LOCAL AND GLOBAL AMLYSIS

Garth Warner
Department of Mathematics
University of Washington

The objective of this book is to give an introduction to p-adic analysis along the lines of Tate's thesis, as well as incorporating material of a more recent v intage, for example Weil groups.

CONTENTS

§1. ABSOLUTE VALUES
§2. TOPOLOGICAL FIELDS
§3. COMPLETIONS
§4. p-ADIC STRUCTURE THEORY
§5. LOCAL FIELDS
§6. HAAR MEASURE
§7. HARMONIC ANALYSIS
§8. ADDITIVE p-ADIC CHARACTER THEORY
§9. MULTIPLICATIVE p-ADIC CHARACTER THEORY
§10. TEST FUNCTIONS
§11. LOCAL ZETA FUNCTIONS: $R^{x} O R C^{x}$
§12. LOCAL ZETA FUNCTIONS: q_{p}^{\times}
§13. RESTRICTED PRODUCTS
§14. ADELES AND IDELES
§15. GLOBAL ANALYSIS
§16. FUNCTIONAL EQUATIONS
§17. GLOBAL ZETA FUNCTIONS
§18. LOCAL ZETA FUNCTIONS [BIS]
§19. L-FUNCTIONS
§20. FINITE CLASS FIELD THEORY
§21. LOCAL CLASS FIELD THEORY
§22. WEIL GROUPS: THE ARCHIMEDEAN CASE
§23. WEIL GROUPS: THE NON-ARCHIMEDEAN CASE
§24. THE WEIL-DELIGNE GROUP

§1. ABSOLUTE VALUES

1: DEFINITION Let F be a field -- then an absolute value (a.k.a. a valuation of order 1) is a function

$$
|\cdot|: F \rightarrow R_{\geq 0}
$$

satisfying the following conditions.

$$
\begin{aligned}
& \underline{A V-1}|a|=0 \Leftrightarrow a=0 . \\
& \underline{A V-2}|a b|=|a||b| . \\
& \underline{A V-3} \exists M>0:
\end{aligned}
$$

$$
|a+b| \leq M \sup (|a|,|b|)
$$

2: EXAMPLE Let $F=R$ or C with the usual absolute value $|\cdot|_{\infty}$-- then one can take $M=2$.

3: DEFINITION The trivial absolute value is defined by the rule

$$
|a|=1 \forall a \neq 0
$$

4: LEMMA If $|$.$| is an absolute value, then$

$$
|1|=1
$$

5: APPLICATION If $a^{n}=1$, then

$$
\begin{aligned}
\left|a^{n}\right| & =|a|^{n}=|1|=1 \\
& \Rightarrow|a|=1
\end{aligned}
$$

6: RAPPEL Let G be a cyclic group of order $r<\infty-$ - then the order of any subgroup of G is a divisor of r and if $n \mid r$, then G possesses one and only one
subgroup of order n (and this subgroup is cyclic).

7: RAPPEL Let G be a cyclic group of order $r<\infty$ - then the order of $\mathrm{x} \in \mathrm{G}$ is, by definition, \#<x>, the latter being the smallest positive integer n such that $x^{n}=1$.

8: SCHOLIUM Every absolute value on a finite field F_{q} is trivial. [In fact, F_{q}^{\times}is cyclic of order $\left.q-1.\right]$

9: DEFINITION Two absolute values $|\cdot|_{1},|\cdot|_{2}$ on a field F are equivalent if $\exists \mathrm{r}>0$:

$$
|\cdot|_{2}=|\cdot|_{1}^{r} .
$$

[Note: Equivalence is an equivalence relation.]

10: N.B. If $|\cdot|$ is an absolute value, then so is $|\cdot|^{r}(r>0)$, the M per $|\cdot|$ being M^{r} per $|\cdot|^{r}$.

11: LEMMA Every absolute value is equivalent to one with $M \leq 2$. PROOF Assume from the beginning that $\mathrm{M}>2$, hence

$$
\mathrm{M}^{\mathrm{r}} \leq 2 \quad(\mathrm{r}>0)
$$

if

$$
r \log M \leq \log 2
$$

or still, if

$$
r \leq \frac{\log 2}{\log M} \quad(<1)
$$

12: DEFINITION An absolute value $|$.$| satisfies the triangle inequality if$

$$
|a+b| \leq|a|+|b| .
$$

13: LEMMA Suppose given a function $|\cdot|: F \rightarrow R_{\geq 0}$ satisfying AV-1 and AV-2 -then AV-3 holds with M ≤ 2 iff the triangle inequality obtains.

PROOF Obviously, if

$$
|a+b| \leq|a|+|b|
$$

then

$$
|a+b| \leq 2 \sup (|a|,|b|) .
$$

In the other direction, by induction on m,

$$
\left|\sum_{k=1}^{2^{m}} a_{k}\right| \leq 2^{m} \sup _{k}\left|a_{k}\right| \quad\left(1 \leq k \leq 2^{m}\right)
$$

Next, given n choose m : $2^{m} \geq n>2^{m-1}$, so upon inserting $2^{m}-n$ zero summand,

$$
\begin{aligned}
& \left|\sum_{k=1}^{n} a_{k}\right| \leq M \sup \left(\left|\sum_{k=1}^{2^{m-1}} a_{k}\right|, \sum_{k=2^{m-1}+1}^{2^{m}} a_{k} \mid\right) \\
& \leq 2 \sup \left(\left|\sum_{k=1}^{2^{m-1}} a_{k}\right|,\left|\sum_{k=2^{m-1}+1}^{2^{m-1}+2^{m-1}} a_{k}\right|\right) \\
& \leq 2 \sup \left(2^{m-1} \sup _{k \leq 2^{m-1}}\left|a_{k}\right|, 2^{m-1} \sup _{k>2^{m-1}}\left|a_{k}\right|\right) \\
& \leq 2 \cdot 2^{m-1} \sup _{l \leq k \leq n}\left|a_{k}\right| \leq 2 \cdot n \sup _{l \leq k \leq n}\left|a_{k}\right| \cdot
\end{aligned}
$$

I.e.:

$$
\left|\sum_{k=1}^{n} a_{k}\right| \leq 2 n \sup _{1 \leq k \leq n}\left|a_{k}\right| \leq 2 n \sum_{k=1}^{n}\left|a_{k}\right| .
$$

In particular:

$$
\left|\sum_{\mathrm{k}=1}^{\mathrm{n}} 1\right|=|\mathrm{n}| \leq 2 \mathrm{n} .
$$

Finally,

$$
\begin{aligned}
&|a+b|^{n}=\left|(a+b)^{n}\right| \quad(A V-2) \\
&=\left|\sum_{k=0}^{n}\left(\frac{n}{k}\right) a^{k_{b} n-k}\right| \\
& \leq 2(n+1) \sum_{k=0}^{n} \left\lvert\,\left(\frac{n}{k}\right) a^{k_{b} n-k^{n} \mid}\right. \\
&=2(n+1) \sum_{k=0}^{n}\left|\left(\frac{n}{k}\right)\right|\left|a^{k} b^{n-k}\right| \quad(A V-2) \\
& \leq 2(n+1) 2 \sum_{k=0}^{n}\left(\frac{n}{k}\right)\left|a^{k_{b} n-k}\right| \\
&=4(n+1)(|a|+|b|)^{n} \\
&=> \\
& \mid a+b \mid \leq 4^{1 / n}(n+1)^{l / n}(|a|+|b|) \\
& \rightarrow(|a|+|b|)(n \rightarrow \infty) .
\end{aligned}
$$

14: SCHOLTUM Every absolute value is equivalent to one that satisfies the triangle inequality.

15: DEFINITION A place of F is an equivalence class of nontrivial absolute values.

Accordingly, every place admits a representative for which the triangle inequality is in force.

16: DEFINITION An absolute value $|$.$| is non-archimedean if it satisfies$ the ultrametric inequality:

$$
|a+b| \leq \sup (|a|,|b|) \quad(\text { so } M=1) .
$$

17: N.B. A non-archimedean absolute value satisfies the triangle inequality.

18: LEMMA Suppose that $|$.$| is non-archimedean and let |b|<|a|$-- then

$$
|a+b|=|a|
$$

PROOF

$$
\begin{aligned}
|a|=|(a+b)-b| & \leq \sup (|a+b|,|b|) \\
& =|a+b|
\end{aligned}
$$

since $|a| \leq|b|$ is untenable. Meanwhile,

$$
|a+b| \leq \sup (|a|,|b|)=|a| .
$$

19: EXAMPLE Fix a prime p and take $F=Q$. Given a rational number $x \neq 0$, write

$$
x=p^{k} \frac{m}{n} \quad(k \in Z)
$$

where $\mathrm{p} \nmid \mathrm{m}, \mathrm{p} \nmid \mathrm{n}$, and then define the p -adic absolute value $|\cdot|_{\mathrm{p}}$ by the prescription

$$
|x|_{p}=p^{-k} \quad\left(|0|_{p}=0\right)
$$

[AV-1 is obvious. To check AV-2, write

$$
x=p^{k} \frac{m}{n}, y=p^{\ell} \frac{u}{v}
$$

where m, n, u, v are coprime to $p-$ then

$$
\begin{gathered}
x y=p^{k+\ell} \frac{m u}{n v} \\
\Rightarrow \quad|x y|_{p}=p^{-(k+\ell)}=p^{-k p^{-l}}=|x|_{p}|y|_{p}
\end{gathered}
$$

As for AV-3, $|\cdot|_{p}$ satisfies the ultrametric inequality. To establish this, assume without loss of generality that $k \leq \ell$ and write

$$
\begin{aligned}
x+y & =p^{k}\left(\frac{m}{n}+p^{l-k} \frac{u}{v}\right) \\
& =p^{k} \frac{m v+p^{l-k} n u}{n v}
\end{aligned}
$$

- $|x|_{p} \neq|y|_{p}$, so $\ell-k>0$, hence

$$
\mathrm{mv}+\mathrm{p}^{l-\mathrm{k}_{\mathrm{nu}}}
$$

is coprime to p (otherwise

$$
\begin{aligned}
m v & =p^{r} N-p^{l-k} n u \quad(r \geq 1) \\
& \left.=p\left(p^{r-1} N-p^{l-k-1} n u\right) \Rightarrow p \mid m v\right) \\
\Rightarrow \quad|x+y|_{p} & =p^{-k}
\end{aligned}
$$

$$
=|x|_{p}=\sup \left(|x|_{p^{\prime}}|y|_{p}\right)
$$

since

$$
\begin{aligned}
\ell-k>0 & \Rightarrow p^{-\ell}<\mathrm{p}^{-k} \\
& \Rightarrow|\mathrm{y}|_{\mathrm{p}}<|\mathrm{x}|_{\mathrm{p}} .
\end{aligned}
$$

- $|\mathrm{x}|_{\mathrm{p}}=|\mathrm{y}|_{\mathrm{p}}$, so $l=k$, hence

$$
m v+n u=p^{r_{N}} \quad(r \geq 0) \quad(p \nmid N)
$$

=>

$$
x+y=p^{k+r} \frac{N}{n v}
$$

=>

$$
|x+y|_{p}=p^{-k-r} .
$$

And

$$
\begin{aligned}
& p^{-k-r} \leq\left.\right|_{p^{-k}=|x|_{p}} ^{p^{-k}=|y|_{p}} \\
& \left.\Rightarrow \quad|x+y|_{p} \leq \sup \left(|x|_{p},|y|_{p}\right) \cdot\right]
\end{aligned}
$$

20: REMARK It can be shown that every nontrivial absolute value on Q is equivalent to a $|\cdot|_{p}$ for some p or to $|\cdot|_{\infty}$.

21: LENMA $\forall x \in Q^{x}$,

$$
\prod_{p \leq \infty}|x|_{p}=1
$$

all but finitely many of the factors being equal to 1 .
PROOF Write

$$
x= \pm p_{1}^{k_{1}} \ldots p_{n}^{k_{n}} \quad\left(k_{1}, \ldots, k_{n} \in Z\right)
$$

for pairwise distinct primes $p_{j}--$ then $|x|_{p}=1$ if p is not equal to any of the p_{j}. In addition,

$$
|x|_{p_{j}}=p_{j}^{-k_{j}}, \quad|x|_{\infty}=p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}
$$

=>

$$
\begin{aligned}
\prod_{p \leq \infty}|x|_{p} & =\left(\prod_{j=1}^{n} p_{j}^{-k_{j}}\right) \cdot p_{1}^{k_{1}} \cdots p_{n}^{k_{n}} \\
& =1 .
\end{aligned}
$$

22: REMARK If p_{1}, p_{2} are distinct primes, then $|\cdot|_{p_{1}}$ is not equivalent to $|\cdot|_{p_{2}} \cdot$
[Consider the sequence $\left\{\mathrm{p}_{1}^{n}\right\}$:

$$
\left|p_{1}\right|_{p_{1}}=p_{1}^{-1} \Rightarrow\left|p_{1}^{n}\right|_{p_{1}}=p_{1}^{-n} \rightarrow 0
$$

Meanwhile,

$$
\begin{array}{r}
\left|p_{1}\right|_{p_{2}}=\left|p_{2}^{0} p_{1}\right|_{p_{2}}=p_{2}^{-0}=1 \\
\left.\Rightarrow\left|p_{1}^{n}\right|_{p_{2}} \equiv 1 .\right]
\end{array}
$$

23: CRITERION Iet $|$.$| be an absolute value on F-$ then $|$.$| is non-$ archimedean iff $\{|n|: n \in N\}$ is bounded.
[Note: In either case, $|\mathrm{n}|$ is bounded by 1:

$$
|n|=|1+1+\cdots+1| \leq 1 .]
$$

§2. TOPOLOGICAL FIELDS

Let $|$.$| be an absolute value on a field F$. Given $a \in F, r>0$, put

$$
N_{r}(a)=\{b:|b-a|<r\}
$$

1: LEMMA There is a topology on F in which a basis for the neighborhoods of a are the $N_{r}(a)$.

PROOF The nontrivial point is to show that given $V \in B_{a}$, there is a $V_{0} \in B_{a}$ such that if $a_{0} \in V_{0}$, then there is $a w \in B_{a_{0}}$ such that $W \subset V$. So let $V=N_{r}(a)$, $V_{0}=N_{r / 2 M}(a), W=N_{r / 2 M}\left(a_{0}\right)\left(a_{0} \in V_{0}\right)--$ then $W \subset V$:

$$
\begin{aligned}
b \in W \Rightarrow|b-a| & =\left|\left(b-a_{0}\right)+\left(a_{0}-a\right)\right| \\
& \leq M \sup \left(\left|b-a_{0}\right|,\left|a_{0}-a\right|\right) \\
& \leq M \sup (r / 2 M, r / 2 M) \\
& =M(r / 2 M)=r / 2<r .
\end{aligned}
$$

2: EXAMPLE The topology induced by $|$.$| is the discrete topology iff |$. is the trivial absolute value.

3: FACT Absolute values $|\cdot|_{1},|\cdot|_{2}$ are equivalent iff they give rise to the same topology.

4: LEMMA The topology induced by $|$.$| is metrizable.$
PROOF This is because $|$.$| is equivalent to an absolute value satisfying the$
triangle inequality (cf. §1, \#14), the underlying metric being

$$
d(a, b)=|a-b|
$$

5: THEOREM A field with a topology defined by an absolute value is a topological field, i.e., the operations sum, product, and inversion are continuous.

Assume now that $|$.$| is non-archimedean, hence that the ultrametric inequality$

$$
|a-b| \leq \sup (|a|,|b|)
$$

is in force.

6: LEMMA $N_{r}(a)$ is closed (open is automatic).
PROOF Let p be a limit point of $\mathrm{N}_{\mathrm{r}}(\mathrm{a})$-- then $\forall t>0$,

$$
\left(N_{t}(p)-\{p\}\right) \cap N_{r}(a) \neq \varnothing .
$$

Take $t=\frac{r}{2}$ and choose $b \in N_{r}(a)$:

$$
d(p, b)<\frac{r}{2} \quad(p \neq b) .
$$

Then

$$
\begin{aligned}
d(a, p) & \leq \sup (d(a, b), d(b, p)) \\
& <r \\
\Rightarrow \quad & \\
p & \in N_{r}(a) .
\end{aligned}
$$

Therefore $N_{r}(a)$ contains all its limit points, hence is closed.

7: LEMMA If $a^{\prime} \in N_{r}(a)$, then $N_{r}\left(a^{\prime}\right)=N_{r}(a)$.
PROOF E.g.:

$$
b \in N_{r}(a) \Rightarrow|b-a|<r
$$

$$
\begin{aligned}
\Rightarrow|b-a| & =\left|(b-a)+\left(a-a^{\prime}\right)\right| \\
& \leq \sup \left(|b-a|,\left|a-a^{\prime}\right|\right) \\
& <r=>N_{r}(a) \subset N_{r}\left(a^{\prime}\right) .
\end{aligned}
$$

8: REMARK Put

$$
B_{r}(a)=\{b:|b-a| \leq r\} .
$$

Then a priori, $B_{r}(a)$ is closed. But $B_{r}(a)$ is also open and if $a^{\prime} \in B_{r}(a)$, then $B_{r}\left(a^{\prime}\right)=B_{r}(a)$.

9: LEMMA If

$$
a_{1}+a_{2}+\cdots+a_{n}=0
$$

then $\exists i \neq j$ such that

$$
\left|a_{i}\right|=\left|a_{j}\right|=\sup \left|a_{k}\right|
$$

§3. COMPLETIONS

Let $|$.$| be an absolute value on a field F$ which satisfies the triangle inequality -- then per |.|, F might or might not be complete.

1: EXAMPLE Take $F=R$ or Q and let $|\cdot|=|\cdot|_{\infty}$ - then R is complete but Q is not.

2: EXAMPLE Take $F=Q$ and let $|\cdot|=|\cdot|_{p}$ - then Q is not complete.
[To illustrate this, choose $p=5$ and starting with $x_{1}=2$, define inductively a sequence $\left\{x_{n}\right\}$ of integers subject to

$$
\left[\begin{array}{ll}
x_{n}^{2}+1 \equiv 0 & \bmod 5^{n} \\
x_{n+1} \equiv x_{n} & \bmod 5^{n}
\end{array}\right.
$$

Then

$$
\left|x_{m}-x_{n}\right|_{5} \leq 5^{-n} \quad(m>n)
$$

so $\left\{x_{n}\right\}$ is a Cauchy sequence and, to get a contradiction, assume that it has a limit x in Q , thus

$$
\begin{aligned}
\left|x_{n}^{2}+1\right|_{5} \leq 5^{-n} & \Rightarrow\left|x^{2}+1\right|_{5}=0 \\
& \left.\Rightarrow x^{2}+1=0 \ldots .\right]
\end{aligned}
$$

3: DEFINITION If an absolute value is not non-archimedean, then it is said to be archimedean.

4: FACT Suppose that F is a field which is complete with respect to an archimedean absolute value $|$.$| -- then F$ is isomorphic to either R or C and $|$. is equivalent to $|\cdot|_{\infty}$.

5: RAPPEL Every metric space X has a completion \bar{X}. Moreover, there is an isometry $\phi: \mathrm{X} \rightarrow \overline{\mathrm{X}}$ such that $\phi(\mathrm{X})$ is dense in $\overline{\mathrm{X}}$ and $\overline{\mathrm{X}}$ is unique up to isometric isamorphism.

6: CONSTRUCIION The standard model for $\overline{\mathrm{X}}$ is the set of all Cauchy sequences in X modulo the equivalence relation \sim, where

$$
\left\{x_{n}\right\} \sim\left\{y_{n}\right\} \Leftrightarrow d\left(x_{n}, y_{n}\right) \rightarrow 0
$$

the map $\phi: X \rightarrow \overline{\mathrm{X}}$ being the rule that sends $\mathrm{x} \in \mathrm{X}$ to the equivalence class of the constant sequence $x_{n}=x$.
[Note: The metric on $\overline{\mathrm{X}}$ is specified by

$$
\left.\bar{d}\left(\left\{x_{n}\right\},\left\{y_{n}\right\}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \cdot\right]
$$

Take $X=F$ and

$$
d(x, y)=|x-y|
$$

Then the claim is that \bar{F} is a field. E.g.: Let us deal with addition. Given $\overline{\mathrm{x}}, \overline{\mathrm{y}} \in \overline{\mathrm{F}}$, how does one define $\overline{\mathrm{x}}+\overline{\mathrm{y}}$? To this end, choose sequences $\int_{-\quad \mathrm{x}_{\mathrm{n}}} \begin{aligned} & \text { in } \mathrm{F} \\ & \mathrm{y}_{\mathrm{n}}\end{aligned}$ such that $\left[\begin{array}{ll}x_{n} \rightarrow \bar{x} & \\ y_{n} \rightarrow \bar{y}\end{array} \quad-\right.$ then

$$
d\left(x_{n}+y_{n}, x_{m}+y_{m}\right)
$$

$$
\begin{aligned}
& =\left|x_{n}+y_{n}-x_{m}-y_{m}\right| \\
& =\left|\left(x_{n}-x_{m}\right)+\left(y_{n}-y_{m}\right)\right| \\
& \leq\left|x_{n}-x_{m}\right|+\left|y_{n}-y_{m}\right|
\end{aligned}
$$

Therefore $\left\{x_{n}+y_{n}\right\}$ is a Cauchy sequence in F, hence converges in \bar{F} to an element
z. If $\int_{-}^{x_{n}^{\prime}}$ are sequences in F converging to $]_{-\bar{y}}^{\bar{x}}$ as well, then $\left\{x_{n}^{\prime}+y_{n}^{\prime}\right\}$
converges in $\overline{\mathrm{F}}$ to an element $\overline{\mathrm{z}}$ '. And

$$
\bar{z}=\bar{z}^{\prime} .
$$

Proof: Choose $n \in N$ such that

$$
\left[\begin{array}{l}
\left|\bar{z}-\left(x_{n}+y_{n}\right)\right|<\frac{\varepsilon}{3} \\
\left|\bar{z}^{\prime}-\left(x_{n}^{\prime}+y_{n}^{\prime}\right)\right|<\frac{\varepsilon}{3}
\end{array}\right.
$$

and

$$
\left|\left(x_{n}+y_{n}\right)-\left(x_{n}^{\prime}+y_{n}^{\prime}\right)\right| \leq\left|x_{n}-x_{n}^{\prime}\right|+\left|y_{n}-y_{n}^{\prime}\right|<\frac{\varepsilon}{3}
$$

Then

$$
\begin{aligned}
& \left|\bar{z}-\bar{z}^{\prime}\right| \leq\left|\bar{z}-\left(x_{n}+y_{n}\right)\right|+\left|\bar{z}^{\prime}-\left(x_{n}+y_{n}\right)\right| \\
\leq & \left|\bar{z}-\left(x_{n}+y_{n}\right)\right|+\left|\bar{z}^{\prime}-\left(x_{n}^{\prime}+y_{n}^{\prime}\right)\right|+\left|\left(x_{n}^{\prime}+y_{n}^{\prime}\right)-\left(x_{n}+y_{n}\right)\right|<\varepsilon \\
\Rightarrow & \bar{z}=\bar{z}^{\prime} .
\end{aligned}
$$

Therefore addition in F extends to \bar{F}. The same holds for multiplication and
inversion. Bottom line: $\overline{\mathrm{F}}$ is a field. Furthermore, the prescription

$$
|\bar{x}|=\bar{d}(x, 0) \quad(\bar{x} \in \bar{F})
$$

is an absolute value on $\overline{\mathrm{F}}$ whose underlying topology is the metric topology. It thus follows that \bar{F} is a topological field (cf. §2, \#5).

7: EXAMPIE Take $F=Q,|\cdot|=|\cdot|_{p}$-- then the completion $\bar{F}=\bar{Q}$ is denoted by Q_{p}, the field of p-adic numbers.

8: LEMMA If $|$.$| is non-archimedean per F$, then $|$.$| is non-archimedean$ per \bar{F}.

$$
\begin{aligned}
& \text { PROOF Given } \int_{-\bar{y}}^{-} \in \overline{\mathrm{F}}, \text { choose }\left.\right|_{-} ^{-} \mathrm{x}_{\mathrm{n}} \text { in } \mathrm{F} \text { such that }\left.\right|_{\mathrm{n}} ^{-} \mathrm{x}_{\mathrm{n}} \rightarrow \overline{\mathrm{x}} . \\
& |\bar{x}-\bar{y}| \leq\left|\bar{x}-x_{n}+x_{n}-y_{n}+y_{n}-\bar{y}\right| \\
& \leq\left|\bar{x}-x_{n}\right|+\left|x_{n}-y_{n}\right|+\left|\bar{y}-y_{n}\right| . \\
& \begin{array}{ll}
\downarrow & \downarrow \\
0 & 0
\end{array}
\end{aligned}
$$

And

$$
\begin{aligned}
\left|x_{n}-y_{n}\right| & \leq \sup \left(\left|x_{n}\right|,\left|y_{n}\right|\right) \\
& =\frac{1}{2}\left(\left|x_{n}\right|+\left|y_{n}\right|+\left|x_{n}-y_{n}\right|\right) \\
& \rightarrow \frac{1}{2}(|\bar{x}|+|\bar{y}|+|\bar{x}-\bar{y}|) \\
& =\sup (|\bar{x}|,|\bar{y}|)
\end{aligned}
$$

9: LEMMA If $|$.$| is non-archimedean per |$.$| , then$

$$
\{|\bar{x}|: \bar{x} \in \bar{F}\}=\{|x|: x \in F\}
$$

PROOF Take $\overline{\mathrm{x}} \in \overline{\mathrm{F}}: \overline{\mathrm{x}} \neq 0$. Choose $\mathrm{x} \in \mathrm{F}:|\overline{\mathrm{x}}-\mathrm{x}|<|\overline{\mathrm{x}}|$. Claim: $|\overline{\mathrm{x}}|=|\mathrm{x}|$. Thus consider the other possibilities.

- $|x|<|\bar{x}|$:

$$
|\bar{x}-x|=|\bar{x}+(-x)|=|\bar{x}|(c f . \S 1, \# 18)<|\bar{x}| \ldots .
$$

- $|\bar{x}|<|x|:$

$$
|\bar{x}-x|=|-x+\bar{x}|=|-x|(c f . \S 1, \# 18)=|x|<|\bar{x}| \ldots .
$$

10: EXAMPLE The image of Q_{p} under $|\cdot|_{p}$ is the same as the image of Q under $\left.1 \cdot\right|_{p,}$ namely

$$
\left\{p^{k}: k \in Z\right\} \cup\{0\}
$$

Let K be a field, L ว K a finite field extension.

11: EXIENSION PRINCIPLE Let $|\cdot|_{\mathrm{K}}$ be a complete absolute value on K then there is one and only one extension $|\cdot|_{L}$ of $|\cdot|_{K}$ to L and it is given by

$$
|x|_{L}=\left|N_{\mathrm{L} / \mathrm{K}}(\mathrm{x})\right|_{\mathrm{K}}^{1 / \mathrm{n}}
$$

where $\mathrm{n}=[\mathrm{L}: \mathrm{K}]$. In addition, L is complete with respect to $|\cdot|_{\mathrm{L}}$.
[Note: $|\cdot|_{L}$ is non-archimedean if $|\cdot|_{K}$ is non-archimedean.]

12: SCHOLIUM There is a unique extension of $|\cdot|_{K}$ to the algebraic closure $\mathrm{K}^{\mathrm{c} \mathrm{\ell}}$ of K .
[Note: It is not true in general that K^{Cl} is complete.]

Suppose further that $L \supset K$ is a Galois extension, Given $\sigma \in \operatorname{Gal}(\mathrm{L} / \mathrm{K})$, define $|\cdot|_{\sigma}$ by $|x|_{\sigma}=|\sigma x|_{L}$ - then

$$
|\cdot|_{\sigma}\left|K=|\cdot|_{K^{\prime}}\right.
$$

so by uniqueness, $|\cdot|_{\sigma}=\left.1 \cdot\right|_{L}$. But

$$
\begin{aligned}
& N_{L / K}(x)=\prod_{\sigma \in G a l(L / K)} \sigma x \\
& \text { "> } \\
& \left|N_{L / K}(x)\right|_{K} \\
& =\left|N_{L / K}(x)\right|_{L}=\left|\prod_{\sigma \in G a I(L / K)} \sigma x\right|_{L} \\
& =\prod_{\sigma \in G a l(L / K)}|\sigma x|_{L} \\
& =\prod_{\sigma \in G a 1(L / K)}|x|_{L} \\
& =|x|_{L}^{\#(\operatorname{Gal}(L / K))} \\
& =|x|_{\mathrm{L}}^{[\mathrm{L}: K]}=|\mathrm{x}|_{\mathrm{L}}^{\mathrm{n}} .
\end{aligned}
$$

APPENDIX

APPROXIMATION PRINCIPLE Let $|\cdot|_{1}, \ldots,|\cdot|_{N}$ be pairwise inequivalent nontrivial absolute values on F. Fix elements a_{1}, \ldots, a_{N} in $F-$ then $\forall \varepsilon>0$, $\exists a_{\varepsilon} \in F:$

$$
\left|a_{\varepsilon}-a_{k}\right|_{k}<\varepsilon \quad(k=1, \ldots, N) .
$$

Let $\bar{F}_{1}, \ldots, \bar{F}_{\mathrm{N}}$ be the associated completions and let

$$
\Delta: F \rightarrow \prod_{k=1}^{N} \bar{F}_{k}
$$

be the diagonal map -- then the image ΔF is dense (i.e., its closure is the whole of $\prod_{k=1}^{N} \bar{F}_{k}$.
[Fix $\varepsilon>0$ and elements $\overline{\mathrm{a}}_{1}, \ldots, \overline{\mathrm{a}}_{\mathrm{N}}$ in $\overline{\mathrm{F}}_{1}, \ldots, \overline{\mathrm{~F}}_{\mathrm{N}}$ respectively -- then there exist elements $a_{k} \in F$:

$$
\left|a_{k}-\bar{a}_{k}\right|_{k}<\varepsilon \quad(k=1, \ldots, N)
$$

Choose $a_{\varepsilon} \in F$:

$$
\left|a_{\varepsilon}-a_{k}\right|<\varepsilon \quad(k=1, \ldots, N)
$$

Then

$$
\begin{aligned}
\left|a_{\varepsilon}-\bar{a}_{k}\right|_{k} & =\left|\left(a_{\varepsilon}-a_{k}\right)+\left(a_{k}-\bar{a}_{k}\right)\right|_{k} \\
& \leq\left|a_{\varepsilon}-a_{k}\right|+\left|a_{k}-\bar{a}_{k}\right|_{k} \\
& \left.<2 \varepsilon_{\cdot}\right]
\end{aligned}
$$

N.B. The product $\prod_{k=1}^{N} \bar{F}_{k}$ carries the product topology and the prescription

$$
\begin{aligned}
& d\left(\left(\bar{a}_{1}, \ldots, \bar{a}_{N}\right),\left(\bar{b}_{1}, \ldots, \bar{b}_{N}\right)\right) \\
& \quad=\sup _{1 \leq k \leq N} a_{k}\left(\bar{a}_{k}, \bar{b}_{k}\right) \\
& \quad=\sup _{1 \leq k \leq N}\left|\bar{a}_{k}-\bar{b}_{k}\right|_{k}
\end{aligned}
$$

metrizes the product topology. Therefore

$$
\begin{aligned}
& d\left(\left(a_{\varepsilon}, \ldots, a_{\varepsilon}\right),\left(\bar{a}_{1}, \ldots, \bar{a}_{N}\right)\right) \\
& \quad=\sup _{1 \leq k \leq N} a_{k}\left(a_{\varepsilon}, \bar{a}_{k}\right) \\
& \quad=\sup _{1 \leq k \leq N}\left|a_{\varepsilon}-\bar{a}_{k}\right|_{k} \\
& \quad<2 \varepsilon
\end{aligned}
$$

§4. P-ADIC STRUCTURE THEORY

Fix a prime p and recall that Q_{p} is the completion of Q per the p-adic absolute value $|\cdot|_{p}$.

1: NOTATION Let

$$
A=\{0,1, \ldots, p-1\} .
$$

2: SCHOLIUM Structurally, Q_{p} is the set of all Laurent series in p with coefficients in A subject to the restriction that only finitely many negative powers of p occur, thus generically a typical element $x \neq 0$ of Q_{p} has the form

$$
x=\sum_{n=N}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A, N \in Z\right)
$$

3: N.B. It follows from this that Q_{p} is uncountable, so Q is not complete $\operatorname{per}|\cdot|_{p}$.

The exact formulation of the algebraic rules (i.e., addition, multiplication, inversion) is elementary (but technically a bit of a mess) and will play no role in the sequel, hence can be amitted.

4: LEMMA Every positive integer N admits a base p expansion:

$$
N=a_{0}+a_{1} p+\cdots+a_{n} p^{n}
$$

where the $a_{k} \in A$.
5: EXAMPLE

$$
1=1+0 p+0 p^{2}+\cdots .
$$

6: EXAMPLE Take $p=3$-- then

$$
\begin{aligned}
& \\
& \Rightarrow \quad\left[\begin{array}{l}
24=0+2 \times 3+2 \times 3^{2}=2 p+2 p^{2} \\
17=2+2 \times 3+1 \times 3^{2}=2+2 p+p^{2}
\end{array}\right. \\
& \\
& \quad \frac{24}{17}=\frac{2 p+2 p^{2}}{2+2 p+p^{2}}=p+p^{3}+2 p^{5}+p^{7}+p^{8}+2 p^{9}+\cdots
\end{aligned}
$$

7: LEMMA

$$
-1=(p-1)+(p-1) p+(p-1) p^{2}+\cdots
$$

PROOF Add 1:

$$
\begin{aligned}
1+ & (p-1)+(p-1) p+(p-1) p^{2}+(p-1) p^{3}+\cdots \\
& =p+(p-1) p+(p-1) p^{2}+(p-1) p^{3}+\cdots \\
& =p^{2}+(p-1) p^{2}+(p-1) p^{3}+\cdots \\
& =p^{3}+(p-1) p^{3}+\cdots=0
\end{aligned}
$$

8: APPLICATION

$$
\begin{aligned}
-N & =(-1) \cdot N \\
& =\left(\sum_{i=0}^{\infty}(p-1) p^{i}\right)\left(a_{0}+a_{1} p+\cdots+a_{n} p^{n}\right) \\
& =\cdots
\end{aligned}
$$

9: LEMMA A p-adic series

$$
\sum_{n=1}^{\infty} x_{n}\left(x_{n} \in 0_{p}\right)
$$

is convergent iff $\left|x_{n}\right|_{p} \rightarrow 0 \quad(n \rightarrow \infty)$.
PROOF The usual argument establishes necessity. So suppose that $\left|x_{n}\right|_{p} \rightarrow 0$ $(\mathrm{n} \rightarrow \infty)$. Given $\mathrm{K}>0, \exists \mathrm{~N}$:

$$
n>N \Rightarrow\left|x_{n}\right|_{p}<p^{-K} .
$$

Let

$$
s_{n}=\sum_{k=1}^{n} x_{k}
$$

Then

$$
\begin{aligned}
m>n>N & \Rightarrow\left|s_{m}-s_{n}\right|_{p}=\left|x_{n+1}+\cdots+x_{m}\right|_{p} \\
& \leq \sup \left(\left|x_{n+1}\right|_{p} \cdots,\left|x_{m}\right|_{p}\right) \\
& <p^{-K}
\end{aligned}
$$

Therefore the sequence $\left\{s_{n}\right\}$ of partial sums is Cauchy, thus is convergent $\left(Q_{p}\right.$ being complete).

10: EXAMPLE The p-adic series

$$
\sum_{i=0}^{\infty} p^{i}
$$

is convergent (to $\frac{1}{1-p}$).

11: EXAMPLE The p-adic series

$$
\sum_{n=0}^{\infty} n!
$$

is convergent.
[Note that

$$
|\mathrm{n}!|_{\mathrm{p}}=\mathrm{p}^{-\mathrm{N}}
$$

where

$$
\left.N=[n / p]+\left[n / p^{2}\right]+\cdots \cdot\right]
$$

12: EXAMPLE The p-adic series

$$
\sum_{n=0}^{\infty} n \cdot n!
$$

is convergent (to -1).

13: LEMMA Q_{p} is a topological field (cf. $\S 2, \# 5$).

14: LEMMA Q_{p} is 0-dimensional, hence is totally disconnected. PROOF A basic neighborhood $N_{r}(x)$ is open (by definition) and closed (cf. $\S 2, \# 6$).

15: NOTATION

- $Z_{p}=\left\{x \in Q_{p}:|x|_{p} \leq 1\right\}$
- $\mathrm{pZ} Z_{\mathrm{p}}=\left\{\mathrm{x} \in \mathrm{Q}_{\mathrm{p}}:|\mathrm{x}|_{\mathrm{p}}<1\right\}$
- $Z_{p}^{x}=\left\{x \in Z_{p}:|x|_{p}=1\right\}$

16: LEMMA Z_{p} is a commutative ring with unit (the ring of p-adic integers), in fact Z_{p} is an integral damain.

17: LEMMA $p Z_{p}$ is an ideal in Z_{p}, in fact $p Z_{p}$ is a maximal ideal in Z_{p}, in fact $p Z_{p}$ is the unique maximal ideal in Z_{p}, hence Z_{p} is a local ring.

18: LEMMA Z_{p}^{x} is a group under multiplication, in fact z_{p}^{\times}is the set of
p-adic units in Z_{p}, i.e., the set of elements in Z_{p} that have a multiplicative inverse in Z_{p}.

Obviously,

$$
Z_{p}=z_{p}^{x} \Perp\left(Z_{p}-Z_{p}^{x}\right)
$$

or still,

$$
z_{p}=z_{p}^{x} \| p z_{p}
$$

19: LEMMA

$$
Z_{p}=\underset{0 \leq k \leq p-1}{u}\left(k+p Z_{p}\right)
$$

PROOF Let $x \in Z_{p}$. Matters being clear if $|x|_{p}<1$ (since in this case $x \in p Z_{p}$), suppose that $|x|_{p}=1$. Choose $q=\frac{a}{b} \in Q:|q-x|_{p}<1$, where $(a, b)=1$ and $\left.\right|_{-} ^{(\mathrm{a}, \mathrm{p})}=1 \quad \begin{aligned} & \text { (b,p)}=1\end{aligned} \quad$ then

$$
x+p Z_{p}=q+p Z_{p}
$$

Choose k with $0<k \leq p-1$ such that p divides $a-k b$, thus $|a-k b|_{p}<1$ and, moreover, $\left|\frac{a-k b}{b}\right|_{p}<1$. Therefore

$$
\begin{aligned}
\left|k-\frac{a}{b}\right|_{p}<1 & \Rightarrow k+p Z_{p}=q+p Z_{p}=x+p Z_{p} \\
& \Rightarrow x \in k+p Z_{p}
\end{aligned}
$$

Consider a p-adic series

$$
\sum_{n=0}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A\right) .
$$

6.

Then

$$
\begin{aligned}
\left|\sum_{n=0}^{\infty} a_{n} p^{n}\right|_{p} & \leq \sup _{n}\left|a_{n} p^{n}\right|_{p} \\
& \leq \sup _{n}\left|p^{n}\right|_{p} \leq 1
\end{aligned}
$$

so it converges to an element x of Z_{p}. Conversely:

20: THEOREM Every $x \in Z_{p}$ admits a unique representation

$$
x=\sum_{n=0}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A\right)
$$

PROOF Let $x \in Z_{p}$ be given. Choose uniquely $a_{0} \in A$ such that $\left|x-a_{0}\right|_{p}<1$, hence $x=a_{0}+p x_{1}$ for some $x_{1} \in Z_{p}$. Choose uniquely $a_{1} \in A$ such that $\left|x_{1}-a_{1}\right|_{p}<1$, hence $x_{1}=a_{1}+p x_{2}$ for some $x_{2} \in Z_{p}$. Continuing: $\forall N$,

$$
x=a_{0}+a_{1} p+\cdots+a_{N^{2}} p^{N}+x_{N+1} p^{N+1}
$$

where $a_{n} \in A$ and $x_{N+1} \in Z_{p}$. But

$$
\mathrm{x}_{\mathrm{N}+1} \mathrm{p}^{\mathrm{N}+1} \rightarrow 0
$$

21: APPLICATION Z is dense in Z_{p}.

22: EXAMPIE Let $x \in Z_{p}-$ then $\forall n \in N$,

$$
\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!} \in Z_{p}
$$

23: LENMA

$$
z_{p}^{\times}=\underset{l \leq k \leq p-1}{u}\left(k+p Z_{p}\right)
$$

Consequently, if

$$
x=\sum_{n=0}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A\right)
$$

and if $x \in Z_{p}^{x}$, then $a_{0} \neq 0$.
[In fact, there is a unique $k(1 \leq k \leq p-1)$ such that $x \in k+p Z_{p}$ and this " k " is a_{0}.]

24: THEOREM An element

$$
x=\sum_{n=0}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A\right)
$$

in Z_{p} is a unit iff $a_{0} \neq 0$.
PROOF To establish the characterization, construct a multiplicative inverse y for x as follows. First choose uniquely $b_{0}\left(1 \leq b_{0} \leq p-1\right)$ such that $a_{0} b_{0} \equiv 1$ mod p. Proceed fram here by recursion and assume that b_{1}, \ldots, b_{M} between 0 and $p-1$ have already been found subject to

$$
x\left(\sum_{0 \leq m \leq M} b_{m} p^{m}\right) \equiv 1 \bmod p^{M+1}
$$

Then there is exactly one $0 \leq b_{M+1} \leq p-1$ such that

$$
x\left(\sum_{0 \leq m \leq M+1} b_{m} p^{m}\right) \equiv 1 \bmod p^{M+2}
$$

Now put $y=\sum_{m=0}^{\infty} b_{m} p^{m}$, thus $x y=1$.

25: EXAMPLE 1 - p is invertible in Z_{p} but p is not invertible in Z_{p}.

26: REMARK The arrow

$$
\varepsilon: Z_{p} \rightarrow Z / p Z
$$

that sends

$$
x=\sum_{n=0}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A\right)
$$

to a_{0} mod p is a homomorphism of rings called reduction mod p. It is surjective with kernel $p Z_{p}$, hence $\left[Z_{p}: p Z_{p}\right]=p$.

Consider now the topological aspects of Z_{p} :

- Z_{p} is totally disconnected.
- Z_{p} is closed, hence complete.
- Z_{p} is open.
[As regards the last point, observe that

$$
\begin{aligned}
Z_{p}=\left\{x \in Q_{p}\right. & \left.:|x|_{p}<r\right\} \\
& \left.\equiv N_{r}(0) \quad(1<r<p) .\right]
\end{aligned}
$$

27: THEOREM Z_{p} is compact.
PROOF Since Z_{p} is a metric space, it suffices to show that Z_{p} is sequentially compact. So let x_{1}, x_{2}, \ldots be an infinite sequence in Z_{p}. Choose $a_{0} \in A$ such that $a_{0}+p z_{p}$ contains infinitely many of the x_{n}. Write

$$
\begin{aligned}
& a_{0}+p Z_{p} \\
= & a_{0}+p\left(\underset{a \in A}{u}\left(a+p Z_{p}\right)\right)
\end{aligned}
$$

9.

$$
\begin{aligned}
& =a_{0}+\underset{a \in A}{u}\left(a p+p^{2} Z_{p}\right) \\
& =\bigcup_{a \in A}\left(a_{0}+a p+p^{2} Z_{p}\right)
\end{aligned}
$$

Choose $a_{1} \in A$ such that $a_{0}+a_{1} p+p^{2} Z_{p}$ contains infinitely many of the x_{n}. EIC. The construction thus produces a descending sequence of cosets of the form

$$
A_{j}+p^{j} Z_{p^{\prime}}
$$

each of which contains infinitely many of the x_{n}. But

$$
\begin{aligned}
A_{j}+p^{j} Z_{p} & =\left\{x \in Z_{p}:\left|x-A_{j}\right|_{p} \leq p^{-j}\right\} \\
& \equiv B_{p-j}\left(A_{j}\right)
\end{aligned}
$$

a closed ball in the p-adic metric of radius $p^{-j} \rightarrow 0(j \rightarrow \infty)$, hence by the completeness of Z_{p},

$$
\sum_{j=1}^{\infty} B_{p}-j\left(A_{j}\right)=\{A\} .
$$

Finally, choose

$$
x_{n_{1}} \in B_{p^{-1}}\left(A_{1}\right), x_{n_{2}} \in B_{p^{-2}}\left(A_{2}\right), \ldots
$$

Then

$$
\lim _{j \rightarrow \infty} x_{n_{j}}=A .
$$

28: APPLICATION Q_{p} is locally compact.
[Since Q_{p} is Hausdorff, it is enough to prove that each $x \in Q_{p}$ has a compact neighborhood. But Z_{p} is a compact neighborhood of 0 , so $x+Z_{p}$ is a compact neighborhood of x.$]$

The set $p^{-n} Z_{p}(n \geq 0)$ is the set of all $x \in Q_{p}$ such that $|x|_{p} \leq p^{n}$. Therefore

$$
Q_{p}={\underset{n=0}{\infty} p^{-n} Z_{p} .}
$$

Accordingly, Q_{p} is σ-compact (the $p^{-n} Z_{p}$ being compact).

29: SCHOLIUM A subset of Q_{p} is compact iff it is closed and bounded.

30: LEMMA Given $n, m \in Z$,

$$
p^{n} Z_{p} \subset p^{m} Z_{p} \Leftrightarrow m \leq n
$$

31: REMARK Take $n \geq 1$ - then the $\mathrm{p}^{\mathrm{n}} Z_{\mathrm{p}}$ are principal ideals in Z_{p} and, apart from $\{0\}$, these are the only ideals in Z_{p}, thus Z_{p} is a principal ideal domain.

32: LEMMA For every $x_{0} \in Q_{p}$ and $r>0$, there is an integer n such that

$$
\begin{aligned}
N_{r}\left(x_{0}\right)= & \left\{x \in Q_{p}:\left|x-x_{0}\right|_{p}<r\right\} \\
=N_{p-n}\left(x_{0}\right) & =\left\{x \in Q_{p}:\left|x-x_{0}\right|_{p}<p^{-n_{n}}\right\} \\
& =x_{0}+p^{n+1} Z_{p}
\end{aligned}
$$

33: SCHOLIUM The basic open sets in Q_{p} are the cosets of some power of $p Z_{p}$.
[Note: It is a corollary that every nonempty open subset of Q_{p} can be written as a disjoint union of cosets of the $\left.p^{n} Z_{p}(n \in Z).\right]$

34: LEMMA

$$
p^{n} Z_{p}^{x}=p^{n} Z_{p}-p^{n+1} Z_{p}
$$

35: DEFINITION The $\mathrm{p}^{\mathrm{n}} \mathrm{Z}^{\mathrm{x}}$ are called shells.

36: N.B. There is a disjoint decomposition

$$
Q_{p}^{x}=\bigcup_{n \in Z} p^{n} z_{p}^{x}
$$

where

$$
p^{n} z_{p}^{\times}=\underset{1 \leq k \leq p-1}{u}\left(p^{n} k+p^{n+1} z_{p}\right)
$$

[Note: For the record, Q_{p}^{x} is totally disconnected and, being open in Q_{p}, is Hausdorff and locally compact. Moreover, Z_{p}^{x} is open-closed (indeed, open-compact).]

Let $x \in Q_{p}^{x}$ - then there is a unique $v(x) \in Z$ and a unique $u(x) \in Z_{p}^{x}$ such that $\mathrm{x}=\mathrm{p}^{\mathrm{v}(\mathrm{x})} \mathrm{u}(\mathrm{x})$. Consequently,

$$
Q_{p}^{x} \approx\langle p\rangle \times Z_{p}^{x}
$$

or still,

$$
Q_{p}^{x} \approx z \times z_{p}^{\times}
$$

37: NOTATION For $n=1,2, \ldots$, put

$$
U_{p, n}=1+p^{n} Z_{p}
$$

[Note:

$$
\left.1+p^{n} Z_{p}=\left\{x \in Z_{p}^{x}:|1-x|_{p} \leq p^{-n}\right\} .\right]
$$

The $U_{p, n}$ are open-compact subgroups of Z_{p}^{x} and

$$
z_{p}^{x}>U_{p, 1} \supset U_{p, 2} \supset \ldots
$$

38: LEMMA The collection $\left\{U_{p, n}: n \in N\right\}$ is a neighborhood basis at 1 .

39: DEFINITION $U_{p, 1}=1+Z_{p}$ is called the group of principal units of Z_{p}.

40: LENMA The quotient $Z_{p}^{x} / U_{p, 1}$ is isamorphic to F_{p}^{x} and the index of $U_{p, 1}$ in z_{p}^{x} is $p-1$.

A generator of F_{p}^{\times}can be "lifted" to Z_{p}^{x}.
41: THEOREM There exists a $\zeta \in Z_{p}^{\times}$such that $\zeta^{p-1}=1$ and $\zeta^{k} \neq 1$ ($0<\mathrm{k}<\mathrm{p}-1$).
[This is a straightforward application of Hensel's lemma.]

42: N.B. $\zeta \notin U_{p, 1} \quad(p$ odd).
[If $x \in Z_{p}$ and if for same $n \geq 1$,

$$
(1+p x)^{n}=1
$$

then using the binomial theorem one finds that $x=0$. This said, suppose that
$\zeta \in U_{p, 1}:$

$$
\zeta=1+p u\left(u \in Z_{p}\right) \Rightarrow(1+p u)^{p-1}=1 \Rightarrow u=0,
$$

a contradiction.]

43: SCHOLIUM Z_{p} can be written as a disjoint union

$$
z_{p}^{x}=U_{p, 1} \cup \zeta U_{p, 1} \cup \zeta^{2} U_{p, 1} \cup \cdots \cup \zeta^{p-2} U_{p, 1}
$$

Therefore

$$
Q_{p}^{\times} \approx Z \times Z_{p}^{\times} \approx Z \times Z /(p-1) Z \times U_{p, 1}
$$

44: LEMMA Any root of unity in Q_{p} lies in z_{p}^{x}
PROOF If $x=p^{v(x)} u(x)$ and if $x^{n}=1$, then $n v(x)=0$, so $v(x)=0$, thus $x \in Z_{p}^{x}$.

The roots of unity in z_{p}^{x} are a subgroup (as in any abelian group), call it T_{p}. If, on the other hand, G_{p-1} is the cyclic subgroup of Z_{p}^{x} generated by ζ, then G_{p-1} consists of $(p-1)^{\text {st }}$ roots of unity, hence $G_{p-1} \subset T_{p}$.

45: LEMMA If $p \neq 2$, then $G_{p-1}=T_{p}$ but if $p=2$, then $T_{p}=\{ \pm 1\}$.

46: APPLICATION If p_{1}, p_{2} are distinct primes, then $Q_{p_{1}}$ is not field isamorphic to $Q_{p_{2}}$.

47: REMARK Q_{p} is not field isomorphic to R.
[Q_{p} has algebraic extensions of arbitrarily large linear degree which is not the case of R (cf. §5, \#26).]

48: LEMMA Let $x \in Q_{p}^{\times}-$then $x \in Z_{p}^{\times}$iff x^{p-1} possesses $n^{\text {th }}$ roots for infinitely many n.

PROOF If $x \in Z_{p}^{x}$ and if n is not a multiple of p, then one can use Hensel's lemma to infer the existence of a $y_{n} \in Z_{p}$ such that $y_{n}^{n}=x^{p-1}$. Conversely, if $y_{n}^{n}=x^{p-1}$, then

$$
n v\left(y_{n}\right)=(p-1) v(x)
$$

thus n divides $(p-1) v(x)$. But this can happen for infinitely many n only if $\mathrm{v}(\mathrm{x})=0$, implying thereby that x is a unit.

49: APPLICATION Let $\phi: Q_{p} \rightarrow Q_{p}$ be a field automorphism -- then ϕ preserves units.
[In fact, if $x \in Z_{p}^{x}$, then

$$
\left.y_{n}^{n}=x^{p-1} \Rightarrow \phi\left(y_{n}\right)^{n}=(\phi(x))^{p-1} \cdot\right]
$$

50: THEOREM The only field autamorphism ϕ of Q_{p} is the identity. PROOF Given $x \in Q_{p}^{x}$, write $x=p^{v(x)} u(x)$, hence

$$
\begin{aligned}
\phi(x) & =\phi\left(p^{v(x)} u(x)\right) \\
& =\phi\left(p^{v(x)}\right) \phi(u(x))=p^{v(x)} \phi(u(x)),
\end{aligned}
$$

hence

$$
v(\phi(x))=v(x) \quad\left(\phi(u(x)) \in z_{p}^{x}\right)
$$

Therefore ϕ is continuous. Since Q is dense in Q_{p}, it then follows that $\phi=i d_{Q_{p}}$. [Note:

$$
\begin{aligned}
x_{k} \rightarrow 0 & \Rightarrow\left|x_{k}\right|_{p} \rightarrow 0 \Rightarrow p^{-v\left(x_{k}\right)} \rightarrow 0 \\
& \left.\Rightarrow p^{-v\left(\phi\left(x_{k}\right)\right)} \rightarrow 0 \Rightarrow\left|\phi\left(x_{k}\right)\right|_{p} \rightarrow 0 \Rightarrow \phi\left(x_{k}\right) \rightarrow 0 .\right]
\end{aligned}
$$

The final structural item to be considered is that of quadratic extensions and to this end it is necessary to explicate $\left(Q_{p}^{x}\right)^{2}$, bearing in mind that

$$
Q_{p}^{\times} \approx Z \times Z_{p}^{\times} \approx Z \times Z /(p-1) Z \times U_{p, 1}
$$

51: LEMMA If $p \neq 2$, then $U_{p, 1}^{2}=U_{p, 1}$ but if $p=2$, then $U_{2,1}^{2}=U_{2,3}$.

52: APPLICATION If $p \neq 2$, then

$$
\left(Q_{p}^{\times}\right)^{2} \approx 2 Z \times 2(Z /(p-1) Z) \times U_{p, 1}
$$

but if $\mathrm{p}=2$, then

$$
\left(Q_{2}^{x}\right)^{2} \approx 2 Z \times U_{2,3}
$$

53: THEOREM If $p \neq 2$, then

$$
\left[Q_{p}^{\times}:\left(Q_{p}^{\times}\right)^{2}\right]=4
$$

but if $p=2$, then

$$
\left[Q_{2}^{\times}:\left(Q_{2}^{\times}\right)^{2}\right]=8
$$

54: REMARK If $p \neq 2$, then

$$
Q_{p}^{x} /\left(Q_{p}^{\times}\right)^{2} \approx Z / 2 Z \times Z / 2 Z
$$

but if $p=2$, then

$$
Q_{p}^{\times} /\left(Q_{p}^{x}\right)^{2} \approx Z / 2 Z \times Z / 2 Z \times Z / 2 Z
$$

55: CRITERION Suppose that $p \neq 2$.

- p is not a square.
[If $p=x^{2}$, write $x=p^{v(x)} u(x)$ to get

$$
1=v(p)=v\left(x^{2}\right)=2 v(x),
$$

an untenable relation.]

- ζ is not a square.
[Assume that $\zeta=x^{2}-$ then

$$
\zeta^{\mathrm{p}-1}=1 \Rightarrow \mathrm{x}^{2(\mathrm{p}-1)}=1,
$$

thus x is a root of unity, thus $x \in T_{p}$, thus $x \in G_{p-1}$ (cf. \#45), thus $x=\zeta^{k}$ $(0<\mathrm{k}<\mathrm{p}-1)$, thus $\zeta=\left(\zeta^{\mathrm{k}}\right)^{2}=\zeta^{2 \mathrm{k}}$, thus $1=\zeta^{2 \mathrm{k}-1}$. But

$$
2 \mathrm{k}<2 \mathrm{p}-2 \Rightarrow 2 \mathrm{k}-1<2 \mathrm{p}-1
$$

And

$$
\left[\begin{array}{l}
2 k-1=p-1 \Rightarrow 2 k=p \Rightarrow p \text { even. . } \\
2 k-1=2 p-2 \Rightarrow 2 k-1=2(p-1) \Rightarrow 2 k-1 \text { even... .] }
\end{array}\right.
$$

- $p \zeta$ is not a square.
[For if $p \zeta=p^{2 n} u^{2}(n \in Z)$, then

$$
\begin{aligned}
\zeta=p^{2 n-1} u^{2} & \Rightarrow 1=|\zeta|_{p}=\left|p^{2 n-1}\right|_{p}=p^{1-2 n} \\
& \Rightarrow 1-2 n=0
\end{aligned}
$$

an untenable relation.]

56: THEOREM If $p \neq 2$, then up to isomorphism, Q_{p} has three quadratic extensions, viz.

$$
Q_{p}(\sqrt{p}), Q_{p}(\sqrt{\zeta}), Q_{p}(\sqrt{p \zeta})
$$

[Note: If $\tau_{1}=p, \tau_{2}=\zeta, \tau_{3}=p \zeta$, then these extensions of Q_{p} are inequivalent since $\tau_{i} \tau_{j}^{-1}(i \neq j)$ is not a square in Q_{p}.]

57: REMARK Another choice for the three quadratic extensions of Q_{p} when $p \neq 2$ is

$$
Q_{p}(\sqrt{p}), Q_{p}(\sqrt{a}), Q_{p}(\sqrt{p a})
$$

where $1<a<p$ is an integer that is not a square mod p.

58: REMARK It can be shown that up to isomorphism, Q_{2} has seven quadratic extensions, viz

$$
\mathrm{Q}_{2}(\sqrt{-1}), \mathrm{Q}_{2}(\sqrt{ \pm 2}), \mathrm{Q}_{2}(\sqrt{ \pm 5}), \mathrm{Q}_{2}(\sqrt{ \pm 10})
$$

59: EXAMPLE Take $p=5$-- then $2 \notin\left(Q_{5}^{\times}\right)^{2}, 3 \notin\left(Q_{5}^{\times}\right)^{2}$ but $6 \in\left(Q_{5}^{\times}\right)^{2}$. And

$$
Q_{5}(\sqrt{2})=Q_{5}(\sqrt{3})
$$

[Working within Z_{5}^{x}, consider the equation $x^{2}=2$ and expand x as usual:

$$
x=\sum_{n=0}^{\infty} a_{n} 5^{n} \quad\left(a_{n} \in A\right)
$$

Then

$$
a_{0}^{2} \equiv 2 \bmod 5
$$

But the possible values of a_{0} are $0,1,2,3,4$, thus the congruence is impossible,
so $2 \notin\left(Q_{5}^{\times}\right)^{2}$. Analogously, $3 \notin\left(Q_{5}^{\times}\right)^{2}$. On the other hand, $6 \in\left(Q_{5}^{\times}\right)^{2}$ (by direct verification or Hensel's lemma), hence $6=\gamma^{2}\left(\gamma \in Q_{5}\right)$. Finally, to see that

$$
Q_{5}(\sqrt{2})=Q_{5}(\sqrt{3})
$$

it need only be shown that $\sqrt{2}=a+b \sqrt{3}$ for certain $a, b \in Q_{5}$. To this end, note that $\sqrt{2} \sqrt{3}= \pm \gamma$, from which

$$
\left.\sqrt{2}= \pm \frac{\gamma}{\sqrt{3}}= \pm \frac{\gamma}{3} \sqrt{3} .\right]
$$

60: EXAMPLE If p is odd, then $p-1$ is even and $-1 \in G_{p-1}$. In addition, $-1 \in\left(Q_{p}^{\times}\right)^{2}$ iff $(p-1) / 2$ is even, i.e., iff $p \equiv 1 \bmod 4$. Accordingly, to start $\sqrt{-1}$ exists in Q_{5}, Q_{13}, \ldots.
[Note: $\sqrt{-1}$ does not exist in Q_{2}.]

APPENDIX

Let $Q_{p}^{c l}$ be the algebraic closure of $Q_{p}--$ then $|\cdot|_{p}$ extends uniquely to $Q_{p}^{c l}$ (cf. §3, \#12) (and satisfies the ultrametric inequality). Furthermore, the range of $|\cdot|_{p}$ per $Q_{p}^{c l}$ is the set of all rational powers of p (plus 0).

1: THEOREM $Q_{p}^{c l}$ is not second category.
2: APPLICATION The metric space $Q_{p}^{c l}$ is not complete.
3: APPLICATION The Hausdorff space $Q_{p}^{c l}$ is not locally compact (cf. §5, \#5).

4: NOTATION Put

$$
c_{p}=\overline{\left(Q_{p}^{C l}\right)}
$$

the completion of $Q_{p}^{c \ell}$ per $|\cdot|_{p}$.

5: THEOREM C_{p} is algebraically closed.

6: N.B. The metric space C_{p} is separable but the Hausdorff space C_{p} is not locally compact (cf. §5, \#5).

§5. LOCAL FIELDS

Let K be a field of characteristic 0 equipped with a non-archimedean absolute value |. |.

1: NOTATION Let

$$
\left[\begin{array}{l}
R=\{a \in K:|a| \leq 1\} \\
R^{x}=\{a \in K:|a|=1\}
\end{array}\right.
$$

2: LEMMA R is a commutative ring with unit and R^{x} is its multiplicative group of invertible elements.

3: NOTATION Let

$$
P=\{a \in K:|a|<1\}
$$

4: LEMMA P is a maximal ideal.

Therefore the quotient R / P is a field, the residue field of K .

5: THEOREM K is locally compact iff the following conditions are satisfied.

1. K is a complete metric space.
2. R / P is a finite field.
3. $\left|\mathrm{K}^{\times}\right|$is a nontrivial discrete subgroup of $\mathrm{R}_{>0}$.

6: DEFINITION A local field is a locally compact field of characteristic 0.
7. EXAMPIE R and C are local fields.
8. EXAMPLE Q_{p} is a local field.

Assume that K is a non-archimedean local field.

9: LEMMA R is compact.

10: LEMMA P is principal, say $P=\pi R$, and

$$
\left|K^{\times}\right|=|\pi|^{Z}
$$

where $0<|\pi|<1$.
[Note: Such a π is said to be a prime element.]

11: REMARK A nontrivial discrete subgroup Γ of $R_{>0}$ is free on one generator $0<\gamma<1$:

$$
\Gamma=\left\{\gamma^{n}: n \in Z\right\}
$$

This said, choose π with the largest absolute value <1, thus $\pi \in P \subset R \Rightarrow \pi R \subset P$. In the other direction,

$$
a \in P \Rightarrow|a| \leq|\pi| \Rightarrow \frac{a}{\pi} \in R
$$

And

$$
a=\pi \cdot \frac{a}{\pi} \Rightarrow a \in \pi R
$$

12: FACT A locally compact topological vector space over a local field is necessarily finite dimensional.

13: THEOREM K is a finite extension of Q_{p} for some p.
PROOF First, $K \supset Q$ (since char $K=0$). Second, the restriction of $|\cdot|$ to Q is equivalent to $\left.\left.\right|_{\cdot}\right|_{p}(\exists \mathrm{p})$ (cf. $\S 1, \# 20$), hence the closure of Q in K "is" Q_{p} (since K is complete). Third, K is finite dimensional over Q_{p} (since K is locally compact).

There is also a converse.

14: THEOREM Let K be a finite extension of Q_{p}-- then K is a local field. PROOF In view of \#5, it suffices to equip K with a non-archimedean absolute value subject to conditions $1,2,3$. But, by the extension principle (cf. $83, \# 11$), $|\cdot|_{p}$ extends uniquely to K . This extension is non-archimedean and points 1,3 are manifest. As for point 2 , it suffices to observe that the canonical arrow $Z_{p} / p Z_{p} \rightarrow$ R / P is injective and

$$
\left[R / P: F_{p}\right] \leq\left[K: Q_{p}\right]<\infty .
$$

[Details: To begin with,

$$
Q_{p} \cap P=p Z_{p^{\prime}}
$$

thus the inclusion $Z_{p} \rightarrow R$ induces an injection

$$
\mathrm{Z}_{\mathrm{p}} / \mathrm{p} Z_{\mathrm{p}} \rightarrow \mathrm{R} / \mathrm{P}
$$

Put now $n=\left[K: Q_{p}\right]$ and let $A_{1}, \ldots, A_{n+1} \in R-$ then the claim is that the residue classes $\bar{A}_{1}, \ldots, \bar{A}_{n+1} \in R / P$ are linearly dependent over $Z_{p} / p Z_{p}$. In any event, there are elements $x_{1}, \ldots, x_{n+1} \in Q_{p}$ such that

$$
\sum_{i=1}^{n+1} x_{i} A_{i}=0,
$$

matters being arranged in such a way that

$$
\max \left|x_{i}\right|_{p}=1
$$

Therefore the $x_{i} \in Z_{p}$ and not every residue class $\bar{x}_{i} \in Z_{p} / p Z_{p}$ is zero. But then

$$
\sum_{i=1}^{n+1} \bar{x}_{i} \bar{A}_{i}=0
$$

is a nontrivial dependence relation.]

15: SCHOHIUM A non-archimedean field of characteristic zero is a local field iff it is a finite extension of $Q_{p}(\exists \mathrm{p})$.

Let $K \supset Q_{p}$ be a finite extension of linear degree $n-$ then the canonical absolute value on K is given by

$$
|a|_{p}=\left|N_{K / Q_{p}}(a)\right|_{p}^{1 / n}
$$

[Note: The normalized absolute value on K is given by

$$
|a|_{K}=|a|_{p}^{n}
$$

Its intrinsic significance will emerge in due course but for now observe that $|\cdot|_{K}$ is equivalent to $|\cdot|_{p}$ and is non-archimedean (cf. §1, \#23).]

16: LEMMA The range of $|\cdot|_{p} \mid K^{x}$ is $\mid \|_{p}^{Z}$.

17: DEFINITION The ramification index of K over Q_{p} is the positive integer

$$
e=\left[\left|K^{x}\right|_{p}:\left|Q_{p}^{x}\right|_{p}\right]
$$

I.e.:

$$
e=\left[|\pi|_{p}^{Z}:|p|_{p}^{Z}\right]
$$

Therefore

$$
|\pi|_{p}^{e}=|p|_{p}\left(=\frac{1}{p}\right) .
$$

[Consider Z and $e Z$-- then the generator 1 of Z is related to the generator e of eZ by the triviality $1+\cdots+1=e \cdot 1=e$.

18: N.B. If π^{\prime} has the property that $\left|\pi^{\prime}\right|_{p}^{e}=|p|_{p^{\prime}}$ then π^{\prime} is a prime element.
[Using obvious notation, write $\pi^{\prime}=\pi^{v(\pi)} u$, thus

$$
\begin{aligned}
|p|_{p}=\left|\pi^{\prime}\right|_{p}^{e} & =\left(|\pi|_{p}^{v(\pi)}\right)^{e} \\
& =\left(|\pi|_{p}^{e}\right)^{v(\pi)}=|p|_{p}^{v(\pi)},
\end{aligned}
$$

thus $v(\pi)=1$.

19: NOTATION

$$
\mathrm{q} \equiv \operatorname{card} \mathrm{R} / \mathrm{p}=\left(\operatorname{card} \mathrm{F}_{\mathrm{p}}\right)^{\mathrm{f}}=\mathrm{p}^{\mathrm{f}}
$$

so

$$
f=\left[R / P: F_{p}\right],
$$

the residual index of K over Q_{p}.

20: THEOREM Let $K \supset Q_{p}$ be a finite extension of linear degree $n-$ then

$$
\mathrm{n}=\left[\mathrm{K}: Q_{\mathrm{p}}\right]=\mathrm{ef}
$$

21: APPLICATION

$$
\begin{aligned}
|\pi|_{K}=|\pi|_{p}^{n} & =|p|_{p}^{n / e} \\
& =\left(\frac{1}{p}\right)^{n / e}=\left(\frac{1}{p}\right)^{f}=\frac{1}{p^{f}}=\frac{1}{q} .
\end{aligned}
$$

View p as an element of K :

- $|p|_{p}=\left|N_{K / Q_{p}}(p)\right|_{p}^{1 / n}=\left|p^{n}\right|_{p}^{1 / n}=|p|_{p}$.
- $|p|_{K}=\left|N_{K / Q}(p)\right|_{p}=\left|p^{n}\right|_{p}=\frac{1}{p^{n}}=\frac{1}{p^{e f}}=\left(\frac{1}{p^{f}}\right)^{e}=q^{-e}$.

22: DEFINITION A finite extension K of Q_{p} is

- unramified if $e=1$
- ramified if $f=1$.

Take the case $K=Q_{p}-$ then $e=1$, hence K is unramified, and $f=1$, hence K is ramified.

23: LEMMA If $K \supset Q_{p}$ is unramified, then p is a prime element.

24: THEOREM $\forall \mathrm{n}=1,2, \ldots$, there is up to isomorphism one unramified extension K of Q_{p} of linear degree n.

Iet K be a finite extension of Q_{p}.

25: LEMMA The group M^{\times}of roots of unity of order prime to p in K is cyclic of order $p^{f}-1(=q-1)$.

26: LEMMA The set $M=M^{\times} U\{0\}$ is a set of coset representatives for R / P.

Therefore (cf. §4, \#43)

$$
K^{x} \approx Z \times R^{x} \approx Z \times Z /(q-1) Z \times 1+P
$$

27: NOTATION Let

$$
K_{u r}=Q_{p}\left(M^{x}\right)
$$

28: LEMMA $K_{u r}$ is the maximal unramified extension of Q_{p} in K and

$$
\left[K_{u r}: Q_{p}\right]=f .
$$

29: REMARK The maximal unramified extension $\left(Q_{p}^{C l}\right){ }_{u r} \subset Q_{p}^{C l}$ is the field extension generated by all roots of unity of order prime to p.

30: QUADRATIC EXIENSIONS (cf. §4, \#56) Suppose that $p \neq 2$, let $\tau \in Q_{p}^{\times}-\left(Q_{p}^{x}\right)^{2}$, and form the quadratic extension

$$
Q_{p}(\tau)=\left\{x+y \sqrt{\tau}: x, y \in Q_{p}\right\}
$$

Then the canonical absolute value on $Q_{p}(\sqrt{\tau})$ is given by

$$
\begin{aligned}
|x+y \sqrt{\tau}|_{p} & =\left|N_{Q_{p}}(\sqrt{\tau}) / Q_{p}(x+y \sqrt{\tau})\right|_{p}^{1 / 2} \\
& =\left|x^{2}-\tau y^{2}\right|_{p}^{1 / 2}
\end{aligned}
$$

31: CLASSIFICATION Consider the three possibilities

$$
Q_{p}(\sqrt{p}), Q_{p}(\sqrt{\tau}), Q_{p}(\sqrt{p \tau})
$$

thus here $2=$ ef.

- $Q_{p}(\sqrt{p})$ is ramified or still, $e=2$.
[Note that

$$
\left.|\sqrt{p}|_{p}^{2}=\left|0^{2}-(p) 1^{2}\right|_{p}=|p|_{p}=\frac{1}{p} \cdot\right]
$$

- $Q_{p}(\sqrt{p \zeta})$ is ramified or still, $e=2$.
[Note that

$$
\left.|\sqrt{p \zeta}|^{2}=\left|0^{2}-(p \zeta) 1^{2}\right|_{p}=|p \zeta|_{p}=|p|_{p} \cdot|\zeta|_{p}=|p|_{p}=\frac{1}{p} \cdot\right]
$$

If $e=1$, then in either case, the value group would be p^{Z}, an impossibility since $\frac{1}{\sqrt{p}} \notin \mathrm{p}^{\mathrm{Z}}$, so $\mathrm{e}=2$.

- $Q_{p}(\sqrt{\zeta})$ is unramified or still, $e=1$.
[There is up to isomorphism one unramified extension K of Q_{p} of linear degree 2 (cf. \#24).]
[Instead of quoting theory, one can also proceed directly, it being simplest to work instead with $Q_{p}(\sqrt{a})$, where $1<a<p$ is an integer that is not a square mod p (cf. §4, \#57) -- then the residue field of $Q_{p}(\sqrt{a})$ is $F_{p}(\sqrt{a})$, hence $f=2$, hence $e=1($ since $n=2)$.

The preceding developments are absolute, i.e., based at Q_{p}. It is also possible to relativize the theory. Thus let $L \supset K \supset Q_{p}$ be finite extensions of Q_{p}. Append subscripts to the various quantities involved:

$$
\left[\begin{array}{l}
R_{K} \supset P_{K^{\prime}} R_{K} / P_{K^{\prime}} e_{K^{\prime}} f_{K^{\prime}} M_{K}^{\times} \\
R_{L} \supset P_{L^{\prime}} R_{L} / P_{L^{\prime}} e_{L^{\prime}}, f_{L^{\prime}} M_{L}^{\times}
\end{array} .\right.
$$

Introduce

$$
\left[\begin{array}{l}
e(L / K)=\left[\left|L^{X}\right|:\left|K^{X}\right|\right] \\
f(L / K)=\left[R_{L} / P_{L}: R_{K} / P_{K}\right]
\end{array}\right.
$$

9.

32: LEMMA

$$
[L: K]=e(L / K) f(L / K) .
$$

PROOF We have

$$
\left[\begin{array}{l}
{\left[L: Q_{p}\right]=e_{L} f_{L}} \\
\quad\left[K: Q_{p}\right]=e_{K} f_{K} .
\end{array}\right.
$$

Therefore

$$
[L: K]=\frac{\left[L: Q_{p}\right]}{\left[K: Q_{p}\right]}=\frac{e_{L} f_{L}}{e_{K} f K}=e(L / K) f(L / K) .
$$

33: THEOREM Let $L \supset K \supset Q_{p}$ be finite extensions of $Q_{p}-$ then there exists
a unique maximal intermediate extension $K \subset K_{u r} \subset L$ that is unramified over K.
[In fact,

$$
\left.K_{u r}=K\left(M_{L}^{\times}\right) \subset L .\right]
$$

[Note: The extension $L \supset K_{u r}$ is ramified.]

§6. HAAR MEASURE

Let X be a locally compact Hausdorff space.

1: DEFINITIION A Radon measure is a measure μ defined on the Borel σ-algebra of x subject to the following conditions.

1. μ is finite on compacta, i.e., for every compact set $K \subset X, \mu(K)<\infty$.
2. μ is outer regular, i.e., for every Borel set $A \subset X$,

$$
\mu(A)=\inf _{U \supset A} \mu(U),
$$

where $U \subset X$ is open.
3. μ is inner regular, i.e., for every open set $A \subset X$,

$$
\mu(A)=\sup _{K \subset A} \mu(K),
$$

where $K \subset X$ is compact.

Let G be a locally compact abelian group.

2: DEFINITION A Haar measure on G is a Radon measure μ_{G} which is translation invariant: \forall Borel set $A, \forall x \in G$,

$$
\mu_{G}(x+A)=\mu_{G}(A)=\mu_{G}(A+x)
$$

or still, $\forall f \in C_{C}(G), \forall y \in G$,

$$
\delta_{G} f(x+y) d \mu_{G}(x)=\delta_{G} f(x) d \mu_{G}(x)
$$

3: THEOREM G admits a Haar measure and any two Haar measures μ_{G}, ν_{G} differ by a positive constant: $\mu_{G}=c \nu_{G}(c>0)$.
nonempty
4: LEMMA Every ${ }_{\wedge}$ open subset of G has positive Haar measure.

5: LEMMA G is compact iff G has finite Haar measure.

6: LEMMA G is discrete iff every point of G has positive Haar measure.

7: EXAMPLE Take $G=R$ - then $\mu_{R}=d x$ ($d x=$ Lebesgue measure) is a Haar measure $\left(\mu_{R}([0,1])=\int_{0}^{1} d x=1\right)$.

8: EXAMPLE Take $G=R^{x}-$ then $\mu_{R^{x}}=\frac{d x}{|x|}$ ($d x=$ Lebesgue measure) is a Haar measure $\left(\mu_{R^{x}}([1, \mathrm{e}])=\int_{1}^{\mathrm{e}} \frac{\mathrm{dx}}{|\mathrm{x}|}=1\right)$.

9: EXAMPLE Take $G=Z$ - then $\mu_{Z}=$ counting measure is a Haar measure.

10: LEMMA Let G^{\prime} be a closed subgroup of G and put $G^{\prime \prime}=G / G$ '. Fix Haar measures μ_{G}, μ_{G}, on G, G^{\prime} respectively -- then there is a unique determination of the Haar measure μ_{G} ' on $G^{\prime \prime}$ such that $\forall f \in C_{C}(G)$,

$$
\int_{G^{\prime}} f(x) d \mu_{G}(x)=\int_{G^{\prime}}, \quad\left(\delta_{G}, f\left(x+x^{\prime}\right) d \mu_{G^{\prime}}\left(x^{\prime}\right)\right) d \mu_{G^{\prime}}\left(x^{\prime}\right) .
$$

[Note: The function

$$
x \rightarrow \int_{G^{\prime}} f\left(x+x^{\prime}\right) d \mu_{G^{\prime}}\left(x^{\prime}\right)
$$

is G '-invariant, hence is a function on G^{\prime} '.]

11: EXAMPIE Take $G=R, G^{\prime}=Z$ with the usual choice of Haar measures.
Determine $\mu_{R / Z}$ per \#10 -- then $\mu_{R / Z}(R / Z)=1$.

3.

[Let x be the characteristic function of [0,1[-- then

$$
\sum_{n \in Z} X(x+n)
$$

is $\equiv 1$, hence when integrated over R / Z gives the volume of R / Z. On the other hand, $\int_{R} X=1$.]

Let K be a local field (cf. 55 , \#6). Given $a \in K^{\times}$, let $M_{a}: K \rightarrow K$ be the automorphism that sends x to $\mathrm{ax}=\mathrm{xa}$-- then for any Haar measure μ_{K} on K , the composite $\mu_{K} \circ M_{a}$ is again a Haar measure on K, hence there exists a positive constant $\bmod _{K}(a)$ such that for every Borel set A,

$$
\mu_{K}\left(M_{a}(A)\right)=\bmod _{K}(a) \mu_{K}(A)
$$

or still, $\forall f \in C_{C}(K)$,

$$
\int_{K} f\left(a^{-1} x\right) d \mu_{K}(x)=\bmod _{K}(a) \delta_{K} f(x) d \mu_{K}(x)
$$

[Note: $\bmod _{\mathrm{K}}(\mathrm{a})$ is independent of the choice of $\mu_{\mathrm{K}^{*}}$]
Extend $\bmod _{K}$ to all of K by setting $\bmod _{K}(0)$ equal to 0 .

12: LEMMA Let K, L be local fields, where $\mathrm{L} \boldsymbol{\mathrm { K }} \mathrm{K}$ is a finite field extension then $\forall \mathrm{x} \in \mathrm{L}$,

$$
\begin{aligned}
\bmod _{L}(x) & =\bmod _{K}\left(N_{L / K}(x)\right) \\
& \equiv \bmod _{K}\left(\operatorname{det}\left(M_{x}\right)\right) .
\end{aligned}
$$

[Let $n=[L: K]$, view L as a vector space of dimension n, and identify L with K^{n} by choosing a basis. Proceed from here by breaking M_{x} into a product of n

"elementary" transformations.]

13: EXAMPLE Take $K=R, L=R-$ then $\forall a \in R$,

$$
\bmod _{R}(a)=|a|
$$

$\left[\forall f \in C_{C}(R)\right.$,

$$
\left.\int_{R^{f}} f\left(a^{-1} x\right) d x=|a| \int_{R} f(x) d x .\right]
$$

14: EXAMPLE Take $K=R, L=C$ - then $\forall z \in C$,

$$
\begin{aligned}
\bmod _{C}(z) & =\bmod _{R}\left(N_{C / R}(z)\right) \\
& =|z \bar{z}|=|z|^{2} .
\end{aligned}
$$

15: LEMMA

$$
\bmod _{Q_{p}}=\left.1 \cdot\right|_{p} .
$$

To prove this, we need a preliminary.

16: LEMMA The arrow

$$
\varepsilon_{k}: Z_{p} \rightarrow Z / p^{k} Z
$$

that sends

$$
x=\sum_{n=0}^{\infty} a_{n} p^{n} \quad\left(a_{n} \in A\right)
$$

to

$$
\sum_{n=0}^{k-1} a_{n} p^{n} \bmod p^{k}
$$

is a hamamorphism of rings. It is surjective with kernel $p^{k} Z_{p}$, so $\left[Z_{p}: p^{k} Z_{p}\right]=p^{k}$
(cf. $\S 4$, \#26), thus there is a disjoint decomposition of Z_{p} :

$$
Z_{p}=\bigcup_{j=1}^{p^{k}}\left(x_{j}+p^{k} Z_{p}\right) .
$$

Normalize the Haar measure on Q_{p} by stipulating that

$$
\mu_{Q_{p}}\left(Z_{p}\right)=1
$$

[Note: In this connection, recall that Z_{p} is an open-compact set.]
The claim now is that for every Borel set A,

$$
\mu_{Q_{p}}\left(M_{x}(A)\right)=|x|_{p} \mu_{p}(A) .
$$

Since the Borel σ-algebra is generated by the open sets, it is enough to take A open. But any open set can be written as a disjoint union of cosets of the subgroups $\mathrm{p}^{\mathrm{k}} \mathrm{Z}_{\mathrm{p}}$ (cf. ${ }^{\text {s }}$, \#33), hence, thanks to translation invariance, it suffices to deal with these alone:

$$
\begin{aligned}
{ }_{\mu_{Q}}\left(p^{k} Z_{p}\right) & =\bmod _{Q_{p}}\left(p^{k}\right) \mu_{Q_{p}}\left(Z_{p}\right) \\
& =\bmod _{Q_{p}}\left(p^{k}\right)=\left|p^{k}\right|_{p} .
\end{aligned}
$$

1. $k \geq 0$:

$$
\begin{aligned}
& I=\mu_{Q_{p}}\left(Z_{p}\right)=\mu_{Q_{p}}\left(p_{j=1}^{k}\left(x_{j}+p^{k} Z_{p}\right)\right) \\
& =p^{k} \mu_{Q_{p}}\left(p^{k} Z_{p}\right) \\
& \text { => } \\
& \mu_{Q_{p}}\left(p^{k} Z_{p}\right)=p^{-k}=\left|p^{k}\right|_{p} .
\end{aligned}
$$

2. $k<0$;

$$
\begin{aligned}
& I=\mu_{Q_{p}}\left(Z_{p}\right)=\mu_{Q_{p}}\left(p^{\left.-k_{p} k_{Z_{p}}\right)}\right. \\
&=\bmod _{Q_{p}}\left(p^{-k}\right) \mu_{Q_{p}}\left(p^{k} Z_{p}\right) \\
&=\left|p^{-k}\right|_{p} \mu_{Q_{p}}\left(p^{k_{Z_{p}}}\right) \\
& \Rightarrow
\end{aligned}
$$

$$
\mu_{Q}\left(p^{k} Z_{p}\right)=\left|p^{-k}\right|_{p}^{-1}=\left|p^{k}\right|_{p}
$$

17: SCHOLIUM If K is a finite extension of Q_{p}, then $\forall a \in K$,

$$
\bmod _{K}(a)=\left|N_{K / Q_{p}}(a)\right|_{p^{\prime}}
$$

the normalized absolute value on K mentioned in §5:

$$
\bmod _{K}(a)=|a|_{K}\left(=|a|_{p^{\prime}}^{n} n=\left[K: Q_{p}\right]\right) .
$$

18: CONVENIION Integration w.r.t. $\mu_{Q_{p}}$ will be denoted by $d x$:

$$
\int_{Q_{p}} f(x) d \mu_{Q_{p}}(x)=\int_{Q_{p}} f(x) d x .
$$

[Note: Points are of Haar measure zero:

$$
\begin{aligned}
&\{0\}=\bigcap_{k=1}^{\infty} p^{k} Z_{p} \\
& \Rightarrow \quad \\
& \mu_{Q_{p}}(\{0\})=\lim _{k \rightarrow \infty} \mu_{Q_{p}}\left(p^{k} Z_{p}\right) \\
&\left.=\lim _{k \rightarrow \infty} p^{-k}=0 .\right]
\end{aligned}
$$

19: EXAMPLE

$$
z_{p}^{\times}=\underset{1 \leq k \leq p-1}{u}\left(k+p Z_{p}\right) \quad(c f . \S 4, \# 23)
$$

Therefore

$$
\begin{aligned}
\operatorname{vol}_{d x}\left(Z_{p}^{x}\right) & =(p-1) \operatorname{vol}_{d x}\left(p Z_{p}\right) \\
& =\frac{p-1}{p}
\end{aligned}
$$

20: EXAMPLE

$$
\begin{aligned}
\operatorname{vol}_{d x}\left(p^{n} Z_{p}^{x}\right) & =\operatorname{vol}_{d x}\left(p^{n} Z_{p}-p^{n+1} Z_{p}\right) \quad \text { (cf. §4, \#34) } \\
& =\operatorname{vol}_{d x}\left(p^{n} Z_{p}\right)-\operatorname{vol}_{d x}\left(p^{n+1} Z_{p}\right) \\
& =\left|p^{n}\right|_{p} \operatorname{vol}_{d x}\left(Z_{p}\right)-\left|p^{n+1}\right|_{p} \operatorname{vol}_{d x}\left(Z_{p}\right) \\
& =p^{-n}-p^{-n-1}
\end{aligned}
$$

21: EXAMPIE Write

$$
Z_{p}-\{0\}=\underset{n \geq 0}{u} p^{n} Z_{p}^{x}
$$

Then

$$
\begin{aligned}
& \int_{Z_{p}-\{0\}} \log |x|_{p} d x=\sum_{n=0}^{\infty} \int_{p^{n} Z_{p}^{x}} \log |x|_{p} d x \\
& =\sum_{n=0}^{\infty} \log p^{-n} \operatorname{vol}_{d x}\left(p^{n} Z_{p}^{x}\right) \\
& =-\log p \sum_{n=0}^{\infty} n\left(p^{-n}-p^{-n-1}\right)
\end{aligned}
$$

8.

$$
\begin{aligned}
& =-\log p\left(\sum_{n=0}^{\infty} \frac{n}{p^{n}}-\frac{1}{p} \sum_{n=0}^{\infty} \frac{n}{p^{n}}\right) \\
& =-\left(1-\frac{1}{p}\right) \log p \sum_{n=0}^{\infty} \frac{n}{p^{n}} \\
& =-\left(1-\frac{1}{p}\right) \log p \frac{p}{(p-1)^{2}} \\
& =-\frac{\log p}{p-1} .
\end{aligned}
$$

22: EXAMPIE

$$
\int_{z_{p}} \log ^{\log }|1-x|_{p} d x=-\frac{\log p}{p-1}
$$

[Break Z_{p}^{\times}up via the scheme

$$
\left.\left(Z_{p}^{\times}: a_{0} \neq 1\right) u\left(Z_{p}^{\times}: a_{0}=1, a_{1} \neq 0\right)_{u}\left(Z_{p}^{\times}: a_{0}=1, a_{1}=0, a_{2} \neq 0\right) \cup \ldots .\right]
$$

23: LEMMA The measure $\frac{d x}{|x|_{p}}$ is a Haar measure on the multiplicative group Q_{p}^{x}. PROOF $\forall \mathrm{y} \in \mathrm{Q}_{\mathrm{p}}{ }^{\prime}$

$$
\begin{aligned}
& \int_{Q_{p}^{x}} f\left(y^{-1} x\right) \frac{d x}{|x|_{p}} \\
& \quad=|y|_{p}^{-1} \int_{Q_{p}^{x}} f\left(y^{-1} x\right) \frac{1}{\left|y^{-1} x\right|_{p}} d x \\
& \quad=|y|_{p}^{-1} \bmod _{Q_{p}}(y) \int_{Q_{p}} f(x) \frac{d x}{|x|_{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =|y|_{p}^{-1}|y|_{p} \int_{Q_{p}^{x}} f(x) \frac{d x}{|x|_{p}} \\
& =\int_{Q_{p}^{x}} f(x) \frac{d x}{|x|_{p}}
\end{aligned}
$$

24: EXAMPIE

$$
\begin{aligned}
& \operatorname{vol} \frac{d x}{|x|_{p}}\left(p^{n} z_{p}^{x}\right)=\operatorname{vol} \frac{d x}{|x|_{p}}\left(z_{p}^{x}\right) \\
& =\int_{z_{p}^{x}} \frac{d x}{|x|_{p}}=\int_{z_{p}^{x}} d x \\
& =\operatorname{vol}_{d x}\left(Z_{p}^{\times}\right)=\frac{p-1}{p} .
\end{aligned}
$$

25: DEFINITION The normalized Haar measure on the multiplicative group Q_{p}^{x} is given by

$$
d^{x} x=\frac{p}{p-1} \frac{d x}{|x|_{p}}
$$

Accordingly,

$$
\operatorname{vol}_{d_{x} \times}\left(Z_{p}^{\times}\right)=1
$$

this condition characterizing d^{x}.

26: EXAMPLE Let s be a complex variable with $\operatorname{Re}(s)>1$. Write

$$
Z_{p}-\{0\}=u_{n \geq 0}^{u} p^{n} z_{p}^{x}
$$

Then

$$
\begin{aligned}
& \int_{Z_{p}-\{0\}}|x|_{p}^{s} d^{x} x \\
&=\sum_{n=0}^{\infty} p^{-n s} \int_{Z_{p}} d^{x} x \\
&=\sum_{n=0}^{\infty} p^{-n s}=\frac{1}{1-p^{-s}},
\end{aligned}
$$

the $\mathrm{p}^{\text {th }}$ factor in the Euler product for the Riemann zeta function.

Let K be a finite extension of Q_{p}. Given a Haar measure da on K, put

$$
d^{x} a=\frac{q}{q-1} \frac{d a}{|a|_{K}}
$$

Then $\frac{d a}{|a|_{K}}$ is a Haar measure on K^{x} and we have

$$
\begin{aligned}
\operatorname{vol}_{d \times a}\left(R^{\times}\right) & =\int_{R^{\times}} \frac{q}{q-1} \frac{d a}{|a|_{K}} \\
& =\frac{q}{q-1} \int_{R^{x}} d a \\
& =\sum_{n=0}^{\infty} q^{-n} \int_{R} \times d a \\
& =\sum_{n=0}^{\infty} \int_{R^{\times}} q^{-n} d a \\
& =\sum_{n=0}^{\infty} \int_{\pi^{n} R^{\times}} d a
\end{aligned}
$$

11.

$$
\begin{aligned}
& =\int_{U_{n \geq 0} \pi_{R} n_{R} \times d a}^{d a} \\
& =\int_{R} d a=\operatorname{vol}_{d a}(R) .
\end{aligned}
$$

Let G be a locally compact abelian group.

1: DEFINITION A character of G is a continuous homomorphism $X: G \rightarrow C^{x}$.
2. NOTATION Write \tilde{G} for the group whose elements are the characters of G.

3: DEFINITION A unitary character of G is a continuous homomorphism $X: G \rightarrow T$.

4: NOTATION Write \hat{G} for the group whose elements are the unitary characters of G .

5: LEMMA There is a decamposition

$$
\tilde{\mathrm{G}} \approx \tilde{\mathrm{G}}_{+} \times \hat{\mathrm{G}}_{\boldsymbol{l}}
$$

where \tilde{G}_{+}is the group of positive characters of G.
PROOF The only positive unitary character is trivial, so $\tilde{G}_{+} \cap \hat{G}=\{1\}$. On the other hand, if x is a character, then $|x|$ is a positive character, $x /|x|$ is a unitary character, and $x=|x|\left(\frac{x}{|x|}\right)$.

6: LEMMA Every bounded character of G is a unitary character.
PROOF The only compact subgroup of $R_{>0}$ is the trivial subgroup \{1\}.

7: APPLICATION If G is compact, then every character of G is unitary.

8: EXAMPLE Take $G=Z$ - then $\widetilde{G} \approx C^{x}$, the isomorphism being given by the $\operatorname{map} x \rightarrow \chi(1)$.

9: EXAMPIE Take $G=R-$ then $\tilde{G} \approx R \times R$ and every character has the form $x(x)=e^{z x}(z \in C)$.

10: EXAMPLE Take $G=C$ - then $\tilde{G} \approx C \times C$ and every character has the form $X(x)=\exp \left(z_{1} \operatorname{Re}(x)+z_{2} \operatorname{Im}(x)\right)\left(z_{1}, z_{2} \in C\right)$.

11: EXAMPLE Take $G=R^{\times}$- then $\tilde{G} \approx Z / 2 Z \times C$ and every character has the form $X(x)=(\operatorname{sgn} x)^{\sigma}|x|^{s}(\sigma \in\{0,1\}, s \in C)$.

12: EXAMPLE Take $G=C^{x}$-- then $\tilde{G} \approx Z \times C$ and every character has the form $X(x)=\exp (\sqrt{-1} n \arg x)|x|^{s}(n \in Z, s \in C)$.

13: DEFINITION The dual group of G is \hat{G}.

14: RAPPEL Let X, Y be topological spaces and let F be a subspace of $C(X, Y)$. Given a compact set $K \subset X$ and an open subset $V \subset Y$, let $W(K, V)$ be the set of all $f \in F$ such that $f(K) \subset V-$ then the collection $\{W(K, V)\}$ is a subbasis for the compact open topology on F.
[Note: The family of finite intersections of sets of the form $W(K, V)$ is then a basis for the compact open topology: Each member has the form $\bigcap_{i=1}^{n} W\left(K_{i}, V_{i}\right)$, where the $K_{j} \subset X$ are compact and the $V_{i} \subset Y$ are open.]

Equip \hat{G} with the compact open topology.
15: FACT The compact open topology on \hat{G} coincides with the topology of uniform convergence on compact subsets of G:

16: LENMA \hat{G} is a locally compact abelian group.

17: REMARK \tilde{G} is also a locally compact abelian group and the decomposition

$$
\tilde{\mathrm{G}} \approx \tilde{\mathrm{G}}_{+} \times \hat{\mathrm{G}}
$$

is topological.
18: EXAMPLE Take $G=R$ and given a real number t, let $X_{t}(x)=e^{\sqrt{-1}}$ tx then X_{t} is a unitary character of G and for any $x \in \hat{G}$, there is a unique $t \in R$ such that $X=X_{t}$, hence G can be identified with \hat{G}.

19: EXAMPLE Take $G=R^{2}$ and given a point $\left(t_{1}, t_{2}\right)$, let $X_{\left(t_{1}, t_{2}\right)}\left(x_{1}, x_{2}\right)$ $=e^{\sqrt{-1}\left(t_{1} x_{1}+t_{2} x_{2}\right)}-$ then $X_{\left(t_{1}, t_{2}\right)}$ is a unitary character of G and for any $x \in \hat{G}$, there is a unique $\left(t_{1}, t_{2}\right) \in R^{2}$ such that $x=x_{\left(t_{1}, t_{2}\right)}$, hence G can be identified with \hat{G}.

20: EXAMPLE Take $G=Z / n Z$ and given an integer $m=0,1, \ldots, n-1$, let $\chi_{m}(k)=\exp \left(2 \pi \sqrt{-1} \frac{\mathrm{~km}}{\mathrm{n}}\right)-$ then $x_{0}, x_{1}, \ldots, x_{n-1}$ are the characters of G, hence G can be identified with \hat{G}.

21: LEMMA If G is compact, then \hat{G} is discrete.

22: EXAMPLE Take $G=T$ and given $n \in Z$, let $\chi_{n}\left(e^{\sqrt{-1}} \theta\right)=e^{\sqrt{-1} n \theta}$-- then X_{n} is a unitary character of G and all such have this form, so $T \approx Z$.

23: LEMMA If G is discrete, then $\hat{\mathrm{G}}$ is compact.

24: EXAMPIE Take $G=Z$ and given $e^{\sqrt{-1} \theta} \in T$, let $X_{\theta}(n)=e^{\sqrt{-1} \theta n}-$ then X_{θ} is a unitary character of G and all such have this form, so $\hat{Z} \approx T$.

25: LEMNA If $\mathrm{G}_{1}, \mathrm{G}_{2}$ are locally compact abelian groups, then $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is topologically isomorphic to $\hat{\mathrm{G}}_{1} \times \hat{\mathrm{G}}_{2}$.

26: EXAMPLE Take $G=R^{\times}$- then $G \approx Z / 2 Z \times R_{>0}^{\times} \approx Z / 2 Z \times R$, thus \hat{G} is topologically iscmorphic to $Z / 2 Z \times R$:

$$
(u, t) \rightarrow x_{u, t} \quad(u \in Z / 2 Z, t \in R)
$$

where

$$
x_{u, t}(x)=\left(\frac{x}{|x|}\right)^{u}|x|^{\sqrt{-1}} t
$$

27: EXAMPLE Take $G=C^{\times}$-- then $G \approx T \times R_{>0}^{\times} \approx T \times R$, thus \hat{G} is topologically isamorphic to $Z \times R$:

$$
(n, t) \rightarrow x_{n, t} \quad(n \in Z, t \in R)
$$

where

$$
x_{n, t}(z)=\left(\frac{z}{|z|}\right)^{n}|z|^{\sqrt{-1} t}
$$

Denote by ev_{G} the cononical arrow $\mathrm{G} \rightarrow \hat{\hat{\mathrm{G}}}$:

$$
\mathrm{ev}_{\mathrm{G}}(\mathrm{x})(\mathrm{x})=\chi(\mathrm{x})
$$

28: REMARK If G, H are locally compact abelian groups and if $\phi: G \rightarrow H$ is a continuous homamorphism, then there is a cormutative diagram

29: PONTRYAGIN DUALITY ev_{G} is an isomorphism of groups and a homeomorphism of topological spaces.

30: SCHOLIUM Every compact abelian group is the dual of a discrete abelian group and every discrete abelian group is the dual of a compact abelian group.

31: REMARK Every finite abelian group is isomorphic to its dual $\hat{\mathrm{G}}: \mathrm{G} \approx \hat{\mathrm{G}}$ (but the isomorphism is not "functorial").

Let H be a closed subgroup of G.

32: NOTATION Put

$$
\mathrm{H}^{\perp}=\{\mathrm{X} \in \hat{\mathrm{G}}: \mathrm{X} \mid \mathrm{H}=1\} .
$$

33: LEMMA H^{\perp} is a closed subgroup of $\hat{\mathrm{G}}$ and $\mathrm{H}=\mathrm{H}^{\perp \perp}$.

Let $\pi_{H}: G \rightarrow G / H$ be the projection and define

$$
\left[\begin{array}{l}
\Phi: \widehat{\mathrm{G} / \mathrm{H}} \rightarrow \mathrm{H}^{\perp} \\
\Psi: \hat{\mathrm{G}} / \mathrm{H}^{\perp} \rightarrow \hat{\mathrm{H}}
\end{array}\right.
$$

6.

by

$$
\left[\begin{array}{l}
\Phi(\chi)=\chi \circ \pi_{H} \\
\Psi\left(\chi H^{\perp}\right)=\chi \mid H .
\end{array}\right.
$$

34: LEMMA Φ and Ψ are isomorphisms of topological groups.

35: APPLICATION Every unitary character of H extends to a unitary character of G .

36: EXAMPLE Let G be a finite abelian group and let H be a subgroup of G -- then G contains a subgroup isomorphic to G / H.
[In fact,

$$
\left.\mathrm{G} / \mathrm{H} \approx \widehat{\mathrm{G} / \mathrm{H}} \approx \mathrm{H}^{\perp} \subset \hat{\mathrm{G}} \approx \mathrm{G} .\right]
$$

37: REMARK Denote by LCA the category whose objects are the locally compact abelian groups and whose morphisms are the continuous homomorphisms -- then

$$
\wedge: L C A \rightarrow L C A
$$

is a contravariant functor. This said, consider the short exact sequence

$$
\mathrm{I} \longrightarrow \mathrm{H} \longrightarrow \mathrm{G} \xrightarrow{\pi_{\mathrm{H}}} \mathrm{G} / \mathrm{H} \longrightarrow \mathrm{I}
$$

and apply \wedge :

$$
1 \longrightarrow \widehat{\mathrm{G} / \mathrm{H}} \approx \mathrm{H}^{\perp} \longrightarrow \hat{\mathrm{G}} \longrightarrow \hat{\mathrm{H}} \approx \hat{\mathrm{G}} / \mathrm{H}^{\perp} \longrightarrow 1,
$$

which is also a short exact sequence.

Given $f \in L^{1}(G)$, its Fourier transform is the function

$$
\hat{f}: \hat{G} \rightarrow C
$$

defined by the rule

$$
\hat{f}(X)=\delta_{G} f(x) X(x) d \mu_{G}(x) .
$$

38: EXAMPLE Take $G=R-$ then $\hat{R} \approx R$ and

$$
\hat{f}\left(x_{t}\right) \equiv \hat{f}(t)=\int_{-\infty}^{\infty} f(x) e^{\sqrt{-1}} t x_{d x}
$$

39: EXAMPLE Take $G=R^{2}-$ then $\hat{R}^{2} \approx R^{2}$ and

$$
\hat{f}\left(x\left(t_{1}, t_{2}\right)\right) \equiv \hat{f}\left(t_{1}, t_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) e^{\sqrt{-1}\left(t_{1} x_{1}+t_{2} x_{2}\right)} d x_{1} d x_{2}
$$

40: EXAMPLE Take $G=T-$ then $\hat{T} \approx Z$ and

$$
\hat{\mathrm{f}}\left(\mathrm{x}_{\mathrm{n}}\right) \equiv \hat{\mathrm{f}}(\mathrm{n})=\int_{0}^{2 \pi} \mathrm{f}(\theta) \mathrm{e}^{\sqrt{-1} \mathrm{n} \theta} \mathrm{~d} \theta
$$

41: EXAMPLE Take $G=Z-$ then $\hat{Z} \approx T$ and

$$
\hat{f}\left(x_{\theta}\right) \equiv \hat{f}(\theta)=\sum_{n=-\infty}^{\infty} f(n) e^{\sqrt{-1} n \theta}
$$

42: EXAMPLE Take $\mathrm{G}=\mathrm{Z} / \mathrm{nZ}$-- then $\mathrm{Z} / \mathrm{nZ} \approx \mathrm{Z} / \mathrm{nZ}$ and

$$
\hat{\mathrm{f}}\left(x_{\mathrm{m}}\right) \equiv \hat{\mathrm{f}}(\mathrm{~m})=\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{f}(\mathrm{k}) \exp \left(2 \pi \sqrt{-1} \frac{\mathrm{~km}}{\mathrm{n}}\right) .
$$

43: LEMMA $\hat{\mathrm{f}}: \hat{\mathrm{G}} \rightarrow \mathrm{C}$ is a continuous function on $\hat{\mathrm{G}}$ that vanishes at infinity
and

$$
\|\hat{f}\|_{\infty} \leq\|f\|_{1}
$$

44: NOTATION INV(G) is the set of continuous functions $f \in L^{1}(G)$ with the property that $\hat{f} \in L^{1}(\hat{G})$.

45: FOURIER INVERSION Given a Haar measure μ_{G} on G, there exists a unique Haar measure $\mu_{\hat{G}}$ on \hat{G} such that $\forall f \in \operatorname{INV}(G)$,

$$
f(x)=\int_{\hat{G}} \hat{f}(x) \overline{X(x) d \mu_{\hat{G}}(x) .}
$$

If G is compact, then it is custamary to normalize μ_{G} by the requirement $\int_{G} 1 d \mu_{G}=1$.

46: LEMMA

$$
\delta_{G} X(x) d \mu_{G}(x)=\left.\right|_{-} ^{1} \text { if } x=0
$$

PROOF The case $\chi=0$ is clear. On the other hand, if $\chi \neq 0$, then there exists $x_{0}: \chi\left(x_{0}\right) \neq 1$, hence

$$
\begin{aligned}
\int_{G} \chi(x) d \mu_{G}(x)= & \int_{G} \chi\left(x-x_{0}+x_{0}\right) d \mu_{G}(x) \\
= & \chi\left(x_{0}\right) \int_{G} \chi\left(x-x_{0}\right) d \mu_{G}(x) \\
= & \chi\left(x_{0}\right) \delta_{G} \chi(x) d \mu_{G}(x) \\
\Rightarrow & \\
& \delta_{G} \chi(x) d \mu_{G}(x)=0 .
\end{aligned}
$$

Assuming still that G is compact $(=>\hat{G}$ is discrete), take $f \equiv 1$:

$$
\hat{\mathrm{f}}(0)=1, \hat{\mathrm{f}}(x)=0 \quad(x \neq 0)
$$

I.e.: $\hat{\mathbf{f}}$ is the characteristic function of $\{0\}$, hence is integrable, thus $f \in \operatorname{INV}(G)$. Accordingly, if $\mu_{\hat{G}}$ is the Haar measure on \hat{G} per Fourier inversion, then

$$
\begin{aligned}
1=f(0) & =\int_{\hat{G}} \hat{f}(x) d \mu_{\hat{G}}(x) \\
& =\mu_{\hat{G}}(\{0\})
\end{aligned}
$$

so $\forall x \in \hat{G}$,

$$
\mu_{\hat{G}}(\{x\})=1
$$

47: EXAMPLE Take $G=T$-- then $d \mu_{G}=\frac{d \theta}{2 \pi}$, so for $£ \in \operatorname{INV}(G)$,

$$
f(\theta)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{-\sqrt{-1} n \theta},
$$

where

$$
\hat{f}(n)=\int_{0}^{2 \pi} f(\theta) e^{\sqrt{-1} n \theta} \frac{d \theta}{2 \pi}
$$

If G is discrete, then it is customary to normalize μ_{G} by stipulating that singletons are assigned measure 1.

48: REMARK There is a conflict if G is both compact and discrete, i.e., if G is finite.

Assuming still that G is discrete $(\Rightarrow \hat{G}$ is compact), take $f(0)=1$,
$f(x)=0(x \neq 0):$

$$
\begin{aligned}
\hat{f}(x) & =\int_{G} f(x) X(x) d \mu_{G}(x) \\
& =f(0) \chi(0) \mu_{G}(\{0\}) \\
& =1
\end{aligned}
$$

I.e.: $\hat{\mathrm{f}}$ is the constant function 1 , hence is integrable, thus $f \in \operatorname{INV}(G)$. Accordingly, if $\mu_{\hat{G}}$ is the Haar measure on \hat{G} per Fourier inversion, then

$$
\begin{aligned}
\mu_{\hat{G}}(\hat{G}) & =\int_{\hat{G}} l d \mu_{\hat{G}}(\chi) \\
& =\int_{\hat{G}} \hat{f}(\chi) d \mu_{\hat{G}}(\chi) \\
& =\int_{\hat{G}} \hat{f}(x) x(0) d \mu_{\hat{G}}(x) \\
& =f(0)=1 .
\end{aligned}
$$

49: EXAMPLE Take $G=Z / n Z$ and let μ_{G} be the counting measure (thus here $\left.\mu_{G}(G)=n\right)-$ then $\mu_{\hat{G}}$ is the counting measure divided by n and for $f \in \operatorname{INV}(G)$,

$$
f(k)=\frac{1}{n} \sum_{m=0}^{n-1} \hat{f}(m) \exp \left(-2 \pi \sqrt{-1} \frac{k m}{n}\right),
$$

where

$$
\hat{f}(m)=\sum_{k=0}^{n-1} f(k) \exp \left(2 \pi \sqrt{-1} \frac{\mathrm{~km}}{\mathrm{n}}\right)
$$

50: EXAMPLE Take $G=R$ and let $\mu_{G}=\alpha d x(\alpha>0)$, hence $\mu_{\hat{G}}=\beta d t(\beta>0)$
and we claim that

$$
1=2 \alpha \beta \pi .
$$

To establish this, recall first that the formalism is

$$
\left[\begin{array}{l}
\hat{f}(t)=\int_{-\infty}^{\infty} f(x) e^{\sqrt{-I} t x_{\alpha d x}} \\
f(x)=\int_{-\infty}^{\infty} \hat{f}(t) e^{-\sqrt{-I} t x_{\beta d t}}
\end{array}\right.
$$

Let $f(x)=e^{-|x|}-$ then

$$
\frac{2 \alpha}{1+t^{2}}=\int_{-\infty}^{\infty} e^{-|x|} e^{\sqrt{-1} t x_{d d x}}
$$

so $f \in \operatorname{INV}(G)$, thus

$$
\begin{aligned}
e^{-|x|} & =\int_{-\infty}^{\infty} \frac{2 \alpha}{1+t^{2}} e^{-\sqrt{-1} t x_{\beta d t}} \\
& =2 \alpha \beta \int_{-\infty}^{\infty} \frac{e^{-\sqrt{-1} t x}}{1+t^{2}} d t
\end{aligned}
$$

Now put $\mathrm{x}=0$:

$$
1=2 \alpha \beta \int_{-\infty}^{\infty} \frac{d t}{1+t^{2}}=2 \alpha \beta \pi,
$$

as claimed. One choice is to take

$$
\alpha=\beta=\frac{1}{\sqrt{2 \pi}},
$$

the upshot then being that the Haar measure of $[0,1]$ is not 1 but rather $\frac{1}{\sqrt{2 \pi}}$.

51: NOTATION Given $f \in L^{I}(R)$, let

$$
F_{R} f(t)=\int_{-\infty}^{\infty} f(x) e^{2 \pi \sqrt{-1} t x_{d x}}
$$

Therefore

$$
\begin{aligned}
F_{R^{f}}(t) & =\sqrt{2 \pi} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{2 \pi \sqrt{-1} t x_{d x}} \\
& =\sqrt{2 \pi} \hat{f}(2 \pi t)
\end{aligned}
$$

52: STANDARDIZATION ($G=R$) Let $f \in \operatorname{INV}(R)$-- then

$$
F_{R} F_{R} f(x)=f(-x)
$$

[In fact,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}} \mathrm{~F}_{\mathrm{R}} \mathrm{f}(\mathrm{x})=\int_{-\infty}^{\infty} \mathrm{F}_{\mathrm{R}} \mathrm{f}(\mathrm{t}) \mathrm{e}^{2 \pi \sqrt{-1} t x_{d t}} \\
&=\int_{-\infty}^{\infty} \sqrt{2 \pi} \hat{\mathrm{f}}(2 \pi \mathrm{t}) \mathrm{e}^{2 \pi \sqrt{-1}} \mathrm{tx} \\
& \mathrm{dt} \\
&=\sqrt{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{f}}(\mathrm{u}) e^{\sqrt{-1} u x} \frac{d u}{2 \pi} \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\mathrm{f}}(\mathrm{t}) \mathrm{e}^{\sqrt{-1} t \mathrm{x}_{\mathrm{dt}}} \\
&=\mathrm{f}(-\mathrm{x}) \cdot]
\end{aligned}
$$

Fourier inversion in the plane takes the form

$$
\left[\begin{array}{l}
\hat{\mathrm{f}}\left(\mathrm{t}_{1}, t_{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) e^{\sqrt{-1}\left(t_{1} x_{1}+t_{2} x_{2}\right)} d x_{1} d x_{2} \\
f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}\left(t_{1}, t_{2}\right) e^{-\sqrt{-1}\left(t_{1} x_{1}+t_{2} x_{2}\right)} d t_{1} d t_{2}
\end{array}\right.
$$

One may then introduce

$$
F_{R^{2}} f\left(t_{1}, t_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) e^{2 \pi \sqrt{-1}\left(t_{1} x_{1}+t_{2} x_{2}\right)} d x_{1} d x_{2}
$$

$$
=2 \pi \hat{f}\left(2 \pi t_{1}, 2 \pi t_{2}\right)
$$

and, proceeding as above, find that

$$
\mathrm{F}_{\mathrm{R}^{2} \mathrm{~F}_{2^{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{f}\left(-\mathrm{x}_{1},-\mathrm{x}_{2}\right) .}
$$

Now identify R^{2} with C and recall that $\operatorname{tr}_{C / R}(z)=z+\bar{z}$. Write

$$
\left.\right|_{-} \begin{aligned}
& w=a+\sqrt{-1} b \\
& z=x+\sqrt{-1} y
\end{aligned}
$$

Then

$$
w z+\overline{w z}=2 \operatorname{Re}(w z)=2(a x-b y)
$$

Therefore

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{2 \sqrt{-I}(a x-b y)} d x d y \\
=\hat{f}(2 a,-2 b)
\end{gathered}
$$

[Note: Let $X_{w}(z)=\exp (\sqrt{-1}(w z+\overline{w z}))-$ then X_{w} is a unitary character of C and for any $x \in \hat{C}$, there is a unique $w \in C$ such that $x=x_{w}$, hence $\hat{C} \approx C$.]

53: NOTATION Given $f \in L^{1}\left(R^{2}\right)$, let

$$
\begin{aligned}
F_{C} f(w) & =F_{C^{f}(a, b)} \\
& =2 F_{R^{2}} f(2 a,-2 b) \\
& =4 \pi \hat{f}(4 \pi a,-4 \pi b) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{4 \pi \sqrt{-1}(a x-b y)} 2 d x d y .
\end{aligned}
$$

54: STANDARDIZATION ($\mathrm{G}=\mathrm{C}$) Let $\mathrm{f} \in \operatorname{INV}(\mathrm{C})$ - then

$$
F_{C} F_{C}^{f(x, y)}=f(-x,-y) .
$$

[In fact,

$$
\begin{aligned}
F_{C} F_{C} f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{C^{f}}(a, b) e^{4 \pi \sqrt{-1}(a x-b y)} 2 d a d b \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 4 \pi \hat{f}(4 \pi a,-4 \pi b) e^{4 \pi \sqrt{-1}(a x-b y)} 2 d a d b \\
& =\frac{4 \pi}{(4 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(u,-v) e^{\sqrt{-1}(u x-v y)} 2 d u d v \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(u,-v) e^{\sqrt{-1}(u x-v y)} d u d v \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(u,-v) e^{-\sqrt{-1}(-u x+v y)} d u d v \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(u, v) e^{-\sqrt{-1}(-u x-v y)} d u d v \\
& =f(-x,-y) .]
\end{aligned}
$$

55: PLANCHEREL THEOREM The Fourier transform restricted to L^{1} (G) $\cap L^{2}$ (G) is an isometry (with respect to L^{2} norms) onto a dense linear subspace of $L^{2}(\hat{G})$, hence can be extended uniquely to an isometric isamorphism $L^{2}(G) \rightarrow L^{2}(\hat{G})$.

56: PARSEVAL FORMULA $\forall f, g \in L^{2}(G)$,

$$
\int_{G} f(x) \overline{g(x)} d_{G}(x)=\int_{\hat{G}} \hat{f}(x) \overline{\hat{g}(x)} d_{\hat{G}}(x) .
$$

57: N.B. In both of these results, the Haar measure on \hat{G} is per Fourier inversion.
§8. ADDITIVE p-ADIC CHARACTER THEORY

1: FACT Every proper closed subgroup of T is finite.

Suppose that G is compact abelian and totally disconnected.

2: LEMMA If $X \in \hat{G}$, then the image $X(G)$ is a finite subgroup of T. PROOF Ker χ is closed and

$$
\chi(G) \approx G / \operatorname{Ker} x .
$$

But the quotient G/Ker X is 0 -dimensional, hence totally disconnected. Therefore $X(G)$ is totally disconnected. Since T is connected, it follows that $T \neq X(G)$, thus $\chi(G)$ is finite.

3: N.B. The torsion of R / Z is Q / Z, so X factors through the inclusion $Q / Z \rightarrow R / Z$, i.e., $X(G) \subset Q / Z$.

The foregoing applies in particular to $G=Z_{p}$.
4: LEMMA Every character of Q_{p} is unitary.
PROOF This is because

$$
Q_{p}=\bigcup_{n \in Z} p^{n_{2}} p^{\prime}
$$

where the $p^{n} Z_{p}$ are compact, thus $57, \# 7$ is applicable.

5: If $x \in \hat{Q}_{p}$ is nontrivial, then there exists an $n \in Z$ such that $\chi \equiv 1$ on $\mathrm{p}^{\mathrm{n}} \mathrm{Z}_{\mathrm{p}}$ but $\mathrm{x} \neq 1$ on $\mathrm{p}^{\mathrm{n}-\mathrm{I}_{\mathrm{p}}}$.

PROOF Consider a ball B of radius $\frac{1}{2}$ about 1 in C^{x} - then the only subgroup of C^{x} contained in B is the trivial subgroup and, by continuity, $\chi\left(p^{n} Z_{p}\right)$ must be
inside B for all sufficiently large n, thus must be identically 1 there.

6: DEFINITION The conductor con X of a nontrivial $X \in \hat{Q}_{p}$ is the largest subgroup $p^{n} Z_{p}$ on which χ is trivial (and n is the minimal integer with this property).

A typical $x \neq 0$ of Q_{p} has the form

$$
\begin{aligned}
x & =\sum_{n=v(x)}^{\infty} a_{n} p^{n}\left(a_{n} \in A, v(x) \in Z\right) \\
& =f(x)+[x] .
\end{aligned}
$$

Here the fractional part $f(x)$ of x is defined by the prescription

$$
f(x)=\left.\right|_{n=v(x)} ^{-1} a_{n} p^{n} \text { if } v(x)<0
$$

and the integral part [x] of x is defined by the prescription

$$
[x]=\sum_{n=0}^{\infty} a_{n} p^{n},
$$

with $\mathfrak{f}(0)=0,[0]=0$ by convention.

7: N.B.

$$
\mathfrak{f}(x) \in Z\left[\frac{1}{p}\right] \subset Q,
$$

where

$$
\mathrm{Z}\left[\frac{1}{\mathrm{p}}\right]=\left\{\frac{\mathrm{n}}{\mathrm{p}}: n \in \mathrm{Z}, \mathrm{k} \in \mathrm{Z}\right\},
$$

while $[x] \in Z_{p}$.

8: OBSERVATION

$$
\begin{aligned}
0 \leq f(x) & =\sum_{1 \leq j \leq-v(x)} \frac{a-j}{p^{j}} \\
& <(p-1) \sum_{j=1}^{\infty} \frac{1}{p^{j}}=1 \\
\Rightarrow & \\
& f(x) \in\left[0,1\left[\cap Z\left[\frac{1}{p}\right] .\right.\right.
\end{aligned}
$$

Let $\mu_{p^{\infty}}$ stand for the group of roots of unity in C^{x} having order a power of there
p, thus μ_{p} is a p-group and ${ }_{\wedge}$ is an increasing sequence of cyclic groups

$$
\left[\begin{array}{c}
\mu_{p} \subset \mu_{p^{2}} \subset \cdots \subset \mu_{p^{k}} \subset \cdots \\
\mu_{p}^{\infty}=\underset{k \geq 0}{U} \mu_{p^{\prime}}
\end{array}\right.
$$

where

$$
\mu_{p^{k}}=\left\{z \in C^{x}: z^{p^{k}}=1\right\}
$$

9: REMARK Denote by μ the group of all roots of unity in C^{x}, hence

$$
\mu=\underset{m \geq 1}{u} \mu_{m^{\prime}} \mu_{m}=\left\{z \in C^{\times}: z^{m}=1\right\}
$$

Then μ is an abelian torsion group and $\mu_{p^{\infty}}$ is the p-Sylow subgroup of μ, i.e., the maximal p-subgroup of μ.

Put

$$
X_{p}(x)=\exp (2 \pi \sqrt{-1} f(x)) \quad\left(x \in Q_{p}\right)
$$

Then

$$
X_{p}: Q_{p} \rightarrow T
$$

and $Z_{p} \subset \operatorname{Ker} X_{p}$.

10: EXAMPLE Suppose that $v(x)=-1$, so $x=\frac{k}{p}+y$ with $0<k \leq p-1$ and $y \in Z_{p}:$

$$
x_{p}(x)=\exp \left(2 \pi \sqrt{-1} \frac{k}{p}\right)=\zeta^{k},
$$

where $\zeta=\exp (2 \pi \sqrt{-1} / \mathrm{p})$ is a primitive $\mathrm{p}^{\text {th }}$ root of unity.

11: LEMMA X_{p} is a unitary character.
PROOF Given $x, y \in Q_{p}$, write

$$
\begin{aligned}
f(x+y) & -f(x)-f(y) \\
= & x+y-[x+y]-(x-[x])-(y-[y]) \\
& =[x]+[y]-[x+y] \in Z_{p} .
\end{aligned}
$$

But at the same time

$$
\mathfrak{f}(x+y)-f(x)-f(y) \in Z\left[\frac{1}{p}\right]
$$

Thus

$$
\mathfrak{f}(x+y)-f(x)-f(y) \in Z\left[\frac{1}{\underline{p}}\right] \cap Z_{p}=Z
$$

and so

$$
\exp (2 \pi \sqrt{-1}(f(x+y)-f(x)-f(y))=1
$$

or still,

$$
x_{p}(x+y)=x_{p}(x) x_{p}(y)
$$

Therefore $X_{p}: Q_{p} \rightarrow T$ is a homomorphism. As for continuity, it suffices to check this at 0 , matters then being clear (since X_{p} is trivial in a neighborhood of 0) (Z_{p} is open and $0 \in Z_{p}$).

12: LEMMA The kernel of χ_{p} is Z_{p}.
[A priori, the kernel of X_{p} consists of those $x \in Q_{p}$ such that $f(x) \in Z$. Therefore

$$
\left.\operatorname{con} X_{p}=Z_{p} \cdot\right]
$$

13: LEMMA The image of χ_{p} is $\mu_{p^{\infty}}$.
[A priori, the image of x_{p} consists of the complex numbers of the form

$$
\exp \left(2 \pi \sqrt{-1} \frac{k}{p^{m}}\right)=\exp \left(2 \pi \sqrt{-1} / p^{m}\right)^{k}
$$

Since $\exp \left(2 \pi \sqrt{-1} / p^{m}\right)$ is a root of unity of order p^{m}, these roots generate $\mu_{p^{\infty}}$ as m ranges over the positive integers.]

14: SCHOLIUM X_{p} implements an isomorphism

$$
Q_{p} / Z_{p} \approx \mu_{p^{\infty}}
$$

15: REMARK

$$
x \in p^{-k} z_{p} \Leftrightarrow p^{k} x \in Z_{p}
$$

$$
\begin{aligned}
& \Leftrightarrow x_{p}\left(p^{k} x\right)=1 \\
& \Leftrightarrow x_{p}(x)^{p^{k}}=1 \\
& \Leftrightarrow x_{p}(x) \in \mu_{p} k^{\theta}
\end{aligned}
$$

16: RAPPEU Let p be a prime -- then a group is p-primary if every element has order a power of p.

17: RAPPEL Every abelian torsion group G is a direct sum of its p-primary subgroups G_{p}.
[Note: The p-primary component G_{p} is the p-Sylow subgroup of G.]

18: NOTATION $Z\left(p^{\infty}\right)$ is the $p-p r i m a r y ~ c o m p o n e n t ~ o f ~ Q / Z . ~$

Therefore

$$
Q / Z=\underset{p}{\oplus} Z\left(p^{\infty}\right)
$$

19: LEMMA $Z\left(p^{\infty}\right)$ is isomorphic to $\mu_{p^{\infty}}$.
[$Z\left(p^{\infty}\right)$ is generated by the $1 / p^{n}$ in Q / Z.]

Therefore

$$
\mathrm{Q} / Z \approx \underset{\mathrm{p}}{\oplus} \mu_{\mathrm{p}}^{\infty} \approx \underset{\mathrm{p}}{\oplus} \mathrm{Qp}_{\mathrm{p}} / Z_{\mathrm{p}} .
$$

[Note: Consequently,

$$
\text { End } \left.(Q / Z) \approx \underset{p}{\operatorname{End}\left(\oplus Q_{p}\right.} / Z_{p}\right)
$$

$$
\begin{aligned}
& \approx \prod_{p} \operatorname{End}\left(Q_{p} / Z_{p}\right) \\
& \left.\approx \prod_{p} Z_{p} \cdot\right]
\end{aligned}
$$

20: REMARK \hat{Z}_{p} is isomorphic to $\mu_{p^{\infty}}$ (cf. \#26 infra).

Given $t \in Q_{p}$, let L_{t} be left multiplication by t and put $X_{p, t}=X_{p} \circ L_{t}-$ then $X_{p, t}$ is continuous and $\forall x \in Q_{p}$,

$$
x_{p, t}(x)=x_{p}(t x)
$$

[Note: Trivially, $x_{p, 0} \equiv 1$. And $\forall t \neq 0$,

$$
\text { on } x_{p, t}=p^{-v(t)} Z_{p}
$$

Proof:

$$
\begin{aligned}
x \in \operatorname{con} x_{p, t} & \Leftrightarrow t x \in Z_{p} \\
& \Leftrightarrow|t x|_{p} \leq 1 \\
& \Leftrightarrow|x|_{p} \leq \frac{1}{|t|_{p}}=p^{v(t)} \\
& \left.\Leftrightarrow x \in p^{-v(t)} Z_{p} \cdot\right]
\end{aligned}
$$

Next

$$
\begin{aligned}
x_{p, t}(x+y) & =x_{p}(t(x+y)) \\
& =x_{p}(t x+t y) \\
& =x_{p}(t x) x_{p}(t y)
\end{aligned}
$$

$$
=x_{p, t}(x) x_{p, t}(y)
$$

Therefore $X_{p, t} \in \hat{Q}_{p}$.
Next

$$
\begin{aligned}
x_{p, t+s}(x) & =x_{p}((t+s) x) \\
& =x_{p}(t x+s x) \\
& =x_{p}(t x) x_{p}(s x) \\
& =x_{p, t}(x) x_{p, s}(x)
\end{aligned}
$$

Therefore the arrow $E_{p}: Q_{p} \rightarrow \hat{Q}_{p}$ that sends t to $x_{p, t}$ is a hamomorphism.

21: LEMMA If $t \neq s$, then $X_{p, t} \neq X_{p, s}$.
PROOF If to the contrary, $x_{p, t}=x_{p, s^{\prime}}$ then $\forall x \in Q_{p} x_{p}(t x)=x_{p}(s x)$ or still, $\forall x \in Q_{p}, X_{p}((t-s) x)=1$. But $L_{t-s}: Q_{p} \rightarrow Q_{p}$ is an automorphism, hence X_{p} is trivial, which it isn't.

22: LEMMA The set

$$
\Xi_{p}\left(Q_{p}\right)=\left\{x_{p, t}: t \in Q_{p}\right\}
$$

is dense in \hat{Q}_{p}.
PROOF Let H be the closure in \hat{Q}_{p} of the $X_{p, t}$. Consider the quotient \hat{Q}_{p} / H and to get a contradiction, assume that $H \neq \hat{Q}_{p}$, thus that there is a nontrivial $\xi \in \hat{\hat{Q}}_{p} \vee$ By definition, H^{\perp} is computed in $\hat{\hat{Q}}_{\mathrm{p}}$, which by Pontryagin duality, is which is trivial on H .
identified with Q_{p}, so spelled out

$$
H^{\perp}=\left\{x \in Q_{p}:{e v_{Q}}^{p}(x) \mid H=1\right\}
$$

Accordingly, for some $x, \xi=e_{Q_{p}}(x)$, hence $\forall t$,

$$
\begin{aligned}
\xi\left(x_{p, t}\right) & =\operatorname{ev}_{Q_{p}}(x)\left(x_{p, t}\right) \\
& =x_{p, t}(x)=x_{p}(t x)=1,
\end{aligned}
$$

which is possible only if $\mathrm{x}=0$ and this implies that ξ is trivial.

23: LEMMA The arrows

$$
\left[\begin{array}{l}
Q_{p} \rightarrow \Xi_{p}\left(Q_{p}\right) \\
\Xi_{p}\left(Q_{p}\right) \rightarrow Q_{p}
\end{array}\right.
$$

are continuous.

Therefore $E_{p}\left(Q_{p}\right)$ is a locally compact subgroup of \hat{Q}_{p}. But a locally compact subgroup of a locally compact group is closed. Therefore $E_{p}\left(Q_{p}\right)=\hat{Q}_{p}$.

In summary:
24: THEOREM \hat{Q}_{p} is topologically isomorphic to Q_{p} (via the arrow $\Xi_{p}: Q_{p} \rightarrow$ \hat{Q}_{p}).

$$
\text { 25: LEMMA Fix } t \text {-- then } \chi_{p, t} \mid Z_{p}=1 \text { iff } t \in Z_{p}
$$

PROOF Recall that the kernel of X_{p} is Z_{p}.

$$
\text { - } t \in Z_{p^{\prime}} x \in Z_{p} \Rightarrow t x \in Z_{p} \Rightarrow x_{p}(t x)=1 \Rightarrow x_{p, t} \mid Z_{p}=1
$$

- $x_{p, t} \mid Z_{p}=1 \Rightarrow x_{p, t}(1)=1 \Rightarrow x_{p}(t)=1 \Rightarrow t \in Z_{p}$.

26: APPLICATION \hat{Z}_{p} is isomorphic to $\mu_{p^{\infty}}$
[\hat{Z}_{p} can be computed as $\hat{Q}_{p} / Z_{p}^{\perp}$. But Z_{p}^{\perp}, when viewed as a subset of Q_{p}, consists of those t such that $X_{p, t} \mid Z_{p}=1$. Therefore

$$
\left.\hat{Z}_{p} \approx \hat{Q}_{p} / Z_{p} \approx Q_{p} / Z_{p} \approx \mu_{p^{\infty}}\right]
$$

27: NOTATION Let

$$
x_{\infty}(x)=\exp (-2 \pi \sqrt{-1} x) \quad(x \in R)
$$

28: PRODUCT PRINCIPLE $\forall \mathrm{x} \in \mathrm{Q}$,

$$
\prod_{p \leq \infty} x_{p}(x)=1
$$

PROOF Take x positive -- then there exist primes p_{1}, \ldots, p_{n} such that x admits a representation

$$
x=\frac{N_{1}}{\alpha_{1}}+\frac{N_{2}}{p_{1}}+\cdots+\frac{N_{n}}{\alpha_{2}}+M,
$$

where the α_{k} are positive integers, the N_{k} are positive integers ($1 \leq N_{k}<p_{k}-1$), and $M \in Z$. Appending a subscript to f, we have

$$
\mathfrak{f}_{p_{k}}(x)=\frac{N_{k}}{\alpha_{k}}, f_{p}(x)=0\left(p \neq p_{k}, k=1,2, \ldots, n\right)
$$

Therefore

$$
\prod_{p<\infty} x_{p}(x)=\prod_{1 \leq k \leq n} x_{p_{k}}(x)
$$

$$
\begin{aligned}
& =\prod_{I \leq k \leq n} \exp \left(2 \pi \sqrt{-1} f_{p_{k}}(x)\right) \\
& =\exp \left(2 \pi \sqrt{-1} \sum_{k=1}^{n} f_{p_{k}}(x)\right) \\
& =\exp (2 \pi \sqrt{-1}(x-M)) \\
& =\exp (2 \pi \sqrt{-1} \mathrm{x}) \\
\Rightarrow \quad \prod_{\mathrm{p} \leq \infty} x_{p}(x) & =\prod_{p<\infty} x_{p}(x) x_{\infty}(x) \\
& =\exp (2 \pi \sqrt{-1} x) \exp (-2 \pi \sqrt{-1} x) \\
& =1
\end{aligned}
$$

APPENDIX

Let K be a finite extension of Q_{p}.
1: THEOREM The topological groups K and \widehat{K} are topologically isomorphic. [Put

$$
\begin{aligned}
x_{K, p}(a) & =\exp \left(2 \pi \sqrt{-1} f\left(\operatorname{tr}_{K / Q}(a)\right)\right) \\
& =x_{p}\left(\operatorname{tr}_{K / Q_{p}}(a)\right)
\end{aligned}
$$

and given $b \in K$, put

$$
x_{K, p, b}(a)=x_{K, p}^{(a b)}
$$

Proceed from here as above.]

2: REMARK Every character of K is unitary.

3: LEMMA

$$
\left[\begin{array}{l}
a \in R \Rightarrow \operatorname{tr}_{K / Q_{p}}(a) \in Z_{p} \\
a \in P \Rightarrow \operatorname{tr}_{K / Q_{p}}(a) \in p Z_{p} .
\end{array}\right.
$$

4: DEFTNITION The differential of K is the set

$$
\Delta_{K}=\left\{b \in K: \operatorname{tr}_{K / Q_{p}}(R b) \subset Z_{p}\right\}
$$

5: LEMMA A_{K} is a proper R-submodule of K containing R.

6: LEMMA There exists a unique nonnegative integer d-- the differential exponent of K -- characterized by the condition that

$$
\pi^{-d_{R}}=\Delta_{K}
$$

[This follows from the theory of "fractional ideals" (details omitted).]
[Note: $X_{K, p}$ is trivial on $\pi^{-\mathrm{d}} \mathrm{R}$ but is nontrivial on $\pi^{-\mathrm{d}-\mathrm{l}}$ R.]

7: LEMMA Let e be the ramification index of K over Q_{p} (cf. $\S 5, \# 17$) -then

$$
a \in P^{-e+1} \Rightarrow \operatorname{tr}_{K / Q_{p}}(a) \in Z_{p} .
$$

PROOF Let

$$
\mathrm{a} \in \mathrm{P}^{-\mathrm{e}+1}=\pi^{-\mathrm{e}+1} \mathrm{R}=\pi^{-\mathrm{e}}(\pi \mathrm{R})=\pi^{-\mathrm{e}} \mathrm{P},
$$

so $a=\pi^{-e} b(b \in P)$. Write $p=\pi^{e} u$ and consider pa:

$$
p a=\pi^{e} u \pi^{-e} b=u b
$$

But

$$
\begin{gathered}
|u|=1,|b|<1 \Rightarrow|u b|<1 \\
\Rightarrow u b \in p \\
\Rightarrow \operatorname{tr}_{K / Q_{p}}(u b) \in p Z_{p} \\
=>\operatorname{tr}_{K / Q_{p}}(p a) \in p Z_{p} \\
\Rightarrow p \operatorname{tr}_{K / Q_{p}}(a) \in p Z_{p} \Rightarrow \operatorname{tr}_{K / Q_{p}} \in Z_{p} .
\end{gathered}
$$

8: APPLICATION

$$
\mathrm{d} \geq \mathrm{e}-1
$$

[It suffices to show that

$$
\mathrm{P}^{-\mathrm{e}+1} \subset \Delta_{\mathrm{K}}\left(\equiv \pi^{-d_{R}}\right) .
$$

Thus let $a \in P^{-e+1}$, say $a=\pi{ }^{e} b(b \in P)$, and let $r \in R-$ then the claim is that

$$
\operatorname{tr}_{K / Q_{p}}(a r) \in Z_{p}
$$

But

$$
a r=\pi^{-e_{b r}} \in \pi^{e_{P}} \quad(|b r|<1)
$$

or still,

$$
\left.\operatorname{ar} \in \mathrm{P}^{-e+1} \Rightarrow \operatorname{tr}_{\mathrm{K} / Q_{\mathrm{p}}}(a r) \in Z_{\mathrm{p}} .\right]
$$

9: REMARK Therefore $d=0 \Rightarrow e=1$, hence in this situation, K is unramified.
[Note: There is also a converse, viz. if K is unramified, then $d=0$.]

10: N.B. It can be shown that

$$
\operatorname{tr}_{K / Q_{p}}(R)=Z_{p}
$$

iff $d=e-1$.

11: CRITERION Fix $b \in K-$ - then

$$
b \in \Delta_{K} \Leftrightarrow \forall a \in R, x_{K, p}(a b)=1
$$

PROOF

$$
\begin{aligned}
\bullet & a \in R, b \in \Lambda_{K} \Rightarrow a b \in \Lambda_{K} \\
\Rightarrow & \operatorname{tr}_{K / Q_{p}}(a b) \in Z_{p} \\
\Rightarrow & \\
& x_{K, p}(a b)=x_{p}\left(\operatorname{tr}_{K / Q_{p}}(a b)\right)=1 . \\
\bullet & \forall a \in R, x_{K, p}(a b)=1 \\
\Rightarrow & \forall a \in R, \operatorname{tr}_{K / Q_{p}}(a b) \in Z_{p} \Rightarrow b \in \Lambda_{K} .
\end{aligned}
$$

Normalize the Haar measure on K by the condition

$$
\mu_{K}(R)=\delta_{R} d a=q^{-d / 2}
$$

Let X_{R} be the characteristic function of $R-$ then

$$
\int_{K} X_{R}(a) x_{K, p}(a b) d a=\int_{R} X_{K, p}(a b) d a
$$

- $b \in \Delta_{K} \Rightarrow X_{K, p}(a b)=1 \quad(\forall a \in R)$

$$
\Rightarrow \int_{R} X_{K, p}(a b) d a=\mu_{K}(R)=q^{-d / 2} .
$$

- $b \notin \Delta_{K} \Rightarrow X_{K, p}(a b) \neq 1 \quad(\exists a \in R)$
$\Rightarrow \int_{R} X_{K, p}(a b) d a=0$.
Consequently, as a function of b,

$$
\int_{R} x_{K, p}(a b) d a=q^{-d / 2} x_{\Lambda_{K}}(b)
$$

$X_{\Delta_{K}}$ the characteristic function of Λ_{K}.

12: LEMMA

$$
\left[\pi^{-d_{R}}: R\right]=q^{d} .
$$

Therefore

$$
\begin{aligned}
\mu_{K}\left(\Delta_{K}\right) & =\mu_{K}\left(\pi^{-d_{R}}\right) \\
& =q^{d} \mu_{K}(R) \\
& =q^{d} q^{-d / 2}=q^{d / 2} .
\end{aligned}
$$

13: LEMMA $\forall a \in K$,

$$
s_{K} q^{-d / 2}{x_{\Delta_{K}}}^{(b) x_{K, p}(a b) d b=x_{R}(a)}
$$

PROOF The left hand side reduces to

$$
q^{-d / 2} \int_{\Delta_{K}} X_{K, p}(a b) d b
$$

and there are two possibilities.

$$
\begin{aligned}
& \bullet a \in R \Rightarrow a b \in \Delta_{K} \quad\left(\forall b \in \Delta_{K}\right) \\
& \Rightarrow \operatorname{tr}_{K / Q_{p}}(a b) \in Z_{p} \Rightarrow \chi_{K, p}(a b)=1 \\
& \Rightarrow \\
& q^{-d / 2} \int_{\Delta_{K}} x_{K, p}(a b) d b \\
&=q^{-d / 2} \mu_{K}\left(\Delta_{K}\right)=q^{-d / 2_{q} d / 2} \\
&=1 .
\end{aligned}
$$

- $a \notin R: X_{K, p}(a b) \neq 1 \quad\left(\exists b \in \Delta_{K}\right)$
=>

$$
q^{-d / 2} s_{\Delta_{K}} X_{K, p}(a b) d b=0
$$

To detail the second point of this proof, work with the normalized absolute value (cf. §6, \#18) and recall that $|\pi|_{\mathrm{K}}=\frac{1}{\mathrm{q}}$ (cf. §5, \#21). Accordingly,

$$
x \in \pi^{n} R \Leftrightarrow|x|_{K} \leq q^{-n}
$$

Fix a $\notin R-$ then the claim is that $b \rightarrow X_{K, p}(a b)\left(b \in \Delta_{K}\right)$ is nontrivial. For

$$
x_{K, p}(a b)=1 \Leftrightarrow a b \in \pi^{-d_{R}}
$$

17.

$$
\begin{aligned}
& \Leftrightarrow|a b|_{K} \leq q^{d} \\
& \Leftrightarrow|a|_{K}|b|_{K} \leq q^{d} \\
& \Leftrightarrow|b|_{K} \leq \frac{q^{d}}{|a|_{K}}=q^{d+v(a)} .
\end{aligned}
$$

But

$$
\begin{aligned}
a \notin R \Rightarrow v(a) & <0 \\
\Rightarrow-v(a) & >0 \Rightarrow-d-v(a)>-d \\
\Rightarrow & \pi^{-d-v(a)} R \subset \pi^{-d} R,
\end{aligned}
$$

a proper containment.
§9. MULTIPLICATIVE p-ADIC CHARACTER THEORY

Recall that

$$
Q_{p}^{x} \approx Z \times Z_{p^{\prime}}^{x}
$$

the abstract reflection of the fact that for every $x \in Q_{p}^{x}$, there is a unique $v(x) \in Z$ and a unique $u(x) \in Z_{p}^{x}$ such that $x=p^{v(x)} u(x)$. Therefore

$$
\widehat{\left(Q_{p}^{x}\right)} \approx \hat{Z} \times \widehat{\left(Z_{p}^{x}\right)} \approx T \times \widehat{\left(Z_{p}^{x}\right)}
$$

1: N.B. A character of Q_{p} is necessarily unitary (cf. §8, \#4) but this is definitely not the case for Q_{p}^{x} (cf. infra).

2: DEFINITION A character $X: Q_{p}^{x} \rightarrow C^{x}$ is unramified if it is trivial on Z_{p}^{x}.

3: EXAMPLE Given any complex number s, the arrow $x \rightarrow|x|_{p}^{s}$ is an unramified character of Q_{p}.

4: LEMMA If $X: Q_{p}^{\times} \rightarrow C^{\times}$is an unramified character, then there exists a complex number s such that $x=|\cdot|_{p}^{s}$.

PROOF Such a x factors through the projection $Q_{p}^{x} \rightarrow p^{Z}$ defined by $x \rightarrow|x|_{p}$, hence gives rise to a character $\tilde{x}: p^{Z} \rightarrow c^{x}$ which is completely determined by its value on p, say $\tilde{x}(p)=p^{s}$ for the complex number

$$
s=\frac{\log \tilde{x}(p)}{\log p}
$$

itself determined up to an integral multiple of

$$
\frac{2 \pi \sqrt{-I}}{\log p}
$$

Therefore

$$
\begin{aligned}
x(x) & =\tilde{x}\left(|x|_{p}\right) \\
& =\tilde{x}\left(p^{-v(x)}\right) \\
& =\tilde{x}(p))^{-v(x)} \\
& =\left(p^{s}\right)^{-v(x)}=\left(p^{-v(x)}\right)^{s}=|x|_{p}^{s} .
\end{aligned}
$$

[Note: For the record,

$$
\begin{aligned}
|x|_{p}^{2 \pi \sqrt{-1} / \log p} & =\left(p^{-v(x)}\right)^{2 \pi \sqrt{-1} / \log p} \\
& =\left(e^{-v(x) \log p}\right)^{2 \pi \sqrt{-1} / \log p} \\
& \left.=e^{-v(x) 2 \pi \sqrt{-1}}=1 .\right]
\end{aligned}
$$

Suppose that $x: Q_{p}^{x} \rightarrow C^{x}$ is a character -- then x can be written as

$$
x(x)=|x|_{p \underline{x}}^{s}(u(x))
$$

where $s \in C$ and $\underline{x} \equiv \chi \mid Z_{p}^{x} \in \widehat{\left(Z_{p}^{x}\right)}$, thus x is unitary iff s is pure imaginary.
5: LEMMA If $\underline{x} \in \widehat{\left(Z_{p}^{x}\right)}$ is nontrivial, then there is an $n \in N$ such that $\underline{x} \equiv 1$ on $U_{\mathrm{p}, \mathrm{n}}$ but $x \not \equiv 1$ on $\mathrm{U}_{\mathrm{p}, \mathrm{n}-1}$ (cf. $\S 8, \# 5$).

Assume again that $X: Q_{p}^{x} \rightarrow C^{x}$ is a character.

6: DEFINITION x is ramified of degree $n \geq 1$ if $\left.\underline{x}\right|_{U_{p, n}} \equiv 1$ and $\underline{x} \mid U_{p, n-1} \not \equiv 1$.

7: DEFINITION The conductor con x of x is Z_{p}^{\times}if x is unramified and $U_{p, n}$ if X is ramified of degree n.

8: RAPPEL If G is a finite abelian group, then the number of unitary characters of G is card G.

9: LEMMA

$$
\left.\left[Z_{p}^{x}: U_{p, 1}\right]=p-1 \quad \text { (cf. } \S 4, \# 40\right)
$$

and

$$
\left[U_{p, 1}: U_{p, n}\right]=p^{n-1}
$$

If X is ramified of degree n, then \underline{x} can be viewed as a unitary character of $Z_{p}^{x} / U_{p, n}$. But the quotient $Z_{p}^{x} / U_{p, n}$ is a finite abelian group, thus has

$$
\operatorname{card} Z_{p}^{\times} / U_{p, n}=\left[Z_{p}^{\times}: U_{p, n}\right]
$$

unitary characters. And

$$
\begin{aligned}
{\left[Z_{p}^{x}: U_{p, n}\right] } & =\left[Z_{p}^{x}: U_{p, 1}\right] \cdot\left[U_{p, 1}: U_{p, n}\right] \\
& =(p-1) p^{n-1}
\end{aligned}
$$

this being the number of unitary characters of Z_{p}^{x} of degree $\leq n$. Therefore the
group Z_{p}^{\times}has $p-2$ unitary characters of degree 1 and for $n \geq 2$, the group Z_{p}^{\times}has

$$
(p-1) p^{n-1}-(p-1) p^{n-2}=p^{n-2}(p-1)^{2}
$$

unitary characters of degree n.
10: LEMMA Let $x \in \widehat{Q_{p}^{x}}$-- then

$$
x(x)=|x|_{p}^{\sqrt{-1} t} \underline{x}(u(x)),
$$

where t is real and

$$
-(\pi / \log p)<t \leq \pi / \log p
$$

APPENDIX

Suppose that $p \neq 2$, let $\tau \in Q_{p}^{x}-\left(Q_{p}^{\times}\right)^{2}$, and form the quadratic extension

$$
Q_{p}(\tau)=\left\{x+y \sqrt{\tau}: x, y \in Q_{p}\right\}
$$

1: NOTATION Let $Q_{p, \tau}$ be the set of points of the form $x^{2}-\tau y^{2}(x \neq 0$, $y \neq 0)$.

2: IEMMA $Q_{p, \tau}$ is a subgroup of Q_{p}^{\times}containing $\left(Q_{p}^{\times}\right)^{2}$.

3: LEMMA

$$
\left[Q_{p}^{\times}: Q_{p, \tau}\right]=2 \text { and }\left[Q_{p, \tau}:\left(Q_{p}^{\times}\right)^{2}\right]=2 .
$$

[Note:

$$
\left[Q_{p}^{x}:\left(Q_{p}^{\times}\right)^{2}\right]=4 \quad \text { (cf. §4, \#53).] }
$$

5.

4: DEFINITION Given $x \in Q_{p}^{x}$ let

$$
\operatorname{sgn}_{\tau}(x)=\left\{\begin{array}{r}
1 \text { if } x \in Q_{p, \tau} \\
-1 \text { if } x \notin Q_{p, \tau^{*}}
\end{array}\right.
$$

5: LEMMA $\operatorname{sgn}_{\tau}$ is a unitary character of \hat{Q}_{p}.

§10. TEST FUNCTIONS

The Schwartz space $S\left(R^{n}\right)$ consists of those complex valued C^{∞} functions which, together with all their derivatives, vanish at infinity faster than any power of ||.||.

1: DEFTINITION. The elements f of $S\left(R^{n}\right)$ are the test functions on R^{n}.

2: EXAMPLE Take $\mathrm{n}=1$-- then

$$
f(x)=C x^{A} \exp \left(-\pi x^{2}\right)
$$

where $A=0$ or 1 , is a test function, said to be standard. Here

$$
\int_{R} x^{A} \exp \left(-\pi x^{2}\right) e^{2 \pi \sqrt{-1} t x} d x=(\sqrt{-1})^{A} t^{A} \exp \left(-\pi t^{2}\right),
$$

thus F_{R} of a standard function is again standard (cf. §7, \#51).
[Note: Henceforth, by definition, the Fourier transform of an $f \in L^{1}(R)$ will be the function

$$
\hat{f}: R \rightarrow C
$$

defined by the rule

$$
\begin{aligned}
\hat{f}(t) & =F_{R} f(t) \\
& =\int_{R} f(x) e^{\left.2 \pi \sqrt{-1} t x_{d x} .\right]}
\end{aligned}
$$

3: EXAMPLE Take $\mathrm{n}=2$ and identify R^{2} with C -- then

$$
f(z)=C z^{A} \bar{z}^{B} \exp \left(-2 \pi|z|^{2}\right),
$$

where $A, B \in Z_{\geq 0} \& A B=0$, is a test function, said to be standard. Here

$$
\begin{gathered}
\int_{C} z^{A} \bar{z}^{B} \exp \left(-2 \pi|z|^{2}\right) e^{2 \pi \sqrt{-1}(w z+\bar{w} \bar{z})}|d z \wedge d \bar{z}| \\
=(\sqrt{-1})^{A+B} w^{B} \bar{w}^{A} \exp \left(-2 \pi|w|^{2}\right),
\end{gathered}
$$

thus F_{C} of a standard function is again standard (cf. 57, \#53).
[Note: Henceforth, by definition, the Fourier transform of an $f \in L^{1}$ (C) will be the function

$$
\hat{f}: C \rightarrow C
$$

defined by the rule

$$
\begin{aligned}
\hat{f}(w) & =F_{C} f(w) \\
& \left.=\int_{C} f(z) e^{2 \pi \sqrt{-I}(w z+\bar{w} \bar{z})}|d z \wedge d \bar{z}| \cdot\right]
\end{aligned}
$$

4: DEFINIIION Let G be a totally disconnected locally compact group -then a function $f: G \rightarrow C$ is said to be locally constant if for any $x \in G$, there is an open subset U_{x} of G containing x such that f is constant on U_{x}.

5: LEMMA A locally constant function f is continuous.
PROOF Fix $x \in G$ and suppose that $\left\{x_{i}\right\}$ is a net converging to $x-$ then x_{i} is eventually in U_{x}, hence there $f\left(x_{i}\right)=f(x)$.

6: DEFINITION The Bruhat space $B(G)$ consists of those complex valued locally constant functions whose support is compact.
[Note: $B(G)$ carries a "canonical topology" but I shall pass in silence as regards to its precise formulation.]

7: DEFINITION The elements f of $B(G)$ are the test functions on G.

8: LEMMA Given a test function f, there exists an open-compact subgroup K of G, an integer $n \geq 0$, elements x_{1}, \ldots, x_{n} in G and elements c_{1}, \ldots, c_{n} in C such that the union $\bigcup_{k=1}^{\mathrm{U}} \mathrm{Kx}_{\mathrm{k}} \mathrm{K}$ is disjoint and

$$
f=\sum_{k=1}^{n} c_{k} x_{K x_{k}} K^{\prime}
$$

$X_{\mathrm{Kx}}^{\mathrm{K}} \mathrm{K}$ the characteristic function of $\mathrm{Kx} \mathrm{x}_{\mathrm{K}} \mathrm{K}$.
PROOF Since f is locally constant, for every $z \in C$ the preimage $f^{-1}(z)$ is an open subset of G. Therefore $X=\{x: f(x) \neq 0\}$ is the support of f. This said, given $x \in X$, define a map $\phi_{X}: G \times G \rightarrow C$ by $\phi_{X}\left(x_{1}, x_{2}\right)=f\left(x_{1} x x_{2}\right)$, thus $\phi_{x}(e, e)=f(x)$ and ϕ_{X} is continuous if C has the discrete topology. Consequently, one can find an open-compact subgroup K_{X} of G such that ϕ_{X} is constant on $\mathrm{K}_{\mathrm{X}} \times \mathrm{K}_{\mathrm{X}}$. Put $U_{x}=K_{x} \times K_{x}$ - then U_{x} is open-compact and f is constant on U_{x}. But X is covered by the U_{x}, hence, being compact, is covered by finitely many of them. Bearing in mind that distinct double cosets are disjoint, consider now the intersection K of the finitely many K_{x} that occur.

Specialize and let $G=Q_{p}$.

9: EXAMPLE If $K \subset Q_{p}$ is open-compact, then its characteristic function X_{K} is a test function on Q_{p}.

10: LEMMA Every $f \in B\left(Q_{p}\right)$ is a finite linear combination of functions of the form

$$
x_{x+p} n_{Z_{p}} \quad\left(x \in Q_{p}, n \in Z\right)
$$

[This is an instance of \#8 or argue directly (cf. §4, \#33).]
11: DEFINITION Given $f \in L^{1}\left(Q_{p}\right)$, its Fourier transform is the function

$$
\hat{\mathrm{f}}: \mathrm{Q}_{\mathrm{p}} \rightarrow \mathrm{C}
$$

defined by the rule

$$
\begin{aligned}
\hat{f}(t) & =\int_{Q_{p}} f(x) \chi_{p, t}(x) d x \\
& =\int_{Q_{p}} f(x) \chi_{p}(t x) d x
\end{aligned}
$$

12: LEMMA $\forall f \in L^{1}\left(Q_{p}\right)$,

$$
\hat{\bar{f}}(t)=\overline{\hat{f}(-t)}
$$

PROOF

$$
\begin{aligned}
\hat{\bar{f}}(t) & =\delta_{Q_{p}} \overline{f(x) x_{p}}(t x) d x \\
& =\int_{Q_{p}} \overline{f(x) x_{p}(-t x) d x} \\
& =\int_{Q_{p}} \overline{f(x) x_{p}((-t) x) d x} \\
& =\overline{J_{Q_{p}} f(x) X_{p}((-t) x) d x} \\
& =\overline{\hat{f}(-t)}
\end{aligned}
$$

13: SUBLEMMA

$$
\int_{p^{n} Z_{p}} x_{p}(x) d x=\left.\right|_{-} ^{p^{-n}} \quad(n \geq 0)
$$

[Recall that

$$
\mu_{Q_{p}}\left(p^{n} Z_{p}\right)=p^{-n}
$$

and apply §7, \#46 and §8, \#12.]

14: LEMMA Take $f=\chi_{p n_{p}}-$ then

$$
\hat{x}_{p^{n} Z_{p}}=p^{-n} x_{p}-n_{Z_{p}}
$$

PROOF

$$
\begin{aligned}
& \hat{x}_{p} n_{Z_{p}}(t)=\int_{Q_{p}} x_{p} n_{Z_{p}}(x) x_{p, t}(x) d x \\
& =\int_{Q_{p}} x_{p} n_{Z_{p}}(x) x_{p}(t x) d x \\
& =|t|_{p}^{-1} \int_{Q_{p}} x_{p_{n} Z_{p}}\left(t^{-1} x\right) x_{p}(x) d x \\
& =|t|_{p}^{-1} \int_{p^{n+v(t)}} Z_{p} X_{p}(x) d x .
\end{aligned}
$$

The last integral equals

$$
\mathrm{p}^{-\mathrm{n}-\mathrm{v}(\mathrm{t})}
$$

if $n+\mathrm{v}(\mathrm{t}) \geq 0$ and equals 0 if $\mathrm{n}+\mathrm{v}(\mathrm{t})<0$ (cf. \#13). But

$$
t \in p^{-n_{2}} Z_{p} \Leftrightarrow v(t) \geq-n \Leftrightarrow n+v(t) \geq 0
$$

Since

$$
|t|_{p}^{-1} p^{v(t)}=1
$$

it therefore follows that

$$
\hat{x}_{p^{n} Z_{p}}=p^{-n} X_{p}-n_{Z_{p}}
$$

In particular:

$$
\hat{x}_{Z_{p}}=x_{Z_{p}}
$$

15: THEOREM Take $f=\chi_{x+p^{n} Z_{p}}$ - then

$$
\hat{x}_{x+p^{n} Z_{p}}(t)=\left.\right|^{-x_{p}(t x) p^{-n}}\left(\begin{array}{cc}
\left(|t|_{p} \leq p^{n}\right) \\
0 & \left(|t|_{p}>p^{n}\right)
\end{array}\right.
$$

PROOF

$$
\begin{aligned}
\hat{x}_{x+p^{n} Z_{p}}(t) & =\int_{Q_{p}} x_{x+p^{n_{Z}}}(y) x_{p, t}(y) d y \\
& =\int_{Q_{p}} \chi_{x+p^{n} Z_{p}}(y) x_{p}(t y) d y \\
& =\int_{x+p^{n} Z_{p}} x_{p}(t y) d y \\
& =\int_{p Z_{Z_{p}}} x_{p}(t(x+y)) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{p} n_{Z_{p}} x_{p}(t x+t y) d y \\
& =\int_{p^{n} Z_{p}} x_{p}(t x) x_{p}(t y) d y \\
& =x_{p}(t x) \int_{p Z_{p}} x_{p}(t y) d y \\
& =x_{p}(t x) \int_{Q_{p}} X_{p^{n_{Z}}{ }_{p}}(y) x_{p}(t y) d y \\
& =x_{p}(t x) \int_{Q_{p}} X_{p Z_{Z_{p}}}(y) x_{p, t}(y) d y \\
& =x_{p}(t x) \hat{x}_{p} n_{Z_{p}}(t) \\
& =x_{p}(t x) p^{-n} X_{p-n}-Z_{p}(t) .
\end{aligned}
$$

16: APPLICATION Taking into account \#10,

$$
f \in B\left(Q_{p}\right) \Rightarrow \hat{f} \in B\left(Q_{p}\right) .
$$

17: THEOREM $\forall f \in \operatorname{INV}\left(Q_{p}\right)$,

$$
\hat{\hat{f}}(x)=f(-x) \quad\left(x \in Q_{p}\right)
$$

PROOF It suffices to check this for a single function, so take $f=x_{Z_{p}}$ - then, as noted above,

$$
\hat{x}_{Z_{p}}=x_{Z_{p}}
$$

thus $\forall \mathrm{x}$,

$$
\hat{\hat{x}}_{Z_{p}}(x)=x_{Z_{p}}(x)=x_{Z_{p}}(-x)
$$

18: N.B. It is clear that

$$
B\left(Q_{p}\right) \subset \operatorname{INV}\left(Q_{p}\right) .
$$

19: SCHOLIUM The arrow $f \rightarrow \hat{f}$ is a linear bijection of $B\left(Q_{p}\right)$ onto itself.
[Injectivity is manifest. As for surjectivity, the arrow $f \rightarrow \underset{\mathrm{f}}{\mathrm{f}}$, where

$$
\underset{f}{f}(x)=f(-x),
$$

maps $B\left(Q_{p}\right)$ into itself. And

$$
\left.f=\stackrel{\stackrel{v}{v}}{f}=(\underset{f}{v})^{v}=(\underset{f}{v})^{\wedge}=((\underset{f}{v}) \hat{)}) .\right]
$$

20: REMARK As is well-known, the same conclusion obtains if Q_{p} is replaced by R or C.

Pass now from Q_{p} to Q_{p}^{x}.

21: LEMMA Let $f \in B\left(Q_{p}^{\times}\right)-$then $\exists n \in N$:

$$
\left[\begin{array}{l}
|x|_{p}<p^{-n} \Rightarrow f(x)=0 \\
|x|_{p}>p^{n} \Rightarrow f(x)=0
\end{array}\right.
$$

Therefore an element f of $B\left(Q_{p}^{x}\right)$ can be viewed as an element of $B\left(Q_{p}\right)$ with the property that $f(0)=0$.

22: DEFINITION Given $f \in L^{1}\left(Q_{p}^{x}, d^{x} x\right)$, its Mellin transform \tilde{f} is the Fourier transform of f per Q_{p}^{x} :

$$
\tilde{f}(x)=\int_{Q_{p}^{x}} f(x) x(x) d^{x} x .
$$

[Note: By definition,

$$
\left.d^{x} x=\frac{p}{p-1} \frac{d x}{|x|_{p}} \quad \text { (cf. } \S 6, \# 26\right)
$$

so

$$
\left.\operatorname{vol}_{d_{x}^{x}}\left(z_{p}^{x}\right)=\operatorname{vol}_{d x}\left(Z_{p}\right)=1 .\right]
$$

23: EXAMPLE Take $\mathrm{f}=\chi_{Z_{p}^{x}}$ - then

$$
\begin{aligned}
\tilde{x}_{z_{p}^{x}}(x) & =\int_{Q_{p}^{x}} X_{z_{p}^{x}}(x) x(x) d^{x} x \\
& =\int_{z_{p}^{x}} x(x) d^{x} x .
\end{aligned}
$$

Decompose X as in 59 , \#10, hence

$$
\begin{aligned}
\int_{z_{p}^{x}} x(x) d^{x} x & =\int_{z_{p}^{x}}|x|_{p}^{\sqrt{-1}} \underline{t}_{\underline{x}}\left(p^{-v(x)} x\right) d^{x} x \\
& =\int_{z_{p}^{x} \underline{x}(x) d^{x} x} \\
& =\left.\right|_{0} \quad(\underline{x} \neq 1) \\
1 & (\underline{x} \equiv 1)
\end{aligned}
$$

According to $\S 9$, \#2, a unitary character $x \in \widehat{\left(Q_{p}^{x}\right)}$ is unramified if its restriction \underline{x} to z_{p}^{\times}is trivial. Therefore the upshot is that the Mellin transform of $X_{z_{p}^{x}}$ is the characteristic function of the set of unramified elements of $\left(Q_{p}^{x}\right)$.

APPENDIX

Let K be a finite extension of $Q_{p}-$ then

$$
\mathrm{K}^{\times} \approx \mathrm{Z} \times \mathrm{R}^{\times}
$$

and the generalities developed in $\S 9$ go through with but minor changes when Q_{p} is replaced by K .

In particular: $\forall x \in \hat{K}^{\times}$, there is a splitting

$$
x(a)=|a|_{K}^{\sqrt{-1}} t_{\underline{X}}\left(\pi^{-v(a)} a\right)
$$

where t is real and

$$
-(\pi / \log q)<t \leq \pi / \log q
$$

[Note: X is unramified if it is trivial on R^{\times}.]

1. N.B. The " π " in the first instance is a prime element (cf. 55 , \#10) and $|\pi|_{K}=\frac{1}{q}$. on the other hand, the " π " in the second instance is $3.14 \ldots$.

The extension of the theory from $B\left(Q_{p}\right)$ to $B(K)$ is straightforward, the point of departure being the observation that

$$
\left.\int_{\pi_{R}} X_{K, p}(a) d a=\left.\mu_{K}(R)\right|_{-} ^{q^{-n}}(n=-d,-d+1, \ldots)\right)
$$

2: CONVENTION Normalize the Haar measure on K by stipulating that $\int_{R} d a=q^{-d / 2}$.

3: DEFINITION Given $f \in L^{1}(K)$, its Fourier transform is the function

$$
\hat{\mathrm{f}}: \mathrm{K} \rightarrow \mathrm{C}
$$

defined by the rule

$$
\begin{aligned}
\hat{f}(b) & =\int_{K} f(a) \chi_{K, p, b}(a) d a \\
& =\int_{K} f(a) X_{K, p}(a b) d a .
\end{aligned}
$$

4: THEOREM $\forall f \in \operatorname{INV}(K)$,

$$
\hat{\hat{f}}(a)=f(-a) \quad(a \in K) .
$$

PROOF It suffices to check this for a single function, so take $f=X_{R}$, in which case the work has already been done in the Appendix to $\S 8$. To review:

$$
\begin{aligned}
& \text { - } \hat{X}_{R}(b)=\int_{K} X_{R}(a)_{X_{K, p}}(a b) d a \\
& =\int_{R} X_{K, p}(a b) d a \\
& =q^{-d / 2} \chi_{A_{K}} \text { (b). } \\
& \text { - } \int_{K} q^{-d / 2} \chi_{U_{K}}(b) X_{K, p^{(a b)} d b} \\
& =q^{-d / 2} \int_{A_{K}} X_{K, p}(a b) d b \\
& =X_{R}(a) \text { (loc. cit., \#13) } \\
& =x_{R}(-a) .
\end{aligned}
$$

5: N.B. It is clear that

$$
B(K) \subset \mathbb{I N V}(K) .
$$

6: SCHOLIUM The arrow $f \rightarrow \hat{\mathrm{f}}$ is a linear bijection of $B(K)$ onto itself.

7: CONVENTION Put

$$
d^{x} a=\frac{q}{q-1} \frac{d a}{|a|_{K}} .
$$

Then $d^{x} a$ is a Haar measure on K^{x} and

$$
\operatorname{vol}_{d^{x} a}\left(R^{x}\right)=\operatorname{vol}_{d a}(R)=q^{-d / 2}
$$

8: DEFINITION Given $f \in L^{1}\left(K^{x}, d^{x} a\right)$, its Mellin transform \tilde{f} is the Fourier transform of f per K^{\times}:

$$
\tilde{f}(\chi)=\int_{K^{x}} f(a) \chi(a) d^{x} a .
$$

9: EXAMPLE Take $f=X_{R}{ }^{\text {- }}$ - then

$$
\tilde{x}_{R}{ }_{\mathrm{x}}(x)=\left.\right|^{0} \quad(\underline{x} \neq 1)
$$

§11. LOCAL ZETA FUNCTIONS: R^{x} or C^{x}

We shall first consider R^{\times}, hence $\tilde{R}^{x} \approx Z / 2 Z \times C$ and every character has the form

$$
x(x) \equiv x_{\sigma, s}(x)=(\operatorname{sgn} x)^{\sigma}|x|^{s}(\sigma \in\{0,1\}, s \in C) \quad(c f . \S 7, \# 11)
$$

1. DEFINITION Given $f \in S(R)$ and a character $X: R^{x} \rightarrow C^{x}$, the local zeta function attached to the pair (f, x) is

$$
Z(f, X)=\int_{R^{X}} f(x) X(x) d^{x} x,
$$

where $d^{x} x=\frac{d x}{|x|}$.
[Note: The parameters σ and s are implicit:

$$
\left.z(f, x) \equiv z\left(f, x_{\sigma, s}\right) \cdot\right]
$$

2: LEMMA The integral defining $Z(f, X)$ is absolutely convergent for $\mathrm{Re}(\mathrm{s})>0$.

PROOF Since f is Schwartz, there are no issues at infinity. As for what happens at the origin, let $I=]-1,1[-\{0\}$ and fix $C>0$ such that $|f(x)| \leq C$ $(x \in I)$ - then

$$
\begin{aligned}
& |Z(f, x)| \leq \int_{R-\{0\}}|f(x)||x|^{\operatorname{Re}(s)-1} d x \\
& \leq\left(\int_{R-I}+\int_{I}\right)|f(x)||x|^{\operatorname{Re}(s)-1} d x \\
& \leq M+C \int_{I}|x|^{\operatorname{Re}(s)-1} d x,
\end{aligned}
$$

a finite quantity.

3: LENMA $Z(f, X)$ is a holamorphic function of s in the strip Re(s) >0. [Formally,

$$
\frac{d}{d s} Z(f, x)=\int_{R^{x}} f(x)(\operatorname{sgn} x)^{\sigma}(\log |x|)|x|^{s} d_{x}
$$

and while correct, "differentiation under the integral sign" does require a formal proof... .]

4: NOTATION Put

$$
\stackrel{v}{x}=x^{-1}|\cdot|
$$

The integral defining $Z(f, \underset{X}{X})$ is absolutely convergent if $\operatorname{Re}(1-s)>0$, i.e., if $1-\operatorname{Re}(s)>0$ or still, if $\operatorname{Re}(s)<1$.

5: LEMMA Let $f, g \in S(R)$ and suppose that $0<\operatorname{Re}(s)<1-$ then

$$
Z(f, x) Z(\hat{g}, \stackrel{v}{\chi})=Z(\hat{f}, \stackrel{v}{\chi}) Z(g, x)
$$

PROOF Write

$$
\begin{aligned}
& Z(f, x) Z(\hat{g}, \stackrel{v}{\chi}) \\
& \quad=\iint_{R^{x} \times R^{x}} f(x) \hat{g}(y) \times\left(x y^{-1}\right)|y| d^{x} x d^{x} y
\end{aligned}
$$

and make the substitution $t=y x^{-1}$ to get

$$
\begin{aligned}
& Z(f, x) Z(\hat{g}, \stackrel{v}{x}) \\
& \quad=\int_{R^{x}}\left(\int_{R^{x}} f(x) \hat{g}(t x)|x| d^{x} x\right) \times\left(t^{-1}\right)|t| d^{x} t .
\end{aligned}
$$

The claim now is that the inner integral is symmetric in f and g (which then implies
that

$$
z(f, x) z(\hat{g}, \stackrel{V}{x})=z(g, x) z(\hat{f}, \hat{x}),
$$

the desired equality). To see that this is so, observe first that

$$
|x| d u \cdot d^{x} x=|u| d x \cdot d^{x} u
$$

Since R^{\times}and R differ by a single element, it therefore follows that

$$
\begin{aligned}
& \int_{R^{x}} f(x) \hat{g}(t x)|x| d^{x} x \\
= & \int_{R^{x}} f(x)|x|\left(\int_{R} g(u) e^{\left.2 \pi \sqrt{-1} t x u_{d u}\right) d^{x} x}\right. \\
= & \int_{R \times R^{x}} f(x) g(u)|x| e^{2 \pi \sqrt{-1} t x u_{d u d^{x}}} \\
= & \int_{R^{x}} g(u)|u|\left(\int_{R} f(x) e^{2 \pi \sqrt{-1} t x u} d x\right) d^{x} u \\
= & \int_{R^{x}} g(u) \hat{f}(t u)|u| d^{x} u .
\end{aligned}
$$

Fix $\phi \in S(R)$ and put

$$
\rho(x)=\frac{Z(\phi, x)}{Z(\hat{\phi}, \tilde{x})}
$$

Then $\rho(x)$ is independent of the choice of ϕ and $\forall f \in S(R)$, the functional equation

$$
z(f, x)=\rho(x) z(\hat{f}, \hat{x})
$$

obtains.

6: LEMMA $\rho(X)$ is a meromorphic function of s (cf. infra).

7: APPLICATION $\forall f \in S(R), Z(f, x)$ admits a meramorphic continuation to the whole s-plane.

8: NOTATION Set

$$
\Gamma_{R}(s)=\pi^{-s / 2} \Gamma(s / 2)
$$

9: DEFINITION Write

$$
L(x)=\left.\right|^{\Gamma_{R}(s)} \quad(\sigma=0)
$$

Proceeding to the computation of $\rho(x)$, distinguish two cases.

- $\underline{\sigma=0}$ Take $\phi_{0}(x)$ to be $e^{-\pi x^{2}}-$ then

$$
\begin{aligned}
z\left(\phi_{0}, x\right) & =\int_{R^{x}} e^{-\pi x^{2}}|x|^{s} d^{x} x \\
& =2 \int_{0}^{\infty} e^{-\pi x^{2}} x^{s-1} d x \\
& =\pi^{-s / 2} \Gamma(s / 2)=\Gamma_{R}(s)=L(\chi)
\end{aligned}
$$

Next $\hat{\phi}_{0}=\phi_{0}$ (cf. §10, \#2) so by the above argument,

$$
z\left(\hat{\phi}_{0}, \stackrel{v}{x}\right)=L(\bar{x})
$$

from which

$$
\rho(x)=\frac{L(x)}{L\left(\frac{V}{x}\right)}
$$

$$
\begin{aligned}
& =\frac{\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)}{\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right)} \\
& =2^{1-s^{-s}} \cos \left(\frac{\pi s}{2}\right) \Gamma(s) .
\end{aligned}
$$

- $\sigma=1$ Take $\phi_{1}(x)$ to be $x e^{-\pi x^{2}}$-- then

$$
\begin{aligned}
Z\left(\phi_{1}, x\right) & =\int_{R^{x}} x e^{-\pi x^{2}} \frac{x}{|x|}|x|^{s} d_{x}^{x} \\
& =\int_{R^{x}} e^{-\pi x^{2}}|x|^{s+1} d^{x} x \\
& =2 \int_{0}^{\infty} e^{-\pi x^{2}} x^{s} d x \\
& =\pi^{-(s+1) / 2} \Gamma\left(\frac{s+1}{2}\right) \\
& =\Gamma_{R}(s+1)=L(x)
\end{aligned}
$$

Next

$$
\hat{\phi}_{1}(t)=\sqrt{-1} t \exp \left(-\pi t^{2}\right) \quad(c f . \quad \S 10, \# 2)
$$

Therefore

$$
\begin{aligned}
z\left(\hat{\phi}_{1}, \stackrel{v}{x}\right) & =\sqrt{-1} \int_{R^{x}} x e^{-\pi x^{2}} \cdot \frac{x}{|x|} \cdot|x|^{1-s_{d} x} x \\
& =\sqrt{-1} \int_{R^{x}} e^{-\pi x^{2}}|x|^{2-s_{d} x} x \\
& =\sqrt{-1} 2 \int_{0}^{\infty} e^{-\pi x^{2}} x^{1-s} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{-1} \pi^{-(2-s) / 2} \Gamma\left(\frac{2-s}{2}\right) \\
& =\sqrt{-1} \Gamma_{R}(2-s)=\sqrt{-1} L(\stackrel{v}{X}) .
\end{aligned}
$$

Accordingly

$$
\begin{aligned}
\rho(x) & =-\sqrt{-I} \frac{L(x)}{L(x)} \\
& =-\sqrt{-1} \frac{\pi^{-(s+1) / 2} \Gamma\left(\frac{s+1}{2}\right)}{\pi^{(s-2) / 2} \Gamma\left(\frac{2-s}{2}\right)} \\
& =-\sqrt{-1} 2^{1-s_{\pi}-s} \sin \left(\frac{\pi s}{2}\right) \Gamma(s) .
\end{aligned}
$$

10: FACT

$$
\left.\right|_{-} ^{\frac{\zeta(1-s)}{\zeta(s)}=2^{1-s_{\pi}-s} \cos \left(\frac{\pi s}{2}\right) \Gamma(s)} \begin{aligned}
& \frac{\zeta(s)}{\zeta(1-s)}=2^{\mathbf{s}_{\pi} s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) .
\end{aligned}
$$

To recapitulate: $\rho(X)$ is a meromorphic function of s and

$$
\rho(\chi)=\varepsilon(\chi) \frac{L(X)}{L(V)},
$$

where

$$
\left\lvert\, \begin{aligned}
& \varepsilon(X)=1 \quad(\sigma=0) \\
& \varepsilon(X)=-\sqrt{-1} \quad(\sigma=1)
\end{aligned}\right.
$$

Having dealt with R^{x}, let us now turn to C^{x}, hence $\tilde{C}^{x} \approx Z \times C$ and every character has the form

$$
\chi(x) \equiv x_{n, s}(x)=\exp (\sqrt{-1} n \arg x)|x|^{s}(n \in Z, s \in C) \quad(c f . \S 7, \# 12)
$$

Here, however, it will be best to make a couple of adjustments.

1. Replace x by z .
2. Replace $|$.$| by |.|_{C}$, the normalized absolute value, so

$$
\left.|z|_{C}=|z \bar{z}|=|z|^{2} \quad \text { (cf. } \S 6, \# 15\right) .
$$

11. DEFINITION Given $f \in S(C)\left(=S\left(R^{2}\right)\right)$ and a character $x: C^{x} \rightarrow C^{x}$, the local zeta function attached to the pair (f, X) is

$$
Z(f, X)=\int_{C^{X}} f(z) X(z) d^{x} z,
$$

where $d^{x} z=\frac{|d z \wedge d \bar{z}|}{|\bar{z}|_{C}}$.
[Note: The parameters n and s are implicit:

$$
\left.z(f, x) \equiv z\left(f, x_{n, s}\right) \cdot\right]
$$

12: NOTATION Put

$$
\stackrel{v}{x}=x^{-1}|\cdot|_{c} .
$$

The analogs of \#2 and \#3 are irmediate, as is the analog of \#5 (just replace R^{x} by C^{x} and $|\cdot|$ by $\left.|\cdot| C\right)$, the crux then being the analog of \#6.

13: NOTATION Set

$$
\Gamma_{C}(s)=(2 \pi)^{1-s} \Gamma(s) .
$$

14: DEFINITION Write

$$
L(x)=\Gamma_{C}\left(s+\frac{|n|}{2}\right) .
$$

To determine $\rho(x)$ via a judicious choice of ϕ per the relation

$$
\rho(x)=\frac{z(\phi, x)}{z(\hat{\phi}, \tilde{x})},
$$

let

$$
\left[\begin{array}{ll}
\phi_{n}(z)=\bar{z}^{n} e^{-2 \pi|z|^{2}} & (n \geq 0) \\
\phi_{n}(z)=z^{-n} e^{-2 \pi|z|^{2}} & (n<0) .
\end{array}\right.
$$

Then

$$
\hat{\phi}_{\mathrm{n}}=(\sqrt{-1})|\mathrm{n}|_{\phi_{-\mathrm{n}}} \quad(\mathrm{cf} . \delta 10, \# 3) .
$$

15: N.B. In terms of polar coordinates $z=r e^{\sqrt{-1} \theta}$,

- $\phi_{\mathrm{n}}(\mathrm{z})=\mathrm{r}^{|\mathrm{n}|} \exp \left(-2 \pi r^{2}-\sqrt{-1} \mathrm{n} \theta\right)$
- $\mathrm{d}^{\mathrm{x}} \mathrm{z}=\frac{2 \mathrm{rdrd} \mathrm{\theta}}{\mathrm{r}^{2}}=\frac{2}{\mathrm{r}} \mathrm{drd} \mathrm{\theta}$
- $x(z)=e^{\sqrt{-1} n \theta}|z|_{C}^{S}=e^{\sqrt{-1} n \theta} r^{2 s}$.

Therefore

$$
z\left(\phi_{\mathrm{n}}, \mathrm{x}\right)
$$

$$
\begin{aligned}
=\int_{0}^{2 \pi} \int_{0}^{\infty} & r^{|n|} \exp \left(-2 \pi r^{2}-\sqrt{-1} n \theta\right) e^{\sqrt{-1}} n \theta_{r} 2 s \frac{2}{r} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r^{2(s-1)+|n|} \exp \left(-2 \pi r^{2}\right) 2 r d r d \theta \\
& =2 \pi \int_{0}^{\infty} t^{(s-1)+|n| / 2} \exp (-2 \pi t) d t \\
& =(2 \pi)^{1-s-|n| / 2} \Gamma\left(s+\frac{|n|}{2}\right) \\
& =\Gamma_{C}\left(s+\frac{|n|}{2}\right)=L(x)
\end{aligned}
$$

and

$$
\begin{aligned}
& z\left(\hat{\phi}_{n}, \stackrel{v}{x}\right)=z\left((\sqrt{-1})|n|_{\phi_{-n}} \cdot \stackrel{v}{x}\right) \\
& =(\sqrt{-1})|n|_{\left.\left.(2 \pi)^{1-(1-s}\right)-|n| / 2_{\Gamma(1-s}+\frac{|n|}{2}\right)}=(\sqrt{-1})|n|_{(2 \pi)^{s-|n| / 2}}^{\Gamma\left(1-s+\frac{|n|}{2}\right)} \\
& =(\sqrt{-1})|n|_{\Gamma_{C}}\left(1-s+\frac{|n|}{2}\right)=(\sqrt{-1})|n|_{L}(v)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\rho(x) & =\frac{Z\left(\phi_{n}, x\right)}{Z\left(\hat{\phi}_{n}, \stackrel{v}{x}\right)} \\
& =(\sqrt{-1})-|n| \frac{L(x)}{L(\bar{x})} \\
& =\varepsilon(x) \frac{L(x)}{L(\stackrel{V}{x})},
\end{aligned}
$$

10.

where

$$
\varepsilon(x)=(\sqrt{-1})^{-|n|}
$$

And

$$
\frac{L(X)}{L(X X)}=(2 \pi)^{1-2 s} \frac{\Gamma\left(s+\frac{|n|}{2}\right)}{\Gamma\left(1-s+\frac{|n|}{2}\right)} .
$$

§12. LOCAL ZETA FUNCTIONS: $\mathrm{Q}_{\mathrm{p}}^{\times}$

The theory set forth below is in the same spirit as that of $\S 11$ but matters are technically more complicated due to the presence of ramification.

1: DEFINITION Given $f \in B\left(Q_{p}\right)$ and a character $x: Q_{p}^{x} \rightarrow C^{x}$, the local zeta function attached to the pair (f, X) is

$$
Z(f, x)=\int_{Q_{p}^{x}} f(x) X(x) d^{x} x
$$

where $d^{x} x=\frac{p}{p-1} \frac{d x}{|x|_{p}}$ (cf. §6, \#26).
[Note: There are two parameters associated with X, viz. s and \underline{X} (cf. §9).]

2: LEMMA The integral defining $Z(f, \chi)$ is absolutely convergent for $\operatorname{Re}(s)>0$.
PROOF It suffices to check absolute convergence for $f=x_{p} n_{Z_{p}}$ (cf. §10, \#10) and then we might just as well take $\mathrm{n}=0$:

$$
\begin{aligned}
|Z(f, x)| & \leq \int_{Q_{p}^{x}}|f(x)||x|_{p}^{\operatorname{Re}(s)} d^{x} x \\
& =\int_{Q_{p}^{x}} X_{Z_{p}}(x)|x|_{p}^{\operatorname{Re}(s)} d^{x} x \\
& =\int_{Z_{p}-\{0\}}|x|_{p}^{\operatorname{Re}(s)} d^{\times} x \\
& \left.=\frac{1}{1-p^{-\operatorname{Re}(s)}} \quad \text { (cf. } \delta 6, \# 27\right) .
\end{aligned}
$$

3: LEMMA $Z(f, X)$ is a holamorphic function of s in the strip $\operatorname{Re}(s)>0$.

4: NOTATION Put

$$
\stackrel{v}{x}=x^{-1}|\cdot|_{p} .
$$

The integral defining $Z(f, \stackrel{\vee}{X})$ is absolutely convergent if $R e(1-s)>0$, i.e., if $1-\operatorname{Re}(s)>0$ or still, if $\operatorname{Re}(s)<1$.

5: LEMMA Let $f, g \in B\left(Q_{p}\right)$ and suppose that $0<\operatorname{Re}(s)<1$ - then

$$
Z(f, x) Z(\hat{g}, \stackrel{V}{X})=Z(\hat{f}, \stackrel{V}{x}) Z(g, \chi) .
$$

[Simply follow verbatim the argument employed in §ll, \#5.]

Fix $\phi \in B\left(Q_{p}\right)$ and put

$$
\rho(x)=\frac{Z(\phi, x)}{Z(\hat{\phi}, \tilde{x})} .
$$

Then $\rho(x)$ is independent of the choice of ϕ and $\forall f \in B\left(Q_{p}\right)$, the functional equation

$$
z(f, x)=\rho(x) z(\hat{f}, \stackrel{V}{x})
$$

obtains.

6: LEMMA $\rho(\chi)$ is a meramorphic function of s (cf. infra).

7: APPLICATION $\forall f \in B\left(Q_{p}\right), Z(f, X)$ admits a meromorphic continuation to the whole s-plane.

8: DEFINITION Write

$$
L(x)=\left.\right|_{-} ^{(1-\chi(p))^{-1}} \quad(x \text { unramified })
$$

There remains the computation of $\rho(\chi)$, the simplest situation being when X is unramified, say $x=\left.1 \cdot\right|_{p^{\prime}} ^{s}$ in which case we take $\phi_{0}(x)=x_{p}(x) X_{Z_{p}}(x)$:

$$
\begin{aligned}
Z\left(\phi_{0}, x\right) & =\int_{Q_{p}^{x}} \phi_{0}(x) x(x) d^{x} x \\
& =\int_{Q_{p}^{x}} x_{p}(x) x_{Z_{p}}(x)|x|_{p}^{s} d^{x} x \\
& =\delta_{Z_{p}-\{0\}} x_{p}(x)|x|_{p}^{s} d^{x} x \\
& =\delta_{Z_{p}-\{0\}}|x|_{p}^{s} d^{\times} x \\
& =\frac{1}{1-p^{-s}} \quad(c f . \S 6, \# 27) \\
& =\frac{1}{1-|p|_{p}^{s}} \\
& =\frac{1}{1-x(p)}=L(x)
\end{aligned}
$$

To finish the determination, it is necessary to explicate the Fourier transform $\hat{\phi}_{0}$ of ϕ_{0} (cf. §10, \#11):

$$
\begin{aligned}
\hat{\phi}_{0}(t) & =\int_{Q_{p}} \phi_{0}(x) \chi_{p}(t x) d x \\
& =\int_{Q_{p}} \chi_{p}(x) \chi_{Z_{p}}(x) \chi_{p}(t x) d x \\
& =\delta_{Z_{p}} x_{p}(x) \chi_{p}(t x) d x
\end{aligned}
$$

4.

$$
\begin{aligned}
& =\int_{Z_{p}} x_{p}((1+t) x) d x \\
& =x_{Z_{p}}(t)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
z\left(\hat{\phi}_{0}, \stackrel{v}{x}\right) & =\int_{Q_{p}^{x}} \hat{\phi}_{0}(x) \chi^{v}(x) d^{x} x \\
& =\left.\left.\int_{Q_{p}^{x}} X_{Z p}(x)\right|_{x}\right|_{p} ^{1-s} d^{x} x \\
& =\int_{Z_{p}-\{0\}}|x|_{p}^{1-s} d^{x} x \\
& \left.=\frac{1}{1-p^{-(1-s)}} \quad \text { (cf. } \S 6, \# 27\right) \\
& =\frac{1}{1-|p|_{p}^{1-s}} \\
& =\frac{1}{1-\frac{v}{x}(p)}=L(\stackrel{v}{x}) .
\end{aligned}
$$

And finally

$$
\rho(x)=\frac{Z\left(\phi_{0}, x\right)}{Z(\hat{\phi}, \stackrel{V}{x})}=\frac{L(x)}{L(X)}
$$

or still,

$$
\rho(x)=\frac{1-p^{-(1-s)}}{1-p^{-s}}
$$

9: REMARK The function

$$
\frac{1-p^{-(1-s)}}{1-p^{-s}}
$$

has a simple pole at $s=0$ with residue

$$
\frac{p-1}{p} \log p
$$

and there are no other singularities.

Suppose now that x is ramified of degree $n \geq 1: \chi=|\cdot|_{p}^{s} \underline{x}$ (cf. §9, \#6) and take $\phi_{n}(x)=X_{p}(x) X_{p}-n_{Z_{p}}(x)$:

$$
\begin{aligned}
& z\left(\phi_{n^{\prime}} x\right)=\int_{Q_{p}^{x}} \phi_{n}(x) X(x) d^{x} x \\
& =\int_{Q_{p}^{x}} X_{p}(x) \chi_{p} n^{-n} Z_{p}(x)|x|_{p}^{s} \underline{X}^{(x)} d^{x} x \\
& =\int_{p^{-n} Z_{p}-\{0\}} X_{p}(x)|x|_{p}^{s} \underline{x}^{x}(x) d^{x} x \\
& =\sum_{k=-n}^{\infty} \int_{z_{p}^{x}} x_{p}\left(p^{k} u\right)\left|p^{k} u\right|_{p}^{s} \underline{x}(u) d^{x} u \\
& =\sum_{k=-n}^{\infty} p^{-k s} \int_{Z_{p}^{x}} X_{p}\left(p^{k} u\right) \underline{\chi}(u) d^{x} u .
\end{aligned}
$$

10: LEMMA If $|\mathrm{v}|_{\mathrm{p}} \neq \mathrm{p}^{\mathrm{n}}$, then

$$
\int_{z_{p}^{x}} x_{p}(v u) \underline{x}(u) d^{\times} u=0
$$

Since $\left|p^{k}\right|_{p}=p^{-k}, z\left(\phi_{n^{\prime}} x\right)$ reduces to

$$
p^{n s} \int_{z_{p}^{x}} x_{p}\left(p^{-n} u\right) \underline{x}(u) d^{\times} u
$$

Let $E=\left\{e_{i}: i \in I\right\}$ be a system of coset representatives for $Z_{p}^{\times} / v_{p, n}-$ then by assumption, \underline{x} is constant on the cosets mod $U_{p, n^{\prime}}$ hence

$$
\begin{aligned}
\int_{z_{p}^{x}} & X_{p}\left(p^{-n} u\right) \underline{x}(u) d^{x} u \\
& =\sum_{i=1}^{r} \underline{\chi}^{r}\left(e_{i}\right) \int_{e_{i} U_{p, n}} x_{p}\left(p^{-n} u\right) d^{x} u .
\end{aligned}
$$

But

$$
\begin{aligned}
\quad \mathrm{u} \in e_{i} U_{p, n} & \Rightarrow p^{-n} u \in p^{-n} e_{i}+z_{p} \\
x_{p}\left(p^{-n} u\right) & =x_{p}\left(p^{-n} e_{i}+x\right) \quad\left(x \in Z_{p}\right) \\
& =x_{p}\left(p^{-n} e_{i}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \int_{z_{p}^{\times}} x_{p}\left(p^{-n} u\right) \underline{x}(u) d^{\times} u \\
&=\sum_{i=1}^{r} \underline{x}^{\left(e_{i}\right)} x_{p}\left(p^{-n} e_{i}\right) \delta_{e_{i} U, n} d^{\times} u \\
&=\tau(x) \delta_{U_{p, n}} d^{\times} u
\end{aligned}
$$

if

$$
\tau(x)=\sum_{i=1}^{r} \underline{x}^{r}\left(e_{i}\right) x_{p}\left(p^{-n} e_{i}\right)
$$

And

$$
\begin{aligned}
\int_{U_{p, n}} d^{x} u & =\int_{1+p^{n} z_{p}} d^{\times} u \\
& =\frac{p}{p-1} \int_{1+p^{n} z_{p}} \frac{d u}{|u|_{p}} \\
& =\frac{p}{p-1} \int_{1+p^{n} z_{p}} d u \\
& =\frac{p}{p-1} \int_{p^{n} z_{p}} d u \\
& =\frac{p}{p-1} p^{-n}=\frac{p^{1-n}}{p-1} .
\end{aligned}
$$

So in the end

$$
z\left(\phi_{n}, \chi\right)=\tau(x) \frac{p^{1+n(s-1)}}{p-1}
$$

Next

$$
\begin{aligned}
\hat{\phi}_{n}(t) & =\int_{Q_{p}} \phi_{n}(x) x_{p}(t x) d x \\
& =\int_{Q_{p}} x_{p}(x) x_{p}-n_{Z_{p}}(x) x_{p}(t x) d x \\
& =\int_{p}-n_{Z_{p}} x_{p}(x) x_{p}(t x) d x \\
& =\int_{p^{-n} Z_{p}} x_{p}((1+t) x) d x \\
& =v o l_{d x}\left(p^{-n} Z_{p}\right) x_{p} n_{Z_{p}}-1 \\
& =p^{n} x_{p} n_{Z_{p}}(t)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& z\left(\hat{\phi}_{n}, \stackrel{v}{x}\right)=\int_{Q_{p}^{x}} \hat{\phi}_{n}(x)_{x}^{v}(x) d^{x} x \\
& =\int_{Q_{p}^{x}} p^{n} x_{p}^{n_{Z_{p}-1}}(x) \chi^{-1}(x)|x|_{p} d^{x} x \\
& =p^{n} \int_{p^{n} Z_{p}-1} \bar{x}^{(x)}|x|_{p}^{1-s_{d} \times} x \\
& =p^{n} \int_{p^{n} Z_{p}-1^{\underline{x}(x)}} d^{x} x \\
& =p^{n} \int_{1+p^{n} Z_{p}} \overline{\chi^{(-x)}} d^{x} x \\
& =p^{n} \overline{x(-1)} \int_{1+p^{n} Z_{p}} \overline{\bar{x}(x)} d^{x} x \\
& =p^{n} x(-1) \int_{U_{p, n}} d^{x} x \\
& =p^{n} x(-1) \frac{p^{1-n}}{p-1} \\
& =\frac{p}{p-1} \times(-1) .
\end{aligned}
$$

[Note: $\chi(-1)= \pm 1$:

$$
\left.1=(-1)(-1) \Rightarrow 1=x(-1) \chi(-1)=x(-1)^{2} \cdot\right]
$$

Assembling the data then gives

$$
\rho(x)=\frac{z\left(\phi_{n}, x\right)}{Z\left(\hat{\phi}_{n}, \stackrel{v}{x}\right)}
$$

9.

$$
\begin{aligned}
& =\frac{\tau(x) \frac{p^{1+n(s-1)}}{p-1}}{\frac{p}{p-1} \times(-1)} \\
& =\tau(x) \frac{p^{1+n(s-1)}}{p-1} \frac{p-1}{p \chi(-1)} \\
& =\tau(x) \times(-1) p^{n(s-1)} \\
& =\tau(x) \times(-1) p^{n(s-1)} \frac{1}{1} \\
& =\tau(x) \times(-1) p^{n(s-1)} \frac{L(x)}{L(\chi)}
\end{aligned}
$$

11: THEOREM

$$
\rho(X)=\varepsilon(x) \frac{L(X)}{L(\underline{\chi})},
$$

where

$$
\varepsilon(\chi)=1
$$

if X is unramified and

$$
\varepsilon(x)=\rho(x)
$$

if χ is ramified of degree $n \geq 1$.

12: LEMMA Suppose that x is ramified of degree $n \geq 1$-- then

$$
\varepsilon(\chi) \varepsilon(\underset{\chi}{v})=\chi(-1)
$$

PROOF $\forall f \in B\left(Q_{p}\right)$,

$$
\begin{aligned}
Z(f, \chi) & =\varepsilon(X) Z(\hat{f}, \hat{X}) \\
& =\varepsilon(X) \varepsilon(\stackrel{V}{\chi}) Z(\hat{\hat{f}}, \stackrel{V}{x}) .
\end{aligned}
$$

But $\stackrel{\vee}{X}=X$, hence

$$
\begin{aligned}
z(\hat{\hat{f}}, \stackrel{v}{x}) & =\int_{Q_{p}^{x}} \hat{\hat{f}^{\prime}}(x) \chi(x) d^{x} x \\
& =\int_{Q_{p}^{x}} f(-x) \chi(x) d^{x} x \\
& =\int_{Q_{p}^{x}} f(x) x(-x) d^{x} x \\
& =\chi(-1) \int_{Q_{p}^{x}} f(x) \chi(x) d^{x} x \\
& =x(-1) Z(f, x) .
\end{aligned}
$$

13: APPLICATION

$$
\tau(x) \tau(\underset{x}{v})=p^{n} x(-1)
$$

[In fact,

$$
\begin{gathered}
\varepsilon(\chi) \varepsilon\left(\frac{v}{x}\right) \\
=\tau(\chi) p^{n(s-1)} \chi(-1) \tau(\stackrel{v}{x}) p^{n(1-s-1) \stackrel{v}{\chi}(-1)} \\
=\tau(x) \tau\left(\frac{v}{\chi}\right) p^{-n}=x(-1) \\
\left.\Rightarrow \quad \tau(x) \tau(\stackrel{v}{x})=p^{n} \chi(-1) .\right]
\end{gathered}
$$

14: LEMMA Suppose that X is ramified of degree $n \geq 1$-- then

$$
\varepsilon(\bar{x})=x(-1) \overline{\varepsilon(x)} .
$$

PROOF $\forall f \in B\left(Q_{p}\right)$,

$$
\begin{aligned}
& Z(\hat{\bar{f}}, \chi)=\int_{Q_{p}} \hat{\bar{f}}(x) \chi(x) d^{x} x \\
& =\int_{Q_{p}^{x}} \overline{\hat{f}(-x)} \times(x) d^{x} x \quad \text { (cf. 10.12) } \\
& =\int_{Q_{p}^{x}} \overline{\hat{f}(x)} X(-x) d^{x} x \\
& =x(-1) \int_{Q_{p}^{x}} \overline{\hat{\hat{f}}(x)} X(x) d^{x} x \\
& =x(-1) Z(\overline{\hat{f}}, \chi) \text {. }
\end{aligned}
$$

But $\bar{v}=\stackrel{\bar{v}}{\chi}$, hence

$$
\begin{aligned}
& \overline{Z(f, x)}=Z(\bar{f}, \bar{X}) \\
& =\varepsilon(\bar{X}) Z(\hat{\bar{f}}, \overline{\mathrm{X}}) \\
& =\varepsilon(\bar{\chi}) Z(\hat{\bar{f}}, \overline{\bar{x}}) \\
& =\varepsilon(\bar{X}) X(-1) Z(\overline{\hat{f}}, \bar{V}) \\
& =\varepsilon(\overline{\mathrm{X}}) \mathrm{X}(-1) \overline{\mathrm{Z}(\hat{\mathrm{f}}, \overline{\mathrm{X}})} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\overline{Z(f, x)} & =\overline{\varepsilon(X) Z(\hat{f}, V}) \\
& =\overline{\varepsilon(X)} \overline{Z(\hat{X}, \stackrel{V}{X})}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\varepsilon \quad \varepsilon(\bar{\chi}) \times(-1) & =\overline{\varepsilon(X)} \\
\Rightarrow \quad & \\
\varepsilon(\bar{\chi}) & =\chi(-1) \overline{\varepsilon(X) .}
\end{aligned}
$$

15: APPLICATION

$$
\tau(\bar{x})=x(-1) \overline{\tau(x)} .
$$

[In fact,

$$
\begin{aligned}
& \varepsilon(\bar{x})=\tau(\bar{x}) p^{n(\bar{s}-1)} \bar{x}(-1) \\
&=x(-1) \overline{\varepsilon(x)} \\
&=x(-1) \overline{\tau(x)} p^{n(\bar{s}-1)} \overline{\chi(-1)} \\
&=x(-1) \overline{\tau(x) p^{n(\bar{s}-1)} \bar{\chi}(-1)} \\
& \Rightarrow \quad
\end{aligned}
$$

$$
\tau(\bar{x})=x(-1) \overline{\tau(x)} \cdot 1
$$

16: DEFINITION Let $\underline{x} \in \widehat{z_{p}}$ be a nontrivial unitary character - then its root number $W(\underline{X})$ is prescribed by the relation

$$
W(\underline{x})=\varepsilon\left(|\cdot|_{p}^{1 / 2} \underline{x}\right)
$$

[Note: If \underline{x} is trivial, then $W(\underline{x})=1$.

17: LEMMA

$$
|W(\underline{x})|=1
$$

PROOF Put $x=|\cdot|_{p}^{1 / 2} \underline{x}-$ then

$$
\begin{aligned}
& \varepsilon(\chi) \varepsilon(\chi)=\chi(-1) \quad \text { (cf. \#12) } \\
& \text { \#> } \\
& \varepsilon(X)^{-1}=\varepsilon(\stackrel{V}{X}) X(-1)^{-1} \\
& =\varepsilon(\tilde{\chi}) \times(-1) \\
& =\varepsilon(\bar{X}) \times(-1) \quad(\underset{X}{V}=\bar{X}) \\
& =\chi(-1) \overline{\varepsilon(\chi)} \chi(-1) \quad \text { (cf. \#14) } \\
& =\chi(-1)^{2} \frac{}{\varepsilon(\chi)} \\
& =\overline{\varepsilon(X)} \\
& \text { => } \\
& |\varepsilon(x)|=1 \Rightarrow|W(\underline{x})|=1 .
\end{aligned}
$$

17: APPLICATION

$$
\left|\tau\left(|\cdot|_{p}^{1 / 2} x\right)\right|=p^{n / 2}
$$

[In fact,

$$
1=|W(\underline{x})|=\left|\tau\left(|\cdot|_{p}^{1 / 2} \underline{x}\right) p^{n\left(\frac{1}{2}-1\right)}\right|
$$

18: EXERSIZE AD LTBITUM Show that the theory expounded above for Q_{p} can be carried over to any finite extension K of Q_{p}.

§13. RESTRICTED PRODUCTS

Recall:

1: FACT Suppose that $X_{i}(i \in I)$ is a nonempty Hausdorff space -- then the product $\prod_{i \in I} X_{i}$ is locally compact iff each X_{i} is locally compact and all but a finite number of the X_{i} are compact.

Let $X_{i}(i \in I)$ be a family of nonempty locally compact Hausdorff spaces and for each $i \in I$, let $K_{i} \subset X_{i}$ be an open-campact subspace.

2: DEFINITION The restricted product

$$
\prod_{i \in I}\left(x_{i}: K_{i}\right)
$$

consists of those $x=\left\{x_{i}\right\}$ in $\prod_{i \in I} x_{i}$ such that $x_{i} \in K_{i}$ for all but a finite number of $i \in I$.

3: N.B.

$$
\prod_{i \in I}\left(x_{i}: K_{i}\right)=\underset{S \in I}{u} \prod_{i \in S} x_{i} \times \prod_{i \notin S} K_{i^{\prime}}
$$

where $S \subset I$ is finite.

4: DEFINITION A restricted open rectangle is a subset of $\prod_{i \in I}\left(X_{i}: K_{i}\right)$ of the form

$$
\prod_{i \in S} U_{i} \times \prod_{i \notin S} k_{i^{\prime}}
$$

where $S \subset I$ is finite and $U_{i} \subset X_{i}$ is open.

5: LEMMA The intersection of two restricted open rectangles is a restricted open rectangle.

Therefore the collection of restricted open rectangles is a basis for a topology on $\prod_{i \in I}\left(X_{i}: K_{i}\right)$, the restricted product topology.

6: LEMMA If I is finite, then

$$
\prod_{i \in I} x_{i}=\prod_{i \in I}\left(x_{i}: K_{i}\right)
$$

and the restricted product topology coincides with the product topology.

7: IEMMA If $I=I_{1} \cup I_{2}$, with $I_{1} \cap I_{2}=\varnothing$, then

$$
\prod_{i \in I}\left(x_{i}: K_{i}\right) \approx\left(\prod_{i \in I_{1}}\left(x_{i}: K_{i}\right)\right) \times\left(\prod_{i \in I_{2}}\left(x_{i}: K_{i}\right)\right)
$$

the restricted product topology on the left being the product topology on the right.

8: LEMMA The inclusion $\prod_{i \in I}\left(\mathrm{X}_{\mathrm{i}}: \mathrm{K}_{\mathrm{i}}\right) \rightarrow \prod_{i \in \mathrm{I}} \mathrm{X}_{\mathrm{i}}$ is continuous but the restricted product topology coincides with the relative topology only if $X_{i}=K_{i}$ for all but a finite number of $i \in I$.

9: LEMMA $\prod_{i \in I}\left(X_{i}: K_{i}\right)$ is a Hausdorff space.
PROOF Taking into account \#8, this is because

1. A subspace of a Hausdorff space is Hausdorff;
2. Any finer topology on a Hausdorff space is Hausdorff.

10: LEMMA $\prod_{i \in I}\left(X_{i}: K_{i}\right)$ is a locally compact Hausdorff space.

PROOF Let $x \in \prod_{i \in I}\left(X_{i}: K_{i}\right)-$ then there exists a finite set $S \in I$ such that $x_{i} \in K_{i}$ if $i \notin S$. Next, for each $i \in S$, choose a compact neighborhood U_{i} of x_{i}. This done, consider

$$
\prod_{i \in S} v_{i} \times \prod_{i \notin S} K_{i}
$$

a compact neighborhood of x .

From this point forward, it will be assumed that $X_{i} \equiv G_{i}$ is a locally compact abelian group and $K_{i} \subset G_{i}$ is an open-compact subgroup.

11: NOTATION

$$
G=\prod_{i \in I}\left(G_{i}: K_{i}\right)
$$

12: LEMMA G is a locally compact abelian group.

Given $i \in I$, there is a canonical arrow

$$
i n_{i}: G_{i} \rightarrow G,
$$

namely

$$
x \rightarrow(\ldots, 1,1, x, 1,1, \ldots) .
$$

13: LFMMA in $_{i}$ is a closed embedding.
PROOF Take $S=\{i\}$ and pass to

$$
G_{i} \times \prod_{j \neq i} K_{j},
$$

an open, hence closed subgroup of G. The image $i n_{i}\left(G_{i}\right)$ is a closed subgroup of

$$
G_{i} \times \prod_{j \neq i} K_{j}
$$

in the product topology, hence in the restricted product topology.

Therefore G_{i} can be regarded as a closed subgroup of G.

14: LEMMA

1. Let $x \in \tilde{G}-$ then $\chi_{i}=x \circ i n_{i}=\chi \mid G_{i} \in \tilde{G}_{i}$ and $\chi \mid K_{i} \equiv 1$ for all but a finite number of $i \in I$, so for each $x \in G$,

$$
x(x)=x\left(\left\{x_{i}\right\}\right)=\prod_{i \in I} x_{i}\left(x_{i}\right) .
$$

2. Given $i \in I$, let $X_{i} \in \tilde{G}_{i}$ and assume that $\chi_{i} \mid K_{i} \equiv 1$ for all but a finite number of $i \in I-$ then the prescription

$$
x(x)=x\left(\left\{x_{i}\right\}\right)=\prod_{i \in I} x_{i}\left(x_{i}\right)
$$

defines $a x \in \tilde{G}$.

These observations also apply if \tilde{G} is replaced by \hat{G}, in which case more can be said.

15: THEOREM As topological groups,

$$
\hat{G} \approx \prod_{i \in I}\left(\hat{G}_{i}: K_{i}^{1}\right) .
$$

[Note: Recall that

$$
K_{i}^{\perp}=\left\{x_{i} \in \hat{G}_{i}: x_{i} \mid K_{i} \equiv 1\right\} \quad \text { (cf. §7, \#32) }
$$

and a tacit claim is that K_{i}^{\perp} is an open-compact subgroup of \hat{G}. To see this,
quote §7, \#34 to get

$$
\hat{K}_{i} \approx \hat{G} / K_{i}^{\perp}, K_{i}^{\perp} \approx \widehat{G / K_{i}}
$$

Then

- K_{i} compact $\Rightarrow \hat{K}_{i}$ discrete $\Rightarrow \hat{G} / K_{i}^{\perp}$ discrete $\Rightarrow K_{i}^{\perp}$ open
- K_{i} open $\Rightarrow \mathrm{G} / \mathrm{K}_{i}$ discrete $\Rightarrow>/ \widehat{G / K_{i}}$ compact $\Rightarrow K_{i}^{1}$ compact.]

Let μ_{i} be the Haar measure on G_{i} normalized by the condition

$$
\mu_{i}\left(K_{i}\right)=1
$$

16: LENMA There is a unique Haar measure μ_{G} on G such that for every finite subset $S \subset I$, the restriction of μ_{G} to

$$
G_{S} \equiv \prod_{i \in S} G_{i} \times \prod_{i \notin S} K_{i}
$$

is the product measure.

Suppose that f_{i} is a continuous, integrable function on G_{i} such that $f_{i} \mid K_{i}=1$ for all i outside some finite set and let f be the function on G defined by

$$
f(x)=f\left(\left\{x_{i}\right\}\right)=\prod_{i} f_{i}\left(x_{i}\right) .
$$

Then f is continuous. Proof: The G_{S} are open and cover G and on each of them f is continuous.

17: LEMMA Let $S \subset I$ be a finite subset of I-- then

$$
\delta_{G_{S}} f(x) d \mu_{G_{S}}(x)=\prod_{i \in S} \delta_{G_{i}} f_{i}\left(x_{i}\right) d \mu_{G_{i}}\left(x_{i}\right)
$$

18: APPLICATION If

$$
\sup _{S} \prod_{i \in S} \int_{G_{i}}\left|f_{i}\left(x_{i}\right)\right| d \mu_{G_{i}}\left(x_{i}\right)<\infty,
$$

then f is integrable on G and

$$
\delta_{G} f(x) d \mu_{G}(x)=\prod_{i \in I} \delta_{G_{i}} f_{i}\left(x_{i}\right) d \mu_{G_{i}}\left(x_{i}\right)
$$

19: EXAMPLE Take $f_{i}=\underset{K_{i}}{ } \quad$ (which is continuous, K_{i} being open-compact) then $\hat{f}_{i}=\chi_{K_{i}^{\prime}}$. Setting

$$
f=\prod_{i \in I} f_{i}
$$

it thus follows that $\forall x \in \hat{G}$,

$$
\hat{\mathrm{f}}(x)=\prod_{i \in I} \hat{f}_{i}\left(x_{i}\right)
$$

Working within the framework of $\S 7$, \#45, let $\mu_{\hat{G}_{i}}$ be the Haar measure on \hat{G}_{i} per Fourier inversion.

20: LEMMA

$$
\mu_{\hat{G}_{i}}\left(K_{i}^{\perp}\right)=1
$$

PROOF Since $X_{K_{i}} \in \operatorname{INV}\left(G_{i}\right), \forall x_{i} \in G_{i}$,

$$
x_{K_{i}}\left(x_{i}\right)=\int_{\hat{G}_{i}} \hat{x}_{K_{i}}\left(x_{i}\right) \overline{x_{i}\left(x_{i}\right) d \mu_{\hat{G}_{i}}\left(x_{i}\right)}
$$

$$
=\int_{K_{i}^{\prime}} \overline{\chi_{i}\left(x_{i}\right)} d \mu_{\hat{G}_{i}}\left(x_{i}\right)
$$

Now set $x_{i}=1$ to get

$$
\begin{aligned}
1 & =\int_{K_{i}^{\prime}} d \mu_{\hat{G}_{i}}\left(\chi_{i}\right) \\
& =\mu_{\hat{G}_{i}}\left(K_{i}^{1}\right)
\end{aligned}
$$

Let $\mu_{\hat{G}}$ be the Haar measure on \hat{G} constructed as in \#l6 (i.e., replace G by \hat{G}, bearing in mind \#20).

21: LENMA $\mu_{\hat{G}}$ is the Haar measure on \hat{G} figuring in Fourier inversion per $\mu_{G}{ }^{\circ}$

PROOF Take

$$
f=\prod_{i \in I} f_{i^{\prime}}
$$

where $f_{i}=X_{K_{i}}$ (cf. \#19) -- then

$$
\begin{aligned}
& \int_{\hat{G}} \hat{f}(x) \overline{X(x) d \mu_{\hat{G}}(x)} \\
& \quad=\prod_{i \in I} \int_{\hat{G}_{i}} \hat{f}_{i}\left(x_{i}\right) \overline{x_{i}\left(x_{i}\right) d \mu_{G_{i}}\left(x_{i}\right)} \\
& \quad=\prod_{i \in I} f_{i}\left(x_{i}\right)=f\left(\left\{x_{i}\right\}\right)=f(x) .
\end{aligned}
$$

§14. ADELES AND IDELES

1. DEFINITION The set of finite adeles is the restricted product

$$
A_{f i n}=\prod_{p}\left(Q_{p}: Z_{p}\right)
$$

2: DEFINITION The set of adeles is the product

$$
A=A_{f i n} \times R
$$

3: LEMMA A is a locally compact abelian group (under addition).

4: N.B. A is a subring of $\prod_{p} Q_{p} \times R$.

The image of the diagonal map

$$
Q \rightarrow \prod_{p} Q_{p} \times R
$$

lies in A, so Q can be regarded as a subring of A.

5: LEMMA Q is a discrete subspace of A.
PROOF To establish the discreteness of $Q \subset A$, one need only exhibit a neighborhood U of 0 in A such that $Q \cap U=\{0\}$. To this end, consider

$$
\left.U=\prod_{p} Z_{p} \times\right]-\frac{1}{2}, \frac{1}{2}[
$$

If $x \in Q \cap U$, then $|x|_{p} \leq 1 \forall p$. But $\cap\left(Q \cap Z_{p}\right)=Z$, so $x \in Z$. And further, $|x|_{\infty}<\frac{1}{2}$, hence finally $x=0$.

6: FACT Let G be a locally compact group and let Γ © G be a discrete
subgroup -- then Γ is closed in G and G / Γ is a locally compact Hausdorff space.

7: THEOREM The quotient A / Q is a compact Hausdorff space.
PROOF Since $Q \subset A$ is a discrete subgroup, Q must be closed in A and the quotient A / Q must be Hausdorff. As for the compactness, it suffices to show that the compact set $\prod_{p} Z_{p} \times[0,1]$ contains a set of representatives of A / Q because this implies that the projection

$$
\prod_{p} Z_{p} \times[0,1] \rightarrow A / Q
$$

is surjective, hence that A / Q is the continuous image of a compact set. So let $x \in A-$ then there is a finite set S of primes such that $p \notin S \Rightarrow x_{p} \in Z_{p}$. For $p \in S$, write

$$
x_{p}=f\left(x_{p}\right)+\left[x_{p}\right]
$$

thus $\left[x_{p}\right] \in Z_{p}$ and if $q \neq p$ is another prime,

$$
\begin{aligned}
\left|f\left(x_{p}\right)\right|_{q} & =\left.\left.\right|_{n=v\left(x_{p}\right)} ^{-1} a_{n} p^{n}\right|_{q} \\
& \leq \sup \left\{\left|a_{n} p^{n}\right|_{q}\right\} \leq 1
\end{aligned}
$$

Agreeing to denote $f\left(x_{p}\right)$ by r_{p}, write

$$
x=\left(x-r_{p}\right)+r_{p}
$$

Then r_{p} is a rational number and per $x-r_{p}$, S reduces to $S-\{p\}$. Proceed from here by iteration to get

$$
x=y+r,
$$

where $\forall \mathrm{p}, \mathrm{Y}_{\mathrm{p}} \in \mathrm{Z}_{\mathrm{p}}$, and $\mathrm{r} \in \mathrm{Q}$. At infinity,

$$
x_{\infty}=y_{\infty}+r \quad\left(r_{\infty}=r\right)
$$

and there is a unique $k \in Z$ such that

$$
y_{\infty}=\left(y_{\infty}-k\right)+k
$$

with $0 \leq y_{\infty}-k<1$. Accordingly,

$$
y=y+r=(y-k)+k+r
$$

And

$$
\forall p, \quad(y-k)_{p}=y_{p}-k_{p}=y_{p}-k \in Z_{p^{\prime}}
$$

while

$$
x_{\infty}=\left(y_{\infty}-k\right)+k+r
$$

It therefore follows that x can be written as the sum of an element in $\prod_{p} Z_{p} \times[0,1]$ and a rational number, the contention.

8: DEFINITION The topological group A / Q is called the adele class group.

9: DEFINITION Let G be a locally compact group and let $\Gamma \subset G$ be a discrete subgroup -- then a fundamental domain for G / Γ is a Borel measurable subset $D \subset G$ which is a system of representatives for G / Γ.

10: LEMMA The set

$$
D=\prod_{p} Z_{p} \times[0,1[
$$

is a fundamental domain for A / Q.
PROOF The claim is that every $x \in A$ can be written uniquely as $d+r$, where $d \in D, r \in Q$. The proof of \#7 settles existence, thus the remaining issue is uniqueness: $d_{1}+r_{1}=d_{2}+r_{2} \Rightarrow d_{1}=d_{2}, r_{1}=r_{2}$. To see this, consider

$$
\rho=d_{1}-d_{2}=r_{2}-r_{1} \in(D-D) \cap Q
$$

- $\forall \mathrm{p}, \rho=\rho_{\mathrm{p}} \in \mathrm{D}_{\mathrm{p}}-\mathrm{D}_{\mathrm{p}}=\mathrm{D}_{\mathrm{p}}=\mathrm{Z}_{\mathrm{p}}$

$$
\Rightarrow \rho \underset{p}{\cap}\left(Q \cap Z_{p}\right)=Z
$$

- $\left.\rho=\rho_{\infty} \in D_{\infty}-D_{\infty}=\right]-1,1[$.

Therefore

$$
\rho \in Z \cap]-1,1[\Rightarrow \rho=0
$$

11: REMARK Q is dense in $A_{\text {fin }}$.
[The point is that Z is dense in $\prod_{p} Z_{p}$.]

12: DEFINITION The set of finite ideles is the restricted product

$$
I_{f i n}=\prod_{p}\left(Q_{p}^{x}: z_{p}^{x}\right) .
$$

13: DEFINITION The set of ideles is the product

$$
I=I_{f i n} \times R^{x}
$$

14: LEMMA I is a locally compact abelian group (under multiplication).

Algebraically, I can be identified with A^{\times}but there is a topological issue since when endowed with the relative topology, A^{x} is not a topological group: Multiplication is continuous but inversion is not continuous.

15: LEMMA Equip $A \times A$ with the product topology and define

$$
\phi: I \rightarrow A \times A
$$

by

$$
\phi(x)=\left(x, \frac{1}{x}\right) .
$$

Endow the image $\phi(\mathrm{I})$ with the relative topology - then ϕ is a topological isomorphism of I onto $\phi(\mathrm{I})$.

The image of the diagonal map

$$
Q^{x} \rightarrow \prod_{p} Q_{p} \times R^{x}
$$

lies in I, so Q^{X} can be regarded as a subgroup of I.

16: LEMMA Q^{\times}is a discrete subspace of I.
PROOF Q is a discrete subspace of A (cf. \#5), hence $Q \times Q$ is a discrete subspace of $A \times A$, hence $\phi\left(Q^{\times}\right)$is a discrete subspace of $\phi(I)$.

Consequently, Q^{X} is a closed subgroup of I and the quotient I / Q^{\times}is a locally compact Hausdorff space but, as opposed to the adelic situation, it is not compact (see below).

17: DEFINITION The topological group I / Q^{\times}is called the idele class group.

18: NOTATION Given $x \in I$, put

$$
|x|_{A}=\prod_{p \leq \infty}\left|x_{p}\right|_{p}
$$

Extend the definition of $|\cdot|_{A}$ to all of A by setting $|x|_{A}=0$ if $x \in A-A^{x}$.

19: LEMMA $\forall x \in Q^{\times},|x|_{A}=1$ (cf. $\$ 1, \# 21$).

$$
\left.1 \cdot\right|_{A}: I \rightarrow R_{>0}^{x}
$$

is continuous and surjective.
PROOF Omitting the verification of continuity, fix $t \in R_{>0}^{x}$ and let x be the idele specified by

$$
x_{p}=1(p<\infty), x_{\infty}=t
$$

Then $|x|_{A}=t$.

21: SCHOLIUM The idele class group I / Q^{x} is not compact.

22: NOTATION Let

$$
I^{1}=\operatorname{Ker}|\cdot|_{A}
$$

23: N.B. $x \in I^{1} \Rightarrow x_{\infty} \in Q^{x}$.

24: THEOREM The quotient I^{1} / Q^{x} is a compact Hausdorff space, in fact

$$
I^{I} / Q^{x} \approx \prod_{p} Z_{p^{\prime}}^{x}
$$

hence

$$
\prod_{p} z_{p}^{\times} \times\{1\}
$$

is a fundamental domain for I^{1} / Q^{x}.
PROOF The arrow

$$
\prod_{P} z_{p}^{x}+I^{I} / Q^{x}
$$

that sends x to $(x, 1) Q^{x}$ is an isamorphism of topological groups.
[In obvious notation, the inverse is the map

$$
\left.x=\left(x_{\text {fin }}, x_{\infty}\right) \rightarrow \frac{1}{x_{\infty}} x_{f i n} \cdot\right]
$$

25: REMARK $\forall \mathrm{p}, \mathrm{z}_{\mathrm{p}}^{\times}$is totally disconnected. But a product of totally disconnected spaces is totally disconnected, thus $\prod_{p} z_{p}^{x}$ is totally disconnected, thus I^{1} / Q^{\times}is totally disconnected.

26: N.B. $\prod_{p} Z_{p}^{\times} \times R_{>0}^{x}$ is a fundamental domain for I / Q^{x}.
[Note: If $r \in Q$ and if $|r|_{p}=1 \forall p$, then $\left.r= \pm 1.\right]$

27: LEMMA

$$
\mathrm{I} \approx \mathrm{I}^{\mathrm{I}} \times \mathrm{R}_{>0}^{\times} .
$$

PROOF The arrow

$$
I \rightarrow I^{I} \times R_{>0}^{\times}
$$

that sends x to $\left(\tilde{x},|x|_{A}\right)$, where

$$
(\tilde{x})_{p}=\left.\right|^{-x_{p}} \begin{array}{cc}
(p<\infty) \\
\frac{x_{\infty}}{|x|_{A}} & (p=\infty)
\end{array}
$$

is an isamorphism of topological groups.

28: LEMMA There is a disjoint decomposition

$$
I_{f i n}=\prod_{q \in Q_{>0}^{x}} q\left(\prod_{p} z_{p}^{x}\right)
$$

PROOF The right hand side is obviously contained in the left hand side. To go the other way, fix an $x \in I_{f i n}-$ then $|x|_{A} \in Q_{>0}$. Moreover, $|x|_{A} x \in I_{\text {fin }}$ and $\forall p,\left||x|_{A} x_{p}\right|_{p}=1\left(\right.$ for $x_{p}=p^{k} u\left(u \in Z_{p}^{x}\right) \Rightarrow|x|_{A}=p^{-k} r\left(x \in Q^{x}, r\right.$ coprime to $\left.\left.p\right)\right)$, hence

$$
|x|_{A^{x}} \in \prod_{p} z_{p}^{x} .
$$

Now write

$$
x=|x|_{A}^{-1}\left(|x|_{A} x\right)
$$

to conclude that

$$
x \in q \prod_{p} z_{p}^{x} \quad\left(q=|x|_{A}^{-1}\right)
$$

29: LENMA There is a disjoint decomposition

$$
I_{f i n} \cap \prod_{p} z_{p}=\prod_{n \in N} n\left(\prod_{p} z_{p}^{\times}\right)
$$

Normalize the Haar measure $d^{x} x$ on $I_{f i n}$ by assigning the open-campact subgroup $\prod_{p} z_{p}^{\times}$total volume 1.

30: EXAMPLE Suppose that $\mathrm{Re}(\mathrm{s})>1$-- then

$$
s_{I_{f i n}} \cap \prod_{p} z_{p}|x|_{A}^{s} d^{x} x
$$

$$
\begin{aligned}
& \left.=\sum_{n \in N} \int_{n\left(\prod_{p}\right.} z_{p}^{x}\right)|x|_{A}^{s} d^{x} x \\
& =\sum_{n \in N} \int_{p} \prod_{p} z_{p}^{x}|n x|_{A}^{s} d^{x} x \\
& =\sum_{n \in N} n^{-s} \operatorname{vol}_{d^{x}}\left(\prod_{p} z_{p}^{x}\right) \\
& =\sum_{n \in N} n^{-s}=\zeta(s)
\end{aligned}
$$

[Note: Let $x \in \prod_{p} Z_{p}^{x}$:

$$
\begin{aligned}
& \Rightarrow \forall p,\left|x_{p}\right|_{p}=1 \\
& \Rightarrow|n x|_{A}=\prod_{p}\left|n x_{p}\right|_{p} \\
&=\prod_{p}|n|_{p}\left|x_{p}\right|_{p} \\
&=\prod_{p}|n|_{p} \\
&=\prod_{p}|n|_{p} \cdot n \cdot \frac{1}{n} \\
&=1 \cdot \frac{1}{n}=n^{-1} \cdot 1
\end{aligned}
$$

The idelic absolute value $|\cdot|_{A}$ can be interpreted measure theoretically.

31: NOTATION Write

$$
d x_{A}=\prod_{p \leq \infty} d x_{p}
$$

for the Haar measure μ_{A} on $A(c f . ~ § 13, \# 16)$.

Consider a function of the form $f=\prod_{p \leq \infty} f_{p}$, where $\forall p, f_{p}$ is a continuous,
integrable function on Q_{p}, and for all but a finite number of $p, f_{p}=x_{Z_{p}}$-- then

$$
\left.\int_{A} f(x) d x_{A}=\prod_{p \leq \infty} \int_{Q_{p}} f_{p}\left(x_{p}\right) d x_{p} \quad \text { (cf. } \S 13, \# 18\right)
$$

it being understood that $Q_{\infty}=R$.

32: LEMMA Let $M \subset A$ be a Borel set with $0<\mu_{A}(M)<\infty-$ then $\forall x \in I$,

$$
\frac{\mu_{A}(x M)}{\mu_{A}(M)}=|x|_{A} .
$$

$$
\begin{aligned}
& \text { PROOF Take } M=D=\prod_{p} Z_{p} \times[0,1[\text { (cf. } \# 10): \\
& \mu_{A}(x M)= \\
& \\
& =\prod_{p} \mu_{Q_{p}}\left(x_{p} Z_{p}\right) \times \mu_{R}\left(x_{p}[0,1[)\right. \\
& \\
& =\prod_{p}\left|\mu_{p}\right|_{p}\left(Z_{p}\right) \times\left|x_{\infty}\right| \mu_{R}([0,1[) \\
& \\
& =\prod_{p \leq \infty}\left|x_{p}\right|_{p}=|x|_{A} .
\end{aligned}
$$

[Note: Needless to say, multiplication by an idele. x is an autamorphism of A, thus transforms μ_{A} into a positive constant multiple of itself, the multiplier being $\left.|x|_{A} \cdot\right]$

§15. GLOBAL ANALYSIS

By definition,

$$
A=A_{\text {fin }} \times R
$$

Therefore

$$
\hat{A} \approx \hat{A}_{f i n} \times \hat{R}
$$

And

$$
\begin{aligned}
& A_{\text {fin }} \\
&=\prod_{p}\left(Q_{p}: Z_{p}\right) \\
& \hat{A}_{\text {fin }} \\
&\left.\approx \prod_{p}\left(\hat{Q}_{p}: Z_{p}^{\perp}\right) \quad \text { (cf. } \S 13, \# 15\right) .
\end{aligned}
$$

Put

$$
x_{Q}=\prod_{p \leq \infty} x_{p^{\prime}}
$$

where

$$
x_{\infty}(x)=\exp (-2 \pi \sqrt{-1} x) \quad(x \in R) \quad(c f . ~ § 8, \# 27)
$$

Then

$$
x_{Q} \in \hat{A} .
$$

Given $t \in A$, define $X_{Q, t} \in \hat{A}$ by the rule

$$
x_{Q, t}(x)=x_{Q}(t x)
$$

Then the arrow

$$
E_{Q}: A \rightarrow \hat{A}
$$

that sends t to $X_{Q, t}$ is an isomorphism of topological groups (cf. §8, \#24).

Recall now that $\forall q \in Q$,

$$
x_{Q}(q)=1 \quad(c f . \S 8, \# 28)
$$

Accordingly, X_{Q} passes to the quotient and defines a unitary character of the adele class group A / Q. So, $\forall q \in Q, X_{Q, q}$ is constant on the cosets of A / Q, thus it too determines an element of $\widehat{A} Q$.

Equip Q with the discrete topology.

1: THEOREM The induced map

$$
\left[\begin{array}{rl}
E_{Q} \mid Q: Q & \rightarrow \widehat{A / Q} \\
q & \rightarrow x_{Q, q}
\end{array}\right.
$$

is an isomorphism of topological groups.
PROOF Form $Q^{\perp} \subset \hat{A}$, the closed subgroup of \hat{A} consisting of those χ that are trivial on $Q-$ then $Q \subset Q^{\perp}$ and $\widehat{A / Q} \approx Q^{\perp}$. But A / Q is compact, thus its unitary dual $\widehat{A / Q}$ is discrete, thus Q^{\perp} is discrete. The quotient $Q^{\perp} / Q \subset A / Q(A \approx \hat{A})$ is therefore discrete and closed, hence discrete and compact, hence finite. But Q^{\perp} / Q is a Q-vector space, so $Q^{\perp} / Q=\{0\}$ or still, $Q^{\perp}=Q$, which implies that $Q \approx \widehat{A / Q}$.

2: N.B. There are two points of detail that have been tacitly invoked in the foregoing derivation.

- Q^{\perp} / Q in the quotient topology is discrete. Reason: Let S be an arbitrary nonempty subset of Q^{\perp} / Q, say $S=\{x Q: x \in U\}, U$ a subset of $Q^{\perp}--$ then U is automatically open (Q^{\perp} being discrete), thus by the very definition of the quotient
topology, S is an open subset of Q^{\perp} / Q.
- The quotient Q^{\perp} / Q is closed in A / Q. Reason: Q^{\perp} is a closed subgroup of A containing Q, so the following generality is applicable: If G is a topological group, if H is a subgroup of G, if F is a closed subgroup of G containing H, then $\pi(F)$ is closed in G / H ($\pi: G \rightarrow G / H$ the projection) .

3: SCHOLIUM

$$
Q \approx \widehat{A / Q} \Rightarrow \hat{Q} \approx \widehat{A / Q} \approx A / Q
$$

[Note: Bear in mind that Q carries the discrete topology.]
4: DISCUSSION Explicated, if $x \in \hat{Q}$, then there exists a $t \in A$ such that $x=x_{Q, t}$ and $x_{Q, t_{1}}=x_{Q, t_{2}}$ iff $t_{1}-t_{2} \in Q$.

5: DEFINITION The Bruhat space $B\left(A_{\text {fin }}\right)$ consists of all finite linear combinations of functions of the form

$$
f=\prod_{p} f_{p^{\prime}}
$$

where $\forall p, f_{p} \in B\left(Q_{p}\right)$ and $f_{p}=x_{Z_{p}}$ for all but a finite number of p.

6: DEFINITION The Bruhat-Schwartz space $B_{\infty}(A)$ consists of all finite linear combinations of functions of the form

$$
f=\prod_{p} f_{p} \times f_{\infty}
$$

where

$$
\prod_{p} f_{p} \in B\left(A_{f i n}\right) \text { and } f_{\infty} \in S(R)
$$

Given an $f \in B_{\infty}(A)$, its Fourier transform is the function $\hat{f}: A \rightarrow C$ defined by the rule

$$
\begin{aligned}
\hat{f}(t) & =\int_{A} f(x) x_{Q, t}(x) d \mu_{A}(x) \\
& =\int_{A} f(x) x_{Q}(t x) d \mu_{A}(x)
\end{aligned}
$$

7: LEMMA If

$$
f=\prod_{p} f_{p} \times f_{\infty}
$$

is a Bruhat-Schwartz function, then

$$
\hat{\mathrm{f}}=\prod_{\mathrm{p}} \hat{\mathrm{f}}_{\mathrm{p}} \times \hat{\mathrm{f}}_{\infty}
$$

8: REMARK $\hat{\mathrm{f}}_{\mathrm{p}}$ is computed per $\S 10$, \#11 but $\hat{\mathrm{f}}_{\infty}$ is computed per

$$
x_{\infty}(x)=\exp (-2 \pi \sqrt{-1} x)
$$

meaning that the sign convention here is the opposite of that laid down in $\$ 10$ (a harmless deviation).

9: APPLICATION

$$
\left.f \in B_{\infty}(A) \Rightarrow \hat{f} \in B_{\infty}(A) \quad \text { (cf. } \S 10, \# 16\right)
$$

10: N.B. It is clear that

$$
B_{\infty}(A) \subset \operatorname{INV}(A)
$$

and $\forall f \in B_{\infty}(A)$,

$$
\hat{\hat{f}}(x)=f(-x) \quad(x \in A) .
$$

11: LEMMA Given $f \in B_{\infty}(A)$, the series

$$
\sum_{r \in Q} f(x+r), \sum_{q \in Q} \hat{f}(x+q)
$$

are absolutely and uniformly convergent on compact subsets of A.

12: POISSON SUMMATION FORMULA Given $f \in B_{\infty}(A)$,

$$
\sum_{r \in Q} f(r)=\sum_{q \in Q} \hat{f}(q)
$$

The proof is not difficult but there are some measure-theoretic issues to be dealt with first.

On general grounds,

$$
\left.\delta_{\mathrm{A}}=\delta_{\mathrm{A} / \mathrm{Q}} \stackrel{\Sigma}{\mathrm{Q}}_{\Sigma} \quad \text { (cf. } \S 6, \# 11\right) .
$$

Here the integral \int_{A} is with respect to the Haar measure μ_{A} on A (cf. §14, \#31). Taking μ_{Q} to be counting measure, this choice of data fixes the Haar measure $\mu_{A / Q}$ on A / Q.
[Note: The restriction of μ_{A} to the fundamental domain

$$
D=\prod_{p} z_{p} \times[0,1[
$$

for A / Q (cf. $\S 14, \# 10$) determines $\mu_{A / Q}$ and

$$
\left.I=\mu_{A}(D)=\mu_{A / Q}(A / Q) .\right]
$$

If $\phi: Q \rightarrow C$, then $\hat{\phi}: \hat{Q} \rightarrow C$, i.e. $\hat{\phi}: A / Q \rightarrow C$ or still,

$$
\hat{\phi}(X)=\sum_{r \in Q} \phi(r) X(r)
$$

Specialize and suppose that ϕ is the characteristic function of $\{0\}$, so $\forall x$,

$$
\hat{\phi}(x)=x(0)=1
$$

Therefore $\hat{\phi}$ is the constant function 1 on A / Q. Pass now to $\hat{\hat{\phi}}$, thus $\hat{\hat{\phi}}: \widehat{A / Q} \rightarrow C$ or still,

$$
\begin{aligned}
\hat{\hat{\phi}}\left(x_{Q, q}\right) & =\delta_{A / Q} \hat{\phi}(x) x_{Q, q}(x) d \mu_{A / Q}(x) \\
& =\delta_{A / Q} x_{Q, q}(x) d \mu_{A / Q}(x)
\end{aligned}
$$

which is 1 if $q=0$ and is 0 otherwise (cf. $\S 7$, \#46 (A / Q is compact)), hence $\hat{\hat{\phi}}=\phi$. But $\phi(r)=\phi(-r)$, thereby leading to the conclusion that the Haar measure $\mu_{A / Q}$ on A / Q is the one singled out by Fourier inversion (cf. §7, \#45).

Summary: Per Fourier inversion,

- μ_{Q} is paired with $\mu_{A / Q}$.
- $\mu_{A / Q}$ is paired with μ_{Q}.

Given $f \in B_{\infty}(A)$, put

$$
F(x)=\sum_{r \in Q} f(x+r)
$$

Then F lives on A / Q, so \hat{F} lives on $\widehat{A / Q} \approx Q$:

$$
\begin{aligned}
\hat{F}(q) & =\int_{A / Q} F(x) x_{Q, q}(x) d \mu_{A / Q}(x) \\
& =\int_{A / Q} F(x) x_{Q}(q x) d \mu_{A / Q}(x) .
\end{aligned}
$$

On the other hand,

$$
\hat{f}(q)=\int_{A} f(x) x_{Q, q}(x) d \mu_{A}(x)
$$

$$
\begin{aligned}
& =\int_{A} f(x) X_{Q}(q x) d \mu_{A}(x) \\
& =\delta_{A / Q}\left(\sum_{r \in Q} f(x+r) X_{Q}(q(x+r))\right) d \mu_{A / Q}(x) \\
& =\delta_{A / Q}\left(\sum_{r \in Q} f(x+r) x_{Q}(q x+q r)\right) d \mu_{A / Q}(x) \\
& =\int_{A / Q}\left(\sum_{r \in Q} f(x+r) \chi_{Q}(q x) \chi_{Q}(q r) d \mu_{A / Q}(x)\right. \\
& =\int_{A / Q}\left(\sum_{r \in Q} f(x+r)\right) \chi_{Q}(q x) d \mu_{A / Q}(x) \\
& =s_{A / Q} F(x) \chi_{Q}(q x) d \mu_{A / Q}(x) \\
& =\hat{F}(q) .
\end{aligned}
$$

To finish the proof, per Fourier inversion, write

$$
F(x)=\sum_{q \in Q} \hat{F}(q) \overline{X_{Q}(q x)}
$$

and then put $x=0$:

$$
F(0)=\sum_{r \in Q} f(r)=\sum_{q \in Q} \hat{F}(q)=\sum_{q \in Q} \hat{f}(q)
$$

13: THEOREM Let $x \in I$ - then $\forall f \in B_{\infty}(A)$,

$$
\sum_{r \in Q} f(r x)=\frac{1}{|x|_{A}} \sum_{q \in Q} \hat{f}\left(q x^{-1}\right)
$$

PROOF Work with $f_{x} \in B_{\infty}(A) \quad\left(f_{x}(y)=f(x y)\right):$

$$
\sum_{r \in Q} f_{x}(r)=\sum_{q \in Q} \hat{f}_{x}(q)
$$

8.

But

$$
\begin{aligned}
\hat{f}_{x}(q) & =\int_{A} f_{x}(y) x_{Q, q}(y) d \mu_{A}(y) \\
& =\int_{A} f_{x}(y) x_{Q}(q y) d \mu_{A}(y) \\
& =\int_{A} f(x y) x_{Q}\left(q x x^{-1} y\right) d \mu_{A}(y) \\
& =\frac{1}{|x|_{A}} \int_{A} f(y) x_{Q}\left(q x^{-1} y\right) d \mu_{A}(y) \\
& =\frac{1}{|x|_{A}} \hat{f}\left(q x^{-1}\right)
\end{aligned}
$$

§16. FUNCTIONAL EQUATIONS

Let

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad(\operatorname{Re}(s)>1)
$$

be the Riemann zeta function -- then $\zeta(s)$ can be meromorphically continued into the whole s-plane with a simple pole as $s=1$ and satisfies there the functional equation

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\pi^{-(1-s) / 2} \Gamma((1-s) / 2) \zeta(1-s) .
$$

1: REMARK The product $\pi^{-s / 2} \Gamma(s / 2)$ was denoted by $\Gamma_{R}(s)$ in $\S 11$, \#8.

There are many proofs of the functional equation satisfied by $\zeta(s)$. Of these, we shall single out two, one "classical", the other "modern".

To proceed in the classical vein, start with

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x \frac{d x}{x} \quad(\operatorname{Re}(s)>1)
$$

Then by change of variable,

$$
\pi^{-s / 2} \Gamma(s / 2) n^{-s}=\int_{0}^{\infty} e^{-n^{2} \pi x} x^{s / 2} \frac{d x}{x}
$$

So, upon summing from $\mathrm{n}=1$ to ∞ :

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} \psi(x) x^{s / 2} \frac{d x}{x}
$$

where

$$
\psi(x)=\sum_{n=1}^{\infty} e^{-n^{2} \pi x} .
$$

Put now

$$
\theta(x)=1+2 \psi(x)=\sum_{n \in Z} e^{-n^{2} \pi x}
$$

2: LEMMA

$$
\theta\left(\frac{1}{x}\right)=\sqrt{x} \theta(x)
$$

Therefore

$$
\begin{aligned}
\psi\left(\frac{1}{x}\right) & =-\frac{1}{2}+\frac{1}{2} \theta\left(\frac{1}{x}\right) \\
& =-\frac{1}{2}+\frac{\sqrt{x}}{2} \theta(x) \\
& =-\frac{1}{2}+\frac{\sqrt{x}}{2}+\sqrt{x} \psi(x)
\end{aligned}
$$

One may then write

$$
\begin{aligned}
& \pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} \psi(x) x^{s / 2} \frac{d x}{x} \\
= & \int_{0}^{1} \psi(x) x^{s / 2} \frac{d x}{x}+\int_{1}^{\infty} \psi(x) x^{s / 2} \frac{d x}{x} \\
= & \int_{1}^{\infty} \psi\left(\frac{1}{x}\right) x^{-s / 2} \frac{d x}{x}+\int_{1}^{\infty} \psi(x) x^{s / 2} \frac{d x}{x} \\
= & \int_{1}^{\infty}\left(-\frac{1}{2}+\frac{\sqrt{x}}{2}+\sqrt{x} \psi(x)\right) x^{-s / 2} \frac{d x}{x}+\int_{1}^{\infty} \psi(x) x^{s / 2} \frac{d x}{x} \\
= & \frac{1}{s-1}-\frac{1}{s}+\int_{1}^{\infty} \psi(x)\left(x^{s / 2}+x^{(1-s) / 2}\right) \frac{d x}{x} .
\end{aligned}
$$

The last integral is convergent for all values of s and thus defines a holomorphic function. Moreover, the last expression is unchanged if s is replaced by 1-s. I.e.:

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\pi^{-(1-s) / 2} \Gamma((1-s) / 2) \zeta(1-s) .
$$

The modern proof of this relation uses the adele-idele machinery. Thus let

$$
\Phi(x)=e^{-\pi x_{\infty}^{2}} \prod_{p} x_{Z_{p}}\left(x_{p}\right)(x \in A) .
$$

Then if $\operatorname{Re}(s)>1$,

$$
\begin{aligned}
& \int_{I} \Phi(x)|x|_{A}^{s} d^{x} x \\
= & \int_{R^{x}} e^{-\pi t^{2}}|t|^{s} \frac{d t}{|t|} \cdot \prod_{p} \int_{Q_{p}^{x}} x_{Z_{p}}\left(x_{p}\right)\left|x_{p}\right|_{p}^{s} d^{x} x_{p} \\
= & \pi^{-s / 2_{\Gamma}(s / 2)} \cdot \prod_{p} \delta_{Z_{p}-\{0\}}\left|x_{p}\right|_{p}^{s} d^{x} x_{p} \\
= & \left.\pi^{-s / 2} \Gamma(s / 2) \cdot \prod_{p} \frac{1}{1-p^{-s}} \quad \text { (cf. } 56, \# 26\right) \\
= & \pi^{-s / 2} \Gamma(s / 2) \zeta(s) .
\end{aligned}
$$

To derive the functional equation, we shall calculate the integral

$$
\int_{I} \Phi(x)|x|_{A}^{S} d^{x} x
$$

in another way. To this end, put

$$
D^{x}=\prod_{p} z_{p}^{x} \times R_{>0^{\prime}}^{\times}
$$

a fundamental damain for I / Q^{x} (cf. $\S 14$, \#26), so

$$
I=\bigcup_{r \in Q^{x}} r D^{x} \quad \text { (disjoint union) }
$$

Therefore

$$
\int_{I} \Phi(x)|x|_{A}^{S} d^{x} x
$$

$$
\begin{aligned}
& =\sum_{r \in Q^{x}} \int_{r D^{x}} \Phi(x)|x|_{A}^{S} d^{x} x \\
& =\int_{D^{x}} \sum_{r \in Q^{x}} \Phi(r x)|r x|_{A}^{S} d^{x} x \\
& =\int_{D^{x}} \sum_{|x|_{A} \leq 1} \sum_{r \in Q^{x}} \Phi(r x)|x|_{A}^{S} d^{x} x \\
& +\int_{D^{x}} \sum_{|x|_{A} \geq 1} \Phi\left(r \in Q^{x} \text { (} x\right)|x|_{A}^{S} d^{x} x .
\end{aligned}
$$

To proceed further, recall that $\hat{\Phi}=\Phi \quad(\Rightarrow \hat{\Phi}(0)=\Phi(0)=1)$, hence (cf. §15, \#13)

$$
1+\sum_{r \in Q^{x}} \Phi(r x)=\frac{1}{|x|_{A}}+\frac{1}{|x|_{A}} \sum_{q \in Q^{x}} \Phi\left(q x^{-1}\right)
$$

Accordingly,

$$
\begin{aligned}
& \int_{D^{x}}^{|x|_{A} \leq 1} \sum_{r \in Q^{x}} \Phi(r x)|x|_{A}^{s} d^{x} x \\
& =\int_{D^{x}}\left(-1+\frac{1}{|x|_{A} \leq 1} \left\lvert\, \frac{1}{|x|_{A}} \sum_{q \in Q^{x}} \Phi\left(q x^{-1}\right)\right.\right)|x|_{A}^{S} d^{x} x
\end{aligned}
$$

But

$$
\begin{aligned}
& \int_{D^{x}}^{|x|_{A} \leq 1}\left(|x|_{A}^{s-1}-|x|_{A}^{s}\right) d^{x} x \\
& \quad=\int_{0}^{1}\left(t^{s-1}-t\right) \frac{d t}{t}=\frac{1}{s-1}-\frac{1}{s}
\end{aligned}
$$

So, upon assembling the data, we conclude that

$$
=\frac{1}{s-1}-\frac{1}{s}+\int_{\substack{D^{x} \\|x|_{A} \geq 1}} \Phi \sum_{q \in Q^{x}} \Phi(q x)|x|_{A}^{s_{d}{ }^{x} x}\left(|x|_{A}^{s}+|x|_{A}^{1-s}\right) d^{\times} x .
$$

Since the second expression is invariant under the transformation $s \rightarrow l-s$, the functional equation for $\zeta(s)$ follows once again.

3: REMARK Consider

$$
\int_{D^{x}}^{|x|_{A} \geq 1} \sum^{q \in Q^{x}} \Phi \Phi(q x) \ldots .
$$

Then from the definitions,

$$
\begin{aligned}
x \in D^{\times} \Rightarrow x_{p} \in Z_{p}^{\times} & \& q x_{p} \in Z_{p} \\
& \Rightarrow q \in Z
\end{aligned}
$$

Matters thus reduce to

$$
2 \int_{1}^{\infty} \sum_{n=1}^{\infty} e^{-n^{2} \pi t^{2}}\left(t^{s}+t^{1-s}\right) \frac{d t}{t}
$$

or still,

$$
\int_{1}^{\infty} \psi(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}
$$

the classical expression.

§17. GLOBAL ZETA FUNCTIONS

Structurally, there is a short exact sequence

$$
\left.I \rightarrow I^{1} / Q^{\times} \rightarrow I / Q^{\times} \rightarrow R_{>0}^{\times} \rightarrow 1 \quad \text { (cf. } \S 14, \# 27\right)
$$

and I^{1} / Q^{\times}is compact (cf. §14, \#24).

1: DEFINITION Given $f \in B_{\infty}(A)$ and a unitary character $\omega: I / Q^{\times} \rightarrow T$, the global zeta function attached to the pair (f, ω) is

$$
Z(f, \omega, s)=\int_{I} f(x) \omega(x)|x|_{A}^{s} d^{x} x \quad(\operatorname{Re}(s)>1) .
$$

2: EXAMPLE In the notation of 816 , take

$$
f(x)=\Phi(x)=e^{-\pi x_{\infty}^{2}} \prod_{p} x_{Z_{p}}\left(x_{p}\right) \quad(x \in A)
$$

and let $\omega=1$-- then as shown there

$$
\mathrm{Z}(\mathrm{f}, 1, \mathrm{~s})=\pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s}) .
$$

3: LEMMA $Z(f, \omega, s)$ is a holamorphic function of s in the strip $\operatorname{Re}(s)>1$.

4: THEOREM $Z(f, \omega, s)$ can be meromorphically continued into the whole s-plane and satisfies the functional equation

$$
Z(f, \omega, s)=Z(\hat{f}, \bar{\omega}, l-s) .
$$

[Note:

$$
\left.\left.f \in B_{\infty}(A) \Rightarrow \hat{f} \in B_{\infty}(A) \quad \text { (cf. } \S 15, \# 9\right) .\right]
$$

The proof is a computation, albeit a lengthy one.

To begin with,

$$
\left.I \approx R_{>0}^{\times} \times I^{1} \quad \text { (cf. } \S 14, \# 27\right)
$$

Therefore

$$
\begin{aligned}
& z(f, \omega, s)=\int_{I} f(x) \omega(x)|x|_{A}^{s} d^{x} x \\
= & \int_{R_{>0}^{x} x I^{I}} f(t x) \omega(t x)|t x|_{A}^{S} \frac{d t}{t} d^{x} x \\
= & \int_{0}^{\infty}\left(\int_{I^{I}} f(t x) \omega(t x)|t x|_{A}^{S} d^{x} x\right) \frac{d t}{t} .
\end{aligned}
$$

5: NOTATION Put

$$
z_{t}(f, \omega, s)=\int_{I^{I}} f(t x) \omega(t x)|t x|_{A}^{s} d^{x} x
$$

6: LEMMA

$$
\begin{aligned}
& z_{t}(f, \omega, s)+f(0) \int_{I^{1} / Q^{x}} \omega(t x)|t x|_{A}^{s} d^{x} x \\
& \quad=z_{t^{-1}}(\hat{f}, \bar{\omega}, 1-s)+\hat{f}(0) \int_{I^{1} / Q^{x}} \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x .
\end{aligned}
$$

PROOF Write

$$
\begin{aligned}
& \int_{I^{I}} f(t x) \omega(t x)|t x|_{A}^{S} d^{x} x \\
& =\int_{I^{I} / Q^{x}}\left(\sum_{r \in Q^{x}} f(r t x) \omega(r t x)|r t x|_{A}^{S}\right) d^{x} x \\
& =\int_{I^{I} / Q^{x}}\left(\sum_{r \in Q^{x}} f(r t x) \omega(t x)|t x|_{A}^{S} d^{x} x .\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
& Z_{t}(f, \omega, s)+f(0) \int_{I^{I} / Q^{x}} \omega(t x)|t x|_{A}^{s} d^{x} \\
& =\int_{I^{1} / Q^{x}}\left(\sum_{r \in Q} f(r t x)\right) \omega(t x)|t x|_{A}^{S} d^{x} x \\
& \left.=\int_{I^{1} / Q^{x}}\left(\frac{1}{|t x|_{A}} \sum_{q \in 0} \hat{f}\left(q t^{-1} x^{-1}\right)\right) \omega(t x)|t x|_{A}^{s} d^{x} x \quad \text { (cf. } \S 15, \# 13\right) \\
& =\int_{I^{1} / Q^{x}}\left(\sum_{q \in Q} \hat{f}\left(q t^{-1} x\right)\right)\left|t^{-1} x\right|_{A} \omega\left(t x^{-1}\right)\left|t x^{-1}\right|_{A}^{s} d^{x} x \quad\left(x \rightarrow x^{-1}\right) \\
& =\int_{I^{1} / Q} \times\left(\sum_{q \in Q} \hat{f}\left(q t^{-1} x\right)\right) \omega^{-1}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x \\
& =\int_{I^{1} / Q^{x}}\left(\sum_{q \in Q} \hat{f}\left(q t^{-1} x\right)\right) \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x \\
& =\int_{I^{1} / Q^{x}}\left(\sum_{q \in Q^{x}} \hat{f}\left(q t^{-1} x\right) \bar{\omega}\left(q t^{-1} x\right)\left|q t^{-1} x\right|_{A}^{1-s}\right) d^{x} x \\
& +\hat{f}(0) \int_{I^{I} / Q^{x}} \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x \\
& =\int_{I^{I}} \hat{f}\left(t^{-1} x\right) \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x \\
& +\hat{f}(0) \int_{I^{1} / Q^{x}} \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x \\
& =z_{t^{-1}}(\hat{f}, \bar{w}, 1-s)+\hat{f}(0) \int_{I^{1} / Q^{x}} \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x .
\end{aligned}
$$

Return to $Z(f, \omega, s)$ and break it up as follows:

$$
z(f, \omega, s)=\int_{0}^{1} z_{t}(f, \omega, s) \frac{d t}{t}+\int_{1}^{\infty} z_{t}(f, \omega, s) \frac{d t}{t} .
$$

7: LEMMA The integral

$$
\int_{1}^{\infty} Z_{t}(f, \omega, s) \frac{d t}{t}
$$

is a holomorphic function of s.
[It can be expressed as

$$
\left.\int_{|x|_{A} \geq 1} f(x) \omega(x)|x|_{A}^{S} d^{x} x .\right]
$$

This leaves

$$
\int_{0}^{1} z_{t}(f, \omega, s) \frac{d t}{t}
$$

which can thus be represented as

$$
\begin{aligned}
& \int_{0}^{1}\left(Z_{t^{-1}}(\hat{\mathrm{f}}, \bar{\omega}, 1-s)\right. \\
-f(0) & \int_{I^{1} / Q^{x}} \omega(t x)|t x|_{A}^{s} d^{x} x \\
& \left.+\hat{f}(0) \int_{I^{1} / Q^{x}} \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x\right) \frac{d t}{t} .
\end{aligned}
$$

To carry out the analysis, subject

$$
\int_{0}^{1} z_{t^{-1}}(\hat{f}, \bar{\omega}, 1-s) \frac{d t}{t}
$$

to the change of variable $t \rightarrow t^{-1}$, thereby leading to

$$
\int_{1}^{\infty} Z_{t}(\hat{f}, \bar{\omega}, 1-s) \frac{d t}{t}
$$

a holomorphic function of s (cf. \#7 supra).

5.

It remains to discuss

$$
\begin{aligned}
R(f, \omega, s) & =\int_{0}^{I}\left(-f(0) \int_{I^{I} / Q^{x}} \omega(t x)|t x|_{A}^{S} d^{x} x\right. \\
& \left.+\hat{f}(0) \int_{I^{1} / Q^{x}} \bar{\omega}\left(t^{-1} x\right)\left|t^{-1} x\right|_{A}^{1-s} d^{x} x\right) \frac{d t}{t} \\
& =\int_{0}^{1}\left(-f(0) \omega(t)|t|^{s} \int_{I^{1} / Q^{x}} \omega(x) d^{x} x\right. \\
& \left.+\hat{f}(0) \bar{\omega}\left(t^{-1}\right)\left|t^{-1}\right|^{1-s} \int_{I^{1} / Q^{x}} \bar{\omega}(x) d^{x} x\right) \frac{d t}{t}
\end{aligned}
$$

there being two cases.

1. ω is nontrivial on I^{I}. Since I^{l} / Q^{\times}is compact (cf. $\S 14$, \#24), the integrals

$$
\int_{I^{1} / Q^{x}} \omega(x) d^{x} x, \int_{I^{1} / Q^{x}} \overline{\omega(x) d^{x} x}
$$

must vanish (cf. §7, \#46). Therefore $R(f, \omega, s)=0$, hence

$$
z(f, \omega, s)=\int_{1}^{\infty} z_{t}(f, \omega, s) \frac{d t}{t}+\int_{1}^{\infty} z_{t}(\hat{f}, \bar{\omega}, 1-s) \frac{d t}{t}
$$

a holamorphic function of s.
2. ω is trivial on I^{1}. Let $\phi: R_{>0}^{\times} \rightarrow I / I^{I}$ be the isomorphism per $\S 14$, \#27 -then $\omega \circ \phi: R_{>0}^{x} \rightarrow T$ is a unitary character of $R_{>0}^{x}$, thus for same $w \in R, \omega \circ \phi=$ $1 .\left.\right|^{-\sqrt{-1} \mathrm{w}}$, so

$$
\omega=|\cdot|^{-\sqrt{-1} w} \circ \phi^{-1} \Rightarrow \omega(x)=|x|_{A}^{-\sqrt{-1} w}
$$

Therefore

$$
R(f, \omega, s)=-f(0) \operatorname{vol}\left(I^{1} / Q^{\times}\right) \int_{0}^{1} t^{-\sqrt{-1} w+s-1} d t
$$

$$
\begin{aligned}
& \quad+\hat{\mathrm{f}}(0) \operatorname{vol}\left(I^{1} / Q^{\times}\right) \int_{0}^{1} t^{-\sqrt{-I} w+s-2} d t \\
& =-f(0) \frac{\operatorname{vol}\left(I^{1} / Q^{\times}\right)}{-\sqrt{-1} w+s}+\hat{f}(0) \frac{\operatorname{vol}\left(I^{1} / Q^{\times}\right)}{-\sqrt{-1} w+s-1},
\end{aligned}
$$

a meromorphic function that has a simple pole at

$$
\left\lvert\, \begin{aligned}
& s=\sqrt{-1} w \text { with residue }-f(0) \operatorname{vol}\left(I^{1} / Q^{\times}\right) \text {if } f(0) \neq 0 \\
& s=\sqrt{-1} w+1 \text { with residue } \hat{f}(0) \operatorname{vol}\left(I^{1} / Q^{\times}\right) \text {if } \hat{f}(0) \neq 0 .
\end{aligned}\right.
$$

8: N.B. To explicate $\operatorname{vol}\left(\mathrm{I}^{1} / Q^{x}\right)$, use the machinery of $\S 16$: In the notation of \#2 above,

$$
\begin{gathered}
z(f, 1, s)=-\frac{1}{s}+\frac{1}{s-1}+\cdots \\
\Rightarrow \operatorname{vol}\left(I^{1} / Q^{\times}\right)=1 .
\end{gathered}
$$

[Note: Here, $\mathrm{w}=0$ and $\mathrm{f}(0)=1, \hat{\mathrm{f}}(0)=1$.

That $Z(f, \omega, s)$ can be meramorphically continued into the whole s-plane is now manifest. As for the functional equation, we have

$$
\begin{aligned}
& Z(f, \omega, s)=\int_{1}^{\infty} z_{t}(f, \omega, s) \frac{d t}{t} \\
& +\int_{1}^{\infty} z_{t}(\hat{f}, \bar{\omega}, 1-s) \frac{d t}{t} \\
& +R(f, \omega, s) \\
& =\int_{1}^{\infty}\left(\int_{I^{I}} f(t x) \omega(t x)|t x|_{A}^{s} d^{x} x\right) \frac{d t}{t} \\
& +\int_{1}^{\infty}\left(\int_{I I} \hat{f}(t x) \bar{\omega}(t x)|t x|_{A}^{1-s} d^{x} x\right) \frac{d t}{t} \\
& \\
& \quad+R(f, \omega, s) .
\end{aligned}
$$

And we also have

$$
\begin{aligned}
& Z(\hat{f}, \bar{\omega}, I-s)=\int_{1}^{\infty} Z_{t}(\hat{f}, \bar{\omega}, 1-s) \frac{d t}{t} \\
& \left.+\int_{1}^{\infty} z_{t} \hat{\hat{f}}, \bar{\omega}, 1-(1-s)\right) \frac{d t}{t} \\
& +R(\hat{f}, \bar{\omega}, 1-s) \\
& =\int_{1}^{\infty} z_{t}(\hat{f}, \bar{\omega}, 1-s) \frac{d t}{t} \\
& +\int_{1}^{\infty} z_{t}(\hat{\hat{f}}, \omega, s) \frac{d t}{t} \\
& +R(\hat{f}, \bar{\omega}, 1-s) \\
& =\int_{1}^{\infty}\left(\int_{I^{1}} \hat{f}(t x) \bar{\omega}(t x)|t x|_{A}^{1-s} d^{x} x\right) \frac{d t}{t} \\
& +\int_{l}^{\infty}\left(\int_{I^{1}} \hat{\hat{f}}(t x) \omega(t x)|t x|_{A}^{s} d^{x} x\right) \frac{d t}{t} \\
& +R(\hat{f}, \bar{\omega}, 1-s) .
\end{aligned}
$$

The first of these terms can be left as is (since it already figures in the formula for $Z(f, \omega, s)$). Recalling that

$$
\hat{\hat{f}}(x)=f(-x) \quad(x \in A) \quad(c f . \S 15, \# 10),
$$

the second term becames

$$
\int_{1}^{\infty}\left(\int_{I^{I}} f(-t x) \omega(t x)|t x|_{A}^{s} d^{x} x\right) \frac{d t}{t}
$$

or still,

$$
\begin{aligned}
& \int_{1}^{\infty}\left(\int_{I^{1}} f(t x) \omega(-t x)|-t x|_{A}^{S} d^{x} x\right) \frac{d t}{t} \\
= & \int_{1}^{\infty}\left(\int_{I^{1}} f(t x) \omega(-t x)|t x|_{A}^{s} d^{x} x\right) \frac{d t}{t} .
\end{aligned}
$$

But by hypothesis, ω is trivial on Q^{x}, hence

$$
\omega(-t x)=\omega((-1) t x)=\omega(-1) \omega(t x)=\omega(t x),
$$

and we end up with

$$
\int_{1}^{\infty}\left(\int_{I^{I}} f(t x) \omega(t x)|t x|_{A}^{s} d^{x} x\right) \frac{d t}{t}
$$

which likewise figures in the formula for $Z(f, \omega, s)$. Finally, if ω is trivial on I^{1}, then

$$
\begin{aligned}
R(\hat{f}, \bar{w}, 1-s) & =-\frac{\hat{f}(0)}{\sqrt{-1} w+1-s}+\frac{\hat{\hat{f}}(0)}{\sqrt{-1} w+(1-s)-1} \\
& =\frac{f(0)}{\sqrt{-1} w-s}-\frac{\hat{f}(0)}{\sqrt{-1} w+1-s} \\
& =-\frac{f(0)}{-\sqrt{-1} w+s}+\frac{\hat{f}(0)}{-\sqrt{-1} w+s-1} \\
& =R(f, \omega, s) .
\end{aligned}
$$

On the other hand, if ω is nontrivial on I^{l}, then \bar{w} is nontrivial on I^{1} and

$$
R(f, \omega, s)=0, R(\hat{f}, \bar{\omega}, 1-s)=0 .
$$

§18. LOCAL ZETA FUNCTIONS [BIS]

To be in conformity with the global framework laid down in §17, we shall reformulate the local theory of $\S 11$ and $\S 12$.

1: DEFINITION Given $f \in S(R)$ and a unitary character $\omega: R^{x} \rightarrow T$, the local zeta function attached to the pair (f, ω) is

$$
Z(f, \omega, s)=\int_{R^{x}} f(x) \omega(x)|x|^{s} d^{x} x \quad(\operatorname{Re}(s)>0) .
$$

2: THEOREM There exists a meramorphic function $\rho(\omega, s)$ such that $\forall f$,

$$
\rho(\omega, s)=\frac{Z(f, \omega, s)}{Z(\hat{\mathbf{f}}, \bar{\omega}, 1-\mathbf{s})} .
$$

Decampose ω as a product:

$$
\omega(x)=(\operatorname{sgn} x)^{\sigma}|x|^{-\sqrt{-1} w}(\sigma \in\{0,1\}, w \in R) .
$$

3: DEFINITION Write (cf. §ll, \#9)

$$
L(\omega, s)= \begin{cases}\Gamma_{\mathrm{R}}(s-\sqrt{-1} w) & (\sigma=0) \\ \Gamma_{\mathrm{R}}(s-\sqrt{-1} w+1) & (\sigma=1)\end{cases}
$$

4: FACT

$$
\left[\begin{array}{ll}
\rho(\omega, s)=\frac{L(\omega, s)}{L(\omega, 1-s)} & (\sigma=0) \\
\rho(\omega, s)=-\sqrt{-1} \frac{L(\omega, s)}{L(\bar{\omega}, 1-s)} & (\sigma=1)
\end{array}\right.
$$

5: REMARK The complex case can be discussed analogously but it will not be needed in the sequel.

6: DEFINITION Given $f \in B\left(Q_{p}\right)$ and a unitary character $\omega: Q_{p}^{\times} \rightarrow T$, the local zeta function attached to the pair (f, ω) is

$$
z(f, \omega, s)=\int_{Q_{p}^{x}} f(x) \omega(x)|x|_{p}^{s} d^{x} x \quad(\operatorname{Re}(s)>0)
$$

7: THEOREM There exists a meromorphic function $\rho(\omega, s)$ such that $\forall f$,

$$
\rho(\omega, s)=\frac{Z(f, \omega, s)}{Z(\hat{f}, \bar{\omega}, 1-s)} .
$$

Decompose ω as a product:

$$
\omega(x)=\underline{\omega}(x)|x|_{p}^{-\sqrt{-1} w}\left(\underline{\omega} \in \widehat{z_{p}^{x}} w \in R\right) .
$$

8: DEFINITION Write (cf. §12, \#8)

$$
L(\omega, s)=\left\{\begin{array}{c}
\left(1-\omega(p) p^{-s}\right)^{-1}(\underline{\omega}=1) \\
1 \quad(\underline{\omega} \neq 1)
\end{array}\right.
$$

[Note: If $\underline{\omega}=1$, then

$$
\left.\omega(p)=|p|_{p}^{-\sqrt{-1} w}=p^{\sqrt{-1}} w \cdot\right]
$$

9: FACT $(\underline{\omega}=1)$

$$
\rho(\omega, s)=\frac{L(\omega, s)}{L(\bar{\omega}, 1-s)}=\frac{1-\bar{\omega}(p) p^{-(1-s)}}{1-\omega(p) p^{-s}}
$$

$$
\rho(\omega, s)=\tau(\omega) \underline{\omega}(-1) p^{n(s+\sqrt{-1}-1)}
$$

where

$$
\tau(\omega)=\sum_{i=1}^{r} \underline{\omega}\left(e_{i}\right) x_{p}\left(p^{-n} e_{i}\right)
$$

and $\operatorname{deg} \omega=n \geq 1$.

APPENDIX

It can happen that

$$
\mathrm{Z}(\mathrm{f}, \omega, \mathrm{~s}) \equiv 0 .
$$

To illustrate, suppose that $\omega(-1)=-1$ and $f(x)=f(-x)$. Working with Q_{p}^{x} (the story for R^{\times}being the same), we have

$$
\begin{aligned}
Z(f, \omega, s) & =\int_{Q_{p}^{x}} f(x) \omega(x)|x|_{p}^{s} d^{x} x \\
& =\int_{Q_{p}^{x}} f(-x) \omega(-x)|-x|_{p}^{s} d^{x} x \\
& =\omega(-1) \int_{Q_{p}^{x}} f(x) \omega(x)|x|_{p}^{s} d^{x} x \\
& =\omega(-1) Z(f, \omega, s) \\
& =-Z(f, \omega, s) .
\end{aligned}
$$

§19. L-FUNCTIONS

Let $\omega: I / Q^{\times} \rightarrow T$ be a unitary character.

1: LENMA There is a unique unitary character $\underline{\omega}$ of I / Q^{\times}of finite order and a unique real number w such that

$$
\omega=\underline{\omega}|\cdot|_{\mathrm{A}}^{-\sqrt{-1} \omega} .
$$

[Note: To say that $\underline{\omega}$ is of finite order means that there exists a positive integer n such that $\underline{\omega}(\mathrm{x})^{\mathrm{n}}=1$ for all $\mathrm{x} \in$ I.]

2: N.B.

$$
\omega=\prod_{p} \omega_{p} \times \omega_{\infty}
$$

where

$$
\omega_{p}=\omega_{p}|\cdot|_{p}^{-\sqrt{-1} w}
$$

and

$$
\omega_{\infty}=(\operatorname{sgn})^{\sigma}|\cdot|_{\infty}^{-\sqrt{-1} w}
$$

3: DEFINITION

$$
L(\omega, s)=\prod_{p} L\left(\omega_{p}, s\right) \times L\left(\omega_{\infty}, s\right) .
$$

4: RAPPEL

$$
L\left(\omega_{p}, s\right)=\left.\right|_{-} ^{\left(1-\omega_{p}(p) p^{-s}\right)^{-1}} \quad\left(\underline{\omega}_{p}=1\right)
$$

5: SUBLEMMA

$$
|x|<1 \Rightarrow \log (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k} .
$$

Therefore

$$
\begin{aligned}
&|x|>1 \Rightarrow \log \frac{1}{1-x^{-1}} \\
&=\log 1-\log \left(1-x^{-1}\right) \\
&=-\left(-\sum_{k=1}^{\infty} \frac{x^{-k}}{k}\right) \\
&=\sum_{k=1}^{\infty} \frac{x^{-k}}{k}
\end{aligned}
$$

6: N.B.

$$
\begin{aligned}
& \log f(z)=\log |f(z)|+\sqrt{-1} \arg f(z) \\
\Rightarrow &
\end{aligned}
$$

$$
\operatorname{Re} \log f(z)=\log |f(z)|
$$

7: LEMMA The product

$$
\prod_{p} L\left(\omega_{p^{\prime}} s\right)
$$

is absolutely convergent provided $\operatorname{Re}(s)>1$.
PROOF Ignoring S_{ω} (a finite set), it is a question of estimating

$$
\Pi \frac{1}{\left|1-\omega_{p}(p) p^{-s}\right|}
$$

So take its logarithm and consider

$$
\begin{aligned}
& \Sigma \log \left(\frac{1}{\left|1-\omega_{p}(p) p^{-s}\right|}\right) \\
= & \sum \operatorname{Re} \log \left(\frac{1}{1-\omega_{p}(p) p^{-s}}\right) \\
= & \operatorname{Re} \sum \log \left(\frac{1}{1-\omega_{p}(p) p^{-s}}\right) \\
= & \operatorname{Re} \sum \sum_{k=1}^{\infty} \frac{\omega_{p}(p)_{p}^{k}-k s}{k} .
\end{aligned}
$$

The claim then is that the series

$$
\sum \sum_{k=1}^{\infty} \frac{\omega_{p}(p)^{k} p^{-k s}}{k}
$$

is absolutely convergent. But

$$
\begin{aligned}
& \sum \sum_{k=1}^{\infty}\left|\frac{w_{p}(p)_{p^{k}}^{-k s}}{k}\right| \\
& \quad=\sum \sum_{k=1}^{\infty} \frac{p^{-k \operatorname{Re}(s)}}{k}
\end{aligned}
$$

which is bounded by

$$
\begin{aligned}
& \sum_{p} \sum_{k=1}^{\infty} \frac{p^{-k} \operatorname{Re}(s)}{k} \\
= & \sum_{p} \sum_{k=1}^{\infty} \frac{p^{-k(1+\delta)}}{k} \quad(\operatorname{Re}(s)=1+\delta)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{p} \sum_{k=1}^{\infty} p^{-k(1+\delta)} \\
& =\sum_{p} \frac{p^{-(1+\delta)}}{1-p^{-(1+\delta)}} \\
& =\sum_{p} \frac{1}{p^{(1+\delta)}\left(1-p^{-(1+\delta)}\right)} \\
& =\sum_{p} \frac{1}{p^{(1+\delta)}-1} \\
& \leq 2 \sum \frac{1}{p^{1+\delta}<\infty .}
\end{aligned}
$$

8: EXAMPLE Take $\omega=1$-- then

$$
\begin{aligned}
L(\omega, s) & =\prod_{p} \frac{1}{1-p^{-s}} \times \Gamma_{R}(s) \\
& =\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
\end{aligned}
$$

9: LEMMA $L(\omega, s)$ is a holomorphic function of s in the strip $\operatorname{Re}(s)>1$.

10: LEMMA $L(\omega, s)$ admits a meromorphic continuation to the whole s-plane (see below).

Owing to §17, \#4, $\forall f \in B_{\infty}(A)$,

$$
Z(f, \omega, s)=Z(\hat{f}, \bar{\omega}, 1-s) .
$$

To exploit this, assume that

$$
f=\prod_{p} f_{p} \times f_{\infty^{\prime}}
$$

where $\forall p, f_{p} \in B\left(Q_{p}\right)$ and $f_{p}=x_{Z_{p}}$ for all but a finite number of p, while $f_{\infty} \in S(R)$-- then

$$
\begin{gathered}
Z(f, \omega, s) \\
=\int_{I} f(x) \omega(x)|x|_{A}^{s} d^{x} x \\
=\prod_{p} \int_{Q_{p}} f_{p}\left(x_{p}\right) \omega_{p}\left(x_{p}\right)\left|x_{p}\right|_{p}^{s} d^{x} x_{p} \times \int_{R^{x}} f_{\infty}\left(x_{\infty}\right) \omega_{\infty}\left(x_{\infty}\right)\left|x_{\infty}\right|_{\infty}^{s} d^{x} x_{\infty} \\
=\prod_{p} Z\left(f_{\left.p^{\prime}, \omega_{p}, s\right)} \times Z\left(f_{\infty}, \omega_{\infty}, s\right)\right.
\end{gathered}
$$

and analogously for $Z(\hat{f}, \bar{\omega}, 1-s)$.
Therefore

$$
\begin{aligned}
1 & =\frac{Z(f, \omega, s)}{Z(\hat{f}, \bar{\omega}, l-s)} \\
& =\prod_{p} \frac{Z\left(f_{p}, \omega_{p}, s\right)}{Z\left(\hat{f}_{p}, \bar{\omega}_{p}, l-s\right)} \times \frac{Z\left(f_{\infty}, \omega_{\infty}, s\right)}{Z\left(\hat{f}_{\infty}, \bar{\omega}_{\infty}, l-s\right)} \\
& =\prod_{p} \rho\left(\omega_{p}, s\right) \times \rho\left(\omega_{\infty}, s\right) \\
& =\prod_{p \notin S_{\omega}} \rho\left(\omega_{p}, s\right) \times \prod_{p \in S_{\omega}} \rho\left(\omega_{p}, s\right) \times \rho\left(\omega_{\infty}, s\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{p \notin S_{\omega}} \frac{L\left(\omega_{p}, s\right)}{L\left(\bar{\omega}_{p}, 1-s\right)} \times \prod_{p \in S_{\omega}} \rho\left(\omega_{p}, s\right) \times \frac{L\left(\omega_{\infty}, s\right)}{L\left(\bar{\omega}_{\infty}, 1-s\right)} \\
& =\prod_{p \in S} \rho\left(\omega_{p}, s\right) \times \prod_{p \notin S_{\omega}} \frac{L\left(\omega_{p}, s\right)}{L\left(\bar{\omega}_{p}, 1-s\right)} \times \prod_{p \in S_{\omega}} \frac{L\left(\omega_{p}, s\right)}{L\left(\bar{\omega}_{p}, 1-s\right)} \times \frac{L\left(\omega_{\infty}, s\right)}{L\left(\bar{\omega}_{\infty}, 1-s\right)} \\
& =\prod_{p \in S_{\omega}} \rho\left(\omega_{p^{\prime}} s\right) \times \prod_{p} \frac{L\left(\omega_{p}, s\right)}{L\left(\bar{\omega}_{p^{\prime}} 1-s\right)} \times \frac{L\left(\omega_{\infty}, s\right)}{L\left(\bar{\omega}_{\infty}, l-s\right)} \\
& =\prod_{p \in S_{\omega}} \rho\left(\omega_{p}, s\right) \times \frac{\prod_{p} L\left(\omega_{p}, s\right) \times L\left(\omega_{\infty}, s\right)}{\prod_{p} L\left(\bar{\omega}_{p}, 1-s\right) \times L\left(\bar{\omega}_{\infty}, 1-s\right)} \\
& =\prod_{p \in S_{\omega}} \rho\left(\omega_{p}, s\right) \times \frac{L(\omega, s)}{L(\bar{\omega}, 1-s)} \\
& \left.=\prod_{p \in S_{\omega}} \varepsilon\left(\omega_{p}, s\right) \times \frac{L(\omega, s)}{L(\bar{\omega}, 1-s)} \quad \text { (cf. } \S 12, \# 11\right) \\
& =\varepsilon(\omega, s) \times \frac{L(\omega, s)}{L(\bar{\omega}, 1-s)},
\end{aligned}
$$

where

$$
\varepsilon(\omega, s)=\prod_{p \in S_{\omega}} \varepsilon\left(\omega_{p}, s\right) .
$$

11: THEOREM

$$
L(\bar{\omega}, 1-s)=\varepsilon(\omega, s) L(\omega, s) .
$$

12: EXAMPLE Take $\omega=1$ (cf. \#8) -- then $\varepsilon(\omega, s)=1$ and

$$
L(\bar{\omega}, 1-s)=L(\omega, s)
$$

translates into

$$
\left.\pi^{-(1-s) / 2} \Gamma((1-s) / 2) \zeta(1-s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s) \quad \text { (cf. } \S 16\right) .
$$

Make the following explicit choice for

$$
f=\prod_{p} f_{p} \times f_{\infty}
$$

- If $\underline{\omega}_{p}=1$, let

$$
f_{p}\left(x_{p}\right)=x_{p}\left(x_{p}\right) x_{Z_{p}}\left(x_{p}\right)
$$

Then

$$
Z\left(f_{p}, \omega_{p}, s\right)=L\left(\omega_{p}, s\right) .
$$

- If $\underline{\omega}_{p} \neq 1$ and $\operatorname{deg} \omega_{p}=n \geq 1$, let

$$
f_{p}\left(x_{p}\right)=x_{p}\left(x_{p}\right) x_{p-n_{z}}\left(x_{p}\right)
$$

Then

$$
Z\left(f_{p}, \omega_{p}, s\right)=\tau\left(\omega_{p}\right) \frac{p^{1+n(s+\sqrt{-1} w-1)}}{p-1} L\left(\omega_{p}, s\right) .
$$

At infinity, take

$$
f_{\infty}\left(x_{\infty}\right)=e^{-\pi x_{\infty}^{2}}(\sigma=0) \text { or } f_{\infty}\left(x_{\infty}\right)=x_{\infty} e^{-\pi x_{\infty}^{2}}(\sigma=1) .
$$

Then

$$
Z\left(f_{\infty}, \omega_{\infty}, s\right)=L\left(\omega_{\infty}, s\right) .
$$

13: NOTATION Put

$$
H(\omega, s)=\prod_{p \in S_{\omega}} \tau\left(\omega_{p}\right) \frac{p^{1+n(s+\sqrt{-1} w-1)}}{p-1} .
$$

14: N.B. $H(\omega, s)$ is a never zero entire function of s.

15: LEMMA

$$
Z(f, \omega, s)=H(\omega, s) L(\omega, s) .
$$

Since $Z(f, \omega, s)$ is a meromorphic function of s (cf. $\S 17, \# 4$), it therefore follows that $L(\omega, s)$ is a meromorphic function of s.

Working now within the setting of $\S 17$, we distinguish two cases per ω.

1. ω is nontrivial on I^{I}, hence $\underline{\omega} \neq I$ and in this situation, $Z(f, \omega, s)$ is a holamorphic function of s, hence the same is true of $L(\omega, s)$.
2. ω is trivial on I^{1} - then $\omega=|\cdot|_{A}^{-\sqrt{-1} w}$ and there are simple poles at

$$
\left\{\begin{array}{l}
s=\sqrt{-I} w \text { with residue }-f(0) \text { if } f(0) \neq 0 \\
s=\sqrt{-I} w+I \text { with residue } \hat{f}(0) \text { if } \hat{f}(0) \neq 0 .
\end{array}\right.
$$

But $\forall p, \omega_{p}=|\cdot|_{p}^{-\sqrt{-1} w}\left(\Rightarrow{\underset{\omega}{p}}^{p}=1\right)$, so $f_{p}(0)=1$. And likewise $f_{\infty}(0)=1 \quad(\sigma=0)$. Conclusion: $f(0)=1$. As for the Fourier transforms, $\hat{f}_{p}=x_{Z_{p}} \Rightarrow \hat{f}_{p}(0)=1$. Also $\hat{f}_{\infty}=f_{\infty}(\sigma=0) \Rightarrow \hat{f}_{\infty}(0)=1$. Conclusion: $\hat{f}(0)=1$. The respective residues are therefore -1 and 1 .

16: THEOREM Suppose that $\omega_{1, p}=\omega_{2, p}$ for all but finitely many p and $\omega_{1, \infty}=\omega_{2, \infty}-$ then $\omega_{1}=\omega_{2}$.

PROOF Put $\omega=\omega_{1} \omega_{2}^{-1}$, thus $\omega_{p}=1$ for all p outside a finite set s of primes, so

$$
L(\omega, s)=\prod_{\mathrm{p}} L\left(\omega_{p}, s\right) \times L\left(\omega_{\infty}, s\right)
$$

$$
\begin{gathered}
=\prod_{p \in S} L\left(\omega_{p}, s\right) \prod_{p \notin S} L\left(l_{p^{\prime}} s\right) \times L\left(l_{\infty}, s\right) \\
=L(1, s) \prod_{p \in S} \frac{L\left(\omega_{p}, s\right)}{L\left(l_{p^{\prime}} s\right)} \\
=L(1, s) \prod_{p \in S} \frac{1-p^{-s}}{1-\alpha_{p} p^{-s}}
\end{gathered}
$$

where $\alpha_{p}=\omega_{p}(p)$ if $\underline{\omega}_{p}=1$ and $\alpha_{p}=0$ if $\underline{\omega}_{p} \neq 1$, and each factor

$$
\frac{1-p^{-s}}{1-\alpha_{p} p^{-s}}
$$

is nonzero at $s=0$ and $s=1$. Therefore $L(\omega, s)$ has a simple pole at $s=0$ and $s=1$. Consider the decomposition

$$
\omega=\underline{\omega}|\cdot|_{A}^{-\sqrt{-1}} \omega \quad(\text { cf } \S 19, \# 1) .
$$

Then $\underline{\omega}=1$ since otherwise $L(\omega, s)$ would be holomorphic, which it isn't. But then from the theory, $L(\omega, s)$ has simple poles at
thereby forcing $w=0$, which implies that $\omega=1$, i.e., $\omega_{1}=\omega_{2}$.
[Note: In the end, $\omega_{\mathrm{p}}=1 \forall \mathrm{p}$, hence

$$
\prod_{p \in S} \frac{1-p^{-s}}{1-\alpha_{p} p^{-s}}=\prod_{p \in S} \frac{1-p^{-s}}{1-p^{-s}}=1
$$

as it has to be.]
§20. FINITE CLASS FIELD THEORY

Given a finite field F_{q} of characteristic p (thus q is an integral power of p), then in $F_{p}^{c l}$,

$$
F_{q}=\left\{x: x^{q}=x\right\}
$$

1: LENMA The multiplicative group

$$
F_{q}^{x}=\left\{x: x^{q-1}=1\right\}
$$

is cyclic of order $q-1$.

2: NOTATION

$$
F_{q^{n}}=\left\{x: x^{q^{n}}=x\right\} \quad(n \geq 1)
$$

3: LEMMA F_{q} is a Galois extension of F_{q} of degree n.

4: LEMMA Gal ($\mathrm{F}_{\mathrm{q}} \mathrm{n}^{\prime} / \mathrm{F}_{\mathrm{q}}$) is a cyclic group of order n generated by the element $\sigma_{q, n}$, where

$$
\sigma_{q, n}(x)=x^{q} \quad\left(x \in F_{q^{n}}\right)
$$

5: LEMMA The $\mathrm{F}_{\mathrm{q}}{ }^{\mathrm{n}}$ are finite abelian extensions of F_{q} and they comprise all the finite extensions of $F_{q^{\prime}}$, hence the algebraic closure $\cup F_{n}$ is $F_{q}^{a b}$.

6: THEOREM There is a l-to-1 correspondence between the finite abelian
extensions of F_{q} and the subgroups of Z of finite index which is given by

$$
\mathrm{F}_{\mathrm{q}} \mathrm{n}^{\longleftrightarrow} \longrightarrow \mathrm{nZ} \quad(\mathrm{n} \geq 1) .
$$

Schematically:

$\mathrm{F}_{\mathrm{q}} \subset \mathrm{F}_{\mathrm{q}^{2}} \subset \mathrm{~F}_{\mathrm{q}}{ }^{4}$
\cap ก
$\mathrm{F}_{\mathrm{q}^{3}} \subset \mathrm{~F}_{\mathrm{q}}{ }^{6}$
\bigcirc
${ }^{F} q^{9}$
$<$
Z 32 ว $4 Z$
u u
$3 Z \sim 6 Z$
U
97.

The "class field" aspect of all this is the existence of a canonical homomorphism

$$
\operatorname{rec}_{q}: Z \rightarrow \operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)
$$

7: NOTATION Define

$$
\sigma_{\mathrm{q}} \in \operatorname{Gal}\left(\mathrm{~F}_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right)
$$

by

$$
\sigma_{\mathrm{q}}(\mathrm{x})=\mathrm{x}^{\mathrm{q}}
$$

8: N.B. Under the arrow of restriction

$$
\operatorname{Gal}\left(F_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right) \rightarrow \operatorname{Gal}\left(\mathrm{F}_{\mathrm{q}} \mathrm{n}^{/ F_{\mathrm{q}}}\right)
$$

σ_{q} is sent to $\sigma_{q, n}$.

9: DEFINITION

$$
\operatorname{rec}_{q}(k)=\sigma_{q}^{k} \quad(k \in Z)
$$

10: LEMMA The identification

$$
\mathrm{Z} / \mathrm{nZ} \approx \operatorname{Gal}\left(F_{\mathrm{q}} \mathrm{n}^{/ F_{\mathrm{q}}}\right)
$$

is the arrow $k \rightarrow \sigma_{q, n}^{k}$.

On general grounds,

$$
\operatorname{Gal}\left(F_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right)=\underset{\leftarrow}{\lim \operatorname{Gal}\left(F_{\mathrm{q}^{\prime}} / F_{\mathrm{q}}\right) .}
$$

[Note: The open subgroups of $\operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)$ are the $\operatorname{Gal}\left(F_{q}^{a b} / F_{q}{ }_{q}\right)$ and

$$
\left.\operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right) / \operatorname{Gal}\left(F_{q}^{a b} / F_{q^{n}}\right) \approx \operatorname{Gal}\left(F_{q^{n}} / F_{q}\right) \cdot\right]
$$

Therefore

$$
\operatorname{Gal}\left(F_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right) \approx \underset{\leftarrow}{\lim Z / n Z}
$$

another realization of the RHS being $\prod_{p} Z_{p}$ which if invoked leads to

$$
\sigma_{q} \longleftrightarrow(1,1,1, \ldots) .
$$

11: N.B. The composition

$$
Z \xrightarrow{\mathrm{rec}} \operatorname{Gal}\left(F_{q}^{\mathrm{ab}} / F_{q}\right) \approx \underset{\leftarrow}{\lim Z / n Z}
$$

coincides with the canonical map

$$
\mathrm{k} \rightarrow(\mathrm{k} \bmod \mathrm{n})_{\mathrm{n}} .
$$

12: REMARK Give Z the discrete topology -- then

$$
\operatorname{rec}_{q}: Z \rightarrow \operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)
$$

is continuous and injective but it is not a homeomorphism ($\mathrm{Gal}\left(\mathrm{F}_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right.$) is compact).
[Note: The image $\mathrm{rec}_{\mathrm{q}}(\mathrm{Z})$ is the cyclic subgroup $<\sigma_{\mathrm{q}}>$ generated by σ_{q}. And:

- $\left\langle\sigma_{q}\right\rangle \neq \operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)$
- $\left.\overline{\left\langle\sigma_{\mathrm{q}}>\right.}=\operatorname{Gal}\left(\mathrm{F}_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right) \cdot\right]$

13: SCHOLIUM The finite abelian extensions of F_{q} correspond 1-to-1 with the open subgroups of $\operatorname{Gal}\left(\mathrm{F}_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right)$.
[Quote the appropriate facts from infinite Galois theory.]

14: SCHOLIUM The open subgroups of $\mathrm{Gal}\left(\mathrm{F}_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right)$ correspond 1-to-1 with the open subgroups of Z of finite index.]
[Given an open subgroup $U \subset \operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)$, send it to $\operatorname{rec}_{q}^{-1}(U) \subset Z$ (discrete topology). Explicated:

$$
\left.\operatorname{rec}_{q}^{-1}\left(\operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)\right)=n Z .\right]
$$

APPENDIX

The norm map

$$
\mathrm{N}_{\mathrm{F}_{\mathrm{q}}} / \mathrm{F}_{\mathrm{q}}: \mathrm{F}_{\mathrm{q}^{\mathrm{n}}}^{x} \rightarrow \mathrm{~F}_{\mathrm{q}}^{\mathrm{x}}
$$

is surjective.
[Let $x \in F_{q^{x}}$:

$$
\begin{aligned}
N_{F_{q^{n}} / F_{q}}(x) & =\prod_{i=0}^{n-1}\left(\sigma_{q, n}\right)^{i} x \\
& =\prod_{i=0}^{n-1} x^{q^{i}} \\
& =x_{i=0}^{n-1} q^{i} \\
& =x^{\left(q^{n}-1\right) /(q-1)}
\end{aligned}
$$

Specialize now and take for x a generator of $F^{x}{ }^{n}$, hence x is of order $q^{n}-1$, hence $\mathrm{N}_{\mathrm{F}}^{\mathrm{q}}{ }_{\mathrm{n}} / \mathrm{F}_{\mathrm{q}}$ (x) is of order $\mathrm{q}-1$, hence is a generator of F_{q}.]
§21. LOCAL CLASS FIELD THEORY

Let K be a local field -- then there exists a unique continuous homomorphism

$$
\operatorname{rec}_{K}: K^{x} \rightarrow \operatorname{Gal}\left(K^{a b} / K\right),
$$

the so-called reciprocity map, that has the properties delineated in the results that follow.

1: CHART

finite field K	Z	$\operatorname{Gal}\left(K^{a b} / K\right)$
local field K	K^{\times}	$\operatorname{Gal}\left(K^{a b} / K\right)$.

2: CONVENTION An abelian extension is a Galois extension whose Galois group is abelian.

3: SCHOLIUM The finite abelian extensions L of K correspond 1-to-1 with the open subgroups of $\operatorname{Gal}\left(K^{a b} / K\right)$:

$$
\mathrm{L} \longrightarrow \operatorname{Gal}\left(\mathrm{~K}^{\mathrm{ab}} / \mathrm{L}\right) .
$$

[Note: $\operatorname{Gal}(\mathrm{L} / \mathrm{K})$ is a homomorphic image of $\operatorname{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{K}\right)$:

$$
\left.\operatorname{Gal}(\mathrm{L} / \mathrm{K}) \approx \operatorname{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{K}\right) / \operatorname{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{L}\right) .\right]
$$

4: LEMMA Suppose that L is a finite extension of $K-$ then

$$
N_{L / K}: L^{\times} \rightarrow K^{\times}
$$

is continuous, sends open sets to open sets, and closed sets to closed sets.

5: LEMMA Suppose that L is a finite extension of K -- then

$$
\left[K^{\times}: N_{L / K}\left(L^{\times}\right)\right] \leq[L: K] .
$$

6: LEMMA Suppose that L is a finite extension of $K-$ then

$$
\left[K^{\times}: N_{L / K}\left(L^{\times}\right)\right]=[L: K]
$$

iff L / K is abelian.

7: NOTATION Given a finite abelian extension L of K, denote the composition

$$
\mathrm{K}^{\mathrm{x}} \xrightarrow{\mathrm{rec}_{\mathrm{K}}} \operatorname{Gal}\left(\mathrm{~K}^{\mathrm{ab}} / \mathrm{K}\right) \xrightarrow{\pi_{\mathrm{L} / \mathrm{K}}} \operatorname{Gal}(\mathrm{~L} / \mathrm{K})
$$

by (., L / K), the norm residue symbol.

8: THEOREM Suppose that L is a finite abelian extension of K-- then the kernel of (., L / K) is $\mathrm{N}_{\mathrm{L} / \mathrm{K}}\left(\mathrm{L}^{\times}\right)$, hence

$$
K^{x} / N_{L / K}\left(L^{\times}\right) \approx \operatorname{Gal}(L / K) .
$$

9: EXAMPLE Take $K=R$, thus $K^{a b}=C$ and

$$
N_{C / R}\left(C^{x}\right)=R_{>0}^{x}
$$

Moreover,

$$
\operatorname{Gal}(C / R)=\left\{\operatorname{id}_{C}, \sigma\right\},
$$

where σ is the complex conjugation. Define now

$$
\operatorname{rec}_{R}: R^{\times} \rightarrow \operatorname{Gal}\left(R^{a b} / R\right)
$$

by stipulating that

$$
\operatorname{rec}_{R}\left(R_{>0}^{\times}\right)=i d_{C}, \operatorname{rec}_{R}\left(R_{<0}^{\times}\right)=\sigma
$$

10: EXAMPLE Take $K=C$ - then $K^{a b}=C=K$ and matters in this situation are trivial.

11: THEOREM The arrow

$$
L \rightarrow N_{L / K}\left(L^{\times}\right)
$$

is a bijection between the finite abelian extensions of K and the open subgroups of finite index of K^{x}.

12: THEOREM The arrow $U \rightarrow \operatorname{rec}_{\mathrm{K}}^{-1}(\mathrm{U})$ is a bijection between the open subgroups of $\mathrm{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{K}\right)$ and the open subgroups of finite index of K^{\times}.

From this point forward, it will be assumed that k is non-archimedean, hence is a finite extension of Q_{p} for some p (cf. $85, \# 13$).

13: LEMMA rec $_{\mathrm{K}}$ is injective and its image is a proper, dense subgroup of $\operatorname{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{K}\right)$.

14: LEMMA

$$
\left(R^{X}, L / K\right)=\operatorname{Gal}\left(L / K_{U r}\right),
$$

where $K_{u r}$ is the largest unramified extension of K contained in L (cf. §5, \#33).
[Note: The image

$$
\left(1+P^{i}, I / K\right)=G^{i}(i \geq 1),
$$

the $i^{\text {th }}$ ramification group in the upper numbering (conventionally, one puts

$$
G^{0}=\operatorname{Gal}\left(I / K_{u r}\right)
$$

and refers to it as the inertia group).]

Working within $K^{s e p}$, the extension $K^{u r}$ generated by the finite unramified extensions of K is called the maximal unramified extension of K. This is a Galois extension and

$$
\operatorname{Gal}\left(\mathrm{K}^{\mathrm{ur}} / \mathrm{K}\right) \approx \operatorname{Gal}\left(F_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right),
$$

where $F_{q}=R / P$ (cf. §5, \#19).

15: REMARK The finite unramified extensions L of K correspond 1-to-1 with the finite extensions of $\mathrm{R} / \mathrm{P}=\mathrm{F}_{\mathrm{q}}$ and

$$
\operatorname{Gal}(I / K) \approx \operatorname{Gal}\left(F_{q}{ }^{n} / F_{q}\right) \quad(n=[L: K]) .
$$

16: LEMMA $K^{\text {ur }}$ is the field obtained by adjoining to K all roots of unity having order prime to p.

17: APPLICATION K^{ur} is a subfield of K^{ab}.
[Cyclotomic extensions are Galois and abelian.]

18: THEOREM There is a commutative diagram

the vertical arrow on the right being the camposition

$$
\begin{aligned}
\operatorname{Gal}\left(K^{a b} / K\right) & \rightarrow \operatorname{Gal}\left(K^{a b} / K\right) / \operatorname{Gal}\left(K^{a b} / K^{u r}\right) \\
& \approx \operatorname{Gal}\left(K^{u r} / K\right) \\
& \approx \operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right) .
\end{aligned}
$$

[Note: $\forall a \in K^{x}$,

$$
\left.\bmod _{K}(\mathrm{a})=\mathrm{q}^{-\mathrm{ord}_{\mathrm{K}}(\mathrm{a})} \cdot\right]
$$

19: N.B. The image of

$$
\operatorname{rec}_{\mathrm{K}}(\pi) \mid \mathrm{K}^{\mathrm{ur}} \in \operatorname{Gal}\left(\mathrm{~K}^{\mathrm{ur}} / \mathrm{K}\right)
$$

in $\operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)$ is σ_{q} (cf. $\left.\$ 20, \# 7\right)$.
[Note: If L is a finite unramified extension of K and if $\tilde{\sigma}_{q, n}$ is the generator of $\operatorname{Gal}(L / K)$ which is the lift of the generator $\sigma_{q, n}$ of $\operatorname{Gal}\left(F_{q}{ }_{q} / F_{q}\right)$ ($n=[L: K]$), then

$$
\left.(\pi, L / K)=\widetilde{\sigma}_{q, n^{\prime}} \cdot\right]
$$

20: FUNCIORIALITYY Suppose that $L \supset K$ is a finite extension of K-- then the diagram

commutes.

2l: DEFINITIION Given a Hausdorff topological group G, let G* be its commutator subgroup, and put $\mathrm{G}^{a b}=\mathrm{G} / \mathrm{G}^{\star}$-- then $\overline{\mathrm{G}^{\star}}$ is a closed normal subgroup of G and $G^{a b}$ is abelian, the topological abelianization of G.

22: EXAMPIE

$$
\operatorname{Gal}\left(K^{\operatorname{sep}} / K\right)^{\mathrm{ab}}=\operatorname{Gal}\left(K^{\mathrm{ab}} / \mathrm{K}\right) .
$$

23: CONSTRUCIION Let G be a Hausdorff topological group and let H be a closed subgroup of finite index - then the transfer homomorphism $\mathrm{T}: \mathrm{G}^{\mathrm{ab}} \rightarrow H^{\mathrm{ab}}$ is defined as follows: Choose a section $s: H \backslash G \rightarrow G$ and for $x \in G$, put

$$
T\left(x \bar{G}^{*}\right)=\prod_{\alpha \in H \backslash G} h_{x, \alpha}\left(\bmod \overline{H^{\star}}\right),
$$

where $h_{x, \alpha} \in H$ is defined by

$$
s(\alpha) x=h_{x, \alpha} s(\alpha x)
$$

24: EXAMPLE Suppose that $L \supset K$ is a finite extension of $K-$ then $L^{\text {sep }} \approx$ $K^{\text {sep }}$ and

$$
\operatorname{Gal}\left(L^{\operatorname{sep}} / L\right) \subset \operatorname{Gal}\left(K^{\operatorname{sep}} / K\right)
$$

is a closed subgroup of finite index (viz. [L:K]), hence there is a transfer homomorphism

$$
\mathrm{T}: \operatorname{Gal}\left(\mathrm{K}^{\mathrm{ab}} / \mathrm{K}\right) \rightarrow \operatorname{Gal}\left(\mathrm{L}^{\mathrm{ab}} / \mathrm{L}\right)
$$

25: THEOREM The diagram

commutes.

§22. WEIL GROUPS: THE ARCHIMEDEAN CASE

1. DEFINITION Put $W_{C}=C^{\times}$, call it the Weil group of C, and leave it at that.

2: DEFINITION Put

$$
W_{R}=C^{\times} \cup J C^{\times} \quad \text { (disjoint union) (J a formal symbol), }
$$

where $J^{2}=-1$ and $J z J^{-1}=\bar{z}$ (obvious topology on W_{R}). Accordingly, there is a nonsplit short exact sequence

$$
1 \rightarrow C^{\times} \rightarrow W_{R} \rightarrow \operatorname{Gal}(C / R) \rightarrow 1
$$

the image of J in $\operatorname{Gal}(\mathrm{C} / \mathrm{R})$ being complex conjugation.
[Note: $H^{2}\left(\operatorname{Gal}(C / R), C^{x}\right)$ is cyclic of order 2 , thus up to equivalence of extensions of $\operatorname{Gal}(C / R)$ by C^{x} per the canonical action of $G a l(C / R)$ on C^{x}, there are two possibilities:

1. A split extension

$$
1 \rightarrow C^{\times} \rightarrow E \rightarrow \operatorname{Gal}(C / R) \rightarrow 1
$$

2. A nonsplit extension

$$
1 \rightarrow C^{X} \rightarrow E \rightarrow \operatorname{Gal}(C / R) \rightarrow 1
$$

The weil group W is a representative of the second situation which is why we took $J^{2}=-1$ (rather than $J^{2}=+1$).]

3: LEMMA The commutator subgroup W_{R}^{*} of W_{R} consists of all elements of the form $\mathrm{JzJ}^{-1} Z^{-1}=\frac{\bar{z}}{z}$, i.e., $W_{R}^{*}=S$, thus is closed.

Let

$$
\mathrm{pr}: \mathrm{W}_{\mathrm{R}} \rightarrow \mathrm{R}^{\times}
$$

be the map sending J to -1 and z to $|z|^{2}$.

4: LEMMA S is the kernel of pr and pr is surjective.

5: LEMMA The arrow

$$
\mathrm{pr}^{\mathrm{ab}}: \mathrm{W}_{\mathrm{R}}^{\mathrm{ab}} \rightarrow \mathrm{R}^{\times}
$$

induced by pr is an iscmorphism.

6: REMARK The inverse $R^{\times} \rightarrow W_{R}^{a b}$ of $\mathrm{pr}^{\mathrm{ab}}$ is characterized by the conditions

$$
\left[\begin{array}{l}
-1 \longrightarrow J W_{R}^{*} \\
\quad x \longrightarrow \sqrt{x} W_{R}^{*} \quad(x>0) .
\end{array}\right.
$$

7: NOTATION DEfine

$$
\|\cdot\|: W_{R} \rightarrow R_{>0}^{\times}
$$

by the prescription

$$
\|z\|=z \bar{z}(z \in C),\|J\|=1
$$

8: N.B. $\|\cdot\|$ drops to a continuous homomorphism $W_{R}^{\text {ab }} \rightarrow R_{>0}^{\times}$.

9: DEFINITION A representation of W_{R} is a continuous homomorphism $\rho: W_{R} \rightarrow G L(V)$, where V is a finite dimensional complex vector space.

10: EXAMPLE If $s \in C$, then the assigmment $w \rightarrow\|w\|^{s}$ is a 1 -dimensional
representation of W_{R}, i.e., is a character.
11: N.B. If X is a character of R^{x}, then X° pr is a character of W_{R} and all such have this form.
[For any $\rho \in \tilde{W}_{R}$,

$$
\rho(\bar{z})=\rho\left(J Z J^{-1}\right)=\rho(J) \rho(z) \rho(J)^{-1}=\rho(z) .
$$

Therefore

$$
1=\rho(-1) \quad(c f . \S 7, \# 12)
$$

But

$$
\rho(-1)=\rho\left(J^{2}\right)=\rho(J)^{2}
$$

so $\rho(J)= \pm 1$. This said, the characters of R^{\times}are described in $87, \# 11$, thus the 1-dimensional representations of W_{R} are parameterized by a sign and a complex number s :

- $(+, s): \rho(z)=|z|^{s}, \rho(J)=+1$
- $\left.(-, s): \rho(z)=|z|^{s}, \rho(J)=-1.\right]$

Let V be a finite dimensional camplex vector space.

12: DEFINITION A linear transformation $T: V \rightarrow V$ is semisimple if every T-invariant subspace has a complementary T-invariant subspace.

13: FACT T is semisimple iff T is diagonalizable, i.e., in some basis T is represented by a diagonal matrix.
[Bear in mind that C is algebraically closed... .]

14: DEFINITION A representation $\rho: W_{R} \rightarrow G L(V)$ is semisimple if $\forall w \in W_{R^{\prime}}$ $\rho(w): V \rightarrow V$ is semisimple.

15: DEFINITION A representation $\rho: W_{R} \rightarrow G(V)$ is irreducible if $V \neq 0$ and the only ρ-invariant subspaces are 0 and V.

The irreducible l-dimensional representations of W_{R} are its characters (which, of course, are automatically semisimple).

16: LEMMA If $\rho: W_{R} \rightarrow G L(V)$ is a semisimple irreducible representation of W_{R} of dimension >1, then $\operatorname{dim} V=2$.

PROOF There is a nonzero vector $v \in V$ and a character $x: C^{x} \rightarrow C^{x}$ such that $\forall z \in C^{x}$,

$$
\rho(z) v=x(z) v
$$

Since the span S of $v, \rho(J) v$ is a ρ-invariant subspace, the assumption of irreducibility implies that $\operatorname{dim} \mathrm{V}=2$.
[To check the ρ-invariance of S, note that

$$
\left[\begin{array}{l}
\rho(z) \rho(J) v=\rho(z J) v=\rho(J \bar{z}) v=\rho(J) \rho(\bar{z}) v=\rho(J) \chi(\bar{z}) v \\
\left.\rho(J) \rho(J) v=\rho\left(J^{2}\right) v=\rho(-1) v=\chi(-1) v .\right]
\end{array}\right.
$$

Given an integer k and a complex number s, define a character $x_{k, s}: c^{x} \rightarrow c^{x}$ by the prescription

$$
x_{k, s}(z)=\left(\frac{z}{|z|}\right)^{k}\left(|z|^{2}\right)^{s}
$$

and let $\rho_{k, s}=$ ind $X_{k, s}$ be the representation of W_{R} which it induces.

17: LEMMA $\rho_{\mathrm{k}, \mathrm{s}}$ is 2-dimensional.

18: LEMMA $\rho_{k, s}$ is semisimple.

19: LEMMA $\rho_{k, s}$ is irreducible iff $k \neq 0$.

20: DEFINITION Let

$$
\left[\begin{array}{l}
\rho_{1}: W_{R} \rightarrow G L\left(V_{1}\right) \\
\rho_{2}: W_{R} \rightarrow G L\left(V_{2}\right)
\end{array}\right.
$$

be representations of $W_{R}--$ then $\left(\rho_{1}, V_{1}\right)$ is equivalent to $\left(\rho_{2}, V_{2}\right)$ if there exists an isomorphism $f: V_{1} \rightarrow V_{2}$ such that $\forall w \in W_{R}$,

$$
f \circ \rho_{1}(w)=\rho_{2}(w) \circ f
$$

21: LEMMA $\rho_{k_{1}, s_{1}}$ is equivalent to $\rho_{k_{2}, s_{2}}$ iff $k_{1}=k_{2}, s_{1}=s_{2}$ or $k_{1}=-k_{2}$, $s_{1}=s_{2}$.

22: THEOREM Every 2-dimensional semisimple irreducible representation of W_{R} is equivalent to a unique $\rho_{k, s}(k>0)$.

23: N.B. Therefore the equivalence classes of 2-dimensional semisimple irreducible representations of W_{R} are parameterized by the points of $N \times C$.

24: DEFINITION A representation $\rho: W_{R} \rightarrow G(V)$ is completely reducible if V is the direct sum of a collection of irreducible ρ-invariant subspaces.

25: LEMMA Let $\rho: W_{R} \rightarrow G L(V)$ be a semisimple representation -- then ρ is completely reducible.

PROOF The characters of C^{\times}are of the form $z \rightarrow z^{\mu} \bar{z}^{\nu}$ with $\mu, \nu \in C, \mu-\nu \in Z$
and V is the direct sum of subspaces $V_{\mu, \nu^{\prime}}$ where $\rho(z) \mid V_{\mu, \nu}=z^{\mu}{ }_{\bar{z}}^{\nu}$ id $V_{\mu, \nu}$. Claim:

$$
\rho(J) V_{\mu, \nu}=V_{\nu, \mu} .
$$

Proof: $\quad \forall v \in V_{\mu, \nu^{\prime}}$

$$
\begin{aligned}
\rho(z) \rho(J) v & =\rho\left(J \bar{z} J^{-1}\right) \rho(J) v \\
& =\rho(J) \rho(\bar{z}) \rho\left(J^{-1}\right) \rho(J) v \\
& =\rho(J) \rho(\bar{z}) v \\
& =\rho(J) \bar{z}^{\mu} z^{\nu} v \\
& =\rho(J) z^{\nu} \bar{z}^{\mu} v \\
& =z^{\nu} \mathbf{z}^{\mu} \rho(J) v
\end{aligned}
$$

Proceeding:

- $\underline{\mu}=\nu$ Choose a basis of eigenvectors for $\rho(J)$ on $V_{\mu, \mu}$-- then the span of each eigenvector is a 1-dimensional ρ-invariant subspace.
- $\underline{\mu \neq \nu}$ Choose a basis v_{1}, \ldots, v_{r} for $v_{\mu, \nu}$ and put $v_{i}^{\prime}=\rho(J) v_{i}(1 \leq i \leq r)-$ then $C v_{i} \oplus C v_{i}^{\prime}$ is a 2 -dimensional ρ-invariant subspace and the direct sum

$$
\underset{i=1}{r}\left(C v_{i} \oplus C v_{i}^{\prime}\right)
$$

equals

$$
\mathrm{V}_{\mu, \nu} \oplus \mathrm{V}_{\nu, \mu}
$$

26: REMARK Suppose that $\rho: \mathrm{W}_{\mathrm{R}} \rightarrow \mathrm{GL}(\mathrm{V})$ is a representation - then

$$
\begin{aligned}
& J^{2}=-1 \Rightarrow(-1) \mathrm{J} \cdot \mathrm{~J}=1 \\
& \Rightarrow(-1) \mathrm{J}=\mathrm{J}^{-1} \\
& \Rightarrow \\
& \rho(\mathrm{~J})^{-1}=\rho\left(\mathrm{J}^{-1}\right) \\
&=\rho((-1) \mathrm{J}) \\
&=\rho(-1) \rho(\mathrm{J}) .
\end{aligned}
$$

On the other hand, if $J^{2}=1$ (the split extension situation (cf. \#2)), then

$$
\begin{aligned}
i d_{V} & =\rho(1) \\
& =\rho\left(\mathrm{J}^{2}\right)=\rho(\mathrm{J}) \rho(\mathrm{J}) \\
\Rightarrow \quad \rho(\mathrm{J})^{-1} & =\rho(\mathrm{J}) .
\end{aligned}
$$

§23. WEIL GROUPS; THE NON-ARCHIMEDEAN CASE

Let K be a non-archimedean local field.

1: NOTATION Put

$$
\left[\begin{array}{l}
G_{K}=\operatorname{Gal}\left(K^{\operatorname{sep}} / K\right) \\
G_{K}^{a b}=\operatorname{Gal}\left(K^{a b} / K\right) .
\end{array}\right.
$$

2: N.B. Every character of G_{K} factors through $\overline{G_{K}^{\star}}$, hence gives rise to a character of $G_{K}^{a b}$.

To study the characters of $G_{K}^{a b}$, precompose with the reciprocity map $\mathrm{rec}_{\mathrm{K}}: \mathrm{K}^{\mathrm{x}} \rightarrow \mathrm{G}_{\mathrm{K}}^{\mathrm{ab}}$, thus

$$
x_{K}:\left.\right|_{-} ^{\left(G_{K}^{a b}\right)^{\sim} \rightarrow\left(K^{\times}\right)^{\sim}} \begin{aligned}
& \\
& x \rightarrow x^{\circ} \operatorname{rec}_{K} .
\end{aligned}
$$

3: LENMA X_{K} is a homomorphism.

4: LEMMA X_{K} is injective.
PROOF Suppose that

$$
x_{K}(x)=x \circ \operatorname{rec}_{K}
$$

is trivial -- then $\chi \mid \operatorname{Im} \operatorname{rec}_{K}=1$. But $\operatorname{Im} \mathrm{rec}_{\mathrm{K}}$ is dense in $G_{K}^{a b}$ (cf. $\S 21$, \#13), so by continuity, $x \equiv 1$.

5: LEMMA X_{K} is not surjective.
PROOF $G_{K}^{a b}$ is compact abelian and totally disconnected. Therefore $\left(G_{K}^{a b}\right)=$ $\left(G_{K}^{a b}\right)^{\wedge}$ and every X is unitary and of finite order (cf. $\S 7, \# 7$ and $\S 8, \# 2$), thus the $X_{K}(X)$ are unitary and of finite order. But there are characters of K^{x} for which this is not the case.

6: N.B. The failure of X_{K} to be surjective will be remedied below (cf. \#19). The kernel of the arrow

$$
\operatorname{Gal}\left(\mathrm{K}^{\operatorname{sep}} / \mathrm{K}\right) \rightarrow \operatorname{Gal}\left(\mathrm{K}^{\mathrm{ur}} / \mathrm{K}\right)
$$

of restriction is $\mathrm{Gal}\left(\mathrm{K}^{\mathrm{sep}} / \mathrm{K}^{\mathrm{ur}}\right.$) and there is an exact sequence

$$
1 \rightarrow \operatorname{Gal}\left(\kappa^{\operatorname{sep}} / K^{\mathrm{ur}}\right) \rightarrow \operatorname{Gal}\left(\mathrm{K}^{\operatorname{sep}} / \mathrm{K}\right) \rightarrow \operatorname{Gal}\left(\mathrm{K}^{\mathrm{ur}} / \mathrm{K}\right) \rightarrow 1 .
$$

Identify

$$
\mathrm{Gal}\left(\mathrm{~K}^{\mathrm{ur}} / \mathrm{K}\right)
$$

with

$$
\operatorname{Gal}\left(F_{q}^{a b} / F_{q}\right)
$$

and put

$$
\mathrm{W}\left(\mathrm{~F}_{\mathrm{q}}^{\mathrm{ab}} / \mathrm{F}_{\mathrm{q}}\right)=\left\langle\sigma_{\mathrm{q}} \quad\right. \text { (discrete topology). }
$$

7: DEFTNITION The Weil group $W\left(K^{s e p} / K\right)$ is the inverse image of $W\left(F_{q}^{a b} / F_{q}\right)$ in $\operatorname{Gal}\left(K^{\operatorname{sep}} / K\right)$, i.e., the elements in $\operatorname{Gal}\left(K^{\operatorname{sep}} / K\right)$ which induce an integral power of σ_{q}

8: NOTATION Abbreviate $W\left(K^{\operatorname{sep}} / K\right)$ to W_{K}, hence $W_{K} \subset G_{K}$.

Setting

$$
I_{K}=\operatorname{Gal}\left(K^{\operatorname{sep}} / K^{u r}\right) \quad \text { (the inertia group) }
$$

there is an exact sequence

$$
\begin{gathered}
1 \rightarrow I_{K} \rightarrow W_{K} \rightarrow W\left(F_{q}^{a b} / F_{q}\right) \rightarrow 1 \\
{\underset{\mathrm{~T}}{ }}=
\end{gathered}
$$

[Note: Fix an element $\tilde{\sigma}_{q} \in W_{K}$ which maps to σ_{q}-- then structurally, W_{K} is the disjoint union

$$
{\underset{n \in Z}{ }}_{\left.\left(\tilde{\sigma}_{q}\right)^{n} I_{K} .\right]}
$$

Topologize W_{K} by taking for a neighborhood basis at the identity the

$$
\operatorname{Gal}\left(K^{\operatorname{sep}} / L\right) \cap I_{K^{\prime}}
$$

where L is a finite Galois extension of K .

9: REMARK I_{K} has the relative topology per the inclusion $I_{K} \rightarrow G_{K}$ and any splitting $Z \rightarrow W_{K}$ induces an isomorphism $W_{K} \approx I_{K} \times Z$ of topological groups, where Z has the discrete topology.

10: LEMMA W_{K} is a totally disconnected locally compact group.
[Note: W_{K} is not compact... .]

11: IEMMA The inclusion $W_{K} \rightarrow G_{K}$ is continuous and has a dense image.

12: LEMMA I_{K} is open in W_{K}.

13: LEMMA I_{K} is a maximal compact subgroup of W_{K}.

Suppose that $L \supset K$ is a finite extension of K-- then $G_{L} \subset G_{K}$ is the subgroup of G_{K} fixing L, hence

$$
W_{L} \subset G_{L} \subset G_{K} .
$$

14: LEMMA

$$
W_{L}=G_{L} \cap W_{K} \subset W_{K}
$$

is open and of finite index in W_{K}, it being nommal in W_{K} iff L^{\prime} / K is Galois.

15: THEOREM The arrow

$$
L \rightarrow W_{L}
$$

is a bijection between the finite extensions of K and the open subgroups of finite index of W_{K}.
[By contrast, the arrow

$$
\mathrm{L} \rightarrow \operatorname{Gal}\left(\mathrm{~K}^{\operatorname{sep}} / \mathrm{L}\right)
$$

is a bijection between the finite extensions of K and the open subgroups of $G_{K}{ }^{\text {.] }}$

16: LEMMA

$$
\overline{\bar{W}_{K}^{*}}=\overline{G_{K}^{\star}} .
$$

17: APPLICATION The homomorphism $W_{K}^{a b} \rightarrow G_{K}^{a b}$ is l-to-1.

18: THEOREM The image of $\mathrm{rec}_{K}: \mathrm{K}^{\times} \rightarrow G_{K}^{a b}$ is $W_{K}^{a b}$ and the induced map $K^{\times} \rightarrow W_{K}^{a b}$ is an isamorphism of topological groups (cf. §21, \#13).

The characters of W_{K} "are" the characters of $W_{K}^{a b}$, so we have:

19: SCHOLIUM There is a bijective correspondence between the characters of W_{K} and the characters of K^{x} or still, there is a bijective correspondence between the 1 -dimensional representations of W_{K} and the 1 -dimensional representations of $\mathrm{GL}_{1}(\mathrm{~K})$.

Suppose that $L \supset K$ is a finite Galois extension of $K-$ then $G_{L} \subset G_{K}$ and

$$
\mathrm{G}_{\mathrm{K}} / \mathrm{G}_{\mathrm{L}} \approx \operatorname{Gal}(\mathrm{~L} / \mathrm{K})
$$

is finite of cardinality [$L: K$]. Since W_{K} is dense in G_{K}, it follows that the image of the arrow

$$
\left[\begin{array}{l}
W_{K} \rightarrow G_{K} / G_{L} \\
w \rightarrow W G_{L}
\end{array}\right.
$$

is all of G_{K} / G_{L}, its kernel being those $w \in W_{K}$ such that $w \in G_{L}$, i.e., its kernel is $G \cap W_{K}$ or still, is W_{L}.

20: LEMMA

$$
\mathrm{W}_{\mathrm{K}} / \mathrm{W}_{\mathrm{L}} \approx \mathrm{G}_{\mathrm{K}} / \mathrm{G}_{\mathrm{L}} \approx \mathrm{Gal}(\mathrm{I} / \mathrm{K}) .
$$

21: LEMMA $\overline{W_{L}^{\star}}$ is a normal subgroup of W_{K}.
[Bearing in mind that W_{L} is a normal subgroup of $W_{K^{\prime}}$ if $\alpha, \beta \in W_{L}^{*}$ and if $\gamma \in W_{K^{\prime}}$, then

$$
\left.\gamma \alpha \beta \alpha^{-1} \beta^{-1} \gamma^{-1}=\left(\gamma \alpha \gamma^{-1}\right)\left(\gamma \beta \gamma^{-1}\right)\left(\gamma \alpha^{-1} \gamma^{-1}\right)\left(\gamma \beta^{-1} \gamma^{-1}\right) .\right]
$$

There is an exact sequence

$$
1 \rightarrow W_{L} / \overline{W_{L}^{\star}} \rightarrow W_{K} / W_{L}^{\star} \rightarrow\left(W_{K} / \sqrt{W_{L}^{\star}}\right) /\left(W_{L} / \overline{W_{L}^{\star}}\right) \rightarrow 1
$$

or still, there is an exact sequence

$$
1 \rightarrow W_{L} / W_{L}^{\star} \rightarrow W_{K} / W_{L}^{\star} \rightarrow W_{K} / W_{L} \rightarrow 1
$$

22: NOTATION Put

$$
W(L, K)=W_{K} / W_{L}^{\star} .
$$

23: SCHOLIUM There is an exact sequence

$$
I \rightarrow W_{L}^{a b} \rightarrow W(L, K) \rightarrow W_{K} / W_{L} \rightarrow l
$$

and a diagram

24: NOTATION Given $w \in W_{K}$, let $||w||$ denote the effect on w of passing
from W_{K} to $R_{>0}^{\times}$via the arrows

$$
W_{K} \longrightarrow W_{K}^{a b} \xrightarrow{\mathrm{rec}_{\mathrm{K}}^{-1}} \mathrm{~K}^{\times} \xrightarrow{\bmod _{\mathrm{K}}} \mathrm{R}_{>0}^{\times} .
$$

25: LEMNA $\|\cdot\|: W_{K} \rightarrow R_{>0}^{\times}$is a continuous homomorphism and its kernel is I_{K}.
[Under the arrow

$$
W_{K} \rightarrow W_{K}^{a b}
$$

I_{K} drops to

$$
\operatorname{Gal}\left(K^{a b} / K^{u r}\right) \subset W_{K}^{a b}
$$

Consider now the arrow

$$
\operatorname{rec}_{\mathrm{K}}: \mathrm{K}^{\times} \rightarrow W_{\mathrm{K}}^{\mathrm{ab}}
$$

Then R^{x} is sent to $\operatorname{Gal}\left(K^{a b} / K^{u r}\right)$ and a prime element $\pi \in R$ is sent to an element $\tilde{\sigma}_{q}$ in $W_{K}^{a b}$ whose image in $W\left(F_{q}^{a b} / F_{q}\right)$ is σ_{q}. And

$$
\left.W_{K}^{a b}=\bigcup_{n \in Z}\left(\tilde{\sigma}_{q}\right)^{n} \operatorname{Gal}\left(K^{a b} / K^{u r}\right) .\right]
$$

26: DEFINITION A representation of W_{K} is a continuous homomorphism $\rho: W_{K} \rightarrow G L(V)$, where V is a finite dimensional complex vector space.

27: LEMMA A homomorphism $\rho: W_{K} \rightarrow G L(V)$ is continuous per the usual topology on GL(V) iff it is continuous per the discrete topology on GL(V). [GL (V) has no small subgroups.]

28: SCHOLIUM The kernel of every representation of W_{K} is trivial on an open subgroup J of I_{K}. Conversely, if $\rho: W_{K} \rightarrow G(V)$ is a homomorphism which is trivial on an open subgroup J of I^{\prime}, then the inverse image of any subset of $G L(V)$ is a union of cosets of J, hence is open, hence ρ is continuous, so by definition is a representation of W_{K}.

29: EXAMPLE Suppose that $L \supset K$ is a finite Galois extension of K-- then

$$
\begin{aligned}
W_{L} \cap I_{K} & =G_{L} \cap W_{K} \cap I_{K} \\
& =G_{L} \cap I_{K}
\end{aligned}
$$

is an open subgroup of I_{K}. But

$$
W_{\mathrm{K}} / \mathrm{W}_{\mathrm{L}} \approx \operatorname{Gal}(\mathrm{~L} / \mathrm{K}) \quad \text { (cf. \#20) }
$$

Therefore every hamomorphism $\mathrm{Gal}(\mathrm{L} / \mathrm{K}) \rightarrow \mathrm{GL}(\mathrm{V})$ lifts to a homomorphism $\mathrm{W}_{\mathrm{K}} \rightarrow \mathrm{GL}(\mathrm{V})$ which is trivial on an open subgroup of $I_{K^{\prime}}$, hence is a representation of W_{K}.

30: N.B. Representations of W_{K} arising in this manner are said to be of Galois type.

31: LEMMA A representation of W_{K} is of Galois type iff it has finite image.

32: EXAMPLE $\|$.$\| is a character of W_{K}$ but as a representation, is not of Galois type.

33: LEMMA Let $\rho: W_{K} \rightarrow G L(V)$ be a representation - then the image $\rho\left(I_{K}\right)$ is finite.

PROOF Suppose that J is an open subgroup of I_{K} on which ρ is trivial. Since I_{K} is compact and J is open, the quotient I_{K} / J is finite, thus $\rho\left(I_{K}\right)=\rho\left(I_{K} / J\right)$ is finite.

34: DEFINITION A representation $\rho: W_{K} \rightarrow G L(V)$ is irreducible if $V \neq 0$ and the only ρ-invariant subspaces are 0 and V.

35: THEOREM Given an irreducible representation ρ of $W_{K^{\prime}}$, there exists an irreducible representation $\tilde{\rho}$ of W_{K} and a complex parameter such that $\rho \approx \tilde{\rho} \otimes\|\cdot\|^{s}$.

36: LEMMA Let $\rho: W_{\mathrm{K}} \rightarrow \mathrm{GL}(\mathrm{V})$ be a representation -- then V is the sum of its irreducible ρ-invariant subspaces iff every ρ-invariant subspace has a ρ-invariant complement.

37: DEFINITION Let $\rho: W_{K} \rightarrow G L(V)$ be a representation - then ρ is semisimple if it satisfies either condition of the preceding lemma.

38: N.B. Irreducible representations are semisimple.

39: THEOREM Let $\rho: W_{K} \rightarrow G L(V)$ be a representation -- then the following conditions are equivalent.

1. ρ is semisimple.
2. $\rho\left(\tilde{\sigma}_{\mathrm{q}}\right)$ is semisimple.
3. $\rho(w)$ is semisimple $\forall w \in W_{K}$.

1: DEFINITION The Weil-Deligne group $W D_{K}$ is the semidirect product $\mathrm{C} \times \mathrm{W}_{\mathrm{K}}$, the multiplication rule being

$$
\left(z_{1}, w_{1}\right)\left(z_{2}, w_{2}\right)=\left(z_{1}+\left|\left|w_{1}\right|\right| z_{2}, w_{1} w_{2}\right) .
$$

[Note: The identity in $W D_{K}$ is $(0, e)$ and the inverse of (z, w) is

$$
\begin{aligned}
(z, w) & \left(-\|w\| \|^{-1} z, w^{-1}\right) \\
& =\left(z+\| w| |\left(-\|w\|^{-1} z\right) ; w w^{-1}\right) \\
& =(z-z, e)=(0, e) .]
\end{aligned}
$$

2: N.B. The topology on $W D_{K}$ is the product topology.

3: DEFINITION A Deligne representation of W_{K} is a triple (ρ, V, N), where $\rho: W_{K} \rightarrow G L(V)$ is a representation of W_{K} and $N: V \rightarrow V$ is a nilpotent endomorphism of V subject to the relation

$$
\rho(w) N \rho(w)^{-1}=\|w\| N \quad\left(w \in W_{K}\right) .
$$

[Note: $N=0$ is admissible so every representation of W_{K} is a Deligne representation.]

4: EXAMPLE Take $V=C^{n}$, hence $G L(V)=G L_{n}(C)$. Let $e_{0}, e_{1}, \ldots, e_{n-1}$ be the usual basis of V. Define ρ by the rule

$$
\rho(w) e_{i}=\|w\|^{i} e_{i} \quad\left(w \in W_{K^{\prime}}, 0 \leq i \leq n-1\right)
$$

and define N by the rule

$$
N e_{i}=e_{i+1} \quad(0 \leq i \leq n-2), N e_{n-1}=0
$$

Then the triple (ρ, V, N) is a Deligne representation of W_{K}, the n-dimensional special representation, denoted $\mathrm{sp}(\mathrm{n})$.

5: DEFTNITION A representation of W_{K} is a continuous homomorphism $\rho^{\prime}: W D_{K} \rightarrow G L(V)$ whose restriction to C is complex analytic, where V is a finite dimensional complex vector space.

6: LEMMA Every Deligne representation ($\rho, \mathrm{V}, \mathrm{N}$) of W_{K} gives rise to a representation $\rho^{\prime}:{W D_{K}} \rightarrow G L(V)$ of $W D_{K}$.

PROOF Put

$$
\rho^{\prime}(z, w)=\exp (z N) \rho(w) .
$$

Then

$$
\begin{aligned}
& \rho^{\prime}\left(z_{1}, w_{1}\right) \rho^{\prime}\left(z_{2}, w_{2}\right) \\
= & \exp \left(z_{1} N\right) \rho\left(w_{1}\right) \exp \left(z_{2} N\right) \rho\left(w_{2}\right) \\
= & \exp \left(z_{1} N\right) \rho\left(w_{1}\right) \exp \left(z_{2} N\right) \rho\left(w_{1}^{-1}\right) \rho\left(w_{1}\right) \rho\left(w_{2}\right) \\
= & \exp \left(z_{1} N\right) \exp \left(z_{2}| | w_{1}| | N\right) \rho\left(w_{1} w_{2}\right) \\
= & \exp \left(z_{1} N+z_{2}| | w_{1}| | N\right) \rho\left(w_{1} w_{2}\right) \\
= & \exp \left(\left(z_{1}+\| w_{1}| | z_{2}\right) N\right) \rho\left(w_{1} w_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\rho^{\prime}\left(z_{1}+\left|\left|w_{1}\right|\right| z_{2}, w_{1} w_{2}\right) \\
& =\rho^{\prime}\left(\left(z_{1}, w_{1}\right)\left(z_{2}, w_{2}\right)\right) .
\end{aligned}
$$

[Note: The continuity of ρ^{\prime} is manifest as is the complex analyticity of its restriction to C.]

One can also go the other way but this is more involved.

7: RAPPEL If $T: V \rightarrow V$ is unipotent, then

$$
\log T=\sum_{n \geq 1} \frac{(-1)^{n+1}}{n}(T-I)^{n}
$$

is nilpotent.

8: SUBLEMMA Let $\rho^{\prime}: W D_{K} \rightarrow G L(V)$ be a representation of $W D_{K}-$ then $\forall z \neq 0$, $\rho^{\prime}(z, e)$ is unipotent.

9: SUBLEMMA Let $\rho^{\prime}: W_{K} \rightarrow G L(V)$ be a representation of $W D_{K}-$ then $\forall z \neq 0$,

$$
\log \rho^{\prime}(z, e)
$$

is nilpotent and

$$
\left(\log \rho^{\prime}(z, e)\right) / z \quad(z \neq 0)
$$

is independent of z .

10: LEMMA Every representation $\rho^{\prime}:{W D_{K}}_{K} \rightarrow G(V)$ of $W D_{K}$ gives rise to a Deligne representation (ρ, V, N) of W_{K}.

PROOF Put

$$
\rho=\rho^{\prime} \mid\{0\} \times W_{K^{\prime}} N=\log \rho^{\prime}(1, e) .
$$

Then $\forall w \in W_{K^{\prime}}$

$$
\begin{aligned}
& \rho(w) N \rho(w)^{-1}=\rho(w) \log \rho^{\prime}(1, e) \rho(w)^{-1} \\
= & \left.\rho(w) \sum_{n \geq 1} \frac{(-1)^{n+1}}{n}\left(\rho^{\prime}(1, e)-I\right)^{n}\right) \rho(w)^{-1} \\
& =\sum_{n \geq 1} \frac{(-1)^{n+1}}{n}\left(\rho(w) \rho^{\prime}(1, e) \rho(w)^{-1}-I\right)^{n} .
\end{aligned}
$$

And

$$
\begin{aligned}
& \rho(w) \rho^{\prime}(1, e) \rho(w)^{-1} \\
& \quad=\rho^{\prime}(0, w) \rho^{\prime}(1, e) \rho^{\prime}\left(0, w^{-1}\right) \\
& \quad=\rho^{\prime}\left((0, w)(1, e)\left(0, w^{-1}\right)\right) \\
& \quad=\rho^{\prime}\left((| | w| |, w)\left(0, w^{-1}\right)\right) \\
& =\rho^{\prime}(| | w| |, e)
\end{aligned}
$$

Therefore

11: OPERATIONS

- Direct Sum: Let $\left(\rho_{1}, \mathrm{~V}_{1}, \mathrm{~N}_{1}\right),\left(\rho_{2}, \mathrm{~V}_{2}, \mathrm{~N}_{2}\right)$ be Deligne representations -then their direct sum is the triple

$$
\left(\rho_{1} \oplus \rho_{2}, v_{1} \oplus \quad V_{2}, N_{1} \oplus N_{2}\right)
$$

- Tensor Product: Let $\left(\rho_{1}, V_{1}, N_{1}\right),\left(\rho_{2}, V_{2}, N_{2}\right)$ be Deligne representations -then their tensor product is the triple

$$
\left(\rho_{1} \otimes \rho_{2}, V_{1} \otimes V_{2}, N_{1} \otimes I_{2}+I_{1} \otimes N_{2}\right) .
$$

- Contragredient: Let ($\rho, \mathrm{V}, \mathrm{N}$) be a Deligne representation -- then its contragredient is the triple

$$
\left(\rho^{v}, v^{v},-N^{v}\right) .
$$

[Note: V^{\vee} is the dual of V and N^{\vee} is the transpose of N (thus $\forall f \in V^{v}$, $\left.\left.N^{v}(f)=f \circ N\right).\right]$

12: REMARK The definitions of \oplus, \otimes, \vee when transcribed to the "prime picture" are the usual representation-theoretic formalities applied to the group W_{K}.

13: N.B. Let

$$
\left[\begin{array}{l}
\left(\rho_{1}, N_{1}, v_{1}\right) \\
\left(\rho_{2}, N_{2}, v_{2}\right)
\end{array}\right.
$$

be Deligne representations of W_{K}-- then a morphism

$$
\left(\rho_{1}, N_{1}, v_{1}\right) \rightarrow\left(\rho_{2}, N_{2}, V_{2}\right)
$$

is a linear map $T: V_{1} \rightarrow V_{2}$ such that

$$
T \rho_{1}(w)=\rho_{2}(w) T \quad\left(w \in W_{K}\right)
$$

and $\mathrm{TN}_{1}=\mathrm{N}_{2} \mathrm{~T}$.
[Note: If T is a linear isomorphism, then the Deligne representations

$$
\left[\begin{array}{l}
\left(\rho_{1}, N_{1}, V_{1}\right) \\
\left(\rho_{2}, N_{2}, V_{2}\right)
\end{array}\right.
$$

are said to be isomorphic.]

14: DEFINITION Suppose that (ρ, V, N) is a Deligne representation of W_{K} then a subspace $V_{0} \subset V$ is an invariant subspace if it is invariant under ρ and N.

15: LEMMA The kernel of N is an invariant subspace.
PROOF If $N V=0$, then $\forall W \in W_{K}$,

$$
N \rho(w) v=\left\|w^{-1}\right\| \rho(w) N v=0
$$

16: DEFINITION A Deligne representation (ρ, V, N) of W_{K} is indecomposable if V cannot be written as a direct sum of proper invariant subspaces.

17: EXAMPLE Consider $\mathrm{sp}(\mathrm{n})$ - then it is indecomposable.
[If $C^{n}=S \oplus T$ was a nontrivial decomposition into proper invariant subspaces, then both $\left.\right|_{-} ^{S \cap \operatorname{Ker} N} \begin{aligned} & \mathrm{T} \cap \operatorname{Ker} \mathrm{N}\end{aligned}$ would be nontrivial.]

18: DEFINITION A Deligne representation ($\rho, \mathrm{V}, \mathrm{N}$) of W_{K} is semisimple if ρ is semisimple (cf. §23, \#37).

19: EXAMPLE Consider sp(n) -- then it is semisimple.

20: LENMA Let π be an irreducible representation of $W_{K}-$ then $\operatorname{sp}(n) \otimes \pi$ is semisimple and indecomposable.
[Note: Recall that π is identified with $(\pi, 0)$.]

21: THEOREM Every semisimple indecomposable Deligne representation of W_{K} is equivalent to a Deligne representation of the form $\operatorname{sp}(n) \otimes \pi$, where π is an irreducible representation of W_{K} and n is a positive integer.

22: THEOREM Let (ρ, N, V) be a semisimple Deligne representation of W_{K} then there is a decomposition

$$
(\rho, V, N)=\underset{i=1}{\stackrel{s}{\oplus}} \operatorname{sp}\left(n_{i}\right) \otimes \pi_{i^{\prime}}
$$

where π_{i} is an irreducible representation of W_{K} and n_{i} is a positive integer. Furthermore, if

$$
(\rho, V, N)=\underset{j=1}{t} \operatorname{sp}\left(n_{j}^{\prime}\right) \otimes \pi_{j}^{\prime}
$$

is another such decomposition, then $s=t$ and after a renumbering of the summands, $\pi_{i} \approx \pi_{i}^{\prime}$ and $n_{i}=n_{i}^{\prime}$.

APPENDIX

Instead of working with

$$
W_{\mathrm{K}}=\mathrm{C} \times \mid \mathrm{W}_{\mathrm{K}^{\prime}}
$$

8.

some authorities work with

$$
\operatorname{SL}(2, C) \times W_{K^{\prime}}^{\prime}
$$

the rationale for this being that the semisimple representations of the two groups are the "same".

Given $\mathrm{w} \in \mathrm{W}_{\mathrm{K}}$, let

$$
h_{w}=\left[\begin{array}{cc}
\left||w|^{1 / 2}\right. & 0 \\
0 & \|\left. w\right|^{-1 / 2}
\end{array}\right]
$$

and identify $z \in C$ with

$$
\left[\left.\begin{array}{lll}
1 & z & - \\
0 & 1 & -
\end{array} \right\rvert\,\right.
$$

Then

$$
h_{w}\left|\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right| h_{w}^{-1}=\left[\begin{array}{cc}
1 & \| w| | z \\
0 & 1
\end{array}\right] .
$$

But conjugation by h_{W} is an automorphism of $S L(2, C)$, thus one can form the semidirect product $\mathrm{SL}(2, C) \times \mid W_{K}$, the multiplication rule being

$$
\left(x_{1}, w_{1}\right)\left(x_{2}, w_{2}\right)=\left(x_{1} h_{w_{1}} x_{2} h_{w_{1}}^{-1}, w_{1} w_{2}\right) .
$$

LEMMA The arrow

$$
(\mathrm{X}, \mathrm{w}) \rightarrow\left(\mathrm{Xh}_{\mathrm{w}}, \mathrm{w}\right)
$$

from

$$
\operatorname{SL}(2, C) \times \mid W_{K} \text { to } \operatorname{SL}(2, C) \times W_{K}
$$

is an isomorphism of groups.

DEFINITION A representation of $\mathrm{SL}(2, C) \times W_{\mathrm{K}}$ is a continuous homomorphism $\rho: S L(2, C) \times W_{K} \rightarrow G L(V)$ (V a finite dimensional complex vector space) such that the restriction of ρ to $S L(2, C)$ is complex analytic.
N.B. ρ is semisimple iff its restriction to W_{K} is semisimple.
[The restriction of ρ to $S L(2, C)$ is necessarily semisimple.]

The finite dimensional irreducible representations of $\mathrm{SL}(2, \mathrm{C})$ are parameterized by the positive integers:

$$
n \longleftrightarrow \operatorname{sym}(n), \operatorname{dim} \operatorname{sym}(n)=n .
$$

THEOREM The iscmorphism classes of semisimple Deligne representations of W_{K} are in a l-to-l correspondence with the isomorphism classes of semisimple representations of $\mathrm{SL}(2, \mathrm{C}) \times{ }_{\mathrm{K}}^{\mathrm{K}}$.

To explicate matters, start with a semisimple indecomposable Deligne representation of W_{K}, say $\operatorname{sp}(n) \otimes \pi$, and assign to it the external tensor product $\operatorname{sym}(n)|\underline{\bar{x}}| \pi$, hence in general

$$
\underset{i=1}{\stackrel{s}{\oplus}} \operatorname{sp}\left(n_{i}\right) \otimes \pi_{i} \rightarrow \underset{i=1}{\oplus} \operatorname{sym}\left(n_{i}\right)|\underline{\bar{x}}| \pi_{i}
$$

