximate group dilation structure (second kind)) In the expo-
nential coordinate system of the second kind (xi)d1 introduced above, consider the
group of straight dilations

δt : Rd → Rd, t > 0, x 7→ δt (x) = (twi xi)d1 .

Proposition 9.11 The maps (δt )t>0 defined above form an approximate group dila-
tion structure on G = (Rd, ·). �

By the same token, we obtain an associated coordinate system of the first kind

(y1, . . . , yd) 7→ exp

(
d∑
1

yiζi

)
,

which is compatible with the weight wg introduced earlier and such that bi =
wg(ζi) = w(τi), 1 ≤ i ≤ d. The straight dilation groups we introduced in these two
distinct coordinate systems have the same exponents bi in their respective coordinate
systems. Viewed as maps from G to G, they are clearly different in general even so
we use the same notation δt in both cases; see Example 3.15 for such an example
where the matrix coordinate system is an exponential coordinate system of second
kind. This is because there are really no good reasons to consider both coordinate
systems at the same time, except to understand that this parallel constructions yield
compatible results at the end.

9.4 Relations between the filtrations associated with w, wg and w

Although there are great similitudes in the construction of the (discrete group)
filtrations ΓΣ,wwj

, 1 ≤ j ≤ j∗, and Γcom
w j
, 1 ≤ j ≤ j com∗ , of the group Γ, and the (Lie

algebra) filtration gΣ,w
w
g

j

, 1 ≤ j ≤ jg? of g, there are also differences.
We start with a comparison of the coordinates of the first and second kind in this

context. It is not hard to see that the definitions of the sequences wgj , 1 ≤ j ≤ jg?, and
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wi , 1 ≤ i ≤ j com∗ , and the above remark concerning the relations between group and
Lie algebra commutators, imply that these sequences of weights are actually equal,
that is,

jg? = j com∗ and wgj = w j, 1 ≤ j ≤ jg?. (9.1)

More generally, each (discrete group) formal commutator τ on the alphabet
Σ = (σ1, . . . ,σ`) corresponds in an obvious formal way to a formal Lie commutator
θ on the alphabet Σg = (ζ1, . . . , ζ`) in such a way that the Campbell-Hausdorff
formula provides a formal equality

τ = exp(ζ ) = exp(θ + Rτ), (9.2)

where Rτ is a formal series of Lie commutators with wg-weights strictly larger than
w(τ) = wg(θ). The concrete meaning of this formal identity in the present context
is that it is an equality when evaluated over any pair Γ ⊂ G where G is a simply
connected nilpotent Lie group with algebra g, with the formal series Rσ reducing to
a finite sum. Obviously, the evaluation θ of θ in g belongs to gΣ,w

wg(θ)
. It follows that

the evaluation ζ = θ + Rσ of ζ in g also belongs to gΣ,w
wg(θ)

.

Two choices of exponential coordinate of the first kind

From the discussion above, it becomes clear that there are at least two very natural
exponential coordinate systems of the first kind associated with the sequence (τi)d1
of elements of Γ given by Lemma 9.9.

Choice 1: Lie commutators

Each τi is a commutator built on Σ = (σi)
`
1. Let θi be the Lie commutator over

Σg = (ςi)
`
1 that corresponds formally to τi . Here σi = exp(ςi) as before and the last

sentence means that θ = [ς, ς ′] if τ = [σ,σ′] with σ = exp(ς), σ′ = exp(ς ′). By
(9.2) w(τi) = wg(θi), and the final subsequence of (θi)n1 corresponding to those i
such that w(τi) ≥ wgj = w j is a linear basis of g

Σ,w

wgj
. In particular,

n j =

ζ ∈ g : ζ =
∑

i:w(τi )=wgj

ziθi, zi ∈ R
 , 1 ≤ j ≤ jg?

provides an adapted direct sum decomposition of g in the sense of Definition 9.3.
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Choice 2: Logarithms of group commutators

Each τi can be written uniquely as τi = exp(ζi), where ζi and θi are related via
(9.2). It follows that the final subsequence of (ζi)n1 corresponding to those i such that
w(τi) ≥ w

g

j = w j is (also) a linear basis of g
Σ,w

wgj
. In particular,

n
′
j =

ζ ∈ g : ζ =
∑

i:w(τi )=wgj

ziζi, zi ∈ R
 , 1 ≤ j ≤ jg?

provides an adapted direct sum decomposition of g in the sense of Definition 9.3.
From the description of these two related coordinate systems, it follows that, for

each j ∈ {1, . . . , j com∗ = jg?}, the group Γcom
w j

is a co-compact discrete subgroup of
the Lie group exp(gΣ,w

wgj
) (recall that w j = wgj ). Note that, by definition, any two

exponential coordinate systems are always related by a linear change of basis in g.
In the present case, these linear changes of coordinates have an obvious triangular
form with unit diagonal and they respect the increasing filtration gΣ,w

wgj
, 1 ≤ j ≤ jg?.

The following proposition records the relations between the objects related to the
original weight system w on Γ and those related to the Lie algebra weight wg. The
proof follows classical arguments developed in [46], see also [30, Appendix] and
[55, 21]. It is omitted.

Proposition 9.12 The finite sequence of weight-values wgj , 1 ≤ j ≤ jgj? , is a sub-
sequence of the increasing finite sequence of weight-values wj , 1 ≤ j ≤ j∗, and
wg
jg?
= wj∗ . If w

g

i−1 < wj ≤ w
g

i for some 1 ≤ i ≤ j ≤ j∗, then

Γ
Σ,w
wj
⊂ exp(gΣ,w

w
g

i

)

and the quotient
exp(gΣ,w

w
g

i

)/ΓΣ,wwj

is compact. If j ∈ {1, . . . , j∗} is such that the value wj does not appear in (wgi )
jg?
1 ,

then
Γ
Σ,w
wj+1/Γ

Σ,w
wj

is a finite abelian group.

The following is an immediate corollary.

Corollary 9.13 γ0(Σ, w) =
∑j∗

1 wjRank
(
Γ
Σ,w
wj
/Γ

Σ,w
wj+1

)
=

∑jg?
1 w

g

j dim(n j). �
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An associated exponential coordinate system of the second kind

By the Hall-Malcev construction reviewed in Section 9.3, the sequence (τi)d1 of
elements of Γ given by Lemma 9.9 and the sequence of their logarithm (ζi)d1 in g
give us an exponential coordinate system of the second kind in which an element g
of the group G is written

g =

d∏
1

exp(yiζi), y = (yi)
d
1 ∈ R

d .

Recall that we also have exponential coordinates (x)d1 ∈ R
d of the first kind such that

g = exp
(∑

xiζi
)
.

By using the Campbell-Hausdorf formula, we obtain a polynomial map

x = M(y) = (Mi(y))
d
1 such that g =

d∏
1

exp(yiζi) = exp
(∑

xiζi
)

and this map has a specific triangular structure which can be described as follows.
For a multi-index of length q, I = (i1, . . . , iq) ∈ {1, . . . , d}q , set wI =

∑q
1 wi j . We

say that a polynomial p in the coordinate (yi)d1 has weight at most w if it can be
written as a linear combination of yI = yi1 . . . yiq with wI ≤ w. Then the map M
has the form

Mi(y) = yi + mi(y),

where mi is a polynomial of weight at most wi with no linear terms.
Let us use the notation

δt : Rd → Rd, u = (ui)d1 7→ δt (u) = (tbi ui)d1 , bi = wi, t > 0,

and note that we can use these dilations in the x coordinate system as a well as in
the y coordinate system discussed above. We find that

δ1/t ◦ M ◦ δt (y) = yi + t−bi mi(δt (y)).

Because mi has weight at most bi , this expression has a limit when t tends to infinity
which is of the form

yi + m∞i (y),

where m∞i is a linear combination of terms of weight exactly bi . This defines a
polynomial map

M∞ : Rd → Rd,

which is a group isomorphism between the limit groups G1
• (obtained by using the

approximate group dilations δt in the exponential coordinates of the first kind) and
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the groupG2
• (obtained by using the approximate group dilations δt in the exponential

coordinates of the second kind).

9.5 More choices of coordinate systems

There are many more possible choices of exponential coordinates of first and second
kind that suit our needs. The key structure that must be preserved for our purpose is
the filtration gΣ,wj , 1 ≤ j ≤ jg?, of the Lie algebra g which is canonically associate to
Σ, w. After that, a number of choices have to be made, the first of which is the choice
of the direct sum g = ⊕

jg?
j=1n j so that

g
Σ,w
j = ⊕i≥ jn j .

One then need to pick an adapted linear basis ε = (εi)d1 . Any such choice gives both
an exponential coordinate system of the first kind

g = exp

(
d∑
1

xiεi

)
, x = (xi)d1 ∈ R

d,

and an exponential coordinate system of the second kind

g =

d∏
i=1

exp (yiεi) , y = (yi)
d
1 ∈ R

d .

Each of these choices of coordinates, call it (u1, . . . ,ud) ∈ R
d , comes with its own

straight approximate group dilations

δt : Rd → Rd, u = (ui)d1 7→ δt (u) = (tbi ui)d1 , bi = wi, t > 0. (9.3)

Everything that has been said above for the special case εi = ζi applies as well to
these other choices (including the properties of the maps M and M∞). The choice
ε = ζ is justified mostly by the fact that, in that coordinate system, the discrete
group Γ is represented as a set as Zd ⊂ Rd . This is not the case in most other
coordinate systems. If one remains in the class of exponential coordinate systems
of the first type, moving from one such system to another is captured by a linear
change of coordinate in Rd = g. If one move from a system of the first kind to one
of the second kind or between systems of the second kind, the maps capturing the
changes of coordinates are polynomial maps with a special structure reflecting the
preservation of the filtration gΣ,wj , 1 ≤ j ≤ jg?, of the Lie algebra g (the best way to
think of a change of coordinates involving at least one system of the second kind is
to pass through the associated system of the first kind: this step is described by the
map M above).
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9.6 Comparison of the quasi-norms on Γ, G and G•

Consider the exponential coordinate systems of first and second type associated with
a basis ε = (εi)d1 adapted to the filtration gΣ,wj of the Lie algebra g as considered
in the preceding section. It comes with a family of approximate dilations given by
(9.3). On Rd , consider the usual Euclidean norm ‖ · ‖2 and the quasi-norm

Nw(z) = max
1≤i≤d

{|zi |1/bi }, bi = wi = w
g

i ,

and note that, for all z ∈ Rd , Nw(δt (z)) = tNw(z). The structure of the change of
coordinate map M between exponential coordinates of the first (x = (xi)d1 ) and
second (y = (yi)d1 ) type shows that there are constants 0 < c ≤ C < ∞ such that, if
g = exp(

∑d
1 xiζi) =

∏d
1 exp(yiζi) then

cNw(x) ≤ Nw(y) ≤ CNw(x).

Lemma 9.14 Referring to the above setup and notation, there is a constant C∗ such
that for any R ≥ 1 and any ζi ∈ gwith Nw(ζi) ≤ R, i = 1,2,wehave exp(ζ1) exp(ζ2) =
exp(ζ) with Nw(ζ) ≤ C∗R. �

Proof This follows from the Campbell-Hausdorff formula because of the properties
of the direct sum decomposition along the subspaces n j and its relation to the weight
system w. Note that this is not correct in general for small R. This reflects the fact
that the coordinate system and the quasi-norm Nw have been chosen to capture the
large scale geometry of the situation. �

The following proposition is one of the important keys to the results presented in
this monograph . It relates the geometry of the discrete group Γ equipped with the
quasi-norm ‖ · ‖Σ,w (Definition 8.10) to the geometry of Nw in the above coordinate
systems.

Proposition 9.15 There are constants c,C ∈ (0,∞) such that, for any

γ = exp

(
d∑
1

xiεi

)
with x = (xi)d1 ∈ R

d,

cNw(x) ≤ ‖γ‖Σ,w ≤ CNw(x).

Similarly, there are constants c,C ∈ (0,∞) such that, for any

γ =

d∏
1

exp (yiεi) with y = (yi)
d
1 ∈ R

d,

cNw(y) ≤ ‖γ‖Σ,w ≤ CNw(y).

Thanks to earlier considerations, it suffices to prove the first set of inequalities which
refers to exponential coordinates of the first kind.
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Proof (Proof of cNw(ζ) ≤ ‖γ‖Σ,w) To simplify notation, set Nw = N . In [55], it is
proved that there exists a finite tuple (i1, . . . , iq), ij ∈ {1, . . . , `}, 1 ≤ j ≤ q, such that
any γ ∈ Γ with ‖γ‖Σ,w = R can be written as

γ =

q∏
1
σ
z j
i j
, |zj | ≤ CRw(σi j

)
. (9.4)

Since σi = exp(ςi), σx
i = exp(xςi) for any i ∈ {1, . . . , `}. Because ςi has weight

wg(ςi) = w(σi), by construction, there is a ki with wgwki
≥ w(σi) such that ςi ∈ gw

g

ki
.

In particular,

ςi j =

jg?∑
k=ki j

ξk, ξk ∈ nk,

and

exp(zjςi j ) = exp ©«
jg?∑

k=ki j

zjξk
ª®¬

with
‖zjξk ‖2 ≤ max

1≤i≤`
{‖ςi ‖2} × |zj | ≤ C ′Rw(σi j

)
≤ C ′Rw

g

k ,

because R ≥ 1 and wg
k
≥ w(σi j ) for all k ≥ ki j . That is, N(zjξk) ≤ C ′′R.

Because formula (9.4) gives any γ as a product of at most q elements exp(zjςi j )
with N(zjςi j ) ≤ C ′R, it follows that any γ = exp(

∑n
1 xiεi) ∈ Γ satisfies

N(x) ≤ C ′′Cq−1
∗ R = C ′′Cq−1

∗ ‖γ‖Σ,w .

Proof (Proof of ‖γ‖Σ,w ≤ CN(ζ)) The proof is by induction on the dimension n of
g. If the dimension is 0, there is nothing to prove. Assume that for all cases when the
dimension of g is less then m, there exists a constant C̃ such that ‖γ̃‖

Σ̃,w̃ ≤ C̃N(ζ̃) for
all γ̃ ∈ Γ̃ ⊂ (Rm, ·) = G̃. Consider Γ,Σ, w,G = (Rm+1, ·). Let g ∈ Γ be a non-trivial
element of the highest weight wj∗ which is a commutator of the elements σi forming
the tuple Σ (this includes the elements of Σ which are considered commutators
of length 1). Let a ≥ 1 be the length of this commutator and σi1, . . . ,σia , be
the list of σi used to write g as a commutator of length a with the property that
wj∗ =

∑a
1 w(σia ). The element g must commute with all elements in Γ and it is of

the form g = exp(θ) where θ is the Lie commutator over Σg associated with the
writing of g as a commutator over Σ. Formally, let us use the notation cG(x1, . . . , xa)
to express the formal group commutator in question evaluated at the group elements
x1, . . . , xa so that g = cG(σi1, . . . ,σia ). Let cg be the corresponding formal Lie
commutator so that θ = cg(ζi1, . . . , ζ1a ). For any a-tuple of reals t1, . . . , ta, we also
have

cG
(
et1ζi1 , . . . , . . . , etaζia

)
= exp(t1 . . . tacg(ζi1, . . . , ζia )).
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LetΘ = {exp(sθ) : s ∈ R} be the central one parameter subgroup of G associated
with θ and consider the simply connected nilpotent group G̃ = G/Θ and its discrete
subgroup Γ̃ which is the image of Γ by the projection map π : G→ G̃. The subgroup
Γ̃ is generated by the tuple Σ̃ = (π(σ1), . . . , π(σ`)). The dimension of g̃ is m − 1. We
can choose it to be the orthogonal complement of θ in g so that dπ is the orthogonal
projection onto g̃.

For any γ = exp(ζ) ∈ Γ with N(ζ) = R, we have N(ζ̃) ≤ N(ζ) = R. Moreover,
applying the induction hypothesis, we can write γ̃ = exp(ζ̃) = π(γ) ∈ Γ̃ as a word
over the alphabet Σ̃ ∪ Σ̃−1 with

‖γ̃‖
Σ̃,w̃ ≤ C̃N(ζ̃).

Using this word representing of π(γ), replacing each σ̃i by σi to obtain a word over
the alphabet Σ ∪ Σ−1, and evaluating in G give us an element γ̄ ∈ Γ and an element
ζ̄ ∈ g such that 

γ̄ = exp(ζ̄),
π(γ̄) = γ̃, dπ(ζ̄) = ζ̃,
γ = γ̄ exp(tθ) for some real t ≤ CRwj∗ .

The estimate on t is from [55, Theorem 2.10] (together with an application of the
Campbell-Hausdorff formula in our special system of coordinates). By construction,
exp(tθ) ∈ Γ, and [55, Theorem 2.10] implies that

‖ exp(tθ)‖Σ,w ≤ CR = CN(ζ).

It follows that

‖γ‖Σ,w ≤ C ′(|γ̄Σ,w | + CN(ζ)) ≤ C ′(C̃ + C)N(ζ).

The following proposition captures the fact that Nw is almost a quasi-norm (a
quasi-norm at large scale) on G = (Rd, ·) and is a quasi-norm on G• = (Rd,•).
The first fact follows from the adapted triangular nature of multiplication in the the
type of coordinate system considered here. The second fact then follows from the
homogeneity of Nw together with the fact that (δt )t>0 is a group dilstion structure on
G•.

Proposition 9.16 For any exponential coordinate system of the first or second kind
adapted to the filtration gΣ,wj , 1 ≤ j ≤ jg?, we have, for any z, z′ ∈ Rd ,

Nw(z · z′) ≤ C(Nw(z) + Nw(z′) + 1),

where the group law · refers to the multiplication in G = (Rd, ·). Moreover, in the
same linear basis for Rd , we have

Nw(z • z′) ≤ C(Nw(z) + Nw(z′)),

where • is the group law on G• = (Rd,•) associated with the approximate group
dilation δt (z) = (tbi zi)d1 ). �



Chapter 10
The main results for random walks driven by
measures in SM(Γ)

Abstract The goal of this monograph is to establish a functional limit theorem
and a local limit theorem for long-range random walks driven by appropriate proba-
bility measures in SM(Γ). This chapter is devoted to verifying that such probability
measures satisfy the properties set forth in Chapters 5 and 6, properties that were
proved in those chapters to be sufficient to obtain both a functional limit theorem
(Theorem 5.10) and a local limit theorem (Theorem 6.2). This involves using the co-
ordinate systems, approximate group dilations and associated geometries introduced
and studied in Chapter 8 and 9. Explicit examples to which the resulting theory
applies have already been discussed in Chapter 7.

10.1 The limit theorems for SM(Γ)

In this chapter we state our main results concerning measures in SM(Γ). They
are direct applications of Theorems 5.10 and 6.2. We state these results in adapted
coordinate systems. Namely, given µ ∈ SM(Γ) and the simply connected Lie group
G containing Γ as a co-compact discrete subgroup, we choose to write G = (Rd, ·)
using one of the polynomial coordinate systems described in Section 9.5 above. This
coordinate system is adapted to the filtration (gΣ,wj )j of the Lie algebra g, itself built
from the data describing the measure µ as an element of SM(Γ). In particular, in
this coordinate system, we have an approximate group dilation structure given by
(9.3) which defines a limit group structure G• = (Rd,•). The law • = •µ defining
this limit structure depends on µ.

Below,we show that for anymeasure µ ∈ SM(Γ), there are a suitable approximate
group dilation structure (δt )t>0 given by (9.3) and a norm ‖·‖ on Γ so that assumptions
(5.3), (R1)-(R2)-(E1)-(E2) and (TΓ) are all satisfied with the common constant
β > 0. This is in contrast to condition (A) which may or may not be satisfied. Recall
that condition (A) is the requirement that the measure µt = tδ1/t (µ), t ≥ 1, defined
by (4.1) converges vaguely on Rd \ {0} to a measure µ• as t tends to infinity. Because
the dilations (δt )t>0 have been carefully constructed from µ, the family (µt )t>0 is
always tight and, if (A) is satisfied then (T•) is satisfied and the support of the limit
µ• generates G; see the subsection below for the proofs.

Recall that {Px• ; x ∈ G•} is the family of probability measures induced by the
limit symmetric Lévy process X• on D([0,M0],R

d).

103
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Fix an arbitrary increasing sequence of reals Tk that tends to infinity, e.g., Tk = k,
and recall the notation X̂k

t , t > 0, P̂k
t , t > 0, and P[x]k

k
, x ∈ G associated with the

space-time rescaled discrete random walk, see (5.19). In this notation, [x]k is the
closest point of x (any one of, if there are more than one such points) on ΓTk in the
norm ‖ · ‖, and

Pxk (X̂
k
t = y) = µ([tTk ])((δTk (x))

−1 · δTk (y)), x, y ∈ ΓTk .

Hence, applying Theorems 5.10 and 6.2, we obtain the following theorem.

Theorem 10.1 Let µ ∈ SM(Γ). Referring to the above set-up and notation, assume
that condition (A) holds true, that is, the measure µt = tδ1/t (µ), t ≥ 1, defined at
(4.1) converges vaguely on Rd \ {0} to a Radon measure µ• on Rd \ {0} as t tends
to infinity.

(i) For any bounded continuous function f on Rd , P̂k
s f converges uniformly on

compacts to P•,s f . Furthermore, for each M0 > 0 and for every x ∈ Rd , P̂[x]k
k

converges weakly to Px• on the space D([0,M0],R
d) equipped with J1-topology.

(ii) For any U2 > U1 > 0 and r > 1,

lim
k→∞

sup
x∈Rd :‖x ‖≤r

sup
t∈[U1 ,U2]

���det(δTk )µ
([tTk ])
k

(δTk ([x]k)) − p•(t, x)
��� = 0.

10.2 The hypotheses (R1)-(R2), and (E1)-(E2) when µ ∈ SM(Γ)

Using the constructions described in the previous two chapters and the results from
[20], we can now show that any probability measure inSM(Γ) satisfies the hypothe-
ses (R1)-(R2)-(E1)-(E2) in the context of properly chosen exponential coordinates
of the first or second kinds. Let us assume that we are given µ ∈ SM(Γ) and the
associated data Σ, w as in Section 8.2 and quasi-norm ‖ · ‖Σ,w as in Definition 8.10.
We assume that Γ is given as a co-compact subgroup of a simply connected Lie
group G and that an adapted global exponential coordinate system of the first or
second kind has been chosen as explained in Section 9.6 so that Γ ⊂ G = (Rd, ·).
Moreover, (Rd, ·) is equipped with a straight approximate dilation structure

(δt )t>0 : δt (z) = (tbi zi)d1

with the group limit (Rd,•). Here the basis for Rd can also be identified as in Section
9.6 with a linear basis of g which is compatible with the direct sum decomposition
g = ⊕

jg?
1 n j in Definition 9.3. Each subspace n j is associated with a weight value

w j = w
g

j > 2 and for any index i such that the corresponding basis element is in n j ,
bi = w

g

j .
We pick
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0 < b < min{bi : 1 ≤ i ≤ d} = (max{βi : 1 ≤ i ≤ d})−1, βi := 1/bi

and set |γ |Γ = ‖γ‖bΣ,w . By construction, this is a norm on Γ, that is, |γ · γ′ |Γ ≤
|γ |Γ + |γ

′ |Γ for all γ, γ′ ∈ Γ. We also let ‖ · ‖ be a norm on (Rd,•) (i.e., satisfying
the triangle inequality ‖g • g′‖ ≤ ‖g‖ + ‖g′‖ for all g,g′ ∈ G•) that is equivalent to

Nw(z)b = max{|zi |b/bi : 1 ≤ i ≤ d} for z ∈ Rd

and satisfies the homogeneity condition (5.3) with β = max1≤i≤d βi = 1/b. By [37],
such a norm always exists.

By Proposition 9.15, we have a tight comparison between the discrete object | · |Γ
and the continuous homogeneous norm ‖ · ‖ on G• = (Rd,•), namely, there are
constant 0 < c,C < ∞ such that, for any γ ∈ Γ ⊂ Rd ,

c‖γ‖ ≤ |γ |Γ ≤ C‖γ‖. (10.1)

Conditions (R1)-(R2) and (E1)-(E2)

Recall that condition (R1) reads

(R1) There are constants C1 and κ such that, for any bounded function u defined on Γ
and µ-harmonic in B(r) := {x ∈ Rd : ‖x‖ < r}, we have

|u(y) − u(x)| ≤ C1‖u‖∞

(
‖x−1 · y‖

r

)κ
for x, y ∈ B(r/2).

For any µ ∈ SM(Γ), [20, Corollary 6.10] gives the following Γ-version of this
property

(RΓ1) There are constants C1 and κ such that, for any bounded function u defined on Γ
and µ-harmonic in BΓ(r) := {x ∈ Γ : |x |Γ < r}, we have

|u(y) − u(x)| ≤ C1‖u‖∞

(
|x−1 · y |Γ

r

)κ
for x, y ∈ BΓ(r/2).

To pass from this Γ version, (RΓ1), to the desired (R1) we use the key norm
comparison (10.1) and a simple covering argument to adjust the permitted range of
x, y from one statement to the other.

Similarly, recall that condition (R2) reads

(R2) There are positive constants C2 > 0 and β > 0 such that, for all n,m ∈ N and
x, y ∈ Γ,

|µ(n+m)(xy) − µ(n)(x)| ≤
C1

V(n1/β)

(
m

n + 1
+

√
‖y‖β

n + 1

)
, (10.2)
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where V(r) := ]{g ∈ Γ : ‖g‖ ≤ r}.

The fact that (R2) holds true for any probability µ in SM(Γ) follows straight-
forwardly from [20, Theorem 5.5 (3)-(4)] (see also [20, Proposition A.3]), together
with (10.1). Regarding related recent results concerning the regularity of stable-like
transition kernels in the abelian case, see [15].

Regarding the exit times conditions (E1)-(E2), which are expressed using the
norm ‖ · ‖ on Rd , for any measure µ ∈ SM(Γ), they follow from (10.1) together with
[20, Theorem 5.5(5)] (for (E1)) and [20, Lemma 6.6] (for (E2)), with the exponent
β > 0 being in the same as those in (R2). (In these results of [20], β = 1/w∗ there,
where 0 < w∗ := min{w(s); s ∈ Σ}, which is our b; see Example 2.9 and Proposition
2.11(c) there.)

10.3 Condition (TΓ)

Verifying condition (TΓ) for any measure µ in SM(Γ) requires some work. Any
µ ∈ SM(Γ) is a finite convex combination of probability measures of a certain type
and it suffices to prove (TΓ) for any such building block, ν. By definition, any such
probability measure ν has the following property: there is a subgroup H of Γ with
finite, symmetric generating set S, word length | · |S and volume growth exponent
dH , and an exponent α ∈ (0,2), such that

ν(x) �
{
(1 + |x |S)−α−dH if x ∈ H,

0 otherwise. (10.3)

Note that the discrete subgroup H is contained as a co-compact discrete subgroup
in a unique closed connected Lie subgroup L = LH of G. As in Section 10.2, we
assume we have made the choice of an adapted coordinate system for G and of an
appropriate approximate dilation structure (δt )t>0.

Recall that G is described by a polynomial global coordinate chart G = (Rd, ·) in
which the ebesgue measure is a Haar measure for G. Let m ≤ d be the dimension
of L. This closed Lie subgroup can be described parametrically as an embedded
sub-manifold of Rd given by a polynomial map iH = i from Rm into Rd:

v = (v1, . . . , vm) ∈ R
m 7→ iH (v) = (i1(v), . . . , id(v)) ∈ Rd (10.4)

with a polynomial inverse on its image. Assume further that this map i is also a group
isomorphism on its image, that is,

L = (Rm, ·H ) and i(v) · i(w) = i(v ·H w).

In fact, we can use this formula to define ·H on Rm. However, it will be convenient
to assume that L = (Rm, ·) is an exponential coordinate system of the first type for L.

The Lie group L is, of course, nilpotent and simply connected, and we assume
that the global coordinate system (Rm, ·) is an exponential coordinate system of the
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first type compatible with the lower central series of L:

L1 = L ⊃ L2 = [L, L] ⊃ · · · ⊃ Lj = [L, Lj−1] ⊃ · · · ⊃ Lt ⊃ LrH+1 = {0},

where rH is the smallest j such that Lj+1 = {0}. Namely, there is a strictly increasing
rH -tuple of integers k j , 1 ≤ j ≤ rH , k1 = 1, krH = m such that

Lj = {(0, . . . ,0, vk j , · · · , vm) : vk j , . . . , vm ∈ R}.

In this coordinate system for L, the straight dilation

γHt (v) = (t
pi vi)

m
1 , pi = j if k j ≤ i ≤ k j+1 − 1 (10.5)

form an approximate group dilation structure with limit L∗ = (Rm,∗), a stratified
nilpotent Lie group of homogeneous dimension dH with

dH =

rH∑
j=1

j(k j+1 − k j).

According to Pansu’s theorem, see [51] and [13], the word length | · |S has the
property that there is a norm | · |∗ on L∗ such that |γHt (v)|∗ = t |v |∗ for all t > 0 and
v ∈ Rm, and

lim
v∈H , v→∞

|v |S/|v |∗ = 1. (10.6)

Moreover,
|v |∗ � max

i
{|vi |

1/pi : v = (v1, . . . , vm)}.

This implies that for any v ∈ Rm with ‖v‖2 ≤ 1 and r ∈ (0,1] such that ‖γH1/r v‖2 = 1,
we have

‖v‖2 ≤ r . (10.7)

Moreover, for any v ∈ H, if we define tv by ‖γH1/tv v‖2 = 1, then we have

|v |S � tv . (10.8)

By construction, because the probability measure ν is one of the building blocks
of µ, the approximate dilation structure (δt )t>0 has the property that

lim
t→∞

δ−1
t ◦ iH ◦ γHt1/α (v) =: p(v) (10.9)

exists for all v ∈ Rm = i−1
H (L). This limit is uniform on compact sets and the map p

is a continuous map (in fact a smooth map) from Rm to Rd . In the following Lemma,
we consider any approximate dilation structure (δt )t>0 such that the limit in (10.9)
exists.

Lemma 10.2 (The map p is a group homomorphism) Assume that (δt )t>0 is an ap-
proximate dilation structure on G = (Rd, Û), that ν is a probability measure on H
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satisfying (10.3), and that the limit p at (10.9) exists for all v ∈ Rm = i−1
H (L). If we

equip Rm with the limit group structure L∗ = (Rm,∗) associated with the dilations
(γHt )t>0, the map p is a continuous group homomorphism from L∗ to G• (it is typ-
ically neither injective nor onto). Let L∗• = p(L∗) ⊆ G•. For any x ∈ L∗• and u ∈ L,
δtα (x) = p(γHt u). Define γL

∗
•

t on L∗• by γ
L∗•
t (x) = p(γHt u). This is a group of group

diffeomorphisms on L∗• . Namely,

γ
L∗•
s ◦ γ

L∗•
t = γ

L∗•
st and γ

L∗•
t (x • y) = γ

L∗•
t (x) • γ

L∗•
t (y), s, t > 0, x, y ∈ L∗• .

Moreover, for any s > 0, δ1/s ◦ γ
L∗•
s1/α = Id on L∗• . �

Proof We can approximate p(u) • p(v) by δ1/t (δt (p(u)) · δt (p(v))) with t large
enough. Note that

δ1/t (δt (p(u)) · δt (p(v))) = δ1/t ◦ iH ◦ γHt1/α

(
γH1/t1/α (γ

H
t1/α (u) · γ

H
t1/α (v))

)
.

Since, for large s, we can approximate γH1/s(γ
H
s (u) · γ

H
s (v)) by u ∗ v and the con-

vergence of δ1/t ◦ iH ◦ γHt1/α to p is uniform on compact sets, it follows that p is
a continuous group homomorphism from L∗ to G•. The remaining statements are
straightforward. �

Lemma 10.3 Let ν be a probability measure on H as in (10.3) and let (δt )t>0 be an
approximate dilation structure on G = (Rd, Û) satisfying (10.9). Let νt = tδ1/t (ν) and
let Jt the associated jump kernel from Proposition 4.7 with ν in place of µ there. For
any compact subset K ⊂ Rd ,

lim
η→0

lim sup
t→∞

∬
{(x,y)∈K×K :‖x−1

• •y ‖2≤η }
‖x−1
• • y‖

2
2 Jt (dx, dy) = 0, (10.10)

lim
R→∞

lim sup
t→∞

∫
K

∫
B•(x,R)c

Jt (dx, dy) = 0. (10.11)
�

To prove this lemma, note that, for any f ≥ 0,
∬

f (x, y)Jt (dxdy) is dominated
by a constant times

t det(δ1/t )
∑

x ,y∈δ1/t (Γ),x,y

δt (x)−1 ·δt (y)∈H

f (x, y)
1

(1 + |δt (x)−1 · δt (y)|S)α+d
.

The two functions f of interest here are

f (x, y) = 1K (x)1K (y)1{ ‖x−1
• •y ‖2≤η }

(y)‖x−1
• • y‖2

and f (x, y) = 1K (x)1B•(x,R)c (y). The results follow from the facts that µ has the
form (10.3) and that δt is compatible with γH

t1/α in the sense that (10.9) holds true.

Proof (Proof of (10.11)) We need to bound
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I(R, t) = t det(δ1/t )
∑

x ,y∈δ1/t (Γ)

δt (x)−1 ·δt (y)∈H

1K (x)1B•(x,R)c (y)

(1 + |δt (x)−1 · δt (y)|S)α+dH

= t det(δ1/t )
∑

x ,y∈δ1/t (Γ)

δt (x)−1 ·δt (y)∈H

1K (x)1B•(x,R)c (y)1{ | · |S ≤ε(Rβ t)1/α }(δt (x)
−1 · δt (y))

(1 + |δt (x)−1 · δt (y)|S)α+dH

+ t det(δ1/t )
∑

x ,y∈δ1/t (Γ)

δt (x)−1 ·δt (y)∈H

1K (x)1B•(x,R)c (y)1{ | · |S>ε(tRβ )1/α }(δt (x)
−1 · δt (y))

(1 + |δt (x)−1 · δt (y)|S)α+dH

= I1(R, t) + I2(R, t).

The second sum, I2(R, k) is the main term and we treat it first by going back to H.

I2(R, k) ≤ t det(δ1/t )
∑

x ,y∈δ1/t (Γ)

δt (x)−1 ·δt (y)∈H

1K (x)1{ | · |S>ε(Rβ t)1/α }(δt (x)
−1 · δt (y))

(1 + |δt (x)−1 · δt (y)|S)α+dH

=

(
det(δ1/t )

∑
x∈Γ

1δt (K)(x)

) ©«t
∑
z∈H

|z |S>ε(R
β t )1/α

1
(1 + |z |S)α+dH

ª®®®¬ .
The first factor is clearly bounded by a constant depending only on K because Γ is a
co-compact lattice in G so that∑

x∈Γ

1δt (K)(x) ≤ C(K) det(δt ). (10.12)

Using a decomposition by the Dyadic annulus in H, {x ∈ H : 2k ≤ | · |S < 2k+1},
it is elementary to verify that, for all R, t > 1, the second factor satisfies

t
∑
z∈H

|z |S>ε(R
β t )1/α

1
(1 + |z |S)α+dH

� t(ε(Rβt)1/α)−α � ε−αR−β .

This proves that limR→∞ supt≥1{I2(R, t)} = 0.
To finish the proof of (10.11), we show that we can chose ε > 0 such that, for any

R ≥ 1 and t large enough, I1(R, t) = 0. To see that, we will use the description of H
as a discrete subgroup of Rm embedded into Rd via the iH : Rm → Rd , see (10.4),
and the approximate dilation structure (γHt )t>0. A basic fact about this structure is
that, there is a constant C1 such that, for any x ∈ H and t ≥ |x |S , ‖γH1/t1/α (x)‖2 ≤ C1,

where ‖ · ‖2 is the Euclidean norm on Rm. Now, for any x ∈ H, and any t > 0, we
have

N(iH (x)) = tN(δ1/t ◦ iH (x)) = tN
(
δ1/t ◦ iH ◦ γHt1/α (γ

H
1/t1/α (x))

)
.
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For large enough t and ‖z‖2 ≤ C1, N
(
δ1/t ◦ iH ◦ γHt1/α (z)

)
� N(p(z)), because

limt→∞ δ1/t ◦ iH ◦ γHt1/α = p uniformly on compact sets. So, if |x |S is large enough
and we choose t1/α = |x |S , we obtain N(iH (x)) ≤ C2 |x |αS .

Now, consider x, y ∈ δ1/t (Γ) such that x ∈ K , z = δt (x)−1 · δt (y) ∈ H and
|z |S ≤ ε(Rβt)1/α. Because x ∈ K , we have N(δt (x)) ≤ C3t and thus

N(y) ≤ t−1N(δt (y)) ≤ C4t−1(N(δt (x)) + N(δt (x)−1 · δt (y))) ≤ C5Rβ,

that is, ‖y‖ ≤ C1/β
5 R. Because x and y are confined in a compact set (that depends

on R), for t large enough, x−1
• • y is close to δ1/t (δt (x)−1 · δt (y)) so that

‖x−1
• • y‖

β = N(x−1
• • y) ≤ C6t−1N(δt (x)−1 · δt (y)) ≤ ε

αC7Rβ,

which implies 1B•(x,R)c (y) = 0 by taking ε small enough.
This proves that we can find ε > 0 small enough such that, for any R fixed and t

large enough, 1K (x)1B•(x,R)c (y)1{ | · |S ≤ε(Rβ t)1/α }(δt (x)
−1 · δt (y)) = 0. This ends the

proof of (10.11).

Proof (Proof of (10.10)) We need to bound

J(K, η, t) = t det(δ1/t )
∑

x ,y∈δ1/t (Γ)∩K

δt (x)−1 ·δt (y)∈H

1{ ‖ · ‖2≤η }(x
−1
• • y)‖x

−1
• • y‖

2
2

(1 + |δt (x)−1 · δt (y)|S)α+dH
.

On K × K and for t large enough, x−1
• • y is close to δ1/t (δt (x)−1 · δt (y)) so that

J(K, η, t) ≤ t det(δ1/t )
∑

x ,y∈=Γ∩δt (K )

x−1 ·y∈H

1{ ‖ · ‖2≤η }(δ1/t (x−1 · y))‖δ1/t (x−1 · y)‖22
(1 + |x−1 · y |S)α+dH

≤

(
det(δ1/t )

∑
x∈Γ

1δt (K)(x)

) (
t
∑
z∈H

1{ ‖ · ‖2≤η }(δ1/t (z))‖δ1/t (z)‖22
(1 + |z |S)α+dH

)
.

As in (10.12), the first factor is bounded for any fixed compact K . So we are left with
inspecting

J ′(K, η, t) = t
∑
z∈H

1{ ‖ · ‖2≤η }(δ1/t (z))‖δ1/t (z)‖22
(1 + |z |S)α+dH

.

In order to use the dilation structure γHt , we represent H as a discrete set in Rm
which injects into Rd via the map iH : Rm → Rd . Recall that δ1/t ◦ iH (γHt1/α (z)) →
p(z) uniformly on compact sets so that

1{ ‖ · ‖2≤η }(δ1/t (iH (z)))‖δ1/t (iH (z))‖22 ≤ 1{ ‖ · ‖2≤η }(p(γ
H
1/t1/α (z)))‖p(γ

H
1/t1/α (z))‖

2
2

≤ min{η2, ‖p(γH1/t1/α (z))‖
2
2 }
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≤ C1 min{η2, ‖γH1/t/α (z)‖
2
2 }

≤ C1C2 min{η2, t−2/α |z |2S},

because ‖p(v)‖2 ≤ C1‖v‖2 for any v ∈ Rm with ‖v‖22 ≤ 1 and, by (10.7)-(10.8),
‖γH1/t1/α z‖2 ≤ C2t−1/α |z |S . It follows that

J ′(K, η, t) ≤ C3t
∑
z∈H

min{η2, t−2/α |z |2S}

(1 + |z |S)α+dH

≤ C3t
∑

z∈H , |z |S>ηt1/α

η2

(1 + |z |S)α+dH
+ C3t1−2/α

∑
z∈H , |z |S ≤ηt1/α

|z |2S
(1 + |z |S)α+d

≤ C4

(
tη2(ηt1/α)−α + t1−2/α(ηt1/α)2−α

)
= 2C4η

2−α .

This proves that limη→0 lim supt→∞ J(K, η, t) = 0 as desired. �

10.4 Condition (T•) holds automatically for measures in SM(Γ)

The careful reader will have notice that the title of this section needs additional
context because, for a measure µ in SM(Γ) (and a coordinate system as discussed
above), we do have an associated approximate group dilation structure (δt )t>0 and
a limit group structure G• = (Rd,•) but, in general, the family of measures µt =
tδ1/t (µ) does not converge vaguely on Rd \ {0} and thus, (T•) does not make
immediate sense. There is, however, a simple way to correctly interpret the title of
this section.

Lemma 10.4 For any µ ∈ SM(Γ) and associated approximate group dilation struc-
ture (δt )t>0 in a coordinate system as above, and any vague sub-limit µ• of the family
{µt }t>0 as t tends to infinity, condition (T•) holds true. �

To prove this lemma, it suffices to prove the similar statement for each component
ν of the measure µ. So, we assume (10.3). Lemma 10.2 shows that any vague sub-
limit ν• of νt is supported on L∗• and is bounded from above and below bymultiples of
the measure νψ( f ) =

∫
Rm

f (p(u))ψ(u)du for f ∈ Cc(Rd \ {0}), where p : Rm → Rd

is defined by (10.9) and ψ : Rm \ {0} → [0,∞) is given by ψ(u) = |u|−α−dH
∗ . Let

Jψ be the associated jump kernel measure. Then, for any compact subset K ⊂ V , we
claim that

lim
η→0

∬
{(x,y)∈K×K :‖x−1

• •y ‖2≤η }
‖x−1
• • y‖

2
2 Jψ(dx, dy) = 0, (10.13)

lim
R→∞

∫
K

∫
B•(x,R)c

Jψ(dx, dy) = 0. (10.14)
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Proof (Proof of (10.13) and (10.14)) By Lemma 10.2, δt (p(y)) = p(γH
t1/α y). It fol-

lows that∫
K

∫
B•(x,R)c

Jψ(dx, dy) =
∫
K

∫
B(R)c

dνψ(dy)dx

= |K |
∫
Rm

1B(R)c (p(y))ψ(y)dy

= |K |
∫
Rm

1B(1)c (δ1/Rβ (p(y)))ψ(y)dy

= |K |
∫
Rm

1B(1)c (p(γH1/Rβ/α (y)))ψ(y)dy

= |K |RdHβ/α

∫
Rm

1B(1)c (p(y))ψ(γHRβ/α (y))dy

= |K |R−β
∫
Rm

1B(1)c (p(y))ψ(y)dy
R→∞
−→ 0.

For the last step, note that p is continuous so that 1B(1)c (p(y)) is equal to 0 in a
neighborhood of 0 in Rm and thus,

∫
Rm

1B(1)c (p(y))ψ(y)dy < ∞.
Similarly, consider

I(K, η) =
∬
{(x,y)∈K×K :‖x−1

• •y ‖2≤η }
‖x−1
• • y‖

2
2 Jψ(dx, dy).

Write

I(K, η) =
∫
x∈K

∫
{xz∈K :‖z ‖2≤η }

‖z‖22νψ(dz)dx

≤ |K |
∫
{ ‖z ‖2≤η }

‖z‖22 µ•(dz)

= |K |
∫
Rm

1B(C1ηθ )(p(u))‖p(u)‖
2
2ψ(u)du

= |K |
∫
Rm

1B(C1)(δη−θ (p(u)))‖p(u)‖
2
2ψ(u)du

= |K |
∫
Rm

1B(C1)(p(γ
H
η−θ/α
(u)))‖p(u)‖22ψ(u)du

= |K |ηdH θ/α

∫
Rm

1B(C1)(p(u))‖p(γ
H
ηθ/α
(u))‖22ψ(γ

H
ηθ/α
(u))du

= |K |η−θ
∫
Rm

1B(C1)(p(u))‖δηθ (p(u))‖
2
2ψ(u)du

≤ |K |ηθ
(

2
β+
−1

) ∫
Rm

1B(C1)(p(u))‖p(u)‖
2
2ψ(u)du,

where β+ = max{βi} < 2. This integral is finite because 1B(C1)(p(u))‖p(u)‖
2
2 ≤

C2‖u‖22/(1 + ‖u‖
2
2 ) and, using “polar coordinates” adapted to the dilation structure
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(γHt )t>0 on H∗ = (Rm,∗),∫
Rm

‖u‖22
1 + ‖u‖22

ψ(u)du ≤ 1 +
∫ 1

0
r−1+2−αdr,

because ‖u‖2 ≤ r if ‖γH1/ru‖2 = 1 and r ≤ 1 (see (10.7)-(10.8)). �

10.5 Sufficient condition for (A) when µ ∈ SM(Γ)

In this section, we explain why Theorem 10.1 applies to a large class of examples
in SM(Γ) that includes the two main examples described in Section 2.3. To give
sufficient conditions for a measure in SM(Γ) to satisfy condition (A), we proceed
component by component and follow the basic setup of Section 10.3. Namely, we
give sufficient conditions on a measure ν satisfying (10.3) for the family νt = tδ1/t (ν)
to have a vague limit ν• onRd \{0}. Recall that ν is supported on a discrete subgroup
H contained as a co-compact closed subgroup in a closed Lie subgroup L of G. The
groups G and H both have a global coordinate system G = Rd and L = Rm. See
Section 10.3. We consider the following additional conditions:

(SA1) There exists an everywhere defined measurable non-negative function φ on Rm
such that ν(iH (v)) = φ(v), where iH is the polynomial map fromRm toRd defined
by (10.4). For v ∈ Rm, v , 0, we set

φHt (v) = t1+dH /αφ(γH
t1/α v). (10.15)

(SA2) There exists a continuous function ψ : Rm \ {0} → [0,∞) such that

for any v ∈ Rm \ {0}, |φHt (v) − ψ(v)| ≤ η(t)ψ̄(v), (10.16)

where, limt→∞ η(t) = 0 and ψ̄ is locally bounded on Rm \ {0}.
Remark 10.5 By the construction, the function ψ must satisfy

ψ(v) � |v |
−(α+dH )
∗ for v ∈ Rm \ {0},

and
ψ(γH

t1/α (v)) = t−1−dH /αψ(v) for v ∈ Rm \ {0} and t > 0.

Remark 10.6 Regarding hypothesis (SA1), two typical examples are:
(i) The function φ is a continuous function on Rm and µ is defined in terms of φ. For

instance, this covers Example 4.6.
(ii) The function φ may not be continuous but satisfies φ(xy) = φ(x) for all x ∈ H

and y ∈ ΩH , where ΩH is a relatively compact connected fundamental domain
for the action of H on LH = R

m (that is, ΩH is a relatively compact connected
subset of LH so that LH = ∪h∈H hΩH ).
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In this second case, we can define the function φ in terms of µ using the formula
φ(xy) = µ(x) for x ∈ H and y ∈ ΩH . �

Example 10.7 Consider the case when µ(h) = c(1 + |h|S)−α−dH1H (h). Following
Remark 10.6(ii) above, we can extend this function defined on H to a function φ
defined on LH = R

m by setting φ to be constant on the translates of a precompact
fundamental domain. For x ∈ LH , let x̃ ∈ H be the representative of x so that
x̃−1x ∈ ΩH , x̃ ∈ H. Then,

φHt (v) = c(t−1/α + |ĩH (v)|S)−α−dH ,

and, setting ψ(v) = c

|v |
α+dH
∗

, Pansu’s theorem (see [13, 51]) gives

lim
t→∞

φHt (v) =
c

|v |α+dH
∗

= ψ(v).

Furthermore,

|φHt (v) − ψ(v)| ≤ C
t−1/α

|v |α+dH+1
∗

.

Proposition 10.8 Under assumptions (SA1)-(SA2), the measure

νt = tδ−1
t (ν) : νt ( f ) := t

∑
x∈H

f (δ−1
t (x))ν(x) for f ∈ Cc(Rd \ {0}),

converges vaguely on Rd \ {0} to a symmetric Radon measure ν• on Rd \ {0} given
by

ν•( f ) =
∫
Rm

f (p(u))ψ(u)du, f ∈ Cc(Rd \ {0}),

where p : Rm → Rd is defined by (10.9) and ψ : Rm \ {0} → [0,∞) by (10.16). �

Proof This follows by a sequence of algebraic manipulation and approximations as
follows. We use the notations introduced above and drop the superscript H (if there
is one), in particular, d = dH , α, γt = γHt , φ, φt = φHt , ψ, i = iH : Rm → Rd , and
the norm | · |∗ on L∗. For any f ∈ Cc(Rd \ {0}), we have the scaled down copy of H
in Rm

νt ( f ) = t
∑
x∈H

f (δ−1
t (x))ν(x) = t

∑
u∈i−1(H)

f (δ−1
t (i(u)))φ(u)

= t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (δ−1
t ◦ i ◦ γt1/α (u))φt (u)

= t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (δ−1
t ◦ i ◦ γt1/α (u))ψ(u)

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (δ−1
t ◦ i ◦ γt1/α (u))(φt (u) − ψ(u))



10.6 The illustrative case of measures in SM1(Γ) 115

= t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (p(u))ψ(u)

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

( f (δ−1
t ◦ i ◦ γt1/α (u)) − f (p(u)))ψ(u)

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

f (p(u))(φt (u) − ψ(u))

+ t−d/α
∑

u∈γ
t−1/α (i−1(H))

( f (δ−1
t ◦ i ◦ γt1/α (u)) − f (p(u)))(φt (u) − ψ(u))

= Σ1( f , t) + Σ2( f , t) + Σ3( f , t) + Σ4( f , t).

Now, the multivariate Riemann sum Σ1( f , t) of the continuous function f ◦ p × ψ
satisfies limt→∞ Σ1( f , t) =

∫
Rm

f (p(u))ψ(u)du because, for any large real R,

Σ1( f , t) = t−d/α
∑

u∈γ
t−1/α (i−1(H)); |u |∗≤R

f (p(u))ψ(u)

+ t−dH /α
∑

u∈γ
t−1/α (i−1(H)); |u |∗>R

f (p(u))ψ(u).

The first term tends to
∫
|u |∗≤R

f (p(u))ψ(u), whereas the second term is bounded by
CR−α because ψ(u) � |u|−α−dH

∗ . Similarly,
∫
|u |∗>R

ψ(u)du ≤ CR−α and this proves
the stated limit for Σ1( f , t). Using our various hypotheses regarding µ, the limits for
Σ2( f , t),Σ3( f , t) and Σ4( f , t) are easily seen to be equal to 0. �

10.6 The illustrative case of measures in SM1(Γ)

The simplest case illustrating the previous section is related to the treatment of
measures in SM1(Γ) when the building blocks have the form

ν(g) = cα
∑
k∈Z

(1 + |k |)−α−1
1σk (g)

for some σ ∈ Γ ⊂ G, that is, H = 〈σ〉 ⊂ Γ ⊂ G. Here, of course, dH = 1. We
use exponential coordinates of the first kind. Recall that the element σ ∈ H is of
the form σ = exp(ζ) = ζ for some ζ = (ζ1, . . . , ζd) ∈ g = R

d . This is because the
exponential map is the identity in our setup. Define the function φ : V → [0,∞)
by φ(x) = cα(1 + |s |)−α−1 if x = sζ and φ(x) = 0 otherwise so that ν( f ) =∑

y∈{σk :k∈Z} f (y)φ(y). Set φt (x) = cα(t−1/α + |s |)−α−1 if x = sζ and 0 otherwise
so that φ(t1/αsζ) = t−1−1/αφt (sζ). We also set ψ(sζ) = cα |s |−α−1 for s , 0 and
ψ(y) = 0 if y < {sζ : s ∈ R} so that, for each s , 0,
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φt (zζ) − ψ(sζ) = cα
|s |1+α − (t−1/α + |s |)1+α

(t−1/α + |s |)1+α |s |1+α
→ 0 as t →∞.

Assume, in addition, that we are given an approximate dilation structure δt which
can be expressed as δt (x) = (tw1 x1, . . . , twd xd) in the basis of Rd . We want to
understand the limit of tδ−1

t (ν) which is given on a continuous function f with
compact support in V \ {0} by

tδ−1
t (ν)( f ) = t

∑
y=δ−1

t (kζ ):k∈Z

φ(δt (y)) f (y)

= t
∑

y=δ−1
t (kζ ):k∈Z

φ(t1/αt−1/αδt (y)) f (y)

= t−1/α
∑

y=t−1/αkζ :k∈Z

φt (y) f (δ−1
t (t

1/αy)).

Now we need to consider different cases depending on how δ−1
t acts on ζ . Indeed,

δ−1
t (t

1/αsζ) = (t1/α−wi ζi)
d
1 . In order to have a vague limit, we need to assume that,

for every i ∈ {1, . . . , d} such that ζi , 0, wi ≥ 1/α. If that is the case, then

lim
t→∞

δ−1
t (t

1/α(sζ)) = s(ζ∞i )
d
1 with ζ∞i = p(ζ) =

{
ζi if wi = 1/α,
0 otherwise.

Under this assumption (i.e., the approximate dilation structure (δt )t>0 is admissible
for µ), we write

tδ−1
t (ν)( f ) = t−1/α

∑
y=t−1/αkζ :k∈Z

φt (y) f (δ−1
t (t

1/αy))

= cαt−1/α
∑

y=t−1/αkζ :k∈Z

f (t−1/αkp(ζ))
(t−1/α |k |)1+α

+ cαt−1/α
∑

y=t−1/αkζ :k∈Z

[ f (t−1/αkδ−1
t (t

1/α(ζ))) − f (t−1/αkp(ζ))]
(t−1/α |k |)1+α

+ t−1/α
∑

y=t−1/αkζ :k∈Z

[ f (t−1/αkδ−1
t (t

1/α(ζ)))(φt (t−1/αkζ) − ψ(t−1/αkζ))].

Because f is a compactly supported continuous function in V \ {0}, the second and
third sums tend to 0 while the first sum tends to∫

R
cα |s |−α−1 f (sp(ζ))ds =

∫
R
ψ(sζ) f (sp(ζ))ds.



Appendix A
Nilpotent groups

A.1 Definition of nilpotent groups

In Chapter 1, we gave the classical definition of a nilpotent group and we recall it
here.

Definition A.1 A nilpotent group is a group G with identity element e which has a
central series of finite length, that is, there is a finite sequence of normal subgroups
so that

{e} = K0 � K1 � · · ·� Kn = G

with Ki+1/Ki contained in the center of G/Ki for 0 ≤ i ≤ n − 1. See, for example,
[21, Definition 2.3]. �

An alternative definition of nilpotent group uses commutators. For two elements
x, y of a group G, the commutator of x and y is [x, y] := x−1y−1xy. For two subsets
A,B of G, [A,B] denotes the group generated by all commutators [a, b] for a ∈ A
and b ∈ B. See [21, Lemma 1.4] for a collection of commutator identities. The
lower central series of a group G is defined inductively by setting G1 = G and
Gi+1 = [G,Gi] for i ≥ 1. It is a non-increasing sequence of subgroups of G. A group
is nilpotent if and only if its lower central series terminates, that is, there is an integer
r ≥ 1 such that Gi = {e}, for all i ≥ r + 1. The smallest such r is called the nilpotent
class of the group G.

Example A.2 In the Heisenberg group of 3 by 3 upper-triangular matrices with
diagonal entries equal to 1, any commutator of length 3, [M1, [M2,M3]], is the
identity and there are elements that do not commute. Hence the Heisenberg group is
nilpotent of class 2. This applies to either the discrete Heisenberg group H3(Z) with
integers matrix entries or the real Heisenberg groupH3(R)with real matrix entries.�

A.2 Definition of nilpotent Lie groups and Lie algebras

We refer the reader to [22, Sections 1.1 and 1.2] for a short introduction to nilpotent
Lie algebra and connected nilpotent Lie groups. In the case of a Lie algebra (g, [·, ·]),
the bracket [·, ·] is the key structural operation and the descending lower central series
is defined inductively by g1 = g, and gi+1 = [g,gi] for i ≥ 1. The Lie algebra is said
to be nilpotent if there is an integer r ≥ 0 so that gr+1 = {0}. The smallest such r is
the nilpotent class of g. A connected Lie group is nilpotent according to Definition
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A.1 if and only if its Lie algebra is nilpotent. Any simply connected nilpotent Lie
group of topological dimension d can be identified via the exponential map with Rd
equipped with a group law given in coordinate by polynomial function. See, e.g.,
[22, Theorem 1.2.1]. The Campbell-Baker-Hausdorff formula (e.g., [22, Page 11])
expresses the group product in this coordinate system.

A.3 Embeddings into Lie groups

Consider the following two natural questions. When can one embed a finitely gen-
erated torsion free nilpotent group Γ as a co-compact subgroup into a nilpotent
Lie group G? Which connected simply connected nilpotent Lie group contains a
co-compact finitely generated subgroup?

The first question is answered by constructions due to Malcev and P. Hall which
provide such embeddings for any finitely generated torsion free nilpotent group. This
is the subject of [21, Chapter 4]. This result is used in this monograph, both as a
black box, to embed Γ as a co-compact subgroup into a nilpotent Lie group G, and,
more concretely, when we construct coordinate systems.

The answer to the second question is negative (there are connected simply con-
nected nilpotent Lie groups that do not admit co-compact discrete subgroups). See,
e.g., [22, Theorem 5.1.8 and Example 5.1.13]. This result is not needed for the
purpose of this monograph.

A.4 Volume growth

A finitely generated group Γ is naturally equipped with the family of all word
distances. A word distance is associated with a finite symmetric generating set S
(symmetric means that g−1 ∈ S if g ∈ S). The length |g |S of an element g is the least
number m of elements in S that allow to write g as a product g = σ1 . . . σm using
elements σi from S. By convention, |e|S = 0. The associated left-invariant distance
is dS(g, h) = |g−1h|S . Given two finite symmetric generating sets S and T , there are
positive constants a = a(S,T) and A = A(S,T) such that

a|g |s ≤ |g |T ≤ A|g |S for all g ∈ Γ.

The volume growth of Γ with respect to S is

VS(t) = #{g ∈ Γ : |g |S ≤ t},

the number of points in any closed balls of radius m in (Γ, dS(·, ·)). If S,T are two
generating sets as above then there are positive constants b = b(S,T) and B = B(S,T)
such that

bVS(bt) ≤ VT (m) ≤ BVS(Bt) for all t > 0.
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In the case of a finitely generated nilpotent group Γ of nilpotent class r , the behavior
of the volume growth function VS can be understood in terms of the lower central
series Γ1 = Γ, Γi+1 = [Γ,Γi] for i ≥ 1 as follows. The quotient groups Γi/Γi+1 are
finitely generated abelian groups. As any such group, the quotient Γi/Γi+1 is the
product of a finite abelian group and Z`i for some integer `i = rank(Γi/Γi+1) which
is called the torsion-free rank of this abelian group. Set

D = D(Γ) =
r∑
j=1

j rank(Γi/Γi+1). (A.1)

Then there are constant c = C(S) and C = C(S) such that,

c(1 + t)D ≤ VS(t) ≤ C(1 + t)D for all t ≥ 0. (A.2)

See, e.g., [25, Theorem VII.C.26] for references and comments on this result.

If the nilpotent Γ above is a discrete co-compact subgroup of a connected Lie
group G then, for any fixed left-invariant Riemannian metric on G, the Haar measure
|B(r)| of the ball of radius r around the identity element e satisfies

c1rD ≤ |B(r)| ≤ C1rD for all r ≥ 1,

where D = D(Γ) is as in (A.1). The positive constants c1,C1 depend on the choice
of the Riemannian metric.

Example A.3 The Heisenberg groupH3(Z) is a co-compact subgroup ofH3(R). The
elements of H3(Z) with at most one non-zero non-diagonal entry in the the top-right
corner is the center of H3(Z) as well as the commutator subgroup [H3(Z),H3(Z)]. It
follows that the parameter D = D(H3(Z)) is equal to 2+1×2 = 4. Any left-invariant
Riemannian metric on H3(R) has large-scale volume growth of type r4.
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