
Analysis lOl: 



ABSTRACT 

Here one will find a rigorous treatment of the sirrplest situation in 

Surface Area Theory, viz. the nonparametric ease with dorrain the unit square 

in the plane. 
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.... 
§X. THE FRECHET PROCESS 

Let (X ,d) be a metric space and let F: X + (0, + oo] be a lower sernicontinuous 

function. Assume: 

(A) For each x E X, there is a sequence x (n = 1,2, ••• ) in X - {x} con
n 

verging to x such that 

lirn F (x ) = F (x). 
n 

n + oo 

Let (X,d) be the completion of (X,d), the elerrents x of which being equiv-

alence classes of Cauchy sequences in X. Extend F to a function F:X -+ (0, + oo] 

by defining 

F(x) = inf lirn inf F(x ), 
- - n 

{x }EX n + oo 
n 

where the infimurn. is taken over all Cauchy sequences in x. 

1: THEOREM: F is an extension of F, i.e. , 

FIX= F. 

Moreover F is lower sernicontinuous and in addition is unique. 

2: N. B. F has the following property: 

(B) For each x EX, there is a Cauchy sequence {x } E x-such that 
n 

To recapitulate: 

lim F(x) = F(x). 
n n -+ oo 

3: SCHOLIUM Every nonnegative, extended real valued, lower semicontinuous 

function on a metric space X with property (A) can be extended to a un±que lower 
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semicontinuous function on the corrpletion X of X with property (B) • 

and 

4: EXAMPLE Consider 

X = ]0 1 1[ 

-
X = [O,l] 

F = i~ 

:F = id • 
x 

(d(x,y) = Ix - YI) 

Cd(x,y) = Ix - YI) 
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§0. THE BEGINNING 

Traditionally, a k-surface inn-space (k::; n) is an ordered pair S = (A,f), 

where A is a subset of Rk with a nonempty interior (subject to certain restrictions) 

and f is a function from A to Rn, i.e., !_:A~ Rn, thus 

1: N.B. If k = n, then f is said to be flat. 

2: REMARK If k = 1 and A= [a,b], then f is just a curve. 

In this account, we shall take k = 2 and n = 3, thus 

f
1

:A-+ R 

f : f
2

:A -+ R 

f
3

:A-+ R. 

3: N.B. There are associated flat maps, viz. 

x= O, y = f
2 

(u,v), z = f 3 (u,v) 

x= f 1 (u,v}, y= 0, z = f 3 (u,v) 

x= f
1 

(u,v), y= f
2

(u,v), z = O, 

where (u, v) E A. 

In what follows, we do not intend to operate "in general" but instead will 

specialize matters to the so-called "nonparametric" situation. 



Put 
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2 Q = [O,l] ~ [O,l] c R (0 $ x $ 1, 0 $ y $ 1). 

4: DEFINITION A nonparametric 2-surface in 3-space is an ordered pair 

sf = (Q, !) , where 

!_(x,y) = (x,y,f (x,y)), f:Q -r R 

is a function, thus 

f 1 (x,y) = x 

f 3 (x,y) = f(x,y). 

f 2 (x,y) = y 

5: REMARK Every function f :Q -r R determines a nonparametric surface Sf. 

Because of this, the focus is on f, not on Sf. 

Restricting natters to Q n:ore or less eliminates the topJlogical aspects of 

the theory, thus the discussion is "pure analysis", there being two aspects to the 

development, viz. 

PAR!' 1: The Continuous Case, f E C (Q) • 

PARI' 2: The Integrable Case, f E L 1 ( Q) • 

6: EXAMPLE Define f:Q -r R by the prescription 

1 
0 (O ~ x ::; 2 ) 

l (~ < x $ 1). 

Then f is not continuous but it is integrable. 
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§1. QUASI LINEAR FUNCTIONS 

1: DEFINITION A quasi linear function is a continuous function TI:Q + R 

for which there exists a decarrposition D of Q into a finite number of nonoverlapping 

triangles Tl'T2, ••• ,Tn such that TI is linear in each of these triangles, thus 

TI (;x:,y) = a1x + b1y + ci ( (x,y) E Ti), 

the a. , b. , c . being real nu:rnrers. 
l l l 

2: EXAMPLE A constant function 

f (x,y) = C ( (x,y) E Q) 

quasi linear. 

Suppose that TI:Q + R is quasi linear -- then II maps each T. into a triangle 
l 

!:::. • c R
3 (possibly a segment or a point) • 

l 

3: NOI'ATION Let I!:::.. I stand for the area of !:::. •• 
1 1 

4: DEFINITION The elementary area of a quasi linear function R:Q + R is 

the sum 

a (JI) 

where l: is taken over the T. E D. 
1 

- I !t::.. [' 
1 

5: Nor.ATION Let stand for the area of T .• 
1 

6: N.B. Let 

re the vertices of T. in Q - then 
l 
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IT. j 
1 

1 
= -2 

det 

7: LEMMA 

2 2 1/2 
= IT· I (1 + a. + b.) • 

1 1 1 

Therefore 

2 2 1/2 
a (TI) = L: IT. I (1 + a. + b.) • 

i 1 1 1 

8: SCHOLIUM 

2 2 1/2 
a (II) = f f (1 + (3t/3x) + (3II/3y) ] dxdy. 

Q 

It follows from this that a(II} is independent of the sulxlivision D of Q into 

triangles of linearity for II. 

9: REMARK A quasi linear function Il:Q -+ R is Lipschitz continuous and 

2 2 2 l/2 
H (Grn (Q}) = J J [l + (an/ax) + (an/ay) ] dxdy. 

l Q 

10: LEMMA Per unifonn convergence, the elementary area is lower semi-

continuous on the set of quasi linear functions. 
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§2. LEBESGUE AREA 

Recall that 

sequence 

2 
Q = [0,l] x [O,l] c R (O ~ x ~ 1, 0 ~ y ~ 1). 

1: LEMMA I.et f :Q -+ R be a continuous function -- then there exists a 

~={IT :n = 1,2, •.. } 
n 

of quasi linear functions IT :Q -+ R such that IT -+ f unifonnly (n -+ oo). 
n n 

2: NorATIQ."\I Given a continuous function f: Q -+ R, denote by ~ the collection 

of all sequences 

~ = {IT :n = 1,2, .•. } 
n 

of quasi linear functions rh: Q -+ R such that ITn -+ f unifonnl y (n -+ oo) • 

3: N. B. The preceding lemma ensures that ~ is nonempty. 

4: DEFINITICX\I The Lebesgue area LQ[f] of a continuous function f:Q -+ R 

is the entity 

inf lim inf a (IT ) • 
~E~ n ~ oo n 

5: REMARK This definition and the considerations that follow are an 

,-'! 

instance of the Frechet process: Take for X the quasi linear famctions on Q, 

take for d the metric defined by the prescription 

and take for F the elementary area -- then the completion X of Xis C(Q), the 



2. 

set of continuous functions on Q, and the extension F of F assigns to each 

f E C(Q) its Lebesgue area: 

6: CONSISTENCY PRINCIPLE The elementary area of a quasi linear function 

II:Q -+ R equals its Lebesgue area. 

7: LEMMA There is at least one t:: E E such that 

(n -+ co) • 

PROOF There are two :possibilities: 

Matters are manifest if LQ[f] = + co, so assume that LQ[f] < + oo. Given any 

pJSitive integer n, there exists a sequence {rm:m = .1,2, ••• } such that form-+ oo, 

r1m -+ f unifonnl y and 

lim inf a (rm> < LQ [f] + ~ I 

m-+ oo 

thus there is an m such that 

and 

1 
11 rm - f 11 co < n 

This m depends on n. Write II(n) in place of r1:n -- then 

1 I III(n) - fllco < n 

and 

a(II(n)) < LQ[f] + ~. 
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Let now n + oo to conclude that 

TI(n) + f 

unifonnly and 

lim sup a (TI(n)) ::: LQ [f]. 
n + oo 

On the other hand, 

LQ[f] < lim inf a(TI(n)). 
n + oo 

Hence the lemma. 

8: N.B. This result is known as the proper sequential limit principle. 

9: THEOREM Let f: Q + R be a continuous function. Suppose that f :Q + R n 

(n = 1,2, ••• ) is a sequence of continuous functions such that f + f unifonnly -n 

then 

LQ[f] < lim inf L[f ]. 
- n n + oo 

PRcx:>F Assume without loss of generality that 

lim inf LQ[fn] < + oo and LQ[fn] < + oo (V n). 
n + oo 

Given n, choose per supra a sequence {1\nn:m == 1,2, ••• } of quasi linear functions 

unifonnly convergent to f (m + oo) with n 

Accordingly 

anrn :: I ITinm - fn[ loo + 0 (m + oo) 

and for each n there exists an integer m = m{n) such that 

1 
<-. 

n 



Next, V w E Q, 

Put 

and let 

so ~· E ~· And 

4. 

lTinm(w) - f(w) I < J Jr1nm - fnl LX> + J lfn - f J L'° 

~ °nm + I lfn - f I LX) 

1 
< :n + I lfn - f I L)O 

+ 0 (n + oo). 

~' = {rb:n = 1,2, ••• }, 

LQ [f] ~ lim inf a< rb) 
n -+ oo 

= lim inf (a(r~> - LQ[fn] + LQ[fn]) 
n + oo 

= .lim 
n + oo 

(a Cr~> - LQ [fn]) + lim inf LQ (fn) 
n + oo 

= 0 + lim inf LQ[fn] 
n + oo 

= lim inf LQ (fn) • 
n + oo 

Therefore I.ebesgue area is a lower sernicontinuous functional in the class of 

continuous ~ctions(the underlying convergence being unifo:an). 

(Note: It can be shown that Iebesgue area is a lower semicontinuous functional 

in the class of continuous functions relative to pointwise convergence.] 
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In fact, 

lim sup LQ [fn] ~ LQ [f] 
n + co 

while on the other hand, 

lim inf LQ[fn] _'.:: LQ[f]. 
n +co 

10: LEMMA I.et L* be a functional in the class of continuous functions 

which is lOW'er sernicontinuous per unifonn convergence and has the property that 

for every quasi linear II, 

L* [II] = al(II) • 

Then for every f, 

PROOF Choose s E ~ such that 

(n + co) 

and note that 

L*[f] < lim inf L*[IT] 
- n + co n 

= lim inf a(II ) 
n + co n 
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§3. GEOCZE AREA 

The setting for the notion of Lebesgue area is the unit square 

Q = [O,l] x [O,l]. 

However there is no difficulty in extending matters to oriented rectangles R c Q: 

a< x < b (a < b) 

, IR I = (b - a) ( d - c ) • 

(c < d) 

The theory thus formulated applies to any real valued continuous function on 

R. In particular: Given a continuous function f: Q -+ R, let fR be its restriction 

:to Rand denote its Lebesgue area per R by the symbol LQ[fR]. 

Introduce 

= ~ If (x,d) - f (x,c) jdx 

Gy (f;R) = ;J- jf (b,y) - f (a,y) jdy 
c 

and put 

1: LEMMA 

I.et D be a subdivision of Q into nonoverlapping oriented rectangles R (lines 

parallel to the coordinate axes). 

2: DEFINITION The sum of GeOcze is the expression 

G(f1D) = L f(f;R), 
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the surrmation being taken over the rectangles R in D. 

So 

And 

Therefore 

3: NOI'ATIOO Put 

the GeOcze area of f. 

Then V D, 

=> 

r
0

[f] =sup G(f;D), 
D 

[Note: This inequality is trivial if LQ[f] + oo, thus there is no loss of 

generality in assuming that LQ[f] < + oo.] 

4: THEOREM 

This assertion is nontrivial, the first step being to establish it when 

af af 
ax= p(x,y), ay = q(x,y) 

exist in Q and are continuous there. 
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• Write 

~(f;R) = ~ 1£Cx,d) - f (x,c) ldx 

= (b - a) 1£ (t;;,d) - f (t;;,c) l (a ~ s ~ b) 

= (b - a) (d - c) lq (t;;, n) I (c :s. n :s. d) 

= IR I lq ( s, n). I • 
e Write 

d 
~ (£ ;R) = f c jf (b,y) - f (a,y) jdy 

= (d - c) 1£(b,µ) - f(a,µ) I (c :S. µ :s_ d) 

= (d -- c) (b - a) IP(V,µ) I (a :s. v :S. b) 

= IR I IP ( \)' µ) I • 

Consequently 

r (f;R) 
2 2 1/2 

= [l + p(v,µ) + q(~,n) ] !RI 

2 2 1/2 
= [l + p (t;:, n) + q (t;:, n) J IR I + sR IR j, 

where ~ tends to zero with the diameter of R. 

wt again D be a subdivision of Q into nonoverlapping oriented rectangles 

R (lines parallel to the coordinate axes). Since L: IR I = jQ I = 1, it follows that 

G(f;D) = L: fXf;R) 

2 2 1/2 . . . 
= L: [l + p(t,:,n) + q(t;,n) l IRI + s. 

Here s + 0 when c5 + 0 (a being the maximum diameter of the rectangles R in D) • 

Replace now D by a sequence {D } and assurre that 8 + 0 (n + oo) -- then the 
n n 

sum 
2 2 1/2 

~ [l + p(~,n) + q(~,n) J [RI 
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tends to the integral 

2 2 1/2 
ff (1 + P + q ) dxdy t 
Q 

hence 
1/2 

lim G(f;D ) = ff (1 + p2 + q2) dxdy 
n n + oo Q 

or still, 
2 2 1/2 

rQ[fJ > ff c1 + p + q ) dxdy 
Q 

(see below) • 

But, as has been noted above, it is always the case that 

So in the end, 

5: CONSTRUCTION There a ~ E ~ such that 
2 2 1/2 

a(II ) (n + oo) +ff (1 + p + q ) dxdy. 
n Q 

6: LEMMA 
2 2 1/2 

LQ [ f] = ff (1 + p + q ) dxdy. 
Q 

PROOF 
1/2 

ff (1 + p2 + q2
) dxdy 

Q 

< lim inf a(II ) = lim a(II ) - n n 
n+oo n+oo 

2 2 1/2 
= J J (1 + p + q ) dxdy. 

Q 
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7: EXAMPLE SUp:i;x:>se that f (x, y) is independent of y -- then ~~ = 0 and 

; = f' (x) , hence 

1/2 1/2 
ff (1 + p

2 + q
2

) dxdy = f 1 
(1 + (f' (x}) 

2) dx. 
Q 0 

It remains to establish that 

in general. To this end, denote by Q a concentric square completely contained 

1 in the interior of Q, let 0 < h < 2, put 

h<X<l-h 

h < y < 1 - h, - - -

and assurre that for h sufficiently small, g c Qh -- then there exists a continuous 

function fh:Qh + R with the following properties. 

af" af· 
(a) axh , 'dYh exist and are continuous f1.mctions in Qh. 

(c) fh -+ f (h + O) uniformly in Q. 

Granted these points, on the basis of the earlier considerations, from (a), 

thus by (b) , 
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But I thanks tO ( C) I 

LQ[f] .$. lim inf LQ[fh]. 
h + 0 -

And then 

Supp:>se now that Q invades Q:Q t Q, hence 

=> 

=> 
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§4'.. APPROXIMATION THEORY 

To finish the proof that 

we have yet to establish the validity of points (a), (b), (c) as fonnulated near 

the end of the preceding § and for this, it will be necessary to set up sone 

machinery. 

1: DEFlliITION let f:Q + R be a continuous function and let 0 < h < ~ -

then the function 

defined in the square 

h<X<l-h 

is called the integral rrean of f. 

2: LEMMA ~:Qh + R is a continuous function. 

3: LEMMA fh + f (h + O) unifonnly in Q c Qh. 

afii ath 
4: IB'-OMA ax , ay exist and are continuous functions on Qh: 

()fh = ___!__ 11 ax-· 2 J~h [f(x + h ,y + n) - f(x - h,y + n)Jdn 
4h 

afh 1 h 
= - J [f (x + ~, y + h) - f (x + [_,, y - h} ] dt., • 

4h2 -h 
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5: N.B. Accordingly points (a) and (c) are settled. 

The validity of point (b) , i.e. , the assertion that 

is not so easy to prove. 

Start by fixing an oriented rectangle R c Q: 

Then 

a < x < b (a < b) 

, IR I = (b - a) (c - d) • 

c S y S d (c < d) 

< 
1

2 ~h ~h !f(x + ~,d + n) - f(x + ~,c + n) d~dn 
4h 

=> 

< 
1

2 f~h ~h d~dn ~ !f(x + ~,d + n) - f(x + ~,c + n) !dx. 
4h 

Iet R~n be the rectangle obtained by subjecting·. ,R .to the translation 

x=x+~ 

Y = Y + n, 

thus 

Gx(f;R~n) = ~ lf<x + ~,d + n) - f(x + ~,c + n) jdx 

and so 



Analogously 

Finally 

To surrmarize: 

6: LEMMA 

3. 

~ 12 [(~h ~h ~(f;R~n)d~dn)2 
4h 

2 
+ <~h ~h Gy (f;R~n)d~dn) 

..h ..h 2 1/2 
+ (J~h J~h IR~nld~dn) J • 

7: RAPPEL Under canonical assunptions, 

2 2 1/2 
((fx ¢1) + ··• + <Ix ¢n) ) 

2 2 1/2 
~ 1x (¢1 + ··· + ¢n) · 

Therefore 

Suppose nCM that D is a subdivision of Q into nonoverlapping.rectangles R 
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(lines parallel to the coordinate axes) -- then 

the stml under ~h /:h being the stml of Geocze (for f) relative to the division 

D~11 of .Q.~11 c Q into rectangles Rl;n' thus a fortiori, 

=> 

_ rQ[fJ ..h ..h 
- 2 J~h J_.h dl;dn 

4h 

=> 

from which point (b) • 

8: LEMMA 

and 
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Since 

it follows that 

LQ[f] = lim !1-hfl-h [l + ( 1
2 ~h (f(x+h,y+n),- f(x-h,y+n))dn) 2 

h+Oh h 4h 

1 11 2 1/2 
+ <2 J=h (f (x+~,y+h) - f(x+~,y-h) )d~) ] dxdy. 

4h 

* * * * * * * * * * * * 

What ~ollows will not be needed in the sequel but it is of independent 

interest. 

9: DEFINITION I.et f E Ll,(Q) and let 0 < h < ~ --- then the function 

fh(x,y) = 
1

2 ~h ~h f(x+~,y+n)d~dn 4h 

defined in the square 

is called the ~tegral nean of f. 

10: LEMMA fh:Qh + R is a continuous function, hence 

11: LEMMA V f E L1
(Q), 



PROOF 

ff lfh(x,y) ldxdy 
Qh 

6. 

1 1-h 1-h ..h h 
~ 2 fh fh {J::,:-h f _h lf(x+t;,y+n) ldt.:dn}dxdy 

4h 

< _!_ 1h r h u1 11 If cx,y> ja.xdylat.:an 
- 4h2 -h -h 0 0 

~ 1 2 c2h> c2h> 11 f 11 1 
4h L 

= 11f11 1 < + 00
• 

L 

12: REMARK An analogous estimate obtains if f E Lp(Q) (1 < p < + oo): 

13: LEMMA As h -+ 0, ~ converges a.lm::Jst everywhere to f. 

14: LEMMA 

ff lfh - fl-+ 0 (h-+ O). 
Qh 



7. 

PROOF Given s > 0, write f = ¢ + ljJ, where ¢ is continuous in Q, 1jJ is 

integrable in Q, and J J I w I < t: -- then 
Q 

< I I l<Ph - ¢1 +I I 11/JI +I I llJJI 
Qh Q Q 

~ff l¢n - ¢1 + 2t:. 
Qh 

Since ¢ is continuous in Q, it follows that in Qh' 

unifonnly, hence 

So for all sufficiently small h, 
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=> 

15: REMARK An analogous staterr:ent obtains if f E LP (Q) (1 < p < + oo): 

f f lfh - f Ip+ 0 

% 
as h + O. 

16: LEMMA If f E LP (Q) (1 :S p < + oo) , then 

belong to LP (Qh) • 

PROJF Take p > 1 and consider :;, thus 

1 y+h 
- 2 f -h [f (x+h, n) - f (x-h, n]dn 
4h y 

almost everywhere in Qh, the claim being that the functions 

fy+h f(x+h,n)dn 
y-h 

fy+h f (x-h,n)dn 
y-h 

p are in L (Qh). To discuss the first of these, write 

Jy+hh f(x+h,n)dn = f.:1h f (x+h,y+n}dn. y- -

Then 
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~ (2h)p-l ;:h If (x+h,y+n) lpdn. 

Since f E LP(Q), lf(x+h,y+n) Ip is int.egrable in 

h ~ x ~ 1 - h, h ~ y ~ 1 - h, -h ~ n ~ h. 

;:h If (x+h,y+n) lpdn 

is integrable in Qh, hence 

;:h jf (x+h,y+n) jPdn 
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§5. TONELLT'S CHARACTERIZATION 

I.et f :Q -+ R be a continuous function. 

1: DEFINITIOO 

2: LEMMA 

Vx(f;y) = Tf (-,y) [O,l] 

Vy(f;x) = Tf (x,-) [O,l] 

(0 ::: y ::: 1) 

(0 s x s 1). 

Vx(f;-) is a lavver semicontinuous function of y E [O,l] 

Vy(f;-) is a lower semicontinuous function of x E [0,11. 

PROOF Consider the first assertion and suppose that y + y -- then n 

=> 

f (x,y ) -+ f (x,y) 
n 

Tf(-,y) [O,l] ~ lim inf Tf(- ) [O,l]. 
n -+ co ,yn 

Vx(f;y) < lim inf V (f;y ). - x n n -+ co 

3: SCHOLIOM Vx(f;-) and Vy(f;-) are Iebesgue measurable. 

4: DEFINITION" (Bvr) f ·is said' to be ofbounded variation in the sense of 

Tonelli if 
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5: NorATION 

6: N.B. Accordingly, if VT (f) < + co, then 

~ = {y E [O,l] :Vx(f;y) = + co} 

is of Lebesgue treasure zero and 

~ = {x E [O,l]:Vy(f;x) =+co} 

is of Lebesgue treasure zero. 

I 
0 0 

7: LEMMA Suppose that VT (f) < + co -- then f Q E BV (Q } and 

f af . J..mo rywh . = "';\" exists a st eve ere in Q 
X oX 

f = ~f exists almost everywhere in Q. 
Y aY 

8: LEMMA Suppose that VT ( f) < + co -- then 

1 J J lfx(x,y) ldxdy ~ J0 Vx(f;y)dy <+co 

=> 

=> 

Q 

f y 
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9: THEOREM LQ [f] is finite iff f is of bounded variation in the sense 

of Tonelli. 

Assuire to begin with that LQ [f] is finite. I.et D be the subdivision of Q 

specified by 

and introduce 

Then 

m-1 

< x. < ••• < x = 1 
J m 

< y = 1 
n 

v x ( f; y; D) = 2: If (xJ. + 1 , y) - f (xJ. , y) I ( 0 :: y :: 1) 
j=O 

n-1 
vy(f;x;D) = l: If (x,yk+l) - f (x,yk) I (O ::: x ::: 1). 

k=O 

1 l 0 vx(f;y;D)dy = L Gy(f;R) 

the summations being over the rectangles R in D. Next 

l: Gy(f;R) 

Therefore 

1 l 
0 

vx(f;y;D)dy 
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From the definitions, 

0 s_ vx(f;y;D) < V (f;y) - x 

So, upon sending the maximum diamete:Es of the rectangles R in D to zero sequen-

tially, we conclude that 

or still, 

~< lim inf J1
0 v (f;y;D) dy - x 

(Fatou) ~ LQ [f] < + oo. 

< lim inf 11
0 v (f;x;D)dx - y 

Consequently, under the supposition that LQ[f] is finite, it follows that f is 

of bounded variation in the sense of Tonelli. 

To reverse this, note first that for any D, 

v (f;x;D) < V (f ;x) y .... y 

=> 



And 

=> 

However 

Therefore 

5. 

L Gy(f;R} ~ !ti Vx(f ;y)dy 

1 
L G_x(f;R) s lo Vy(f;x)dx. 

r(f;R) s ~{f;R) + GyCf;R) + IRI 

G(f;D) = L r{f;R) 

s L GyCf;R) + L G_x(f;R) + L IRI 

1 1 s J 0 v x Cf ;y) dy + J 0 v Y {f ;x) ax + 1 

= VT(f) + 1. 

r0 [f] =sup G(f;D). 
D 

=> 

10: REMARK Indi vi.dually 

1 1 f 
0 

Vx(f;y)dy, f 0 Vy(f;x)dx, 1 
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§6. TONELLI'S ESTIMATE 

I.et f :Q -r R be a continuous function. 

1: THEOREM Suppose that LQ[f] is finite -- then 

1/2 
LQ[f] ~ f f [l + f

2 + f 2J dxdy. 
Q x y 

I.et D = {R1 ,R2, ••. ,Rn} be a sub:livision of Q, where 

(k = 1,2, .•• ,n). 

2: LEMMA Given s > 0, there is a D such that 

[Recall that 

f 
x 

f y 

and use the Vitali covering lemma. ] 

Proceeding 

=> 

n 
L: 

1/2 [ ••• ] - J J ••• 1 < c 
k = 1 

n 
J J - L: 
Q k=l 

Q 

1/2 [ ••• J I < s 



=> 

=> 

=> 

And 

But 

n 
f f - L 
Q k=l 

2. 

1/2 [ ••• ] < € 

~ [ .•. ] 1/2 - f f ... ~ - € 

k=l Q 

n 
L [ ••• ]1/ 2 >ff ··· - s. 

k=l Q 

n 
~ L 

k=l 
[ ..• ]1/2 > ff 

Q 

••• - E:. 
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§J. THE ROLE OF ABSOLUTE CONTINUITY 

I.et f :Q -+ R be a continuous function. 

1: DEFINITION (ACT) f is said to be absolutely continuous in the sense 

ctif Tonelli if it is of bounded variation in the sense of Tonelli and if 

For almost every y E [O,l], the function x + f(x,y) is absolutely continuous 

For a.1.rrost every x E [O,l], the function y-+ f(x,y) is absolutely continuous. 

2: REMARK Since f is BVT, the ordinary partial derivatives 

()f & ~ 
dX ()y 

1 belong to L (Q) • So, thanks to ACL, 

3: NOI'ATION Put 

Q(h,k) = [O, 1-h] x [O, 1-k], 

where 

0 < h < 1 

O<k<l. 

4: PICWRE 

1 

1 - k 

Q(h,k) 

0 1 - h 1 
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5: Nar.ATION Given an ACr function f, put 

f (h,k) (x ) = l:._ r+h fy+k f (~ ) d~dn. ,y hk x y sin s 

6: LEMMA 

f~-h J~-k lf(h,k) (x,y) I dxdy ~ !~ !~ If (x,y) I dxdy. 

7: LEMMA 

af (h,k) = l:._ fx+h fy+k cif 
dX hk X y ~ d~dn 

cif (h,k) = l:_ 
1
x+h 

1
y+k cif 

ay hk x y an d~dn. 

[Note: It follows from these relations that f (h,k) is a C' function.] 

Therefore 

l h k 2 
+ [hk f 0 f 0 f (x + t;, y + n) d~dnl } dxdy n 



3. 

< ,1-h ,1-k [ 1 fh fk { l [f ( 2 - 0 0 hk 0 0 f L + ~ x + £;,, Y + n)] 

+ [f (x + t;,, y + n)J 2} d~dnJ dxdy n 

,, ! ~ fa rr~ 1~ A + f~ + f~ dxdy] a1;an 

= f f /1 + £
2 + £

2 
dxdy $ L_ [f] • 

Q x y u 

8: RAPPEL During the course of establishing that 

it was shown that if f "Was C' , then 

LQ[f] = f f [l + (af)2 + (3£)2]1/2 dxd ax ay y. 
Q 

So, up:m applying this to f (h, k) , the upshot is that 

L [f (h,k)] 
Q(h,k) 

9: SCHOLIUM f is absolutely continuous in the sense of 'Ibnelli, then 



Then 

[In fact, 

4. 

L [f] ~ lim inf L [f (h,k)] 
Q h-+ 0 Q(h,k) 

k -+ 0 

$ lim sup L (h k) [f (h,k)] 
h -+ 0 Q ' 
k -+ 0 

10: EXAMPLE Supi;:x:>se that f:R2 -+ R is a C' function. Put 

Grf(Q) = {(x,y), f(x,y): (x,y) E Q} • 

J J [l + £2 + f2]1/2 dxd • x y y 
Q 

Conseg_uently 

Matters can :be reversed, namely: 

11: SCHOLIUM If f is of b::>unded variation in the sense of Tonelli and if 

then f is absolutely continuous in the sense of Tonelli. 

We shall sketch the proof. 



5. 

12: LEMMA For every oriented rectangle R c Q, 

Explicate R c Q: 

a s x s b (a < b) 

, IRI = (b - a) (c - d) 

c s y s d (c < d) 

and introduce 

W (f;R) = fl V (f ;y) dy x c x 

13: LEMMA For every oriented rectangle R c Q, 

Therefore 

Wx (f;R) s ~ff] 

Wy(f;R) s 1R_[f]. 

W (f;R) x 

W (f;R) y 
$ J J [l + f

2 + f
2J1/ 2 dxd • x y y 

R 

Denoting by R the set of oriented rectangles in Q, a rectangle function is a 

function cp:R + R. So, e.g., the assigrnnents 

R _,. W (f ;R) 
y 

(RE R) 



6. 

are rectangle functions. 

14: DEFINITION A rectangle function R-+ ¢ (R) is said to be absolutely 

continuous if for every E > 0 there exists 8 > 0 such that 

for every finite system of oriented rectangles 11_, ••• ,Rn which satisfy the conditions 

R~ n R~ = fiJ (i ~ j ) and I~ I + • • • + I Rn I < o. 

15: CRITERION If 4' E L1
(Q) and if 

¢(R) =ff l~I dxdy (RE R), 
R 

then ¢ is absolutely continuous. 

16: APPLICATION The rectangle functions 

are absolutely continuous. 

R -+ W (f;R) 
x 

R -+ W (f ;R) 
y 

[Note: Bear in mind that 

(RE R) 

Recall that the contention is that f is absolutely continuous in the sense of 

'Ibnelli, i.e., 

For almost every y E [O,l], the function x-+ f(x,y) is absolutely continuous 

For almost every x E {O,l], the function y-+ f(x,y) is absolutely continuous. 



7. 

Consider the first of these assertions. Using the absolute continuity of 

W (f; R) to eliminate a p::>tential singular tenn, we have x 

W (f;Q) = J J jfx(x,y) I dxdy. 
x Q 

On the other band, by definition, 

Therefore 

But 

for alrcost every y in [ 0, l] • Therefore 

Vx(f;y) = !~ lfx(x,y) I dx 

for those y ¢ E, .. where E is a certain subset of [ 0, l] of Lebesgue measure 0. And 

this irrplies that f (x,y) is absolutely continuous as a function of x for y ¢ E. 

17: N.B. In general, 

then 

f is of bounded variation in the sense of 'Ibnelli, 

= J J It cx,y> I axay, 
Q x 

the inequality becoming an equality in the presence of the absolute continuity of 

R-+ W (£;R). x 
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§8. STEINER'S INEQUALITY 

Sup:p:>se that 

are continuous functions. 

1: THEOREM 

PROOF The assertion is trivial if 

so it can be assumed that roth are finite. Accordingly, given a sulxli vision D of Q, 

form the sums of ~cze per f 1 ,f2, and Cf1 + f 2)/2, hence 

G( (fl + f 2)/2;D) 
G (f1 ;D) + G(f2 ;D) 

s 2 

=> 

G ((fl + f 2 )/2;D) 
LQ[f1] + LQ[f2] 

s 
2 

=> 

LQ [(fl + f 2) /2] 
LQ[f1J + LQ[f2] 

s 
2 

2: RAPPEL If f:Q + R is continuous, then LQ[f] is finite iff f is of 

rounded. variation in the sense of Tonelli, there being the estimate 



2. 

the inequality becoming an equality iff f is absolutely continuous in the sense of 

'Ibnelli. 

Suppose that 

are absolutely continuous in the sense of 'Ibnelli -- then the same is true of 

(£1 + f 2)./2 and Steiner's inequality is the relation 

[l + f2 + f2 ]1/2 + [l + f2 + f2 ]1/2 
J J { 1x ly 2x 2y 
Q 2 

or still, that 

f f f f 
J J { [ (1

2
) 2 + ( lx) 2 + ( ly) 211/2 + [ (.!.) 2 + ( 2x) 2 + ( 2y) 211/2 

Q 2 2 2 2 2 

3: LEMMA 

k 
L: 

i=l 

k 2 k k 
(a~+ b~ + c~) 1/2 ~ [( L: a.) + ( L: b.) 2 + ( L: c.) 2] 112• 

l l l . i=l l i=l l i=l l 

'lb conclude that the foregoing integrand is nonnegative, take k = 2 and 
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1 f lx fl 
al= 2' bl= -2-, c = _x_ 

1 2 

1 
a2 = 2' 

f 2x 
b2 = -2-' 

f 2 
c2 = 2Y~ • 

Suppose that and f 2 are absolutely continuous in the sense of Tonelli and 

that equality obtains in Steiner - then the claim is that f 1 - f 2 is a constant. To 

establish this, observe first that 

J J { .•. } dxdy 0 
Q 

and since the integrand is nonnegative, it must be equal to zero alrcost everywhere 

in Q. This implies that 

aJmost everywhere in Q or still, that 

[(flx - f2x)2 + (f - f )2]1/2 = 0 ly 2y 

alrcost everywhere in Q. 

4: NOI1ATION E c Q is the set consisting of 

continuous in y. 

(2) All lines y = y 0 such that £1 (x,y0) , f 2 (x, y 0) are not ooth absolutely 

continuous in x. 

(.3) All points (x,y) such that 

are not all defined. 
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(4) All points (x,y) at 'Which 

5: N.B. E has planer measure zero, hence for aJ..rrost all points (x0,y
0

) e Q 

the lines x = x
0 

and y = y
0 

have in cormon with E at most a set of linear measure 

zero. 

Fix one such point (x
0
,y

0
) and let (x,y) be any other point with the same 

property -- then 

Since apart from a set of linear nEasure zero the integrands on the right are equal, 

it thus follows that 

which is true for aJ..rrost all (x,y) in Q, hence for all (x,y) in Q (f
1 

and f 2 being 

continuous) • 

6: EXAMPLE It can happen that equality prevails in Steiner, yet neither f
1 

nor £
2 

is ACT. 

[Let c,p(x) be a continuous monotonically increasing function such that <P' (x) = 0 

al.rrost everywhere and g:i (0) = 0, w (1) = 1. Working in [0,2] x [O, 2], put 

f
1 

(x,y) 0 (0 $ x $ 1, 0 s y s 2) 

f 1 (x,y) = w(x - 1) (1 s x ~ 2, 0 s y ::;; 2) 



and 

Then 

f
2 

(x, y) = <P (x) 

f 2 (x,y) = 1 

=> 

LQ[f1J = 6 

LQff2] = 6 

5. 

(O $ x $ 1, 0 $ y $ 2) 

(1 $ x $ 2, 0 $ y $ 2). 

6 = 6 ; 6 = 12 = 6.] 
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§9. EXTENSION PRINCIPLES 

I.et <P:R -+ R;;::o be a nonnegative rectangle function. 

1: PROBLEM Determine conditions on cp which irrply that <P can be extended 

to a measure on B(Q) (the a-algebra of Borel subsets of Q). 

2: DEFINITION cp satisfies condition C if for every choice of the systems 

~' ••• ,Rn' •. • 

of oriented rectangles such that 

and 

there follows 

r. n r. = ~ (i ~ j) 
1 J 

r 1 u ••• U rk c Ri U ••• u ~ u (finite or infinite) 

3: DEFINITION <f> is continuous if for every e > 0 there exists o > 0 such 

that <f> (R} < e: for eve:rw oriented rectangle R such that IR I < o. 

4: CRITERION If ¢ is finitely additive and continuous, then <P satisfies 

oondition C. 

5: N.B. Supµ:>se that <P is a :Borel measure - then the restriction <P = <PIR 

satisfies condition c. 



Then 

2. 

B = R \(Rl U ••• UR 1), .... n n n-

= ¢(r) + ••• + ¢(r) 1 k 

•••UR U···) n 

= ¢ (Bl U • • • U Bn U ••• ) 

+ ..• + ¢ (B ) 
n 

+ •.• + ¢ (R ) 
n 

+ ... 

+ ..• 

6: Nar.ATION Given a set E c Q, let 

r* (¢;E) = inf l: <t{R ) 1 n 

where the inf is taken over all rectangles R1, ••• ,Rn,··· (finite or infinite) of 

oriented rectangles in Q such that E cu R (take f(~ 1 ¢) = 0). 
n 

7: LEMMA Supp'.)se that ¢ satisfies condition C -- then f* (¢;-) is a metric 

outer measure. 

8: NOI1ATION Put 

r (¢;-) = r* (¢;-) I B (Q), 



3. 

a measure on B(Q). 

9: THEOREM ¢ extends to a measure on B (Q) iff ¢ satisfies condition C. 

PRCX:>F The necessity follows fran #5 and the sufficiency follows fran #7 

(obviously, V RE R, I'(¢;R) = ¢(R)). 

10: LEMMA <I> and '¥ are Borel measures and <I> (R) = '¥ (R) (V R E R) , 

then <I>(E) = '¥(E) (VEE B(Q)). 

Suppose that f :Q + R is of rounded variation in the sense of Tonelli and recall 

that 

It is clear that 

Wx(f;-) 

w (f;-) 
y 

are finitely additive and it can be shown that they are continuous. Therefore 

Wy(f;-) 

satisfy condition C (cf. #4), thus they each admit a unique extension to a rreasure 

on B(Q), denoted 

E -+ 

W (f;E) x 

W (f;E) 
y 

(E E B (Q)). 



4. 

Accordingly there are Lebesgue decorrpositions 

W (f ;E) = f f 1£ I dL 2 + WO(f;E) 
x E x x 

W (f ;E) = f f 1£ I dL 2 + WO(f;E), y E y y 

where 

0 wx (£;-) 

I_ 0 w (£·-) y. I 

are singular. 
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§10. ONE VARIABLE REVIEW 

In the Frechet process, take for X the quasi Hnear functions r on [O, l] , 

take for d the metric defined by the prescription 

and take for F the elementary length -- then lower semicontinuity ~s manifest, 
) 

as is property (A}. Here X = L1 [0,l] and property {B} is satisfied: 

1: DEFINITION Put 

and call it the generalized variation of f. 

2: DEFINITION (gBV} A function f E L
1 

[O,l] is of generalized bounded 

variation if 

l1 [f] < + oo. 

3: NOI'ATION gBV [ O, l] is the set of functions of generalized bounded 

variation. 

4: THEOREM I.et f E L 1 [ O, l] -.,-= then f is of generalized bounded variation 

iff there is a g E L1 [0,l] which is equal a.ln:ost everywhere to f and Tg[O,l] < + oo. 

Therefore 

BV[O,l] c gBV[O,l]. 

5: THEOREM. Supp::>se that f E gEV [ 0, l] -- then 

q(f] = .inf{T [O,l]:g = f aln:ost everywhere}. g 
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6: RAPPEL Given an f E L 
1 [ 0, l] , c ( f) is its set of points of approxap 

intate continuity. 

7: N.B. C (f) is a subset of [O,l] of full measure. ap 

8: LEMMA If f E L1[0,l], then 

n-1 
q[f] =sup E jf(xi+l> - f(xi) I, 

i=l 

where the supremum. is taken over all finite collections of points x. E C (f) 
J.. ap 

[Note: If E c C (f) is a subset of full rreasure, then the supremum can ap 

be taken over the x. E E.] 
l. 

9: RAPPEL If f + f in L
1 [0,l], then there is a subsequence {f } such 

- n ~ 

that f + f aln:ost everywhere. 
~ 

10: LEMMA q is lo:Ner semicontinuous w. r. t. convergence almost everywhere, 

i.e., if f 1,f2,_ •. is a sequence in L
1 [0,l] that converges aln:ost everywhere to 

f E L1 [0,l], then 

q[f] < lim inf q(f ]. 
n 

n + oo 

11: DEFINITIQ.\l' The essential derivative of f at a point x is the derivative 

of f computed at x after deleting a set of Lebesgue measure 0. 

12: THEOREM Suppose that q [f] is finite - then the essential d.eri vati ve 

of f, denoted still by ft , exists almost everywhere and 

1 
T:I [f] :?:f 0 I f' (x) I dx. 
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Moreover equality obtains iff f is equivalent to an absolutely continuous function. 



1. 

§11. EXTENVEV LEBESGUE AREA 

~ 

In the Frechet process, take for X the quasi linear functions II on 

[0,1] x [O,l] (= Q), take ford the metric defined by the prescription 

and take for F the elementary area -- then lower semicontinuity is manifest, as is 

property (A) • Here X = L 1 (Q). and property (B) is satisfied. 

1: DEFINITION Put 

l!Q[f] = F(f) 

and call it the generalized variation of f. 

2: IDITENSION PRINCIPLE Suppose that f :Q -+ R is continuous -- then 

3: N.B. Therefore qQ can be viewed as an "area functional" on L1 (Q), 

there being no a priori assumption of continuity, which justifies calling qQ 

extended I.ebesgue area. 

4: LEMMA Suppose that f:Q -+ R is continuous. 

• If LQ[f] < + oo, then for every s > 0 there is a 8 > 0 such that if 

g:Q -+ R is continuous and 

I f (,x, y) - g (x, y) I < 8 

on a set of measure greater than 1 - o, then 
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• If LQ[f] = + 00
, then for every M > 0 there is a o > O such that if 

g:Q ~ R is continuous and 

If <x, y) - g ex, y) I < o 

on a set of measure greater than 1 - o, then 

There are two p::>ssibilities: 

For sake of argument, consider the first of these. 

Since unifonn: conv.ergenoe 'Oif Fh (x,y) } to f (x, y) .implies that d (lI , f) converges 
n n 

to zero, it follows that qQ[f] s LQ[f]. To go the other way, take s > 0, 0 > 0 

be per supra, and choose a quasi linear function TI such that 

J f If - TII dL
2 

< o2
. 

Q 

Then 

If (x,y) - TI (x,y)1 < o 

on a set of measure greater than 1 - o, hence 

=> 

There is also a GeOcze version of these considerations. 

5: DEFINITION Let f E L 1 (Q) and let R c Q be an oriented rectangle, thus 

in the usual notation, 
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(a < b) 

, I RI = (b - a) ( d - c) • 

(c < d) 

Then R is said to be admissible if f (x,y) is approximately continuous in x for 

a.1.roc>st all yon the l:oundary lines of R parallel to they axis and if f (x,y) 

approximately continuous in y for aJ.nost all x on the boundary lines of R parallel 

to the x axis. 

[Note: A subdivision D of Q into nonoverlapping oriented rectangles R is 

admissible provida:l this of the case of each of the R.] 

Using this data, one can arrive at the extended GeOcze area, denota:l 

kb [f]. 

6: THEOREM 

7: N.B. Recall that 

f Q[f] = LQ[f] (f E C(Q)), 

i.e., 

Ge6cze area = Lebesgue area. 
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§12. THEORETICAL SUMMARV 

What is said below for the integrable case runs parallel to what has been 

said for the continuous case. 

1: DEFINITION ( gBVT) Let f E L 1 
(Q) - then f is said to be of generalized 

lx>unded variation in the sense of 'lbnelli if 

Iii lI [f (..__, y)] dy < + co 

1 f 
0 

li[f (x,-)] dx < + oo. 

The gBVT-functions can be characterized. 

2: THEOREM Let f E L
1

(Q) -- then f is of generalized rounded variation 

in the sense of Tonelli if f there are functions g and h equal to f alnost every-

where in Q such th.at 

3: RE.MARR. Suppose that f is gBVT -- then it can be shown that there is 

a function k equal to f alnost everywhere in Q such that 

4: N.B. 

f BVT => f gBVT. 
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[Note: Recall that f BVT means, in particular, that f E C (Q) , hence 

5:' THEOREM %[f] < + 00 iff f is gBVT. 

6: THEOREM Suppose that f is gBVT -- then the essential partial deriv-

atives fx and fy exist a.lrrost everywhere, are integrable, and 

1/2 
~ f f [l + f 2 + f 2J dxdy. 

Q x y 

7: DEFINITION (gACT) Suppose that f is gBVT -- then f is said to be 

generalized absolutely continuous in the sense of 'Ibnelli if f coincides almost 

everywhere with a ~ction g which is absolutely continuous w.r.t. x for almost all 

y and absolutely continuous w.r.t. y for alrrost all x. 

8: SCHOLIUM 

• If f is gBVT and if 

1/2 
lIQ[f] = f f [l + f 2 + f 2] dxdy, 

Q 
x y 

then f is gACl'. 

• If f is g.ACT, then 

1/2 
l{Q[f] = f f [l + f 2 + f 2J dxdy. 

Q 
x y 
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§13. VARIANTS 

Up to this :rx>int, the discussion has taken 

Q = [0,1] x [O,l] 

as the domain of discourse. Of course, matters can be extended with little change 

when Q is replaced by 

[a,b] x [c,d]. 

This done, the next step is to replace Q by a nonempty open subset n c R2• 

1: RA:PPEL A continuous function f:Ja,b[ + R is of bounded variation in a 

nonerqpty open interval ] a,b [ c R provided 

2: DEFINITIOO A continuous function f: n + R is of bonnded VC\Y'iation in a 

nonempty open subset Q c R provided 

\.'lb.ere 

the nonempty open intervals ]a ,b [ Ell1!ling tluough the connected. components of 
n n 

Q {aemit ± 00). 

2 3: NarATION I.et n be a nonempty open subset of R • 

• For any real number x, let Q{x) denote the open linear set which is 

the intersection of n with the straight line x = x. 
• For any real nuniber y, let Q(y) denote the open linear set which is 

the intersection of n with the straight line y = y. 
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Given a contmuous function f:Q + R, introduce 

[Note: Take 

4: LEMMA 

v = 0 x n<Y) = ¢ 

v = o if .n(x) =¢.I y 

Vx(f;y;Q) is a lc:Mer semicontinuous function of y 

v (f·x·Q} is a lower semicontinuous function of x y I I 

in ]-co,+oo [. 

5: DEFINITION (BVT) f is said to be of bounded variation in the sense of 

Tonelli if 

f +oo v (f;y;Q)dy < + 00 
-00 x 

+oo - -f V (f ;x;Q}dx < + co. 
-00 y 

6: LEMMA Suppose that f: n -+ R is of bounded variation in the sense of 

f =x ax 

af 
f =-=-y ay 

exists almost everywhere in n 
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and 

f f I fx (x,y) I dxdy ~ f+oo V (f;y;n) dy < + co n -oo x 

=> 

Another setting for the theory is a nonenpty open subset n c R2 , L
1 

(Q) 

then being replaced by L
1 

(n), the analog of a gBVT function now being an element 

1 of BVL n .. 

7: DEFINITION let f E L l (Q) -- then f is a function of rounded. variation 

in n if the distributional partial derivatives of f are finite signed. Radon 

measures 

f f ~ dx = - f ¢ dµ n ax n x 

of finite total variation. 

8: NarATION BVL1n is the set of functions of rounded variation in rt. 

Given g E L1
(n), put 
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inf{VT(g;Q):g = f alrrost everywhere}<+ oo. 


