Analysis 101:

Surfaces and Area

ABSTRACT

Here one will find a rigorous treatment of the simplest situation in Surface Area Theory, viz. the nonparametric case with domain the unit square in the plane.

SURFACES AND AREA

- SX. THE FRÉCHET PROCESS
- sQ. THE BEGINNING
- **§1. QUASI LINEAR FUNCTIONS**
- §2. LEBESGUE AREA
- §3. GEÖCZE AREA
- §4. APPROXIMATION THEORY
- §5. TONELLI'S CHARACTERIZATION
- §6. TONELLI'S ESTIMATE
- §7. THE ROLE OF ABSOLUTE CONTINUITY
- §8. STEINER'S INEQUALITY
- §9. EXTENSION PRINCIPLES
- \$10. ONE VARIABLE REVIEW
- §11. EXTENDED LEBESGUE AREA
- **§12.** THEORETICAL SUMMARY
- §13. VARIANTS

SX. THE FRÉCHET PROCESS

Let (X,d) be a metric space and let $F:X \rightarrow [0, +\infty]$ be a lower semicontinuous function. Assume:

(A) For each $x\in X,$ there is a sequence $x_n\ (n=1,2,\ldots)$ in X - $\{x\}$ converging to x such that

$$\lim_{n \to \infty} F(x_n) = F(x).$$

Let (\bar{X}, \bar{d}) be the completion of (X, d), the elements \bar{x} of which being equivalence classes of Cauchy sequences in X. Extend F to a function $\bar{F}: \bar{X} \rightarrow [0, +\infty]$ by defining

$$\overline{F}(\overline{x}) = \inf_{\substack{\{x_n\} \in \overline{x} \quad n \neq \infty}} \lim F(x_n),$$

where the infimum is taken over all Cauchy sequences in $\bar{\mathbf{x}}.$

<u>l:</u> THEOREM \overline{F} is an extension of F, i.e.,

$$\mathbf{F} \mid \mathbf{X} = \mathbf{F}.$$

Moreover \overline{F} is lower semicontinuous and in addition is unique.

2: N.B. \overline{F} has the following property:

(B) For each $\bar{x}\in\bar{x},$ there is a Cauchy sequence $\{x_n\}\in\bar{x}$ such that

$$\lim_{n \to \infty} F(x_n) = \overline{F}(\overline{x}).$$

To recapitulate:

<u>3:</u> SCHOLIUM Every nonnegative, extended real valued, lower semicontinuous function on a metric space X with property (A) can be extended to a unique lower

semicontinuous function on the completion \bar{X} of X with property (B).

4: EXAMPLE Consider

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline X &= &]0,1[& (d(x,y) &= & |x - y|) \\ \hline \overline{X} &= & [0,1] & (\overline{d}(\overline{x},\overline{y}) &= & |\overline{x} - \overline{y}|) \end{array}$$

and

$$\begin{bmatrix} F = id_{X} \\ \overline{F} = id_{\overline{X}} \end{bmatrix}$$

§0. THE BEGINNING

Traditionally, a <u>k-surface in n-space</u> $(k \le n)$ is an ordered pair $S = (A, \underline{f})$, where A is a subset of \mathbb{R}^k with a nonempty interior (subject to certain restrictions) and <u>f</u> is a function from A to \mathbb{R}^n , i.e., <u>f</u>:A $\Rightarrow \mathbb{R}^n$, thus

 $\underline{\mathbf{f}} = (\mathbf{f}_1, \dots, \mathbf{f}_n)$.

1: N.B. If k = n, then f is said to be flat.

2: REMARK If k = 1 and A = [a,b], then <u>f</u> is just a curve.

In this account, we shall take k = 2 and n = 3, thus

$$\underline{f}: \begin{bmatrix} f_1: A \to R \\ f_2: A \to R \\ f_3: A \to R. \end{bmatrix}$$

3: N.B. There are associated flat maps, viz.

$$\begin{bmatrix} x = 0, y = f_2(u,v), z = f_3(u,v) \\ x = f_1(u,v), y = 0, z = f_3(u,v) \\ x = f_1(u,v), y = f_2(u,v), z = 0, \end{bmatrix}$$

where $(u,v) \in A$.

In what follows, we do not intend to operate "in general" but instead will specialize matters to the so-called "nonparametric" situation.

Put

$$Q = [0,1] \times [0,1] \subset R^2$$
 $(0 \le x \le 1, 0 \le y \le 1).$

<u>4:</u> DEFINITION A <u>nonparametric</u> 2-surface in 3-space is an ordered pair $S_f = (Q, \underline{f})$, where

$$f(x,y) = (x,y,f(x,y)), f:Q \rightarrow R$$

is a function, thus

$$f_1(x,y) = x$$

 $f_3(x,y) = f(x,y).$
 $f_2(x,y) = y$

5: REMARK Every function f:Q \rightarrow R determines a nonparametric surface $S_f.$ Because of this, the focus is on f, not on $S_f.$

Restricting matters to Q more or less eliminates the topological aspects of the theory, thus the discussion is "pure analysis", there being two aspects to the development, viz.

> PART 1: The Continuous Case, $f \in C(Q)$. PART 2: The Integrable Case, $f \in L^{1}(Q)$.

<u>6:</u> EXAMPLE Define $f:Q \rightarrow R$ by the prescription

$$\begin{array}{c} - & 0 & (0 \le x \le \frac{1}{2}) \\ 1 & (\frac{1}{2} \le x \le 1) \end{array}$$

Then f is not continuous but it is integrable.

\$1. QUASI LINEAR FUNCTIONS

<u>1</u>: DEFINITION A <u>quasi linear function</u> is a continuous function $\mathbb{H}: \mathbb{Q} \to \mathbb{R}$ for which there exists a decomposition D of Q into a finite number of nonoverlapping triangles T_1, T_2, \ldots, T_n such that \mathbb{R} is linear in each of these triangles, thus

$$\Pi(x,y) = a_1 x + b_1 y + c_i ((x,y) \in T_i),$$

the a_i, b_i, c_i being real numbers.

2: EXAMPLE A constant function

$$f(x,y) = C((x,y) \in Q)$$

is quasi linear.

Suppose that $\Pi: Q \to R$ is quasi linear -- then Π maps each T_i into a triangle $\Delta_i \subset R^3$ (possibly a segment or a point).

<u>3:</u> NOTATION Let $|\Delta_i|$ stand for the area of Δ_i .

<u>4</u>: DEFINITION The elementary area of a quasi linear function $H:Q \rightarrow R$ is the sum

$$\mathbf{a}(\Pi) \equiv \Sigma \mid \Delta_{\mathbf{i}} \mid,$$

where Σ is taken over the $T_i \in D$.

5: NOTATION Let
$$|T_i|$$
 stand for the area of T_i .

<u>6:</u> <u>N.B.</u> Let

$$(u_1, v_1), (u_2, v_2), (u_3, v_3)$$

be the vertices of T_i in Q -- then

$$|\mathbf{T}_{\mathbf{i}}| = \frac{1}{2} | \det | \begin{bmatrix} u_{1} & v_{1} & 1 \\ u_{2} & v_{2} & 1 \\ u_{3} & v_{3} & 1 \end{bmatrix} |$$

7: LEMMA

$$|\Delta_{i}| = |T_{i}| (1 + a_{i}^{2} + b_{i}^{2})^{1/2}.$$

Therefore

$$a(\Pi) = \sum_{i} |T_{i}| (1 + a_{i}^{2} + b_{i}^{2})^{1/2}.$$

8: SCHOLIUM

$$a(\Pi) = \int_{Q} \int \left[1 + (\partial \Pi / \partial x)^{2} + (\partial \Pi / \partial y)^{2}\right]^{1/2} dxdy.$$

It follows from this that $a(\Pi)$ is independent of the subdivision D of Q into triangles of linearity for Π .

9: REMARK A quasi linear function $\Pi: Q \rightarrow R$ is Lipschitz continuous and

$$H^{2}(Gr_{\Pi}(Q)) = \int_{Q} \int [1 + (\partial \Pi / \partial x)^{2} + (\partial \Pi / \partial y)^{2}]^{1/2} dxdy.$$

<u>10:</u> LEMMA Per uniform convergence, the elementary area is lower semicontinuous on the set of quasi linear functions.

§2. LEBESGUE AREA

Recall that

$$Q = [0,1] \times [0,1] \subset R^2 \quad (0 \le x \le 1, \ 0 \le y \le 1).$$

<u>1:</u> LEMMA Let $f: Q \rightarrow R$ be a continuous function -- then there exists a sequence

$$\xi = \{ \prod_{n : n = 1, 2, ... } \}$$

of quasi linear functions $\Pi_n: Q \to R$ such that $\Pi_n \to f$ uniformly $(n \to \infty)$.

<u>2:</u> NOTATION Given a continuous function $f:Q \rightarrow R$, denote by E the collection of all sequences

$$\xi = \{\prod_{n:n} = 1, 2, ...\}$$

of quasi linear functions $\Pi_n: Q \to R$ such that $\Pi_n \to f$ uniformly $(n \to \infty)$.

3: N.B. The preceding lemma ensures that E is nonempty.

<u>4:</u> DEFINITION The Lebesgue area $L_Q[f]$ of a continuous function $f:Q \rightarrow R$ is the entity

$$\inf_{\xi \in \Xi} \lim_{n \to \infty} \inf_{n} a(\Pi_n).$$

<u>5:</u> REMARK This definition and the considerations that follow are an instance of the Fréchet process: Take for X the quasi linear functions on Q, take for d the metric defined by the prescription

$$d(\Pi_1, \Pi_2) = \sup |\Pi_1(x, y) - \Pi_2(x, y)|,$$

and take for F the elementary area -- then the completion \overline{X} of X is C(Q), the

set of continuous functions on Q, and the extension \overline{F} of F assigns to each $f \in C(Q)$ its Lebesgue area:

$$\overline{F}(f) = L_0[f].$$

<u>6:</u> CONSISTENCY PRINCIPLE The elementary area of a quasi linear function $\Pi:Q \rightarrow R$ equals its Lebesgue area.

7: LEMMA There is at least one $\xi \in \Xi$ such that

$$a(\Pi_n) \rightarrow L_Q[f] \quad (n \rightarrow \infty).$$

PROOF There are two possibilities:

$$L_Q[f] < + \infty \text{ or } L_Q[f] = + \infty.$$

Matters are manifest if $L_Q[f] = +\infty$, so assume that $L_Q[f] < +\infty$. Given any positive integer n, there exists a sequence $\{\Pi_m: m = 1, 2, ...\}$ such that for $m \to \infty$, $\Pi_m \to f$ uniformly and

$$\lim_{m \to \infty} \inf a(\Pi_m) < L_Q[f] + \frac{1}{n},$$

thus there is an m such that

$$\left\| \left\| \prod_{m} - f \right\| \right\|_{\infty} < \frac{1}{n}$$

and

$$a(\Pi_m) < L_Q[f] + \frac{1}{n}$$
.

This m depends on n. Write $\Pi(n)$ in place of Π_m -- then

$$||\Pi(n) - f||_{\infty} < \frac{1}{n}$$

and

$$a(I(n)) < L_Q[f] + \frac{1}{n}$$
.

∏(n) → f

uniformly and

$$\lim_{n \to \infty} \sup a(\Pi(n)) \leq L_{\Omega}[f].$$

On the other hand,

$$L_Q[f] \leq \lim_{n \to \infty} \operatorname{a}(\Pi(n)).$$

Hence the lemma.

8: N.B. This result is known as the proper sequential limit principle.

$$L_Q[f] \leq \lim_{n \to \infty} \inf_{\infty} L[f_n].$$

PROOF Assume without loss of generality that

$$\liminf_{n \to \infty} L_{Q}[f_{n}] < + \infty \text{ and } L_{Q}[f_{n}] < + \infty (\forall n).$$

Given n, choose per supra a sequence $\{\Pi_{nm}: m = 1, 2, ...\}$ of quasi linear functions uniformly convergent to $f_n (m \to \infty)$ with

$$a(\Pi_{nm}) \rightarrow L_{Q}[f_{n}] \quad (m \rightarrow \infty).$$

Accordingly

$$\delta_{nm} \equiv ||\Pi_{nm} - f_n||_{\infty} \to 0 \quad (m \to \infty)$$

and for each n there exists an integer m = m(n) such that

$$\delta_{nm} < \frac{1}{n} \text{ and } |a(\Pi_{nm}) - L_Q[f_n]| < \frac{1}{n}.$$

Next, $\forall w \in Q$,

$$\begin{aligned} |\Pi_{nm}(w) - f(w)| &\leq ||\Pi_{nm} - f_n||_{\infty} + ||f_n - f||_{\infty} \\ &\leq \delta_{nm} + ||f_n - f||_{\infty} \\ &< \frac{1}{n} + ||f_n - f||_{\infty} \\ &\Rightarrow 0 \quad (n \rightarrow \infty). \end{aligned}$$

Put

$$\Pi_n = \Pi_{nm}$$

and let

$$\xi' = \{\prod_{n}': n = 1, 2, ... \},\$$

so $\xi' \in \Xi$. And

$$\begin{split} & \operatorname{L}_{Q}[f] \leq \liminf_{n \to \infty} a(\operatorname{I}_{n}^{!}) \\ &= \liminf_{n \to \infty} (a(\operatorname{I}_{n}^{!}) - \operatorname{L}_{Q}[f_{n}] + \operatorname{L}_{Q}[f_{n}]) \\ &= \lim_{n \to \infty} (a(\operatorname{I}_{n}^{!}) - \operatorname{L}_{Q}[f_{n}]) + \liminf_{n \to \infty} \operatorname{L}_{Q}(f_{n}) \\ &= 0 + \liminf_{n \to \infty} \operatorname{L}_{Q}[f_{n}] \\ &= \lim_{n \to \infty} \operatorname{Im} \operatorname{L}_{Q}[f_{n}] \\ &= \liminf_{n \to \infty} \operatorname{L}_{Q}(f_{n}). \end{split}$$

Therefore Lebesgue area is a lower semicontinuous functional in the class of continuous functions (the underlying convergence being uniform).

[Note: It can be shown that Lebesgue area is a lower semicontinuous functional in the class of continuous functions relative to pointwise convergence.]

Here is a simple application: If $\forall n, L_Q[f_n] \leq L_Q[f]$, then $L_Q[f_n] \rightarrow L_Q[f]$.

In fact,

$$\limsup_{n \to \infty} L_Q[f_n] \leq L_Q[f]$$

while on the other hand,

$$\liminf_{n \to \infty} L_Q[f_n] \ge L_Q[f].$$

<u>10:</u> LEMMA Let L^* be a functional in the class of continuous functions which is lower semicontinuous per uniform convergence and has the property that for every quasi linear II,

$$L^{*}[\Pi] = a(\Pi).$$

Then for every f,

$$L*[f] \leq L_O[f].$$

PROOF Choose $\xi \in \Xi$ such that

$$a(\Pi_n) \rightarrow L_Q[f] \quad (n \rightarrow \infty)$$

and note that

$$\begin{split} \mathbf{L}^{\star}[\mathbf{f}] &\leq \liminf_{n \to \infty} \mathbf{L}^{\star}[\mathbf{I}]_{n} \\ &= \liminf_{n \to \infty} \mathbf{a}(\mathbf{I}_{n}) \\ &\leq \mathbf{L}_{\mathbf{Q}}[\mathbf{f}]. \end{split}$$

§3. GEÖCZE AREA

The setting for the notion of Lebesgue area is the unit square

 $Q = [0,1] \times [0,1].$

However there is no difficulty in extending matters to oriented rectangles $R \subset Q$:

$$\begin{bmatrix} a \le x \le b & (a < b) \\ & & , |R| = (b - a) & (d - c). \\ & & c \le y \le d & (c < d) \end{bmatrix}$$

The theory thus formulated applies to any real valued continuous function on R. In particular: Given a continuous function $f:Q \rightarrow R$, let f_R be its restriction to R and denote its Lebesgue area per R by the symbol $L_Q[f_R]$.

Introduce

$$G_{X}(f;R) = \int_{a}^{b} |f(x,d) - f(x,c)| dx$$

$$G_{Y}(f;R) = \int_{c}^{d} |f(b,y) - f(a,y)| dy$$

and put

$$\Gamma(f;R) = [(G_{\chi}(f;R))^{2} + (G_{\chi}(f;R)^{2} + |R|^{2}]^{1/2}.$$

1: LEMMA

$$\Gamma(f;R) \leq L_{Q}[f_{R}].$$

Let D be a subdivision of Q into nonoverlapping oriented rectangles R (lines parallel to the coordinate axes).

2: DEFINITION The sum of Geöcze is the expression

$$G(f;D) = \Sigma \Gamma(f;R),$$

the summation being taken over the rectangles R in D.

So

$$G(f;D) \leq \Sigma L_Q[f_R].$$

And

$$\Sigma L_Q[f_R] \leq L_Q[f].$$

Therefore

$$G(f;D) \leq L_0[f].$$

3: NOTATION Put

$$\Gamma_{Q}[f] = \sup_{D} G(f;D),$$

the $\underline{\text{Geocze}}$ area of f.

Then $\forall D$,

$$G(f;D) \leq L_Q[f]$$

=>

$$\Gamma_{Q}[f] \leq L_{Q}[f].$$

[Note: This inequality is trivial if $L_Q[f] = + \infty$, thus there is no loss of generality in assuming that $L_Q[f] < + \infty$.]

4: THEOREM

$$\Gamma_{Q}[f] = L_{Q}[f].$$

This assertion is nontrivial, the first step being to establish it when

$$\frac{\partial f}{\partial x} = p(x,y), \frac{\partial f}{\partial y} = q(x,y)$$

exist in Q and are continuous there.

• Write

$$\begin{aligned} G_{X}(f;R) &= \int_{a}^{b} |f(x,d) - f(x,c)| dx \\ &= (b - a) |f(\xi,d) - f(\xi,c)| \quad (a \le \xi \le b) \\ &= (b - a) (d - c) |q(\xi,\eta)| \quad (c \le \eta \le d) \\ &= |R| |q(\xi,\eta)|. \end{aligned}$$

• Write

$$\begin{aligned} G_{Y}(f;R) &= \int_{C}^{d} |f(b,y) - f(a,y)| dy \\ &= (d-c) |f(b,\mu) - f(a,\mu)| \quad (c \le \mu \le d) \\ &= (d-c) (b-a) |p(\nu,\mu)| \quad (a \le \nu \le b) \\ &= |R| |p(\nu,\mu)|. \end{aligned}$$

Consequently

$$\begin{split} \Gamma(\mathbf{f};\mathbf{R}) &= \left[1 + p(v,\mu)^2 + q(\xi,\eta)^2\right]^{1/2} |\mathbf{R}| \\ &= \left[1 + p(\xi,\eta)^2 + q(\xi,\eta)^2\right]^{1/2} |\mathbf{R}| + \varepsilon_{\mathbf{R}} |\mathbf{R}|, \end{split}$$

where $\boldsymbol{\epsilon}_{R}^{}$ tends to zero with the diameter of R.

Let again D be a subdivision of Q into nonoverlapping oriented rectangles R (lines parallel to the coordinate axes). Since $\Sigma |R| = |Q| = 1$, it follows that

$$G(f;D) = \Sigma \Gamma(f;R) = \Sigma [1 + p(\xi,\eta)^{2} + q(\xi,\eta)^{2}]^{1/2} |R| + \varepsilon.$$

Here $\varepsilon \to 0$ when $\delta \to 0$ (δ being the maximum diameter of the rectangles R in D).

Replace now D by a sequence $\{D_n\}$ and assume that $\delta_n \to 0 \ (n \to \infty)$ -- then the sum

$$\Sigma [1 + p(\xi,\eta)^{2} + q(\xi,\eta)^{2}]^{1/2} |R|$$

tends to the integral

$$\int_{Q}^{\int \int} (1 + p^{2} + q^{2})^{1/2} dxdy,$$

hence

$$\lim_{n \to \infty} G(f;D_n) = \iint_Q (1 + p^2 + q^2)^{1/2} dxdy$$

or still,

But, as has been noted above, it is always the case that

 $\Gamma_{Q}[f] \leq L_{Q}[f].$

So in the end,

$$\Gamma_{Q}[f] = L_{Q}[f].$$

5: CONSTRUCTION There is a
$$\xi \in \Xi$$
 such that
 $a(\Pi_n) (n \to \infty) \to \int \int (1 + p^2 + q^2)^{1/2} dxdy.$

6: LEMMA

$$L_Q[f] = \iint_Q (1 + p^2 + q^2)^{1/2} dxdy.$$

PROOF

$$\begin{split} \iint (1 + p^2 + q^2)^{1/2} \, dxdy \\ g \\ &\leq \Gamma_Q[f] \leq L_Q[f] \\ &\leq \liminf_{n \to \infty} a(\Pi_n) = \lim_{n \to \infty} a(\Pi_n) \\ &= \iint_Q (1 + p^2 + q^2)^{1/2} \, dxdy. \end{split}$$

7: EXAMPLE Suppose that f(x,y) is independent of y -- then $\frac{\partial f}{\partial y} = 0$ and $\frac{\partial f}{\partial x} = f'(x)$, hence

$$\int_{Q} (1 + p^{2} + q^{2})^{1/2} dxdy = \int_{0}^{1} (1 + (f'(x))^{2})^{1/2} dx.$$

It remains to establish that

$$\Gamma_{Q}[f] = L_{Q}[f]$$

in general. To this end, denote by <u>Q</u> a concentric square completely contained in the interior of Q, let $0 < h < \frac{1}{2}$, put

$$Q_{h}: \begin{bmatrix} h \leq x \leq l - h \\ h \leq y \leq l - h, \end{bmatrix}$$

and assume that for h sufficiently small, $\underline{Q} \subset \underline{Q}_h$ -- then there exists a continuous function $f_h: \underline{Q}_h \to R$ with the following properties.

(a) $\frac{\partial f_h}{\partial x}$, $\frac{\partial f_h}{\partial y}$ exist and are continuous functions in Q_h . (b) $\Gamma_{\underline{Q}}[f_h] \leq \Gamma_{\underline{Q}}[f]$. (c) $f_h \rightarrow f$ (h \rightarrow 0) uniformly in \underline{Q} .

Granted these points, on the basis of the earlier considerations, from (a),

$$\Gamma_{\underline{Q}}[f_h] = L_{\underline{Q}}[f_h],$$

thus by (b),

$$L_{\underline{Q}}[f_h] \leq \Gamma_{\underline{Q}}[f] \leq L_{\underline{Q}}[f]$$

=>

 $\limsup_{h \to 0} \operatorname{L}_{\underline{Q}}[f_h] \leq \Gamma_{\underline{Q}}[f].$

But, thanks to (c),

 $\underset{\underline{Q}}{^{L}\underline{Q}}[\texttt{f}] \leq \underset{h \to 0}{^{l} \text{ inf } L}_{\underline{Q}}[\texttt{f}_{h}].$

And then

$$\begin{split} & \underset{\underline{\mathsf{Q}}}{\overset{[\texttt{f}]}{\underset{h \to 0}{\overset{\leq}{\overset{\qquad}}}} \stackrel{\texttt{lim inf } L_{\underline{\mathsf{Q}}}[\texttt{f}_{h}] \\ & \leq \underset{h \to 0}{\overset{\leq}{\overset{\qquad}{\overset{\qquad}}} \stackrel{\texttt{lim sup } L_{\underline{\mathsf{Q}}}[\texttt{f}_{h}] \\ & \leq \Gamma_{\underline{\mathsf{Q}}}[\texttt{f}] \leq L_{\underline{\mathsf{Q}}}[\texttt{f}]. \end{split}$$

Suppose now that \underline{Q} invades Q:Q ^ Q, hence

$$\begin{split} & \mathbf{L}_{\underline{Q}}[\texttt{f}] \rightarrow \mathbf{L}_{\underline{Q}}[\texttt{f}] \\ => \\ & \mathbf{L}_{\underline{Q}}[\texttt{f}] \leq \Gamma_{\underline{Q}}[\texttt{f}] \leq \mathbf{L}_{\underline{Q}}[\texttt{f}] \\ => \\ & \Gamma_{\underline{Q}}[\texttt{f}] = \mathbf{L}_{\underline{Q}}[\texttt{f}]. \end{split}$$

§4. APPROXIMATION THEORY

To finish the proof that

$$\Gamma_{Q}[\mathbf{\hat{f}}] = \Gamma_{Q}[\mathbf{f}],$$

we have yet to establish the validity of points (a), (b), (c) as formulated near the end of the preceding \S and for this, it will be necessary to set up some machinery.

<u>l:</u> DEFINITION Let $f:Q \rightarrow R$ be a continuous function and let $0 < h < \frac{1}{2}$ --

$$f_{h}(x,y) = \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} f(x + \xi, y + \eta) d\xi d\eta$$

defined in the square

$$Q_{h}: \begin{bmatrix} h \leq x \leq 1 - h \\ h \leq y \leq 1 - h \end{bmatrix}$$

is called the integral mean of f.

<u>2:</u> LEMMA $f_h:Q_h \rightarrow R$ is a continuous function.

3: LEMMA
$$f_h \rightarrow f$$
 (h $\rightarrow 0$) uniformly in $\underline{Q} \subset \underline{Q}_h$.

$$\underline{4:} \quad \text{LEMMA} \quad \frac{\partial f_h}{\partial x}, \ \frac{\partial f_h}{\partial y} \text{ exist and are continuous functions on } Q_h \text{:}$$

$$\begin{bmatrix} \frac{\partial f_h}{\partial x \cdots} = \frac{1}{4h^2} \int_{-h}^{h} [f(x + h, y + \eta) - f(x - h, y + \eta)] d\eta \\ \frac{\partial f_h}{\partial y} = \frac{1}{4h^2} \int_{-h}^{h} [f(x + \xi, y + h) - f(x + \xi, y - h)] d\xi.$$

5: N.B. Accordingly points (a) and (c) are settled.

The validity of point (b), i.e., the assertion that

$$\Gamma_{\underline{Q}}[f_h] \leq \Gamma_{\underline{Q}}[f]$$

is not so easy to prove.

Start by fixing an oriented rectangle R $\subset \underline{Q}$:

$$\begin{bmatrix} a \le x \le b & (a < b) \\ & & , |R| = (b - a) (c - d). \\ c \le y \le d & (c < d) \end{bmatrix}$$

Then

$$|f_h(x,d) - f_h(x,c)|$$

$$\leq \frac{1}{4h^2} \int_{-h}^{h} \int_{-h}^{h} |f(x + \xi, d + \eta) - f(x + \xi, c + \eta) d\xi d\eta$$

=>
$$G_X(f_h; R) = \int_{a}^{b} |f_h(x, d) - f_h(x, c)| dx$$

$$\leq \frac{1}{4h^2} \int_{-h}^{h} \int_{-h}^{h} d\xi d\eta \int_{a}^{b} |f(x + \xi, d + \eta) - f(x + \xi, c + \eta)| dx.$$

Let $R_{\xi\eta}$ be the rectangle obtained by subjecting R to the translation .--

$$\vec{x} = x + \xi$$
$$\vec{y} = y + \eta,$$

thus

$$G_{X}(f;R_{\xi\eta}) = \int_{a}^{b} |f(x + \xi,d + \eta) - f(x + \xi,c + \eta)| dx$$

and so

$$G_X(f_h; R) \leq \frac{1}{4h^2} \int_{-h}^{h} \int_{-h}^{h} G_X(f; R_{\xi\eta}) d\xi d\eta.$$

Analogously

 $G_{Y}(f_{h};R) \leq \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} G_{Y}(f;R_{\xi\eta}) d\xi d\eta.$

Finally

$$|\mathbf{R}| = |\mathbf{R}_{\xi\eta}| = \frac{1}{4h^2} \int_{-h}^{h} \int_{-h}^{h} |\mathbf{R}_{\xi\eta}| d\xi d\eta.$$

To summarize:

6: LEMMA

$$\begin{split} \Gamma(\mathbf{f}_{h};\mathbf{R}) &\leq \left[G_{X}(\mathbf{f}_{h};\mathbf{R})^{2} + G_{Y}(\mathbf{f}_{h};\mathbf{R})^{2} + |\mathbf{R}|^{2}\right]^{1/2} \\ &\leq \frac{1}{4h^{2}} \left[\left(\int_{-h}^{h} \int_{-h}^{h} G_{X}(\mathbf{f};\mathbf{R}_{\xi\eta}) d\xi d\eta\right)^{2} \\ &+ \left(\int_{-h}^{h} \int_{-h}^{h} G_{Y}(\mathbf{f};\mathbf{R}_{\xi\eta}) d\xi d\eta\right)^{2} \\ &+ \left(\int_{-h}^{h} \int_{-h}^{h} |\mathbf{R}_{\xi\eta}| d\xi d\eta\right)^{2} \right]^{1/2}. \end{split}$$

7: RAPPEL Under canonical assumptions,

$$((f_X \phi_1)^2 + \dots + (f_X \phi_n)^2)^{1/2}$$

 $\leq f_X (\phi_1^2 + \dots + \phi_n^2)^{1/2}.$

Therefore

$$\Gamma(f_{h};R) \leq \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} (G_{X}(f;R_{\xi\eta})^{2} + (G_{Y}(f;R_{\xi\eta})^{2} + |R_{\xi\eta}|^{2})^{1/2} d\xi d\eta$$
$$= \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} \Gamma(f;R_{\xi\eta}) d\xi d\eta.$$

Suppose now that \underline{D} is a subdivision of \underline{Q} into nonoverlapping rectangles R

(lines parallel to the coordinate axes) -- then

$$G(f_h;\underline{D}) = \Sigma \Gamma(f_h;R)$$

$$\leq \frac{1}{4h^2} \int_{-h}^{h} \int_{-h}^{h} \Sigma \Gamma(f; R_{\xi\eta}) d\xi d\eta,$$

the sum under $\int_{-h}^{h} \int_{-h}^{h}$ being the sum of Geöcze (for f) relative to the division $\underline{D}_{\xi\eta}$ of $\underline{Q}_{\xi\eta} \subset \underline{Q}$ into rectangles $R_{\xi\eta}$, thus a fortiori,

$$\Sigma \Gamma(\mathbf{f}; \mathbf{R}_{\xi \eta}) \leq \Gamma_{\mathbf{Q}}[\mathbf{f}]$$

$$\Rightarrow$$

$$G(\mathbf{f}_{\mathbf{h}}; \underline{\mathbf{D}}) \leq \frac{1}{4h^{2}} \int_{-\mathbf{h}}^{\mathbf{h}} \int_{-\mathbf{h}}^{\mathbf{h}} \Gamma_{\mathbf{Q}}[\mathbf{f}] d\xi d\eta$$

$$= \frac{\Gamma_{\mathbf{Q}}[\mathbf{f}]}{4h^{2}} \int_{-\mathbf{h}}^{\mathbf{h}} \int_{-\mathbf{h}}^{\mathbf{h}} d\xi d\eta$$

$$= \Gamma_{\mathbf{Q}}[\mathbf{f}]$$

$$\Rightarrow$$

$$\Gamma_{\underline{Q}}[f_{h}] = \sup_{\underline{D}} G(f_{h};\underline{D})$$
$$\leq \Gamma_{O}[f],$$

from which point (b).

•

8: LEMMA

$$L_{Q_h}[f_h] \leq L_Q[f]$$

and

$$L_Q[f] = \lim_{h \to 0} L_{Q_h}[f_h].$$

Since

$$L_{Q_{h}}[f_{h}] = \int \int [1 + (\frac{\partial f_{h}}{\partial x})^{2} + (\frac{\partial f_{h}}{\partial y})^{2}]^{1/2} dxdy,$$

it follows that

What follows will not be needed in the sequel but it is of independent interest.

9: DEFINITION Let
$$f \in L^{1}(Q)$$
 and let $0 < h < \frac{1}{2}$ -- then the function

$$f_{h}(x,y) = \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} f(x+\xi,y+\eta) d\xi d\eta$$

defined in the square

is called the integral mean of f.

<u>10:</u> LEMMA $f_h: Q_h \rightarrow R$ is a continuous function, hence

$$\begin{array}{c|c} \int f & |f_h| < + \infty \Rightarrow f_h \in L^1(Q_h) \\ Q_h \end{array}$$

ll: LEMMA
$$\forall f \in L^{1}(Q)$$
,
$$||f_{h}||_{L^{1}} \leq ||f||_{L^{1}}.$$

PROOF

٠

$$\begin{split} \int \int |\mathbf{f}_{h}(\mathbf{x},\mathbf{y})| d\mathbf{x} d\mathbf{y} \\ & = \int_{h}^{1-h} \int_{h}^{1-h} |\mathbf{f}_{h}(\mathbf{x},\mathbf{y})| d\mathbf{x} d\mathbf{y} \\ & \leq \frac{1}{4h^{2}} \int_{h}^{1-h} \int_{h}^{1-h} \int_{-h}^{h} \int_{-h}^{h} \int_{-h}^{h} |\mathbf{f}(\mathbf{x}+\xi,\mathbf{y}+\eta)| d\xi d\eta \} d\mathbf{x} d\mathbf{y} \\ & \leq \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} \int_{-h}^{1-h} \int_{h}^{1-h} |\mathbf{f}(\mathbf{x}+\xi,\mathbf{y}+\eta)| d\mathbf{x} d\mathbf{y} \} d\xi d\eta \\ & \leq \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} \int_{-h}^{1-h+\xi} \int_{h+\eta}^{1-h+\eta} |\mathbf{f}(\mathbf{x},\mathbf{y})| d\mathbf{x} d\mathbf{y} \} d\xi d\eta \\ & \leq \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} \left\{ \int_{0}^{1} \int_{0}^{1} |\mathbf{f}(\mathbf{x},\mathbf{y})| d\mathbf{x} d\mathbf{y} \right\} d\xi d\eta \\ & \leq \frac{1}{4h^{2}} \int_{-h}^{h} \int_{-h}^{h} \left\{ \int_{0}^{1} \int_{0}^{1} |\mathbf{f}(\mathbf{x},\mathbf{y})| d\mathbf{x} d\mathbf{y} \right\} d\xi d\eta \\ & \leq \frac{1}{4h^{2}} \left[2h (2h) (2h) ||\mathbf{f}|| \right]_{L^{1}} \\ & = ||\mathbf{f}||_{L^{1}} < + \infty. \end{split}$$

<u>12:</u> REMARK An analogous estimate obtains if $f \in L^p(Q)$ (1 \infty):

$$||\mathbf{f}_{h}||_{\mathbf{L}^{p}} \leq ||\mathbf{f}||_{\mathbf{L}^{p}}.$$

13: LEMMA As $h \rightarrow 0$, f_h converges almost everywhere to f.

14: LEMMA

$$\int_{Q_{h}} |f_{h} - f| \to 0 \quad (h \to 0).$$

$$\begin{split} \int \int |\mathbf{f}_{h} - \mathbf{f}| \\ & \mathbb{Q}_{h} \\ & = \int \int |(\phi_{h} + \psi_{h}) - (\phi + \psi)| \\ & \leq \int \int |\phi_{h} - \phi| + \int \int |\psi_{h} - \psi| \\ & \mathbb{Q}_{h} \\ & \leq \int \int |\phi_{h} - \phi| + \int \int |\psi_{h}| + \int \int |\psi| \\ & \leq \int \int |\phi_{h} - \phi| + \int \int |\psi| + \int \int |\psi| \\ & \leq \int \int |\phi_{h} - \phi| + 2 \int \int |\psi| \\ & \leq \int \int |\phi_{h} - \phi| + 2 \varepsilon. \end{split}$$

Since φ is continuous in Q, it follows that in $\textbf{Q}_{h},$

$$\phi_{h} \rightarrow \phi |_{Q_{h}}$$
 (h \rightarrow 0)

uniformly, hence

$$\begin{array}{ccc} \int & \left| \phi_{\mathbf{h}} - \phi \right| \ \Rightarrow \ 0 \quad (\mathbf{h} \ \Rightarrow \ 0) \ . \\ \tilde{\mathbf{Q}}_{\mathbf{h}} \end{array}$$

So for all sufficiently small h,

$$\int_{Q_{h}} \int |\phi_{h} - \phi| < \varepsilon$$

=>

$$\lim_{h \to 0} \int \int |f_h - f| < 3\varepsilon.$$

15: REMARK An analogous statement obtains if $f \in L^p(Q)$ (1 :

$$\int_{Q_{h}} \int |f_{h} - f|^{p} \to 0$$

as $h \rightarrow 0$.

<u>l6:</u> LEMMA If $f \in L^p(Q)$ ($1 \le p < + \infty$), then

$$\frac{\partial f_h}{\partial x} \& \frac{\partial f_h}{\partial y}$$

belong to ${\tt L}^p({\tt Q}_h)$.

PROOF Take p > 1 and consider $\frac{\partial f_h}{\partial x}$, thus

$$\frac{\partial f_h}{\partial x} = \frac{1}{4h^2} \int_{y-h}^{y+h} [f(x+h,\eta) - f(x-h,\eta]d\eta]$$

almost everywhere in $\boldsymbol{Q}_{\!\!\!h},$ the claim being that the functions

$$\begin{bmatrix} \int_{y=h}^{y+h} f(x+h,\eta) d\eta \\ \\ \int_{y=h}^{y+h} f(x-h,\eta) d\eta \end{bmatrix}$$

are in $\operatorname{L^p}(\operatorname{Q}_h)$. To discuss the first of these, write

$$\int_{y-h}^{y+h} f(x+h,\eta) d\eta = \int_{h}^{h} f(x+h,y+\eta) d\eta$$
.

Then

$$\left|\int_{-h}^{h} f(x+h,y+\eta) d\eta\right|^{p}$$

$$\leq$$
 (2h)^{p-1} $\int_{-h}^{h} |f(x+h,y+\eta)|^{p} d\eta$.

Since $f \in L^{p}(Q)$, $|f(x+h,y+\eta)|^{p}$ is integrable in

 $h \le x \le l - h$, $h \le y \le l - h$, $-h \le \eta \le h$.

Therefore

$$\int_{-h}^{h} |f(x+h,y+n)|^{p} dn$$

is integrable in ${\ensuremath{\mathtt{Q}}}_h,$ hence

$$\int_{-h}^{h} |f(x+h,y+n)|^{p} dn$$

is in $L^p(Q_h)$.

§5. TONELLI'S CHARACTERIZATION

Let $f: Q \rightarrow R$ be a continuous function.

1: DEFINITION

$$V_{x}(f;y) = T_{f(-,y)}[0,1] \quad (0 \le y \le 1)$$
$$V_{y}(f;x) = T_{f(x,-)}[0,1] \quad (0 \le x \le 1).$$

2: LEMMA

 $\begin{bmatrix} V_{x}(f; -) \text{ is a lower semicontinuous function of } y \in [0, 1] \\ V_{y}(f; -) \text{ is a lower semicontinuous function of } x \in [0, 1]. \end{bmatrix}$

PROOF Consider the first assertion and suppose that $\textbf{y}_n \nleftrightarrow \textbf{y}$ -- then

$$\texttt{f}(\texttt{x,y}_n) \rightarrow \texttt{f}(\texttt{x,y})$$

=>

$$T_{f(-,y)}[0,1] \leq \liminf_{n \to \infty} T_{f(-,y_n)}[0,1].$$

I.e.:

$$V_{x}(f;y) \leq \liminf_{n \to \infty} V_{x}(f;y_{n}).$$

3: SCHOLIUM $V_x(f;-)$ and $V_y(f;-)$ are Lebesgue measurable.

4: DEFINITION (BVT) f is said to be of bounded variation in the sense of Tonelli if

۰.

$$\int_{0}^{1} V_{x}(f;y) dy < +\infty$$

$$\int_{0}^{1} V_{y}(f;x) dx < +\infty.$$

5: NOTATION

$$V_{T}(f) = \int_{0}^{1} V_{x}(f;y) dy + \int_{0}^{1} V_{y}(f;x) dx.$$

<u>6:</u> <u>N.B.</u> Accordingly, if $V_{T}(f) < + \infty$, then

$$e_{Y} = \{y \in [0,1]: V_{X}(f;y) = +\infty\}$$

is of Lebesgue measure zero and

$$e_{X} = \{x \in [0,1]: V_{Y}(f;x) = +\infty\}$$

is of Lebesgue measure zero.

<u>7:</u> LEMMA Suppose that $V_{T}(f) < + \infty$ -- then $f|Q^{O} \in BV(Q^{O})$ and

$$f_{x} = \frac{\partial f}{\partial x} \text{ exists almost everywhere in Q}$$
$$f_{y} = \frac{\partial f}{\partial y} \text{ exists almost everywhere in Q.}$$

8: LEMMA Suppose that
$$V_{\eta}(f) < + \infty$$
 -- then

$$\int_{Q} \int |f_{x}(x,y)| dxdy \leq \int_{0}^{1} V_{x}(f;y) dy < + \infty$$

$$\int_{Q} \int |f_{y}(x,y)| dxdy \leq \int_{0}^{1} V_{y}(f;x) dx < + \infty$$

=>

$$\begin{array}{c} f \\ x \\ \in L^{1}(Q) \\ f \\ y \end{array}$$

=>

$$[1 + f_x^2 + f_y^2]^{1/2} \in L^1(Q).$$

<u>9:</u> THEOREM $L_Q[f]$ is finite iff f is of bounded variation in the sense of Tonelli.

Assume to begin with that $\mathrm{L}_{\mathbb{Q}}[\texttt{f}]$ is finite. Let D be the subdivision of Q specified by

$$\begin{bmatrix} x_0 = 0 < x_1 < \cdots < x_j < \cdots < x_m = 1 \\ y_0 = 0 < y_1 < \cdots < y_k < \cdots < y_n = 1 \end{bmatrix}$$

and introduce

$$\begin{vmatrix} v_{x}(f;y;D) &= \sum_{j=0}^{m-1} |f(x_{j+1},y) - f(x_{j},y)| & (0 \le y \le 1) \\ y_{y}(f;x;D) &= \sum_{k=0}^{n-1} |f(x,y_{k+1}) - f(x,y_{k})| & (0 \le x \le 1). \end{vmatrix}$$

Then

$$\int_{0}^{1} v_{x}(f;y;D) dy = \Sigma G_{y}(f;R)$$
$$\int_{0}^{1} v_{y}(f;x;D) dx = \Sigma G_{x}(f;R),$$

the summations being over the rectangles R in D. Next

$$\sum_{i=1}^{n} G_{Y}(f;R) \leq G(f;D) \leq L_{Q}[f].$$

$$\sum_{i=1}^{n} G_{X}(f;R)$$

Therefore

$$\int_{0}^{1} v_{x}(f;y;D) dy$$

$$\leq L_{Q}[f] < + \infty.$$

$$\int_{0}^{1} v_{y}(f;x;D) dx$$

From the definitions,

$$\begin{array}{c} 0 \leq v_{x}(f;y;D) \leq V_{x}(f;y) \\ 0 \leq v_{y}(f;x;D) \leq V_{y}(f;x). \end{array}$$

So, upon sending the maximum diameters of the rectangles R in D to zero sequentially, we conclude that

$$\lim_{X} v_{x}(f;y;D) = V_{x}(f;y)$$

$$\lim_{Y} v_{y}(f;x;D) = V_{y}(f;x)$$

=>

$$\int_{0}^{1} V_{x}(f;y) dy = \int_{0}^{1} \lim v_{x}(f;y;D) dy$$
$$\int_{0}^{1} V_{y}(f;x) dx = \int_{0}^{1} \lim v_{y}(f;x;D) dx$$

or still,

$$\leq \liminf \int_{0}^{1} v_{x}(f;y;D) dy$$
(Fatou) $\leq L_{Q}[f] < + \infty.$

$$\leq \liminf \int_{0}^{1} v_{y}(f;x;D) dx$$

Consequently, under the supposition that $L_Q[f]$ is finite, it follows that f is of bounded variation in the sense of Tonelli.

To reverse this, note first that for any D,

$$\begin{bmatrix} v_{x}(f;y;D) \leq V_{x}(f;y) \\ v_{y}(f;x;D) \leq V_{y}(f;x) \end{bmatrix}$$

$$\sum_{i=1}^{n} \Sigma_{i} G_{y}(\mathbf{f};\mathbf{R}) \leq \int_{0}^{1} V_{x}(\mathbf{f};y) dy$$
$$\sum_{i=1}^{n} \Sigma_{i} G_{x}(\mathbf{f};\mathbf{R}) \leq \int_{0}^{1} V_{y}(\mathbf{f};x) dx.$$

And

$$\Gamma(\mathbf{f};\mathbf{R}) \leq G_{\mathbf{X}}(\mathbf{f};\mathbf{R}) + G_{\mathbf{Y}}(\mathbf{f};\mathbf{R}) + |\mathbf{R}|$$

=>

$$\begin{split} G(f;D) &= \Sigma \ \Gamma(f;R) \\ &\leq \Sigma \ G_{Y}(f;R) + \Sigma \ G_{X}(f;R) + \Sigma \ |R| \\ &\leq \int_{0}^{1} V_{x}(f;y) \, dy + \int_{0}^{1} V_{y}(f;x) \, dx + 1 \\ &= V_{T}(f) + 1. \end{split}$$

However

$$\Gamma_{Q}[f] = \sup_{D} G(f;D).$$

Therefore

.

$$\Gamma_{Q}[f] < + \infty$$
$$L_{Q}[f] < + \infty.$$

10: REMARK Individually

=>

$$\int_0^1 V_x(f;y) dy, \int_0^1 V_y(f;x) dx, 1$$

are all $\leq L_{Q}[f]$.

\$6. TONELLI'S ESTIMATE

Let $f:Q \rightarrow R$ be a continuous function.

<u>l:</u> THEOREM Suppose that $L_Q[f]$ is finite -- then

$$L_{Q}[f] \ge \int_{Q} \int [1 + f_{x}^{2} + f_{y}^{2}]^{1/2} dxdy.$$

Let D = {R₁, R₂,...,R_n} be a subdivision of Q, where $R_k = [a_k, b_k] \times [c_k, d_k] \quad (k = 1, 2, ..., n).$

2: LEMMA Given $\varepsilon > 0$, there is a D such that

$$\begin{vmatrix} n \\ \Sigma \\ k=1 \end{vmatrix} \left[\left(\int_{\mathbf{R}_{k}^{f}} \mathbf{f}_{x} \, dx dy \right)^{2} + \left(\int_{\mathbf{R}_{k}^{f}} \mathbf{f}_{y} \, dx dy \right)^{2} + \left| \mathbf{R}_{k} \right|^{2} \right]^{1/2}$$
$$- \int_{Q} \int \left[1 + \mathbf{f}_{x}^{2} + \mathbf{f}_{y}^{2} \right]^{1/2} \, dx dy \end{vmatrix} < \varepsilon.$$

[Recall that

$$\begin{array}{c} f_{\mathbf{X}} \\ \in \mathbf{L}^{1}(\mathbf{Q}) \\ f_{\mathbf{Y}} \end{array}$$

and use the Vitali covering lemma.]

Proceeding

$$| \sum_{k=1}^{n} [\ldots]^{1/2} - \int \int \ldots | < \varepsilon$$

$$k = 1 \qquad Q$$

$$\Rightarrow$$

$$| \int \int - \sum_{k=1}^{n} [\ldots]^{1/2} | < \varepsilon$$

ε

=>

=>

$$\int_{Q} \int_{k=1}^{n} [\cdots]^{1/2} < \varepsilon$$

$$\sum_{k=1}^{n} [\cdots]^{1/2} - \int_{Q} \int_{k=1}^{\infty} \cdots > -$$

=>

$$\sum_{k=1}^{n} [\ldots]^{1/2} > \int \int \cdots = \varepsilon.$$

And

$$\Gamma_{Q}[f] \geq \sum_{k=1}^{n} [\cdots]^{1/2} > \int \int \cdots \epsilon.$$

But

$$\Gamma_Q[f] = L_Q[f].$$

Let $f:Q \rightarrow R$ be a continuous function.

<u>l:</u> DEFINITION (ACT) f is said to be <u>absolutely continuous in the sense</u> <u>of Tonelli</u> if it is of bounded variation in the sense of Tonelli and if

For almost every $y \in [0,1]$, the function $x \rightarrow f(x,y)$ is absolutely continuous For almost every $x \in [0,1]$, the function $y \rightarrow f(x,y)$ is absolutely continuous.

2: REMARK Since f is BVT, the ordinary partial derivatives

$$\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$$

belong to $L^{1}(Q)$. So, thanks to ACL,

$$f \in W^{l,l}(Q^{\circ})$$
.

3: NOTATION Put

$$Q^{(h,k)} = [0, 1-h] \times [0, 1-k],$$

where

$$\begin{bmatrix} 0 < h < 1 \\ 0 < k < 1. \end{bmatrix}$$

4: PICTURE

5: NOTATION Given an ACT function f, put

$$f^{(h,k)}(x,y) = \frac{1}{hk} \int_{x}^{x+h} \int_{y}^{y+k} f(\xi,\eta) d\xi d\eta.$$

6: LEMMA

$$\int_{0}^{1-h} \int_{0}^{1-k} |f^{(h,k)}(x,y)| dxdy \leq \int_{0}^{1} \int_{0}^{1} |f(x,y)| dxdy.$$

<u>7:</u> LEMMA

$$\begin{bmatrix} \frac{\partial f(\mathbf{h},\mathbf{k})}{\partial \mathbf{x}} = \frac{1}{\mathbf{hk}} \int_{\mathbf{x}}^{\mathbf{x}+\mathbf{h}} \int_{\mathbf{y}}^{\mathbf{y}+\mathbf{k}} \frac{\partial f}{\partial \xi} d\xi d\eta \\\\ \frac{\partial f(\mathbf{h},\mathbf{k})}{\partial \mathbf{y}} = \frac{1}{\mathbf{hk}} \int_{\mathbf{x}}^{\mathbf{x}+\mathbf{h}} \int_{\mathbf{y}}^{\mathbf{y}+\mathbf{k}} \frac{\partial f}{\partial \eta} d\xi d\eta. \end{bmatrix}$$

[Note: It follows from these relations that $f^{(h,k)}$ is a C' function.] Therefore

٢

$$\int_{0}^{1-h} \int_{0}^{1-k} \sqrt{1 + [f_{x}^{(h,k)}]^{2} + [f_{y}^{(h,k)}]^{2}} \, dxdy$$

$$= \int_{0}^{1-h} \int_{0}^{1-k} \{\sqrt{[\frac{1}{hk} \int_{0}^{h} \int_{0}^{k} d\xi d\eta]^{2}}$$

$$+ [\frac{1}{hk} \int_{0}^{h} \int_{0}^{k} f_{\xi}(x + \xi, y + \eta) \, d\xi d\eta]^{2}$$

$$+ [\frac{1}{hk} \int_{0}^{h} \int_{0}^{k} f_{\eta}(x + \xi, y + \eta) \, d\xi d\eta]^{2} \, dxdy$$

$$\leq \int_{0}^{1-h} \int_{0}^{1-k} \left[\frac{1}{hk} \int_{0}^{h} \int_{0}^{k} \left\{ \sqrt{1 + \left[f_{\xi} (x + \xi, y + \eta) \right]^{2} \right]} \right]^{2} } + \frac{1}{\left[f_{\eta} (x + \xi, y + \eta) \right]^{2} \left[d\xi d\eta \right]} dx dy$$

$$= \frac{1}{hk} \int_{0}^{h} \int_{0}^{k} \left[\int_{\xi}^{1-h+\xi} \int_{\eta}^{1-k+\eta} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy \right] d\xi d\eta$$

$$\leq \frac{1}{hk} \int_{0}^{h} \int_{0}^{k} \left[\int_{0}^{1} \int_{0}^{1} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy \right] d\xi d\eta$$

$$= \frac{1}{hk} \frac{hk}{1} \int_{0}^{1} \int_{0}^{1} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy$$

$$= \int_{Q}^{1} \int_{0}^{1} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy \leq L_{Q}[f].$$

8: RAPPEL During the course of establishing that

$$\Gamma_{Q}[f] = L_{Q}[f],$$

it was shown that if f was C', then

$$L_{Q}[f] = \int_{Q} \int \left[1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}\right]^{1/2} dxdy.$$

So, upon applying this to $f^{(h,k)}$, the upshot is that

$$\sum_{Q(h,k)}^{L} [f^{(h,k)}]$$

$$= \int_{0}^{1-h} \int_{0}^{1-k} \sqrt{1 + [f_{x}^{(h,k)}]^{2} + [f_{y}^{(h,k)}]^{2}} dxdy.$$

9: SCHOLIUM If f is absolutely continuous in the sense of Tonelli, then

$$L_Q[f] = \int_Q \int [1 + f_x^2 + f_y^2]^{1/2} dxdy.$$

[In fact,

$$\begin{split} \mathbf{L}_{Q}[\mathbf{f}] &\leq \liminf_{\substack{\mathbf{h} \to 0 \\ \mathbf{k} \to 0}} \mathbf{L}_{Q}(\mathbf{h}, \mathbf{k}) \quad \begin{bmatrix} \mathbf{f}^{(\mathbf{h}, \mathbf{k})} \end{bmatrix} \\ &\leq \lim_{\substack{\mathbf{h} \to 0 \\ \mathbf{h} \to 0}} \mathbf{Q}_{Q}(\mathbf{h}, \mathbf{k}) \quad \begin{bmatrix} \mathbf{f}^{(\mathbf{h}, \mathbf{k})} \end{bmatrix} \\ &\leq \mathcal{I}_{Q} \left[1 + \mathbf{f}_{X}^{2} + \mathbf{f}_{Y}^{2} \right]^{1/2} dxdy \\ &\leq \mathbf{L}_{Q}[\mathbf{f}]. \end{split}$$

<u>10:</u> EXAMPLE Suppose that $f:\mathbb{R}^2 \to \mathbb{R}$ is a C' function. Put $Gr_f(Q) = \{(x,y), f(x,y): (x,y) \in Q\}$.

Then

$$H^{2}(Gr_{f}(Q)) = \int_{Q} \int [1 + f_{x}^{2} + f_{y}^{2}]^{1/2} dxdy.$$

Consequently

$$H^{2}(\operatorname{Gr}_{f}(Q)) = L_{Q}[f].$$

<u>11:</u> SCHOLIUM If f is of bounded variation in the sense of Tonelli and if $L_Q[f] = \int_Q \int [1 + f_x^2 + f_y^2]^{1/2} dxdy,$

then f is absolutely continuous in the sense of Tonelli.

We shall sketch the proof.

<u>12:</u> LEMMA For every oriented rectangle $R \subseteq Q$,

$$L_{R}[f] = \int_{R} \int_{R} [1 + f_{x}^{2} + f_{y}^{2}]^{1/2} dxdy.$$

Explicate $R \subset Q$:

$$\begin{vmatrix} - & a \le x \le b & (a < b) \\ & & , & |R| = (b - a) & (c - d) \\ & & c \le y \le d & (c < d) \end{vmatrix}$$

and introduce

$$W_{x}(f;R) = \int_{c}^{d} V_{x}(f;y) dy$$
$$W_{y}(f;R) = \int_{a}^{b} V_{y}(f;x) dx.$$

13: LEMMA For every oriented rectangle $R \subset Q$,

$$W_{X}(f;R) \leq L_{R}[f]$$
$$W_{Y}(f;R) \leq L_{R}[f].$$

Therefore

$$\begin{array}{l} & - & W_{x}(f;R) \leq \int \int _{R} \left[1 + f_{x}^{2} + f_{y}^{2}\right]^{1/2} \, dxdy \\ & - & W_{y}(f;R) \leq \int \int _{R} \left[1 + f_{x}^{2} + f_{y}^{2}\right]^{1/2} \, dxdy. \end{array}$$

Denoting by R the set of oriented rectangles in Q, a rectangle function is a function $\phi: R \rightarrow R$. So, e.g., the assignments

$$\begin{bmatrix} R \rightarrow W_{X}(f;R) \\ (R \in R) \\ R \rightarrow W_{Y}(f;R) \end{bmatrix}$$

6.

are rectangle functions.

<u>14:</u> DEFINITION A rectangle function $R \rightarrow \phi(R)$ is said to be <u>absolutely</u> continuous if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

 $|\phi(\mathbf{R}_1)| + \ldots + |\phi(\mathbf{R}_n)| < \varepsilon$

for every finite system of oriented rectangles R_1, \ldots, R_n which satisfy the conditions

$$R_{i}^{O} \cap R_{j}^{O} = \emptyset$$
 ($i \neq j$) and $|R_{1}| + \cdots + |R_{n}| < \delta$.

15: CRITERION If
$$\Phi \in L^{\perp}(Q)$$
 and if

$$\phi(\mathbf{R}) = \int \int |\Phi| \, d\mathbf{x} d\mathbf{y} \quad (\mathbf{R} \in \mathcal{R}),$$

$$\mathbf{R}$$

then ϕ is absolutely continuous.

16: APPLICATION The rectangle functions

$$\begin{bmatrix} R \rightarrow W_{X}(f;R) \\ (R \in R) \\ R \rightarrow W_{y}(f;R) \end{bmatrix}$$

are absolutely continuous.

[Note: Bear in mind that

$$[1 + f_x^2 + f_y^2]^{1/2} \in L^1(Q).]$$

Recall that the contention is that f is absolutely continuous in the sense of Tonelli, i.e.,

For almost every $y \in [0,1]$, the function $x \rightarrow f(x,y)$ is absolutely continuous For almost every $x \in [0,1]$, the function $y \rightarrow f(x,y)$ is absolutely continuous. Consider the first of these assertions. Using the absolute continuity of $W_x(f;R)$ to eliminate a potential singular term, we have

$$W_{X}(f;Q) = \int \int |f_{X}(x,y)| dxdy.$$

On the other hand, by definition,

$$W_{x}(f;Q) = \int_{0}^{1} V_{x}(f;Y) dY.$$

Therefore

$$\int_{0}^{1} [V_{x}(f;y) - \int_{0}^{1} |f_{x}(x,y)| dx] dy = 0.$$

But

$$V_{x}(f;y) \geq \int_{0}^{1} |f_{x}(x,y)| dx$$

for almost every y in [0,1]. Therefore

$$V_{x}(f;y) = \int_{0}^{1} |f_{x}(x,y)| dx$$

for those $y \notin E$, where E is a certain subset of [0,1] of Lebesgue measure 0. And this implies that f(x,y) is absolutely continuous as a function of x for $y \notin E$.

<u>17:</u> <u>N.B.</u> In general, if f is of bounded variation in the sense of Tonelli,

then

$$W_{X}(f;Q) = \int_{0}^{1} V_{X}(f;y) dy$$

$$\geq \int_{0}^{1} \left[\int_{0}^{1} |f_{X}(x,y)| dx \right] dy$$

$$= \int_{Q} \int |f_{X}(x,y)| dxdy,$$

the inequality becoming an equality in the presence of the absolute continuity of $R \rightarrow W_x(f;R)$.

§8. STEINER'S INEQUALITY

Suppose that

$$f_1:Q \rightarrow R$$
$$f_2:Q \rightarrow R$$

are continuous functions.

1: THEOREM

$$L_{Q}[(f_{1} + f_{2})/2] \leq \frac{L_{Q}[f_{1}] + L_{Q}[f_{2}]}{2}$$

PROOF The assertion is trivial if

$$L_{Q}[f_{1}] = + \infty \text{ or } L_{Q}[f_{2}] = + \infty,$$

so it can be assumed that both are finite. Accordingly, given a subdivision D of Q, form the sums of Geocze per f_1, f_2 , and $(f_1 + f_2)/2$, hence

$$G((f_1 + f_2)/2;D) \le \frac{G(f_1;D) + G(f_2;D)}{2}$$

=>

$$G((f_1 + f_2)/2;D) \le \frac{L_Q[f_1] + L_Q[f_2]}{2}$$

=>

$$L_{Q}[(f_{1} + f_{2})/2] \leq \frac{L_{Q}[f_{1}] + L_{Q}[f_{2}]}{2}.$$

<u>2:</u> RAPPEL If $f:Q \rightarrow R$ is continuous, then $L_Q[f]$ is finite iff f is of bounded variation in the sense of Tonelli, there being the estimate

$$L_Q[f] \ge \int_Q \int [1 + f_x^2 + f_y^2]^{1/2} dxdy,$$

the inequality becoming an equality iff f is absolutely continuous in the sense of Tonelli.

Suppose that

$$f_1:Q \rightarrow R$$

$$f_2:Q \rightarrow R$$

are absolutely continuous in the sense of Tonelli -- then the same is true of $(f_1 + f_2)/2$ and Steiner's inequality is the relation

$$\int_{Q} \{ \frac{[1 + f_{1x}^{2} + f_{1y}^{2}]^{1/2} + [1 + f_{2x}^{2} + f_{2y}^{2}]^{1/2}}{2}$$

$$- \left[1 + \left(\frac{f_{1x} + f_{2x}}{2}\right)^2 + \left(\frac{f_{1y} + f_{2y}}{2}\right)^2\right]^{1/2}\right\} dxdy \ge 0$$

or still, that

$$\int_{Q} \int \left\{ \left[\left(\frac{1}{2}\right)^{2} + \left(\frac{f_{1x}}{2}\right)^{2} + \left(\frac{f_{1y}}{2}\right)^{2} \right]^{\frac{1}{2}} + \left[\left(\frac{1}{2}\right)^{2} + \left(\frac{f_{2x}}{2}\right)^{2} + \left(\frac{f_{2y}}{2}\right)^{2} \right]^{\frac{1}{2}} \right\}$$

- $\left[\left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{f_{1x}}{2} + \frac{f_{2x}}{2}\right)^{2} + \left(\frac{f_{1y}}{2} + \frac{f_{2y}}{2}\right)^{2} \right]^{\frac{1}{2}} dx dy \ge 0.$

$$\frac{3:}{\frac{1}{2}} \text{ LEMMA}$$

$$\frac{k}{\frac{5}{2}} \left(a_{1}^{2} + b_{1}^{2} + c_{1}^{2}\right)^{\frac{1}{2}} \ge \left[\left(\frac{k}{2} + a_{1}^{2}\right)^{2} + \left(\frac{k}{2} + b_{1}^{2}\right)^{2} + \left(\frac{k}{2} + c_{1}^{2}\right)^{2} \right]^{\frac{1}{2}}.$$

To conclude that the foregoing integrand is nonnegative, take k = 2 and

$$a_{1} = \frac{1}{2}, b_{1} = \frac{f_{1x}}{2}, c_{1} = \frac{f_{1y}}{2}$$
$$a_{2} = \frac{1}{2}, b_{2} = \frac{f_{2x}}{2}, c_{2} = \frac{f_{2y}}{2}.$$

Suppose that f_1 and f_2 are absolutely continuous in the sense of Tonelli and that equality obtains in Steiner -- then the claim is that $f_1 - f_2$ is a constant. To establish this, observe first that

$$\int_{Q} \int \{\ldots\} dxdy = 0$$

and since the integrand is nonnegative, it must be equal to zero almost everywhere in Q. This implies that

$$f_{1x} = f_{2x}, f_{1y} = f_{2y}$$

almost everywhere in Q or still, that

$$[(f_{1x} - f_{2x})^2 + (f_{1y} - f_{2y})^2]^{1/2} = 0$$

almost everywhere in Q.

<u>4:</u> NOTATION $E \subset Q$ is the set consisting of

(1) All lines $x = x_0$ such that $f_1(x_0, y)$, $f_2(x_0, y)$ are not both absolutely continuous in y.

(2) All lines $y = y_0$ such that $f_1(x,y_0)$, $f_2(x,y_0)$ are not both absolutely continuous in x.

(3) All points (x,y) such that

$$f_{1x}(x,y), f_{2x}(x,y), f_{1y}(x,y), f_{2y}(x,y)$$

are not all defined.

(4) All points (x,y) at which

$$[(f_{1x} - f_{2x})^2 + (f_{1y} - f_{2y})^2]^{1/2} \neq 0.$$

<u>5</u>: <u>N.B.</u> E has planer measure zero, hence for almost all points $(x_0, y_0) \in Q$ the lines $x = x_0$ and $y = y_0$ have in common with E at most a set of linear measure zero.

Fix one such point (x_0, y_0) and let (x, y) be any other point with the same property --- then

$$f_{1}(x,y) - f_{1}(x_{0},y_{0}) = \int_{x_{0}}^{x} f_{1x}(x,y_{0}) dx + \int_{y_{0}}^{y} f_{1y}(x,y) dy$$
$$f_{2}(x,y) - f_{2}(x_{0},y_{0}) = \int_{x_{0}}^{x} f_{2x}(x,y_{0}) dx + \int_{y_{0}}^{y} f_{2y}(x,y) dy.$$

Since apart from a set of linear measure zero the integrands on the right are equal, it thus follows that

$$f_1(x,y) - f_2(x,y) = f_1(x_0,y_0) - f_2(x_0,y_0),$$

which is true for almost all (x,y) in Q, hence for all (x,y) in Q $(f_1 \text{ and } f_2 \text{ being continuous})$.

<u>6:</u> EXAMPLE It can happen that equality prevails in Steiner, yet neither f_1 nor f_2 is ACT.

[Let $\varphi(x)$ be a continuous monotonically increasing function such that $\varphi'(x) = 0$ almost everywhere and $\varphi(0) = 0$, $\varphi(1) = 1$. Working in $[0,2] \times [0,2]$, put

$$\begin{array}{|c|c|c|c|c|c|c|c|} f_1(x,y) &= 0 & (0 \le x \le 1, \ 0 \le y \le 2) \\ f_1(x,y) &= \varphi(x-1) & (1 \le x \le 2, \ 0 \le y \le 2) \end{array}$$

and

$$f_{2}(x,y) = \varphi(x) \qquad (0 \le x \le 1, \ 0 \le y \le 2)$$

$$f_{2}(x,y) = 1 \qquad (1 \le x \le 2, \ 0 \le y \le 2).$$

Then

$$L_0[(f_1 + f_2)/2] = 6$$

$$L_{Q}[f_{1}] = 6$$

 $L_{Q}[f_{2}] = 6$

=>

$$6 = \frac{6+6}{2} = \frac{12}{2} = 6.$$

•

§9. EXTENSION PRINCIPLES

Let $\phi: R \rightarrow R_{>0}$ be a nonnegative rectangle function.

<u>1</u>: PROBLEM Determine conditions on ϕ which imply that ϕ can be extended to a measure on B(Q) (the σ -algebra of Borel subsets of Q).

2: DEFINITION ϕ satisfies condition C if for every choice of the systems

 $\begin{bmatrix} r_1, \dots, r_k \\ R_1, \dots, R_n, \dots \end{bmatrix}$

of oriented rectangles such that

$$r_i \cap r_j = \emptyset \quad (i \neq j)$$

and

 $r_1 \cup \ldots \cup r_k \in R_1 \cup \ldots \cup R_n \cup \ldots$ (finite or infinite)

there follows

$$\phi(\mathbf{r}_{1}) + \cdots + \phi(\mathbf{r}_{k}) \leq \phi(\mathbf{R}_{1}) + \cdots + \phi(\mathbf{R}_{n}) + \cdots$$

3: DEFINITION ϕ is <u>continuous</u> if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\phi(R) < \varepsilon$ for every oriented rectangle R such that $|R| < \delta$.

<u>4</u>: CRITERION If ϕ is finitely additive and continuous, then ϕ satisfies condition C.

<u>5</u>: <u>N.B.</u> Suppose that Φ is a Borel measure -- then the restriction $\phi \equiv \Phi | R$ satisfies condition C.

[Put
$$B_1 = R_1$$
, $B_2 = R_2 \backslash R_1$,
... $B_n = R_n \backslash (R_1 \cup \cdots \cup R_{n-1})$,...

Then

$$\begin{split} \varphi(\mathbf{r}_{1}) + \cdots + \varphi(\mathbf{r}_{k}) \\ &= \Phi(\mathbf{r}_{1}) + \cdots + \Phi(\mathbf{r}_{k}) \\ &= \Phi(\mathbf{r}_{1} \cup \cdots \cup \mathbf{r}_{k}) \\ &\leq \Phi(\mathbf{R}_{1} \cup \cdots \cup \mathbf{R}_{n} \cup \cdots) \\ &= \Phi(\mathbf{B}_{1} \cup \cdots \cup \mathbf{B}_{n} \cup \cdots) \\ &= \Phi(\mathbf{B}_{1}) + \cdots + \Phi(\mathbf{B}_{n}) + \cdots \\ &\leq \Phi(\mathbf{R}_{1}) + \cdots + \Phi(\mathbf{R}_{n}) + \cdots \\ &= \varphi(\mathbf{R}_{1}) + \cdots + \varphi(\mathbf{R}_{n}) + \cdots \end{split}$$

<u>6:</u> NOTATION Given a set $E \subset Q$, let

$$\Gamma^*(\phi; E) = \inf \Sigma \phi(R_n),$$

where the inf is taken over all rectangles R_1, \ldots, R_n, \ldots (finite or infinite) of oriented rectangles in Q such that $E \subseteq \bigcup R_n$ (take $\Gamma(\emptyset, \phi) = 0$).

<u>7:</u> LEMMA Suppose that ϕ satisfies condition C -- then $\Gamma^*(\phi; --)$ is a metric outer measure.

8: NOTATION Put

$$\Gamma(\phi; --) = \Gamma^{*}(\phi; --) | \mathcal{B}(Q),$$

a measure on $\mathcal{B}(Q)$.

<u>9</u>: THEOREM ϕ extends to a measure on $\mathcal{B}(Q)$ iff ϕ satisfies condition C. PROOF The necessity follows from #5 and the sufficiency follows from #7 (obviously, $\forall R \in \mathcal{R}, \Gamma(\phi; R) = \phi(R)$).

<u>10:</u> LEMMA If Φ and Ψ are Borel measures and if $\Phi(R) = \Psi(R)$ ($\forall R \in R$), then $\Phi(E) = \Psi(E)$ ($\forall E \in B(Q)$).

$$W_{X}(f;R) = \int_{C}^{d} V_{X}(f;y) dy$$
$$W_{Y}(f;R) = \int_{a}^{b} V_{Y}(f;x) dx.$$

It is clear that

are finitely additive and it can be shown that they are continuous. Therefore

satisfy condition C (cf. #4), thus they each admit a unique extension to a measure on B(Q), denoted

$$E \rightarrow \begin{vmatrix} & & \\ & &$$

Accordingly there are Lebesgue decompositions

$$\begin{bmatrix} W_{X}(f;E) = \int_{E} \int_{E} |f_{X}| dL^{2} + W_{X}^{0}(f;E) \\ W_{Y}(f;E) = \int_{E} \int_{E} |f_{Y}| dL^{2} + W_{Y}^{0}(f;E),$$

where

$$\begin{vmatrix} - & W_x^0(f; -) \\ & W_y^0(f; -) \end{vmatrix}$$

are singular.

\$10. ONE VARIABLE REVIEW

In the Fréchet process, take for X the quasi linear functions Γ on [0,1], take for d the metric defined by the prescription

$$d(\Gamma_1, \Gamma_2) = \int_0^1 |\Gamma_1(x) - \Gamma_2(x)| dx,$$

and take for F the elementary length -- then lower semicontinuity is manifest, as is property (A). Here $\bar{X} = L^{1}[0,1]$ and property (B) is satisfied.

1: DEFINITION Put

$$\Psi[f] = \overline{F}(f) \quad (f \in L^{\perp}[0,1])$$

and call it the generalized variation of f.

<u>2:</u> DEFINITION (gBV) A function $f \in L^{1}[0,1]$ is of generalized bounded variation if

$$\Psi[f] < + \infty.$$

3: NOTATION gBV[0,1] is the set of functions of generalized bounded variation.

<u>4</u>: THEOREM Let $f \in L^{1}[0,1]$ — then f is of generalized bounded variation iff there is a $g \in L^{1}[0,1]$ which is equal almost everywhere to f and $T_{g}[0,1] < + \infty$.

Therefore

$$BV[0,1] \subset gBV[0,1].$$

5: THEOREM Suppose that $f \in gBV[0,1]$ -- then

$$\Psi[f] = \inf{T_q[0,1]:g = f \text{ almost everywhere}}.$$

<u>6:</u> RAPPEL Given an $f \in L^{1}[0,1]$, $C_{ap}(f)$ is its set of points of approximate continuity.

7: N.B.
$$C_{ap}(f)$$
 is a subset of [0,1] of full measure.
8: LEMMA If $f \in L^{1}[0,1]$, then
 $\Psi[f] = \sup \sum_{i=1}^{n-1} |f(x_{i+1}) - f(x_{i})|,$

where the supremum is taken over all finite collections of points $x_i \in C_{ap}(f)$ subject to $x_i < x_{i+1}$.

[Note: If $E \in C_{ap}(f)$ is a subset of full measure, then the supremum can be taken over the $x_i \in E$.]

<u>9:</u> RAPPEL If $f_n \to f$ in $L^1[0,1]$, then there is a subsequence $\{f_n\}$ such that $f_{n_k} \to f$ almost everywhere.

<u>10:</u> LEMMA ⁴ is lower semicontinuous w.r.t. convergence almost everywhere, i.e., if f_1, f_2, \dots is a sequence in $L^1[0,1]$ that converges almost everywhere to $f \in L^1[0,1]$, then

$$\frac{\Psi[f]}{n \to \infty} \leq \lim_{n \to \infty} \inf_{n \to \infty} \Psi[f_n].$$

<u>11:</u> DEFINITION The essential derivative of f at a point x is the derivative of f computed at x after deleting a set of Lebesgue measure 0.

12: THEOREM Suppose that 4[f] is finite — then the essential derivative of f, denoted still by f', exists almost everywhere and

$$4[f] \ge \int_0^1 |f'(x)| dx.$$

Moreover equality obtains iff f is equivalent to an absolutely continuous function.

§11. EXTENDED LEBESGUE AREA

In the Fréchet process, take for X the quasi linear functions II on $[0,1] \times [0,1]$ (= Q), take for d the metric defined by the prescription

$$d(\Pi_1,\Pi_2) = \int_Q \int |\Pi_1(x,y) - \Pi_2(x,y)| dxdy,$$

and take for F the elementary area -- then lower semicontinuity is manifest, as is property (A). Here $\bar{X} = L^{1}(Q)$ and property (B) is satisfied.

1: DEFINITION Put

$$\operatorname{P}_{Q}[f] = \overline{F}(f) \quad (f \in \operatorname{L}^{\perp}(Q))$$

and call it the generalized variation of f.

2: EXTENSION PRINCIPLE Suppose that $f:Q \rightarrow R$ is continuous -- then $\Psi_Q[f] = L_Q[f].$

<u>3:</u> <u>N.B.</u> Therefore ${}^{\rm q}_{Q}$ can be viewed as an "area functional" on ${}^{\rm L}_{Q}$, there being no a priori assumption of continuity, which justifies calling ${}^{\rm q}_{Q}$ extended Lebesgue area.

4: LEMMA Suppose that $f:Q \rightarrow R$ is continuous.

• If $L_Q[f] < +\infty$, then for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $g:Q \rightarrow R$ is continuous and

$$f(x,y) - g(x,y) < \delta$$

on a set of measure greater than 1 - $\delta,$ then

$$L_Q[g] > L_Q[f] - \varepsilon$$
.

• If $L_Q[f] = +\infty$, then for every M > 0 there is a $\delta > 0$ such that if $g:Q \rightarrow R$ is continuous and

$$|f(x,y) - g(x,y)| < \delta$$

on a set of measure greater than 1 - δ , then

$$L_{O}[g] > M.$$

There are two possibilities:

$$L_Q[f] < + \infty \text{ or } L_Q[f] = + \infty.$$

For sake of argument, consider the first of these.

Since uniform convergence of $\{\Pi_n(x,y)\}$ to f(x,y) implies that $d(\Pi_n, f)$ converges to zero, it follows that $\Psi_Q[f] \leq L_Q[f]$. To go the other way, take $\varepsilon > 0$, let $\delta > 0$ be per supra, and choose a quasi linear function II such that

$$\int_{Q} \int |\mathbf{f} - \mathbf{\Pi}| \, \mathrm{dL}^2 < \delta^2.$$

Then

 $|f(x,y) - \Pi(x,y)| < \delta$

on a set of measure greater than 1 - δ , hence

There is also a Geöcze version of these considerations.

<u>5</u>: DEFINITION Let $f \in L^{1}(Q)$ and let $R \subseteq Q$ be an oriented rectangle, thus in the usual notation,

$$\begin{vmatrix} a \le x \le b & (a < b) \\ & & , & |R| = (b - a) (d - c) \\ & & c \le y \le d & (c < d) \end{vmatrix}$$

Then R is said to be <u>admissible</u> if f(x,y) is approximately continuous in x for almost all y on the boundary lines of R parallel to the y axis and if f(x,y) is approximately continuous in y for almost all x on the boundary lines of R parallel to the x axis.

[Note: A subdivision D of Q into nonoverlapping oriented rectangles R is admissible provided this is of the case of each of the R.]

Using this data, one can arrive at the extended Geöcze area, denoted

 $\mathbb{M}_{\mathbb{Q}}^{[f]}$.

6: THEOREM

$$M_Q(f) = \Psi_Q[f].$$

7: N.B. Recall that

$$\Gamma_{O}[f] = L_{O}[f] \quad (f \in C(Q)),$$

i.e.,

§12. THEORETICAL SUMMARY

What is said below for the integrable case runs parallel to what has been said for the continuous case.

<u>l</u>: DEFINITION (gBVT) Let $f \in L^{1}(Q)$ — then f is said to be of generalized bounded variation in the sense of Tonelli if

$$\int_{0}^{1} \Psi[f(\dots, y)] \, dy < +\infty$$
$$\int_{0}^{1} \Psi[f(x, \dots)] \, dx < +\infty.$$

The gBVT-functions can be characterized.

<u>2:</u> THEOREM Let $f \in L^{1}(Q)$ -- then f is of generalized bounded variation in the sense of Tonelli iff there are functions g and h equal to f almost everywhere in Q such that

$$\int_0^1 V_x(g;y) \, dy < +\infty$$
$$\int_0^1 V_y(g;x) \, dx < +\infty.$$

<u>3:</u> REMARK Suppose that f is gBVT --- then it can be shown that there is a function k equal to f almost everywhere in Q such that

$$\int_0^1 V_x(k;y) \, dy < +\infty$$
$$\int_0^1 V_y(k;x) \, dx < +\infty.$$

4: <u>N.B.</u>

f BVT => f gBVT.

[Note: Recall that f BVT means, in particular, that $f\in C(Q)$, hence $f\in L^1(Q).]$

<u>5:</u> THEOREM $\mathbb{H}_{O}[f] < + \infty$ iff f is gBVT.

<u>6:</u> THEOREM Suppose that f is gBVT -- then the essential partial derivatives f_x and f_y exist almost everywhere, are integrable, and

<u>7:</u> DEFINITION (gACT) Suppose that f is gBVT — then f is said to be <u>generalized absolutely continuous in the sense of Tonelli</u> if f coincides almost everywhere with a function g which is absolutely continuous w.r.t. x for almost all y and absolutely continuous w.r.t. y for almost all x.

- 8: SCHOLIUM
- If f is gBVT and if

$$\Psi_{Q}[f] = \int_{Q} \int [1 + f_{x}^{2} + f_{y}^{2}]^{1/2} dxdy,$$

then f is gACT.

• If f is gACT, then

§13. VARIANTS

Up to this point, the discussion has taken

$$Q = [0,1] \times [0,1]$$

as the domain of discourse. Of course, matters can be extended with little change when Q is replaced by

$$[a,b] \times [c,d].$$

This done, the next step is to replace Q by a nonempty open subset $\Omega \subset R^2$.

<u>1:</u> RAPPEL A continuous function f:]a,b[\rightarrow R is of bounded variation in a nonempty open interval]a,b[\subset R provided

<u>2</u>: DEFINITION A continuous function $f:\Omega \rightarrow R$ is of bounded variation in a nonempty open subset $\Omega \subset R$ provided

 $T_f \Omega < + \infty$,

where

$$T_{f} \Omega = \sum_{n} T_{f} a_{n}, b_{n}[,$$

the nonempty open intervals $]a_n, b_n[$ running through the connected components of Ω (admit $\pm \infty$).

3: NOTATION Let Ω be a nonempty open subset of R^2 .

• For any real number \bar{x} , let $\Omega(\bar{x})$ denote the open linear set which is the intersection of Ω with the straight line $x = \bar{x}$.

• For any real number \overline{y} , let $\Omega(\overline{y})$ denote the open linear set which is the intersection of Ω with the straight line $y = \overline{y}$.

Given a continuous function $f: \Omega \rightarrow R$, introduce

$$\begin{bmatrix} \nabla_{\mathbf{x}}(\mathbf{f}; \overline{\mathbf{y}}; \Omega) &= \mathbf{T}_{\mathbf{f}} \Omega(\overline{\mathbf{y}}) \\ \nabla_{\mathbf{y}}(\mathbf{f}; \overline{\mathbf{x}}; \Omega) &= \mathbf{T}_{\mathbf{f}} \Omega(\overline{\mathbf{x}}). \end{bmatrix}$$

[Note: Take

$$\begin{bmatrix} V_{x} = 0 \text{ if } \Omega(\overline{y}) = \emptyset \\ V_{y} = 0 \text{ if } \Omega(\overline{x}) = \emptyset. \end{bmatrix}$$

4: LEMMA

$$\nabla_{\mathbf{x}}(\mathbf{f}; \overline{\mathbf{y}}; \Omega)$$
 is a lower semicontinuous function of $\overline{\mathbf{y}}$
in]-∞,+∞[.
 $\nabla_{\mathbf{y}}(\mathbf{f}; \overline{\mathbf{x}}; \Omega)$ is a lower semicontinuous function of $\overline{\mathbf{x}}$

5: DEFINITION (BVT) f is said to be of bounded variation in the sense of Tonelli if

$$\int_{-\infty}^{+\infty} \nabla_{\mathbf{x}}(\mathbf{f}; \overline{\mathbf{y}}; \Omega) d\overline{\mathbf{y}} < + \infty$$
$$\int_{-\infty}^{+\infty} \nabla_{\mathbf{y}}(\mathbf{f}; \overline{\mathbf{x}}; \Omega) d\overline{\mathbf{x}} < + \infty.$$

<u>6:</u> LEMMA Suppose that $f:\Omega \rightarrow R$ is of bounded variation in the sense of Tonelli --- then

$$f_{x} = \frac{\partial f}{\partial x}$$

exists almost everywhere in Ω
$$f_{y} = \frac{\partial f}{\partial y}$$

and

$$\begin{bmatrix} \int_{\Omega} f | \mathbf{f}_{\mathbf{X}}(\mathbf{x}, \mathbf{y}) | d\mathbf{x} d\mathbf{y} \leq \int_{-\infty}^{+\infty} \nabla_{\mathbf{X}}(\mathbf{f}; \overline{\mathbf{y}}; \Omega) d\overline{\mathbf{y}} < +\infty \\ \int_{\Omega} f | \mathbf{f}_{\mathbf{y}}(\mathbf{x}, \mathbf{y}) | d\mathbf{x} d\mathbf{y} \leq \int_{-\infty}^{+\infty} \nabla_{\mathbf{y}}(\mathbf{f}; \overline{\mathbf{x}}; \Omega) d\overline{\mathbf{x}} < +\infty \\ => \\ \begin{bmatrix} \mathbf{f}_{\mathbf{x}} \\ & \in \mathbf{L}^{1}(\Omega) \\ & \mathbf{f}_{\mathbf{y}} \end{bmatrix}$$

Another setting for the theory is a nonempty open subset $\Omega \subset \mathbb{R}^2$, $L^1(Q)$ then being replaced by $L^1(\Omega)$, the analog of a gBVT function now being an element of $BVL^1\Omega$.

<u>7</u>: DEFINITION Let $f \in L^{1}(\Omega)$ -- then f is a function of bounded variation in Ω if the distributional partial derivatives of f are finite signed Radon measures

$$\begin{bmatrix} \mu_{\mathbf{x}} & \int_{\Omega} \mathbf{f} \frac{\partial \phi}{\partial \mathbf{x}} \, d\mathbf{x} = -\int_{\Omega} \phi \, d\mu_{\mathbf{x}} \\ \vdots & & \forall \phi \in C^{\infty}_{\mathbf{C}}(\Omega) \\ \mu_{\mathbf{y}} & \int_{\Omega} \mathbf{f} \frac{\partial \phi}{\partial \mathbf{y}} \, d\mathbf{y} = -\int_{\Omega} \phi \, d\mu_{\mathbf{y}} \end{bmatrix}$$

of finite total variation.

8: NOTATION BVL¹ Ω is the set of functions of bounded variation in Ω . Given $g \in L^1(\Omega)$, put

$$V_{T}(g;\Omega) = \int_{-\infty}^{+\infty} V_{X}(g;\overline{y};\Omega) \, d\overline{y} + \int_{-\infty}^{+\infty} V_{Y}(g;\overline{x};\Omega) \, d\overline{x}.$$

<u>9:</u> THEOREM Let $f \in L^{1}(\Omega)$ -- then $f \in BVL^{1}\Omega$ iff

 $\inf\{V_{T}(g;\Omega):g = f \text{ almost everywhere}\} < + \infty.$