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ABSTRACT

The purpose of this book is to provide an introduction to period theory

and then to place it within the matrix of recursive function theory.
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According to M. Rontsevich and D. Zagier:

% % % % %

"A period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients

over domains in Rn'given by polynomial inequalities with rational coefficients®.

Ref: Mathematics Unkimited - 2001 and Beyond, Springer, pp. 771-808.



§1. SEMIALGEBRAIC SETS

1: NOTATION Put

Therefore Ralg is the field of real algebraic numbers, so

Q <R c qQ

alg

c

[Note: Viewed as a vector space over (, Ralg is infinite dimensional (the

algebraic numbers vp (p a prime) are independent over Q).]

g is a real closed field and Ralg is the real closure of Q.

[Note: R carries the relative topology per R, hence is totally disconnected,

alg

i.e., its connected components are points.]

3: DEFINITION A subset X c R% is semialgebraic if there are natural

numbers r and Syre--sS, and polynomials
flj' glj € Ralg [Tlr--'rTn]r

where 1 ¢ i < rand 1< J<s;, such that

S.
hey 1
X= U n {xeR“f.&® =0}v {xerRg,.(x > 0}.
. . ij 1]
i~l J=1

4: EXAMPLE RD is semialgebraic.

5: REMARK An algebraic set in R™ defined using polynomials with coefficients

in Ralg is semialgebraic.



: IEMMA The semialgebraic sets are closed under the formation of finite

unions and finite intersections and are closed under complementation.

7: LEMMA If X © R is semialgebraic and Y < " is semialgebraic, then

XXYCRnXRmissemialgebra.ic.

— n ——
8: EXAMPIEIetoERalg,E— (x,...,xn) ERalg then

- n
i v) €R% T Gy, - %)% < 0%}
Ypreesr¥n LA R
n
n 2 2
{(Yll°°'lyn) E R : ii (Yk - Xi) 5 D }
are semialgebraic as are
B n
{(Yl'""yn) € R oomax {yi - x,i! < p}
i=l,...,n
n
{(Yl,...,yn) € R: o omax Iyi - xi[ < pl.
i=l,...,n

{x,y) ER?®: 3n€EN, y = nx}

is not semialgebraic.

10: EXAMPLE

{x,y) € RZ: y = e}

is not semialgebraic.



11: DEFINITION

® A basic open semialgebraic subset of R? is a set of the form

x € £, >0,...,£.(x) >0},

where
fl""'fr € Ralg[Tl,...,Tn].
® A basic closed semialgebraic subset of R? is a set of the form
x e ™ £,(%) 20,...,£.(x) 20},
where
fl,...,fr € Ralgl.Tl,...,Tn].

12: LEMMA Suppose that X is an open (closed) semialgebraic set —— then X

is a finite union of basic open (basic closed) semialgebraic sets.

13: DEFINITION Iet X © Rn, Y <% be semialgebraic sets —— then a

semialgebraic map f£:X + Y is a continuous function such that the graph I'. <X x Y

£

is a semialgebraic subset of R™ x RO

14: SCHOLIUM Iet

Pl,...,Pm

be elements of Ralg [Tl"" ,T n] — then the arrow f£:X + Y defined by the prescription

(Xl"' . ,xn) > (Pl(xl,. .. ,xn) yeoae ,Pm(xl, ... ,xn))

is a semialgebraic map.

[Note: One can replace Pq,...,B by elements



of Palg (Tl, .es ,Tm) provided that none of the

QpreerQy
vanish at any point of X.]
15: EXAMPIE The graph of f(x) = /& is the semialgebraic set
2 2 . . .
{(x,v) €R°: ¥"=x, y >0}, so £ is a semialgebraic map.
16: EXAMPLE If X is semialgebraic, then the diagonal a:X - X x X is a

semialgebraic map.

[The graph of A is the intersection of X x X x X with the semialgebraic set

{xwv,z2):x=y=2}h]

17: EXAMPIE If # # X cR" is a semialgebraic set, then the distance

function x - dist(x,X) is a semialgebraic map.

18: DEFINITION Iet X < R be an open semialgebraic subset -- then an

analytic function ¢:X -+ R is said to satisfy the condition of Nash if there are

elements
A r8ypeeerdy # 0
of Ralg [Tl, vae ,Tn] such that

+ e tad=0,

a, +a 3

R R
i.e., ¢ is an analytic algebraic function. Such a function is necessarily a

semialgebraic map.

19: EXAMPIE Iet X = ]-1, 1[ <R and take ¢(x) = vl - x° —- then

pZ - (L ~x2) =0,



so ¢ satisfies the condition of Nash.,

20: Letx <, x <@,y </, v < ' be semialgebraic sets and
let £:X > Y, £':X' > Y' be semialgebraic maps —— then
f xf:X xX' >»Y x¥Y!
is a semialgebraic map.

PROCF The graph of £ x f' is

{xx",yy,y"):y=£f), y'=1£"x")}

which is the intersection of

{xx',yv,2y'):yvy=£f(x)} = Te % R« g

{(XIX|IYIY|): Y' = f(x') =~ Pf' X Rn X Rm}.

21: THEOREM (Tarski-Seidenberqg) If £ R >R is a polynomial function

(cf. #14) and X © R® is a semialgebraic set, then £(X) is semialgebraic.

22: SCHOLIUM Let X © R™™ pe semialgebraic, H:Rn-Hm +> R? the projection

onto the space of the first n coordinates (or I{:RmJm > R® the projection onto the

space of the second m coordinates) —— then [(X) is a semialgebraic subset of

R? (or Rm)

23: LEMMA Let X < R%, ¥ © R™ be semialgebraic sets and let £:X - Y be
a semialgebraic map — then £(X) is a semialgebraic set.

PROCF T £ is a semialgebraic set by assumption. Now apply #22 to

I‘fCRanmsan-»Rm.



24: APPLICATION If X < &, v < @, z < gt

are semialgebraic sets and if
f:X +~ Y, g:Y¥Y = Z are semialgebraic maps, then g ¢ £ is a semialgebraic map.
[In fact,

Ty g = Uy x9) (1]

25: N.B. It follows that there is a category whose objects are the semi-

algebraic sets and whose morphism are the semialgebraic maps.

26: REMARK Iet S, X, Y be semialgebraic sets and let £:X + S, g:¥ + S

be semialgebraic maps --— then the fiber product X Xs Y of sets is a semialgebraic

set and is a fiber product in the category of semialgebraic sets and semialgebraic

maps.

27: LEMMA The inverse image of a semialgebraic set under a semialgebraic
map is a semialgebraic set.
PROOF Iet X © Rn, Y © Rm, Z <Y be semialgebraic sets and suppose that £:X + Y

is a semialgebraic map. Write

1@ = 1w, n ® x 2)

and apply #22.

28: N.B. The converse of this lemma is false.

[The exponential function exp;R + R is not semialgebraic but does have the

property that the inverse image of a semialgebraic set is a semialgebraic set.]

29: THEOREM Suppose that X is a semialgebraic set -- then the semialgebraic

maps X + R form a ring under pointwise addition and multiplication,



30: IEMMA If X < Rn is a semialgebraic set, then the closure, the
interior, and the frontier of X are semialgebraic.
31l: EXAMPLE Take
X = {x € R: (x°=l) (x=2)% < 0}.
Then X = [-1,1] but

{x € R: (x>-1) (x-2)% < 0} = X U {2}.

Ref: Real Algebralc and Semialgebraic Sets, R. Benedetti, J-J Risler,
Hermann, 1990.

Ref: Real Algebraic Geometfry, J. Bochnak, M. Coste, M-F Roy, Springer, 1998.



§2. PERIODS: DEFINITION AND EXAMPLES

1: NOTATION SA” is the set of semialgebraic subsets of R* with a non-

empty interior.

2: DEFINITION A real number p is a period in the sense of Kontsevich-
Zagier if

e In €N,

e 3xeSA,

® IPQER, IT), ..., T] Qg # 0)

such that
P{ cee,X)
_ P, - Epre-r¥y
P=1&g =y gm,ox) T
., P
= IXE). (_if)d{

is an absolutely convergent integral, dx = Xm v dxn being Lebesgue measure.

3: NOTATION Write

PKZ

for the set of periods in the sense of Kontsevich-Zagier.
[Note: We shall work exclusively in the real domain, a period in the complex
domain being a combination p; + Y1 Py, where p,,p, € PKZ']

4: LFMMA



[Take p € Ralg’ p >0 - then

p= f0<x<o 1 dx.]
S: EXAMPLE Suppose that p € Ralg’ p > 1 — then
_ o dt
[Note: Observe too that
p dt _
fl <= fl<x<p 1 dxdy.]
O<xy<l
6: EXAMPLE Consider
S 1 dxdy
x2+y2_§l
to see that m € PKZ'
1

[Tt is unknown whether = € PKZ or not.]

™

dx

[38]
N

€ PKZ'

Co
X3

EXAMPLE Take for S the square

0<x<1l

o
IA
<
In
=

Let



2

if x° + y% > 0 and set £(0,0) = 0 — then f is not integrable.

then the iterated integral
ax gy
0 5 o 2
(x"+v7)
would exist (Fubini). But for x # 0,

7 W= 5

0
(x>477)

2 (x%1)

and this function is not integrable in 10,1].

[Note: Replace

2 2 °
2 2 2
(x"+y") (x+y2)
Then
1 1 T
fodxfO f(x,y)dy=;l-
1 1 T
~ fO dy fO f(x,y)dx=—z.]

fl Xy 1 X

For if it were,



§3. PERIODS: ALGEBRAIC CONSIDERATIONS

It was pointed out in §2, #4 that

Ralg c PKZ'

Of course Ralg is a comntable field. And:
l: ILemA PKZ is countable.

PROOF V n € N, Ra Tl,...,'I‘n] is countable, hence Ralg(Tl"”’Tn) is

lg[
countable, as is SAn, hence PKZ is countable.
[Note: Consequently "most” real numbers are not periods. And if a real

number is not a period, then it is transcendental.]

: REMARK It is unknown if PKZ is a field (but PKZ is an Ralg algebra

(see #8 below).

3: DISCUSSION Suppose that

p=1X3 =/, & (xd& (cE. 52, $2)

0 X0
and
P (o9
Iy | § @lax <=,
hence
P -
Iyl 5 @lax=0
iff
P

| 5 & =0



almost everywhere, thereby forcing p = 0.

4: NOTATION Given a measurable subset X < R, let

Voln(X) = K 1l dax ...dxn

1
= S lax.
5: EXAMPLE Consider the n-simplex A —— then
voln(An) = r% .
6: EXAMPLE Consider the n-ball B" — then
n
vol_(B") = —I’Iz— .
I'(Q‘ + 1)
7: IEMMA Let p € R —— then p € P, iff for some d € N, there exist dis-

d

joint semialgebraic sets Xl < R7, X, €< Rd of finite volume such that

2
p = VOld(Xl) - VOld(XZ) .

PROOF It can be assumed that p # 0.

e Given p € P, put

P _
X+={§eX:sgn§(§)—+l}

P
X_={§€Xzsgn§(§) = -1},

a disjoint partition of X (to within a set of measure 0) (cf. #3) - then

P

- Py _ P



Now introduce semialgebraic sets

X, = {(x,t) €X x R:t >0, ts%(g}

X, = {(x,t) €X x R:t < 0, tzg(x)},

™2
from which
T oI, D = 1adt
4+ 0 X, =
I(X, -2=/ 1 dxdt
_ -0 X -
2
Therefore
— T P, _ _
p= I, 5 = le 1 dxdt fX2 1 dxdt

= voln +1 (Xl'), - VOl'n‘. 43 (X2)...
Matters are thus settled with the choice d = n + 1.

® Suppose that

the claim being that p € PKZ' To see this, write

p=J, Lax...dx, -/, 1d

X, 1 T Uy, 1
=/ (Y 2tavyax,...ax. + o 9. 2tat)ax....dx
x, Yo 1Py Vo SRRt
- leuYz 2tdtdx, . . .y,

where



are disjoint semialgebraic sets in Rl X Rd. Therefore p € Pkz

8: THEOREM PKZ is an R alg algebra.
PROCF There are two issues:

Stability of the product of two periods

Stability of the sum of two periods.

® (Product) Given

P P2
p, = /. (x,)dx%,, p, = [ (x )dx
1 X Ql 3/7 3 P T ox Q2
write
o d d
prol:R R 2, R L
d d d
pro.,:R R 2, R 2
and define
a d
F:R © xR 2 >R
by
Py P
F(xllxz) = 'QI ° prol(xllxz) . 6_2_ Q proz (}_illxz) .
Then
fg o g, F & rXp)ax,dx
1 2
P P
= (le (Xl)dxl) (fX Q2 (x2)dx)

PPy



e {(Sum) ILet PPy €EPR bPer 47, write_,

KZ.

P = voldl(Xl) - Voldl (X2)

Py = voldz (¥) - vold2 (¥,),

are semialgebraic and
Xl ﬂX2=ﬁ, Yl ﬂY2=,G.

There is no loss of generality in assuming that dl = d2 =d (if, e.q., dlv< d,,
k

let k = d2 - dl and work with Xl X [0,l]k, X2 x [0,1177). This said, it then follows
that
Pt Py = vold(xl) + vold(’fl) - vold(Xz) - vold(Yz)
or still,
Py + Py = VOld(Xl U Yl) + vold(Xl N Yl) - vold(X2 U Yz) - '\'f<:>ld(X2 N YZ)'
Put
Wl':«Xl qu, W2=X2 UY2
B zllenyl, Z2=X2F)Y2
and let e I I, Jy © R be disjoint open intervals of length 1 with endpoints

:.nRalg——then

Py + Py = volgyy (0 x I;) U (Z) x Jp))



- vold+l((W2 X IZ) U (22 X JZ)).
Here

(W x I;) U (Z; xJ9)) 0 (W, % 1) U (2, xJ,))

= g.
In addition

(Wl X Il) U (Zl X Jl)

(W, x 1,) U (2, * )

are semialgebraic subsets of RdJr:L , thus to finish it remains only to quote #7.

X
9: APPLICATION Let x € R; , P € Py, == then

x+pEPKZ

Xp € PKZ .



§4. PERIODS: THEORETICAL CONSIDERATIONS

1: THEOREM Let
p= I(x,-g—) x € SA

be a nonzero period —— then there are campact semialgebraic sets K

1re-- iK€ SAY,

polynomials

Pl,oco ,Pm E Ralg[Tl,oa .,Tn]

Ql""'Qm € Ralg[T ""'Tn]

with Ql}Kl # 0,...,QmIKm # 0 such that

p m P

_ i
i=1 9
[This result is due to Juan Vin-«Soer. Its proof is difficult, depending, as

it does, on Hironaka's rectilinearization of semialgebraic sets.]

2: N.B. The integrals

Py
I(K.,=)
1’(,).:;"j

are absolutely convergent.

3: LEMMA Let
P n
p= “X'Q’) (x € SAY)

be a nonzero period - then there are compact semialgebraic sets S and T in san+L

T arxiv: 1509.01097 . [math NT].



such that

p= voln 8 - voln +1 (D .

PROOF Proceed as in 83, #7 (necessity), thus

P, _ P, _ P
I(Xrﬁ) = I(X+r _Q_) X, - 5)-
Per #1, write
— m +
+ P.
P, _ + i
I(X+, Q‘) - E I(Kll _+)
i=1 Q.
i
m ——
— P.
Ix_, - o= & I, =)
i=1 Q
or still,
— . m,
IxX, = Z S, 1 dxdt
v T T F
m—
Mx, -z =% J_lax
| i=l L,
i
or still,
— m
+
I(X, 2 = L vol_.(Lh
+' Q i=1 n+l i
m— -
Ik, -9 =1 VOl
— 0 i1

vhere LI, L; € 3An+l are compact. Working with semialgebraic translations, it can

be arranged that the LI are pairwise disjoint and the LI are pairwise disjoint.



Put now
m, . m_ _
S= U L,,T= U L, .
. i . i
i=1 i=
Then
_ P
m, . m_
= % wol. ., (I:) - &£ wvol_,.(L.)
i=1 n+l i i=1 ntl i
m, . m_ )
= vol (U L.} - vol (U L))
n+1 i=1 i n+l i=1 i

= voil_n+1 (8) - voln+1 (T) .

&

THEOREM Let p € P, (p # 0), say
p= I(x%) x € s .

'I‘henthereexistsacanpactKESAk (0 < k <n -+ 1) such that

p = sgn(p) - vol, (K).

It can be assumed that p is positive and in the notation of #3,
0 < voln+l(‘l‘) < voln+l(8) .

The point then is to construct a compact semialgebraic set K from § and T so as

to arrive at

p=volk(K) (0<k<n+1).

While *elementary", the details are tedious and will be amitted.



5: EXAMPIE 112 is the 4-dimensional volume of the product of two copies

of the unit disk and the 3-dimensional volume of the set
{x,y,2) € R + y2 <1, 0¢ Z((x2 + yz)2 +1) <4}

6: DEFINITION let p € PKZ (p # 0) —— then the degree of p, denoted

deg(p), is the smallest positive integer k such that
lp| = vol, () (x € SA¥, K compact) (cf. #4).
[Note: Take deg(0) = 0 and in the complex daomain, let

deg(p; + v-T p,) = max{deg(p;), deg(p,)}.]

7: EXAMPLE

deg(m) = 2.
[In view of 82, #6, deg(m) < 2. On the other hand, the fact that 7 is trans-

cendental rules out the possibility that

deg(m) =1 (cf. #9 infra).]

8: REMARK It is conjectured that V n € N,

deg(nn) =n + 1.

. X
9: LEMMA deg(p) =1 iff p € Ralg'
[Since K is campact semialgebraic, it can be written as a finite disjoint
union of points and open intervals. In the other direction, any nonzero p € Ralg

can be written up to sign as the length of [0,p] (cf. §2, #4).]



and

10: APPLICATION A period p € pKZ is transcendental iff deg(p) > 2.

1l: LEMMA Let PyrPy € By = then

o deg(p, + py) <max{deg(p), deg(p,)}

12: RAPPEL PKZ is an Ralg algebra (cf. 83, #8).

=
13: LEMMA Iet x € Ry p € Py Assume: pERalg——then

deg(x + p) = deg(p).

[In fact,

i

deg (p) deg(~ x + x + p)

A

max{deg (- x), deg(x + p)}

Il

max 1,{deg(x + p)}

Il

deg(x + p)
< max{l, deg(p)}

= deg(p).]

X
14: L&mzetxeRalg,pepKz. Assume: pféRalg——»then

deg (xp) = deg(p).

[consider V{x| € Ry, (k = deg(p)).]

Period theory leads to some transcendental conclusions.



15: THEOREM Let PPy be transcendental periods. Assume:

deg(p;) # deg(p,).
Then Py + Py is a transcendental number.
PROOF Assume false, so
deg(py + P,) = 0 or deg(p) + p,) = 1.
But
deg(p; + py) =0 =>p; +p, =0=>p =~ p,=>deg(p;) = deg(p,),
leaving
deg(p; +p,) =1,

X X
thus pp+ P, € Ralg (cf. #10), say pp+tp,=xE€ R

alg’ from which

deg((-1)p,) (cf. #13)

deg(Pz) (c£. #14).

Contradiction.

16: EXAMPLE It is conjectured that e + 7 is transcendental. Recalling

that deg(m) = 2 (cf. #7), suppose for sake of argument that e € PKZ and deg(e) > 3,

hence deg(e) # deg(m). Recalling that e and T are transcendental, it follows that

e + T is transcendental.

[Note: Nevertheless, the conjecture is that e is not a period.]

17: THEOREM Iet Py P be transcendental periods. Assume:

deg (py) # deg(p,).



Then pl/p2 is a transcendental number.

[For pl/p2 =X € R;lg implies that

deg(pl) = deg(xpz) = deg(pz) .l



§5. PRIMITIVE RECURSIVE FUNCTIONS

l: N.B. In this § (and all subsequent .ones}, N will stand for

{0,1,2,...} and not {1,2,...}. Elements of N will be denoted by x,y,z or

a,b,c or n,m,k,L.

2: N.B. In what follows, it will be a question of functions £:0° » N

(n=0,1,2,...).

3: DEFINITION

® The zero function Z:N > N, 2(x) = 0.

® The successor function S:N + N, S(x) = x + 1.

. . . n .n _
® The projection functions Pi'N + N, P?(xl,.. . ,xn) =X,

[Note: These functions are the so—-called initial functions.]

4: EXAMPLE Constant functions are built up from S and Z:

S(Z(x)) =1, S(S(2(x))) = 2 etc.

5: EXAMPLE The addition function add:N2 + N is defined by

add(x,y) = x + v.
Here
add(0,y) =y, add(x + 1,y) = S(add(x,y)).
[Note:
S => add.
For

X+y=x+1+1L+ .- +1 .]
[ I
y




6: EXAMPIE The multiplication function ml: N2 + N is defined by

ml (x,y) = Xy.

Here
mul(0,y) = 0, mul(x + 1,y) = add (mul(x,v),y).
[(Note:
add => mul.
For
Xy =X+ X+X+ 00 +X
I . (]
Y
7: DEFINITION The modified subtraction function s;.ub:N2 > N is the pre-
scriptibn
Xx-yifx 2y
sb(x,y) =x ——y = » 0 if x <y.
8: EXAMPLE The absolute value function AV:N2 + N is defined by
AV(x,y) = |x - y]
and

Ix ~y] =addx —vy, vy = x).

= minimum = min:N® + N
9: EXAMPLE The function
_ maximum _ mas:N? > N
is defined by
min(x,y) = X —(——y) =y —(y.— x)

1l

max {X,v) v+ E——vy) =x+ {y —X).



10: EXAMPLE The identity function idN can be obtained from S and Z

and sub:

S(x) —— 8 ° z2(x).

1l: DEFINITION Given a function g: N + N and given functions hi:Nn -+ N

(i=1,...,m), the conposition of g and the hi is the function £:N*' - N, denoted by

g e (hyseanrn),

such that

f(xl,...,xn) = g(hl(xl,...,xn),...,hm(xl,...,xn)).

12: EXAMPIE Take m = 2, g:Nz-*Nandtaken:Z, hl=P§,h2=P§—-—then

£=g o (P2, P
is given by
£(x.,%.) = q(P2 (%+,%x.), P2(x,,%.))
1r¥p) T G R aX )y By KXy
=g(x2,xl)-

13: DEFINITION Suppose that g:wal + N, h: N1 5+ N — then the function

£:N" > N is said to be obtained by primitive recursion from g and h if

f(O,xz,...,xm) = g(xz,...,xm)

and

flx + l,xz,...,xm) = h(x,f(x,xz,...,xm), xz,...,xm)

for all XXy pen e ¥y € N.



1l4: EXAMPIE Take m = 1 — then £:N » N is obtained from the constant
c €N (g(0) = c) and h:N2 + N by primitive recursion of £(0) = ¢ and f(x + 1) =

hix,£(x)).

15: DEFINITION If F is a set of natural number functions and if Q is
a set of operators on natural number functions, then clos(F,) is the inductive
closure of F with respect to @, i.e., the smallest set of natural number functions

containing F and closed with respect to the operations of .

16: DEFINITION The set of primitive recursive functions, denoted by PR,

is the inductive closure of the initial functions with respect to the operations

of composition and primitive recursion.

17: EXAMPLE The factorial function is primitive recursive:

2

0t =1, m+1)! =mil e (S o P, pg) (n,nt).

18: REMARK All the functions encountered in this § are primitive recursive

(but see below).

APPENDIX

Define the Ackermann function A:N2 + N by the following equations:

AOn) =n+1

Am + 1,0) = A(m,1)

Il

Am+ l,n+"1) = AmAm+ 1,n)).

Then A is not primitive recursive.



§6. ELEMENTARY FUNCTIONS

: N.B. All conventions introduced in §5 remain in force.

: DEFINITION Iet f(t,xl,... ,xn) be a function with n + 1 arguments.

® Dbounded summation is defined by

z f(t,xl,...,xn) = f(O,xl,...,xn) + eee + f(x,xl,...,xn).
tx

e bounded product is defined by

I f(t,xl,...,xn) = f(O,xl,...,xn) X eee X f(x,xl,...,xn).
t<x

3: DEFINITION The set of elementary functions, denoted by EL, is the

inductive closure of the initial functions, the addition, the multiplication,
and the modified subtraction with respect to the operations of composition,

bounded summation, and bounded product.

_:T[-IEOREM

EL < 23.

[Note: The containment is strict. Consider, e.g.,

X
£(x) = x5 .1
5: EXAMPLE
lifx#0
sg'n(x) = =1 - (1 -—x)
0ifx=0

is elementary.



6: EXAMPLE
lifx >y
> (%,y) = = sgn(x ———y)
0if x <y
is elementary.
[Ditto for >, <, .<.]
7: EXAMPIE
. 0 X
div(x,y) = l T ‘
is elementary.
{In fact,
X
div{z,y) = ( & 2 x,i(y +1))) — 1.]
i=Q
8: EXAMPLE
m
pow(n,m) = n

is elementary.
9: NOIATION Given a set F of natural number functions, let

¥ o n

F*=Fu{p}

and put
clos(F) = clos(F*, {composition}).

[Note: Here, in the notation of §5, #13, Q@ is the operation of composition.]

10: THEOREM
EL = clos(s, sub, div, pow).



T

[This result is due to Stefano Mazzanti

11: DEFINITION The set of lower elementary functions, denoted by £EL,

is the inductive closure of the initial functions, the addition, the multiplication,
and the modified subtraction with respect to the operations of composition and

bounded summation.
12: N.B. Obviously
LEL < EL.
[Note: The containment is strict. Consider, e.qg.,

£(n) = 2.1

T Mathematical Logic Quarterly 48 (2002), pp. 93-104.



§7. HIERARCHIES

Here is an approach to B e N , the nth set in the Grzegorczyk hierarchy.

[Note: Recall that n runs through 0,1,2,... and not 1,2,... .]

1: NOTATION Put

I

)‘:'0 x,v) =x+1, fl(x,y) =x+vy, f2 (x,v) XY,

£ &0 =1 £, &ytl) = £ &£, &7y) @022).

DEFINITION FE° is the inductive closure of the initial functions

2:
and the nth fn with respect to the operations of composition and bounded primitive

recursion.

3: N.B. Suppose that g:Nm_l > N, haN®T sy, 5:N" > N are in £, that

f is obtained by primitive recursion from g and h, and in addition,

f(x,xz,. .. ,xm) §_ 3 (x,xz, . .,Xm) .

Then £ is in E" as well and f is said to be obtained by bounded primitive recursion

fram g,h,j.

s

: REMARK If g and h belong to £ and f is obtained by primitive recursion

from g and h, then f belongs to En+l.
5: THEOREM VY n € N, 2 is a proper subset of En+l.

6: THEOREM V n € N, E° ¢ PR and

uE® = pR.
n



Therefore the sets

£, 8-, 2 -, 2-T

partition PR.
7: THEOREM
B = EL.
8: THEOREM

£2 5 ZEL.

[Note: It is not known whether all functions in E?‘ are lower elementary.]

9: N.B. For the record, LEL is the inductive closure of the initial
functions, the addition, the multiplication, and the modified subtraction with

respect to the operations of composition and bounded summation.

10: N.B. For the record, E2 is the inductive closure of the initial

functions, the addition, the multiplication, and the modified subtraction with

respect to the operations of composition and bounded primitive recursion.

11: LEMMA Bounded summation can be derived from bounded primitive

recursion.

Consequently

E% s EL.



§8. COMPUTABILITY

Iet F be a set of natural number functions.

1l: DEFINITION F is said to satisfy the standard conditions if it contains

the initial functions, the addition, the multiplication, and the modified sub-

traction and is closed under composition.
2: N.B. Both £EL and E2 satisfy the standard conditions.

In what follows, it will be assumed that F satisfies the standard conditions.
[Note: One consequence of this is that F necessarily contains all polynomials

with coefficients from N, in particular, F contains the constant functions.]

3: DEFINITION An F-sequence is a function A:N + Q that has a representation

of the form

=i -9&) -
A(X) —m—_i_—l—" (X—O,l,2,...),

where f£,g,h:N - N belong to F.

: EXAMPLE Every rational number g gives rise to an F-sequence A:N - Q,

viz. V x, A(x) = g.

[Suppose that x = —z—and consider the situation when r > 0, s > 1.

¢ s=1 Set f(x) =r, gx) =0, h(x) = 0, hence
E®) =g _ .
h(x) +1 :

® s >1 Set f(x) r, gx) =0, h(x) s — 1, hence



fx) ~gx) _r 1
hx) +1 s
5: SUBLEMMA If f,g are one-argument elements of F, then
f+g€F £-g€EF.
[Consider
add 8 (f,9), mul ° (£f,9),

bearing in mind that F is closed under composition.]

6: LEMMA If A,B:N + Q are F-sequences, then so are A + B, A - B, and

: SUBLEMMA If h is a one-argument element of F, then |h| € F.

[The fact that the modified subtraction function belongs to F implies that the

absolute value function belongs to F (cf. 8§85, #8).]
8: ILEMMA If A:N ~ Q is an F-sequence and if V x, A(x) # 0, tnen% belongs
to F.

[In fact,

1 _ (hx) +1)fEx) - hx) +1)g(x)

= _]
Ax) | lfx) - g [% - 1] +1

9: DEFINITION A real number o is said to be F—computable if there exists

an F-sequence A:N + Q such that Vv x,

1

|A(x) = ol < T -

[Note: In practice, it can happen that the relation

2) - al < T



is valid only for x > x To remedy this, let

0
A(0) = A(xo), A(l) = A(xo), ceey A(XO -1) = A(xo).
Then for 0 <x gxo—l,
1 1
A - of = Ak, - of '<'x0+l ST )

10: NOTATION Denote the set of all F-computable real numbers by the
symbol RF’

11: N.B. The constant functions from N to  are F~computable, hence

Q < RF (in particular, -1 € RF)’

12: EXAMPLE Take for F the set PR of primitive recursive functions ——
then the F-computable real numbers are the primitive recursive real numbers.
[To arrive at RF = R, take instead for F the set of all natural number

functions.]

13: LEMMA If A is an F-sequence and if ¢ is a one-argument element of
F, then the assignment x -+ A($(x)) is an F-segquence.

[For

£(60)) = g(9(2))

RO = =RGmyy T

Il

_(E° 9)(x) = (g° 9)(x)
e +1

and F is closed under composition.]

14: APPLICATION Suppose that A is an F-sequence and o is a real number.

Assume: x|A(x) - o is bounded -— then o € Ree



Then

PROCF Choose a positive integer ¢ such that Vv x,

x[A(®) - o] <c.

¢ _ 1
[Alex +0) - of < cx+c x+1°

[Note: In #13, take ¢(X) = cx + c.]

15: THEOREM R. is a field.
We shall break the proof up into two parts.

PART 1 Iet OL,BGRF‘--' then

|Ax) +B®) - (o+ 8| s [AK) - o] + [B(x) - 8]

A

4N
+
|

x|(AX) +B() - (a+ B)|-<

=>0¢+6ERF

Ax)B(x) - aBl < |AX) - o] [B®) | + |a] |Bx) - B8]

{ A
™

+|+

|-
o+
e

x|A(x)B(x) - oB] g;{—f—I (el + 1+ la])
< B[+ 1+ o

=> OL_B € RF.



PART 2 Iet o # 0 and choose ¢ € N such that (c + 1) || > 2 — then

VX >c,

A | 2 o - Jo-a6)] > g 20 -

=> A(X) # 0

and

_Je-Am| __a
Al Sx+I’

! 1 1
Ax) o

where a = (c + 1) 2/2. Define now a function C:N » ( by the prescription

Cck) =K(—k—é—5r k+c>c=>Ak +c) #0).

Then C is an F-sequence and

1 a
et -3l s gvewT

1 ka
klct) -5l s gvovT
a
=____<a
c , 1~
L+g+g
1

In summary: RF is a field.

16: DEFINITION Suppose that f:Nk-*-l > N == then the minimizer uf of £

is the function

(%o X% yg) > minGd € NefGe,ennii,d) =0V § = x, b



[ Note: Spelled out,

uf (Xlr ses ixklxk+1)

is the least j < % 4q Such that
f(xlr'--.'xklj) = 0
if such a j exists, otherwise

e R L L e

if for every j <% .4/

£&yreeax ) > 0.]

17: N.B. To say that F is closed under the minimizex operation simply
means that

fer=>uetf.

8: THEOREM Suppose that F is closed under the minimizer operation. Let

C‘O # 0, @l:-'-zc’k_lr & € RF-
Then the real roots of the polynomial
— “l » e a
P(X) = OLOXk + 0 + + oﬁ{*_lx + o
belong to RF‘

PROCF Let  be a real root of P and without loss of generality, assume that
P'(r) # 0. Choose rational numbers a,b,c,d such that a < ¢ < b, 0 < ¢ < d subject
to

c|lx =] < |PX)] < d]xX - ¢]

whenever a < X ¢ b. Establish the notation:

AQ K> Oqr Al S O‘l’ veny Zﬁ(——l > O‘k«-l’ Ak > O



and introduce the polyncmials
B (X) = A ()X + A GOX T 4 e A WX A ) (x=0,1,2,...).
Choose g € Q:
P X) - P(X)| <21 @ <X <h).

Define now a function A:N + g via the following procedure. Given any x € N,
divide [a,b] into x + 1 equally long subintervals. ILet MX be the set of mid-

points of these subintervals, there being at least one X € Mx such that

d(b-a) + 29
Pe® | < =Sy
Proof: Choose X € MX:
b~-a
L IR

P, )| < [PR)] + 3

x+ 1
b-a q _d(a) + 2
AT trIICC amF D

Iet A(x) € M be the left most element of M with the property that
d(b-a) + 2gq
IPX(A(X))I < “‘—”__“““2(}{ F1) !

clax) - ¢l |P(a(x)) ]

A

3A

d
P ) |+ L

d(b-a) + 4dq
2(x+ 1) °

A



Therefore the product x|[A(x) - | stays bounded as a function of x. Accordingly,
recalling #14, it remains only to show that A:N - (Q is an F-sequence. To this
end, note that

where ¢(x) is the smallest j € {0,1,2,...,xX} such that

27 +1 d(b-a) + 2g

[Ppla+ ) 53 | s v

or still,

¢(x) = min{j € {0,1,2,....x}:

v 2] +1 q'
[P @+ (b-a) 5305)| - =21 <0},
q' =d(-a)/2 + g. Since
2j + 1 k 25 + 1.k-i
P (a + (b-a) 2)=ZOA(X) @+ (b-a) 5—==)"

the function

2]+l)
2x + 2

x->P (a + (b-a)

defines an F-sequence for each j, hence can be represented in the form

£(x,3) - 9,3
h(x,j) + LI °

X >

Put
®(x,]) = £(x,3) —g(x,3),
thus
¢ (x) = min{j € N:0(x,j) =0 v j = x},

so ¢ € F and this implies that A:N » Q is an F-sequence.



19: APPLICATION

Ralg < RF (c R).

[In other words, every real algebraic number is an F-computable real number.]

20: REMARK It is a fact that the minimizer operation can be derived

from bounded summation, hence LEL and E2 are closed under the minimizer operation

(cf. #2).

2l: THEOREM Suppose that F is closed under the minimizer operation —--

then RF is a real closed field.

PROCF RF is an ordered field. And:

e Every polynomial of odd degree with coefficients in RF has at least
one root in RF.
[Since all data is real, on géneral grounds such a polynomial has at least
one real root . And, in view of #18, ¢ € RF']

e If o >0 is an element of R, thenonhasasquareroot/&inRF.

[As a positive real number, vo is a root of the polynomial X2 - o. But the

coefficients of this polynomial are in Ry, hence by #18, V& belongs to Rg.]



§9. THE SKORDEV CRITERION T

Given a set F of natural number functions, assume as in §8 that F satisfies

the standard conditions.

1l: DEFINITION An F-2-sequence is a function A: N2 + ( that has a rep-

resentation of the form

f(x,n) - g(x,n)

Axm) = = e o+ 1

(xmn=20,1,2,...),
where £,9,h:N> + N belong to F.

2: DEPINITION A real valued function a:N + R is said to be F-computable

if there exists an F-2-sequence A: N2 + Q such that v x, vn,

1
x4+ 1"

|A(x,n) - a@)| <

3: N.B. It is clear that v n € N, the real number a(n) is F~computable
(cE. 88, #9). On the other hand, if v n € N, a(n) is F~computable, then there
exists an F-sequence A (x) such that v x,

1
x+ 17

|A () «am)] <
so setting
A(x,n) = An(x)

leads to the conclusion that o is F-camputable.

4: METHODOLOGY Given an F-sequence A:N -+ Q, view it as a function

a:N -+ R = then ¢ is F-computable, i.e., there exists an F-2-sequence A:N2 + Q

TTowtnal of Unéversal Computes Science 14 (2008), pp. 861-875.



such that

|axmn) - a) | <5 _J|‘_ T -
Thus let

A(x,n) = A(n)
to get

|A(x,n) - a@) | = |A(M) - AM) |
1
=0<xFT-

5: LEMMA If o:N + R is F—camputable, then there exist functions f:N2 + N

andg:N2+NinFsuchthat VX, Vn,

1
x+ 1

-an)| <

f(x,n) - gx,n)
x+1

PROCF Changing notation, start with a relation

epren o) s
per #2. Introduce
£,(em) = u(x + L)
99 (x,n) = v(2x + 1,n)
h0 (x,n) =w(2x + 1,n).
Then
f,(xm) - g,(x,n)
hGm + 1 oW
u(2x + 1,n) - v(2x + 1,n) - o(n)

w2x+1,n) +1



1 1
X+ L+ 1 2@+ °

<

Define C:N2 + N by the rule

o i1
C(i,3) = } m"“—?' ’
thus C € F ard
. i 1
IC(J-:J) “3FT 5.
Put now
fix,n) = C{(x + 1) (fo (x,n) — 95 (x,n)), hO(X;H))
and

gx,m) = C{{x + 1) (go (x,n) — fO (x/n)), hO (x,n}).
Then £,g9 € F and (details below)

fO (x,n) - 99 (x,n)

, f(x,n) -gx,n) - x+1)

1
i3

ho(x,n) + 1
Multiply this by ﬁ_l_ to get
fan) - gmn) _ Do -~ gH&m

Therefore

] f(x,n; = i;(x,n) _ a(n))

f(X,n) _ g(x,n) _ fo(xrn) - go(xrn)
x+1 ho(x,n) + 1

fo (Xrn) - go (x,n)

* hyGe,n) +1 - oc(n)'

1A

} £(x,m) - glxn) _ o)~ gy&m)
x+1 hyGrm) + 1



fO (X:n) - go (X,I’l)

+ hoGm) F 1

1

- o(n)

1

3+ I+ Cx+IC

6: DETATLS The claim is that

£(x,n) - glx,mn) - (x + 1)

® Suppose that

fo(x,n) ~ 9 (x,n)
ho(x,n) + 1

1
2

fO (x,n} < 9 (x,n).

By definition,

f {x,n) —— — (%,

n) =

£,xm) - gy(xn) if £,0¢,n) 2 g4(x,n)

0 if £,(x,n) < gy (x,n).

Accordingly
f (x,n) — —— gy x/n)
= Q.
Therefore
f(X,Il) = C(Olho (X,Il))
- - 0 l -
h h (x,n) + I
N S N
4]
So consider

- g(x,n) - (x

+ 1)

fo(x,n) - go(x,n)
ho (x,n) + 1




or still,

go (Xln) - fo (X,l’l)

g(X,n) - (X + l) h (X n) ¥ 1
o i

By definition,
g(x,n) = C(x + 1) (gy(x,n) —— £,(x,n)), hyx,mn)).
But here
go(x,n) e fo(x,n) = go(x,n) - fo(x,n)
since
fo(x,n) < go(x,n).

Recalling that

C{i,3) - ,

i 1
FFI| 23
specialize and take

i= (x+1){gyxm - L;xmn))

g o= h{) (x,n).

Then

go(x,n) - fo(x,n)
hy (x,ny + 1 "

l g(x,n) - x+ 1)

= I Clx + 1) (gyx,m) ~ £,x/m)), hyx,m))

T D mEw I

1
S35

® Suppose that

£a(xm) > gylxyn).



By definition,

Accordingly

Therefore

So consider

By definition,

But here

since

"~ golxm) - £,(xm) if gy(x,m) > £, (x,n)

go(x,n) — fo(x,n) =

9o (x,n) < £ (x,n)

90 (x,n) = fo (x,n)

g(x,n)

f(x,n) - x+ 1)

0 if 99 (x,n) < fO (x,n) .

=> g, (x,n) — f0 (x,n) =0
=> gy (x,n) — £,(x,n)

= go(x,n) - fo(x,n) = 0.

C(O,hO (x,n + 1))

fo (x,n) - 9o (x,n)
ho(x,n) + 1

f(x,n) =C((x + 1) (f0 (x,n) — 9 (x,m)), h0 (x,m)).

fo(x,n) —_ 9 (x,n) = f0 (x,n) - go(x,n)

£,Gem) 2 g, (xm).



Recalling that

N

specialize and take

[
Il

(x + 1) (fo (x,n) - 9 (x,n))

-
I

= ho x,n).

fo(xln) - go (X:n)
h0 (x,n) + 1

fx,n) - (x+ 1)

= | C(x+ 1) (fo(x,n) - gO(x,n)), ho (x,n))

fo(x,n) - go(x,n)
hO (x,n) + 1

- (x4 1) <%

7: N.B. The upshot is that in the definition of F-camputability, one

can take h{x,n) = X.

Thus far the only conditions imposed on F are the standard ones but to proceed
to the main result it will be assumed henceforth that F is closed under bounded
summation (which, of course, is the case if F = LFL Or EZ) .

8: THEOREM Let a:N + R be E-computable, assume that the series ¥ an)
n=0

is convergent, and let Z be its sum. Suppose there exists a function £:N + N

in F such that v x € N,

o0

z afn) | <
n=f(x) + 1

1
x+ 1 °

Then = is Fwcomputable.



9: LEMMA Let a:N - R be F-computable. Define ocZ:N + R by setting

5 m
a’(m) = & o).
n=0
Then ocz is F-computable.
PROOF Per #5, write
f(x,n) - gx,n) _ 1
x+1 o(n) S X+ 1
and define functions
2% > N, g=:N% > N
in F by stipulating that
f"(xm) =  £(m+ x+ m,n)
n=0
7 m
g'(x,m) = T g(m+ x+mn).
_ n=0
Then
f(xn + x+m,n) - g(xm +x + m,n) ~ o) < 1
xm+x+m+1 -—xm+x+m+ 1
=>
z z
£ (xm) - g (xm X 1
’ }’«:m+x-'|-m+l o™ (m) Sx+1°
I.e.:
z z
£%(x,m) - g~ (x,m) T 1
' R CENER! "O‘(m)i SxFI
if

h(x,m) = xm + X + m,

thus oF is F~computable.



Turning now to the proof of the theorem, per #9, determine functions

F,

in F such that Vv x, V n,

Introduce

F(x,n) - G(x,n)

G H:N - N

1

H(x,n) + 1

T ou®) =F(@x +

vix) = G(2x +

_w(x) =H(2x +

Then u,v,w € F and

1A

ux) - vix) _ -

wix) +1

u(x) - v{x) _
wix) +1

ux) - v(x) _
wix) + 1

F(2x + 1,8(2x + 1)) - G2x + 1,8(2x + 1))

z
- o’(n) -<-x+l'

1, g(2x + 1))
1, g€(2x + 1)

1, &(2x + 1).

[1]

[ee)

L o)
n=0

£ (2x+1) o0
X a(n) - I oc(n)'
n=0 n=£(2x+l) + 1

H2x + 1,£(2x + 1))

F(2x + 1,E(2x +1))—- G(2x + 1,E(2x + 1))

- ol (2 + 1)

- I oa(n)!
n=£(2x+l) + 1

H2x + 1,£(2x + 1))

- oF(E(x + 1))‘

(o]

+ X oc(n)l
n=E(2x + 1) + 1



10.

[ee]

z a(n)
n=£(2x + 1) +1

1
R

IA

1 1 1 1

S Fil+itmFIsl 2 i mTa

10: N.B. Assuming that the series I a(n) is convergent (in practice,
n=0

this is invariably a non-issue), there are then two points.
1. Establish that o is F-computable (or that v n, o(n) is F-computable).
2. Find £ and deal with the speed of convergence.
11: EXAMPIE e is E2-computable, i.e., e €R 5° Thus write
E |

e =

i~ 8
2l

0

i

and let a(n) = —]i—, hence g:N - Q < R, the claim bein thaL: o is Ez—computable.
n! Q g

To see this, let

£f(x,n) = l— ri{_'_’ .
Then £ ¢ E2:
f(x,0) =x%x, f(x,n + 1) = I fl(_}i—’rll)— , £(x,n) < x

and one can quote bounded recursion. In addition

f(x + 1L,n) _ ] £x + 1,n) 1
x+—1"°°(n)| "_le_'ﬁl
_ 1 x+1
—X+l’f(x+l,n)-n! ’



1i1.

_ 1 ‘x+1“-XT1[
x+1 ]| n! _ n:

1
5x+]_

Therefore o is F-computable. It remains to define £:N + N and consider

% afny = I 51',—
n=E(x) + 1 n=E@) + 177
So put
£(0) =1, €(1) =2, Ex) =x (x > 2).
Then
[o o] oo
1 1 1
x=0) T L= 5 —=e-2<1=
n=£(0)+ln! n=2n£ 0+ 1
(x=1) % I-},—=zn-},—=e-2.5~2.7—2.5=
n=£(1) +1 > np=3 ™
x>1) I hl—,= > n-:’:,-
ngG) + 17 41
1 1 3
"+ tmEor T
17 1 1
—x'_!iﬂx+l+(x+l)(x+2)+
1]"‘ 1 1
< e + - s 4 e
x! __x+l (x+l)2
1
1 X + 1
=§T( )
L. 1
x + 1
11 1




12.

Conclusion:

(1]
Il
0]

is Ez-computable .

[Note: It turns out that e is actually ZFL-computable (cf. §10, #6).]

1l: REMARK Recall that Ralg <R 5 {cf. 88, #19) and since e is trans-

E

cendental, it follows that the containment is proper.



§10. TECHNICALITIES

1l: DEFINITION A relation R < N? is said to be lower elementary if its

characteristic function belongs to £ZEL.

2: LEMMA Suppose that f£iN - N is in £EL. Define a function ¢:N + N

by the formula

n
om) = T[T £(k).
k=0

Then the graph of ¢ is lower elementary.

[Note: Recall that £LEL is closed under bounded summation.]

EXAMPLE Fix a positive natural number N and define f£:N » N by stipu-

lating that V k, £(k) = N — then f € LEL. Moreover o(n) = N°'' and the graph

of ¢ is lower elementary.

4: LEMMA Suppose that ¢:N - N has the property that V n, ¢o(n) # 0. Assume

further that the graph of ¢ is lower elementary —-- then the function

n >
¢ (n)

is LEL-computable.

5: EXAMPIE For every positve natural number N, the function

1
n'*FI

is LEL-computable.



6: REMARK It was shown in §9, #11 that

e = ZnL'
n=0 "

is E2--canputable. However more is true: e is £Elscomputable. To see this,
consider £:N - N, where
£(0) =1, £kk) =k (k >0).

Then

n
om) = T[] £(k) = £(0)£(Q)£(2) --- £(n)
k=0

=nl.

Therefore the function
1

n > —
nl!

is ZEL-computable (and the argument proceeds...).

[Note: Tt is clear that £ is in £EL.]

IFMMA If o:N + R, B:N = R are LEL-camputable bounded functions, then

the product of:N ~ R is also ZEL-computable.

8: BEXAMPLE The function

is £LEL--computable.
[Note:

0"

mh+ LDmod 2 - nmod 2

ng (n) - g(n) n,

hence (—l)n is an £EL-sequence, hence is £EL-computable (cf. §9, #4).]



§11. NUMERICAL EXAMPLES

The basis for the calculations infra is §9, #8, which will not be quoted
over and over, as well as the generalities in §10, which will also be taken without

attribution.

1: EXAMPLE 7 is £EL-camputable, i.e., w € RKEL' Thus write

f —
— E

-1™
2n + 1

n >
is LEL-camputable. As for convergence, the series

G
~o2n+ 1
n=0

is alternating, so vx € N (§(x) = x),

- -n- 1
e 41 M F L | C26FD F1
1 1

2x+3§-x+l‘

These considerations establish the £EL-computability of %, thus that of m = 4{2-) .

: EXAMPIE fIn(N) (N=1,2,...) is LEL-computable, i.e., £n(N)E RﬁEL'

Thus write

1 > (="
mhil+3)= § —A—F
N n=0 (n+l)Nn+l



O
MmN+ 1) = m@N) + I —— -
=0 (n+l)Nn+

Proceed by induction on N. When N = 1, fn(l) = 0, which is obviously £ZEl-
camputable. So take N > 1 and suppose that Mm(N) is £Fl-computable. Since
RﬂEL is a field, it need only be shown that

S (="

) D, il SN

£R .
n=0 (n~t-.1)Nn+:L LEL

But the function

-n"
()N

is ZEl-computable. And Vv x € N (E(x) = x),

n —

o]

. 1"
n=x + 1 (n+l)Nm-l

1 1
+25'x+l’

T (x42)NT

A

3: EXAMPIE Catalan's constant

0 n
c= p B 5
=0 (2n + 1)

is LEL-computable, i.e., G € RKEL‘

4: EXAMPLE Euler's constant vy is £EL-computable, i.e., Y € RKEL' Thus
write

[re]

y= 1 ¢

1 1
k 1=t @ g
n=0

n +



Then
1 1
nr1- el rgeT
- "
=0 (m+2) (n+l) ™2
Per m,
m
o (m) = (-1)

(mt2) (1) T2

is a product of three bounded LEL-computable functions, thus o (m) is LEL-com—

putable. As for convergence, vm € N (§(x) = x),

= 1 1 1
z a (m)| < < < .
|m=x+l n (x+3) (X3 "X F 3T x4
Therefore per n the sum
En = I ocn(m)
m=0
is LEL-camputable. And finally
z E | s 2 g
n=x + 1 n=x + 1
£z z 2
= + 1 m=0 (m+2) (n+l)

o0

1
2 2
n=x + 1 2(n+l)

IN

o

1
2 5
nx + 1 (n+l)

N




1A

in
N]

Therefore

is LEl—computable.

: EXAMPLE Liouville's number

(o]

R
n=L 107
is PEL—computable, i.e., L € RKEL'
[As regards convergence, write
> 1

L= L

and note that vn € N (E(x) = %),

<

=0 10 (n+l)!

5 1

n=x + 1 I.O(n'}{l’)1
= ngx +1 (n']‘:l“ B (X“l‘2)! * (xi:%)! * (x}-fi)!
=_(§}’2—“ 1+ i 3" (x+3)l(x+4) +oee0)
,‘E-(;{-}?Z—)—!(l+%+_%+...) =_z}_§___2__ﬁ

2

[ S



2 < 1
x+l - x+ 1 °

IA

6: EXAMPIE Iet

L) = L = (x> 1)
X
n=1 n
and define
fR:N + R
by
fR(k) =gk+2) (k=20,1,...).

Then fR is an ZEL-computable function. Consequently v k,

c(k+2) € RopL-
In particular: z(3) is an LEL-—computable real number.
[Note: Put £ =k + 2, thus £ = 2,3,... — then
z() = S e = e
1> tl > --->tK >0 tl tﬂ-l l—tﬂ

is a period, so
t(L) € RKEL (c£. 8§12, #%9),

which is another way of looking at matters.]

7: FACTS

e VK,

fR(I{+l) < fR(k) .

[ fR(k) - fR(k+l)

o0 [¢'e]

1 1

= 5 — = _ - ¥ =
n=0 (n+1)K™2 n=0 (n+1)H3



R SR
n=0 @+)K2 (k3

Il

oy 1 1
= 5 — % -1
=0 (n+l)k+2 n + 1)

_ n
= I +3

e > (0, ]
=() (n+l)k

1< fR(k) < 2.

< 2. On the other hand,

m} Ao

[ £,(0) =

_ o1
fR(k)—-1+ hX —m>

n=2 n

l'

Therefore

2> £,(0) 2 £,(0) > 1.]

8: EXAMPLE /{n(m) is LEL-computable, i.e., In(m) € RKEL’ Thus write

@) = 3 S

Ln(my -
n=1 (2n)2%*71

s t2@)
n=0 2 (n+1)2° @) -1

_ ozo fR(Zn) .
n=0 2(n+1)2°0*L

Then
o fR(Zn)

In(m) = €n(2) + Z

=0 2 (n+1) 220+t



Since In(2) € R PEL (cf. #2), it suffices to examine the series

OZO fR(Zn)
n=0 2 (n+1)2°%1
But
(i) fR(n) is a bounded [ZEL--computable function, hence so is fR(Zn) .
(ii) 1 - 1 is an £LEL-computable function
2 (n+1) 2ntl + 1 :
‘e 1 . .
(iii) ?ZFI is an £LEL-computable function.
Conclusion:
fR(2n)
2 (n+1) 227

is an £EL-~computable function.

To handle the convergence, V x € N (&x) = x),

fR(Zn)

¢ 1 2 (n+l) 220

ﬁlms
.H

s 2
n=x + 1 2(n+l) 22n+l

in

IN
™

I
1

3. 22x+l



FACT

FACT

FACT

FACT

in

IA

APPENDIX

g . .
If £ ¢ RKEL’ then e~ € RZEL and if £ € RKEL is > 0, then £n(g) € RKEL'

If § € RKEL’ then
" sin &
€ ReeL
__ cos §
If £ € Ry and if |£] <1, then

Arc sin g

Arc cos &

Arc Tan £ € RKEL‘



Before getting down to business, there is a preliminary fact, frankly tech-

nical, which will be needed below.

1l: RAPPEL (cf. §9, #5) If o € R is F-computable, then there exist °

functions £:N + N and g:N - N in F such that V x,

flx) —gx) _ 1
x+1 @l Ex¥T -

[Note: Here it is assumed that F satisfies the standard conditions.]

2: SUBLEMMA If o €R is F-computable, then there exist functions fo,go,ho

in F such that V x,

£, — g,&) P I i
hy(x) +1 2(x+)
PROOF Start with u,v,w in F such that V x,
i —tlv((;{; ;‘{(X") - o fﬂx}-l .
Introduce
o £q(x) = u2(x+) + 1)

il

9 (%) v{2(x+1) + 1)

Il

ho () = w(2(xtl) + 1).



Then

£,x) - 90 (x)
Ho“(x) + 1

_lu@eel) +1) - v(2(xtl) +1)
- By 2GH) + 1) &

1
2(x+l) + 1 +1

IN

1 1
2% + 4 2(x+2)

1
<3 -

3: LEMMA If o € R is F—computable, then there exist functions f£:N » N

and g:N > N in F such that Vv x,

<

fx) ~ g{x)
ECETTRE

x+1°

h. to arrive at

PROOF Proceed as in §9, #5, taking f,g € F per fO’gO’ 0

’ f(x) ~gx) _

x+1 OL’

< ’ £x) - g _ To® "9

X + 1 By + 1
f0 (x) - 9o (%)
TR ® F1 o
0
< 1 + fo (X) - go(x) o
= 2 (x+1) h0 (x) +1




< 1 + 1 1
2 (1) 2 (x+1) x+1°

4: N.B. The point, of course, is that in §9, #5, < can be replaced by <.

|

LEMMA There exists a two—-ary function h in E3 which is universal for

the one-ary functions in 62
[Note: I.e., the functions
h +h(X,n) X=20,1,2,...)

exhaust the one-ary functions in E2.]

6: RAPPEL The natural number function

pow(x,y) = g
is elementary (cf. §6, #3).

On general grounds,

R . <R
g2 g

and the claim is that this containment is strict.
In detail: Start by defining a one-ary function g as follows: ¢g(0) = 0 and
v ke N,
3g(k) if 6g(k) + 3 < h(k, 2:3 F — 1)
glk+l) =
3g(k) + 2 otherwise,

thus

g(k+l) - 3g(k) € {0,2}.

7: LEMMA gEE3.



[Use the inequality g(k) < 3k - 1.]

Put

5 gtl) - 39(k)

%=0 3k+l

U:':

Then for any K € N,

*gle) - 39 _ g(®)

k=0 3kl 3K

o - X

3K

(=]
IN

s gktl) - 3g(k)

K=K 3k+l

IS
[\
™

|

=
+
+
.

o
1A
Q
i
\Q
B

dA




Therefore the real number o is E3-computable:

Still

To establish this, proceed by contradiction and assume that V x € N,

1
N (cf. #3).

1 f(x) —glx) _

x + 1 o

Here f and g belong to Ez, as does |[f - g

. And, since o is nonnegative, V x € N,

’ lf(X}){;%(xH o | <z
Proof: For all real S and T,
| Is] = [7| | <ls - |
=>
£x) - g@®)]| _ o }

|x + 1]

_ |[f®) - g(x) ]
X + 1 -G

f(x) - gx) _
x+1

1
x+1°

in

ol <

Choose now per #5 a natural number Xsuch that V x € N,

lf£(x) - gx)| = h(X,x),

hence

h(X,x) _ 1
x+1 % |“xFI-




In particular:

hx,2 - 33 L1 1

- O <
2 -3

pan) S . L

There are then two possibilities, both of which lead to a contradiction.

65(X) + 3 <h(X,2 - 3% ~ 1)

69(X) +3 . h(X,2 - 357 _ 1
S < R )
=>
39(2) , 1 __h(x2-3" -1
o R S 1
=>
g , 1  _hx2 - ¥ g
N ai !
1
<a+ -
S . 5L
But
O_<_'oc—g(X+l) < 1
5 R
=>
%) |, 1
o < L +
ST 25
= 39X)
K
= 9X) 1
X X



U]
Vi

1
cee < g +
S . %
g (X) 1 1
< + +
X Pt SR
(X)
= g + ._i_ (]_ + 1'_)
X o 2
_a® , 13
3X 3X+l 2
-9x .1
E 5. 3K
Contradiction.
[ ]
65(X) +3 > h(x,2 - 35T - 1)
=>
g® , 1 hE2- 3o
X o S o
1
>0 - .
R 51
But
g (X+1)
RSy

3

39X +2 _g(X ., 2

3X+l 3X 3X+l




X K 2
=9® 13

X X2
_g) , 1

c R S

Contradiction.

: REMARK Suppose that n > 2 —— then it can be shown that #5 remains

valid if £3 is replaced by gl and E? is replaced by EY. This said, the argument

above goes through without change, the conclusion being that

3o € REn+l:cx 2 REn.

Pz © RepL:

«f‘

[For the details, see Katvin Tent and Martin Ziegler .]

So there is a chain

Prz < RepL © sz < RE3 = Ry -

And in view of what has been said above, the containment

is strict.

T Minster Jowwnal of Mathematics 3 (2010), pp. 43-66.



N.B. It is unknown whether £El equals E2 or not.

EXAMPLIE T € RKEL

but it is not known if e € PKZ']

(cf. 8§11, #1) but actually 7 € PKZ (cf. §2, #6).

e € RKEL

EXAMPLE e € Rpp, (see the Appendix to §11).



§13. RECURSIVE FUNCTIONS

l: DEFINITION The set of recursive functions, denoted by R, is the

inductive closure of the initial functions with respect to the operations of

composition, primitive recursion, and minimization.

2: N.B. Obviously

PR c R.
[Note: The contaimment is proper (the Ackermann function figuring in the

Appeniiix to §5 is recursive but not primitive recursive).]

3: REMARK An important property of PR is that it is a recursively
enumerable subset of R, i.e., there is a two~way function u(m,n) that enumerates
the primitive recursive functions in the sense that

e VEf€ePR Am:vn, £(n) = u(m,n).
e Vm, u(m,——) € PR.
[Note: On the other hand, R itself is not recursively enumerable. ]
In the theory developed in §8, take F = R (the standard conditions are then

obviously in force). So an R-sequence is a function A:N -+ Q that has a representation

of the form

- B(x) - g&x) -
A(X) = m—+l— (X = 0(1,2(...),

where £,g,h:N - N belong to R and a real number o is said to be R-computable if

there exists an R-sequence A:N » Q such that Vv x,

1

IA(X)—«O(,I.§X+1.




4: N.B. Rather than working with (x+1) ! one can work instead with 2%,

either definition leading to the same set of R-computable real numbers.

[Note: This is not always permissible. E.g.: Take F = E2 ~— then the

use of 27 would imply that the Ez—computables are precisely the rationals, which

is untenable. However, the switch to 2™¥ is permissible if F = £ n>3), in

particular if n = 3 (=> E3 = EL) or if F = PR.]

5: NOTATION Denote the set of all R-~computable real numbers by the symbol

RR (cf. §8, #10).

6: THEOREM R, is a real closed field (cf. §8, #2l).

R

[Note: In addition, R, is countable.]

R

7: N.B. It is customary to refer to the elements of R, as simply the

R
computable reals.

8: EXAMPLE
Peg © Rpp (G- 812, #9)c Ryp < Ry .

Therefore periods are computable.

9: EXAMPLE Chaitins constant(s)  is(are) not computable.

While the very definition of "computable real” involves recursive funtions,

matters can also be formulated in terms of primitive recursive functions.

10: DEFINITION Iet o be a real number — then a primitive recursive

approximation of o is a pair (A,E) of PRwsequences A,E:N » Q such that E is




monotonically decreasing to 0 and such that V x,
A(X) - a] SEX).

[Note: In general, E depends on o.]

11: EXAMPLE Suppose that o € R

such that V x,

1
A(x) - o SeFT -
Then the pair
1
B, =57

is a primitive recursive approximation to a.

ppr SO there exists a PR-sequence A:N + Q

12: THEOREM A real number ¢ is camputable iff it has a primitive recursive

approximation.

One direction is straightforward. Thus consider a real number o with the

stated property. Define s:N + N by the rule

Ly

s(x) =min{n:E(m) < T

Then s is recursive, hence A ° s is an R-sequence (cf. §8, #13) and V x,

1

A(sx) ~of £ 5

Therefore o is R-computable.

In the other direction:

13: LEMMA Suppose that o € RR — then there exists a pair (A,E) of

PR-sequences A,E:N ~ Q with the property that there are elements of E(N) which

are arbitrarily close to 0 and such that v x,

lA(x) = o] < E(x).



PROOF The assumption on o implies that there exists an R-sequence A' such

that Vv x,

1
x+1°

A" (x) - af <

This said, choose a surjective primitive recursive function f£:N - N such that
Ax) = A" (£(x))
is a PR~sequence. Put

_ 1
TEfx) + 1

E(x)
Then
A) - o]l = A" (f®) - o

1

Sfe F1 0 E®-

To finish the proof of #12, one has only to take the data supplied by #13

and transform it into that required of #10. Using primes, put
T E'(n) = min{E(1):0 £ i <n}

k(n) min{i:0 < i <n, E(1) = E'(n)}

A' (n)

i

A(kn)).
Then the pair (A',E') is a primitive recursive approximation of a.

14: RAPPEL To say that a real number is camputable means that there
exists an R-sequence A:N - Q such that V x,

1

!A(X)'.-OLIS__X_'_:L.

Question: Can one instead utilize a PResequence? The answer in general is .

[y}
no-.



15: EXAMPLE Iet f:N » {0,1} be recursive and put

o0
o= 7 1@
n=0 4
Then o € RR and the claim is that there is no PR=sequence A:N + Q with the property
that Vv x,
, 1
A6 - of < -

[The initial observation is that if k € N, g € @, and

|q - o s—-}g‘;i-,
4
then

2 - 4% + 1/21moa 4

2

£k) = [ ] (cf. infra).

Granted this, consider a PR-sequence A:N + ( subject to V x,

269 - ol < 5T
and let
q=a@ -,
thus
|9 - ol £ 537 : =]3:i-l'
4 -1 +1 4

and the formula for f(k) implies that f is primitive recursive. Accordingly,
if o is constructed by using a function £:N » {0,1} that is recursive but not
primitive recursive, i.e., if

f €Rbut £ £ PR,

then there will be no pr-sequence A:N + ( per supra.]



[Details:

2= T 2fI§n)
n=0 4

2 - 45%] mod 4 = 26(k).
And

2-85% <2 -afq+12<2- Far1

2-4%9+12=12-40+4 @=0o0ra=1)

2 - 4% + 1/2] mod 4 = 2£(K) + d.]

16: DEFINITION Iet o be a real number —- then o has a primitive recursive

nested interval representation if there are PR-sequences f,g:N - Q such that v x,

f(x) Sf(x+1) <ca<glx+1) ig(x)
and

lim (gx) - £(x)) = 0.

X r ©

17: IEMMA A real number o has a primitive recursive nested interval

representation iff it admits a primitive recursive approximation.
PROCF

=> Given f,g, let

gx) - f(X).

A(x) 5

S 960+ 60 g gy -



Then

iff

iff

iff

But

|A) ~ af = ‘g————(x) ;f(x) - oc‘
= .g_(X__).—g.+&__g_
2 2 2 2
|9 _a £(x_>_oc‘
- 2 2 2 2
-9 .o, o fx)
2 2 2 2
E(x+ 1) <Ex)
gx+1) - f(x+1) <glx - £(x)
gx +1) wglx) <fx+1) - £(x)
gx) —gx+1) > f(x) - £fx+1).
T oglx) tgx+1) >0
_ fx = f(x+1) <O0.

Given A,E, let

|7 f£(x) = max{AMm) - E(n):n < x}

,ﬁ g(x) = min{A(n) + E(m):n < x}.



18: SCHOLIUM A real number o is computable iff it has a primitive

recursive nested interval representation.

19: EXAMPLE
Q <Ry
[Given g € Q, let
 fw) = qg-27%
g(x) = q + 2%.]



§14. EXPANSION THEORY

let b > 1 be a natural number and let o be a nonnegative real number —- then

a has a b-adic representation if there exists a recursive function

l: LEMMA If o has a b-adic representation, then o € R

"
PROOF Put
x+1
AX) = T ﬁ%?— x=0,1,2,...).
n=0 b

Then A:N » Q is an R-sequence and

e _ 5 fm

IA(x) - a] =
n=0 b n=0 bn

IAn
™

A
U
™
l

= b (e e L EED
bx+2 bx+3

=_P_
X+2

Lals o



- b 1

x+2 1

b 1«5

_ b b

bx+2b-—1

=b2 1

bx+2 b-1

-+ 1

bxb—l

1 _ _ 1
5b—x-(25b—>l§_b«-l->b_lgl)
=b >~ < 2%,

2: NOTATION RD

2 is the set of nonnegative real numbers which admit a

b-adic representation.

Therefore

Rb

R c RR n [0,=[.

3: DEFINITION A subset A < N is recursive _if its characteristic function
Xa is recursive, i.e., if Xa € R.

4: EXAMPLE Suppose that o € R2 hence

—— R’

a= 3z £ (£m) e {0,1h).
n=0 Ve

Iet

A= {n:f(n) = 1}.



Then

a= I 2«n
nea

is computable and X = f, so A is recursive (this being the case of f).

5: SUBLEMMA Suppose that o is an irrational computable real number, thus

there exists an R-sequence A:N - ( such that v x,

AG) = a| <27 (cf. 813, #4).

Iet £f:N » Q be an R-sequence — then v n 3 x such that

Ax) - £m) ] > 275

And
A(X) - £) >2 7 =>x > f(n)

A®) - f(n) <2 X =>x < f(n).

b_ (o]
Rg = Ry N 10,[.

PROOF Take an ¢ in RR n [0,«[. If it is rational, say g-, work relative to

the base b and carry out the long division of p by q. Assume, therefore, that

o is irrational and without loss of generality take o in RR n 10,1[. Suppose now
that we have found natural numbers n, = O,...,nk such that 0 < nj <b-1 (< j <k)
and such that
k - k-1 » X
% nbJd<a< I nbJ+ (m, + 1B .

Applying #5, there is a unique x € {0,1,...,b-1} for which



k . k .
5 nbd + Lo a< I njb“:I + (x + l)b_k—l.

j=0 J j=0
Definition: g = X With this agreement, set f£(k) = n - then £:N -~ N is

a recursive function, f(k) € {0,1,...,b - 1}, and

o= I ————f{i) .
k=0 b

7: N.B. It is to be emphasized that the realization

b"' o
Ry = Rp 0 [0,

is valid for all b.

8: EXAMPLE Given a subset A c N, put

-n
a, = L 2.
A neA

Then O is computable iff A is recursive.

2

2 (cf. #6), so A is recursive (cf. #4).

PROOF If QU is computable, then oy € R

On the other hand, if A is recursive, let

s, = L 2,
n<x,neaA
Take
fx) = Sy
glx) =s_+ 2%
Then
_ -n
S, < Op = L 2



=5 + I 2R

n>x,ncA

—(x+1) + 2-(xﬁ2)

iA

s_+2 + oo
b4

1

=s, + R G e

= s+ 27 )

2“‘X

.

=8 +
X
Now quote 8§13, #18.

9: REMARK Assume that A is not recursive -- then for certain A, it is

possible to find an injective £ € R such that A equals the range of £, hence

o, = ¢ 27E@)

A nenN
Put

q = ? 27EM) w —0,1,2,..0).
nsx

Then gy edyre-- is a bounded increasing sequence of rational numbers whose

limit O is not computable.

We have worked thus far with

RR n [0,>[.

Replace now RR by PPR —- then it is still the case that

b

but it is no longer true that

b o <o,



10: THEOREM R?R is a field (cf. §8, #15).

11: mn’ For each b > 1, there are X,y € ng such that x + v £ R};R.

Consequently the containment

is proper.

One can also consider the relationship among the Rgg for different b.

12: THEOREM let b,d > 1 — then

iff d divides a power of b, i.e., iff there exist k,s € N such that b° = sd.

[For details and references, see the paper of Qingliang Chen et al.]

T Qingliang Chen et al., Mathematical Logic Quarterly 53 (2007), pp. 365-380.





