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The objective of this book is to give an introduction to p-adic analysis
along the lines of Tate's thesis, as well as incorporating material of a more

recent vintage, for example Weil groups.
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§1. ABSOLUTE VALUES

: DEFINITION Iet F be a field —— then an absolute value (a.k.a. a

valuation of order 1) is a function
|- [:F > Ry,

satisfying the following conditions.
Av-1 |a] =0 <=>a=0.
av-2 |ab| = |a|b|.
AV-3 3 M > 0:

la + b| <M sup(lal, [b]).

: EXAMPLE Let F = R or C with the usual absolute value |.| -- then one

can take M = 2.

: DEFINITION The trivial absolute value is defined by the rule

lal =1va=0.

S
.

LEMMA If |.| is an absolute value, then

11| = 1.
5: APPLICATION If a = 1, then
n n
la”| = |a]" = [1] =1
=> |a| = 1.
6: RAPPEL lLet G be a cyclic group of order r < » -=—- then the order of any

subgroup of G is a divisor of r and if n|r, then G possesses one and only one



subgroup of order n (and this subgroup is cyclic).

7: RAPPEL Let G be a cyclic group of order r < » - then the order of

X € G is, by definition, #<x>, the latter being the smallest positive integer n
n
such that x" = 1.

8: SCHOLIUM Every absolute value on a finite field Fq is trivial.

[In fact, F; is cyclic of order q - 1.]

9: DEFINITION Two absolute values |.|;, |.|, on a field F are equivalent

if 3 r > 0:

[Note: Equivalence is an equivalence relation.]

r(r>0),theM

10: N.B. If |.| is an absolute value, then so is |.

QISR

1l: ILEMVA Every absolute value is equivalent to one with M < 2.
PROOF Assume fram the beginning that M > 2, hence

M

2 (r > 0)

A

if
r log M < 1og 2
or still, if

log 2
rslogM (<1).



12: DEFINITION An absolute value |.| satisfies the triangle inequality if

la + b| < |a] + |b].

13: LEMMA Suppose given a function |.|:F » R,y satisfying AV-1 and AV-2 —

then Av-3 holds with M < 2 iff the triangle inequality obtains.
PROOF Obviously, if

la + b] < |a] + b,

la + b| < 2 sup(|a|,|b]).

In the other direction, by induction on m,

z szmsupa (lskszm).
!blak’ klkl

Next, given n choose m: 2" > n > Zm_l, so upon inserting 2™-n zero summands,
2m—l om

n

| z a | <Msup(| x al, |2 a |

k=1 k=1 o1,
1 L, gl

c2ewp( D al | ———a )
k=1 =21y

<2 sup(Zm_l sup Iakl’ 2" sup lakD

k<2™L k>2™t

m—1
2.2 sup |a | < 2n swp |a]|.
1<ksn E 1<ksn K

IN



I.e
n n
| © | <2n sup J|a, | <2n = Ja|.
k=lak 1<ksn Kk k=1 *
In particular:
n
| 2 1] = |n| s2n
k=1
Finally,

la+b|" = [@+b? (av-2)

n
| = & a n—kl
k=0 X

n
2m4) I |G) @B

N

k=0
n n n-k
=2(m+l) I |(Q)]la | (av-2)
=0
n
<2042 5 () [aD"H|
k=0
n
= 4(n+l) (|a| + |b]|)
=>
la + b| < 4 @)Y?(Ja] + |b|)

> (la] + |b]) @ > ).



14: SCHOLIUM Every absolute value is equivalent to one that satisfies

the triangle inequality.

15: DEFINITION A place of F is an equivalence class of nontrivial absolute

values.

Accordingly, every place admits a representative for which the triangle

inequality is in force.

16: DEFINITION An absolute value |.| is non-archimedean if it satisfies

the ultrametric inequality:

la + b] < sup(|al,|b|]) (soM=1),

17: N.B. A non-archimedean absolute value satisfies the triangle in-
equality.
18: LEMMA Suppose that |.| is non-archimedean and let |b| < |a| -- then
la + b| = |a].
PROOF
lal = |(@ + b) - b| < sup(|a + b|,|b])
= |a + b
since |a| < |b| is untenable. Meanwhile,
la + b| < sup(|al,|b]) = |a].

19: EXAMPIE Fix a prime p and take F = Q. Given a rational number x = 0,

write

k
X = I% ke 2,



where p / m, p [/ n, and then define the p-adic absolute value |. lp by the pre-
scription '

_ .k —
x|, = 2™ (o], = 0.

[Av-1 is obvious. To check AV-2, write

_ . km _Lu
X=P g1 Y=P G5
where m,n,u,v are coprime to p -—- then
k+£ ma
XYy =p v
=>
x|, =p P P xl5 lylg

As for AV-3, |. |p satisfies the ultrametric inequality. To establish this, assume
without loss of generality that k < £ and write

k -
x+y=p@+ptFY

_ Kmv + pz-knu
P nv

o |x| z|y[p,so£-k>0, hence

p

mv + z_knu

is coprime to p (otherwise

m = PN - p!'—knu (r = 1)

p(pr-lN - p['_k_lnu) => p|mv)

_ =k
|x+y[p-—p



since
.@—k>0=>p_£<p—k
=> < .
lyly < =l
° |x|p = |y|p, so £ = k, hence
nw+nu=prN (r 20) (pfN)
=>
k+
x+y=p ¢ %
=>
~Kk~r
+ =
|x Y|p p
And
R = x|
P
p—k—-r <
p* = |y|
- P
=>
%+ 71, < sl lvl) )

20: REMARK It can be shown that every nontrivial absolute value on Q is

.
e

equivalent to a ||p for same p or to |.|



21: LEMA VYV x € Q"

1T |x|p =1,

pse

all but finitely many of the factors being equal to 1.

PROOF Write
k1 kn
X=%p" ... Py (kl,...,kneZ)

for pairwise distinct primes pj -— then |x[p = 1 if p is not equal to any of the

pj . In addition,

-k, k k

ey, <53 b=ty
=>
_ n -kj k N
;Eo |x|p- (j__[rl P ) * P ... B
= 1.

22: REMARK If p,p, are distinct primes, then |. Ip is not equivalent to
1

Py

[Consider the sequence {pr11}=

_ =1 _ n _ .=
Ipllpl =P, => Ip]'Ipl =P 0.
Meanwhile,
— 1,0 R
Ipllpz = ]p2pl'p2 =Py = 1
=> |p1£| = 1.]



23: CRITERION Let |.| be an absolute value on F —- then is non-

archimedean iff {|n|:n € N} is bounded.

[Note: In either case, |n| is bounded by 1:

ln| = [L4#1 4 e +1] <1.]



§2. TOPOLOGICAL FIELDS

Iet |.| be an absolute value on a field F. Given a € F, r > 0, put

Nr (a) = {b:

b - a| <r}.

IEMMA There is a topology on F in which a basis for the neighborhoqu

of a are the Nr(a) .

PROOF The nontrivial point is to show that given V € Ba, there is a V0 € Ba

suchthatifaOEV,thenthereisaWEBa such that W c V. SoletV=Nr(a),
0

V0 = Nr/ZM(a) , W= Nr/2M(a0) (a0 € VO) --then W c V:

bew=>|b-al

l(b-ao) + (ao-a)l

IN

M sup(|b - aol, ]ao - al)

A

M sup(x/2M, r/2M)

M(x/2M) = r/2 < r.

-
.

EXAMPLE The topology induced by |.

is the discrete topology iff

is the trivial absolute value.

1:_ FACT Absolute values

1’ o are equivalent iff they give rise to

the same topology.

4: LEMMA The topology induced by |.| is metrizable.

PROOF' This is because

.| is equivalent to an absolute value satisfying the



triangle inequality (cf. §1, #14), the underlying metric being

d(a,b) = |a - b].

5: THEOREM A field with a topology defined by an absolute value is a

topological field, i.e., the operations sum, product, and inversion are continucus.

Assume now that |.| is non-archimedean, hence that the ultrametric inequality

la = b| < sup(|al,|b])

is in force.

: IEMMA Nr (a) is closed (open is automatic).
PROOF Iet p be a limit point of Nr(a) -- then v t > 0,
™ () - {ph) NN (@) = 4.
Take t=§andchoose b ENr(a):

d(p,b) <5 (p=b).

d(atp) < mlp(d(arb)r d(blp))
<r
p € N.(a).
Therefore Nr (a) contains all its limit points, hence is closed.

7: IEMMA If a' € Nr(a), then Nr(a') = Nr(a).

PROCF E.g.:

bENr(a) => |b-al <xr



> p-atl = [B-a)+@-a)]
< sup(lb - a|, |a-a'l)
<r=> Nr(a) ch(a').
8: REMARK Put

B (a) = {b:|b - a| <r}.

Then a priori, Br(a) is closed. But Br(a) is also open and if a' € Br (a), then

Br(a') = Br (a).

9: LEMMA If

then 3 i # j such that



§3. COMPLETIONS

Let |.| be an absolute value on a field F which satisfies the triangle

inequality —-- then per |.|, F might or might not be complete.

EXAMPLE Take F = Ror Q and let

.| =1.], —— then R is complete but

-
.

Q is not.

2: EXAMPLE Take F = Q and let |.| = {.]p

—— then Q is not complete.
[To illustrate this, choose p = 5 and starting with X = 2, define inductively
a sequence {xn} of integers subject to

x§+1 mod 5%

H
o

mod 5.

»x
"
4

n+1 n

Then

' 8}

!
82

(m > n),

lxm - XniS <
SO {xn} is a Cauchy sequence and, to get a contradiction, assume that it has a
limit x in Q, thus
2 -n 2
) + 1lg =57 = |x" + 1] =0

=>x2+l=0... .1

: DEFINITION If an absolute value is not non-archimedean, then it is

said to be archimedean.



4: FACT Suppose that F is a field which is complete with respect to an
archimedean absolute value |.| -- then F is isomorphic to either R or C and |.|

is equivalent to |. |

.
oo

5: RAPPEL Every metric space X has a campletion X. Moreover, there is
an isametry ¢:X -+ X such that ¢(X) is dense in X and X is unique up to iscmetric

isamorphism.

6: CONSTRUCTION The standard model for X is the set of all Cauchy sequences
in X modulo the equivalence relation ~, where
(=}~ {y,} <> dx_.v) »> 0,
the map ¢:X » X being the rule that sends x € X to the equivalence class of the
constant sequence x N T X
[Note: The metric on X is specified by

5({xn},{yn}) = lim d(x,y,).]
n > o
Take X = F and
d(x,y) = |x - y|.

Then the claim is that F is a field. E.g.: Iet us deal with addition. Given

X
n
X,y € F, how does cne define X + y? To this end, choose sequences in F
_ - Y,
X +X - n
n
such that -— then
Y, > Y

dlx, + vy, X, + )



[xn Y, " T Ym]

I

|6, = %) + vy = v |

A

%, - x| + |y, - vl

Therefore {xn + yn} is a Cauchy sequence in F, hence converges in F to an element

x! —- -
n X

z. If are sequences in F converging to as well, then {x) +y'}
Yp 5
Yy

- —

converges in F to an element z'. And

Proof: Choose n € N such that

|z - (x, + ¥ | <%

- e al <

l(xn+yn) - (XI:1+YI:1)l s ]xn"xl'i! + 'Yn-yru <%'

|z -2'| < |z - (xn+yn)| + ]2' - (xn+yn)|

A
NI
I

(xn+yn)[ + |2' - (xr'l+yr'1)[ + |(xr'1+yr'1) - (xn+yn){ < g

—

=2z =12"',

Therefore addition in F extends to F. The same holds for multiplication and



inversion. Bottam line: F is a field. Furthermore » the prescription

%] = d(x,0) (X €F)

is an absolute value on F whose underlying topology is the metric topology. It

thus follows that F is a topological field (cf. §2, #5).

7: EXAMPIE Take F = Q, |.| = |.| -- then the completion F = Q is denoted

p
byQp, the field of p-adic numbers.
8: LEMMA If |.| is non-archimedean per F, then |.| is non-archimedean
per F.
-z Tox) Tox >x i
PROOF Given € F, choose in F such that _ in F:
B v B Yh 3 Yo * Y
Ix -y] < |x -x *x -y ty, -l
< |x-x |+ %, - vl + ly - v, I
¥ ¥
0 0
And
=3 Ul + Iyl + Ix, - v,)
2 n ¥n n =~ ‘n
1 ,,- - - -
>3 Ux] + |y| + |x - y])

sup (x|, |7]) .



9: LEMMA If |.| is non-archimedean per |.|, then
{|x|:x € F} = {|x|:x € F}.
PROCF Take X € F:x = 0. Choose x € F:|x - x| < |%|. Claim: |[x]| = |x]|.
Thus consider the other possibilities.
o |x| < |x|:
Ix - x| = |x+ (x)| = |x| (c£. §1, #18) < |x]|... .
o |x| < |x|:

|x - x| = |-x+x| =|-x| (c£. 51, #18) = [x]| < |x]|... .

10: EXAMPIE The image of Qp under [!p is the same as the image of Q under

p’ namely

.
5k € 73 U {0}.

Iet K be a field, L > K a finite field extension.

11: EXTENSION PRINCIPLE Iet |. |, be a camplete absolute value on K --

then there is one and only one extension |. 1, of |‘K to L and it is given by

1/n
IXIL = [NL/K(X) ‘K/ r
where n = [L:K]. In addition, L is complete with respect to |. [L.

[Note: is non-archimedean if |. lK is non-archimedean. ]

i‘lL

12: SCHOLIUM There is a unique extension of |.|. to the algebraic closure

Kcz of K.

[Note: It is not true in general that ch is camplete.]



Suppose further that L > K is a Galois extension, Given ¢ € Gal(L/K), define

-1y by fx], = lox|y, — then

I’ Io-lK = l' !K'
so by uniqueness, [.| = |.| . But
(%) = ox
NI“/K G.TE_Gral(L/K)
=>
N g &0 Ig
= N . (%) |, = ox
S R IR
T o g 1
" o
EMLIC T 75D
L
R T
APPENDIX

APPROXIMATTON PRINCIPLE let |. ‘1" .or]e ]N be pairwise inequivalent non-
trivial absolute values on F. Fix elements Ay rese iy in F —then v e > 0,
E a_ € F:

[ae—sakik<e: k=1,...,N).




let F E‘N be the associated campletions and let

l’... '
N —
AF > T Fk
k=1
be the diagonal map -- then the image AF is dense (i.e., its closure is the whole

N -
of TT Fk).
k=1

[Fix € > 0 and elements 51"“’51\1 in El""’FN respectively -- then there

exist elements ak € F:

Iak-ak|k<e k=1,...,N).
Choose ae € F:

la, -l <e (k=1,...,N).

Iae—‘:’;klk= |(a€-ak) + (ak_ak)lk

A

lag =l + lay =3l

< 2e.]

N
N.B. The product [ F, carries the product topology and the prescription
k=1

d((all"'lsN)l(B I"'IBN))

"3 A
= sw |y - Byly

1<k<N



metrizes the product topology. Therefore

A(@grenera) s @pyeenidy)

sup 4, (a_,a )
1<k<N % 2e

sup |la_ - a
1sksN|€ a’klk

< 2e.



§4. p-ADIC STRUCTURE THEORY

Fix a prime p and recall that Qp is the completion of Q per the p-adic

absolute value

1l: NOTATION Let

A=1{0,1,...,p-1}.

2: SCHOLTUM Structurally, Qp is the set of all Laurent series in p with
coefficients in A subject to the restriction that only finitely many negative powers

of p occur, thus generically a typical element x = 0 of Qp has the form

[

_ n
XxX= I ap (anEA,NEZ).

n=N

3: N.B. It follows fram this that Qp is uncountable, so ( is not complete

The exact formulation of the algebraic rules (i.e., addition, multiplication,
inversion) is elementary (but technically a bit of a mess) and will play no role in

the sequel, hence can be amitted.

4: LEMMA Every positive integer N admits a base p expansion:

N = +ap+---+anpn,

a3 T3

vmeretheakEA.

5: EXAMPLE

1=1+0p+0p> + eev .



6: EXAMPLE Take p = 3 —— then

~ 24=0+2x3+2 x3°

2p + 2p2

2+2x3+l><32=2+2p+p2

=
~
]

2 ,
i_‘?l_=2_p_+__%_p____§_ =p+p3+2p5+p7+p8+2p9+--- .
2+2p+p
7: LEMMA
2
-1 = (p-1) + (p-lp + (p-l)p" + --- .
PROOF Add 1:

1+ (p-1) + (p=1)p + (p-1)p° + (p-1)p> + --=

p+ (p-1)p + (p-1)p° + (p-L)p° + -+

o’ + (1P + (L)p° + -e

P>+ (p-L)p° + ++v = 0.

8: APPLICATION
-N = (-1)-N

(o]

i n
(iﬁo (p-1)p) (@g + a;p + --- +ap)

= e e

9: LEMMA A p-adic series

[ee]

nil x (x € Op)



is convergent iff lxnlp +~0 (n~>x),

PROOF The usual argument establishes necessity. So suppose that lxnlp -0

(n »©)., Given K > 0, 3 N:

n>N=> ]xn|p <p X,
Let
n
s =z .
n = I %
Then
m>n>N=>|s - Snlp = |xn+1 +oeee + Xmlp
s Sup(lxn+llpr---l Ixmlp)
< p-K,

Therefore the sequence {sn} of partial sums is Cauchy, thus is convergent (Qp

being complete) .

10: EXAMPLE The p-adic series

X pl
i=0
is convergent (to —L)
1-p"°
11: EXAMPIE The p-adic series
I n!
n=0
is convergent.
[Note that
ln! [p = P—N!



where
N = [n/p] + [n/p°] + === .1

12: EXAMPLE The p-adic series

r n-nl!
n=0

is convergent (to -1).

3: LEMMA Qp is a topological field (cf. §2, #5).

14: LEMMA Qp is 0-dimensional, hence is totally disconnected.

PROOF A basic neighborhood N (x) is open (by definition) and closed (cf. §2, #6).

15: NOTATION

x| _ <1}

™ Zp={x€Qp: D

) pr = {x € Qp:|x|p < 1}

X _ . _
® Zp ={xe€ Zp. ]xlp 1}

l6: LEMMA Zp is a cammtative ring with unit (the ring of p-adic integers),

in fact Zp is an integral domain.

17: LEMMA pr is an ideal in Zp, in fact pr is a maximal ideal in Zp,

in fact pZ o is the unique maximal ideal in Zp, hence Zp is a local ring.

18: LEMMA Z; is a group under multiplication, in fact Z; is the set of



p-adic units in Zp, i.e., the set of elements in Zp that have a multiplicative

inverse in Zp'

Obviously,
2,= 1311 @, - 1)
or still,
Zp = Z; 11 pr.
19: LEMA
Zp = os]Lisp—]_ (k + pr).

PROOF IethZp. Matters being clear if |x|p<l (since in this case
prZp),supposethat {x|p=l. Chooseq=%(‘—.Q:|q—x|p<l,where (a,b) =1
- (a,p) =1
and — then
_ (b,p) =1
+pl =q+pl.
>3 Pp q Pp

Choose k with 0 < k < p-1 such that p divides a - kb, thus |a-kb|p<1and,

moreover, ‘a _bkb

p < 1. Therefore

k-2 1=>k+ =q+ =x +
k- Blp <1 oz, maver - x e
= xek+pL
€ pp

Consider a p-adic series
[e0)

n
nﬁ ap (@, € A).



Then
s n n
Zap’ < sup ap'
In=0n P n nip
n
< sup p} <1,
n p

so it converges to an element x of Zp. Conversely:

s

20: THEOREM Every x € Zp admits a unique representation

[o0]
_ n
XxX= I a.p (aneA).
n=0

Olp <1,

PROOF Let x € Zpbe given. Choose uniquely a, € A such that [x - a

hence x = a, + 1231 for same Xy € Zp. Choose uniquely a; € A such that lxl -a <1,

llp

hence Xy =a; +px, for some X, € Zp' Continuing: V N,

- N NFL
x—-a0+alp+..-+aNp + XgaP
mereanEAande+lEZp. But
N+1
Xw1P 0
21: APPLICATION Z is dense in Z o°
22: EXAMPLE]’.ethZp——thenVnEN,
X, _ X(x=1)+-.(x-n+l)
(n)— n! EZP'
23: LEMMA
= u (k + pZ)
] pp .

P 1&ks<p1



Consequently, if

co

= n
X X ap (an € A)

n=0

. X
andlfxezp, thenaOzO.

[In fact, there is a unique k (1 < k < p-1) suchthatxek+p2pand
this "k" is ao.]
24: THFOREM An element

X= X

n
o ap (an € A)

in Zp is a unit iff ag * 0.
PROOF To establish the characterization, construct a multiplicative inverse

y for x as follows. First choose uniquely b0 1< b0 < p—-1) such that aob0 =1 md p.

Proceed from here by recursion and assume that bl""’bM between 0 and p-1 have

already been found subject to

x( 2 bmpm)ElmodpM.-l.
O0<m<M
merlthereisazactlyoneOsbmlsp-lsuchthat
x( bmpm)zlmodpmz.

O<m<M+1

Now put y = Z bmpm,tl:msxy=1.
=0

25: EXAMPLE 1 - p is invertible in Zp but p is not invertible in Zp.



e YA
o Z/p
that sends
— - n
x= I ap (an € A)
n=0
to a, mod p is a hamomorphism of rings called reduction mod p. It is surjective

with kernel pr, hence [Zp:pr] = p.

Consider now the topological aspects of Zp:
o 7 o is totally disconnected.
o Zp is closed, hence complete.
Z_ is .
° o is open
[As regards the last point, observe that

I = :
o {XEQp |x[p<r}

ENr(O) (1 <r<p).l]

27: THEOREM Zp is campact.
PROOF Since Z,p is a metric space, it suffices to show that Zp is sequentially
campact. So let Ky rRgpeno be an infinite sequence in Zp Choose ag € A such that

a, + pr contains infinitely many of the X Write

a0+pr

=a,+p (U (@a+pZ))
0 acA P



2
a,+ U (ap + p"Z)
0 acA P

2
= U (a,+ap+pZ).
acA 0 P

Choose a, € A such that a

2 . P
1 otaP+p Zp contains infinitely many of the x,. EIC.

The construction thus produces a descending sequence of cosets of the form

j
A, + piZ
j TP e

each of which contains infinitely many of the xﬂ‘ But

Ay + ijp {x € Zp:]x - Ajlp < p_j}

1!

B _.(,),
pJ J

a closed ball in the p-adic metric of radius p-J + 0 (j > =), hence by the com-

pleteness of Zp,

N B _.(A)) = {al}.
=1 p J ]
Finally, choose

x, €B_@), XnZEBp_Z(Az),... .

1 p
Then
1im xn = A.
e 73

28: APPLICATION Qp is locally campact.



10.

[Since Q b is Hausdorff, it is enough to prove that each x € Qp has a compact

neighborhood. But Z o is a campact neighborhood of 0, so x + Zp is a compact neigh-

borhood of x.]

The set p-an (n > 0) is the set of all x € Qp such that lx!p <p'. Therefore

® -n
Q= uU p Z.
TR

Accordingly, Qp is g~-campact (the p“an being campact) .

29: _SCHOLIUM A subset of Qp is compact iff it is closed and bounded.

30: LEMMA Given n,m € Z,

anp c mep <=>m < n.

3l: REMARK Take n > 1 — then the anpare principal ideals in Zp and,
apart from {0}, these are the only ideals in Zp, thus Zp is a principal ideal

domain.

32: IﬂMForeveryxerpandr>0, there is an integer n such that

Nr(XO) ={x € Qp: X - XO!p <r}
-n
= Np_n(xo) = {x € Qp:}x - xolp <p}
_ n+l
= X, +p Zp.

33: SCHOLIUM The basic open sets in Qp are the cosets of same power of plZ o°
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[Note: It is a corollary that every nonempty open subset of Qp can be

written as a disjoint union of cosets of the anp ne ).l

34: LEMA
n-x n n+1
L =p71_ - Z.
PoHo=PoHp-P &
35: DEFINITION The p'Z" are called shells.
36: N.B. There is a disjoint decamposition
Q= up'z,
P nez P

banx = U (pnk + pn+1Z ).
1<ks<p-1 P

[Note: For the record, Q; is totally disconnected and, being open in Qp, is

Hausdorff and locally compact. Moreover, Z; is open—closed (indeed, open-campact).]

O
n

X
<p>x 7
P P

or still,

O
N

7x 7.
)

7: NOTATION For n = 1,2,..., put

_ I
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[Note:

n, _ X 1. -n
l+pr—{x€Zp,|l xlpsp }.1

The Up n 2xe open-campact subgroups of Z; and
14

Of .
Z

40: LEMMA The quotient Z;/Up,l is isamorphic to F; and the index of Us,1

X
D P
A generator of F; can be "lifted" to Z;.

4]1: 'I'HEDREM'I‘hereexistsacEZ;suchthat?;p_l=landckzl

(0 <k < p-1).

[This is a straightforward application of Hensel's lemma.]

2: N.B. ¢ ¢ Up,l (p odd) .

[IfxEZpandifforsanenel,

| (L +px)" =1,
then using the binamial theorem one finds that x = 0. This said, suppose that
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Z;=l+pu(uEZp) => (l+pu)p—1=l=>u=0,

a contradiction.]

43: SCHOLIUM Zp can be written as a disjoint union

_X 2 P2
= U o e e -
Zp Up'1 utg 5,1 Y zU , 1Y Uz Up,l

Therefore

X X .
=Zx2 =1x2/(ELIxU,,.

44: LEMMAnyrootofunitmepliesinZ;.

PROOF If x = pv(x)u(x) and if x = 1, then nv(x) = 0, so v(x) = 0, thus

X
e 7%,
&5

'IherootsoftmityinZ;areasubgrmp (as in any abelian group), call it

Tp. If, on the other hand, Gp—l is the cyclic subgroup of Z; generated by ¢,

then G -1 consists of (p—l)"‘:’t roots of unity, hence G

p-l < Tpo

45: ILEMMA If p # 2, then G

45: p_l=prutifp=2,thenT={il}.

P

46: APPLICATION If Py /P, are distinct primes, then Qp is not field
: 1

isomorphic to sz .
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47: REMARK Qp is not field isamorphic to R.
[Qp has algebraic extensions of arbitrarily large linear degree which is

not the case of R (cf. §5, #26).]

48: LEW]AIethQ;-—thenxeZ;iffxp—lpossessesnthrootsfor

infinitely many n.
PROCF If x € Z; and if n is not a multiple of p, then one can use Hensel's

lemma to infer the existence of a Yn € Zp such that yﬁ = xp-l. Conversely, if

yn=xp_l,then
n

w(y,) = (p-Lvx),
thus n divides (p~1)v(x). But this can happen for infinitely many n only if

v(x) = 0, implying thereby that x is a unit.

49: APPLICATION Let ¢:Qp > Qp be a field autamorphism -~ then ¢ preserves
units.

[In fact, if x € Z;, then

n

2= = sy )™ = 6P

0: THEOREM The only field autamorphism ¢ of Qp is the identity.

PROOF Given x € Q;, write x = pV(X)u(x) , hence
860 = 0" Pu)

= 6" ® ) = " Fpme),
hence

vip(x)) =vlx) (pukx)) € Z;)-
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Therefore ¢ is continuous. Since Q is dense in Qp, it then follows that ¢ = idQ .
P
[Note:

xk—>0=>]xk|p+0=>p +0

(6 (x.))
= p Xk >0 = lq)(x_k)'p—»()=> q)(xk) -+ 0.]

The final structural item to be considered is that of quadratic extensions and

to this end it is necessary to explicate (Q;)Z, bearing in mind that

X X
Qp ~Ix Zp = L x Z/(p-1)Z x Up,l’

butifp=2,thenU2 =U
1 2

51: LEbMpr:Z,thenUf_) = 1 2,3°

a1- %

52: APPLICATION If p # 2, then

X, 2

(Qp) =27

X

2(Z/(p-1) 1) x Up,l
but if p = 2, then

(Q’z‘)2 ~ 27 x U

53: THEOREM If p = 2, then

|
&>

X X 2.
[Q,: Q)"

but if p = 2, then

I
o]
.

[Q3: (@)1
54: REMARK If p = 2, then

% X, 2
0/ Q)7 = 2/21 % 1/22
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but if p = 2, then

0;/(01’;)2 % 7/27 x 1/21 x 1/21.

55: CRITERION Suppose that p = 2.

® p is not a square.
_ .2 . - v(x)
[If p=x", write x = p u(x) to get

1=v(p) = v(xz) = 2v(x),
an untenable relation.]

® [ is not a square.

[Assumethatc;=x2-—then

Cp-l =1 = x2(p"1) = ]_,

thus x is a root of unity, thus x € Tp, thus x € Gp—-l (cf. #45), thus x = ;k

2k 2k-1

© <k <pl), thus ¢ = (292 = &, thus 1 = &L, pat

2k < 2p-2 => 2k~1 < 2p-l.

2k -1 =p-1=>2k=p=>peven...

® pr is not a square.
[Forifpz;=p2nu2 (n € Z), then

2n~-1 2
=P u

2n-1 -
Ipn Ip_plZn

=] = =
> 1=z,
= 1-2n-=0,

an untenable relation.]
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56: THEOREM If p # 2, then up to isamorphism, Qp has three quadratic
extensions, viz. |

Qp(/ﬁ), Qp(/f), Qp(@)-
[Note: If Ty =Pr Ty =%, T3 = PG then these extensions of Qp are inequiv-

alent since Ti’l';l (1 = j) is not a square in Qp.]

57: REMARK Another choice for the three quadratic extensions of Qp when

p=#2is
Qp(@), Qp(/aT). Qp(@),

where 1 < a < p is an integer that is not a square mod p.

58: REMARK It can be shown that up to isomorphism, Q2 has seven quadratic

extensions, viz
02(/:1_). QZ(@), Qz(/i_g), QZ(/EO)-
59: EXAMPLE Take p = 5 — then 2 ¢ (0%, 3 ¢ (@)% ut 6 € (@92, mna
Qs(v’Z_) = Qs(fﬁf).
[Working within Z;, consider the equation x2 = 2 and expand x as usual:

z I
x= I a5 (a €A).
o ] n

agEZmods.

But the possible values of a, are 0, 1, 2, 3, 4, thus the congruence is impossible,
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so 2 ¢ (Q;)z. Analogously, 3 # (Q;)z. On the other hand, 6 € (Qg)2 (by direct
verification or Hensel's lemma), hence 6 = 72 (y € 05). Finally, to see that

Q5 (/2) = Q5(/3),

it needonlybeshownthat/2_=a+b/§forcertaina,b605. To this end,

note that /2 /3 = + vy, fram which

Z=:L=21/3]
/3

60: EXAMPLE If p is odd, thenp-lisevenand—lEGp_l. In addition,
-1 e (Q;;)2 iff (p-1)/2 is even, i.e., iff p = 1 mod 4. Accordingly, to start /-1

exists in Qs, Ql3"" .

[Note: v-1 does not exist in Q-]

APPENDIX

Let Qge be the algebraic closure of Q b " then |. lp extends uniquely to Q;’e

(cf. §3, #12) (and satisfies the ultrametric inequality). Furthermore, the range

of per Q;!' is the set of all rational powers of p (plus 0).

l hd lp
1l: THEOREM Q;I’ is not second category.
. ct .
2: APPLICATION The metric space Qp is not complete.

3: APPLICATION The Hausdorff space Qg@ is not locally campact (cf. §5, #5).
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: NOTATION Put

_ L
Cp— (Qp),

the campletion of Q;z per ||p
5: THEOREM C 5 is algebraically closed.

: N.B. The metric space C o is separable but the Hausdorff space Cp is

not locally campact (cf. §5, #5).



§5. LOCAL FIELDS

Iet K be a field of characteristic 0 equipped with a non-archimedean absolute

value

1l: NOTATION Iet

R= {a € K:|a] =<1}

R = {a € K:|a] = 1}.

: ILEMMA R is a cammtative ring with unit and R is its multiplicative

N

group of invertible elements.

3: NOTATION lLet

P = {a € K:|a] < 1}.
4: LEMVA P is a maximal ideal.

Therefore the quotient R/P is a field, the residue field of K.

: THEOREM K is locally compact iff the following conditions are satisfied.

1. K is a complete metric space.

2. R/P is a finite field.

3. |K'| is a nontrivial discrete subgroup of R o

: DEFINITION A local field is a locally campact field of characteristic 0.

7. EXAaMPIE R and C are local fields.

8. EXAMPLE Qp is a local field.



Assume that K is a non-archimedean local field.

9: LEMMA R is campact.

=

: LEMMA P is principal, say P = 7R, and

K| = |v|Z,
where 0 < |m| < 1.

[Note: Such a 7 is said to be a prime element.]

11: REMARK A nontrivial discrete subgroup I' of R>O is free on one generator

0<y<1:
1"={Yn:nEZ}.

This said, choose m with the largest absolute value < 1, thus T € P ¢ R=> 7R c P.

In the other direction,

a€eP=>|a| s |n| =>%€ R.

a

a="m - => TR.
T a € TR

12: FACT A locally campact topological vector space over a local field is

necessarily finite dimensional.

13: THEOREM K is a finite extension of Qp for same p.

PROOF First, K 5 Q (since char K = 0). Second, the restriction of |.| to Q

is equivalent to |. 'p (3 p) (cf. 81, #20), hence the closure of Q in K "is" Qp

(since K is camplete). Third, K is finite dimensional over Qp (since K is locally

campact) .



There is also a converse.

4: THEOREM Iet K be a finite extension of Qp — then K is a local field.

PROOF In view of #5, it suffices to equip K with a non-archimedean absolute

value subject to conditions 1,2,3. But, by the extension principle (cf. §3, #11),
|.

manifest. As for point 2, it suffices to observe that the canonical arrow Z p/pZ o >

p extends uniquely to K. This extension is non-archimedean and points 1,3 are
R/P is injective and
: K: < oo,
[R/P Fp] < [ Qp] o
[Details: To begin with,
P =pl
Qp n PZ,e
thus the inclusion Zp -+ R induces an injection
Z /pl - .
/Plp > R/P

Put now n = [K:Qp] and let Al,..., € R - then the claim is that the residue

An+l

classes 5.1,... ,Z-\n +1 € R/P are linearly dependent over Z p/pr. In any event, there
are elements Ryreeer® g € Qp such that

n+l

L x.A, =0,
=1 t

matters being arranged in such a way that
max |x, | p= 1

Therefore the X; € Zp and not every residue class ;ii € Zp/pr is zero. But then



n+l

I XA, =0
= tt

is a nontrivial dependence relation.]
15: SCHOLIUM A non-archimedean field of characteristic zero is a local
field iff it is a finite extension of Qp (3 p).
let K o QP be a finite extension of linear degree n -- then the canonical

absolute value on K is given by

[2lp = Ny @ 5

[Note: The normalized absolute value on K is given by

T o}
lalK - ialp’
Its intrinsic significance will emerge in due course but for now cbserve that |. [,

is equivalent to |. lp and is non-archimedean (cf. §1, #23).]

16: LEMMA The range of |. [p]KX is lTlié

17: DEFINITION The ramification index of K over Qp is the positive integer

X X
e=[|K lp.lQp[p].

I.e.:

©
i

iz 12

Therefore



[Consider Z and eZ -- then the generator 1 of Z is related to the generator e

of eZ by the triviality 1 + «-- + 1 = e-1 = e.]

18: N.B. If 7' has the property that |’ [g = |p|p, then 7' is a prime
element.

v ()

[Using obvious notation, write n' = u, thus

Il = Im' 15 = (In[7™)®

P
- e,v(m) _ v(m)
thus v(w) = 1.]

19: NOTATION

qzcardR/P=(carde)f=pf.

f= [R/P:Fp]r

the residual index of K over Qp.

20: THEOREM Let K > Qp be a finite extension of linear degree n —- then

n= [K:Qp] = ef.

21: APPLICATION

Imlg = I7l5 = [pI2/

I
B
!
£C
1
Ty
I
Q-



View p as an element of K:

B3 l/n = I l/n -
o Iplp_ |NK/QP(P) 5 0% Pl
1 1 1
hd IPIK = INl(/Qp(p) |p = Ipnlp = -I;r_1= _E= (p—f)e = q—e’

22: DEFINITION A finite extension K of Qp is
e unramified if e=1
e ramified if f = 1.

‘I‘akethecaseK=Qp——thene=l, hence K is unramified, and £ = 1, hence

K is ramified.

3: LEMMA If K :>Qp is unramified, then p is a prime element.

24: THEOREM V n = 1,2,..., there is up to isomorphism one unramified

extension K of Q b of linear degree n.
Iet K be a finite extension of Qp.

25: LEI\MA’IhegrouprofrootsofunityoforderprimetopinKis

cyclic of order pf -1 (=qg-1).

26: LEMMA The set M= M U {0} is a set of coset representatives for R/P.

Therefore (cf. §4, #43)

X

K% ZxR ~Zx1Z/(q-1)Z x 1 + P.



27: NOTATION Let

X
Kir = Qp(M ).

28: LEMMA Kur is the maximal unramified extension of Qp in K and
[Kur:Qp] = f.

29: REMARK The maximal unramified extension (Qc’e) c Qc£

29: b ur 5 is the field

extension generated by all roots of unity of order prime to p.

30: QUADRATIC EXTENSIONS (cf. §4, #56) Suppose that p = 2, let
TE Q; - (Q;)z, and form the quadratic extension

Qp(T) = {x + y/T:x,y € Qp}.

Then the canonical absolute value on Q 1p(v’r—) is given by
- 1/2
b+ v/elp = M vmsg, &+ ¥

_ 2 212
ER g

31l: CLASSIFICATION Consider the three possibilities

Qp(/ls), Qp(/f), Qp(»/ﬁ_),
thus here 2 = ef.
° Qp(@) is ramified or still, e = 2.

[Note that

-1

2 _ 2 2, _ _
612 = 10% - @12 = ||,

ol N o



° Qp(/ﬁi) is ramified or still, e = 2.

[Note that

2= 2—- 2 = = . = =_]_'.
IBT|™ = |07 - )17, = |pt|y = lply lzlg = Ip]

P p‘]

If e = 1, then in either case, the value group would be pz, an impossibility

sincei-gpz,soe=2.

%
™ Qp(/E) is unramified or still, e = 1.

[There is up to isomorphism one unramified extension K of Qp of linear degree
2 (cf. #24).]
[Instead of quoting theory, one can also proceed directly, it being simplest

to work instead with Qp(v’é'), where 1 < a < p is an integer that is not a square mod p
(cf. §4, #57) — then the residue field of Qp(/é‘) is Fp(/é.—), hence f = 2, hence
e=1 (sincen = 2).]

The preceding developments are absolute, i.e., based at Qp. It is also possible
to relativize the theory. Thus let L 5K o Qp be finite extensions of Qp. Append

subscripts to the various quantities involved:
" X
Rg > Pgr Re/Pgr eprfyr Mg

X
R, > Prr R/Ppsep,£7, M
introduce

il

T oe/R = [ K|

[Rp /Py, +Re/ Pyl -

il

£(1/K)



[L:K] = e(L/K)£(L/K).

PROOF We have

[LzQp] =ef
(cf. #20)
[K:Qp] = erK
Therefore
[L:Q ] f
[L:K] = —F = LT e (I/K) f (I/K) .
[KzQp] epfy

33: THEOREM Iet L. oK > Qp be finite extensions of ( — then there exists

a unique maximal intermediate extension K c Kur c L that is unramified over K.

. ’

[Note: The extension L > Kur is ramified.]



§6. HAAR MEASURE

Let X be a locally campact Hausdorff space.

: DEFINITION A Radon measure is a measure p defined on the Borel

o-algebra of X subject to the following conditions.

1. yu is finite on campacta, i.e., for every campact set K ¢ X, p(K) < .

2. 1y is outer regular, i.e., for every Borel set A c X,

UsA

where U < X is open.

3. up is inner regular, i.e., for every open set A c X,

u(a) = sup u(K),
KcA
where K ¢ X is compact.

Iet G be a locally campact abelian group.

2 DEFINITIONAHaarmeasureonGisaRadonneasurequhichis trans-

lation invariant: Vv Borel set A, V x € G,
uG(X+A) = uG(A) = uG(A+X)

or still, v £ ECC(G), Yy EG,

]

fG f(x+y)duG(X) IG f(x)dpG(x) .

3: THEOREM GadmitsaHaarmasureandanytvnHaarneasuresuG, Vo

differ by a positive constant: = CVg (c>0).

Ug



nonempty .
4: LEMMA Everonpen subset of G has positive Haar measure.

|

IEMMA G is compact iff G has finite Haar measure.

10\
e

ILEMMA G is discrete iff every point of G has positive Haar measure.

7: EDQ\MPIETakeG=R-——tha1uR=dx (dx = Lebesgue measure) is a Haar

measure (up ([0,11) = fp &x = 1).

dax

:
;%
.%

(dx = Lebesque measure) is a

9: E)WdPIETakeG=Z-tha1uz=ommtingmeasureisaﬂaarneasure.

10: LEMMA Let G' be a closed subgroup of G and put G'' = G/G'. Fix Haar

smes—"

measures L, e OR G, G' respectively —— then there is a unique determination of

the Haar measure Mge s on G'' such that v £ € Cc(G),

S Gf (x)duG x) =/

G' ([~ f(x+x')d].tG. (x'))dug. (x'").

[Note: The function
x>/, f(x-ix')duG. (x')

is G'-invariant, hence is a function on G''.]

11: EXAMPLIE Take G = R, G' = Z with the usual choice of Haar measures.

Determine HR/z per #10 -- then uR/Z(R/Z) = 1.



[let x be the characteristic function of [0,1[ —— then

z  x(x+n)
nez

is = 1, hence when integrated over R/Z gives the volume of R/Z. On the other

hand, fpx = 1.]

Let K be a local field (cf. §5, #6). Given a € K, let M_:K + K be the auto-
morphism that sends x to ax = xa —— then foranyHaarmeasureuKonK, the
camposite W ° M is again a Haar measure on K, hence there exists a positive
constant modK(a) such that for every Borel set A,

1 0L (8)) = mod () g ()

or still, v £ € CC(K),
fg @ 0dn () = mod, (@) £, £Gdu ().
[Note: modK(a) is independent of the choice of uK.]

Ebctmdmotho all of K by setting modK(O) equal to 0.

12: IEMMA Iet K,L be local fields, where L > K is a finite field extension —-

then v x € L,
mody (x) = mod (N (x))
= modK(det (Mx)) .

[let n = [L:K], view L as a vector space of dimension n, and identify L with

K by choosing a basis. Proceed fram here by breaking Mx into a product of n



"elementary" transformations.]

13: EXAMPLE Take K= R, L = R — then v a € R,
modR(a)=|a|.
v £ € C,(R),

fef@odx = |a| fpf(dx.]

14: EXAMPIE Take K=R, L=C — then v z € C,
modc(z) = mOdR(NC/R(Z))
= |2Z] = |z|°.
15: IEMA
modqp= .lp.
To prove this, we need a preliminary.
16: LEMMA The arrow
| Ek:% > Z/ka
that sends
X ’= ngo anpn @, € A)
to
kéj)— anpand pk

is a hamomorphism of rings. It is surjective with kernel kap, so [Zp:kap] =

k
p



(cf. 84, #26), thus there is a disjoint decamposition of Zp:
k

P k
Zp= U (x.+pZ).
j=1 J P

Normalize the Haar measure on Qp by stipulating that
g () =
QP
[Note: In this connection, recall that ZD is an open-campact set.]

The claim now is that for every Borel set A,
o M @) = |x|_us (A).
Qp X P Qp

Since the Borel o-algebra is generated by the open sets, it is enocugh to take A
open. But any open set can be written as a disjoint union of cosets of the subgroups

kZp (cf. §4, #33), hence, thanks to translation invariance, it suffices to deal

with these alone:

uQ (p Zp) p(p )uQ Zp
_ ky _ .k
1. k=20
k
1= () = (o G+ P7)
= U = M .
QP P 5=1 3 P
k

P Hg (kap)
P

k -
Uy (PZ) =p =



2. k< 0:
-k k
1=y, (Z) =n, (P PZ)
szp ® %
_ -k k

_ 1=k k

FRSERa
P P

k
y (PZ) =
Qp o

17: SCHOLIUM If K is a finite extension of Qp, then v a € K,

(@ = [N @1

the normalized absolute value on K mentioned in §5:

— —— n — -
modK(a) = |a|K (= Ia[p, n = [K.Qp]).

18: CONVENTION Integration w.r.t. UQ will be denoted by dx:
P

[n fX)dp, (%) = /5 £(x)dx.
QP QP QP

[Note: Points are of Haar measure zero:

{0} = n pkz
k=1 P

: k
u, ({0} lim w, (PZ)
Qp Qp Zp

k > o

lim p ¥ =o0.]

k>
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Therefore

20:

EXAMPLE

EXAMPLE

X

L = U (k + pZ ) (cf. 54, #23).
P l<ksp-1 P
X
volg, (Z)) = (p-1l)volg, (PZ)
=Pl
= -

n+l

noX, _ n, _
voldx(p Zp) = voldx(p Zp P Zp) (cf. 84, #34)

21: EXAMPLE Write

Then

f7 -
Zy {0}

n n+l
vcldx(p Zp) - voldx(p Zp)

- | _ 1.+l
= [Pl volg, (Z) = [p 7, voly, (Z)
—p?P - p—-—n-—l
-0} = u PLS
Zp nz0 Zp

log Ix[pdx = n.Eo fanx log [x[pdx
P

= -n n-x
nio log p voldx(p Zp)

-logp I npE"- P—nﬁl)
n=0



oo o

=-logp(z 2-1; 2
n=0 p pn=0p

- a-L s I
== (1 p)loqu A

n=0 p
=-(l-§—,)logp P
(p-1)
- _logp
p-1 °

- = .-1gp
fleog |1 xlpdx =1 -
p

[Break Z; up via the scheme

(Z;:ao z 1)u (z;=a0 =1, a, # 0 (Z;:ao =1,a =0, a # 0u... .]

23: LEMMA The measure -I%Ix— is a Haar measure on the multiplicative group Q;.

P
PROOF V y € Q;,
-1, ax
s % f(y X) -B{—[—
Qp P
=it s s ——ax
Q ly x

-1 dx
ly] " mod, (v) S £(x) =~
P Qp Q; *Ip



= Iyl vl f 59 =T
P
P
dx
=fof(X)T}-{T—.
o P
24: EXAMPLE
n-x _ X
vol dx (pr)— 1 ax (Zp)
TxT TxT
p P
ax
=fx'|'ﬂ_=fxdx
C N S
— ' Xy _p-1
—VOldx (Zp)—T.

25: DEFINITION The normalized Haar measure on the multiplicative group

Q; is given by

X = P_ X
dx p_l-I;{T;.

Accordingly,

this condition characterizing I*x.

26: EXAMPLE Let s be a camplex variable with Re(s) > 1. Write

7 -{0}= u pZt.
p ST 0 P
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T -ns X
= I p S ax
n=0 Z
p
= ¥ p—ns = l_s ’
n=0 1-p

the pth factor in the Euler product for the Riemann zeta function.

Iet K be a finite extension of Qp. Given a Haar measure da on K, put

dxa=—%—l-

Q

g

Then da isaHaarmeasureonKxandwehave
[aTx

x da
vol _ (R) =/ _ %
d“a e IalK

Q

=_ 4
=2/, da

o}
o)

i

™
Q

-
5
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=S da
u TR
n=0

= fR da = VOlda(R) .



§7. HARMONIC ANALYSIS

Iet G be a locally campact abelian group.
1: DEFINITION A character of G is a continuous homomorphism x:G -+ c”.

NOTATION Write G for the group whose elements are the characters of G.

IN

DEFINITION A unitary character of G is a continuous homotnorphism

w
s

x:G > T.

NOTATION Write G for the group whose elements are the unitary characters

>
'y

of G.

LEMMA There is a decamposition

wn
.

A

G = §+ x G,
where G , s the group of positive characters of G.
PROOF The only positive unitary character is trivial, so (§+ nNeG={1}. on
the other hand, if y is a character, then |x| is a positive character, y/|x| is a

unitary character, and y = |x| (T;-ET).

6: LEMMA Every bounded character of G is a unitary character.

PROCF The only campact subgroup of R, is the trivial subgroup {1}.

7: APPLICATION If G is campact, then every character of G is unitary.

8: EXAMPLE Take G = Z —- then G = Cx, the isamorphism being given by the

map X + x(1).



9: EXAMPLE Take G = R — then G = R x R and every character has the form

e (z€0).

X (%)

10: EXAMPIE Take G = C — then G = C x C and every character has the form

X (x) = exp(zl Re(x) + Z4 Im(x)) (21,22 € C).

1l: EXAMPLE Take G Rx——thenazZ/ZZxCandeverycha.racterhasthe

form x(x) = (sgn x)alx]s (c € {0,1}, s € C).

12: EXAMPLETakeG=CX——thm(§szCandevery-characterhasthefom

x(x) = exp(/=I n arg x) |x|°(n € Z, s € C).

3: DEFINITION The dual group of G is G.

14: RAPPEL Let X,Y be topological spaces and let F be a subspace of C(X,Y).

Given a campact set K ¢ X and an open subset V ¢ Y, let W(K,V) be the set of all

f € F such that £(XK) < V —— then the collection {W(K,V)} is a subbasis for the

campact open topology on F.

[Note: The family of finite intersections of sets of the form W(K,V) is then
n
a basis for the campact open topology: Each member has the form n W(Ki,vi) ’
i=1
where the KJ. c X are campact and the Vi c Y are open.]

Equip G with the campact open topology.

15: FACT The campact open topology on & coincides with the topology of

uniform convergence on compact subsets of G.



16: LEMMA 8 is a locally compact abelian group.

17: REMARK G is also a locally campact abelian group and the decomposition

G = §+ x G
is topological.

13: EXAMPLE Take G = R and given a real number t, let xt(x) =e‘/:i-tx—-

then X is a unitary character of G and for any x € &, there is a unique t € R

such that y = Xer hence G can be identified with G.

19: EXAMPLE Take G = R2 and given a point (t ,tz), let X (t tz) (xl,xz)
ll

V-1 (ty%; + t%,)

=e --—then)((t is a unitary character of G and for any -

lltz)

xeé,thereisaunique(t,t)Estuchthatx=X , hence G can be
identified with E;.

20: EXAMPIE Take G = Z/nZ and given an integer m = 0,1,..., n-1, let

Xm(k) = exp(2n/-1 %) —- then XgrXpre s r¥yy 3XE the characters of G, hence G can
be identified with G.

21: LEMMA If G is campact, then G is discrete.

/Toy _ /Tno __

_2_2_:ED§AMPLETakeG=TandgivenneZ,letxn(e )

XnisamiitarycharacterofGandallsuchhavethis form, so T = Z.
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23: IEMMA If G is discrete, then G is compact.

24: EXAMPIE Take G = Z and given &’ L © € T, 1etxe(n)=e/:fen-—tha1

Xg isamitarycharacterofGandallsuchhavethisfom,soizT.

N\

IFMMA If G]_,G2 are locally campact abelian groups, then Gl X G2

N
|
-8

is topologically isamorphic to él x E;Z.

26: EXAMPIE Take G = R — then G = Z/2Z x Ry, = Z/2L x R, thus G is
topologically isamorphic to Z/2Z x R:
(u,t) » Xu,t (u € Z2/2Z, t € R),

where

/-1t
Xg,£ ) = (ﬁ:—[—)u |x| .

27: EDCAWIETéJceG=Cx——t11e11GszR:OzTXR,thuséistopo—
logically isamorphic to Z x R:
-~ (n,t) > Xn,t nel, t R,

where
o 0@ = (73" 11T

DenotebyethhecanmicalarrowG->§:

eV, (x) (x) = x(x).



28: REMARK If G,H are locally campact abelian groups and if ¢:G -+ H is

a continuous hamomorphism, then there is a commtative diagram

ev a
G G > G
¢ o}
> H .
&y

29: PONTRYAGIN DUALITY Vg is an isamorphism of groups and a homeo-

morphism of topological spaces.

30: SCHOLIUM Every compact abelian group is the dual of a discrete abelian
group and every discrete abelian group is the dual of a compact abelian group.

G ~ ~
31: REMARK Every finite abelian groupAis isomorphic to its dual G:G = G
(but the isamorphism is not "functorial").
Iet H be a closed subgroup of G.
32: NOTATION Put

H = {y € a:le = 1}.

3: ILEMMA HlisaclosedsubgroupoféandH=H“.

W

let 7_.:G + G/H be the projection and define

H
- @:é/}-" Ht

‘!’:é/Hl > |



by
®(x) =x ° T
y(xHY) = x|H.
34: LEMMA ¢ and Y are isomorphisms of topological groups.
35: APPLICATION Every unitary character of H extends to a unitary char-
acter of G.

36: EXAMPLE Let G be a finite abelian group and let H be a subgroup of
G -- then G contains a subgroup isamorphic to G/H.

[In fact,

G/H zégafz H <G = G.]

37: REMARK Denote by LCA the category whose objects are the locally compact

abelian groups and whose morphisms are the continuous homomorphisms -- then
~:LCA - LCA
. is a contravariant functor. This said, consider vthe short exact sequence

Wi
l >H > G )G/[‘I——'>l

and apply ~:

2N

l1—'G/H = g — 84—-—> ﬁ = a/H'L —_ 1,

which is also a short exact sequence.



Given f € Ll (G), its Fourier transform is the function

E:é + C
defined by the rule

£(X) = fg £6IX (AU X) .

38: EXAMPIE Take G = R — then R = R and

Eix) = B0 = /7, £ooe’ T Hax,
39 _ pl 52 2
39: EXAMPLE Take G = R™ -- then R™ = R” and
~ ,\ o o vas (tlxl + ty%,)
f(x(tl’tz)) Sty =S T, £ x))e ax, Ax, .

40: EXAMPIE Take G =T — then T = Z and

%(Xn) = £(n) = f(z)1T £(0)e’ T MBgq.
41: EXAMPLE Take G= Z — then Z ~ T and
fixg) = £0) = 5 £me T M,
Nn=-w
42: EXAMPLE Take G = Z/nZ —— thenZ//r}: Z/nZ and
A A n-1 Km
£(xy) = fm) = I fk)exp(2n/-1 T)'
=0

43: LEMMA :/é E; > C is a continuous function on G that vanishes at infinity



and

HEL, < 1IEl]4-

44: NOTATION INV(G) is the set of continuous functions f € Ll (G) with

the property that f € Ll(a).

45: FOURIER INVERSION Given a Haar measure uG on G, there exists a unique

Haar measure qunasuchthatvaINV(G),
G

£x) = /. EG)X@d, (x) .
G G

If G is campact, then it is custamary to normalize g by the requirement

fG lduG = 1.

46: LEMMA

lifx=0
e x(x)duG(X) =
0 if y = O.

PROOF The case x = 0 is clear. On the other hand, if y = 0, then there

exists xO:x(xo) 2 1, hence

J G x(x)duG(x) = [ G )((x-x0 + xo)duG (x)

X (&g) [ X (x=%4)du, (%)

= x(xp) fG X (x)du, (x)

fG x(x)duG(x) = 0.



Assuming still that G is campact (=> G is discrete), take f = 1:

A

£(0) =1, £(x) =0 (x # 0).

I.e.: f is the characteristic function of {0}, hence is integrable, thus

f € IW(G). Accordingly, if y, is the Haar measure on G per Fourier inversion,

G
then
1=£(0) = /. £(x)du.(x)
G G
= u,. ({0},
G
soV x € E;,
u () = 1.
G
47: EXAMPLE Take G = T - then dug = 52, so for £ € IW(G),
£(0) = 1 Eme” VLM,
where
A _2m /-1 n6 de
Bm) = 127 £(o)e 2.

If G is discrete, then it is custamary to normalize Mg by stipulating that

singletons are assigned measure 1.

48: REMARK There is a conflict if G is both compact and discrete, i.e.,

if G is finite.

Assuming still that G is discrete (=> G is campact), take £(0) = 1,
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f(x) =0 (x = 0):

£ = g £GIX () dug ()

£(0)x(0)ug({0D

= 1.

I.e.: % is the constant function 1, hence is integrable, thus f € INV(G).
Accordingly, if u, is the Haar measure on G per Fourier inversion, then
G .

u(G) = [ 1du, (%)
G G G

S £, (X)
G G

I £(60%(0)aw, (x)
G G

Il

i

£(0) = 1.

49: EXAMPLE Take G = Z/nl and let Mg be the counting measure (thus here

uG‘(G) = n) - then p, is the counting measure divided by n and for £ € INV(G),

G
n-1 _
£ (k) =% z fm)exp(- 2m/~1 E;E),
m=0
where
"N n-1 Km
fm) = X f(k)acp(zn/-‘f-ﬁ—).
k=0

50: EXAM?IETakeGr-Randleth=ordx(cz>0),henceu,\=6dt (B > 0)
G
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and we claim that
1 = 2aRm.

To establish this, recall first that the formalism is

CEm = 7 ree’ T P .
£ = /2 Fme” T Haae,
ret £(x) = e~ X — then
2a _ o - |x| AT tx
. =f e e odx
e ™ '

so £ € INnV(G), thus

—[x|=foo 20~ /L tx

e — 5 Rdt
1+t
o o 7L tx
= 208 [_ —— dt.
1+t
Now put x = 0:
1 =208 /7 % = 20gn,
1+t
as claimed. One choice is to take
oa=8= 1 7
V2T
the upshot then being that the Haar measure of [0,1] is not 1 but rather 1 .
‘ V2w

51: NOTATION Given f € t'(R), let

FRE(E) = /7 £00e?™ T By,



12.

Therefore
FRf(B) = /21 = 17 £e?™ T By
v2m
= /27 £(21t).
52: STANDARDIZATION (G = R) Iet £ € INV(R) -- then

[In fact,

FRf x) =

It

FRf(x) = f(-x).

12 Feg®)e®™ T S

2m/-1 tx

/2 /2T E2mt)e at

/-1 ux du

v2m [ >

f(u)e

oo

/_tx

L/ fe

/2_17_

= f(-x).]

Fourier inversion in the plane takes the form

A~ _ l oo
Biey ) = 17 S
| 1

ECpx)) =7 [0S

One may then introduce

R

F Lt ,t,) =

/=1 (t,x X.,)
£(x),%))e e zzdxdx

12

- /~1(t,x,+t,%.)
f(tl,t Je 1*1752%2 dt.dt

172°

2m/-1 (t,x

o g X,)
07, f ke 1%1752%;

dx,dx,
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= 2nf (ZTrtl,Zntz)
and, proceeding as above, find that
FRZFRZf (xl,xz) = f(-—xl,-xz) .

Now identify R2 with C and recall that trC/R(z) =z + z. Write

T w=a+/-Ib
_z=x+/1y.
Then
wz + Wz = 2Re(wz) = 2(ax - by).
Therefore
A £y T gy
= £(2a,-2b).

[Note: Let y (z) = exp(/-1 (wz + wz)) -- then X, is a unitary character of

Candforanyxea, thereisauniquewECsuchthatx=Xw, henceegc.]
53: NOTATION Given f € L' (R%), let
Fcf(w) = Fcf(a,b)

= 2F 2f(2a,-2b)
R

= 4nf (4ma,-41b)

= 2 syt IO pggy,
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54: STANDARDIZATION (G = C) Let £ € INV(C) — then

| FCFCf(XIY) = f(-xl-Y) .

[In fact,

FoF EGy) = 17, 17 Fof (a0 et ™ 1 @) 5500,

12 17 anf (4ma,~an) e L @XBY) 55y,

(4m)
= 2_11F f:o f:% (u,-v)e/:I(ux—vy)dlxiv
= 51—'1; / :, fojmf (u,~v)e /:T(-uxwy)dudv
= —2]—;; f:o fo_‘:o%(u,v)e- /:I(_ux—vy)dudv

= f(=x,-y).]

55: PLANCHEREL THEOREM The Fourier transform restricted to Ll G) n L2 (e)]
is an isometry (with respect to L2 norms) onto a dense linear subspace of L2 (E;) ’

hence can be extended uniquely to an isometric isamorphism L2 (G) -~ L2 (&) .

56: PARSEVAL FORMULA v f,g € L2(G),

fg £0TE@A6) = £, £00g00d, ().
G G

57: N.B. In both of these results, the Haar measure on G is per Fourier



§8. ADDITIVE p-ADIC CHARACTER THEORY
1: FACT Every proper closed subgroup of T is finite.
Suppose that G is campact abelian and totally disconnected.

LEMMA If ¥ € G, then the image ¥ (G) is a finite subgroup of T.

PROOF Ker y is closed and
¥x(G) = G/Ker ¥.
But the quotient G/Ker y is O-dimensional, hence totally disconnected. Therefore
x (G) is totally disconnected. Since T is connected, it follows that T = x(G),

thus x(G) is finite.

: N.B. The torsion of R/Z is Q/Z, so x factors through the inclusion

Q/Z > R/Z, i.e., x(G) < Q/Z.

The foregoing applies in particular to G = Zp.

4: LEMMA Every character of Qp is unitary.

PROOF This is because

where the anp are campact, thus §7, #7 is applicable.

N

5: If x € Qp is nontrivial, then there exists an n € Z such that x =1

on anp but x Z 1 on pn-l

Z -
p .
PROOF Consider a ball B of radius %‘- about 1 in C* -- then the only subgroup

of C* contained in B is the trivial subgroup and, by continuity, X(anp) must be



inside B for all sufficiently large n, thus must be identically 1 there.

6: DEFINITION The conductor con x of a nontrivial x € ap is the largest
subgroup p'Z , on which x is trivial (and n is the minimal integer with this prop-
erty) .

A typical x =z 0 of Qp has the form

oo

n
X= I apf(a €A, vix) € 2)
n=v(x) T ©

fx) + [x].

Here the fractional part f(x) of x is defined by the prescription

-1
X anpn ifv(x) <0
n=v(x)

f(x) =

0if vix) 20

and the integral part [x] of x is defined by the prescription

[x] = n-E_Oanp ’

with £(0) = 0, [0] = 0 by convention.

1
f(x) € Z[E] cQ,

1 n :
=] = . (= ’ '



while [x] € Zp.

8: OBSERVATION

a .
0<fx) = % it}
lsjsv(x) p?
< (p-1) = -lj-= 1
=1 p

£(x) € [0,1[ N Z%}.

Let u _ stand for the group of roots of unity in c* having order a power of

p
there
p, thus u _ is a p—group and,is an increasing sequence of cyclic groups
p
T UL C U g € ees CHU 4L C ans
2 k
P p p
H o= U U,
p k>0 p
where
k
My = {z € CC:2P = 1}.
P

9: REMARK Denote by p the group of all roots of unity in Cx, hence

u=ml2Jlum, um={z€C 2z =13},

Then u is an abelian torsion group and p « 18 the p-Sylow subgroup of u, i.e., the
P

maximal p-subgroup of u.



Put

Xp(x) = expn/~1 £(x)) (x€ Qp).

Then

XpiQy > T

10: EXAMPLESupposethatv(x)=-l,sox=%+ywith0<ksp—land

= Tk - K
xp(x) = exp(2m/-1 p) C o,

where 7 = exp(2n/~1/p) is a primitive pth root of unity.

1l: LEMMA Xo is a unitary character.
PROOF Given X,y € Qp, write
f(xty) - £t(x) - £(y)

=x+y- [xty] - (x - [x]) - (y - [¥])

[x] + [y] - [x+y] € Zp.
But at the same time
flxby) - £(x) - £(y) € z%l.

Thus

t(xty) - £(x) - £(y) € z%] nZ,=12

and so

exp (2m/-1 (F (xty) - f(x) - £(y)) =1



or still,

+y) = .
Xp (ty) = X, X)X (¥)
Therefore xp:Qp + T is a homomorphism. As for continuity, it suffices to check

this at 0, matters then being clear (since Xp is trivial in a neighborhood of 0)

(Zp is open and 0 € Zp) .

12: LEMMA The kernel of Xo is Zp.

[A priori, the kernel of Xp consists of those x € Qp such that f(x) € Z.
Therefore

con Xp = Zp.]

13: LEMMA The image of Xp isu .
P

[A priori, the image of Xp consists of the camplex numbers of the form
k, _ m, k
exp (2n/-1 —-IH) = exp(2n/-1/p ) .
p

Since exp (21/=1/p") is a root of unity of order p", these roots generate y , as
p

m ranges over the positive integers.]

4: SCHOLIUM Y. implements an isamorphism

—_— P
Qp/ Zp = upoo.

é

X € p"kZp <=> pkx € Zp



k
=D = l
Xp (P x)
— p _
<=> =1

<=> Xp(x) SRS
p

16: RAPPEL Let p be a prime -- then a group is p-primary if every element
has order a power of p.

17: RAPPEL Every abelian torsion group G is a direct sum of its p-primary
subgroups Gp.

[Note: The p-primary camponent Gp is the p-Sylow subgroup of G.]

18: NOTATION Z(p°°) is the p-primary camponent of Q/Z.

Therefore

UVZ=9Z1(p).
p

19: LEMMA Z(p) is isamorphic to u _.
P
[Z(p7) is generated by the 1/p" in Q/Z.]
Therefore

Vizeou_=o0Q/L.
P PP o %

[Note: Consequently,

End(Q/Z) ~ End(® Q /7 )
= mae 07,



n

n

TTEnd(Q_/Z )
Tema (a7,

TTZ..1
p p

20: REMARK ip is isamorphic to u ' (cf. #26 infra).

Given t € Qp, let Lt be left multiplication by t and put ¥

then x, o is continuous and V x € QP,

p

p,t  Xp

xp’t(x) = xp(tX)-
[Note: Trivially, Xp 0 =1l. AndV t =0,
14
= "V(t)Z
con Xp,t P ~
Proof:
X € con Xp, <=>tx € Zp
<=> |tx <1
el
1 v (t)
<=> < =
x5 < &7 il
<=>x € p-v(t)Z .1
p
Next
= +
Xp, £ XY = X, (E(xty)
= Xp(tx""tY)

I

xp (tx) Xp (ty)



= Xp,t KX, £ ) -
Iherefbre Xp, t € ap.
Next
Xp,t+s(x) = Xp((t+s)x)
= xp(tX+SX)
= Xp (tx) Xp (sx)

= Xp, £ )X, ) -

Therefore the arrow Ep:Qp > ap that sends t to Xp € is a homomorphism.
’

21: IMIftzs,thetlx_ptzxps.
- ’ ’

PROOF If to the contrary, x

oot = Xp,s’ then V x € Qp, xp(tx) = xp(sx) or

still, Vv x € Qp, xp((t—s)x) = 1. But Lt__S:Qp > Qp is an automorphism, hence Xp
is trivial, which it isn't.
22: LEMA The set
g = it
p() = Ip, et € O}
~
is dense in Qp.
PROOF Let H be the closure in Q_ of the y_ .. Consider the quotient a p/H
P Pt
and to get a contradiction, assume that H =z 6p, thus that there is a nontrivial

|, | By definition, B" is computed in Q o» which by Pontryagin duality, is
which is trivial on H.

EeQ



identified with Qp, so spelled out
H = {x € Qp: Qp(x)lH = 1}.

Accordingly, for same x, £ = er (x), hence v t,
P
«E(xp,t) = erp(x) (Xp,t)

= xp't(X) = xp(tx) =1,

which is possible only if x = 0 and this implies that £ is trivial.

23: LEMMA The arrows

Qp > & (Qp)

B, Q) ~ @,

are continuous.

Therefore = p(Q p) is a locally compact subgroup of ap. But a locally campact
subgroup of a locally campact group is closed. Therefore Ep(Qp) = ap.
In summary:

24: THEOREM Qp is topologically isamorphic to Qp (via the arrow Ep:Qp ->

25: LEMMA Fix t -- then Xp,tlzp= 1 iff t € Zp.

PROOF Recall that the kernel of Xp is Zp.

e tel €l =>txel = =1= =
p,x D p>xp(,tx) .1>Xp 1.

.ltIZp
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=] => 1) =1= t) =1=> .
® ol Xp, (L) Xp (t) tez,
26: APPLICATION /Z\p is isomorphic to u .
P
[’Z\p can be computed as ap/Z; But ZJE')‘, when viewed as a subset of Qp, consists

of those t such that Xo tIZp = 1. Therefore

X, (¥) = exp(- 2n/-1 x) (x € R).

28: PRODUCT PRINCIPLE V x € Q,

T xp(x) = 1.

pse
PROOF Take x positive -- then there exist primes Pyre-=sPy such that x admits

a representation

N N, N
=71_+TZ+...+_n+M,
1 2 n

P P P

*

where the oy are positive integers, the N are positive integers (1 < N < By -1),

and M € Z. Appending a subscript to £, we have

N

L x) =

"o

’ fp(x) =0 (p z pk, k=12,...,n).

Therefore

T x.x) = TT x. ()
p<ew P 1<ksn Pk
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=

exp(2m/-L £ (x))
1<ksn Py

n
exp(2n/-I I £_ (%))
=1 Pk

= exp(2m/=L (x-M))

exp (2m/-1 x)

TTxp(x) = T % X) %, (%)

ps® p<

exp (2n/-1 x)exp(~ 2m1/~-1 x)

]

l L d
APPENDIX

Let K be a finite extension of Qp.

1l: THEOREM The topological groups K and K are topologically isamorphic.
[Put
— 2 e
xK,p(a) exp (2n/~1 f(trK/Qp(a)))

= Xp(trK/Q (a))
P
and given b € K, put
Xg,p,b @) = Xg,p@) -

Proceed fram here as above.]
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2: REMARK Every character of K is unitary.

2:
3: LEMMA
€ R=> tr a) €’
2 K/Qp( ) €L
aEpP=> trK/Qp(a) € pr.
4: DEFINITION The differential of K is the set
= K:tr Rb Z}.
5: LEMMA AK is a proper R-sulmodule of K containing R.
6: LEMMA There exists a unique nonnegative integer d -- the differential

exponent of K —— characterized by the condition that

w_dR= AK

[This follows fram the theory of "fractional ideals" (details omitted).]

—d_lR. ]

[Note: is trivial on 7 LR but is nontrivial on w

XK,p

7: LEMMA Let e be the ramification index of K over Qp (cf. §5, #17) —

then

-+l _
aebPp => trK/QP(a) € Zp.

PROOF let

ae€ P_e"'l = Trie+lR = w-e(wR) = Tl'_eP,



13.

soa=1°b (b e P). Write p = 7°u and consider pa:
pa = mum °b = ub.

But
lul =1, |b|] <1=> |ub| <1

=>ub € P

=>p trK/QP(a) € pr => trK/QP €z o
8: APPLICATION
d 2 e-1
[It suffices to show that
P-eﬂ' c AK (= 1T-dR) .

'I‘lmsletaEP—e*'l, saya=1Teb (b € P), and let r € R =- then the claim is that

trK/Qp (ar) € Zp,

But

ar = 7 cbr € mP (Jbr| < 1)

or still,

-+l _
ar € P => trK/Qp(ar) € Zp.]



14.

9: REMARK Therefored = 0 => e = 1, hence in this situation, K is

unramified.

[Note: There is also a converse, viz. if K is unramified, then 4 = 0.]

10: N.B. It can be shown that

trK/Qp (R) = Z o

iff d = e-1.

11: CRITERION Fix b € K == then

bEAK<=>Va€R, (ab) = 1.

Xg,p
PROOF

) aER,bEAK=>ab€AK

=> trK/QP(ab) € Z o

XK,p(ab) = Xp(trK/Qp(ab)) = 1.

® VacER, (ab) =1

XK, p

=>V a€ER, trK/Qp(ab) € Zp =>Db € AK.

Normalize the Haar measure on K by the condition

uK(R) = fR da = q_d/z.

Let xp be the characteristic function of R -- then



15.

fK xR(a)xK,p(ab)da = fR XK’p(ab)da.
® bEAK=> XK,p(ab) =1 (va€ER)

=> g Xg p@)da = (R = a2,

® b M=) (@) =1 @FacR

=> [ (ab)da = 0.

R *K,p

Consequently, as a function of b,

s (ab)da = ¢ V%, 1),

R XK,p Ay
X D the characteristic function of AK
[Tr—dR:R] = qd.
Therefore
e (A) = 1 (1R)
= qduK(R)

L2 42,

13: IEMMA V a €K,

-d
el () xg, ,(@D)dD = xp (@) -

2
Koy



1e6.

PROOF The left hand side reduces to

-a/2

q (ab)db

Ia X0
and there are two possibilities.

™ a€R=>abEAK (vbeAK)

=> trK/Q (ab) € Zp => XK,p(ab) =1

P
=>
-d/2
q i AKxKlp(ab)db
= q'd/ 2uK(AK) = q'd/ qu/ 2
=1.

e ag R:XK,p(ab) =1 (3beAi)
=>

Y2, (ab)db = 0.

ALK, P
To detail the second point of this proof, work with the normalized absolute

value (cf. §6, #18) and recall that l‘lTlK=% (c£. §5, #21). Accordingly,

x € TR <=> %] < q .

Fix a ¢ R — then the claim is that b » Xk p(ab) (b € AK) is nontrivial. For
4

Xg,p@) = 1 <=>ab e 7 9R



17.
d
<=> ]ablK <q

d
<=> la|g|bly s q

qd _ d—PV('a)
= Plg s @re=a

But

agR=>v() <0

= ~y(a) > 0 => d-v(a) > -d

=> Tr-d—v(a)R c TT'-dR,

a proper contaimment.



§9. MULTIPLICATIVE p-ADIC CHARACTER THEORY

Recall that

X

%

X
Zx1
pl
the abstract reflection of the fact that for every x € Q;, there is a unique

v(x) € Z and a unique u(x) € Z; such that x = pV(X)u(x). Therefore

/X\ oA /X\ />
(Qp) =~ L x (Zp) = T X (Zp).

1l: N.B. A character of Qp is necessarily unitary (cf. §8, #4) but this

»~

is definitely not the case for Q; (cf. infra).

: DEFINITION A character X:Q; > C* is unramified if it is trivial on Z;.

3: EXAMPLE Given any complex number s, the arrow x - IXIS is an unramified

character of Q;.

4: LEMMA If X:Q; + € is an unramified character, then there exists a
camplex number s such that x = ll;
PROOF Such a x factors through the projection Q; > pZ defined by x - [xlp,
hence gives rise to a character ;(:pz > ¢~ which is campletely determined by its
value on p, say ;((p) = pS for the camplex number

s = 109 x~(p),
log p



itself determined up to an integral multiple of

2m/-1
log p

Therefore
x@) = x(|x])

= X ®,

= () V&

s)-v(x) —v(x))s - lxls

= (p = (p o

[Note: For the record,

21/-1/1og p _ (p-v(x))Zn/:f/log P

x|

_ (e—v(x) log P 2m/~1/log p

_ e—v(x)ZTr/—_l' = 1.]

Suppose that x:Q; + C* is a character — then X can be written as
| s
x(x) = IXIp x@)),

where s € C and ¥

11

xlz; € (z;), thus y is unitary iff s is pure imaginary.

O\

5: LEMMA If x € (Zp) is nontrivial, then there is an n € N such that

1

X lon Up,n but x Z 1 on Up,n—l (cf. §8, #5).



Assume again that x:Q; > C" is a character.

DEFINITION y is ramified of degree n > 1 if )(IUp n =1and
—_— r

Elup,n-l 1.

: DEFINITION The conductor con y of x is Z; if y is unramified and

Up n if y is ramified of degree n.
14

8: RAPPEL If G is a finite abelian group, then the number of unitary

characters of G is card G.

_9_:_ LEMMA
X
: = . §4
[Zp Up,l] p-1 (cE. s4, #40)
and
_ .n-1
[Up,l’Up,n] - p .

If x is ramified of degree n, then y can be viewed as a unitary character

of Z;/U bn But the quotient Z;/U n is a finite abelian group, thus has
r 14
card Z* = [Z}:u
P/Uprn [ZP Prn]
unitary characters. 2And

[2,:0, o] = [Z,:0, 1] - [U ]

:U
je2 e P P p,1" p/n

e-1p"L,

this being the number of unitary characters of Z; of degree < n. Therefore the



group Z; has p~2 unitary characters of degree 1 and for n = 2, the group Z; has
-1 - 1”2 = P2 p-1)?

| unitary characters of degree n.

10: LEMA Let x € Q) -~ then

X0 = |x|7 e,

where t is real and

- (n/log p) < t < 7/log p.
APPENDIX
Suppose that p = 2, let T € Q; - (Q;)z, and form the quadratic extension

Qp('r) ={x+y/t:x,y € Qp}.

1: NO’IATIONLetQpTbethesetofpomtsofthefomxz— 2 x =0,
h— 14

y = 0).
. X o X, 2
2: LEMVA Qp,T is a subgroup of Qp containing (Qp) .
3: LEMVA
X _ 0521 —
[Qp'Qp,T] = 2 and [Qp,r‘(qp) 1 2.
[Note:

2

X X _
[Qp-(Qp) 1=4 (cf. §4, #53).]



: DEFINTTION Given x € Q;, let

lif x € Qp,T

sgn_ (x) =
-LifxgQ, .

: LEMMA sgn_ is a unitary character of 6p‘



§10. TEST FUNCTIONS

The Schwartz space S(Rn) consists of those complex valued C” functions which,

together with all their derivatives, vanish at infinity faster than any power of

-]

1: DEFINITION. The elements f of S(R) are the test functions on R".
2: EXAMPIE Take n = 1 — then

£(x) = o exp(- ),

where A = 0 or 1, is a test function, said to be standard. Here

[p ¥ exp(- 2™ 1 By = (/P A exp(- D),

thus FR of a standard function is again standard (cf. §7, #51).

[Note: Henceforth, by definition, the Fourier transform of an £ € LL(R) will

be the function
E:R > C

defined by the rule

Et) = Fpf(t)

fR £(x) e21r/:f txg

1

3: ED{AMPLETaken=2andidentifyR2withC-then

f(z) = CZA 78 exp (- ZWIZIZ),

where A,B € Z>0 & AB = 0, is a test function, said to be standard. Here



fo 2 2 ep(- 2n]z]H?™ T BHE) |az055

= (/DME P P ep(- 21w]?),
thus FC of a standard function is again standard (cf. §7, #53).
[Note: Henceforth, by definition, the Fourier transform of an £ € LY(C) will
be the function
E:C + C

defined by the rule

E (w)

It

FC £(w)

]

fc f(z)eZ'ﬂ\/:'T (WZ‘H:?E) Ile\d-Z- I .}

: DEFINITION Let G be a totally disconnected locally campact group —-

then a function £:G + C is said to be locally constant if for any x € G, there is

an open subset Ux of G containing x such that £ is constant on Ux'

5: LEMMA A locally constant function f is continucus.

PROOF Fix x € G and suppose that {xi} is a net converging to x -- then x;

is eventually in U hence there f(xi) = f(x).

: DEFINITION The Bruhat space B(G) consists of those camplex valued

locally constant functions whose support is campact.
[Note: B(G) carries a "canonical topology" but I shall pass in silence as

regards to its precise formulation.]



~J

: DEFINITION The elements f of B(G) are the test functions on G.

I

8: LEMMA Given a test function f, there exists an open-campact subgroup

K of G, an integer n > 0, elements XypeoerX in G and elements CpreessCy in C such
n

that the union U kaK is disjoint and
k=1

n

L X ’
o1 KR

K the characteristic function of kaK

Xy

f =

PROOF Since f£ is locally constant, for every z € C the preimage f-l (z) is an
open subset of G. Therefore X = {x:f(x) = 0} is the support of f. This said,
given x € X, define a map q)x:G x G- C by cbx(xl,xz) = f(xlxxz) , thus d)x(e,e) = f(x)
and ¢X is continuous if C has the discrete topology. Consequently, one can find
an open-campact subgroup K, of G such that (bx is constant on K, XK. Put
Ux = KxXKx ~= then Ux is open-campact and £ is constant on~ Ux' But X is covered

by the U hence, being campact, is covered by finitely many of them. . Bearing in

mind that distinct double cosets are disjoint, consider now the intersection K of

the finitely many K, that occur.

Specialize and let G = Qp.

: EXAMPIE If K < Qp is open-campact, then its characteristic function

Xg is a test function on Qp.



10: LEMMA Every f € B(Qp) is a finite linear cambination of functions of
the form

X xe€Q,nel).
x-*-anp P’

[This is an instance of #8 or argue directly (cf. §4, #33).]

11: DEFINITION Given f € Ll (Qp) , its Fourier transform is the function

%:Qp > C
defined by the rule

f£(t) = fqp f(X)xp't(X)dx

12: IEMMA Y f € Ll(Qp),

(k) = £(~t).

Hb

PROCF

Hhi>
ot
S~

]

1

fQ fx)x . (-tx)dx
b P

il

pr fx) xp( (-t)x)ax

I

J'QP £(x) xp( (-t)x)dx

%(.-t) .

i



13: SUBLEMA

T p" (n=0)
fan xp(x)dx =
P
_ 0 n < 0).
[Recall that
g ®°Z) =p
P
and apply §7, #46 and §8, #12.]
14: LEMMA Take £ =% = -- then
- Z
P
X = p 7y
n -n. °
Z Z
P P P b
PROCF

)A( (t) = fQ X n (x)xp,t(x)dx

A
PPP

=fn X (x) x . (tx)dx
Qp pnzp P

_ el -1
= ltl, prXn (&5 X, (x)ax

pr

-1
lt‘p / n+v (t) 5 Xp(x)dx'
P P

The last integral equals

p—n—v (t)

if n+v(t) 2 0 and equals 0 if nt+v(t) < 0 (cf. #13). But



t € p"nzp <=> v(t) = -n <=> nt(t) = 0.

Since
-1
[tlp pv(t) =1,
it therefore follows that
X =p
n -Nn., °
Z
P17 P Zp
In particular:
Xz = X7 -
P P
15: THEOREM Take £ = x _ -- then
x+p Z
P
-n n
tx t <
xp( )p (|t} p SP)
X (t) =
x+anp
0 t] >ph.
~ (Jelg > P
PROOF
X ) =y X WX, , )&y
x+anp Qp x+anp prt

=Jq X n Wx(ty)dy

A
PX"'PP

= [ ¥.. (ty)dy
x+anp p

fpnzp Xp (t (x¥y) ) dy



I n, Xpltxtty)dy

p Zp

[, Xp(E0X,(EY)ay

p Zp

Xp (&) ) X, (y)dy

p Zp

X (&x)n X (V) x . (ty)dy
P Qp pnzp XP

il

xp(tx)fq X n (y)xp't(y)dy
P pr

!

Xp(EIX ;  (£)

z
P

(tx)p "X (t).
XP p"'nzp

16: APPLICATION Taking into account #10,

fe B(.Qp) =f € B(Qp)-
17: THEOREM v f € TW(Q,),

fFlx) = f(=x) (x¢ Q)

PROCF It suffices to check this for a single function, so take f = y, — then,

%

as noted above,



thus Vv x,

A

Xy ) = x, &) =y, (%).
Zp ZP ZP

18: N.B. It is clear that

B(Qp) c INV(QP) .

19: SCHOLIUM The arrow £ - £ is a linear bijection of B(Q,) onto itself.
[Injectivity is manifest. As for surjectivity, the arrow f - %, where
\%
f(x) = £(=x),

maps B(Q p) into itself. And

vV Vv v AA

=@ = () =€)

Hh <<

f =

20: REMARK As is well-known, the same conclusion obtains if Q H is re-

placed by R or C.

X
Pass now fram to .
a Qp Qp

21: LEMMA Let £ € B(Q) - then 3 n € N:

]x|p<p = f(x) =0
x| > p' = f(x) = 0.

X
Therefore an element £ of B(Qp) can be viewed as an element of B(Qp) with the

property that £(0) = 0.



22: DEFINITION Given £ € L' (Q;,dxx) , its Mellin transform f is the

Fourier transform of f per Q;:

£ = S £G)xE)A .
QP

[Note: By definition,

Xe = P _dX
dx—p_lmg (cf. 56, #26),

vol _ (ZY) = vol, (Z) = 1.]
dxx P dx"p

X X)) =71 X X(x)x(x)dxx
| P P

It

I x(x)dxx.
Z
p

Decampose X as in §9, #10, hence

. x(x)dxx =/, le‘/:f t)((p-v(x)x)dxx
yA 7 p o
P P ‘
=/ . x(x)dxx
ZP

0 (Z(_}.‘ 1)

1 (x =1).



10.

AEN

According to §9, #2, a unitary character y € (Qp) is unramified if its restriction

x to Z; is trivial. Therefore the upshot is that the Mellin transform of x
- Z

N

is the characteristic function of the set of unramified elements of (Qp) .

APPENDIX
Iet K be a finite extension of Qp -— then

K~ 1Z xR
and the generalities developed in §9 go through with but minor changes when Qp is
replaced by K.

In particular: V y € ﬁx, there is a splitting

x(@) = Ial t_ vy,

where t is real and
- (17/log q) < t < 7/log q.

[Note: ¥ is unramified if it is trivial on R .]
1. N.B. The "m" in the first instance is a prime element (cf. §5, #10)

and [m], = —é- On the other hand, the "m" in the second instance is 3.14... .

The extension of the theory fram B(Qp) to B(K) is straightforward, the point
of departure being the observation that

g (m=-4, -d+,...)

f (a)da 1., (R)
o R K

0 n=-d-1, d-2,...).



11.

: CONVENTION Normalize the Haar measure on K by stipulating that

_ —d/2.
Jgda=aq

3: DEFINITION Given f € Ll (X), its Fourier transform is the function

£iR -+ C
defined by the rule

E®) = Jy F@xg p (@02

= fx f@)xg (@b)da.

4: THEOREM Vv f € INV(K),

f@ =f(-a) @€ER.

PROOF It suffices to check this for a single function, so take f = XR? in

which case the work has already been done in the Appendix to §8. To review:

o Xx® = Iy xg@xy (ab)da
= IR XK’p(ab)da
=gV ZXAK(b).

-4/2

e /g XAK(b)XK,p(ab)db

= qV zfAKxK'p(ab)db

XR(a) (loc. cit., #13)



5: N.B. It is clear that
B(K) ¢ INV(K) .
6: SCHOLIUM The arrow £ » f is a linear bijection of B(K) onto itself.
ZE. CONVENTION Put
X _ q -da
da=—7= .
a ag-1 |a|K

Then dxa is a Haar measure on K>< and

X, _ =d/2
vol>< (R) —volda(R)—q .

da

. DEFINTTION Given £ € LI (K%,d%a), its Mellin transform f is the Fourier

transform of f per K

£(x) =/ f@)x@ada.
K

0 (x 2 1)

-d/2



§11. LOCAL ZETA FUNCTIONS:R® on C°

We shall first consider Rx, hence ﬁx = Z/27 x C and every character has the

form

ﬂmsxmgm=(@nmﬂmswe{mu,sem(d.w,mn.

1. DEFINITION Given f£ € S(R) and a character x:RX - Cx, the local zeta

function attached to the pair (£,y) is

2(E,x) =/, £)x(dx,
R
x _ dx
wheredx——-&—l—.
[Note: The parameters ¢ and s are implicit:

Z(E,x) = Z(f ).]

’Xc,s

2: LEMMA The integral defining Z(f,x) is absolutely convergent for
Re(s) > 0.
PROOF Since f is Schwartz, there are no issues at infinity. As for what
happens at the origin, let I = ]-1,1[-{0} and fix C > 0 such that [£Ex)]| <C

(x € I) -- then

Re(s)-1

|Z(£,%) | SfR-{o}!f(x)i %] dx

Re(s)—ldx

IA

(fpop + [P IEE)] |x|

Re(s)-

A

M+C/fp |2| dax,

a finite quantity.



3: LEMMA Z(f,x) is a holamorphic function of s in the strip Re(s) > 0.

[Formally,
£ 26,0 = 7, £60) (sgm 0% oy |x]) |x|%0"%,
R

and while correct, "differentiation under the integral sign" does require a formal

proof... .]

4: NOTATION Put

-1
1.

<
l
>

The integral defining Z(f,\)"() is absolutely convergent if Re(l-s) > 0, i.e.,

if 1 - Re(s) > 0 or still, if Re(s) < 1.

: LEMMA et f£f,9 € S(R) and suppose that 0 < Re(s) < 1 - then

Z(E,X)2(9,%) = Z(§.3'<)Z(q,x)-

PROCF Write

Z(£,%)2(3,%)

= I, EREWxEy D |ylax &y
R™xR

and make the substitution t = yx_l to get

Z(£,%)2(3,%)

[ U @G |x|d %y e [eld e,
R* R |

The claim now is that the inner integral is symmetric in f and g (which themn implies



that
Z2(£,02@,%) = 2(g, 02X,
the desired equality). To see that this is so, observe first that
|x|du-d"x = |u|dx-d"u.
Since R® and R differ by a single element, it therefore follows that

I EGgtx) |x|d
R

2m/-1 txu u)d"x

fo £(x) x| (/ glu)e

Fr L f@g [x]e?™ T Baug

RxR

S 9 lu] (g £ (x)e2™ T B 4%y

. g(u)%(tu)]uldxu.
R

Fix ¢ € S(R) and put

Then p(x) is independent of the choice of ¢ and v £ € S(R), the functional equation

Z(£,%) = p(x)2(E,%)
obtains.

6: LEMMA P(X) is a meramorphic function of s (cf. infra).



7: APPLICATION vV £ € S(R), Z(f,x) admits a meramorphic continuation to

the whole s—plane.

8: NOTATION Set

FR(S) = ﬂ—s/zr(s/Z).

9: DEFINITION Write

Tn (s) (o = 0)
L(x) =

1).

I‘R (s+1) (o

Proceeding to the camputation of p(y), distinguish two cases.

2
e 0=20 Takeq;o(x)tobee"ﬂX — then

2
Z(9grx) = J & |x|%dx

o —nxzs-l
2f0e X Tdx

T21(s/2) = Tp(s) = Liy).

Next ¢0 = ¢0 (cf. §10, #2) so by the above argument,

|
&
=
Nt
-

Z (99 %) =

fram which

1
-

p(x)



ﬂ-s/ZP(g

,n._ (1—5) /21-1 (l_gs_)

l-s -s
i

= 2 cos(%?)r(s).

2
e g=1 Take ¢, (x) to be xe ™ -- then

Z(¢11X) = [ % Xe T}?I- IXI dx

_ (/2 st

= Tp(s+l) = L(x)-

Next
b, () = /T t exp(-nt?)  (cf. 510, #2).
Therefore
Z(&lr§) =/-1 7/ xe—ﬂx2 --ﬁ;r PIERCe
R
= /I fo "X IXIZ_dex

|
b
o
°,
R
"
gy



= /T o 279/ 2 28

= /T ra(2-s) = /T LK.

Accordingly
o) = - /T LX)
L)
. ﬂ—(s+l)/21.. (§_2+_];)
= - /1
n(s-2)/2 r(?-g-s-)
= - AT 2% sin@@res).
10: FACT

gd=s) _,l-s -s o (lzsi)r(s)

z(s) S_S

= 2Sps1 sin(GHT(1-9).

To récapitulate: p(x) is a meromorphic function of s and

o) = ety 2,
L(x)
where
l e(x) =1 (0 =0)
‘ g(x) = = /=1 (o =1).



Having dealt with Rx, 1etusncwmrntocx, hence C* = Z x C and every
character has the form
X(x) = %, () = exp(/-L n arg x) Ix|® meZ, seC) (cf. §7, #12).

Here, however, it will be best to make a couple of adjustments.
1. Replace x by =z.
2. Replace |.| by |. lC’ the normalized absolute value, so

2| = |2z| = |z|®  (cf. 6, #15).

1l. DEFINITION Given f € S(C) (= S(R?) and a character y:C* > €%,

the local zeta function attached to the pair (f,x) is

ZEX) =T, £(z)x(2)d z,

3 dxz ~ 19z A dz .
[z]
C
[Note: The parameters n and s are implicit:

Z(f:X) = Z(f'xn,s) .1

et
3%}
.0

NOTATTION Put

|

The analogs of #2 and #3 are immediate, as is the analog of #5 (just replace
R by C* and |.]| by |-]¢), the crux then being the analog of #6.
13: NOTATION Set

res) = @n ).



14: DEFINITION Write

L(y) = I‘C(s + -[521—!-).

To determine p(yx) via a judicious choice of ¢ per the relation

Z($,%)
let
— 2
o @ = 22T @ g
2
¢, (2) = z-'ne—21le| (n < 0).
Then

5 = |n|
o, = (#D'Me_ (cE. 510, #3).

15: N.B. In terms of polar coordinates z =re’/-T 9’

|n|

e ¢_(z) = r'™lexp(- 2m” - /7T no)

x_ _ 2rdrdd

_2
e dz 5 —EdrdG

r

_ /-1 n8;_ s _ /-1 nb 2s
e x(z) =e lzl e r .

c=

Therefore

Z(6_,X)



. ~ 2
- fgn s r[nlexp(_ 2mr? - /o1 neye’L n6.2s T drde
- fgﬁ I 2D+ o - ome) 2raras

=on [ e D+2 0 arnat

= (Zn)l—s—’n!/zr (s + J%L)

rets + 48 = Lo

26,5 = z¢veD Ply_ %

(=D I 2y 1= C-)=Inl/2p g g 4 lnl,

D 1ol @ms=Inl /2 g 4 Jiz’l)

Il

(/=T) InII'C(l—s + le‘l) = (/-1) lnlLG’().

Consequently
2z (¢nl X)

Z(¢,,,%)

plx) =

(/;T)‘lnl L)
L(X)

= E(X) -L_(_X?_. ’
L(X)



where

10.

ety) = (=7,

n
L0 _ pml-2s L ©® + 12
L()\é) T'(l-s + 12



§12. LOCAL ZETA FUNCTIONS:Q;

The theory set forth below is in the same spirit as that of §11 but matters

are technically more camplicated due to the presence of ramification.

1l: DEFINITION Given f € B(Qp) and a character X:Q; > CX, the local zeta

function attached to the pair (f,y) is

Z(£,x) =/, £R)x®I X,
QP
X, = P _dx
where d x = o1 Tﬂ; (cf. 86, #26).
[Note: There are two parameters associated with yx, viz. s and x (cf. §9).]

2: LEMMA The integral defining Z(f,x) is absolutely convergent for Re(s) > 0.

PROOF It suffices to check absolute convergence for £ = yx n (cf. 810, #10)

pZ
p
and then we might just as well take n = 0:
201 < £, [EG] x5 a%
P
=7 Xy @ |x|ge(s)dxx
Q. p
P
=5 xlEe®a%
Zp—{o}
1

= ————>—< (cf. 86, #27).
1o Re (s)



3: LEMMA 2Z(f,x) is a holamorphic function of s in the strip Re(s) > 0.

: NOTATION Put

The integral defining Z(f,\{() is absolutely convergent if Re(l-s) > 0, i.e.,

if 1 - Re(s) > 0 or still, if Re(s) < 1.
5: LEMMA Let f,g € B(Qp) and suppose that 0 < Re(s) < 1 — then

2(£,%2(3,%) = 2(£,02(g,% .

[Simply follow verbatim the argument employed in §11, #5.]

Fix ¢ € B(Qp) and put

Then p(x) is independent of the choice of ¢ and v £ € B(Qp) , the functional equation

Z(£,x) = p()Z(E,Y)
obtains.

6: LEMMA po(X) is a meramorphic function of s (cf. infra).

7: APPLICATION V f € B(Q p), Z(£,x) admits a meromorphic continuation to
the whole s-plane.
§_:_ DEFINITION Write
-1 .o
(1 - x(p)) (x unramified)

L(x) =
1 (Y ramified).



There remains the camputation of p(y), the simplest situation being when y is

unramified, say y = |. IS, in which case we take ¢, (x) = xp(x)xZ (x) :
p

Z(d)OIX) =7 x ¢0(X)X(X)dxx
QP

s .X
fQX xp(x)xzp(x) lxlp d'x
p

- fzp_{o} xp(x)|x|; a'x

— S X

=1 (cf. 56, #27)
1-p
_ 1
S
1-lplg
= =iy = L0
1-x(p) X)e

To finish the determination, it is necessary to explicate the Fourier transform

A

¢0 of %0 (cf. §10, #11):

Bo(t) = fq_ 0g ()X, (Ex)ax
p

= fn X.(X)x5 )y . (tx)dx
Qp P Zb P

7 %ot xp ()



= fZ xp( (1+t)x)dx

p
= x5 (t).
ZP
Therefore
2 %) = 1 BN %
QP
' l-s _x
=/ . x. ®][x] d'x
7 P
Qp P
_ l-s X
= fz _{0} lx‘p dx
P
=1 (cE. §6, #27)
oo
- 1
1-s
1—|plp
=——=1%
1-x(p)
And finally
o (x) — 2
or still,
o (1-9)
1-p
9: REMARK The function
l_p—(l"s)

1p °



has a simple pole at s = 0 with residue

p-1

1
p°9P

and there are no other singularities.

S

Suppose now that y is ramified of degree n > l:y = Ilp

)

x (cf. §9, #6)
and take ¢_(x) = Xp(x)x n

(x
77,

() =/, 6 ()X ()X
P

- s x
=/ xp(x)x -n, (x)lxlp xx)d %

% P %

I ¥ (x) [xls x(x)dxx
P an—{O} 3 P=

[o0]

k k. s X
L S x.(puwlpull x@du
k=n Z. P P -

=z P x Fwxwd .
k=-n Zp P -

10: IEMMA If |v|pzpn, then

X
J'Z>< xp(vu)z(u)d u = 0.
p

Since lpklp = p_k, Z(9,,X) reduces to



po S % X (P ") x (w)d u.
. P =
P
Iet E = {ei:i € I} be a system of coset representatives for Z;/Up n=" then by
14

assumption, x is constant on the cosets mod Up n’ hence
——— r

-Nn X
IZX Xp (P "wx(du

p
r -n %
= I xl(e;) S X, (P u)d u.
i=1 = * %%, P
But
_ ~-n -1
ueeiUp’n—>p uEDP ei+Zp
=>
-1 -
= .+
xp(p u) xp(p e; X) (x € Zp)
_ -n
- Xp(P ei) .
Therefore
I %@ wx@ada
r -n %
= I yle))x. (p e f du
=1~ VP Y el g
X
= 1(x) S d'u
Up,n
if

r
T xle)x (P e.).
=1 = P 1

T(x)



And

So in the end

Next

Z(¢n,x)

~

6 (&)

It

"

S du
l+an

P_y du
p-1 l+an |u|p

pr ¢, (X)xp(tx)dx

Jo X, (X)X _ (%) x, (tx)dx
QP pnzp P

f p_an xp(x) xp(tx)dx

I xp((1+t)x)dx
p Zp

-n
vol i (p Zp)x n, (t)
P %

P X n,
P71



Therefore

(3,30 =/, b, (XX

[Note: x(-1) = * 1:

1=(-1)(-1) =>1

Assembling the data then gives

o (x)

p x(-I) fl

%

I BX n (x)'x_l (x) |x| d"x
Q, pZL-l P

g s XX) |x] 1-85%
-1— P v

n
yA
P %

p S @A x

n
L -1~
P p

Il

p S ¥ (—X) ax

n
l+pZ —
P p

o X@dx
+p Z

X(-1)x(-1) = x(-1)2.]

z (¢an)

Z(5 /%)




1+n(s-1)

T(X) 1

=21 X(=1)

1+n(s-1)

- T(X) P p"l

p-1 px (-1)

= 1 x (-1t

= tox-np* e 1
= (o x(-npt D LK
L(x)
11: THEOREM
p(x) = e(x) I—'—(%Q ’
L(x)
where
e(y) =1
if x is unramified and
e(x) = p(x)

if x is ramified of degree n > 1.

12: LEMMA Suppose that x is ramified of degree n 2 1 -~ then

€(x)€(3’() = x(-1).
PROOF V f € B(Qp),



10.

Z(£,x) = ()2 (E,X)
v A Y
= e(x)e(x)Z(£,X).
\'A
But ;l( = X, hence
AV A x
2(£,x) =/  f®)xxdx
Q
)
=/ f(=x)Xx(®ax
%
=/ f®Xx4d %
%
=x(-1) S £(x)x (x)d x
Q
P
= x(-1)z2(£,x) .
13: APPLICATION
(T = px(-1).
[In fact,
e(x)e(;’()
= 1 "Dy 1)1 QP TSV (-1

= (TP " = x(-1)

TO)T) = pix(-1).]



11.

14: LEMMA Suppose that x is ramified of degree n = 1 -- then

e(X) = x(-L)EX)-
PROOF V £ € B(Qp),

2(E,x) =/, ExGdx

%

;o Exdx (cf. 10.12)
%

I E@x (=%
Q
P

= x(D) 1 Fy @
P

= y(-1)z (&, x) .

Z(E,x) = Z(£,%)

~ v

= e(X)2(£,%)

= e(X)2(E,%)

= e (O x(-1)Z(£,%)

= e(Y)x(-1)z(E,Y) .
On the other hand,

ZEX) = e(0Z(E,X)

= ez, -



12.

Therefore
e(X)x(-1) = €
=>
e = xC-DE®.
15: APPLICATION
(X)) = x(-DTK) -

[In fact,

e = 1PV

It

x (D)

i

x (1T VD

]

x (DT B3 )

T(x) = x(-DT.]

30N
16: DE:E‘INITIOl\IIethZ;beamntrivialunitarycharacter-—thenits

root number W(y) is prescribed by the relation

W = (.12 0.

[Note: If y is trivial, then W(x) = 1l.]

17: ILEMMA

]W(z(“)l = 1.



13'

PROOF Put x = |.|Il)/2 X = then
e(xelX) = x(-1)  (cf. #12)
=>
et L= ex-1)7L
= e(Y)x(-1)
=e®@x-1)  (x=%
= x(-L)e)x(-1) (cf. #14)
2
= x(-1)"e(x)
= m
=>
le) | =1= [wx| = 1.

17: APPLICATION

1/2
p

n/2

lt(l. 17 x| =p"".

[In fact,

n(%— 1)

1/2 Z(_)p l.

1= ool = vl 1]

18: EXERSIZE AD LIBITUM Show that the theory expounded above for Qp can

be carried over to any finite extension K of Qp.



§13. RESTRICTED PRODUCTS

Recall:

: FACI'Supposethatxi (i € I) is a nonempty Hausdorff space -- then

the product [ X, is locally campact iff each X is locally campact and all but
ieT

a finite number of the Xi are compact.

Let Xi (i € I) be a family of nonempty locally campact Hausdorff spaces and

for each 1 € I, let Ki c Xi be an open-campact subspace.

: DEFINITION The restricted product

1T (X, :K.)
ier * %
consists of those x = {x;} in ] X, such that x, € K, for all but a finite number
ieT
of i € I.
3: N.B.

T &)= u TJTx, x T] K,
jer + Y gerjes i ogps 1

where S ¢ I is finite.

4: DEFINITION A restricted open rectangle is a subset of T (X, :K;) of
i€l

the form

U, x K.,
N R

whereScIisfiniteandUicXiisopen;



LEMMA The intersection of two restricted open rectangles is a restricted

open rectangle.

Therefore the collection of restricted open rectangles is a basis for a

topology on || (X;:K,), the restricted product topology.
i€l

LEMMA If I is finite, then

I x5 = 17 &:K)

i€ex ieT

and the restricted product topology cdincides with the product topology.

7: I_MIfI=IluIZ,w1thIln12=ﬂ,thm

(X;:K;) = (T] (X,:K)) x (T (X;:K.)),
iTeT:l:ll ier, *t 7 i€, ot

the restricted product topology on the left being the product topology on the right.

LEMMA The inclusion [ (X, :K;) > T X, is continuous but the restricted
ier i€

product topology coincides with the relative topology only if Xi = Ki for all but
‘a finite number of i € I.
9: LEMA ]T (X;:K;) is a Hausdorff space.
1€l
PROOF Taking into account #8, this is because
1. A subspace of a Hausdorff space is Hausdorff;
2. Any finer topology on a Hausdorff space is Hauédorff.

10: A T (Xi:Ki) is a locally compact Hausdorff space.
i€T



PROOF Let x € || (X;:K;) — then there exists a finite set S c I such that
ieT
x; €K, if 1 g S. Next, for each i € S, choose a campact neighborhood U of X5

This done, consider

a compact neighborhood of x.

From this point forward, it will be assumed that X; = Gi is a locally compact
abeliangrmlpamiKi CGi is an open-compact subgroup.
11: NOTATION

G= T @G;:K,).
jer * t

12: LEMMA G is a locally campact abelian group.

Given i1 € I, there is a canonical arrow
ini:G:.L > G,
namely

X > (u .. ’l’l'x'l'l' .e .) .

13: LEMMA J'.ni is a closed embedding.
PROOF Take S = {i} and pass to
G; x HKj'

an open, hence closed subgroup of G. The image ini(_Gi) is a closed subgroup of



G; X T]’Kj

j=i

in the product topology, hence in the restricted product topology.
Therefore Gi can be regarded as a closed subgroup of G.
14: LEMMA

1. LethG~-tI1enXi=xoini=x[Gi€GiandleiElforallbuta

finite number of 1 € I, so for each x € G,

x&x) = x({x;}) = TT x; ;).

iex
2. Given 1 € I, let X4 € Gi and assume that XilKi = 1 for all but a finite

number of i € I — then the prescription

x(x) = x({x}) = lT;;[ X3 (%4)

defines a y € G.

These cbservations also apply if é is replaced by a, in which case more can
be said.

15: THEOREM As topological groups,

G~ TT @G kY.
ieI i 1

[Note: Recall that

(1]

K} = {x; € Grx;|K; = 1} (cf. §7, #32)

and a tacit claim is that Ki is an open-campact subgroup of G. To see this,



quote §7, #34 to get

K. :a/K"', K:t ::é/K\i.

1 1

~ . A .
® Ki campact => K, discrete => G/K;.'_ discrete => Ki open

2N

e K, open => G/K; discrete =>"G/K; campact => Ki campact. ]

Let u; be the Haar measure on G; normalized by the condition

uy (K;) = L.

——

6: LEMMA There is a unique Haar measure g on G such that for every

finite subset S < I, the restriction of Mg to

GSETTG.XTTKi

ies t igs
is the product measure.
Suppose that £, is a continuous, integrable function on G; such that fi[Ki =1
for all i outside some finite set and let f be the function on G defined by
flx) = f({xi}) =T;ffi(xi).
Then £ is continuous. Proof: The GS are open and cover G and on each of them
f is continuous.

17: LEMMA Iet S ¢ I be a finite subset of I -~ then



6.

fG £(x)du, (x) = ]T Ia

£, (x.)duy. (x.).
S S jes G 11 G 1

18: APPLICATION If -

sup [T [n |£;(x;)|du, (x;) < =,
s jes G + VG 1

then £ is integrable on G and

o E)Au,(x) = T o

£, (x.)du. (x.).
jer G 171G "1

X (which is continuous, Ki being open-campact) ——

:
:

= 7 £,

i€x

it thus follows that v x € G,

£x) = TT £ (x:)-
jer *1

Working within the framework of §7, #45, let u. be the Haar measure on ai

Gy

per Fourier inversion.

20: LEMMA

M (K;") =1

Gy

i

XK.
1 i i



7.

Joox: x)du, (X)) .

K:"-:ll G~l

Nowsetxi=ltoget

Ki G
= u. ().
G

Let u, be the Haar measure on G constructed as in #16 (i.e., replace G by E;,
G

bearing in mind #20).

21: LEMMA 1y, is the Haar measure on G figuring in Fourier inversion per
G

PROOF Take

f= 'IT fi’
i€l
where fi = Xg (cf. #19) —-- then
, i

£ EGO XA, (%)
G G

iT;l:’[ f&. fi(xi)xi(xi)dua (x;)
i i

Eﬂ; £, (x;) = £({x;}) = £(x).



§14. ADELES AND IDELES

1. DEFINITION The set of finite adeles is the restricted product

Rein = T @7

2: DEFINITION The set of adeles is the product

A= Afin x R.
3: LEMMA Ais a locally campact abelian group (under addition).
4: N.B. A is a subring of TTQP x R.

p

The image of the diagonal map
Q -~ TrQ x R
P P

lies in A, so Q can be regarded as a subring of A.

: LEMMA Q is a discrete subspace of A.

PROOF To establish the discreteness of Q ¢ A, one need only exhibit a neigh-

borhood U of 0 in A such that Q N U = {0}. To this end, consider

11
U = TT Z X ]— 3 -"[o
p P 27" 2

IfoQﬂU,thenIxIpsle. Butn(Qan)=Z,soxEZ.. And further,
p _

lxlw < %, hence finally x = 0.

FACT Iet G be a locally campact group and let I' ¢ G be a discrete

-
.



subgroup -- then I' is closed in G and G/T is a locally campact Hausdorff space.

7: THEOREM The quotient A/Q is a campact Hausdorff space.
PROOFSi.ncch'Aisadiscrete subgroup, Q must be closed in A and the
quotient A/Q must be Hausdorff. As for the campactness, it suffices to show that

the campact set |[[ Z b * [0,1] contains a set of representatives of A/Q because
P

this implies that the projection
TT z, % [0,11 + A/Q
P P

is surjective, hence that A/Q is the continuous image of a campact set. So let
% € A — then there is a finite set S of primes suchthatp¢S=>xp€Zp. For
p € 8, write

= +

thus [xp]EZpandifq¢pisanotherprine,

Z ap

-1
| e

f(x))
7050 g n=v (x,)

1A

sup{]anpnlq} < 1.
Agreeing to denote f(x p) by rp, write

= - + -
X (x~r p) rp

Then rp is a rational number and per x-»rp, S reduces to S - {p}. Proceed fram

here by iteration to get
XxX=y +r,
where v p, ¥, € Z, and r € Q. At infinity,

x =y +r (£ =r)



and there is a unique k € Z such that
Y, = (v.-k) +k
with 0 < y_ -k < 1. Accordingly,

y=y+r=(yk) +k+r.

-k = -k = -k
vp (¥ )p Yy~ ky =¥, € Zp.
while

It therefore follows that x can be written as the sum of an element in

T Zp x [0,1] and a rational number, the contention.
P

DEFINITION The topological group A/Q is called the adele class group.

-
.

: DEFINITION Iet G be a locally campact group and let T' ¢ G be a discrete

subgroup -- then a fundamental damain for G/T' is a Borel measurable subset D ¢ G

which is a system of representatives for G/T.

10: IEMMA The set

D=1 x [0,1[
0
is a fundamental domain for A/Q.
PROOF The claim is that every x € A can be written uniquely as d + r, where
d €D, r € Q. The proof of #7 settles existence, thus the remaining issue is

uniqueness: dl + ry = d2 +r, = dl = dz' ry = r,. To see this, consider



pELNI-LLI[=>p=0.

11: RE‘MARKQJ.sdmsemAﬁn.

[The point is that Z is dense in TT Z,.]
p

12: DEFINITION The set of finite ideles is the restricted product

p———-—

[
w

DEFINITION The set of ideles is the product

X
I—IfinXR.

|

ILEMMA I is a locally campact abelian group (under multiplication).

Algebraically, I can be identified with A* but there is a topological issue
since when endowed with the relative topology, A is not a topological group:
Multiplication is continuous but inversion is not continuocus.

15: LEMMA Equip A x A with the product topology and define

p:I - Ax A



by
$00) = (¢, 2.
Endow the image ¢ (I) with the relative topology —- then ¢ is a topological iso-

morphism of I onto ¢ (I).
The image of the diagonal map

X X
Q +1;TQP><R

liesinI,soncanberegardedasasubgroupof I.

16: LEMMA Q)< is a discrete subspace of I.
PROOF ( is a discrete subspace of A (cf. #5), hence Q x Q is a discrete
subspace of A x A, hence (p(Qx) is a discrete subspace of ¢(I).

Consequently, Qx is a closed subgroup of I and the quotient I/Q>< is a locally
camnpact Hausdorff space but, as opposed to the adelic situation, it is not campact

(see below).

17: DEFINITION The topological group 1/Q” is called the idele class group.

18: NOTATION Given x € I, put

xly = T 1%l

ps

Extend the definition of |.|, to all of A by setting [x|, = 0 if x € A - A",

19: LEMA Vx€Q, |k, =1 (cf. 51, #21).



is continuous and surjective.
PROOF Qmitting the verification of continuity, fix t € R;‘O and let x be the
idele specified by

=1 < ®), = t.
X, (p )r X

Then |x|, = t.

SCHOLIUM The idele class group I/Qx is not campact.

N
[

N
N
[

NOTATION Let

= Ker [.],.
1 X
23: N.B. x€I"=>x €Q.

24: THEOREM The quotient IJ“/Q>< is a compact Hausdorff space, in fact
it =TT 25,
P
p
hence

T 2% = {1}
P p

is a fundamental damain for 11/Q.

PROOF The arrow
LT z; > 119

that sends x to (x,1) Q>< is an isamorphism of topological groups.



[In obvious notation, the inverse is the map

)+)—3—x.-]

x = (% fin
[e+]

in’ %o

25: REMARK VY p, Z; is totally disconnected. But a product of totally

disconnected spaces is totally disconnected, thus [ Z; is totally disconnected,
p
thus Il/QX is totally disconnected.

26: N.B. T z; x R, is a fundamental damain for 1/Q".
P

[Note: If r € Q and if !r}p-:le,thenr:tl.]

27: LEMMA
1 x
I =1 XR>O'
PROOF The arrow
1+11><R’>‘0
that sends x to (x, |x]4) , where
xp (p < «)
(x)p=
Xoo
T}?U\— (P=°°)r

is an isamorphism of topological groups.

28: LEMMA There is a disjoint decamposition



JJ_ q(T]'Z)
€0},

PROOF The right hand side is obviously contained in the left hand side. To

. X
go the other way, fix an x € I, -- then ]x[A € Q,,- Moreover, lx!Ax € I, and

v o, | [x[prl, =1 (for x = Plu (ue Z;) => |x|, = p ¥ (r € 0%, r coprime to p)),
hence
X
|x|px € TT Zp. ~
P

Now write

x = |x[75 (x|
to conclude that

xEqTTZ; (= lxlxl).
p

N
.

LEMMA There is a disjoint decamposition

IfjnnTpsz= 11 n(g' ).

neN

Normalize the Haar measure d*x on I by assigning the open-campact subgroup

T Z; total volume 1.
P

0: EXAMPIE Suppose that Re(s) > 1 —- then

I 1x]5 "k
fmngz A



TS Ix[5 d
neN n(T 25 A
D p

L S [nx| S dx
neN T 23 A
p p

$ n S yol < T Z;)
neN dx p

= I n°=¢(s).
nenN

[Note: Iet x € [T Z.:
b P

=> VvV p, |xp|p—

Il
v
El
o)
7
Bl

The idelic absolute value |. | j can be interpreted measure theoretically.



10.

31l: NOTATTION Write

@y = T ax,

pse

for the Haar measure pA on A (cf. §13, #16).
Consider a function of the form £ = || £, where v p, fp is a continuous,

pse

integrable function on QP, and for all but a finite number of p, fp = Xz = then
~ P
[y fx)ax, = IE; pr fp(xp)dxp (cf. §13, #18),

it being understood that Q_ = R.

32: IMIetMCAheaBorelsetwiﬂ'n0<uA(M)<°°—-thean€I,

PROOF Take M =D = || zp x [0,1[ (cf. #10):
P

up (M) = -g qu (XPZP) *x Hp (2 [0,10)

= TJ EXR qu(zp) x |x_|ug ([0,1D)

- T Il * Il

= 1T = |x]|,.
T gl = Il
[Note: Needless to say, multiplication by an idele x is an autamorphism of A,
thus transfénns Up into a positive constant multiple of itself, the multiplier being

IXIA-]



§15. GLOBAL ANALYSIS

By definition,

A= Afin x R.
Therefore
A= £in R.
And
Afin = 'IT (Qp:Zp)
P
=>
o~ . ~ . 1
Afin ~ 'g' (Qp.Zp) (cf. §13, #15).
Put
XQ -‘p-l;[o Xpr
where
X, (X) = exp(- 2m/~-1 x) (x € R)  (cf. §8, #27).
Then

XQEA.

Given t € A, define XQ £ € R by the rule

qut(X) = XQ(tX).

Then the arrow

that sends t to XQ £ is an isamorphism of topological groups (cf. §8, #24).
’




Recall now that v g € Q,

xQ(q) =1 (cf. §8, #28).

Accordingly, XQ passes to the quotient and defines a unitary character of the

adele class group A/Q. So, Vg€ Q, XQ g is constant on the cosets of A/Q, thus
£

N

it too determines an element of "A/Q.

Equip Q with the discrete topology.

1l: THEOREM The induced map

AR

- EQ!Q3Q -+

17 Xq,q

is an isamorphism of topological groups.
PROCF Form Q' < I/-i, the closed subgroup of A consisting of those y that are
. 1 /\ 1 . . .
trivial on Q —- then Q < Q- and“A/Q = Q. But A/Q is campact, thus its unitary
dual@ is discrete, thus Q' is discrete. The quotient Q-/Q < A/Q (A = K) is
therefore discrete and closed, hence discrete and campact, hence finite. But Ql/Q

is a Q-vector space, so Q"‘/Q = {0} or still, Q‘L = (Q, which implies that Q x@.

2: N.B. There are two points of detail that have been tacitly invoked in

the foregoing derivation.
e (Q'/Q in the quotient topology is discrete. Reason: Let S be an arbitrary
nonempty subset of QL/Q, say S = {xQ:x € U}, U a subset of Q‘L -— then U is auto—-

matically open (Q' being discrete), thus by the very definition of the quotient



topology, S is an open subset of Q'L/Q.

e The quotient Q“L/Q is closed in A/Q. Reason: Ql is a closed subgroup
of A containing Q, so the following generality is applicable: If G is a topological
group, if H is a subgroup of G, if F is a closed subgroup of G containing H, then

m(F) is closed in G/H (m:G -+ G/H the projection).

:  SCHOLIUM

- LA
Q ~ AR => 4 A0 = AA.

[Note: Bear in mind that Q carries the discrete topology.]

14}

4: DISCUSSION Explicated, if x € a, then there exists a t € A such that

— b i f t - .
X = Xq,t @ Xq,e, T Xq,, M R

5 1

5: DEFINITION The Bruhat space B(Af in) consists of all finite linear

cambinations of functions of the form
f= ﬂ' £,
P p

where v p, fp € B(Qp) and fp = Xz for all but a finite number of p.
P

6: DEFINITION The Bruhat-Schwartz space Bw(A) consists of all finite

linear cambinations of functions of the form
f = T[' fp X fm,
p
where
TJ fp € B(Afin) and £ € S(R).



Given an f € Bco(A) , its Fourier transform is the function F:A > C defined by

the rule

£(8) = fp £6)Xg ¢ () 0

fA Af(x)xQ (tx)dpA =) .

7: LEMMA If
f=T[ £ x £
P P
is a Bruhat-Schwartz function, then

lt:=ﬂ’% xgm.
p p

8: REMARK %p is camputed per §10, #11 but Ew is computed per

X, (X) = exp(- 2n/-1 x),

meaning that the sign convention here is the opposite of that laid down in §10

{(a harmless deviation).

: APPLICATION

£e B (A) =>£€B(A) (cf. 510, 416).

10: N.B. It is clear that

B_(A) < INV(A)
and v £ € B_(A),
Fx) = F(x) (x€A).



11: LEMMA Given f € B_(A), the series

T Of(xtr), T £(xtq)
reQ aeq

are absolutely and uniformly convergent on campact subsets of A.

12: POISSON SUMMATION FORMULA Given f € B_(A),

r f(x) = & %(q).
reQ geQ

The proof is not difficult but there are same measure-~theoretic issues to

be dealt with first.
On general grounds,

fA= fA/Q S (cf. 86, #11).

Here the integral fA is with respect to the Haar measure Hp On A (cf. 814, #31).

Taking Hg to be counting measure, this choice of data fixes the Haar measure Ha/Q
on A/Q.

[Note: The restriction of p A to the fundamental domain
.D=TT1Z_ x [0,1[
P
P
for A/Q (cf. §14, #10) determines uA/Q and
1= UA(D) = UA/Q (A/Q) .]
If ¢:Q ~ C, then $6 +~C, i.e., $:A/Q + C or still,

S0 = T oIy,
req



Specialize and suppose that ¢ is the characteristic function of {0}, so Vv ,

o(x) = x(0) = 1.

Therefore c?: is the constant function 1 on A/Q. Pass now to fﬁ, thus &:@+ C

or still,

0,9 T Jang $3)Xq,q M)

= Tan Xq,q M Wan®

which is 1 if g = 0 and is O otherwise (cf. §7, #46 (A/Q is campact)), hence

$ = ¢. But ¢(r) = ¢(-r), thereby leading to the conclusion that the Haar measure

UA/Q on A/Q is the one singled out by Fourier inversion (cf. §7, #45).
Summary: Per Fourier inversion,
* 1 is paired with Ma/Q°
* i is paired with Hg-
Given £ € B_(A), put

F(x) = I f(xt+r).
reQ

Then F lives on A/Q, so f‘ lives onﬁz Q:

E‘(q) IA/Q F(x) leq(x) duA/Q (x)

fA/Q F(x)xQ(@C)duA/Q(x).
On the other hand,

£(a) = /p £0xq o)Ay ()



Il

Sy £(x) Xq (gx) dup ()

il

S/ A/Q (réQ f (x+r) Xq (g(xtr)) )d“A/Q (%)

= f A/Q (réq f(X+r)xQ(<pc+qr))duA/Q (x)

= [ A/Q (réQ f(x+r))xQ (qx}duA /0 (x)

= F(q).

To finish the proof, per Fourier inversion, write

F(x) = f'(q)_(“)mec
qeQ

and then put x = 0:

FO) = = £(r)= I Fl@ = £ £(q.
reQ aeQ geq

13: THEOREM Let x € I —- then v £ € B_(A),



But

£,

= fp £, xQ,q(y)duA )

fA fX ) XQ (ay) dUA ¥)

i

I £67)Xq (@ y)duy ()

l -
= Ty ‘2 EWx@T VA

1 2 -1
= f .
W (ax ™)



§16. FUNCTIONAL EQUATIONS

Iet

(Re(s) > 1)

il ™8

1
r(s) = —
nlns

be the Riemann zeta function -- then z(s) can be meromorphically continued into
the whole s-plane with a simple pole as s = 1 and satisfies there the functional

equation

-(1-s)/2

721 (s/2)z(s) = 7 r((1-s)/2)z(1-s).

1l: REMARK The product w"s/zr‘(s/Z) was denoted by Tp(s) in §11, #8.

There are many proofs of the functional equation satisfied by z(s). Of these,
we shall single out two, one "classical", the other "modern".

To proceed in the classical vein, start with

_ o x sdx
I'(s) —-foe X = (Re(s) > 1).

Then by change of variable,

2
7/r(s/2)n”S = f; T X (S/2 —d—}f- .

So, upon summing fram n = 1 to «:

T 2r(s/2) 208 = £ peox2 X

where

Put now

2
0(x) =1+2px) = £ e ™,
nez



2: LEMMA
0 = /& 6(x).
X
Therefore
L __1,1,d
W(E) = §'+ 3 G(X)
_ 1., %
"‘"7""’2—'5()
=--21-+§+ VX P (x).
One may then write
20 (s/2)0(8) = £ v B
= fg)' tp(x)xs/2 d‘;x__!_ fof (IJ(X)XS/Z clf—
= B2 L a2 &
= I B R R T o2
= -2+ v 62 4 X192 &

The last integral is convergent for all values of s and thus defines a
holamorphic function. Moreover, the last expression is unchanged if s is replaced

by 1 - s. I.e.:

721 s/2)c(8) = v 520 ((1-8) /2) £ (1-5) .



The modern proof of this relation uses the adele-idele machinery.

Thus let
2
o(x) =e Tl x, (x)xeh.
p p P

Then if Re(s) > 1,

S1 o) lxlz a"x

2
_ -7t s 4t | s X
= fo e ltl m ‘pl fo )(Zp(xp) [Xplp d Xp
P

-s/2 s X
=7 7°T(s/2) - T] /5 _;mlx |- d'x
b Zp {0}"p'p ~ p

= 2n(s/2) - TT -1 (et 56, 26
p 1-p

720 (s/2) 2 (s) .

To derive the functional equation, we shall calculate the integral
s .X

fp o) |x[y d'x

in another way. To this end, put
X X X
D =17 Zp X Ryge
P

a fundamental domain for 1/Q° (¢f. §14, #26), so

I= U 1D (disjoint union).
rEQx
Therefore

Ip o) |xly a'x



=3z [ o) |x|: a'x
x rD
reQ

=/, T o(x) |rx|§ a"x

D'
reqQ

=7 b @(xx)lxlz a'x
X

D
reQ
| x| p<L

+ f X d(rx) |x 5 dxx.
Dx 9 I IA

x| 21 T

To proceed further, recall that = & (=> 3(0) = ¢(0) = 1), hence (cf. §15,

#13)
1+ I 0(mm) = +12— I o@D,
) Wy TR L,
reQ aeq
Accordingly,
s .X
I T o(rx) x|, d'x
|| 1 ¥

= _ 1 1 -1 S X
_fDx (l+m+]—§m ZX<I>(qx ))IX’AdX
x| <L aQ

s (x5 - x| Ddx + S B e |x[37% a"x.

DX

X
|| <1 x| 21 ¥



But
Feo xIF - x|
]x|A51
_ s-1 _,, d_ 1 1
—fé' (t t) T " sI " s5°

So, upon assembling the data, we conclude that

X
fp 0x) |x|ga %

1 1 1-
=7-3+/ . z <I>(qx)(|x|f\+ x5 %)dx.

s-1 <
€Q
x| %! q
Since the second expression is invariant under the transformation s - 1-s, the

functional equation for g(s) follows once again.

3: REMARK Consider

I r  o(x)e.. .

D X

x| 21 30
Then from the definitions,

X X
ep'=>x €&
x Xp € Ly &, € 7,

=>q € Z.
Matters thus reduce to
2.2
217 1 &P P &
n:
or still,
5wt 2+ £ (179072 &

the classical expression.



§17. GLOBAL ZETA FUNCTIONS

Structurally, there is a short exact sequence
1> IQ% > 1/Q° » R:O ~1 (cf. §14, #27)

and 11/Q” is campact (cf. §14, #24).

1l: DEFINITION Given f € B _(A) and a unitary character w:I/Qx + T, the

global zeta function attached to the pair (f,w) is

Z(£,0,8) = [} £®uX) |x[; % (Re(s) > 1).

2: EXAMPLE In the notation of §l6, take
2
f(x) = o(x) = e TTXZ (x) (x€A)
p p ¥

and let w = 1 -- then as shown there

2(£,1,8) = 7 ?r(s/2)c(s).

|UJ

LEMMA Z(f,w,s) is a holamorphic function of s in the strip Re(s) > 1.

4: THEOREM Z(f,w,s) can be meromorphically continued into the whole

s-plane and satisfies the functional equation

Z(f,w,8) = Z(£,5,1-s) .

[Note:

£€B(A) =>F€B(A) (cf. §15, #9).]

The proof is a camputation, albeit a lengthy one.



To begin with,

I =R x 11 (cf. s14, #27).

>0
Therefore
7(£,0,8) = f; £ |x|; %
=7 £ () (tx) [tx|S S8 a™%
R® xrl At
>0
= [~ s x ., dt
=/, (fIl f (%) w(tx) |tx|A ax) + -
5: NOTATION Put
S bed
z, (f,0,8) = J'Il f (%) w (tx) |tx|A d x.
6: LEMMA
s X
z, (£,u0,8) + £(0) II]‘ . W(tx) ItxlA d'x
=2 | G819 + £/, a0 xy S d%
t I
PROOF Write

s X
fIl f (tx) w (tx) lthA d'x

S, X
=/ 1 4 (I, flrxw(rtx) ]rt:xlA)dx

/0" reQ

=7 (2 flrtx)otx) [tx|5 d'x.
Il/Qx rEQx ! A



Then

z, (£,0,8) + £(0) fIl/Qx w(tx) [tx|y 4%

=/ (I flrtx))wltx) [tx|5 d"'x
11/Q* req A

1 ~ -1 -1 s X
= [ ( I f(gt "x 7))w(tx) |tx| dx {cf. 8§15, #13)
L* T= g A

= (5 Fat ™) |t ], oex D xS @% x> x D
X €0 A A

I°/Q

=/, (D Ea e e [t %
/@ <€Q

=/ 5 (2 %(qt'lx))a(t‘lx)lt'lxli's d'x
I/Q° @0

A -1 =, -1 -1 ,1-s, X
= [ (z f(gt xwl(gt x)|at x|z Hd'x
Q¢ e A

A — =1, -1 1-s x
+ £(0) S w(t x) |t x| dx

=7, fe e £ )8 a%x
I

5 e x| @

+ £(0) S
119

z _, G818 + £0) 7 G [k a%
t 1'/Q

Return to Z(f,w,s) and break it up as follows:



1

Z(£,0,8) =[5 2. (£,0,9) T+ ] 2, (Eu,9) .

7: LEMMA The integral
oo dt
fl Zt(f’w,S) ?

is a holamorphic function of s.

[It can be expressed as
I £(x)w(x) [x|§ dx.]
|x|p21
This leaves
I3 2, (Ews) 5

which can thus be represented as

fl (Z (Elall_s)
0 t-—l

L witx) [ex |} a'x

- £(0) f
1t/

+ £(0) S st £ |ES @ &
1,.x A t
I/Q
To carry out the analysis, subject

132 _y(E,5,18) &
t
to the change of variable t - t—l, thereby leading to
17 7, (E,8,1-8)

a holamorphic function of s (cf. #7 supra).



It remains to discuss

_ A1
R(flwls) - IO (- f(O) f 1

w (£x) Itx[f\ ax
I"/Q

X

+£0) 1 - B [t xS a0 &

I/

1 s X
= o (- £(0)w(t) [t]|” S w(x)d'x

0 Il/Qx

s foaeh s

there being two cases.

1. w is nontrivial on Il. Since I]‘/Q>< is caompact (cf. 8§14, #24), the
integrals
X - X
S wx)d x, S wx)d x
tQ 11/Q

must vanish (cf. §7, #46). Therefore R(f,w,s) = 0, hence

o dt o) N - a
2(£,0,9) =[] 2, (E,0,8) T+ 1] 2, (£,8,1-s) &,
a holanorphic function of s.

2. w is trivial on IY. Iet B3y > 1/11 be the isomorphism per §14, #27 —

thenw°¢:R:0+Tisamitarycharacterofo thus for same w € R, w o ¢ =

>0’
l. ]-/-—1 Y o
w= 17TV e 67 5w = [xI77EV
Therefore
R(£,0,8) = - £(0)vol(I'/Q) /3 gL w ksl g



~/=1L w + s=-2

+ £(0)vol(11/Q%) fé t at

- £y YLD |, 2oy wOLATQY
- /-1 wts - /-1 wts-1
a meromorphic function that has a simple pole at

s = /=T w with residue - £(0)vol(I1/Q%) if £(0) = 0

s = /=T w+l with residue £(0)vol(I1/Q%) if £(0) = O.

explicate vol(Il/Qx) , use the machinery of §16: In the

2
@
o

=> vol(Il/Qx) = 1.

[Note: Here, w= 0 and £(0) = 1, £(0) = 1.]

That Z(f,w,s) can be meramorphically continued into the whole s-plane is now

manifest. As for the functional equation, we have
2(£,0,8) = [ 2 (F,u,8) &
+ 17 2, (E,5,1-s) &
+ R(f,w,s)
_ > s X dt

xx) c_il:_

w07 BB ||y ) &
I

+ R(f,w,s).



and we also have

Z(flall—s) = f;j Zt(f,a,l-s) %E

+ 17 2 55,1 - (1-8) &

+ R(£,5,1-s)

= 17 2_(£,5,1-5) d-t‘i

© A dat
+ fl Zt (f,U),S) —_E—
+ R(f,w,1-s)

_ ™ a - l-s _X dt
=/ (fIl f (£x) 0 (tx) ltxlA dax) +

co A s X dt
+ R(E,5,1-s) .
The first of these terms can be left as is (since it already figures in the
formula for Z(f,w,s)). Recalling that
£F(x) = £(=x) (x €A (cf. 515, $10),
the second term becames

o s _x ., dt
1 (fIl f (~tx) w (tx) ltx|A a'x) +



or still,

oo s X dt
1 (fIl f (tx) w (~tx) l—tx|A dx) +

]
Y
-

oo s _X dt
(fIl £ (%) w (~tx) [txlA d'x) T -

But by hypothesis, w is trivial on Qx, hence

w(-tx) = w((-1)tx) = w(-Dwutx) = w(tx),

and we end up with
o s X dt
which likewise figures in the formmla for Z(f,w,s). Finally, if w is trivial on

£, £(0)
V-1w+ 1l-s /=L w+ (1-s)-1

R(E,5,1-s) = -

_ £ £(0)
/<Iw-s5 /<1w+ 1l-s

___fO . _ £

-/~Iw+s - /Iw+s-1

R(f,w,s).
On the other hand, if w is nontrivial on Il, then o is nontrivial on IT and

R(f,0,8) = 0, R(f,5,1-s) = 0.

1



§18. LOCAL ZETA FUNCTIONS [BIS]

To be in conformity with the global framework laid down in §17, we shall
reformulate the local theory of §1l1 and §12.

1l: DEFINITION Given f € S(R) and a unitary character m:R)< + T, the

local zeta function attached to the pair (f,w) is

Z(£,0,8) =/  £@o [x|° dx  (Re(s) > 0).
R

2: THEOREM There exists a meramorphic function p(w,s) such that v £,

o(w,s) = 2EwS)

Z(£,%,1-s)
Decanpose w as a product:

lxl-\/:'i_w

w(x) = (sgn x)° (c € {0,1}, w e R).

3: DEFINITION Write (cf. §11, #9)

I‘R(s-/-_lw) (o = 0)
L(w,s) =
Tn (s-vV-Iw+1l) (c=1).
4 FACT
o(w,s) = _Llw,s) (G = 0)
L(wpl—S)
p(w,s) = - /—Ti_(-“ﬁ-— (c =1).
L(w,l-S)




5: REMARK The camplex case can be discussed analogously but it will not

be needed in the sequel.

6: DEFINITION Given f € B(Qp) and a unitary character w:Q; + T, the

local zeta function attached to the pair (f,w) is

z(£,w,8) =/ f&ox |x|5dx (Re(s) > 0).
Q, P

THEOREM There exists a meramorphic function p(w,s) such that v f,

»
.

Z(£,w,8)
Z(f,n,1-s)

-

plw,s) =

Decampose w as a product:

-z N
p‘/—lw we'Z:, weR).

wx) = wx) |x| o

8: DEFINITION Write (cf. §12, #8)

1

1-wEpH T w=1
L(w,s) =

1 (w=1).
[Note: If w =1, then

-/-1w_ /1w
p =P :

w(P) = |p| 1

9: FACT (w=1)

Lws) _1-app S

L(w,1-s) 1-wEp "

plw,s) =



10: FACT (w = 1)

ow,8) = Twa-nptE T I,
where
- -n
T(w) = izl Q(ei)xp(p ei)
and deg w =n > 1.
APPENDIX

It can happen that

Z(f,w,s) = 0.
To illustrate, suppose that w(-1) = -1 and f(x) = f£(-x). Working with Q; (the

story for R* being the same), we have

s .X
Z(£,0,s) fo £ [x]3 a'x

P

s .x
fo £ (%) w (-x) |-x|p d'x
p

S X
w(-1) ,I'Qx £ (x)w(x) lxlp d'x
p

w(-1)z2(f,w,s)

- Z2(f,w,s).



§19. L~FUNCTIONS

Iet w:I/QX + T be a unitary character.

: LEMMA There is a unique unitary character w of I/Q>< of finite order

and a unique real number w such that

w =w.]

/=T w
A L]

[Note: To say that w is of finite order means that there exists a positive

integer n such that (_;_)(x)n =1 for all x € I.]

2: N.B.
w=T o, *xuw,
p P
where
" " l.I‘Y,-_lW
p -P P
and
wco - (sgn)cl. l;l/"_l_ W.
3: DEFINITION
L(w,s) = J] L(w_,s) x L(w_,s).
p [}
p
4: RAPPEL
-1

(cf. §18, #8).

L(wp,s)



[Note: The set Sw of primes for which ‘i)p z 1 is finite.]

5: SUBLEMMA
o k
|x| < 1=>1log(l=x) =~ = X—}T .
k=1
Therefore
|x| > 1 => log l_
1=x
= -1
=log 1l - log(l=x )
oo x—k
== (- I =)
=1 X
oo x—k
= I =,
k=1 K
6: N.B.

log £(z) = log |£(2)]| + /T arg £(z)

Re log £(z) = log |£(z)

ILEMMA The product

l\l

1T L(wp,s)
p .
is absolutely convergent provided Re(s) > 1.
PROOF Ignoring Sm (a finite set)., it is a question of estimating

1
-S
11 - w,te)p ]




So take its logarithm and consider

% log( L )
1 -w (PP |

= I Re log( 1 =
1-w (Pp

= Re I log(————)
1- wp(p)p

i
i
F*

The claim then is that the series

» o ()" ~ks
rp 2 P
k=1 k

is absolutely convergent. But

which is bounded by

(Re(s) =1 + 9)



[¢e]
<5 3 p—k(1+6)
p k=1

p— (1+38)

yo— L
-(1+
pl-p(ld)

li

P p(1+<S) - p—(1+6))

| 1
p P(l+ )_ 1

!

S2L g <
p

1
;

8: EXAMPLE Take w

L (w,S)

7 S/2r(s/2)c (s) .

9: LEMMA L(w,s) is a holomorphic function of s in the strip Re(s) > 1.

10: IFPMA L(w,s) admits a meramorphic continuation to the whole s-plane

(see below).
owing to §17, #4, v £ € B_(A),

%(f,w,8) = 2(£,5,1-s).



To exploit this, assume that

£=TTf x £,
p P 7

where V p, fp € B(Qp) and fp = Xz for all but a finite number of p, while
p

foo € S(R) —— then

Z(f,w,s)

= [ £&)w(x) [x|: a"x

) _g- fo fp (Xp) (L)p(xp) lxpl}_sj dxxp * IRX foo(xoo) woo (xoo) Ixoo,cso dxxoo
p

=TT (£ 0,08) X Z(£E 0,,5)
P

and analogously for Z(f,3,1-s) .
Therefore

- __Z(f,w,s)
Z (f,(T),l—S)

Z (fp,wp,s) Z (fw,ww,s)

= X

P Z (fp,&')p,l—s) z(f_,&5_,1-s)

=TT olw_,s) x plw_,s)
b P

=TT p(wp,s) x T p(wp,S) x p(w,,S)

PES,, pes,,



L(w_,s) L(w,,s)
T — P T eplw_,8) % ——m—

B pgs, L (Eip,l—s) PES, P L(w_,1-s)

L(w_,s) L{w_,s) L(w,,s)
T P (w,r8) % m —B P

PES | PES, L(w p,1—s) PES, L(cEp,l—s) L(w,1-s)
L(w,,s) L(w,,,s)
= -IT plw_,8) X — P X —
pesw P L(wp,l—s) L(w,,1-s)

T L(wp,s) x L(w_,s)
T elw,s) x =2

pES P 1T L(Gp,l—s) x L(®_,1-s)

=TT JOND R

w
p

L(w,s)

PES L(w,1-s)

= TT e(wp,s) X

w

_L,s) (cf. §12, #11)

PES | L(w,1-s)

=€

(w,s) X .__.L_(w_!i)- ’

L(w,1-s)

o
PES
11: THEOREM
L(w,1-s) = €(w,s)L(w,s).
12: EXAMPLE Take w = 1 (cf. #8) -- then e(w,s) = 1 and

L(w,1-s) = L(w,s)



translates into
A8/ 2018y /2y c(1-8) = /% (s/2)z(s)  (cE. 516).
Make the following explicit choice for
£ = '];[' fp x fm.

e If w =1, let

fp(xp) = xp(xp)xZ (xp).

P
Then
Z(fp,wp,s) = L(wp,s).
o Ifgpzlanddegwp=nzl, let
fp(xp) = xp(xp) Xp'nz (xp)-
p
Then
1+n(s+ /~Iw-l)
Z(fp,wp,s) = T(wp) P — L(wp,s) .

At infinity, take

md md
fm(xw) =e (0 =0) or fw(xoo) =xe (c =1).

Z(f,,w,,s) = L(w,,s).

13: NOTATION Put

1 +n(s+ /~ITw-1)
Hws) = TT tl) P .

pesw p-1




14: N.B. H(w,s) is a never zero entire function of s.

[
wn

z(f,w,s) = H(w,s)L(w,s) .

Since 7Z(f,w,s) is a meromorphic function of s (cf. §17, #4), it therefore
follows that L(w,s) is a meromorphic function of s.

Working now within the setting of §17, we distinguish two cases per w.

1. w is nontrivial on Il, hence w # 1 and in this situation, z(f,w,s) is

a holamorphic function of s, hence the same is true of L(w,s).

2. w is trivial on I* — then o = [ R/:Iwand there are simple poles at
T s = /-1 w with residue - £(0) if £(0) = 0
_ s =/Tw+ 1 with residue £(0) if £(0) = 0.
But V p, W, = |.|;/:l—w => @p=l), sofp(O) = 1. And likewise £ (0) =1 (o = 0).

~ ~

Conclusion: f£(0) = 1. As for the Fourier transforms, fp =Xz => f (0) = 1.

Also %m =f (0=20) = £ (0) =1. Conclusion: %(0) = 1. The respective residues

are therefore -1 and 1.

16: THEOREM Suppose that W) p = Y p for all but finitely many p and
— 14 4

2, -~ then ml = ‘”2‘

PROOF Put w = wlwgl, thus Wy = 1 for all p outside a finite set S of primes, so

L(w,s) =TT L(wp,s) x L{w_,s)
p



=TT Llay,s) T L8 x L(,s)
pes pgS

L(w_,s)
L) 1T geesr 1< <
pl

8

-s
L,s) IT 1-p ,

It

pESl—ocpp_s
whereoap=wp(p) J‘_fc_x_)p=landozp=0if<gp=l,andeachfactor
1-p°
l—ocpp_s

is nonzero at s = 0 and s = 1. Therefore L(w,s) has a simple pole at s = 0 and

s = 1. Consider the decomposition

w = Ql.lg'qw (cf §19, #1).

Then w = 1 since otherwise L(w,s) would be holamorphic, which it isn't. But then

fram the theory, L(w,s) has simple poles at

s = /=1 w with residue -1

s = /-1 w + 1 with residue 1,

thereby forcing w = 0, which implies that w = 1, i.e., wy = &)2.

[Note: In the end, wp=l\7'p,hence

=
1

-s
peSl-ocpp PES P

]
I

as it has to be.]



§20. FINITE CLASS FIELD THEORY

Given a finite field Fq of characteristic p (thus g is an integral power

of p), then in F;’e’,

1l: LEMMA The multiplicative group

F* = {x :xq-l
q

1}

is cyclic of order g - 1.

2: NOTATION

qn=x} nz21).

F_ = {x:xx

3: LEMA FnisaGalois extension of qufdegreen.
q

4: LEMMA Gal(F n/ Fq) is a cyclic group of order n generated by the element
q .
Gq,n' where

- o3
gq,n(X) =X (x € Fqn) .

5: LEMMA The F q are finite abelian extensions of Fq and they camprise
d
all the finite extensions of Fq, hence the algebraic closure U Fn is ng.
nq

6: THEOREM There is a l-to-1 correspondence between the finite abelian



extensions of Fq and the subgroups of Z of finite index which is given by

F <> nZ (n=1).
g9

Z>2L- 47

3Z > 62

U

97.

The "class field" aspect of all this is the existence of a canonical homo—

morphism
recq:l > Gal(Féb/Fq) .
7: NOTATION Define
0q € Gal(Fa /F)
by

o (x) =x".



8: N.B. Under the arrow of restriction

Gal(Fa/F ) » L (F /P

is sent to .
% %,n

k
k = k 2 -
recq( ) O (k € 1)
10: LEMMA The identification
Z/mn7 =~ Gal(F n/Fq)
g
is the arrow k » ok
g,n’
On general grounds,
FP/F ) = 13
Gal( q / q) im Gal (F n/Fq)‘

q
[Note: The open subgroups of Gal(ng/Fq) are the Gal(ng/Fqn) and

Gal (FS/F ) /Gal (Fa/F PRL VD

Therefore

Gal(ng/Fq) < lim 7/nZ,

another realization of the RHS being || Zp which if invoked leads to
P

0q<—> (l,l,l,-.o).



11: N.B. The camposition

rec
7 —% Ga1(FP/F ) ~ lim Z/nZ
a’’qa T,

coincides with the canonical map

k » (k mod n)n.

12: REMARK Give Z the discrete topology —— then
:Z ~ Gl Fab F
rec,:Z > ( q / q)
is continuous and injective but it is not a homeomorphism (Gal(F;b/Fq) is compact).

[Note: The image recq(Z) is the cyclic subgroup <oq> generated by crq. And:
o <op = Gal(ng/Fq)

® <o>= Gal(F;b/Fq) .1

13: SCHOLIWM The finite abelian extensions of Fq correspand l-to-1 with

the open subgroups of Gal(F;b/Fq) .

[Quote the. appropriate facts fram infinite Galois theory.]

14: SCHOLIWM The open subgroups of Gal(ng/Fq) correspond l-to-1 with
the open subgroups of Z of finite index.]
[Given an open subgroup U c Gal(F;b/Fq) , send it to rec:Il (U) ¢ Z (discrete
topology). Explicated:

-1 ab _
recy (Gal(Fq /Fqn)) =nlZ.]



APPENDIX
The norm map
X X
N F > F
Fqn/Fq qn q
is surjective.
X
[Tet x € F o'
q
N g 0= T g n)
n'q i=
q
n-1 i
=TT x{
i=0
n-1 .
i
I q
i=0
=x

Specialize now and take for x a generator of Fxn

NF . /Fq(x) is of order g-1, hence
q

n
<@ -1/(@-1)

q
is a generator of Fq-]

, hence x is of order qn—l, hence




§21. LOCAL CLASS FIELD THEORY

Iet K be a local field -- then there exists a unique continuous homomorphism
rer:K:K>< > Gal(Kab/K) ’

the so—called reciprocity map, that has the properties delineated in the results
that follow.

finite field K | Z | Gal®X/K)
local field X | K° | Ga1@®x).

2: CONVENTION An abelian extension is a Galois extension whose Galois

group is abelian.

3: SCHOLIWM The finite abelian extensions L of K correspond 1-to-1 with

the open subgroups of Gal (Ka'b/K):

L <—> Gal (Kab/L) .
[Note: Gal(L/K) is a haomomorphic image of Gal(Kab/K) :

Gal(I/K) = Gal(®®/K)/Gal(®>/L).]

4: LEMMA Suppose that L is a finite extension of K -- then

NL/K:L>< - K><

is continuous, sends open sets to open sets, and closed sets to closed sets.



5: LEMMA Suppose that L is a finite extension of K —- then

[KX;NL/K(LX)] < [L:K].

_6__ LEMVA Suppose that L is a finite extension of K -- then
L/K(L )] = [L:K]
iff I/K is abelian.

7: NOTATION Given a finite abelian extension L of K, denote the camposition

r
KK cal ®P/%) X ca1 1/k)

by (., L/K), the norm residue symbol.

8: THEOREM Suppose that L is a finite abelian extension of K -- then

the kernel of (., L/K) is NL/K(LX), hence

KX/NL/K(LX) ~ Gal (L/K) .
9: EXAMPLE Take K = R, thus K°° = C and
X X
1\]C/R(C ) = R>0‘
Moreover,
Gal(C/R) = {idCIG}I

where ¢ is the complex conjugation. Define now

recp:R* > Gal (R%2/R)
by stipulating that

X id
rec (Rog) = idg, recp(Reg) =



10: EXAMPIE Take K = C -- then K> = C = K and matters in this situation
are trivial.

1l: THEOREM The arrow

X

is a bijection between the finite abelian extensions of K and the open subgroups
of finite index of K.

12: THEOREM The arrow U -+ rec;él(U) is a bijection between the open sub-
groups of Gal (Kab/K) and the open subgroups of finite index of K .

From this point forward, it will be assumed that K is non-archimedean, hence

is a finite extension of Qp for same p (cf. §5, #13).

3: ILEMA recy is injective and its image is a proper, dense subgroup

of Gal (®K/K).

'_-l

14: ILEMMA

X
(R rL/K) - Gal(L/Kur) r
where Kur is the largest unramified extension of K contained in L (cf. §5, #33).
[Note: The image

@+ehm =6t @,

th

the i~ ramification group in the upper numbering (conventiocnally, one puts

G = Gal (/K )



and refers to it as the inertia group).]

Working within Ksep’ the extension K& generated by the finite unramified

extensions of XK is called the maximal unramified extension of K. This is a Galois

extension and
Gal (R /K) = Gal(FZb/Fq)r

where Fq = R/P (cf. §5, #19).

15: REMARK The finite unramified extensions L of K correspond 1-to-1 with
the finite extensions of R/P = Fq and

Gal(L/K) = Gal(F n/Fq) (n = [L:K]).
q

16: ILEMA K is the field obtained by adjoining to K all roots of unity

having order prime to p.

17: APPLICATION K™ is a subfield of K.

[Cyclotamic extensions are Galois and abelian.]

18: THEOREM There is a commutative diagram

recg
K — S Gal @)

% l

ab
7 _— > Gal(fq /Fq)'



the vertical arrow on the right being the camposition

Gal (®P/K) - Gal (K2/K) /Gal (K% /KT)

Gal (K /K)

Q

u

Gal(ng/F SN

[Note: V a €K,

—ordK (a)
q .1

modK(a)

19: N.B. The image of

rec, (m [K € Gal(®'*/K)

in Gal(ng/Fq) is o (cE. 20, #7).
[Note: If L is a finite unramified extension of K and if Gq n is the
14

generator of Gal (L/K) which is the lift of the generator oq n Of Gal(F n/Fq)
’
g
(n = [L:K]), then

(m,L/K) = gq,n']

20: FUNCTORIALITY Suppose that L > K is a finite extension of K -- then

the diagram
recy
e > Gal(Lab/L)
Nk 1 } res
K > Gal(®K®/K)
recy

comutes.



21l: DEFINITION Given a Hausdorff topological group G, let G* be its

commutator subgroup, and put Gab = G/G¥ -~ then G¥ is a closed normal subgroup

of G and Gab is abelian, the topological abelianization of G.

22: EXAMPLE

Gal K%P/x) 2P = a1 @P/x) .

23: COONSTRUCTION Let G be a Hausdorff topological group and let H be a

closed subgroup of finite index -- then the transfer homomorphism T:G‘S’b > Hab
is defined as follows: Choose a section s:H\G » G and for x € G, put
T(xGF) = T h, , md B9,
acH\G '
where hx a € H is defined by

hx,cx s(ox) .

li

s(a)x

24: EXAMPIE Suppose that L > K is a finite extension of K -- then L¢P &
&P and
Gal (L%P/1) c Gal (K%P/k)
is a closed subgroup of finite index (viz. [L:K]), hence there is a transfer
homomorphism

T:Gal (®2/K) + Gal . 2/1).

25: THEOREM The diagram

I
X L S Gal (Lab/L)
[ [
K — 5 Gal ®&P/x)
reCK

comutes.



§22. WEIL GROUPS: THE ARCHIMEDEAN CASE

1. DEFINITION Put W, = ¢*, call it the Weil group of C, and leave it

at that.

2: DEFINITION Put

W, = ¢ v 3¢ (aisjoint union) (J a formal symbol),

where J2 = -1 and JzJ_l = z (obvious topology on WR) . Accordingly, there is a

nonsplit short exact sequence

1-0% Wy > Gal(C/R) > 1,

the image of J in Gal(C/R) being complex conjugation.

[Note: H2 (Gal(C/R) ,Cx) is cyclic of order 2, thus up to equivalence of
extensions of Gal(C/R) by ¢ per the canonical action of Gal(C/R) on Cx, there
are two possibilities:

1. A split extension

1>C"+E~>Gl(C/R) - 1.

2. A nonsplit extension

1+C>E>Gl(C/R) » 1.

The Weil group W 1is a representative of the second situation which is why we took

3% = -1 (rather than J° = +1).]

: LEMMA The cammutator subgroup Wﬁ of WR consists of all elements of the

1 -1

z- =

N[N

form JzJ , i.e., W& =S, thus is closed.



Iet

pr:WR > R"

be the map sending J to -1 and z to [z[z.

: ILEMMA S is the kernel of pr and pr is surjective.

(=Y

: ILFEMMA The arrow

i

induced by pr is an isamorphism.

6: REMARK The inverse Rx -> WFa2b of prab is characterized by the conditions
—_ ]_ *
-1 — JWR
*
_ x——>/§WR (x > 0).
7: NOTATION Define
X
H.H:WR+ R>0
by the prescription
l|z]] =2z (z€C), ||7]]| = 1.

8: N.B. ||.|| drops to a continuous hamomorphism wﬁb > R:O.

9: DEFINITION A representation of Wp is a continuous homomorphism

p:Wp > GL(V), where V is a finite dimensional camplex vector space.

10: EXAMPLE If s € C, then the assignment w » | |w||® is a 1-dimensional



representation of WR’ i.e., is a character.

11: N.B. If x is a character of R*, then X ° pr is a character of Wp and

all such have this form.

[For any p € ‘:IR'

0@ = 0@z = o@o@e@ L = o(2).
Therefore
1=p(-1) (cf. 57, #12).
But
o(-1) = o) = o2,

s0 p(J) = £+ 1. This said, the characters of R* are described in §7, #11, thus the
l-dimensional representations of Wp are parameterized by a sign and a complex

number s:

o (+,5):0(z) = |z|%, p(3) = 41

il
I
=

.
—

o (-,5):0(z) = |z|%, o(3)

Iet V be a finite dimensional camplex vector space.

12: DEFINITION A linear transformation T:V > V is semisimple if every

T-invariant subspace has a camplementary T-invariant subspace.

13: FACT T is samisimple iff T is diagonalizable, i.e., in some basis

T is represented by a diagonal matrix.

[Bear in mind that C is algebraically closed... .]



14: DEFINITION A representation p:WR + GL(V) is semisimple if Vv w € WR’

p(w) :V » V is semisimple.

15: DEFINITION A representation p:WR + GL(V) is irreducible if V 2z 0 and

the only p-invariant subspaces are 0 and V.

The irreducible l-dimensional representations of WR are its characters (which,

of course, are autamatically semisimple).

16: LEMMA If p:Wp - GL(V) is a semisimple irreducible representation of

WR of dimension > 1, then dim Vv = 2.
PROCOF There is a nonzero vector v € V and a character )(:C>< > C” such that
VY 2z € Cx,

p(z)v = x(2)v.
Since the span S of v,p(J)v is a p-invariant subspace, the assumption of irreduc-
ibility implies that dim V = 2.

[To check the p-invariance of S, note that

p(zJ)v = p(JZ)v = p(D)p(2)V = p(I)x(Z)V

0 (I2)v

Given an integer k and a camplex number s, define a character Xie S:C>< +C
4

p(z)p(J)v

p(J)p(T)Vv p(=1)v = x(-1)v.]

X

by the prescription

and let kg = ind Xk s be the representation of Wp which it induces.
4 ’



=
~

LEMMA Pk,s is 2-dimensional.

e

LEMMA pk,s is semisimple.

19: is irreducible iff k = 0.

'_l

LEMMA pk,s

0: DEFINITION Iet

N

pl:WR +> GL (Vl)

Py :WR > GL(VZ)

be representations of WR — then (pl,vl) is equivalent to (pz,vz) if there exists

an isomorphism f:Vl - V2 such that v w € WR’

fop w =p,w o f.

21: LEMMA »p is equivalent to p

kl’sl kz'sz iff kl = k2, S; = s, or kl = - k2,

22: THEOREM Every 2-dimensional semisimple irreducible representation of
W, is equivalent to a unique p k >0).
R k,s

23: N.B. Therefore the equivalence classes of 2-dimensional semisimple

irreducible representations of WR are parameterized by the points of N x C.

4: DEFINITION A representation p:WR + GL(V) is caompletely reducible

if V is the direct sum of a collection of irreducible p-invariant subspaces.



6.

25: LEMMA Let p:WR + GL (V) be a semisimple representation -- then p is

campletely reducible.

PROOF The characters of C>< are of the form z + z"z’ with wveC uv-vel

and V is the direct sum of subspaces VlJ where p(z) ]V11 = 2"z idV . Claim:
’
UV

VA vV

p(J)Vu,v - Vv.u'

Proof: VveEV
u,v’

0@z ) o (@)

p(z)p (v

0@ o @@ oW

i

p(J)p(Z)v

o () zV2 v

0(J)z"zMv

2 20 () v.
Proceeding:

® u =V Choose a basis of eigenvectors for p(J) on uu—-thenthe
I— 14

span of each eigenvector is a l-dimensional p-invariant subspace.
e u =z v Choose a basis VyreesV, for Vu,\) and put v]!_ = p(J)vi (1<ic<y) —
then Cv.l ® CvJ!_ is a 2-dimensional p-invariant subspace and the direct sum

r
izl (Cvi o CVJ'._)



equals

26: REMARK Suppose that p:WR + GL(V) is a representation -- then

FP=-l= (-1)J -J=1

= (1) =gt

o@ L= o™

p((-1)J)

o(-L)p(J).

On the other hand, if J2 = 1 (the split extension situation (cf. #2)), then
id, = o(1)

0(3%) = p(I)p ()

ot = 0.



§23. WEIL GROUPS; THE NON-~ARCHIMEDEAN CASE
Iet K be a non-archimedean local field.

1: NOTATION Put

T G = Gal(KT/K)

§b= Gal (x°/K) .

2: N.B. Every character of Gg factors through "G%', hence gives rise to a

character of G;b

To study the characters of G;b , precampose with the reciprocity map

recK:K>< > G;b, thus

&) > ®)

X > X ° recg.

3: LEMA Xg is a homomorphism.

4: LEMMA Xg is injective.
PROOF Suppose that
Xg(X) = X ° recy

is trivial -- then x|Im rec, = 1. But Im rec, is dense in G;‘b (cf. 8§21, #13), so

by continuity, yx = 1.



5: LEMMA Xz is not surjective.

PROOF G2 is compact abelian and totally discommected. Therefors (G2) =
()" and every x is unitary and of finite order (cf. §7, #7 and 8, $2), thus
the xK(x) are unitary and of finite order. But there are characters of K" for

which this is not the case.

6: N.B. The failure of Xg to be surjective will be remedied below (cf. #19).

The kernel of the arrow

Gal (K*F/K) -+ Gal (K™ /K)

of restriction is Gal (Ksep/Kur) and there is an exact sequence

1 » Gal (KPP /K") > Gal(K°P/KR) + Gal(®E/K) - 1.

Identify

Gal (K /K)
with

TS
and put

wW( F‘;b/ Fq) = <cq> (discrete topology) .

7: DEFINITION The Weil group WEKP/K) is the inverse image of W(F‘;b/Fq)

in Gal (Ksep/K) , i.e., the elements in Gal (KSEP/K) which induce an integral power

f o_.
ot %



8: NOTATION Abbreviate W(K™-"/K) to W, hence W, c G-

Setting
IK = Gal(Ksep/Kur) (the inertia group),

there is an exact sequence
1L~ W »W(ng/Fq) > 1.

Iz

JA
[Note: Fix an element 8q € TAE( which maps to Gq -~ then structurally, WK is
the disjoint union
S
Topologize WK by taking for a neighborhood basis at the identity the
Gal (K*F/L) n I,

where L is a finite Galois extension of K.

9: REMARK Ik has the relative topology per the inclusion ]‘.K > Gy and

any splitting Z - Wy induces an isamorphism W = Ip X Z of topological groups,

where Z has the discrete topology.

0: LEMMA WK is a totally disconnected locally compact group.

ot

|

[Note: W is not campact... .]

11: LEMMA The inclusion W > GK is continuous and has a dense image.



12: LEMMA IK 1$ open mWK.

13: LEMMA IKisama:dmalcanpactsubgrcupofWK.

SupposethatL:KisafiniteextensionofK——thenGLcGKisthesubgroup

of GK fixing L, hence

WLCGLCGK.
14: LEMMA
WL=GLnWKcWK
is open and of finite index inWK, it being nommal J'.nWK iff /K is Galois.
15: THEOREM The arrow
L+WL

is a bijection between the finite extensions of K and the open subgroups of finite
index of Wy
[By contrast, the arrow

L > Gal (K°°P/1)

is a bijection between the finite extensions of K and the open subgroups of GK.]

 d
(«)]
.

LEMMA

17: APPLICATION The homomorphism W;b > Gla(b is 1-to-1.



18: THEOREM The image of rec:K:K>< > G;b is Wib and the induced map

K - W;'b is an isamorphism of topological groups (cf. §21, #13).

The characters of WK "are" the characters of W;b, sO we have:

19: SCHOLIUM There is a bijective correspondence between the characters

of W and the characters of K- or still, there is a bijective correspondence between

the l-dimensional representations of WK and the l-dimensional representations of

GLl (K).

Suppose that L. » K is a finite Galois extensionofK-—thenGLcGKand

GK/GL = Gal(L/K)
is finite of cardinality [L:K]. Since W is dense in Gy it follows that the image
of the arrow

Wy > Gg/Cp,

W WG

is all of GK/GL, its kernel being those w € WK such that w € GL' i.e., its kernel

is GL n WK or still, is WL‘

20: LEMMA

W/ Wy = Ge/Gp = Gal(L/K).

21: LEMMA W'*I': is a normal subgroup of Wy.



[Bearing in mind that WL is a normal subgroup of WK’ if o,B € WJZ_“ and if
Y € WK’ then

1

yoge t8 L = (voy™h ey h (e iy Y (ve iy )

There is an exact sequence

1> WL/Wf > WK,/Wf > (WK/WE)/(WL/WE) > 1

or still, there is an exact sequence
l-*WL/WI‘:-*WK/Wf—rWK/WL—»l.

22: NOTATION Put
W(LIK) = WK/W_:E'

23: SCHOLIUM There is an exact sequence

l->w€b—>W(L,K) > We/W > 1

and a diagram
Wib > W(L,K) > WK/WL
recp [ l =
1— 1" Gal(1/K) ~+ 1.

24: NOTATION Given w € W, let | |w|| denote the effect on w of passing



X N
from WK to R>0 via the arrows

-1
rec,
K ox g x
W > v@b > K > R>O'
25: EMA ||. || > R;(O is a continuous homomorphism and its kernel
is IK.
[Under the arrow
Wy > w;b'
IK drops to
cal (/™) < WP,

Consider now the arrow

rev::'K:K>< -> WIa<b.

Then R' issalttoGal(Kab/Kur)andaprimeelarentnERissenttoanele:thq

mw;bmse image mW(q/Fq) is aq And

W= U (6" cal /KT ]
nez 9

26: DEFINITION A representation of W, is a continuous homomorphism

p:WK + GL(V), where V is a finite dimensional camplex vector space.

27: LEMMA A homomorphism o:WK + GL(V) is continuous per the usual

topology on GL(V) iff it is continuous per the discrete topology on GL (V).
[GL(V) has no small subgroups.]



28: SCHOLIUM The kernel of every representation of WK is trivial on an
open subgroup J of IK Conversely, if p:WK > GI.'(V) is a homomorphism which is
trivial on an open subgroup J of Ipr then the inverse image of any subset of GL (V)

is a union of cosets of J, hence is open, hence p is continuous, so by definition

is a representation of WK.

29: EXAMPLE Suppose that L oK is a finite Galois extension of K -- then
W, N Ig =G 0 W N Iy
=6, N Ig
is an open subgroup of I_K But

WK/WL = Gal(L/K) (cf. #20).

Therefore every hamomorphism Gal (L/K) -+ GL(V) lifts to a hamamorphism We > GL (V)

which is trivial on an open subgroup of I_K, hence is a representation of WK'

30: N.B. Representations of WK arising in this manner are said to be of

31: LEMMA A representation of WK is of Galois type iff it has finite image.

32: EXaMPLE ||.]|| is a character of W, but as a representation, is not

of Galois type.

33: LEMMA Iet p:WK + GL(V) be a representation -- then the image p(IK)

is finite.



PROOF Suppose that J is an open subgroup of IK on which p is trivial. Since
I is campact and J is open, the quotient IK/J is finite, thus p(IK) = p(IK/J)
is finite.
34: DEFINITION A representation p:WK -+ GL(V) is ‘irréducible if Vv 2 0 and

the only p-invariant subspaces are 0 and V.,

35: THEOREM Given an irreducible representation p of W, there exists an

— Ky

irreducible representation S of WK and a camplex parameter s such that
~ s
o=p®|.]].

36: LEMMA Let p:WK + GL(V) be a representation -- then V is the sum of its
irreducible p-invariant subspaces iff every p—invariant subspace has a p—invariant

complement.

372

DEFINITION Iet p:WK + GL(V) be a representation —— then p is semi-

simple if it satisfies either condition of the preceding lemma.

38: N.B. Irreducible representations are semisimple.

39: THEOREM Let p:WK -+ GL(V) be a representation -- then the following

conditions are equivalent.

1. p is semisimple.
2. p(Eq) is semisimple.

3. p(w) is semisimple V w € V-



§24. THE WETIL-DELIGNE GROUP

1: DEFINITION The Weil-Deligne group WDK is the semidirect product

C x| W, the miltiplication rule being
(zlrwl) (zzrwz) = (zl + | lel lzz IWIWZ) .
[Note: The identity in WDK is (0,e) and the inverse of (z,w) is
- [l 2w

(z,w) (- | |w] ™12 )

@+ W]l |w] |2 e )

(z - z,e) = (0,e).]

[\S)
X3

N.B. The topology on WDK is the product topology.

|

DEFINITION A Deligne representation of WK is a triple (p,V,N), where

p:WK + GL(V) is a representation of WK and N:V + V is a nilpotent endomorphism of
V subject to the relation
-1
pWw)Np(w) ~ = ||w||N (wEe W) .
[Note: N = 0 is admissible so every representation of WK is a Deligne rep-
resentation. ]
4: EXAMPIE Take V = C7, hence GL(V) = 6L (C). Let ej,e;,...,e ; be the

usual basis of V. Define p by the rule

p(wle, = ||w[|lei (we Wer O < i < n-1)



and define N by the rule

Ne, = (0 < i <n-2), Ne = 0.
i n-

€1 1

Then the triple (p,V,N) is a Deligne representation of W the n-dimensional

special representation, denoted sp(n).

5: DEFINITION A representation of WDy is a continuous homomorphism

o' :WDK + GL (V) whose restriction to C is camplex analytic, where V is a finite

dimensional complex vector space.

: LEMMA Every Deligne representation (p,V,N) of W gives rise to a

representation p' WD, > GL(V) of WDK
PROOF Put

p'(z,w) = exp(zN)p(w).

' (21w ) o' (25,wW,)

= eXP(ZlN) p (wl)exp(zzN) p (wz)

exp (z,N) o (w; ) exp (z,N) p (wil) p(w,) p (w,)

= exp(le)exp(zzl lwll lN)p(wlwz)

exp(z;N + 2z, | |w, | [N) o (wyw,)

il

exp((z) + | lel |zz)N)p(wlw2)



Il

p'(z) + | vy | |25 w0y w,)

p' ((zl,wl) (zz,wz)) .

[Note: The continuity of p' is manifest as is the camplex analyticity of

its restriction to C.]
One can also go the other way but this is more involved.

7: RAPPEL If T:V >V is unipotent, then
n+l1
logr= 3 ‘I (r-q
n=1

n

is nilpotent.

SUBLEMMA Let p":WDK + GL(V) be a representation of WD, — thenv z =2 0,

.
.
—

o' (z,e) is unipotent.

: SUBLEMMA let p':WDK + GL(V) be a representation of WDK - then Vv z =z 0,

log o' (z,e)
is nilpotent and
(log p'(z,e))/z (z 2 0)

is independent of z.

0: LEMMA Every representation p' :WDK -+ GL(V) of WD gives rise to a

Deligne representation (p,V,N) of WK'

PROCF Put
p=p"|{0} xW,, N=1log p'(1,e).



Then vwe W,

o (W)No (w) T = o(w)log o' (1,e)p(w) *

‘ n+l :
=ow (z S e - nMow !

n>1

n+1
_ 5 (D
n

nz1

(et o' (Le)ow) T - D)™

o) o' (1,e) pw) T

1

p'(0,wW)p'(1,e)p' (0,w )

o' ((0,w) (L,e) (0,w 1))

o' (| [w| |, w) 0w L))

p' (| wl]],e).
Therefore

o (w)Np (w) L

n+l ,
Zl ..g.‘..'.]_'.l)i_.._ ' (|lw]],e) - "
n>1

log o' ([ |w]],e)

]

[1w]|(log o* (| |w|],e))/||w]|

]

|Iwl] log o' (1,e)

| Il w.



11: OPERATIONS

® Direct Sum: Let (pl,V ,Nl) ' (pz'VZ'NZ) be Deligne representations —-
then their direct sum is the triple

(pl ® Py Vl ® V2, Nl @ N2).

e Tensor Product: Let (pl,Vl, l)’ (p2,V2, 2) be Deligne representations —-
then their tensor product is the triple

(plﬁpz, Vlﬁ V2, NlQ IZ+I R N2).

1

e (ontragredient: ILet (p,V,N) be a Deligne representation -- then its

contragredient is the triple

(pV'VV’ - NV).
[Note: v isth@dUalofVande is the transpose of N (thuszEVv,

N'(f) = £ o N).]

12: REMARK The definitions of @, 8, v when transcribed to the "prime

picture" are the usual representation-theoretic formalities applied to the group WDy -

13: N.B. ILet

(pl,Nl,Vl)
_ (92 IN2I 2)

be Deligne representations of We = then a morphism

(p]_ er 'Vl) > (02 INZ lvz)



is a linear map T:V:L > V2 such that

Tpy (W) = p,WIT (W € W)
and ’]Nl = NZT'
[Note: If T is a linear isaomorphism, then the Deligne representations
(01 /N7,V4)
(0 rNpr V)

are said to be isamorphic.]

14: DEFINITION Suppose that (p,V,N) is a Deligne representation of WK -

then a subspace Vg cV is an invariant subspace if it is invariant under p and N.

15: LEMMA The kernel of N is an invariant subspace.
PROOF If Nv = 0, thenVWEWK,

Now)v = | ]w—l] lo(w)Nv = 0.

16: DEFINITION A Deligne representation (p,V,N) of W, is indecomposable

if V cannot be written as a direct sum of proper invariant subspaces.

17: EXAMPLE Consider sp(n) -- then it is indecomposable.

[If C* =S ® T was a nontrivial decomposition into proper invariant subspaces,

S nKer N
then both would be nontrivial.]
T n Ker N



18: DEFINITION A Deligne representation (p,V,N) of WK is semisimple

if p is semisimple (cf. §23, #37).

19: EXAMPLE Consider sp(n) -- then it is semisimple.

20: LEMMA Let 7 be an irreducible representation of WK -~ then sp(n) @ 7

is semisimple and indecomposable.

[Mote: Recall that 7 is identified with (w,0).]

21l: THEOREM Every semisimple indecomposable Deligne representation of WK

is equivalent to a Deligne representation of the form sp(n) & m, where 7 is an

irreducible representation of WK and n is a positive integer.

22: THEORM let (p,N,V) be a semisimple Deligne representation of P\k -

then there is a decomposition
s
(p,V,N) = izl sp(ni) e,
where m is an irreducible representation of WK and n; is a positive integer.
Furthermore, if
t

(p,V,N) = .9

sp(n!) @ m!
j=1 J

J
is another such decomposition, then s = t and after a renumber ing of the summands,

m. = 7t and n. = n!.
i i i i

~ APPENDIX

Instead of working with

W, = C x| W,



some authorities work with
SL(2,C) x WK’

the rationale for this being that the semisimple representations of the two groups
are the "same".

Given w € WK, let

_ s _
|| 1Y 0
h =
W
-1/2
0 el 7Y
and identify z € C with
-, -
0 1.
Then
1 z Tl [lwllz —
_l_
hw hw -
0 1 0 1

But conjugation by hW is an automorphism of SL(2,C), thus one can form the semi-

direct product SL(2,C) x| W, the multiplication rule being

_ -1



IEMMA The arrow

(X,w) > (W)

from

SL(2,C) x| W, to SL(2,C) x We

is an isamorphism of groups.

DEFINITION A representation of SL(2,(C) x WK is a continuous homomorphism

p:SL(2,C) x WK -+ GL(V) (V a finite dimensional camplex vector space) such that the

restriction of p to SL(2,C) is complex analytic.

N.B. p is semisimple iff its restriction to WK is semisimple.

[The restriction of p to SL(2,C) is necessarily semisimple.]

The finite dimensional irreducible representations of SL(2,(C) are parameterized

by the positive integers:

n <—> sym(n), dim sym(n) = n.

THEOREM The isamorphism classes of semisimple Deligne representations of

W, are in a 1-to-1 correspondence with the isamorphism classes of semisimple rep-

resentations of SL(2,C) x WK.

To explicate matters, start with a semisimple indecamposable Deligne rep-
resentation of WK’ say sp(n) @ 7w, and assign to it the external tensor product
sym(n) |X|m, hence in general

s s

® sp(n,) @mn, »® sym(n,) |x]|m..
=1t t = ot



