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ABSTRACT 

The puq:ose of this book is to provide an introduction to period theory 

and then to place it within the matrix of recursive function theory. 



My thanks to Judith Clare for a superb job of difficult technical typing. 
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According to M. Kontsevich and D. Zagier: 

* * * * * * 

"A period is a complex number whose real and .imaginary parts are values 

of absolutely convergent integrals of rational functions with rational coefficients 

over domains in Rn·given by polynomial inequalities with rational coefficients11
• 

Ref: Ma..themati..C-6 UnLC..rni.te.d - 200! a.n.d Be.yon.d, Springer, pp. 771-808. 
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§1. SEMIALGEBRAIC SETS 

1: NorATION Put 

-
Ralg = R n Q. 

Therefore Ralg is the field of real algebraic numbers, so 

[Note: 

Q c R l c Q ag 

n n 
R c C. 

Viewed as a vector space over Q, R 1 is infinite dimensional (the a g 

algebraic numbers vP" (p a prime) are indeIJell.dent over Q) • ] 

2: N.B. Ralg is a real closed field and Ralg is the real closure of Q. 

[Note: R 1 carries the relative top:::>logy per R, hence is totally disconnected, a g 

i.e. , its connected canp:ments are p:::>ints. ] 

3: 
. n 

DEFINITION A subset X c R is semialgebraic if there are natural 

numbers rand s1 , ... ,sr and p:::>lynanials 

where 1 ~ i < r and 1 < j < si, such that 

r 
x = u 

i-1 

s. 
1 

n 
j=l 

n {x E R :f .. (x) lJ 

4: EXAMPLE Rn is semialgebraic. 

n = O} u {x E R ;g .. (x) > O}. lJ 

5: REMARK An algebraic set in Rn defined using p:::>lynornials with coefficients 

in R 1 is semialgebraic. ag 
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6: LEMMA The serriialgebraic sets are closed under the fonnation of finite 

unions and finite intersections and are closed under complerrentation. 

7: LEMMA If X c Rn semialgebraic and Y c rf1 is sernialgebraic, then 

x x Y c if x lf1 is sernialgebraic. 

are semialgebraic as are 

n 
'E 

i=l 

{{ ) E Rn •. Yl' ••• ,yn max 
i=l, ••• ,n 

IY· - x. ! < p} J. J. 

9: EXAMPLE 

is not semialgebraic. 

10: EXAMPLE 

is not semialgebraic. 

max 
i=l, ••• ,n 

2 {(x,y) ER : 3 n EN, y = nx} 
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11: DEFINITION 

• A basic open semialgebraic subset of Ff is a set of the form 

where 

fl, ... , fr E Rru_g ll'l, •.. , Tn]. 

• A basic closed semialgebraic subset of if is a set of the form 

{x E if: f 1 (x) ~ 0 , ••• , fr (x) ~ 0 } , 

where 

fl ' ..• ' f E R 1 [Tl I ••• 'T ] . r a g n 

12: LEMMA Suppose that X is an open (closed) semialgebraic set -- then X 

is a finite union of basic open (basic closed) semialgebraic sets. 

13: DEFINITION Let X c Rn, Y c if1 be semialgebraic sets -- then a 

semialgebraic roa.p f:X + Y is a continuous function such that the graph rf c X x Y 

is a semialgebraic subset of Rn x if. 

14: SCHOLIUM Let 

be elements of R 1 [T1 , ••• , T ] -- then the arrow f :X + Y defined by the prescription ag n 

is a semialgebraic map. 

[Note: One can replace P 1 , ... ,Pm by elerrents 
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of ~g (T1 , .•• , Tm) provided that none of the 

vanish at any point of x. ] 

lS l EX.AMPLE The graph of f (x) = ~ is the seroialgebraic set 

{(x,y) E R2 : y2 = x, y > 0}, so f is a semialgebraic ma.p. 

16: EXAt"lPLE If X is semialgebraic, then the diagonal t,:X + X x X is a 

semialgebraic map. 

[Tne graph of fl is the intersection of X x X x X with the semialgebraic set 

{(x,y,z) :x = y = z}.] 

17: EXAMPLE If ~ -:/- X c: If is a semialgebraic set, then the distance 

function x + dist(x,X) is a semialgebraic map. 

18: DEFlNITIOO I.et X c If be an open sanialgebraic subset -- then an 

analytic function q:i:X + R is said to satisfy the condition of Nash if there are 

elem.:mts 

i.e., cp is an analytic algebraic function. Such a function is necessarily a 

semialgebraic map. 

19: EXAMP.LE I.et X = 1-1, l[ c: R and take q:i(x) = AO - x2 -- then 

cp(x) 2 - (1 ~ x 2) = 0, 
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so cp satisfies the condition of Nash. 

20: I.et X c if, X' c if 1 , Y c rfl, Y' c rfl' be semialgebraic sets and 

let f :X + Y, f' : X' + Y' be semialgebraic maps - then 

f x f' :X x X' + Y x Y' 

is a semialgebraic map. 

PROOF The graph of f x f 1 is 

{(x,x' ,y,y'): y = f(x), y' = f' (x')} 

which is the intersection of 

,.Jl I ..Jn I 
{(x,x',y,y'): y= f(x)} ~ff X K X K 

and 

{(x,x',y,y'): y' = f(x') ::::: rf' x Rn x Jtll}. 

21: THEOREM (Tarski-Seidenberg) If f: Rn + ftil is a polynomial function 

(cf. #14) and X c Rn is a semialgebraic set, then f (X) is semialgebraic. 

22: SCHOLIUM I.et X c Rn+m be semialgebraic, II:Rn+m + Rn the projection 

onto the space of the first n coordinates (or rr:Rn+m + ftrl the projection onto the 

space of the second m coordinates) - then II(X) is a semialgebraic subset of 

23: LEMMA Let X c Rn, Y c rm be semialgebraic sets and let f :X + Y be 

a sernialgebraic rna.p -- then f (X) is a semialgebraic set. 

PROOF r f is a semialgebraic set by assumption. Now apply #22 to 

r f c Rn x Rm ::: Rn-tm + rm. 
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24: APPLICATION If X c if, Y c rf1, z c R.e. are semialgebraic sets and if 

f: X -+ Y, g: Y -+ z are semialgebraic maps, then g o f is a semialgebraic map. 

[In fact, 

25: N.B. It follows that there is a category whose objects are the semi-

algebraic sets and whose rrDrphism are the semialgebraic maps. 

26: REMARK I.et s, X, Y be semialgebraic sets and let f :X -+ S, g:Y -+ S 

be semialgebraic maps --- then the fiber product X xs Y of sets is a semialgebraic 

set and is a fiber product in the category of semialgebraic sets and semialgebraic 

maps. 

27: LEMMA The inverse image of a semi.algebraic set under a semialgebraic 

map is a semialgebraic set. 

PROOF Let X c Rn, Y c !fl, Z c Y be semialgebraic sets and suppose that f :X -+ Y 

is a semialgebraic map. Write 

f-1 cz> = rrcrf n (Rn x Z}} 

and apply #22. 

28: N.B. The converse of this lemma is false. 

[The exponential function exp;R -+ R is not semialgebraic but does have the 

property that the inverse image of a semialgebraic set ls a semialgebraic set.] 

29: THEOREM Suppose that X is a semi.algebraic set --- then the semialgebraic 

maps X -+ R fonn a ring under pointwise addition and multiplication, 
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30: LEMMA If X c Rn is a senialgebraic set, then the closure, the 

interior, and the frontier of X are senialgebraic. 

31: EXAMPLE Take 

X = {x E R:(x2~1) (x-2) 2 < O}. 

Then X = [-1,1] but 

2 2 -{x E R: (x -1) (x-2) < O} = X u {2}. 

Ref: Re.al Al9ebJta...lc. and Semlalge.bJta...lc. Se:t6, R. Benedetti, J-J Risler, 

Herm:um., 1990. 

Ref: Real Alge.bJta,[c.. Ge.ome.:ttr..y, J. Bochnak, M. Coste, M-F Roy, Springer, 1998. 
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§2. PERIOVS: VEF1N1T10N ANV EXAMPLES 

1: NarATION SAn is the set of semialgebraic subsets of R11 with a non-

empty interior. 

Zagier if 

e 3 n E N, 

e 3 X E S!f, 

• 3 P,Q ER 1 [Tl, ••• ,T] <olx ~ 0) ag n 

such that 

p (x.. f ••• ,x ) 
J J. n.ax 
XQ(x1 , ••• ,xn) 1 

is an absolutely convergent integral, ~ = ax1 ... dxn being Lebesgue measure. 

3: NarATION Write 

for the set of periods in the sense of Kontsevich-Zagier. 

[Note: We shall -work exclusively in the real doma.in, a period in the complex 

doma.in being a ccmbination p 1 + A p 2 , where p 1 , p 2 E P KZ. J 

4: LEMMA 
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[Take p E Ralg' p > O -- then 

p = f O<x.<p 1 dx.] 

5: EXAMPLE Suppose that p E R l , p > 1 -- then ag 

fu(p) 

[Note: Observe too that 

If~= Jl<x<p 1 dxdy.J 
O<xy<l 

6: EXArvlPLE Consider 

f2 2 ldxdy 
x +y _:Sl 

to see that 1T E PKZ" 

Let 

[It is unknown whether ; E P KZ or not.] 

7: EXAMPLE 

dxl dx2 

~(2 ) = 11>x
1

>x
2

>0 xl • l..,.,x2 

8: EXAMPLE Take for S the square 

0$.x$.l 

0Sy.S,l. 

f (x,y) = -~xy-~2 
(x2+y2) 
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if x2 + y2 > O and set f ( 0, 0) = 0 -- then f is not integrable. For 

then the iterated integral 

xy 2 dy 
(x2+y2) 

v;Quld exist (Fubini) • But for x :-/- O, 

and this function is not integrable in ]O,l]. 

[Note: Replace 

by 

1 1 TI J0 dx J0 f (x,y)dy = 4 

1 1 TI J 0 dy J 0 f (x,y)dx = - 4 . ] 

it were, 
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§3. PERTOVS: ALGEBRAIC CONSTVERATTONS 

It was pointe:!. out in §2, #4 that 

Of course R 1 is a countable field. And: ag 

1: LEMMA PI<Z is countable. 

PROOF V n EN, R l [T1 , ••• ,T] is countable, hence R l (T1, •.• ,T) is ag n ag n 

countable, as is SAn, hence P KZ is countable. 

[Nbte: Consequently 11rnost 11 real numbers are not periods. And if a real 

number is not a perioo, then it is transcendental.] 

2: REMARK It is unknown if P KZ is a field (but P KZ is an Ralg algebra 

(see #8 below). 

and 

hence 

iff 

3: DISCUSSION Suppose that 

I P <x> I = o Q 

(cf. §2, #2) 
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alnost everywhere, thereby forcing p = O. 

4: NOI'ATION Given a measurable subset X c if, let 

5: EXAMPLE Consider the n-simplex t\i -- then 

1 
- n! • 

6: EXAMPLE Consider the n-ba.11 Bn -- then 
n 
-'-
2 

vol (Bn) =_TI __ _ 

n re~+ 1) 

7: LEMMA I.et p E R -- then p E PKZ iff for sorre d E N, there exist dis-

joint semialgebraic sets x1 c Rd, x2 c Rd of finite volurre such that 

PROOF It can be assllI!'Bd that p ':f O. 

• Given p E PKZ' put 

p 
X+ = {~ E X:sgn Q (x) = + l} 

p 
X = {~ E X:sgn Q (x) = - l}, 

a disjoint partition of X (to within a set of measure O) (cf. #3) -- then 

p 
I(X~, - Q). 
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Now introduce semialgebraic sets 

x1 = { (~, t) E x x R: t > o, t ~ ~ (x) } 

x2 = {(x,t) Ex x R:t < o, t ~ ~ (x) }, 

from which 

p 
I(X_, - Q = !X 1 dxdt. 

2 

Therefore 

Matters are thus settled with the choice d = n + 1. 

• SUppose that 

the claim being that p E PKZ. To see this, write 

where 
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are disjoint sernialgebraic sets in R1 x Rd. Therefore p E PKZ. 

8: T"tlEOREM P KZ is an lhl_g algebra. 

PRCOF There are two issues: 

Stability of the product of two periods 

Stability of the sum of two periods. 

• (Product) Given 

write 

and define 

by 

Then 
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• (Sam) I.et Pj_, J2 E PKZ. Per #7, write. 

where 

d d 
xl c R 1 X c R 1 , 2 

d d 
yl c R 2, T2 c R 2 

are semialgebraic and 

There no loss of generality in assuming that d1 = a2 = d (if, e.g., a1 .-< d2 , 

let k = d2 - d1 and work with x1 x {O,l]k, x2 x [O,l]k). This said, it then follows 

that 

or still, 

Put 

and let r1 , J 1 , r 2 , J 2 c R be disjoin<f: open intervals of length 1 with endpoints 

in R -- then alg 
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Here 

- a - P• 

In addition 

are sem:i.algebraic subsets of Rd+l, thus to finish it rema.ins only to quote #7. 

x 
9: APPLICATION' I.et x E Ralgr p E P KZ -- then 

x + p E PKZ 
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§4. PER!OVS: THEORETICAL CONSIVERATIONS 

1: THEOREIY1 I.et 

be a nonze:ro period - then there are CCIIlJ:?ClCt se:nialgebraic sets K1 , ••• ,Km E sR, 
polynomials 

m P. 
1. = L: I (K. ,-0 ) . 

i=l 1. i 

[This result is due to Juan Vin....SOs t. Its proof is difficult, depending, as 

it does, on Hironaka's rectilinearization of sanialgebraic sets.] 

2: N.B. The integrals 

are absolutely convergent. 

3 : LEl.\1I'1A I.et 

p = I (X,~) (X E SAn) 

be a nonzero perio::l -- then there are ccmp3.ct sanialgebraic sets s and T in SAn+l 

----....,.,...,....---
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such that 

PROOF Proceed as in §3, #7 (necessity), thus 

Per #1, write 

I(X+' 

I (X_ ' 

or still, 

I(X+' 

I(x_, 

or still, 

I(X+, 

I (X_, 

rn+ p: 

p 
I(X_, ~ Q). 

p) + = l: I (K., ~} "CI J_ Q: i=l 
1 

rn p, 
- ~)-= l: I(K~, = ) Q i=l 1 Q. 

1 

p) 
rn+ 

= l: ! + 1 ~dt Q i=l L. 
J_ 

rn -p 
l: ! 1 dxdt - -) = Q i=l L. 

1. 

p) 
rn+ 
l: + = voln+l (Li) Q i=l 

m -
voln+l (L~), p L: - -) = Q i=l 

+ - SAn+ 1 k. . th . 1 eb . 1 . . where L., L. E are ccmpact. W::>r ing wi sercua g !raic trans ations, it can 
1 1 

be arranged that the L"!" are pairwise disjoint and the L-:-· are pairwise disjoint. 
1 1 
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Then 

3. 

m+ m 
+ S = U L., T = U L. • 
1 . 1 J. i= 

m+ m 
= ~ voln-+l(L+1.) - ~ vol +l(L~) 

i=l i=l n 1 

m+ m 
1 ( U L+. ) 1 ( U L-) = VO n+l J. - VO n+l i=l i 

= voln+l (S) - voln+l(T). 

4: THEOREM Let p E PKZ (pf; 0), say 

P n p = l(X,Q) (XE SA). 

Then there exists a canp:tct K E SAk (O < k :5 n + 1) such that 

p = sgn(p) · vo~(K). 

It can be assumed that p is p:>sitive and in the notation of #3, 

'I'h.e µ:>int then is to construct a can.J?<1ct semialgebraic set K from S and T so as 

to arrive at 

'While 1"elanentary", the details are tedious and will be ani.tted. 
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5: EXAMPLE ; is the 4-dimensional volume of the product of tVJO copies 

of the unit disk and the 3-dimensional volume of the set 

3 2 2 2 2 2 {(x,y,z) ER :x +y ~l, 0 :s,z({x +y) + 1) s_4}. 

6: DEFINITION I.Bt p E P KZ ( p ':/- 0) -- then the degree of p, denoted 

deg{p), is the smallest positive integer k such that 

k IPI = volk(K) (KE SA, K compact) (cf. #4). 

[Note: Take deg (O) = 0 and in the ccmplex dcmain1 let 

7: EXAMPLE 

deg(7T) = 2. 

[In view of §2, #6, deg(n) ~ 2. Ch the other hand, the fact that 7T is trans-

cendental rules out the possibility that 

deg(7T) = l (cf. #9 infra).] 

8: REMARK It is conjectured that V n E N, 

n deg(TI ) = Il + 1. 

9: LEMMA deg(p) = 1 iff p E Rxl • ag 

[Since K is compact sernialgebraic, it can be written as a finite disjoint 

union of points and open intervals. In the other direction, any nonzero p E Ralg 

can be written up to sign as the length of [O,p] (cf. §2 1 #4) .] 
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10: APPLICATION A pericxl p E P KZ is transcendental iff deg ( p) > 2. 

11: LEMMA Let p1 , p2 E PKZ -- then 

12: RAPPEL PKZ is an Ralg algebra (cf. §3, #8). 

x 
13: LEMMA Let x E Ralg' p E PKz. Assume: p ¢ Ralg -- then 

[In fact, 

deg(x + p) = deg{p). 

deg(p) =deg(- x + x + p) 

S ma.x{deg(- x}, deg(x + p)} 

=max l,{deg(x + p)} 

= deg(x + p) 

~ ma.x{l, deg (p)} 

= deg(p).] 

x 
14: LEMMA Let x E Ralg' p E PKz· Assume: p ~ Ralg -- then 

deg(xp) = deg(p}. 

[Consider ~ E R:ig (k = deg(p)) .] 

Pericxl theory leads to sane transcendental conclusions. 
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15: THEOREM Let p1,p2 be transcendental periods. Assume: 

Then p1 + p2 is a transcendental number. 

PR(X)F Assume false, so 

But 

leaving 

x x 
thus p1 + p2 E Ralg (cf. #10), say p1 + p2 = x E Ralg' from which 

deg(p1) = deg(x - p2) 

= deg ( (-1) p2 ) (cf. #13) 

(cf. #14) • 

Contradiction. 

16: EXAMPLE It is conjectured that e + n is transcendental. Recalling 

that deg('IT) = 2 (cf. #7), suppose for sake of argument that e E PKZ and deg(e) ~ 3, 

hence deg(e) ':f deg(n). Recalling that e and 'IT are transcendental, it follows that 

e + 'IT is transcendental. 

[Note: Nevertheless, the conjecture is that e is not a period.] 

17 : THEOREM Let pl' p2 be transcendental periods. Assume: 
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Then p1/p2 is a transcendental numl:::er. 

[For p1/p2 = x E R.:.ig implies that 

deg(p1) = deg(xp2) = deg(p2).] 
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§5. PRIMITIVE RECURSIVE FUNCTIONS 

1: N.B. In this § (and all subsequent -ones}., N will stand for 

{0,1,2, .•. } and not {1,2, ... }. Elements of N will be denoted by x,y ,z or 

a,b,c or n,m,k,l. 

2: N. B. In what follows, it will be a question of functions f: N11 + N 

(n = 0 I 1, 2 I • • • ) • 

3 : DEFINITION 

• The zero function Z:N + N, Z(x) = 0. 

• The successor function S:N + N, S(x) = x + 1. 

• The projection functions p°f}-: Nn + N, p'f}- (x1 , ... , x ) = x .. 
i i n i 

[Note: These functions are the so-called initial functions. ] 

4 : EXAMPLE Constant functions are built up from S and Z: 

S(Z(x)) = 1, S(S(Z(x))) = 2 etc. 

5: EXA.lliJPLE The addition function add: N2 + N is defined by 

add(x,y) = x + y. 

Here 

add(O,y) = y, add(x + l,y) = S(add(x,y)). 

[Note: 

S => add. 

For 

x+y=x+l+l+ + 1 .] 

y 



Here 

For 

2. 

6: EXAMPLE The multiplication function mul: ~ + N is defined by 

mul(x,y) = xy. 

mul(O,y) = O, mul(x + l,y) =add (mul(x,y),y). 

[Note: 

add=> mul. 

xy=x+x+x+···+x 
----...,,.-----l.] 

y 

7: DEFINITION The m::xlified subtraction function sub: N2 + N is the pre-

scripti6ri 

and 

sub(x,y) == x -·-· y = 
x-yifx2!,y 

0 if x < y. 

8: EXAMPLE The absolute value function AV:N2 + N is defined by 

AV(x,y) = jx - yj 

Ix ... YI = add(x -·- y, y -·- x). 

9: EXAMPLE The function 
max.in:rum 

is defined by 

min(x,y) = x -· - y) = y ,_:_Cy.-·- x) 

max(x,y) = y + (x -·- y) = x + (y -· x). 



and sub: 

3. 

10: EXAMPLE The identity function idN can be obtained fran S and z 

S(x) -·- S 0 Z(x). 

11: DEFINITION Given a function g: rf1 + N and given functions h.: t.f1 + N 
J. 

(i = l, ••• ,m), the carq;:;osition of g and the hi is the function f: t.f1 + N, denoted by 

g 0 (hl' ... ,1\n), 

such that 

12: 2 2 2 EXAMPLE Take m = 2, g: N + N and take n = 2, h1 = P2 , hz = P1 -- then 

is given by 

• .m..,,1 N • .m+l N . 13: DEFINITION SUpp::>se that g: re- + , h: rr-- + - then the function 

f :rfl + N is said to be obtained by primitive recursion fran g and h if 

and 
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14: EXAMPLE Take m = 1 -- then f :N -+ N is obtained from the constant 

c EN (g(O) = c) and h:N2 
-+ N by primitive recursion off (0) = c and f(x + 1) = 

h(x,f (x)). 

15: DEFINITIOJ'.\f If F is a set of natural number functions and if Q is 

a set of operators on natural number functions, then clos(F,Q) is the inductive 

closure of F with res:pect to Q, i.e., the smallest set of natural number functions 

containing F and closed with res:pect to the operations of n. 

16: DEFINITION The set of primitive recursive functions, denoted by PR, 

is the inductive closure of the initial functions with res:pect to the operations 

of com:p::>sition and pr:imitive recursion. 

17: EXAMPLE The factorial function is primitive recursive: 

2 2 O! = 1, (n + 1) ! = Im.11 o (S 0 P1 , P2) (n,n!). 

18: REMARK All the functions encountered in this § are primitive recursive 

(but see below). 

APPENVIX 

Define the Acke:i.::nann function A:N2 
-+ N by the following equations: 

A(O,n) = n + 1 

A(m + 1,0) = A(m,l) 

A.(m + i;,.n _+ · 1~ = A(m,A(m + l,n)) • 

Then A is not primitive recursive. 
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§6. ELEMENTARY FUNCTIONS 

1: N.B. All conventions introduce:l. in §5 reroain in force. 

2: DEFINITION Let f (t,x1 , ••• ,~) be a function with n + 1 arguments. 

• bounde:l. sumnation is def ine:l. by 

E f(t,x1 , ••• ,x) = f(O,x1 , .•• ,x) + ·•· + f(x,x1 , ••• ,xn). 
t.:SX n n 

• bounde:l. product is def ine:l. by 

3: DEFINITION The set of elementary functions, denoted by EL, is the 

inductive closure of the initial functions, the addition, the Imlltiplication, 

and the m::xiif ie:l. subtraction with respect to the operations of composition, 

bounded summation, and bounde:l. product. 

4: THEOREM 

EL c PR. 
[:Note: The containment is strict. Consider, e.g., 

f (x) 

5: EXAMPLE 

sgn(x) = 

is elementary. 

x· 
=x 

x 

. ] 

1 if x ~ 0 

'-- 0 if x = 0 

= 1 -·- (1 -·- x) 
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6: EXAMPLE 

1 if x > y 
> (x,y) = = sgn (x -·- y) 

Oifx:::;y 

is ele:nentary. 

[Ditto for ~ <, . S] 

7: EXAMPLE 

is elementary. 

[In fact, 

8: EXAMPLE 

is elementary. 

div (x, y) = -, x 
y 

x 
div(x,y) = ( b ~ (x,i(y + 1))) -·- l.] 

i=O 

m =n 

9: Na.rATION Given a set F of natural number functions, let 

F* = F U {P1:} 
l. 

and put 

clos(F) = clos(F*, {canp:>sition}). 

[Note: Here, in the notation of §5, #13, ril is the operation of ccm:J:X)sition.] 

10: THEOREM 

EL = clos(s, sub, div, PJW). 



3. 

[This result is due to Stefano .M.3.zzanti t.] 

11: DEFINITION The set of lower e~ementary functions, denoted by lE L, 

is the inductive closure of the initial functions, the addition, the ITillltiplication, 

and the rrodif ied subtraction with respect to the operations of ccmposition and 

bounded sumnation. 

12: N.B. Obviously 

lEL c EL. 

[Note: The containment is strict. Consider, e.g. , 

f (n) = 2n.] 

t Ma;thema.:Uc.al Lagle. Qu.aM.e!Lly 48 (2002) , pp. 93-.104. 
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§7. HIERARCHIES 

Here is an approach to 'l!1(n EN), the nth set in the Grzegorczyk hierarchy. 

[Note: Recall that n runs through O, 1, 2, . • • and not 1, 2 , . . . . ] 

1: NCYI'ATION Put 

fn+l (x,O) = 1, fn+l (x,y+l) = fn (x,fn+l (x,y)) (n ,::: 2). 

2: DEFINITION E!1 is the inductive closure of the initial functions 

and the nth fn with respect to the operations of COitlf.Osition and l:x:>unded primitive 

recursion. 

3; N. B. Suppose that g: wi-l -+ N, h: ~ 1 -+ N, j : W1 + N are in t?, that 

f is obtained by primitive recursion fran g and h, and in addition, 

f (x,x2 , ••• ,xm) ~ j (x,x2 , ••• ,xm> • 
Then f is in E!1 as well and f is said to be obtained by l:x:>unded primitive recursion 

fran g,h,j. 

4: REMARK If g and h belong to En and f is obtained by primitive recursion 

fran g and h, then f belongs to E11+1• 

5: THEOREM V n E N, En is a proper subset of £11+ 1 • 

6 : THEOREM v n E N, f!l. c; Pn and 
n uE = P.n.. 

n 
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Therefore the sets 

partition PR. 

7: THEOREM 

E3 = EL 

8: THEOREM 

2 E .:>!EL. 

[Note: It is not known whether all functions in E2 are lower elementary.] 

9: N.B. For the record, !EL is the inductive closure of the initial 

functions, the addition, the Imlltiplication, and the m::xlified subtraction with 

respect to the operations of ca:rq;x:>sition and bounded surrm:ation. 

10: N.B. For the record, E2 is the inductive closure of the initial 

functions, the addition, the multiplication, and the rrodified subtraction with 

respect to the operations of canposition and bounded primitive recursion. 

11: LEMJ:'.1A. Bounded sum:nation can be derived frcm bounded primitive 

recursion. 

Consequently 
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§8. COMPUTABILITY 

Let F be a set of natural number functions. 

1: DEFINITION Fis said to satisfy the standard conditions if it contains 

the initial functions, the addition, the multiplication, and the modified sub-

traction and is closed uri.der canposition. 

2: N. B. Both lEL and E2 satisfy the standard conditions. 

In what follows, it will be assumed that F satisfies the standard conditions. 

[Note: Che consequence of this is that F necessarily contains all polynomials 

with coefficients fran N, in particular, F contains the constant functions.] 

3: DEFINITION An F-sequence is a function A1 N + Q that has a representation 

of the f onn 

A(x) _ f {x) - g(x) 
- h(x)' + 1 

where f,g,h:N + N belong to F. 

(x = 0 , 1, 2 , ••• ) , 

4: EXAMPLE Every rational number q gives rise to an F-sequence A:N + Q, 

viz. V x, A(x) = q. 

[Suppose that x = !:. and consider the situation when r > O, s z: 1. s 

• s = 1 Set f (x) = r, g(x) = 0, h(x) = 0, hence 

f (x) ~ g {x) = r. 
h(x) + 1 

• s > 1 Set f (x) = r, g{x) = 0, h{x) = s - 1, hence 
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f (x) - g(x) = E_ 1 
h(x) + 1 s ·~· 

5: SUBLErvJMA If f ,g are one-argument elements of F, then 

f + g E F, f · g E ·F. 

[Consider 

add 0 (f ,g), mul 0 (f ,g), 

bearing in mind that F is closed under canposition.] 

6: LEMMA If A, 'B: N -+ Q are F-sequences, then so are A + B, A - B, and 

A · B. 

7: SUBLEivJMA If h is a one-argument element of F, then Jh I E F. 

[The fact that the m:xiif ied subtraction function JJelongs to F implies that the 

absolute value function JJelongs to F (cf. §5, #8) .] 

8: LEMMA If A:N + Q is an F-sequence and if V x, A(x) =j. O, then k belongs 

to F. 

[In fact, 

1 _ (h(x) + l)f (x) - (h(x) + l)g(x) 
A (x) - I I f (x) ... g (x) f.i - 1 I + 1 • ] 

9: DEFINITION A real number a is said to be F-camputable if there exists 

an F-sequence A:N + Q such that V x, 

IA(x) "' a J < 1 
x + 1 . 

[Note: In practice, it can happen that the relation 

jA(x) - aJ 5. x· ! 1 



3. 

is valid only for x 2: x0• To remedy this, let 

Then for 0 .::s, x S.. x0 - 1, 

1 < 1 ] 
-x+l" 

10: NOI'ATION Denote the set of all F-computable real mnnbers by the 

11: N.B. The constant functions from N to Qare F-computable, hence 

Q c RF (in particular, -1 E RF). 

12: EXAMPLE Take for f the set 1?R of primitive recursive functions --

then the F-ca:nputable real m.mibers are the primitive recursive real numbers. 

(To arrive at RF= R, tak.e instead for F the set of all natural number 

functions. ] 

13: LEMMA If A is an f-sequence and if cp is a one-argument element of 

F, then the assignment x -+ A(<j>(x)) is an F-sequence. 

[For 

f(<j>(x)) - g(¢(x)) 
A(¢ (x) > = h'(~'(x) )" +" 1" · ' 

::::: ( f 0 ¢) _(x_! ..;:_--'""( g...... ~.o--'¢""'-) -"-(x...:....) 
(h o ip) (x) + 1 

and F is closed under ca:np::>sition.]. 

14: APPLICATION suppose that A is an f-sequence and a. is a real number. 

Assume: x!A(x) - a.I is bounded - then a. E Rf~ 



Then 

and 

4. 

PROOF Choose a p::>sitive integer c such that V x, 

x IA (x) - a I $. c. 

IA (ex + c) - al < c 1 --= cx+c x+l • 

[Note: In #13, take cp(x) = ex + c.] 

15: THEOREM RF is a field. 

We shall break the proof up into two parts. 

PARI' 1 Let a, s E Rf -- then 

ICA(x) + B(x)) - (a+ S) l S lACx) - al+ !B(x) - Bl 

=> 

< 
' 

1 1 
x+l+x 

2 
= -x-+--=-1 

x l (A (x) + B (x)) - (a + f3) I · :S. ~ 1 = 2 
1 $. 2 

x l+-x 

[A(x)B(x} - aS! < lA(x} - al lB(x) I + !al jB(x) - SI 

ISi +l+ !al 
x + 1 

x[A(x)B(x) - a.SI ~ x ~ l <IS[+ 1 +!al> 

~ Isl + 1 + !al 



v x :::. c, 

and 

s. 

PART 2 I.et a 71 0 and choose c E N such that (c + 1) I a I 2: 2 -- then 

IA(x) l ~!al - la - A(x) I ~ c- 2 

=> A(x) 71 0 

1 > 1 
x+l-c+l 

l 1 11 a. - A (x) < a l A (x) - a = A (x) a - x + 1 ' 

2 where a= (c + 1) /2. ~fine now a function C: N + Q by the prescription 

l C(k) = ~-~ A(k + c) (k + c 2: c => A(k + c) 71 O) • 

Then C is an F-seguence and 

=> '

C(k) - !_! <_a _ _..,,,.. 
a ·-k+-c+.l 

k!C(k) - 1 ! < ka 
I), - k + c + 1 

a =------<a 
l+c+--

k k 

In surrraary: Rp is a field. 

k+l 16: DEFINITION Supp::>se that f: N + N -- then the min:i.roizer µf of f 

is the function 

: 

(~ 1 ••• ,xk,~+l) + min{j E N:f(x1, ••. ,~,j) = 0 V j = ~+l}. 
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[ Note: Spelled out, 

is the least j ~ ~+ 1 such that 
f(x1, ••• ,~,j) = O 

if such a j exists, otherwise 

if for every j ~ ~+l' 

17: N.B. To say that Fis closed llllder the minimizer operation simply 

means that 

f E F => µf E f. 

18: THEOREM suppose that Fis closed under the minimizer operation. Let 

Then the real roots of the polynomial 

P (X) = a 0 + a 0-l + • • • + a. X + a. a 1 -x-1 -x 

PROOF let l; be a real root of P and without loss of generality, assume that 

P 1 (l;) ~ 0. Choose rational numbers a,b,c,d such that a < r;; < b, 0 < c < d subject 

to 

cjx ~ r;;! ~ IP(X) I ~ dlX - r;;I 

whenever a .S X .s b. Establish the notation: 
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and introCl.uce the p:>lynanials 

Choose q E Q: 

Define now a function A: N + ~ via the follaring procedure. Given any x E N, 

divide [a,b] into x + l equally long subintervals. Let ~ be the set of mid-

p:>ints of these subintervals, there being at least one X E Mx such that 

JP (X) I < d{b-a) + 2q • 
x - 2(x + 1) 

Proof: Choose X E Mx: 

=> 

b-a IX - ~I ; 2(x + 1) 

b - a q _ d(b-a) + 2q 
< d 2(x + 1) + x + 1 - 2(x + 1) · 

Let A(x) E Mx be the left nost element of Mx with the property that 

IP (A(x)) I < d(b-a} + 2q 
X - 2(X + 1) I 

so 

cjA(x) - ~I ~ jP(A{x)) I 

< d(b-a) + 4q 
'"'"' 2 (x + 1) • 
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'Iherefore the prcxluct xiA(x) -; sl stays bounded as a function of x. Accordingly, 

recalling #14, it re:nains only to show that A: N + Q is an F-sequence. 'lb this 

end, note that 

A ( ) = + (b- ) 2 <P (x) + 1 x a -a 2x + 2 ' 

where ¢(x) is the smallest j E {0,1,2 1 ••• ,x} such that 

I P (a + (b"'""a) 2j + 1) I < d (b-a) + 2q 
x 2x + 2 - 2(x + 1) 

or still, 

<jl(x) =rnin{j E {0,1,2, ••• ,x}: 

q' = d(b-a)/2 + q. Since 

P (a + (b-a) 2j + 1) x 2x + 2 
k 

= E A. (x) (a + (b-a) 2 j + 1 ) k--i 
i=O i 2x + 2 ' 

the function 

defines an F-sequence for each j, hence can be represented in the fo:rm 

x + f (x,j) - g(x,j) 
h (x,j) + 1 · 

Put 

ill (x, j ) = f (x, j ) -·- g (x, j ) , 

thus 

¢(x) = min{j E N:iI>(x,j) = 0 v j = x}, 

so <P E F and this implies that A:N + Q is an F-sequence. 
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19: APPLICATION 

Ralg c RF ( c R) • 

[In other words, every real algebraic number is an F-computable real number.] 

20: REMARK It is a fact that the minimizer operation can be derived 

from rounded surrrnation, hence £.EL and E2 are closed under the minimizer operation 

(cf. #2). 

21: THEOREM Suppose that F is closed under the minimizer operation --

then RF is a real closed field. 

PROOF RF is an ordered field. And: 

• Every polyna:nial of odd degree with coefficients in RF has at least 

one root in RF. 

[Since all data is real, on general grounds such a polynomial has at least 

one real root z:;. And, in view of #18, z:; E RF.] 

e If a > 0 is an element of RF' then a has a square root lci in RF. 

[As a positive real number I va is a root Of the }:JOlynomial x2 - (),. But the 

coefficients of this polyna:nial are in RF' hence by #18, lci belongs to RF.] 



1. 

§9. THE SKORVEV CRITERION t 

Given a set F of natural number functions, assl.ll're as in § 8 that F satisfies 

the standard conditions. 

1: DEFINITION An F-2-sequence is a function A:~ + Q that has a rep-

resenta.tion of the form 

_ f (x,n) - g(x,n) 
A(x,n) - h(x,n) + 1 (x,n = 0,1,2, ••• ), 

2 where f,g,h: N + N belong to F. 

2: DEFINITION A real valued famction a: N + R is said to be f-camputable 

if there exists an F-2-sequence A: N2 + Q such that v x, v n, 

I A(x,n) - a(n) I :S x 1 

3: N.B. It is clear that v n E N, the real number a.(n) is F-camputable 

(cf. §8, i9). On the other hand, if v n E N, a(n) is F-conputable, then there 

exists an F-sequence An(x) such that v x, 

so setting 

IAn(x) ~ a(n) l 5 x ! 1 , 

A(x,n) = A (x) n 

leads to the conclusion that a. is F-camputable. 

4: METHOOOI.03Y Given an F-sequence A: N + Q, view it as a function 

a.: N + R -- then a is f.-computable, i.e., there exists an f .... 2-sequence A: N2 + Q 

tJoU!U1.a.l on Uni.vVL&a.l Compu.:teJL Sele.nee 14 (2008) I PP~ 861~875. 



such that 

Thus let 

to get 

2. 

I A(x,n) - a(n) J ~ x ! 1 • 

A(x,n) = A(n) 

I A(x,n) - a(n) J = jA(n) - A(n) I 

0 < __ l_ 
= -x+1 · 

5: LEMMA If a: N -+ R is F-carnputable, then there exist functions f: N2 
-+ N 

2 and g: N -+ N in F such that v x, v n, 

I f (x,n) - g(x,n) I 1 
x + 1 - a (n) :5. x + 1 · 

PROOF Changing notation, start with a relation 

u(x,n) - v(x,n) 
w(x,n) + 1 a(n) I S x ! 1 

per #2. Introduce 

Then 

£0 (x,n) = u(2x + l,n) 

g0 (x,n) = v(2x + l,n) 

h0 (x,n) = w(2x + l,n). 

f 0 (x,n) - g 0 (x,n) 
------- - a(n) h0 (x,n) + 1 

= I u(2x + l,n) - v(2x + l,n) _ a(n) I 
w(2x + l,n) + 1 
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1 1 
< 2x + 1 + 1 = 2(x+l} • 

Define C:N2 + N by the rule 

thus C E 'f.:. and 

Put now 

C(i,j) = i + 1 
j + 1 2 

I C(i,j) - j ! 1 I ~} . 

I 

f(x,n} = C((x + 1) (f0 (x,n) ~·~g0 (x,n)), h0 (x,n)) 

and 

g(x,n) = C((x + 1) (g0 (x,n) ~·~ f 0 (x,n)}, h0 (x,n)). 

Then f, g E F and (details below) 

I 

f 0 (x,n) - g0 (x,n) 

1 

1 f(x,n) - g(x,n) - (x + 1) ho(x,n) + 1 ~ 2 . 

Multiply this by x ! 1 to get 

f(x,n) - g(x,n) fo(x,n) - go(x,n) 
x + 1 h0(x,n) + 1 

< 1 
- 2 (x + 1) 

Therefore 

I f (x,n) -
x+ - a(n) I 

f (x,n) - g(x,n) f 0 (x,n) - g0 (x,n) 
= x+l h0 (x,n) + 1 

f 0 (x,n) - g0 (x,n) 
- a (n) I + h0 (x,n) + 1 

< f (x,n) - g(x,n) f 0 (x,n) - g0 (x,n) 
x+l h0 (x,n) + 1 



£0 (x,n} - g0 (x,n) 
- a(n) h0 (x,n) + 1 

4. 

< 1 + 1 = 1 
- 2(x + 1) 2(x + 1) x + 1 · 

6: DEm.IIS The claim is that 

f 0 (x,n) - g0 (x,n) 

1 

1 f(x,n) - g(x,n) - (x + 1) ho(x,n) + 1 ~ 2 . 

e SUppJSe that 

By definition, 

Accordingly 

Therefore 

So consider 

f 0 (x,n) -·- g0 (x,n) = 

f 0 (x,n) -·- g0 (x,n) 

= 0. 

f(x,n) = C(O,h0 (x,n)) 

= ,,,__..,...._~o ,_..,., + i 
h0 (x,n) -+T 2 

= [ ~ ] =a. 

I 
£0 (x,n) - g0 (x,n) 

- g (x, n) - (x + 1) ....,,_-.,.......,........,....,.-..-.,---
h0 (x~n) + 1 



or still, 

By definition, 

But here 

since 

Recalling that 

5. 

g0 (x,n} - f 0 (x,n} 
g(x,n) - (x + 1) h0 (x,n) + 1 

g(x,n) = C((x + 1) (g0 (x,n) ~·- f 0 (x,n)), h0 (x,n)). 

I C(i,j) 
i 1 

j+l ::£2, 

specialize and take 

Then 

= 

i = (x + 1) (g0 (x,n) - f 0 (x,n)) 

j = h0 (x,n). 

g0 (x,n} - f 0 (x,n) 
g(x,n) - (x + 1) ho(x-;Il) + 1 

C((x + 1) (g0 (x,n) - f 0 (x,n)), h0 (x,n)) 

g0 (x,n) - f 0{x,n) 
- (x + 1) h0 (x,n) + 1 

1 
~2· 

e SupJ?Ose that 
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By definition, 

Accordingly 

Therefore 

g(x,n) = C(O,h0 (x,n + 1)) 

= I_~ ] = o. 

So consider 

I 

f 0 (x,n) - g0 (x,n) 

1 
f (x,n) - (x + 1) ho(x,n) + 1 • 

By definition, 

f(x,n) = C((x + 1) (f0 (x,n) ~·~ g0 (x,n)), h0 (x,n)). 

But here 

since 



Recalling that 

specialize and take 

Then 

= 

7. 

i = (x + 1) {f0 (x,n) - g0 (x,n)) 

j = h0 (x,n}. 

f 0 (x,n} - g0 (x,n) 
f (x,n) - (x + 1) h0 {x,n) + 1 

c ( (x + 1) (f0 (x,n) - g0 (x,n)), h0 (x,n}) 

f 0 (x,n) - g0 (x,n) 
- (x + 1) h0 (x,n) + l 

1 
.::: 2. 

7: N.B. The upshot is that in the definition of f-camputability, one 

can take h(x,n) = x. 

Thus far the only conditions imposed on f are the standard ones but to proceed 

to the main result it will be assumed henceforth that F is closed 'lll1.der rounded 

si.mmation (which, of course, is the case if F =!EL or E2). 

8: THEDREM Let a: N + R be J::-<X.:mlputable, assume that the Z a (n) 
n=O 

is convergent, and let :'.! be its smn. Supi;:ose there exists a f'lll1.ction i;:N + N 

in F such that V x E N, 

Then E is f...cornputable. 

°" 
Z a(n) I < 

n=i;; (x) + 1 
1 

x+1· 
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9: LEMMA Let a.: N + R be F-computable. Define a.L:: N + R by setting 

L: a. (m) 
m 

= L: a. (n) • 
n=O 

Then a.L: is F-conputable. 

PROOF Per #5, -write 

f (x,n) - g(x,n) _ a.(n) I 
x+l 

< 1 
- x + 1 

and define functions 

in F by stipulating that 

Then 

I.e.: 

if 

L: f (x,m) 

g'f..(x,m) 

m 
= L: 

n=O 

m 

f (.xm + x + m,n) 

= E g(.xm + x + m,n). 
n=O 

f (.xm + x + m,n) - g(.xm + x + m,n) _ a.(n) I 
.xm+x+m+l 

< 1 
-.xm+x+m+l 

=> 

E E I I f (x,m) - ~ (x,m) _ a.E(m) 
.xm+x+m+l 

f (x,m) - g (x,m) _ a.L:(m) L: L: I 
h(x,m) + 1 

h(x,m) = .xm + x + m, 

1 
< 1 . -x+ 

< 1 
-x+l 

thus al: is F-carnputable. 
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Tl.lrning now to the proof of the theorem, per #9, detennine functions 

2 F,G,H:N -+ N 

in F such that V x, V n, 

Introduce 

F(x,n) - G(x,n) _ cx.L:(n) I < 1 
1 

• 
H (x,n) + 1 - x + 

u(x) = F(2x + 1, s(2x + 1)) 

v(x) = G(2x + 1, s(2x + 1) 

w(x) = H(2x + 1, s(2x + 1). 

Then u,v,w E F and 

= 

= 

= 

u(x) - v(x) 
w(x) + 1 ~ I 

u(x) - v(x) 
00 I w(x) + 1 - L: a(n) 

n=O 

u(x) - v(x) 
w(x) + 1 

s (2x+ 1) 00 I 
L: a (n) - L: a (n) 

n=O n=s(2x+l) + 1 

F(2x + l,s(2x + 1)) - G(2x + l,s(2x + 1)) _ aL:CsC2x + l)) 
H(2x + l,s(2x + 1)) 

- ~ cx.(n) I 
n=E,;(2x+l) + 1 

< I F(2x + l,s(2x + 1))- G(2x + l,t;(2x + 1)) _ cx.L:(s(2x + l)) I 
H(2x + l,s(2x + 1)) 

+ I ~ a(n) I 
n=s(2x + 1) + 1 



10. 

l: a(n) 
n=~(2x + 1) + 1 

1 1 
< 2x + 1 + 1 + 2x + 1 + 1 = 

2 1 = = ~---..,~ 2x + 2 x + 1° 

10: N.B. Assuming that the series l: a(n) is convergent (in practice, 
-- n=O 

this is invariably a non-issue), there are then tvx:> points. 

1. Establish that a is f-computable (or that v n, a(n) is F-ccmpltable). 

2. Find ~ and deal with the speed of convergence. 

11: 

and let a(n) 

2 EXAMPLE e is E ~-computable, i.e. , e E R 2 . E 

00 1 
e = l: ~ 

n=O . 

'Ihus write 

1 
- n!' hence a:N + Q c R, the claim being tha~ a is E2-carnputable. 

'lb see this, let 

2 '!hen f E E : 

f (x,n) = i= :i ] . 

f (x, 0) = x, f (x,n + 1) = I f (x,n) -, f ( ) < x - n + 1 - ' x,n 

and one can quote rounded recursion. In addition 

f (x + l,n) _ a(n) I 
x + 1 = f (x + l,n) 

x + 1 - _!_ I n! 

= x ~ 1 I f (x + l,n) 
x+l 
n! 
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1 = x+l 

< 1 
-x+1· 

Therefore a. is F-canputable. It remains to define ~:N + N and consider 

So :i;:ut 

Then 

00 00 
1 E a.(n) = E - 1 • 

n=t;(x) + l n=~(x) + 1 n. 

t;(O) = 1, t;(l) = 2, t;(x) = x (x ~ 2). 

00 00 
1 (x = 0) E 1 E 1 

+ 1 n! - -= e - 2 ~ 1 =0+1 
n=t; (O) n=2 n! 

00 00 
1 ( x = 1) E 1 E - 1 = e - 2.5 ~ 2.7 - 2.5 = + 1 n! - 3 n. n=~(l) n= 

co 00 
1 1 

(x > 1) L: - 1 - E -n 1 
n=t;(x) + 1 n. n=x + 1 · 

1 1 = (x + 1) ! + ~(x-+~2~) ~! + · · • 

1 =-x! 

< ..!_ 
x! 

l 
- x! 

[x 1 

i=x 1 

1 
x+ 

+ 1 
(x + 1) (x + 2) 

+ . 1 + 
(x + 1) 2 

+ ••. 

.2 < 1 
-1+1 
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Conclusion: 

::::: = e 

is E2-computable. 

[:Note: It turns out that e is actually lEL-carrputable (cf. §10, :fl:6) .] 

11: REMARK Recall that Ralg c: RE2 (cf. §8, #19) and since e is trans-

cendental, it follows that the containment is pro:per. 
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§10. TECHNICALITIES 

1: DEFINITION A relation R c Nn is said to be lower elementary if its 

characteristic function belongs to lEL. 

2: LEMMA Supp:>se that f:N + N is in lEL. Define a function cp:N + N 

by the f onnula 

n 
Cj) <n> = TT f Ck> • 

k=O 

Then the graph of <p is lower elementary. 

[Note: Recall that lEL is closed under bounded surrma.tion. l 

3: EXAMPLE Fix a positive natural number N and define f:N + N by stipu-

lating that V k, f(k) = N -- then f E.i.EL. M:>reover cp(n) = tf1+l and the graph 

of <p is lower elementary. 

4: LEMMA. Suppose that cp:N + N has the property that V n, cp(n) ~ O. Assurre 

further that the graph of cp is lower elementary -- then the function 

is lEL-cornputable. 

1 
n + <p (n) 

5: EXAMPLE For every positve natural number N, the function 

is lEL-carrputable. 



2. 

6: REMARK It was shown in §9, #11 that 

co 

e = l: ~ 
n=O n! 

is c2--canputable. However more is tmei e is lEL ..;;canputable. To see this, 

consider f: N + N, where 

Then 

f(O) = 1, f(k) = k (k > 0). 

n 
cp(n) = lT f (k) = f (O) f (1) f (2) • • • f (n) 

k=O 
= nl. 

Therefore the function 

1 n+-nl 

is lEL-canputable (and the argument proceeds ... ). 

[Note: It is clear that f is in lEL.] 

7: LEMMA If a: N + R, S: N + R are lEL-canputable bounded functions, then 

the product aS:N + R is also lEL-canputable. 

8: EXAMPLE The function 

is lEL--computable. 

[Note: 

(-l)n 
n + N11+1 

(-l)n = (n + l)rrod 2 - n nod 2 

= "f (n) ~ g (n) ", 

hence (-1) n is an lEL-sequence, hence is lE L-computable (cf. § 9, #4) . ] 
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§11. NUMERICAL EXAMPLES 

The basis for the calculations infra is §9, #8, which will not be quoted 

over and over, as well as the generalities in §10, which will also be taken without 

attribution. 

1: EXAMPLE 1T is £.EL-computable, i.e., 1T E Rt.EL. Thus write 

Then the function 

1T _ oo (-l)n 
4 - n~O 2n + 1 • 

(-l)n 
n+2n+l 

is lEL-canputable. As for convergence, the series 

co (-l)n 
n~O 2n + 1 

is alternating, so v x EN (s(x) = x), 

co (-l)n I 
n~+ 1 2n+l 

< 1 
- 2 (x+l) + 1 

- 1 < 1 
-2x+3-x+l 

These considerations establish the ~EL-ca:nputability of ~' thus that of 1T = 4(~). 

2: EXAMPLE £n (N) (N = 1, 2, ••• ) is £.EL-computable, i.e. , in (N) E R l.EL. 

Thus write 

fu(l + ~) 
oo (-l)n = l: 

n=O (n+l)tf-+l 



=> 

2. 

oo (-l)n 
Rn(N + 1) = Rn(N) + E 

n=O (n+l)tfl+I • 

Proceed. by induction on N. When N = 1, fu(l} = 0, which is obviously lEL-

computable. So take N > 1 and suppose that Rn(N) is lEL-cornputable. Since 

RlEL is a field, it need only be shown that 

oo n 
E (-l) ER • 

n=O (n+l)tfl+l lEL 

But the function 

(-l}n n -+ _.;...._;....._~ 
(n+l)tfl+l 

is lEL -computable. And v x E N ( s (x) = x) , 

I nL + l 

(-l)n 
cn+1>w+1 

1 1 < 
cx+2>NK+2 < . 1 . - -x+ 

3: EXAMPLE catalan 1 s constant 

oo (-l}n 
G = E 

n=O (2n + 1) 2 

is lEL-cornputable, i.e., GE RlEL. 

write 

4: :E:XAMPIE Euler's constant y is lEL-ccimputable, Le., y E R.e.EL" Thus 

00 
1 1 

Y = E (n + l - l (l + n + 1)). 
n=O 
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Then 

1 1 
n + 1 - fu(l + n + 1) 

oo (-l)m = E 
ITFO (m+2) (n+l)m-t-2 • 

Per m, 

(-l)m 
a (m) = ------
n (m+2) (n+l)m+2 

is a product of three bounded £.EL-computable functions, thus a (m) is lEL-can-n 
putable. As for convergence, V m E N (!; (x) = x), 

; a (m) I 
m==x+l n 

< 1 <--1-< 1 
(x+J) (n+l)x+3 - x + 3 - x + 1 · 

Therefore per n the sum 

00 

is lEL-canputable. And finally 

00 

I 
< ; 

n=:x: + 1 

00 00 (-l)m 
< E E - (m+2) (n+l)m+2 n=x + 1 ITFO 

00 

1 < E 2 - n=x + 1 2 (n+l) 

1 
00 

1 
= 2 n~ + 1 -(n_+_l_) ..,...2 



'Iheref ore 

co 
< 1 I 1 
- 2 + 1 n(n+l) n=x 

< ! __ l_ < 1 
-2x+l-x+l 

00 

4. 

is £.EL-computable. 

5: EXAMPLE Liouville' s nurrtier 

co 
1 L = E --1. 

n=l lOn., 

is £.EL-computable, i.e., LE R£.EL. 

[As regards convergence, write 

co 

L = E - ..... 1--=.,...,.. 
n=O 1o<n+l)! 

and note that V n EN (t;(x) = x}, 
co 
E _ _,_1__,,._ 

n=x + l lO(n+l)! 

co 

< I l = 1 l 1 
(x+2) ! + (x+3) ! + -cx_+_4~)-! + • • • n=x + l (n+l)! 

1 
(l + x ~ 3 + 

1 + •.. ) = (x+2} ! (x+3) (x+4) 

< 1 (1 + ! + J:... + ... ) = 2 
(x+2)! 2 22 cx+2n 



6: EXAMPLE I.et 

5. 

2 1 
< --1 < 1 .] 

2x+ - x + 

00 1 
r; (x) = 2: x (x > 1) 

n=l n 

and define 

by 

fR(k) = l;(k+2) (k = 0,1, ..• ). 

Then fR is an .f.EL-computable function. Consequently v k, 

r;(k+2) E R.f.EL" 

In particular: 7;(3) is an !EL-computable real number. 

[Note: Put ..e. = k + 2, thus ..e. = 2,3, ••• - then 

dtl dt..e.-1 dt..e. 
r; (l) = f 1 > t > •• ·>t > 0 t ... ..,..-t-- . 1-t 

1 l 1 l-1 ..e. 

is a :period, so 

(cf. §12, #9), 

which is another way of looking at matters.] 

7: FACI'S 

• v k, 

fR(k+l) < fR(k). 

00 
1 = t: 

n=O (n+l)k+2 
00 

2: 1 
n=O (n+l)k+3 



• v k, 

co 
= E ( 1 

n=O (n+l)k+2 

co 

L: 1 = 
n=O (n+l) 

00 

6. 

1 ) 
(n+l)k+3 

1 
{l - n + l} 

E n = ---::--=- > 0. ] 
n=O (n+l) 

1T2 
[ fR (O) = 6 < 2. On the other hand, 

00 1 
fR(k) = l + I k+2 > 1. 

n=2 n 

'Iheref ore 

8: EXAMPLE fu(ir) is !EL-computable, i.e., fu{TI) E RlEL. Thus write 

ln(TI) - fu(2) 
co = L: l;; {2n) 

n=l (2n)22n-l 

00 
= E __ i; (2 (n+l)} 

n=O 2(n+l)22 (n+l)-l 

00 

= I: 
n=O 2 (n+l) 

Then 

oo fR (2n) 
ln(ir) = ln(2) + L: 2 1 • 

n=O 2(n+l)2 n+ 
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Since .En.(2) E RlEL (cf. #2), it suffices to examine the series 

But 

00 fR (2n) 
L: 

n=O 2(n+l)22n+l • 

(i) fR (n) is a bounded lEL--computable function, hence so is fR (2n) • 

(ii) 

(iii) 

1 1 Z(n+l) = 2n+l + 1 is an lEL-computable function. 

1 is an lEL-canputable function. - 22n+l 

Conclusion: 

2(n+l)22n+l 

is an lEL-computable function. 

'lb handle the convergence, V x ~ N ( ~(x) = x) , 

00 fR (2n) 
L: _ . 2n+l n==x; -T 1 2(n+l)2 

00 

< z: 2 
n=x + 1 2(n+l)22n+l 

00 

< z: 1 
n=x + 1 22n+l 

1 l = 22x+3 -1 
1 -4 

4 = 
3 . 22x+3 

1 = 
3 . 22x+l 



8. 

1 <----- 3 (2x+l) 

1 
- 6x+3 

< 1 
-x+1· 

APPEMVIX 

PACI' If s E RlEL' then es E RlEL and if s E RlEL is > 0, then ln(s) E RlEL" 

PACI' If s E RlEL' then 

sin s 
E RlEL 

cos s 
PACI' If s E RlEL and if Isl :s, 1, then 

Arc sin s 

Arc cos s 

PACI' If s E RlEL' then 
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§12. R 3 versus R 2 E E 

Before getting down to business, there is a preliminary fact, frankly tech-

nical, 'Which will be needed below. 

1: RAPPEL (cf. §9, #5) If a. E R is f-canµitable, then there exist -= 

functions f:N + N and g:N + N in F such that V x, 

I f (x) - g(x) _ a. l < 1 
x-+:l -x 

[Note: Here it is assumed that F satisfies the standard conditions.] 

2: SUBLEMMA If a E R is F-canµitable, then there exist functions f 0,g0,h0 
in F such that V x, 

1 
< 2(x+l) • 

PRCOF Start with u,v,w in F such that V x, 

Introduce 

I u(x) - v(x) _ a \ < 1 
w(x) + 1 .,,., x 

f 0 (x) = u{2(x+l) + 1) 

g0 (x) = v(2(x+l) + 1) 

h0 (x) = w(2(x+l) + 1). 



Then 

2. 

f 0 (x) ~ g0 (x) 
110 (x) + 1 - a 

= 

< 

= 

u(2(x+l) + 1) - v(2(x+l) + 1) _a I 
h0 (2(x+l) + 1) 

1 
2(x+l) + 1+1 

1 1 ..,---....,.- = ..,,.-,---,,-,--2x + 4 2 (x+2) 

1 
< 2(x+l) • 

3: LEMMA If a E R is f-computable, then there exist functions f: N -+ N 

and g:N + N in F such that 'I:/ x, 

I f (x) - g (x) I 1 
x+l -a <x+l" 

PROOF Proceed as in §9, #5, taking f ,g E F per f 0,g0,h0 to arrive at 

f (x) - g(x) I 
x + 1 - a 

f (x) - g(x) 
x+l 

f 0 (x) - g 0 (x) 
h0 (x) + 1 

< 1 + - 2(x+l) 

+ 
f 0 (x) - g0 (x) 
h 0 (x) + 1 

f 0 (x) - g0 (x) 
h0 (x) + 1 - a 

- a 
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1 1 1 
< 2(x+l) + 2(x+l) = x + 1 • 

4: N.B. The p::>int, of course, is that in §9, #5, :::_ can be replaced by <. 

5: LEMMA There exists a ~-ary function h in f3 which is universal for 

the one--ary functions in ti-. 
[Note: I.e. , the functions 

h + h(X,n) (X = 0,1,2, ••• ) 

exhaust the one-~ary frmctions in E2.] 

6: RAPPEL The natural number function 

p:::>W{x,y) = -lf 

is elementary (cf. §6, #8}. 

On general grounds, 

R 2 c: R 
E E3 

and the claim is that this containment is strict. 

In detail: Start by defining a one-ary function g as follows: g(O) = O and 

V k E N, 

3g(k) if 6g(k) + 3 ~ h(k, 2·3 k+l - 1) 
g(k+l) = 

3g(k) + 2 otherwise, 

thus 

g(k+l) - 3g(k) E {0,2}. 

7: LEMMA gEE3 • 
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[Use the inequality g (k) ::: 3k - 1.] 

Put 

Then for any K E N, 

=> 

=> 

00 
a_ L: g(k+l) - 3g(k) 

- k=O 3k+l • 

K-1 L: g(k+l) - 3g(k) _ g(K) 
k=O 3k+l - 7 

00 = L: g (k+l) - 3g (k) 
k=K 3k+l 

00 

~ 2 L: _l_ 
k=K 3k+l 

1 1 1 = 2 ( K+ I + K+2 + IH 3 + ••. ) 
3 3 3 

2 1 1 
= K+l (l + 3 + 2 + ••• ) 

3 3 
2 3 - 1 = 

3
K+l • 2 -

3
K 

0 < ex - g (K) 
- K 3 

= ex - ----"'g--'-(K.....:.)_ 
(3K-l) + 1 
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Therefore the real number a is f3-ca:nputable: 

Still 

a E R 3 . 
E 

a~ R 2• 
E 

'lb establish this, proceed by contradiction and assume that V x E N, 

I f (x) - g(x) 
x + 1 - Cl I <--1 

x + 1 (cf. #3). 

2 Here f and g belong to E , as does If - g I . And, since a is nonnegative, V x E N, 

I I f (x) - g (x) I I 1 
x + 1 - Cl < x + l . 

Proof: For all real S and T, 

=> 

= 

< 

Isl - ITI I s-:ls - Tl 

I f (x) - g (x) I - I a I I 
Ix+ lJ 

jf (x) - g(x) J - a I 
x + 1 

f (x) - g (x) _ a I < 1 
x+l x+l 

Oloose now per #5 a natural number X.such that V x E N, 

hence 

lf(x) - g(x) I= h(X,x), 

h(X,x) 
x + 1 _rv l<--1 "" x + 1 . 
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In :t;articular: 

I 
h(X,2 . 3X+l ~ 1) - N I < 1 

X+l '""' X+l • 2 . 3 2 . 3 

There are then two possibilities, both of 'Which lead to a contradiction • 

• 

=> 

=> 

=> 

But 

=> 

6g(X) + 3 S h(X,2 • 3X+l - 1) 

6g(X) + 3 < h(X,2 · 3X+l - 1) 
2 • 3X+l - 2 . 3X+l 

3g(X) + 1 _ < h(X,2 · 3X+l - 1) 
3X+l 2 . 3X - 2 • 3X+l 

g(X) + 1 < h(X,2 · 3X+l - 1 
3X 2 · 3X - 2 · 3X+l 

1 
< a+ ----x+~l • 

2 . 3 

O < a _ g(X+l) < _l_ 
- 3x+l - 3x+l 

~ < g(X+l) + _l_ 
~ 3X+l 3x+l 

_ 3g(X) 
- 3x+l 



Contradiction • 

• 

But 

=> 

=> 

=> 

7. 

1 <a+----
2 . 3X+l 

< g(X) + _l_ + __ l __ 
3x 3x+l 2 . 3x+l 

(X) 1 1 
= _g_ + -- (1 + -2) 

3x 3x+l 

= g(X) + 1 x x· 3 2 . 3 

6g(X) + 3 > h(X,2 · 3X+l - 1) 

=> 

gQ{) + 1 > h(X,2 · 3X+l - 1) 
3X 2 · 3X 2 · 3X+l 

1 
> a. - --x~+-=-1 · 

2 . 3 

a ~ g (X+l) 
- X+l 3 

a = 3g (X) + 2 = g (X) + _2 _ 

3x+l 3x 3x+l 

>a - __ l __ 
2 . 3X+l 



Contradiction. 

8. 

> 9:.QQ_ + _2 _ - __ 1-=--;-
- 3x 3x+l 2 . 3x+l 

8: R'EMARK Supp:>se that n ~ 2 -- then it can be shown that #5 remains 

valid if E3 is replaced by En+ 1 and E2 is replaced by En. This said, the argmnant 

above goes through without change, the conclusion being that 

9 : THEX::>REM 

[For the details, see Katvin Tent and Martin Ziegler t . ] 

SO there is a chain 

And in view of what has been said above, the containment 

is strict. 

t MU.n-0.teJt. JauJLnal. at) Mathe.matico 3 (2010), pp. 43-66. 
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10: N .B. It is unknovm -whether lEL equals E2 or not. 

11: EXAMPLE TIE RlEL (cf. §11, #1) but actually TIE PKZ (cf. §2, #6). 

[Note: e E RlEL but it is not known if e E PKZ.] 

TI 12: EXAMPLE e E RlEL (see the ApJ?eildix to §11). 



1. 

§13. RECURSIVE FUNCTIONS 

1: DEFINITION The set of recursive functions, denoted by R, is the 

inductive closure of the initial functions with respect to the operations of 

CC!Up)sition, primitive recursion, and minimization. 

2: N.B. Obviously 

PR c R. 

[Note: The containment is proper (the Ackennann function figuring in the 

Appendix to §5 is recursive but not primitive recursive).] 

3: REMARK An im:i;ortant property of PR is that it is a recursively 

enumerable subset of R, i.e., there is a tw).,-way function u (m,n) that enumerates 

the primitive recursive functions in the sense that 

• v f E PR, 3 m: v n, f (n) = u (m,n) . 

• v m, u(m,--) E PR. 

[Note: en the other hand, R itself is not recursively enumerable. ] 

In the theory developed in §8, take F = R (the standard conditions are then 

obviously in force). So an R-sequence is a function A:N-+ Q that has a representation 

of the f onn 

_ f(x) - g(x) _ 
A(x) - h(x) + 1. (x - 0,1,2, ... ), 

'Where f ,g,h:N -+ N belong to R and a real number a is said to be R...-ccmputable if 

there exists an R-sequence A:N -+ Q such that V x, 

1 
jA(x) - al ·~ x + 1 • 
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4: N.B. Rather than working with (x+l)-l one can work instead with 2-x, 

either definition leading to the same set of R-cornputable real numbers. 

[Note: This is not always permissible. E.g.: Take F = ti2' -- then the 

use of 2-x would imply that the ti2'-computables are precisely the rationals, 'Which 

is untenable. However, the switch to i"·x is permissible if F = t1 (n .::- 3), in 

particular if n = 3 (=> ~ = EL) or if F = PR.] 

5: NOI'ATION Denote the set of all R...computable real numbers by the symb:>l 

RR (cf. §8, #10). 

6: THEOREM RR is a real closed field (cf. §8, #21). 

[Note: In addition, RR is countable.] 

7: N.B. It is customary to refer to the elements of RR as s.lniply the 

computable reals. 

8: EXAMPLE 

Therefore periods are computable. 

9: EXAMPLE Chai tins constant (s) Q is (are) not computable. 

While the very definition of "computable real" involves recursive funtions, 

natters can also be fonmilated in tenns of primitive recursive functions. 

10: DEFINITION Let a be a real number -- then a primitive recursive 

approximation of a is a pair (A,E) of PR•:-Sequences A,E: N -+ Q such that E is 
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rronotonically decreasing to 0 and such that v x, 

jA (x) - a I ~ E (x) • 

[Note: In general, E depends on a. ] 

11: EXAMPLE Supr:ose that a E R'.f?R' so there exists a: PR-sequence A: N + Q 

such that V x, 

Then the pair 

jA(x) - aj ~ x ~ 1 • 

1 (A(x), x + 1 ) 

is a primitive recursive approx.irration to a. 

12: THEOREM A real number a is canputable iff it has a primitive recursive 

approx.irration. 

One direction is straightforward. Thus consider a real number a with the 

stated property. Define s: N + N by the rule 

s(x) =·rnin{n:E(n) ~ x ~ 1 }. 

Then s is recursive, hence A 0 s is an R--sequence (cf. §8, #13) and V x, 

IA(s(x)) - al < 1 
- x + 1 . 

Therefore a is R-cc:rnputable. 

In the other direction: 

13: LEMMA Suppose that a E RR -- then there exists a pair (A,E) of 

PR-sequences A,E:N + Q with the property that there are elements of E(N) which 

are arbitrarily close to 0 and such that V x, 

jA(x) ~al ~ E(x). 
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PROOF The assumption on a. implies that there exists an R-sequence A' such 

that v x, 

IA' (x) - a. I ~ x ! 1 . 

This said, choose a surjective primitive recursive :function f:N- + N such that 

A(x) == A' (f (x)) 

is a PR-sequence. Put 

E(x) l 
= -=f-=-cx--=)-+~1 • 

Then 

IA (x) - a. I = IA' (f (x)) - a. I 
1 

~ f (x) + l = E(x) • 

'lb finish the proof of #12, one has only to take the data supplied by #13 

and transform it :into that required of #10. Using primes, put 

E' (n) = min{E(i) :0 5. i 5. n} 

k(n) = m:in{i:O 5. i 5. n, E(i) = E' (n)} 

A' (n} = A(k (n)) • 

Then the pair {A' ,E •) is a primitive recursive approxima.tion of a,. 

14: RAPPEL 'lb say that a real rn.miber is computable means that there 

exists an R-sequence A:N + Q such that V x, 

l 
IACx> ~ a.I ~ x + 1 . 

Question: can one instead utilize a fR"l:'Sequence? The answer in general is . 
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15: EXAMPLE Iet f: N + {0,1} be recursive and put 

Tnen a E: RR and the claim is that there is no f:R"-sequence A: N + Q with the proi;:erty 

that v x, 

1 
IA(x) - a f S. x + 1 . 

['!he initial observation is that if k E N, q E Q, and 

then 

1 
s. k+l , 

4 

f (k) = [ [2 • 4kq + 1/2]n:od 4] 
2 (cf. infra). 

Granted this, consider a PR-sequence A:N + Q subject to V x, 

and let 

thus 

1 
IA(x) - a! ~ x + 1 ' 

q = A(4k+l - 1), 

1 1 lq - al ~ k+l = k+l ' 4 - 1 + 1 4 

and the fo:rmula for f (k) implies that f is primitive recursive. Accordingly, 

if a is constructed by using a function f:N + {0,1} that is recursive but not 

primitive recursive, i.e., if 

f E R but f ¢ PR, 

then th.ere will be no ;:n-sequence A:N + Q per supra. J 



6. 

[Details: 

00 

2a = L: 2f (n) 
n=O 4n 

=> 

k [2 • 4 a] m::xi 4 = 2f (k). 

And 

=> 

k [2 • 4 a] + d (d = O or d = 1) 

=> 

[2 . 4kq + 1/2] m::xi 4 = 2f (k) + d.] 

16: DEFINITION Let a be a real number -·· then a has a primitive recursive 

nested interval representation if there are PR-sequences f ,g:N + Q such that v x, 

f (x) ~ f (x + 1) S a S g(x + 1) ~ g(x) 

and 

lim (g(x) ~ f(x)) = 0. 
x + 00 

17: LEMMA A real number a has a primitive recursive nested interval 

representation iff it admits a primitive recursive approxirration. 

PROOF 

=> Given f,g, let 

A(x) = g(x) + f (x) and E(x) = g(x) - f (x) 
2 2 



Then 

And 

if f 

if f 

if f 

But 

<= 

7. 

IA(x) ""' al = lg(x) ; f (x) - al 

< 1~)- al + l!J& -al - 2 2 2 2 

= g(x) - f(x) = E(x). 
2 

E (x + 1) ::: E (x) 

g(x + 1) - f (x + 1) ::: g(x) - f (x) 

g (x + 1) ... g (x) < f (x + 1) -- f (x) 

g(x) - g(x + 1) > f(x) - f(x + 1). 

g(x) 7 g(x + 1) > 0 -
f (x) -r:- f (x + 1) < 0. -

Given A,E, let ,- f(x) = irax{A(n) - E (n) :n < x} 

I_ g(x) = min{A(n) + E(n) :n S x}. 



8. 

18: SCHOLIUM A real number a is computable iff it has a primitive 

recursive nested interval representation. 

19: EXAMPLE 

[Given q E Q / let 

-x f (x) = q - 2 

x g (x) = q + 2 • ] 



1. 

§14. EXPANSION THEORY 

I.et b > 1 be a natural number and let a. be a nonnegative real number - then 

a. has a b-adic representation if there exists a recursive function 

f:N + {0,1, ••• ,b-1} such that 

00 

a.= r f (n) • 
n n=O b 

1: LEM'1A If a. has a b-c-adic representation, then a. E RR. 

PR!X>F Put 

A(x) 
x~l f (n) = ~ (x = 0,1,2, ••• ). 
n=O bn 

Then A:N + Q is an R-sequence and 

x+l f (n) 00 f(n) 
!A(x) - a.I = r -- - E 

n=O bn n==O bn 

00 

= r f (n) 
n=x+2 bn 

00 

< r b - 1 
n=x+2 bn 

00 

< b L: 1 
- n n=x+2 b 

b (1 + ~ + •.. ) = 



2. 

b 1 
- bx+2 l 1-5 

- b b 
- bx+2 b - 1 

1 1 - xb - i 
b 

<l:...( 1 - x 2 < b => 1 < b - 1 => b - 1 ~ 1) 
b 

2: NOI'ATION R~ is the set of nonnegative real numbers which admit a 

b-adic representation. 

Therefore 

R~ c RR n [O,ro[. 

3: DEFINITION A subset A c N is recursive if its characteristic function 

xA is recursive, i.e., if xA E R. 

4: 

I.et 

2 EXAMPLE suppose that a. E RR' hence 

ro 
a= I f (n) (f(n) E {O,l}). 

n=O 2n 

A= {n:f (n) = 1}. 



3. 

Then 

a= 

is canputable and ~ = f, so A is recursive (this being the case of f). 

5: SUBLEMMA suppose that a is an irrational computable real number, thus 

there exists an R-sequence A: N + Q such that v x, 

IA(x) - al ~ 2-x (cf. §13, #4). 

I.et f: N + Q be an R-sequence --- then v n 3 x such that 

IA (x) - f (n) I > 2-x. 

And 

A(x) - f (n) > 2-x => x > f (n) 

A(x) - f (n) < 2-x => x < f (n). 

6: THEOREM 

PROOF Take an a in RR n [O,oo[. If it is rational, say~' -work relative to 

the base b and carry out the long division of p by q. Assume, therefore, that 

a is irrational and without loss of generality take a in RR n 1O,1 [. suppose now 

that we have found natural numbers n 0 = O, ... ,~ such that O ~ nj _:: b - 1 (1 ~ j ~ k) 

and such that 

k . k-1 . k 
~ n.b-J < a < ~ n.b-J + (~ + l)b- . 

j=O J j=O J 

Applying #5, there is a unique x E {O,l, ... ,b-1} for which 



4. 

~ n.b-j + xb-k-l <a< ~ n.b-j + (x + l)b-k-l. 
j=O J j=O J 

Definition: 1\:+l = x. With this agreement, set f (k) = 1\: -- then f:N + N is 

a recursive function, f{k) E {0,1, ••• ,b - l}, and 

7: N.B. It is to be emphasized that the realization 

is valid for all b. 

8: EXAMPLE Given a subset A c N, put 

'lll.en aA is computable iff A is recursive. 

PRCX>F If o.A is computable, then aA ER~ (cf. #6), so A is recursive (cf. #4). 

On the other hand, if A is recursive, let 

Take 

Then 

s = L: x n2x,nEA 
-n 2 . 

1
-- f (x) = sx -x 

g(x) = s + 2 • x 

-n s < aA = E 2 x-
n~ 



5. 

= s + 2: x n>x,nE:A 

-n 2 

< s + 2-(x+l) + 2-(x+2) 
- x + .•. 

= s + 2-(x+l) (1 + 2-l + •••) 
x 

= s + 2~<x+l) (2) 
x 

Now quote §13, #18. 

9: REMARK Assurre that A is not recursive -- then for certain A, it is 

possible to find an injective f E R such that A equals the range of f, hence 

= " 2-f (n) a.A t.. • 
nEN 

Put 
-f (n) 

~ = E 2 (x = 0,1,2, ••. ). 
n$x 

Then q0,q1,q2, ••• is a bounded increasing sequence of rational numbers whose 

not computable. 

We have worked thus far with 

Replace now RR by PPR --- then it is still the case that 

b RPR c RPR n [O,ro[ 

but it is no longer true that 



6. 

10: THEOREl:4 RPR is a field (cf. §8, #15). 

11: t b b LEMMA For each b > 1, there are x,y E RPR such that x + y r/. RPR" 

Consequently the containment 

is proper. 

One can also consider the relationship among the R~R for different b. 

12: THEOREM I.et b ,d > 1 - then 

Rb r;;; Rd 
PR PR 

iff d divides a r:ower of b, i.e., iff there exist k,s E N such that bk = sd. 

[For details and references, see the pa.per of Qingliang Chen et al.] 

t Qingliang Chen et al., Metthema..t,lc.a1.. Lag~e ~UJ1.!Lt.eJci..y 53 (2007), pp. 365-380. 




