LOCAL AND GLOBAL ANALYSIS

Garth Warner

Department of Mathematics University of Washington The objective of this book is to give an introduction to p-adic analysis along the lines of Tate's thesis, as well as incorporating material of a more recent vintage, for example Weil groups.

CONTENTS

- **§1.** ABSOLUTE VALUES
- §2. TOPOLOGICAL FIELDS
- **§3.** COMPLETIONS
- 54. p-ADIC STRUCTURE THEORY
- §5. LOCAL FIELDS
- §6. HAAR MEASURE
- **§7. HARMONIC ANALYSIS**
- **§8.** ADDITIVE p-ADIC CHARACTER THEORY
- **§9. MULTIPLICATIVE p-ADIC CHARACTER THEORY**
- §10. TEST FUNCTIONS
- s11. LOCAL ZETA FUNCTIONS: R^{\times} OR C^{\times}
- §12. LOCAL ZETA FUNCTIONS: Q_p^x
- **§13.** RESTRICTED PRODUCTS
- **§14.** ADELES AND IDELES
- **§15.** GLOBAL ANALYSIS
- **§16.** FUNCTIONAL EQUATIONS
- **§17.** GLOBAL ZETA FUNCTIONS
- **§18. LOCAL ZETA FUNCTIONS [BIS]**
- **§19.** L-FUNCTIONS
- **§20. FINITE CLASS FIELD THEORY**
- §21. LOCAL CLASS FIELD THEORY
- §22. WEIL GROUPS: THE ARCHIMEDEAN CASE
- §23. WEIL GROUPS: THE NON-ARCHIMEDEAN CASE
- §24. THE WEIL-DELIGNE GROUP

§1. ABSOLUTE VALUES

<u>1:</u> DEFINITION Let F be a field -- then an <u>absolute value</u> (a.k.a. a valuation of order 1) is a function

$$|\cdot|: F \rightarrow R_{\geq 0}$$

satisfying the following conditions.

<u>AV-1</u> $|a| = 0 \iff a = 0.$ <u>AV-2</u> |ab| = |a| |b|.<u>AV-3</u> $\exists M > 0:$

$$|a + b| \le M \sup(|a|, |b|).$$

<u>2:</u> EXAMPLE Let F = R or C with the usual absolute value $| \cdot |_{\infty}$ -- then one can take M = 2.

3: DEFINITION The trivial absolute value is defined by the rule

$$|a| = 1 \forall a \neq 0.$$

4: LEMMA If |. | is an absolute value, then

|1| = 1.

5: APPLICATION If $a^n = 1$, then

$$|a^{n}| = |a|^{n} = |1| = 1$$

=> $|a| = 1.$

<u>6:</u> RAPPEL Let G be a cyclic group of order $r < \infty$ -- then the order of any subgroup of G is a divisor of r and if n|r, then G possesses one and only one

subgroup of order n (and this subgroup is cyclic).

<u>7:</u> RAPPEL Let G be a cyclic group of order $r < \infty$ — then the <u>order</u> of $x \in G$ is, by definition, #<x>, the latter being the smallest positive integer n such that $x^n = 1$.

<u>8:</u> SCHOLIUM Every absolute value on a finite field F_q is trivial. [In fact, F_q^{\times} is cyclic of order q - 1.]

9

<u>9:</u> DEFINITION Two absolute values $|\cdot|_1$, $|\cdot|_2$ on a field F are equivalent if $\exists r > 0$:

$$|\cdot|_{2} = |\cdot|_{1}^{r}$$

[Note: Equivalence is an equivalence relation.]

<u>10:</u> <u>N.B.</u> If |.| is an absolute value, then so is $|.|^r$ (r > 0), the M per |.| being M^r per $|.|^r$.

<u>11:</u> LEMMA Every absolute value is equivalent to one with $M \le 2$. PROOF Assume from the beginning that M > 2, hence

$$M^{\Gamma} \leq 2 \quad (r > 0)$$

if

$$r \log M \leq \log 2$$

or still, if

$$r \leq \frac{\log 2}{\log M} \quad (< 1).$$

12: DEFINITION An absolute value |.| satisfies the triangle inequality if

$$|\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}|.$$

<u>13:</u> LEMMA Suppose given a function $|.|:F \rightarrow R_{\geq 0}$ satisfying AV-1 and AV-2 --then AV-3 holds with M \leq 2 iff the triangle inequality obtains.

PROOF Obviously, if

$$|\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}|,$$

then

$$|a + b| \le 2 \sup(|a|, |b|).$$

In the other direction, by induction on m,

$$\begin{vmatrix} 2^{m} \\ \Sigma \\ k=1 \end{vmatrix} \le 2^{m} \sup_{k} |a_{k}| \quad (1 \le k \le 2^{m}).$$

Next, given n choose m: $2^m \ge n > 2^{m-1}$, so upon inserting 2^m -n zero summands,

$$\begin{array}{c|cccc}n & 2^{m-1} & 2^{m}\\ | & \Sigma & a_{k} | \leq M \sup(| & \Sigma & a_{k} |, & | & \Sigma & a_{k} |)\\ k=1 & k=1 & k=2^{m-1}+1\end{array}$$

$$\leq 2 \sup \left(\left| \begin{array}{c} 2^{m-1} \\ \sum \\ k=1 \end{array} \right|, \left| \begin{array}{c} 2^{m-1} + 2^{m-1} \\ \sum \\ k=2^{m-1} + 1 \end{array} \right| \right)$$

$$\leq 2 \sup (2^{m-1} \sup_{k \leq 2^{m-1}} |a_k|, 2^{m-1} \sup_{k > 2^{m-1}} |a_k|)$$

$$\leq 2 \cdot 2^{m-1} \sup_{\substack{k \leq 2 \cdot n \leq k \leq n}} |a_k| \leq 2 \cdot n \sup_{\substack{k \leq n \leq k \leq n}} |a_k|.$$

I.e.:

In particular:

$$\begin{vmatrix} n \\ \Sigma & 1 \end{vmatrix} = |n| \le 2n.$$

k=1

Finally,

$$|a + b|^{n} = |(a + b)^{n}| \quad (AV-2)$$

$$= |\sum_{k=0}^{n} {n \choose k} a^{k} b^{n-k}|$$

$$\leq 2 (n+1) \sum_{k=0}^{n} |{n \choose k} a^{k} b^{n-k}|$$

$$= 2 (n+1) \sum_{k=0}^{n} |{n \choose k}| |a^{k} b^{n-k}| \quad (AV-2)$$

$$\leq 2 (n+1) 2 \sum_{k=0}^{n} {n \choose k} |a^{k} b^{n-k}|$$

$$= 4 (n+1) (|a| + |b|)^{n}$$

$$=>$$

$$|a + b| \le 4^{1/n} (n+1)^{1/n} (|a| + |b|)$$

 $\Rightarrow (|a| + |b|) (n \Rightarrow \infty).$

<u>14:</u> SCHOLIUM Every absolute value is equivalent to one that satisfies the triangle inequality.

15: DEFINITION A <u>place</u> of F is an equivalence class of nontrivial absolute values.

Accordingly, every place admits a representative for which the triangle inequality is in force.

<u>16:</u> DEFINITION An absolute value |.| is <u>non-archimedean</u> if it satisfies the ultrametric inequality:

$$|a + b| \le \sup(|a|, |b|)$$
 (so M = 1).

<u>17:</u> <u>N.B.</u> A non-archimedean absolute value satisfies the triangle inequality.

18: LEMMA Suppose that |.| is non-archimedean and let |b| < |a| -- then |a + b| = |a|.

PROOF

$$|a| = |(a + b) - b| \le \sup(|a + b|, |b|)$$

= $|a + b|$

since $|a| \leq |b|$ is untenable. Meanwhile,

$$|a + b| \le \sup(|a|, |b|) = |a|.$$

<u>19:</u> EXAMPLE Fix a prime p and take F = Q. Given a rational number $x \neq 0$, write

$$x = p^k \frac{m}{n}$$
 ($k \in Z$),

where $p \nmid m$, $p \nmid n$, and then define the <u>p-adic absolute value</u> $|.|_p$ by the prescription

$$|\mathbf{x}|_{p} = p^{-k} (|0|_{p} = 0).$$

[AV-1 is obvious. To check AV-2, write

$$\mathbf{x} = \mathbf{p}^k \frac{\mathbf{m}}{\mathbf{n}}$$
, $\mathbf{y} = \mathbf{p}^l \frac{\mathbf{u}}{\mathbf{v}}$,

where m,n,u,v are coprime to p -- then

$$xy = p^{k+\ell} \frac{mu}{nv}$$

=>

$$|xy|_{p} = p^{-(k+\ell)} = p^{-k}p^{-\ell} = |x|_{p} |y|_{p}.$$

As for AV-3, $|.|_p$ satisfies the ultrametric inequality. To establish this, assume without loss of generality that $k \le \ell$ and write

 $\begin{aligned} x + y &= p^{k} \left(\frac{m}{n} + p^{\ell - k} \frac{u}{v}\right) \\ &= p^{k} \frac{mv + p^{\ell - k}nu}{nv} . \end{aligned}$ $\bullet |x|_{p} \neq |y|_{p}, \text{ so } \ell - k > 0, \text{ hence}$

mv + p^{l-k}nu

is coprime to p (otherwise

=>

$$mv = p^{r}N - p^{\ell-k}nu \quad (r \ge 1)$$
$$= p(p^{r-1}N - p^{\ell-k-1}nu) \implies p(mv)$$
$$|x + y|_{p} = p^{-k}$$

$$= |x|_{p} = \sup(|x|_{p}, |y|_{p}),$$

since

$$\ell - k > 0 \Rightarrow p^{-\ell} < p^{-k}$$

$$\Rightarrow |y|_{p} < |x|_{p}.$$

• $|\mathbf{x}|_{p} = |\mathbf{y}|_{p}$, so $\ell = k$, hence $m\mathbf{v} + n\mathbf{u} = p^{r}N \quad (r \ge 0) \quad (p \nmid N)$

=>

=>

=>

And

$$|\mathbf{x} + \mathbf{y}|_{\mathbf{p}} = \mathbf{p}^{-\mathbf{k}-\mathbf{r}}.$$

 $x + y = p^{k+r} \frac{N}{nv}$

$$p^{-k-r} \leq \begin{bmatrix} p^{-k} = |x|_p \\ \\ p^{-k} = |y|_p \end{bmatrix}$$

$$|\mathbf{x} + \mathbf{y}|_{\mathbf{p}} \leq \sup(|\mathbf{x}|_{\mathbf{p}}, |\mathbf{y}|_{\mathbf{p}}).$$

<u>20:</u> REMARK It can be shown that every nontrivial absolute value on Q is equivalent to a $|.|_p$ for some p or to $|.|_{\infty}$.

21: LEMMA
$$\forall x \in Q^{2}$$
,

$$\prod_{p \leq \infty} |\mathbf{x}|_p = 1,$$

all but finitely many of the factors being equal to 1.

PROOF Write

=>

$$\mathbf{x} = \pm \mathbf{p}_1^{\mathbf{k}_1} \dots \mathbf{p}_n^{\mathbf{k}_n} \quad (\mathbf{k}_1, \dots, \mathbf{k}_n \in \mathbf{Z})$$

for pairwise distinct primes p_j -- then $|x|_p = 1$ if p is not equal to any of the p_j . In addition,

$$|\mathbf{x}|_{\mathbf{p}_{j}} = \mathbf{p}_{j}^{-\mathbf{k}_{j}}, \quad |\mathbf{x}|_{\infty} = \mathbf{p}_{1}^{\mathbf{k}_{1}} \dots \mathbf{p}_{n}^{\mathbf{k}_{n}}$$

$$\prod_{p \le \infty} |\mathbf{x}|_p = (\prod_{j=1}^n p_j^{-k_j}) \cdot p_1^{k_1} \cdots p_n^{k_n}$$
$$= 1.$$

<u>22:</u> REMARK If p_1, p_2 are distinct primes, then $|.|_{p_1}$ is not equivalent to $|.|_{p_2}$.

[Consider the sequence $\{p_1^n\}$:

$$|p_1|_{p_1} = p_1^{-1} \Rightarrow |p_1^n|_{p_1} = p_1^{-n} \Rightarrow 0.$$

Meanwhile,

$$|p_1|_{p_2} = |p_2^0 p_1|_{p_2} = p_2^{-0} = 1$$

=> $|p_1^n|_{p_2} \equiv 1.1$

23: CRITERION Let |.| be an absolute value on F -- then |.| is non-archimedean iff $\{|n|:n \in N\}$ is bounded.

[Note: In either case, |n| is bounded by 1:

 $|n| = |1 + 1 + \cdots + 1| \le 1.$

§2. TOPOLOGICAL FIELDS

Let |.| be an absolute value on a field F. Given $a \in F$, r > 0, put

$$N_r(a) = \{b: |b - a| < r\}.$$

<u>l</u>: LEMMA There is a topology on F in which a basis for the neighborhoods of a are the $N_r(a)$.

PROOF The nontrivial point is to show that given $V \in B_a$, there is a $V_0 \in B_a$ such that if $a_0 \in V_0$, then there is a $W \in B_{a_0}$ such that $W \in V$. So let $V = N_r(a)$, $V_0 = N_{r/2M}(a)$, $W = N_{r/2M}(a_0)$ ($a_0 \in V_0$) -- then $W \in V$:

$$b \in W \implies |b - a| = |(b - a_0) + (a_0 - a)|$$

$$\leq M \sup(|b - a_0|, |a_0 - a|)$$

$$\leq M \sup(r/2M, r/2M)$$

$$= M(r/2M) = r/2 < r.$$

<u>2:</u> EXAMPLE The topology induced by |.| is the discrete topology iff |.| is the trivial absolute value.

<u>3:</u> FACT Absolute values $|.|_1$, $|.|_2$ are equivalent iff they give rise to the same topology.

4: LEMMA The topology induced by |. | is metrizable.

PROOF This is because |. | is equivalent to an absolute value satisfying the

1.

triangle inequality (cf. §1, #14), the underlying metric being

$$d(a,b) = |a - b|.$$

5: THEOREM A field with a topology defined by an absolute value is a topological field, i.e., the operations sum, product, and inversion are continuous.

Assume now that |. | is non-archimedean, hence that the ultrametric inequality

$$|\mathbf{a} - \mathbf{b}| \leq \sup(|\mathbf{a}|, |\mathbf{b}|)$$

is in force.

<u>6:</u> LEMMA $N_r(a)$ is closed (open is automatic).

PROOF Let p be a limit point of $N_r(a)$ -- then $\forall t > 0$,

 $(N_t(p) - \{p\}) \cap N_r(a) \neq \emptyset.$

Take t = $\frac{r}{2}$ and choose $b \in N_r(a)$:

 $d(p,b) < \frac{r}{2} \quad (p \neq b).$

Then

```
d(a,p) ≤ sup(d(a,b), d(b,p))
< r
=>
p ∈ N<sub>r</sub>(a).
```

Therefore $N_r(a)$ contains all its limit points, hence is closed.

<u>7:</u> LEMMA If $a' \in N_r(a)$, then $N_r(a') = N_r(a)$.

PROOF E.g.:

$$b \in N_r(a) \Rightarrow |b - a| < r$$

$$= |b - a'| = |(b - a) + (a - a')|$$

$$\leq \sup(|b - a|, |a - a'|)$$

$$< r = N_r(a) \subset N_r(a').$$

8: REMARK Put

$$B_{r}(a) = \{b: |b - a| \le r\}.$$

Then a priori, $B_r(a)$ is closed. But $B_r(a)$ is also open and if $a' \in B_r(a)$, then $B_r(a') = B_r(a)$.

9: LEMMA If

$$a_1 + a_2 + \cdots + a_n = 0,$$

then $\exists i \neq j$ such that

$$|\mathbf{a}_{\mathbf{i}}| = |\mathbf{a}_{\mathbf{j}}| = \sup |\mathbf{a}_{\mathbf{k}}|.$$

§3. COMPLETIONS

Let |.| be an absolute value on a field F which satisfies the triangle inequality -- then per |.|, F might or might not be complete.

<u>1:</u> EXAMPLE Take F = R or Q and let $|.| = |.|_{\infty}$ -- then R is complete but Q is not.

2: EXAMPLE Take F = Q and let $|\cdot| = |\cdot|_p$ -- then Q is not complete.

[To illustrate this, choose p = 5 and starting with $x_1 = 2$, define inductively a sequence $\{x_n\}$ of integers subject to

$$\begin{bmatrix} x_n^2 + 1 \equiv 0 \mod 5^n \\ x_{n+1} \equiv x_n \mod 5^n. \end{bmatrix}$$

Then

$$|x_{m} - x_{n}|_{5} \le 5^{-n}$$
 (m > n),

so $\{x_n\}$ is a Cauchy sequence and, to get a contradiction, assume that it has a limit x in Q, thus

$$|x_n^2 + 1|_5 \le 5^{-n} \implies |x^2 + 1|_5 = 0$$

 $\implies x^2 + 1 = 0 \dots]$

<u>3:</u> DEFINITION If an absolute value is not non-archimedean, then it is said to be archimedean.

<u>4:</u> FACT Suppose that F is a field which is complete with respect to an archimedean absolute value |.| -- then F is isomorphic to either R or C and |.| is equivalent to $|.|_{\infty}$.

<u>5:</u> RAPPEL Every metric space X has a completion \overline{X} . Moreover, there is an isometry $\phi: X \to \overline{X}$ such that $\phi(X)$ is dense in \overline{X} and \overline{X} is unique up to isometric isomorphism.

<u>6:</u> CONSTRUCTION The standard model for \bar{X} is the set of all Cauchy sequences in X modulo the equivalence relation ~, where

$$\{x_n\} \sim \{y_n\} \iff d(x_n, y_n) \rightarrow 0,$$

the map $\phi: X \to \overline{X}$ being the rule that sends $x \in X$ to the equivalence class of the constant sequence $x_n = x$.

[Note: The metric on \overline{X} is specified by

$$\overline{d}(\{x_n\},\{y_n\}) = \lim_{n \to \infty} d(x_n,y_n).$$

Take X = F and

$$d(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}|.$$

Then the claim is that \overline{F} is a field. E.g.: Let us deal with addition. Given

 $\vec{x}, \vec{y} \in \vec{F}$, how does one define $\vec{x} + \vec{y}$? To this end, choose sequences $\begin{bmatrix} x_n \\ y_n \end{bmatrix}$ in \vec{F} such that $\begin{bmatrix} x_n \neq \vec{x} \\ & -- \text{ then} \end{bmatrix}$ $y_n \neq \vec{y}$ $d(x_n + y_n, x_m + y_m)$

$$= |x_{n} + y_{n} - x_{m} - y_{m}|$$

= | (x_{n} - x_{m}) + (y_{n} - y_{m}) |
$$\leq |x_{n} - x_{m}| + |y_{n} - y_{m}|.$$

Therefore $\{x_n + y_n\}$ is a Cauchy sequence in F, hence converges in \overline{F} to an element

$$\bar{z}$$
. If $\begin{bmatrix} x'_n \\ are sequences in F converging to \\ y'_n \end{bmatrix} \begin{bmatrix} \bar{x} \\ as well, then \{x'_n + y'_n\} \\ \bar{y} \end{bmatrix}$

converges in \overline{F} to an element \overline{z} '. And

$$\overline{z} = \overline{z}$$
'.

Proof: Choose $n \in N$ such that

$$|\overline{z} - (x_n + y_n)| < \frac{\varepsilon}{3}$$
$$|\overline{z}' - (x_n' + y_n')| < \frac{\varepsilon}{3}$$

and

$$|(x_{n} + y_{n}) - (x_{n}' + y_{n}')| \le |x_{n} - x_{n}'| + |y_{n} - y_{n}'| < \frac{\varepsilon}{3}$$
.

Then

$$\begin{aligned} |\bar{z} - \bar{z}'| &\leq |\bar{z} - (x_n + y_n)| + |\bar{z}' - (x_n + y_n)| \\ &\leq |\bar{z} - (x_n + y_n)| + |\bar{z}' - (x_n' + y_n')| + |(x_n' + y_n') - (x_n + y_n)| < \epsilon \\ &=> \bar{z} = \bar{z}'. \end{aligned}$$

Therefore addition in F extends to \overline{F} . The same holds for multiplication and

inversion. Bottom line: F is a field. Furthermore, the prescription

$$|\bar{\mathbf{x}}| = \bar{\mathbf{d}}(\mathbf{x}, 0) \quad (\bar{\mathbf{x}} \in \bar{\mathbf{F}})$$

is an absolute value on \overline{F} whose underlying topology is the metric topology. It thus follows that \overline{F} is a topological field (cf. §2, #5).

<u>7</u>: EXAMPLE Take F = Q, $|\cdot| = |\cdot|_p$ -- then the completion $\overline{F} = \overline{Q}$ is denoted by Q_p , the field of <u>p-adic numbers</u>.

8: LEMMA If |.| is non-archimedean per F, then |.| is non-archimedean per F.

PROOF Given
$$\begin{bmatrix} \bar{x} \\ \bar{y} \\ \bar{y} \end{bmatrix} \in \bar{F}$$
, choose $\begin{bmatrix} x_n \\ y_n \\ y_n \end{bmatrix}$ in F such that $\begin{bmatrix} x_n \neq \bar{x} \\ y_n \neq \bar{y} \end{bmatrix}$ in \bar{F} :
 $|\bar{x} - \bar{y}| \leq |\bar{x} - x_n + x_n - y_n + y_n - \bar{y}|$
 $\leq |\bar{x} - x_n| + |x_n - y_n| + |\bar{y} - y_n|$.
 $\begin{array}{c} & \downarrow \\ & 0 \\ & & 0 \end{bmatrix}$

And

$$\begin{aligned} |\mathbf{x}_{n} - \mathbf{y}_{n}| &\leq \sup(|\mathbf{x}_{n}|, |\mathbf{y}_{n}|) \\ &= \frac{1}{2} (|\mathbf{x}_{n}| + |\mathbf{y}_{n}| + |\mathbf{x}_{n} - \mathbf{y}_{n}|) \\ &\rightarrow \frac{1}{2} (|\mathbf{\bar{x}}| + |\mathbf{\bar{y}}| + |\mathbf{\bar{x}} - \mathbf{\bar{y}}|) \\ &= \sup(|\mathbf{\bar{x}}|, |\mathbf{\bar{y}}|). \end{aligned}$$

9: LEMMA If |. | is non-archimedean per |. |, then

$$\{|\mathbf{x}|:\mathbf{x}\in\mathbf{F}\}=\{|\mathbf{x}|:\mathbf{x}\in\mathbf{F}\}.$$

PROOF Take $\bar{x} \in \bar{F}: \bar{x} \neq 0$. Choose $x \in F: |\bar{x} - x| < |\bar{x}|$. Claim: $|\bar{x}| = |x|$. Thus consider the other possibilities.

• $|\mathbf{x}| < |\overline{\mathbf{x}}|$: $|\overline{\mathbf{x}} - \mathbf{x}| = |\overline{\mathbf{x}} + (-\mathbf{x})| = |\overline{\mathbf{x}}| (cf. \$1, \$18) < |\overline{\mathbf{x}}| \dots$ • $|\overline{\mathbf{x}}| < |\mathbf{x}|$: $|\overline{\mathbf{x}} - \mathbf{x}| = |-\mathbf{x} + \overline{\mathbf{x}}| = |-\mathbf{x}| (cf. \$1, \$18) = |\mathbf{x}| < |\overline{\mathbf{x}}| \dots$

<u>10:</u> EXAMPLE The image of Q_p under $\left|.\right|_p$ is the same as the image of Q under $\left|.\right|_p$, namely

$$\{p^{\mathbf{k}}:\mathbf{k}\in\mathsf{Z}\}\cup\{\mathbf{0}\}.$$

Let K be a field, $L \supset K$ a finite field extension.

<u>11:</u> EXTENSION PRINCIPLE Let $|.|_{K}$ be a complete absolute value on K -then there is one and only one extension $|.|_{L}$ of $|.|_{K}$ to L and it is given by

$$|x|_{L} = |N_{L/K}(x)|_{K}^{1/n},$$

where n = [L:K]. In addition, L is complete with respect to $|.|_{L}$.

[Note: $|.|_{L}$ is non-archimedean if $|.|_{K}$ is non-archimedean.]

<u>12:</u> SCHOLIUM There is a unique extension of $\left|.\right|_{K}$ to the algebraic closure $K^{\mbox{cl}}$ of K.

[Note: It is not true in general that K^{cl} is complete.]

$$|\cdot|_{\sigma}|K = |\cdot|_{K'}$$

so by uniqueness, $|.|_{\sigma} = |.|_{L}$. But

=>

$$N_{L/K}(x) = \prod_{\sigma \in Gal(L/K)} \sigma x$$

 $\begin{aligned} \left| \mathbf{N}_{\mathbf{L}/\mathbf{K}}(\mathbf{x}) \right|_{\mathbf{K}} \\ &= \left| \mathbf{N}_{\mathbf{L}/\mathbf{K}}(\mathbf{x}) \right|_{\mathbf{L}} = \left| \prod_{\sigma \in \text{Gal} (\mathbf{L}/\mathbf{K})} \sigma \mathbf{x} \right|_{\mathbf{L}} \\ &= \prod_{\sigma \in \text{Gal} (\mathbf{L}/\mathbf{K})} \left| \sigma \mathbf{x} \right|_{\mathbf{L}} \\ &= \prod_{\sigma \in \text{Gal} (\mathbf{L}/\mathbf{K})} \left| \sigma \mathbf{x} \right|_{\mathbf{L}} \\ &= \prod_{\sigma \in \text{Gal} (\mathbf{L}/\mathbf{K})} \left| \mathbf{x} \right|_{\mathbf{L}} \\ &= \left| \mathbf{x} \right|_{\mathbf{L}}^{\#(\text{Gal} (\mathbf{L}/\mathbf{K}))} \\ &= \left| \mathbf{x} \right|_{\mathbf{L}}^{\#(\text{Gal} (\mathbf{L}/\mathbf{K}))} \end{aligned}$

APPENDIX

APPROXIMATION PRINCIPLE Let $|.|_1, ..., |.|_N$ be pairwise inequivalent nontrivial absolute values on F. Fix elements $a_1, ..., a_N$ in F -- then $\forall \epsilon > 0$, $\exists a_{\epsilon} \in F$:

$$|a_{\varepsilon} - a_{k}|_{k} < \varepsilon$$
 (k = 1,...,N).

Let $\bar{F}_1,\ldots,\bar{F}_N$ be the associated completions and let

$$\Delta: \mathbf{F} \to \prod_{k=1}^{\mathbf{N}} \bar{\mathbf{F}}_{k}$$

be the diagonal map -- then the image ΔF is dense (i.e., its closure is the whole

of $\prod_{k=1}^{N} \overline{F}_{k}$).

[Fix $\varepsilon > 0$ and elements $\bar{a}_1, \ldots, \bar{a}_N$ in $\bar{F}_1, \ldots, \bar{F}_N$ respectively -- then there exist elements $a_k \in F$:

$$|\mathbf{a}_{\mathbf{k}} - \bar{\mathbf{a}}_{\mathbf{k}}|_{\mathbf{k}} < \varepsilon$$
 (k = 1,...,N).

Choose $a_{\epsilon} \in F$:

 $|a_{\varepsilon} - a_{k}| < \varepsilon$ (k = 1,...,N).

Then

$$|\mathbf{a}_{\varepsilon} - \bar{\mathbf{a}}_{k}|_{k} = |(\mathbf{a}_{\varepsilon} - \mathbf{a}_{k}) + (\mathbf{a}_{k} - \bar{\mathbf{a}}_{k})|_{k}$$
$$\leq |\mathbf{a}_{\varepsilon} - \mathbf{a}_{k}| + |\mathbf{a}_{k} - \bar{\mathbf{a}}_{k}|_{k}$$
$$< 2\varepsilon.]$$

<u>N.B.</u> The product $\prod_{k=1}^{N} \bar{F}_k$ carries the product topology and the prescription $d((\bar{a}_1, \dots, \bar{a}_N), (\bar{b}_1, \dots, \bar{b}_N))$ $= \sup_{1 \le k \le N} d_k(\bar{a}_k, \bar{b}_k)$ $= \sup_{1 \le k \le N} |\bar{a}_k - \bar{b}_k|_k$ metrizes the product topology. Therefore

$$d((a_{\varepsilon}, \dots, a_{\varepsilon}), (\bar{a}_{1}, \dots, \bar{a}_{N}))$$

$$= \sup_{1 \le k \le N} d_{k}(a_{\varepsilon}, \bar{a}_{k})$$

$$= \sup_{1 \le k \le N} |a_{\varepsilon} - \bar{a}_{k}|_{k}$$

< 2ε.

§4. p-ADIC STRUCTURE THEORY

Fix a prime p and recall that $Q_{\rm p}$ is the completion of Q per the p-adic absolute value $\left|.\right|_{\rm p}.$

1: NOTATION Let

$$A = \{0, 1, \dots, p-1\}.$$

<u>2:</u> SCHOLIUM Structurally, Q_p is the set of all Laurent series in p with coefficients in A subject to the restriction that only finitely many negative powers of p occur, thus generically a typical element $x \neq 0$ of Q_p has the form

$$x = \sum_{n=N}^{\infty} a_n p^n$$
 ($a_n \in A, N \in Z$).

3: <u>N.B.</u> It follows from this that Q_p is uncountable, so Q is not complete per $|.|_p$.

The exact formulation of the algebraic rules (i.e., addition, multiplication, inversion) is elementary (but technically a bit of a mess) and will play no role in the sequel, hence can be omitted.

4: LEMMA Every positive integer N admits a base p expansion:

$$N = a_0 + a_1 p + \dots + a_n p^n$$
,

where the $a_k \in A$.

5: EXAMPLE

$$1 = 1 + 0p + 0p^2 + \cdots$$

6: EXAMPLE Take p = 3 -- then

$$\begin{bmatrix} -24 = 0 + 2 \times 3 + 2 \times 3^{2} = 2p + 2p^{2} \\ 17 = 2 + 2 \times 3 + 1 \times 3^{2} = 2 + 2p + p^{2} \end{bmatrix}$$

=>

$$\frac{24}{17} = \frac{2p + 2p^2}{2 + 2p + p^2} = p + p^3 + 2p^5 + p^7 + p^8 + 2p^9 + \cdots$$

7: LEMMA

$$-1 = (p-1) + (p-1)p + (p-1)p^2 + \cdots$$

PROOF Add 1:

$$1 + (p-1) + (p-1)p + (p-1)p^{2} + (p-1)p^{3} + \cdots$$
$$= p + (p-1)p + (p-1)p^{2} + (p-1)p^{3} + \cdots$$
$$= p^{2} + (p-1)p^{2} + (p-1)p^{3} + \cdots$$
$$= p^{3} + (p-1)p^{3} + \cdots = 0.$$

8: APPLICATION

$$-N = (-1) \cdot N$$
$$= (\sum_{i=0}^{\infty} (p-1)p^{i}) (a_{0} + a_{1}p + \dots + a_{n}p^{n})$$
$$= \dots$$

9: LEMMA A p-adic series

$$\sum_{n=1}^{\infty} x_n (x_n \in 0)$$

is convergent iff $|x_n|_p \to 0$ $(n \to \infty)$.

PROOF The usual argument establishes necessity. So suppose that $|x_n|_p \to 0$ (n $\to \infty$). Given K > 0, \exists N:

$$n > N \Rightarrow |\mathbf{x}_n|_p < p^{-K}.$$

Let

$$s_n = \sum_{k=1}^n x_k$$

Then

$$m > n > N \Rightarrow |s_{m} - s_{n}|_{p} = |x_{n+1} + \cdots + x_{m}|_{p}$$
$$\leq \sup(|x_{n+1}|_{p}, \cdots, |x_{m}|_{p})$$
$$< p^{-K}.$$

Therefore the sequence $\{s_n\}$ of partial sums is Cauchy, thus is convergent (Q_p being complete).

10: EXAMPLE The p-adic series

is convergent (to $\frac{1}{1-p}$).

11: EXAMPLE The p-adic series

is convergent.

[Note that

$$|n!|_{p} = p^{-N},$$

where

$$N = [n/p] + [n/p^2] + \cdots$$

12: EXAMPLE The p-adic series

is convergent (to -1).

13: LEMMA $\ensuremath{\mathbb{Q}}_p$ is a topological field (cf. §2, #5).

<u>14:</u> LEMMA Q_p is 0-dimensional, hence is totally disconnected. PROOF A basic neighborhood $N_r(x)$ is open (by definition) and closed (cf. §2, #6).

15: NOTATION

- $Z_p = \{x \in Q_p : |x|_p \le 1\}$
- $pZ_p = \{x \in Q_p : |x|_p < 1\}$
- $Z_p^{\times} = \{x \in Z_p : |x|_p = 1\}$

<u>16:</u> LEMMA Z_p is a commutative ring with unit (the ring of <u>p-adic integers</u>), in fact Z_p is an integral domain.

<u>17:</u> LEMMA pZ_p is an ideal in Z_p , in fact pZ_p is a maximal ideal in Z_p , in fact pZ_p is the unique maximal ideal in Z_p , hence Z_p is a local ring.

18: LEMMA Z_p^{\times} is a group under multiplication, in fact Z_p^{\times} is the set of

<u>p-adic units</u> in Z_p , i.e., the set of elements in Z_p that have a multiplicative inverse in Z_p .

Obviously,

$$Z_{p} = Z_{p}^{\times} \coprod (Z_{p} - Z_{p}^{\times})$$

or still,

$$Z_p = Z_p^* \coprod p Z_p^*$$

19: LEMMA

$$Z_{p} = \bigcup_{0 \le k \le p-1} (k + pZ_{p}).$$

PROOF Let $x \in Z_p$. Matters being clear if $|x|_p < 1$ (since in this case $x \in pZ_p$), suppose that $|x|_p = 1$. Choose $q = \frac{a}{b} \in Q: |q - x|_p < 1$, where (a,b) = 1

and $\begin{vmatrix} - & (a,p) = 1 \\ & -- & -- \\ (b,p) = 1 \end{vmatrix}$

$$x + pZ_p = q + pZ_p.$$

Choose k with $0 < k \le p-1$ such that p divides a - kb, thus $|a - kb|_p < 1$ and,

moreover, $\left|\frac{a-kb}{b}\right|_{p} < 1$. Therefore

$$|\mathbf{k} - \frac{\mathbf{a}}{\mathbf{b}}|_{p} < 1 \Rightarrow \mathbf{k} + \mathbf{p}\mathbf{Z}_{p} = \mathbf{q} + \mathbf{p}\mathbf{Z}_{p} = \mathbf{x} + \mathbf{p}\mathbf{Z}_{p}$$

 $\Rightarrow \mathbf{x} \in \mathbf{k} + \mathbf{p}\mathbf{Z}_{p}$

Consider a p-adic series

$$\sum_{n=0}^{\infty} a_n p^n \quad (a_n \in A).$$

Then

$$\begin{vmatrix} \sum_{n=0}^{\infty} a_n p^n \\ p \le \sup_n a_n p^n \end{vmatrix}$$
$$\le \sup_n \left| p^n \right|_p \le 1,$$

so it converges to an element x of $\boldsymbol{Z}_p.$ Conversely:

20: THEOREM Every $\mathbf{x} \in \boldsymbol{Z}_p$ admits a unique representation

$$\mathbf{x} = \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{p}^n \quad (\mathbf{a}_n \in \mathbf{A}).$$

PROOF Let $x \in Z_p$ be given. Choose uniquely $a_0 \in A$ such that $|x - a_0|_p < 1$, hence $x = a_0 + px_1$ for some $x_1 \in Z_p$. Choose uniquely $a_1 \in A$ such that $|x_1 - a_1|_p < 1$, hence $x_1 = a_1 + px_2$ for some $x_2 \in Z_p$. Continuing: $\forall N$,

$$x = a_0 + a_1 p + \dots + a_N p^N + x_{N+1} p^{N+1}$$
,

where $\textbf{a}_n \in \textbf{A}$ and $\textbf{x}_{N+1} \in \textbf{Z}_p.$ But

$$x_{N+1}p^{N+1} \neq 0.$$

<u>21:</u> APPLICATION Z is dense in Z_p .

<u>22:</u> EXAMPLE Let $x \in Z_p$ -- then $\forall n \in N$,

$$\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!} \in Z_p$$

23: LEMMA

$$Z_p^{\times} = \bigcup_{1 \le k \le p-1} (k + pZ_p).$$

Consequently, if

$$\mathbf{x} = \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{p}^n \quad (\mathbf{a}_n \in \mathbf{A})$$

and if $x \in Z_p^{\times}$, then $a_0 \neq 0$.

[In fact, there is a unique k (l $\leq k \leq p-l)$ such that $x \in k + pZ_p$ and this "k" is a_0.]

24: THEOREM An element

$$\mathbf{x} = \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{p}^n \quad (\mathbf{a}_n \in \mathbf{A})$$

in Z_p is a unit iff $a_0 \neq 0$.

PROOF To establish the characterization, construct a multiplicative inverse y for x as follows. First choose uniquely b_0 ($1 \le b_0 \le p-1$) such that $a_0b_0 \equiv 1 \mod p$. Proceed from here by recursion and assume that b_1, \ldots, b_M between 0 and p-1 have already been found subject to

$$x(\Sigma \ b_m p^m) \equiv 1 \mod p^{M+1}.$$

 $0 \le m \le M$

Then there is exactly one $0 \le b_{M+1} \le p - 1$ such that

$$x(\Sigma \qquad b_m p^m) \equiv 1 \mod p^{M+2}.$$

Now put $y = \sum_{m=0}^{\infty} b_m p^m$, thus xy = 1.

25: EXAMPLE 1 - p is invertible in Z_p but p is not invertible in Z_p .

that sends

$$\mathbf{x} = \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{p}^n \quad (\mathbf{a}_n \in \mathbf{A})$$

to $a_0 \mod p$ is a homomorphism of rings called reduction mod p. It is surjective with kernel pZ_p , hence $[Z_p:pZ_p] = p$.

Consider now the topological aspects of Z_p :

- Z_p is totally disconnected.
- Z_p is closed, hence complete.
- Z_p is open.

[As regards the last point, observe that

$$Z_{p} = \{ \mathbf{x} \in Q_{p} : |\mathbf{x}|_{p} < r \}$$
$$\equiv N_{r}(0) \quad (1 < r < p). \}$$

27: THEOREM Z_p is compact.

PROOF Since Z_p is a metric space, it suffices to show that Z_p is sequentially compact. So let x_1, x_2, \ldots be an infinite sequence in Z_p . Choose $a_0 \in A$ such that $a_0 + pZ_p$ contains infinitely many of the x_n . Write

$$a_0 + pZ_p$$

= $a_0 + p (\cup (a + pZ_p))$
 $a \in A$

9.

$$= a_0 + \bigcup_{a \in A} (ap + p^2 Z_p)$$
$$= \bigcup_{a \in A} (a_0 + ap + p^2 Z_p).$$

Choose $a_1 \in A$ such that $a_0 + a_1 p + p^2 Z_p$ contains infinitely many of the x_n . ETC. The construction thus produces a descending sequence of cosets of the form

$$A_j + p^j Z_p$$

each of which contains infinitely many of the x_n . But

$$A_{j} + p^{j}Z_{p} = \{x \in Z_{p} : |x - A_{j}|_{p} \le p^{-j}\}$$
$$\equiv B_{p^{-j}}(A_{j}),$$

a closed ball in the p-adic metric of radius $p^{-j} \to 0$ (j $\to \infty$), hence by the completeness of $Z_p^{},$

$$\overset{\infty}{\bigcap} \begin{array}{l} B \\ j=1 \end{array} \begin{array}{l} p^{-j} \begin{pmatrix} A_j \end{pmatrix} = \{A\}.$$

Finally, choose

$$x_{n_1} \in B_{p-1}(A_1), x_{n_2} \in B_{p-2}(A_2), \dots$$

Then

$$\lim_{j \to \infty} x = A.$$

<u>28:</u> APPLICATION Q_p is locally compact.

[Since Q_p is Hausdorff, it is enough to prove that each $x \in Q_p$ has a compact neighborhood. But Z_p is a compact neighborhood of 0, so $x + Z_p$ is a compact neighborhood of x.]

The set $p^{-n}Z_p$ $(n \ge 0)$ is the set of all $x \in Q_p$ such that $|x|_p \le p^n$. Therefore $Q_p = \bigcup_{n=0}^{\infty} p^{-n}Z_p$.

Accordingly, \boldsymbol{Q}_p is $\sigma\text{-compact}$ (the $p^{-n}\boldsymbol{Z}_p$ being compact).

29: SCHOLIUM A subset of Q_p is compact iff it is closed and bounded.

30: LEMMA Given $n,m \in Z$,

$$p^{n}Z_{p} \subset p^{m}Z_{p} \iff m \le n.$$

<u>31:</u> REMARK Take $n \ge 1$ — then the $p^n Z_p$ are principal ideals in Z_p and, apart from {0}, these are the only ideals in Z_p , thus Z_p is a principal ideal domain.

<u>32:</u> LEMMA For every $x_0 \in Q_p$ and r > 0, there is an integer n such that

$$N_{r}(x_{0}) = \{x \in Q_{p} : |x - x_{0}|_{p} < r\}$$
$$= N_{p-n}(x_{0}) = \{x \in Q_{p} : |x - x_{0}|_{p} < p^{-n}\}$$
$$= x_{0} + p^{n+1}Z_{p}.$$

33: SCHOLIUM The basic open sets in Q_p are the cosets of some power of pZ_p .

[Note: It is a corollary that every nonempty open subset of 0_p can be written as a disjoint union of cosets of the $p^n Z_p$ (n \in Z).]

34: LEMMA

$$p^{n}Z_{p}^{\times} = p^{n}Z_{p} - p^{n+1}Z_{p}.$$

35: DEFINITION The $p^{n}Z^{\times}$ are called shells.

36: N.B. There is a disjoint decomposition

$$Q_{p}^{\times} = \bigcup_{n \in \mathbb{Z}} p^{n} Z_{p}^{\times},$$

where

$$p^{n}Z_{p}^{x} = \bigcup_{1 \le k \le p-1} (p^{n}k + p^{n+1}Z_{p}).$$

[Note: For the record, Q_p^{\times} is totally disconnected and, being open in Q_p , is Hausdorff and locally compact. Moreover, Z_p^{\times} is open-closed (indeed, open-compact).]

Let $x \in Q_p^x$ — then there is a unique $v(x) \in Z$ and a unique $u(x) \in Z_p^x$ such that $x = p^{v(x)}u(x)$. Consequently,

$$Q_p^{\times} \approx \langle p \rangle \times Z_p^{\times}$$

or still,

$$Q_p^{\times} \approx Z \times Z_p^{\times}.$$

37: NOTATION For $n = 1, 2, \ldots$, put

$$U_{p,n} = 1 + p^n Z_p.$$

[Note:

$$1 + p^{n} Z_{p} = \{x \in Z_{p}^{x} : |1 - x|_{p} \le p^{-n}\}.$$

The $\textbf{U}_{p,n}$ are open-compact subgroups of \textbf{Z}_p^{x} and

$$Z_p^{\times} \rightarrow U_{p,1} \rightarrow U_{p,2} \rightarrow \cdots$$

38: LEMMA The collection $\{U_{p,n}:n \in N\}$ is a neighborhood basis at 1.

39: DEFINITION $U_{p,1} = 1 + pZ_p$ is called the group of principal units of Z_p .

<u>40:</u> LEMMA The quotient $Z_p^{\times}/U_{p,1}$ is isomorphic to F_p^{\times} and the index of $U_{p,1}$ in Z_p^{\times} is p - 1.

A generator of F_p^x can be "lifted" to Z_p^x .

41: THEOREM There exists a $\zeta \in Z_p^{\times}$ such that $\zeta^{p-1} = 1$ and $\zeta^k \neq 1$ (0 < k < p-1).

[This is a straightforward application of Hensel's lemma.]

<u>42:</u> <u>N.B.</u> $\zeta \notin U_{p,1}$ (p odd). [If $x \in Z_p$ and if for some $n \ge 1$,

$$(1 + px)^n = 1,$$

then using the binomial theorem one finds that x = 0. This said, suppose that

$$\zeta = 1 + pu(u \in Z_p) \implies (1 + pu)^{p-1} = 1 \implies u = 0,$$

a contradiction.]

<u>43:</u> SCHOLIUM Z_p can be written as a disjoint union

$$Z_p^{\times} = U_{p,1} \cup \zeta U_{p,1} \cup \zeta^2 U_{p,1} \cup \cdots \cup \zeta^{p-2} U_{p,1}.$$

Therefore

$$Q_p^{\times} \approx Z \times Z_p^{\times} \approx Z \times Z/(p-1)Z \times U_{p,1}.$$

<u>44:</u> LEMMA Any root of unity in Q_p lies in Z_p^{\times} .

PROOF If $x = p^{v(x)}u(x)$ and if $x^n = 1$, then nv(x) = 0, so v(x) = 0, thus $x \in Z_p^x$.

The roots of unity in Z_p^{\times} are a subgroup (as in any abelian group), call it T_p . If, on the other hand, G_{p-1} is the cyclic subgroup of Z_p^{\times} generated by ζ , then G_{p-1} consists of $(p-1)^{st}$ roots of unity, hence $G_{p-1} \subset T_p$.

45: LEMMA If $p \neq 2$, then $G_{p-1} = T_p$ but if p = 2, then $T_p = \{\pm 1\}$.

<u>46:</u> APPLICATION If p_1, p_2 are distinct primes, then 0_{p_1} is not field isomorphic to 0_{p_2} .

[Q has algebraic extensions of arbitrarily large linear degree which is not the case of R (cf. §5, #26).]

48: LEMMA Let $x \in Q_p^{\times}$ -- then $x \in Z_p^{\times}$ iff x^{p-1} possesses nth roots for infinitely many n.

PROOF If $x \in Z_p^{\times}$ and if n is not a multiple of p, then one can use Hensel's lemma to infer the existence of a $y_n \in Z_p$ such that $y_n^n = x^{p-1}$. Conversely, if $y_n^n = x^{p-1}$, then

$$nv(y_{n}) = (p-1)v(x),$$

thus n divides (p-1)v(x). But this can happen for infinitely many n only if v(x) = 0, implying thereby that x is a unit.

<u>49:</u> APPLICATION Let $\phi: \mathbb{Q}_p \to \mathbb{Q}_p$ be a field automorphism -- then ϕ preserves units.

[In fact, if $x \in Z_p^{\times}$, then

$$y_n^n = x^{p-1} \Rightarrow \phi(y_n)^n = (\phi(x))^{p-1}$$
.]

50: THEOREM The only field automorphism ϕ of 0_p is the identity. PROOF Given $x \in 0_p^{x}$, write $x = p^{v(x)}u(x)$, hence

$$\begin{split} \phi(\mathbf{x}) &= \phi(\mathbf{p}^{\mathbf{V}(\mathbf{x})}\mathbf{u}(\mathbf{x})) \\ &= \phi(\mathbf{p}^{\mathbf{V}(\mathbf{x})})\phi(\mathbf{u}(\mathbf{x})) = \mathbf{p}^{\mathbf{V}(\mathbf{x})}\phi(\mathbf{u}(\mathbf{x})), \end{split}$$

hence

$$v(\phi(x)) = v(x)$$
 $(\phi(u(x)) \in Z_p^{\times})$.

Therefore ϕ is continuous. Since Q is dense in Q_p , it then follows that $\phi = id_{Q_p}$. [Note:

$$\begin{aligned} \mathbf{x}_{\mathbf{k}} \neq \mathbf{0} &=> \left| \mathbf{x}_{\mathbf{k}} \right|_{\mathbf{p}} \neq \mathbf{0} \Rightarrow \mathbf{p} \qquad \rightarrow \mathbf{0} \\ &=> \mathbf{p} \qquad \qquad \rightarrow \mathbf{0} \Rightarrow \mathbf{p} \qquad \rightarrow \mathbf{0} \Rightarrow \left| \phi(\mathbf{x}_{\mathbf{k}}) \right|_{\mathbf{p}} \neq \mathbf{0} \Rightarrow \phi(\mathbf{x}_{\mathbf{k}}) \neq \mathbf{0}. \end{aligned}$$

The final structural item to be considered is that of quadratic extensions and to this end it is necessary to explicate $(Q_p^{\times})^2$, bearing in mind that

$$Q_p^{\times} \approx Z \times Z_p^{\times} \approx Z \times Z/(p-1)Z \times U_{p,1}$$

51: LEMMA If
$$p \neq 2$$
, then $U_{p,1}^2 = U_{p,1}$ but if $p = 2$, then $U_{2,1}^2 = U_{2,3}$.

52: APPLICATION If $p \neq 2$, then

$$(Q_p^{\times})^2 \approx 2Z \times 2(Z/(p-1)Z) \times U_{p,1}$$

but if p = 2, then

$$(Q_2^{\times})^2 \approx 2Z \times U_{2,3}$$
.

53: THEOREM If $p \neq 2$, then

$$[0_{p}^{\times}:(0_{p}^{\times})^{2}] = 4$$

but if p = 2, then

$$[0_2^{\times}: (0_2^{\times})^2] = 8.$$

54: REMARK If $p \neq 2$, then

$$\left(Q_{p}^{\times} \right)^{2} \approx Z/2Z \times Z/2Z$$

but if p = 2, then

$$Q_p^{\times}/(Q_p^{\times})^2 \approx Z/2Z \times Z/2Z \times Z/2Z.$$

55: CRITERION Suppose that $p \neq 2$.

• p is not a square.

[If $p = x^2$, write $x = p^{v(x)}u(x)$ to get

$$1 = v(p) = v(x^2) = 2v(x),$$

an untenable relation.]

• ζ is not a square.

[Assume that $\zeta = x^2$ -- then

$$\zeta^{p-1} = 1 \Rightarrow x^{2(p-1)} = 1,$$

thus x is a root of unity, thus $x \in T_p$, thus $x \in G_{p-1}$ (cf. #45), thus $x = \zeta^k$ (0 < k < p-1), thus $\zeta = (\zeta^k)^2 = \zeta^{2k}$, thus $1 = \zeta^{2k-1}$. But

$$2k < 2p-2 \Rightarrow 2k-1 < 2p-1$$
.

And

$$\begin{bmatrix} 2k - 1 = p - 1 => 2k = p => p \text{ even...} \\ 2k - 1 = 2p - 2 => 2k - 1 = 2(p-1) => 2k - 1 \text{ even...} \end{bmatrix}$$

• pζ is not a square.

[For if $p\zeta$ = $p^{2n}u^2$ (n \in Z), then

$$\zeta = p^{2n-1}u^2 \implies 1 = |\zeta|_p = |p^{2n-1}|_p = p^{1-2n}$$

 $\implies 1 - 2n = 0,$

an untenable relation.]

<u>56:</u> THEOREM If $p \neq 2$, then up to isomorphism, Q_p has three quadratic extensions, viz.

$$Q_p(\sqrt{p}), Q_p(\sqrt{z}), Q_p(\sqrt{pz}).$$

[Note: If $\tau_1 = p$, $\tau_2 = \zeta$, $\tau_3 = p\zeta$, then these extensions of Q_p are inequivalent since $\tau_i \tau_j^{-1}$ (i $\neq j$) is not a square in Q_p .]

57: REMARK Another choice for the three quadratic extensions of $\ensuremath{\mathbb{Q}}_p$ when $p\neq 2$ is

$$Q_{p}(\sqrt{p}), Q_{p}(\sqrt{a}), Q_{p}(\sqrt{pa}),$$

where 1 < a < p is an integer that is not a square mod p.

<u>58:</u> REMARK It can be shown that up to isomorphism, Q_2 has seven quadratic extensions, viz

$$Q_2(\sqrt{-1}), Q_2(\sqrt{\pm 2}), Q_2(\sqrt{\pm 5}), Q_2(\sqrt{\pm 10}).$$

59: EXAMPLE Take p = 5 -- then $2 \notin (Q_5^{\times})^2$, $3 \notin (Q_5^{\times})^2$ but $6 \in (Q_5^{\times})^2$. And

 $Q_{5}(\sqrt{2}) = Q_{5}(\sqrt{3})$.

[Working within Z_5^{\times} , consider the equation $x^2 = 2$ and expand x as usual:

$$\mathbf{x} = \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{5}^n \quad (\mathbf{a}_n \in A).$$

Then

 $a_0^2 \equiv 2 \mod 5$.

But the possible values of a_0 are 0, 1, 2, 3, 4, thus the congruence is impossible,

so $2 \notin (Q_5^{\times})^2$. Analogously, $3 \notin (Q_5^{\times})^2$. On the other hand, $6 \in (Q_5^{\times})^2$ (by direct verification or Hensel's lemma), hence $6 = \gamma^2$ ($\gamma \in Q_5$). Finally, to see that

$$Q_{5}(\sqrt{2}) = Q_{5}(\sqrt{3}),$$

it need only be shown that $\sqrt{2} = a + b \sqrt{3}$ for certain $a, b \in Q_5$. To this end, note that $\sqrt{2} \sqrt{3} = \pm \gamma$, from which

$$\sqrt{2} = \pm \frac{\gamma}{\sqrt{3}} = \pm \frac{\gamma}{3} \sqrt{3}.$$

<u>60:</u> EXAMPLE If p is odd, then p - l is even and $-1 \in G_{p-1}$. In addition, $-1 \in (Q_p^{\times})^2$ iff (p-1)/2 is even, i.e., iff $p \equiv 1 \mod 4$. Accordingly, to start $\sqrt{-1}$ exists in Q_5 , Q_{13} ,....

[Note: $\sqrt{-1}$ does not exist in Q₂.]

APPENDIX

Let $Q_p^{c\ell}$ be the algebraic closure of Q_p — then $|.|_p$ extends uniquely to $Q_p^{c\ell}$ (cf. §3, #12) (and satisfies the ultrametric inequality). Furthermore, the range of $|.|_p$ per $Q_p^{c\ell}$ is the set of all rational powers of p (plus 0).

<u>1:</u> THEOREM Q_p^{cl} is not second category.

<u>2:</u> APPLICATION The metric space Q_p^{cl} is not complete.

3: APPLICATION The Hausdorff space 0_p^{cl} is not locally compact (cf. §5, #5).

4: NOTATION Put

$$C_p = \overline{(Q_p^{Cl})}$$
,

the completion of $Q_p^{c\ell}$ per $|.|_p$.

<u>5:</u> THEOREM C_p is algebraically closed.

<u>6:</u> <u>N.B.</u> The metric space C_p is separable but the Hausdorff space C_p is not locally compact (cf. §5, #5).

§5. LOCAL FIELDS

Let K be a field of characteristic 0 equipped with a non-archimedean absolute value |.|.

1: NOTATION Let

$$R = \{a \in K: |a| ≤ 1\}$$

$$R^{\times} = \{a \in K: |a| = 1\}.$$

<u>2:</u> LEMMA R is a commutative ring with unit and R^{\times} is its multiplicative group of invertible elements.

3: NOTATION Let

$$P = \{a \in K: |a| < 1\}.$$

4: LEMMA P is a maximal ideal.

Therefore the quotient R/P is a field, the residue field of K.

5: THEOREM K is locally compact iff the following conditions are satisfied.
1. K is a complete metric space.

2. R/P is a finite field.

3. $|K^{\times}|$ is a nontrivial discrete subgroup of $R_{>0}$.

6: DEFINITION A local field is a locally compact field of characteristic 0.

7. EXAMPLE R and C are local fields.

8. EXAMPLE Q_p is a local field.

Assume that K is a non-archimedean local field.

9: LEMMA R is compact.

10: LEMMA P is principal, say $P = \pi R$, and

$$|\mathbf{K}^{\times}| = |\pi|^{\mathsf{Z}},$$

where $0 < |\pi| < 1$.

[Note: Such a π is said to be a prime element.]

<u>11:</u> REMARK A nontrivial discrete subgroup Γ of $R_{>0}$ is free on one generator $0 < \gamma < 1$:

$$\Gamma = \{\gamma^{II}: n \in \mathbb{Z}\}.$$

This said, choose π with the largest absolute value < 1, thus $\pi \in P \subset R \Rightarrow \pi R \subset P$. In the other direction,

$$a \in P \Longrightarrow |a| \le |\pi| \Longrightarrow \frac{a}{\pi} \in R.$$

And

$$a = \pi \cdot \frac{a}{\pi} \implies a \in \pi R.$$

<u>12:</u> FACT A locally compact topological vector space over a local field is necessarily finite dimensional.

13: THEOREM K is a finite extension of \boldsymbol{Q}_p for some p.

PROOF First, $K \supset Q$ (since char K = 0). Second, the restriction of |.| to Q is equivalent to $|.|_p$ (3 p) (cf. §1, #20), hence the closure of Q in K "is" Q_p (since K is complete). Third, K is finite dimensional over Q_p (since K is locally compact).

There is also a converse.

<u>14:</u> THEOREM Let K be a finite extension of Q_p -- then K is a local field. PROOF In view of #5, it suffices to equip K with a non-archimedean absolute value subject to conditions 1,2,3. But, by the extension principle (cf. §3, #11), $|\cdot|_p$ extends uniquely to K. This extension is non-archimedean and points 1,3 are manifest. As for point 2, it suffices to observe that the canonical arrow $Z_p/pZ_p \rightarrow R/P$ is injective and

$$[\mathbb{R}/\mathbb{P}:\mathbb{F}_{p}] \leq [\mathbb{K}:\mathbb{Q}_{p}] < \infty.$$

[Details: To begin with,

$$0_p \cap P = pZ_{p'}$$

thus the inclusion $\boldsymbol{Z}_p \rightarrow \boldsymbol{R}$ induces an injection

$$Z_p/pZ_p \rightarrow R/P.$$

Put now $n = [K:Q_p]$ and let $A_1, \ldots, A_{n+1} \in R$ -- then the claim is that the residue classes $\overline{A}_1, \ldots, \overline{A}_{n+1} \in R/P$ are linearly dependent over Z_p/pZ_p . In any event, there are elements $x_1, \ldots, x_{n+1} \in Q_p$ such that

$$\sum_{\substack{i=1\\i=1}}^{n+1} x_i A_i = 0,$$

matters being arranged in such a way that

$$\max |\mathbf{x}_i|_p = 1.$$

Therefore the $x_i \in Z_p$ and not every residue class $\bar{x}_i \in Z_p/pZ_p$ is zero. But then

$$\sum_{i=1}^{n+1} \bar{x}_i \bar{A}_i = 0$$

is a nontrivial dependence relation.]

<u>15:</u> SCHOLIUM A non-archimedean field of characteristic zero is a local field iff it is a finite extension of Q_p (3 p).

Let $K > Q_p$ be a finite extension of linear degree n -- then the <u>canonical</u> absolute value on K is given by

$$|\mathbf{a}|_{\mathbf{p}} = |\mathbf{N}_{\mathbf{K}}/\mathbf{Q}_{\mathbf{p}}(\mathbf{a})|_{\mathbf{p}}^{1/n}.$$

[Note: The normalized absolute value on K is given by

$$|\mathbf{a}|_{\mathbf{K}} = |\mathbf{a}|_{\mathbf{p}}^{\mathbf{n}}.$$

Its intrinsic significance will emerge in due course but for now observe that $|.|_{K}$ is equivalent to $|.|_{p}$ and is non-archimedean (cf. §1, #23).]

<u>16:</u> LEMMA The range of $|.|_p|K^{\times}$ is $|\pi|_p^{\mathbb{Z}}$.

17: DEFINITION The ramification index of K over Q_p is the positive integer

$$e = [|K^{\times}|_{p}: |Q_{p}^{\times}|_{p}].$$

I.e.:

$$e = [|\pi|_{p}^{Z}:|p|_{p}^{Z}].$$

Therefore

$$|\pi|_{p}^{e} = |p|_{p} (= \frac{1}{p}).$$

	[Cor	nside	er Z	and	eΖ		then	the	generator	1	of	Ζ	is	related	to	the	generator	е
of	eZ by	the	triv	viali	ity	1 -	+ •••	+ 1	= e•1 = e.	.]								

<u>18:</u> <u>N.B.</u> If π ' has the property that $|\pi'|_p^e = |p|_p$, then π' is a prime element.

[Using obvious notation, write $\pi' = \pi^{V(\pi)}u$, thus

$$|p|_{p} = |\pi'|_{p}^{e} = (|\pi|_{p}^{v(\pi)})^{e}$$
$$= (|\pi|_{p}^{e})^{v(\pi)} = |p|_{p}^{v(\pi)},$$

thus $v(\pi) = 1.$]

19: NOTATION

$$q \equiv card R/P = (card F_p)^f = p^f$$
,

SO

$$f = [R/P:F_p],$$

the residual index of K over Q_p .

20: THEOREM Let $K \supset Q_p$ be a finite extension of linear degree n -- then

$$n = [K:Q_p] = ef.$$

21: APPLICATION

$$|\pi|_{K} = |\pi|_{p}^{n} = |p|_{p}^{n/e}$$
$$= (\frac{1}{p})^{n/e} = (\frac{1}{p})^{f} = \frac{1}{p^{f}} = \frac{1}{q}.$$

View p as an element of K:

- $|p|_{p} = |N_{K/Q_{p}}(p)|_{p}^{1/n} = |p^{n}|_{p}^{1/n} = |p|_{p}.$
- $|p|_{K} = |N_{K/Q_{p}}(p)|_{p} = |p^{n}|_{p} = \frac{1}{p^{n}} = \frac{1}{p^{ef}} = (\frac{1}{p^{f}})^{e} = q^{-e}.$

22: DEFINITION A finite extension K of Q_p is

- unramified if e = 1
- ramified if f = 1.

Take the case K = $\ensuremath{\mathbb{Q}}_p$ -- then e = 1, hence K is unramified, and f = 1, hence K is ramified.

23: LEMMA If $K \supset Q_p$ is unramified, then p is a prime element.

<u>24:</u> THEOREM \forall n = 1,2,..., there is up to isomorphism one unramified extension K of Q_p of linear degree n.

Let K be a finite extension of Q_{p} .

25: LEMMA The group M^{\times} of roots of unity of order prime to p in K is cyclic of order $p^{f} - 1$ (= q-1).

<u>26:</u> LEMMA The set $M = M^{\times} \cup \{0\}$ is a set of coset representatives for R/P. Therefore (cf. §4, #43)

 $K^{\times} \approx Z \times R^{\times} \approx Z \times Z/(q-1)Z \times 1 + P.$

27: NOTATION Let

$$K_{ur} = Q_p(M^{\times})$$
.

28: LEMMA K_{ur} is the maximal unramified extension of Q_p in K and

$$[K_{ur}:Q_p] = f.$$

<u>29:</u> REMARK The maximal unramified extension $(Q_p^{cl})_{ur} \subset Q_p^{cl}$ is the field extension generated by all roots of unity of order prime to p.

<u>30:</u> QUADRATIC EXTENSIONS (cf. §4, #56) Suppose that $p \neq 2$, let $\tau \in Q_p^{\times} - (Q_p^{\times})^2$, and form the quadratic extension $Q_p(\tau) = \{x + y/\tau : x, y \in Q_p\}.$

Then the canonical absolute value on
$$\boldsymbol{Q}_p(\sqrt{\tau})$$
 is given by

$$|x + y\sqrt{\tau}|_{p} = |N_{Q_{p}}(\sqrt{\tau})/Q_{p}|(x + y\sqrt{\tau})|_{p}^{1/2}$$
$$= |x^{2} - \tau y^{2}|_{p}^{1/2}.$$

31: CLASSIFICATION Consider the three possibilities

$$Q_{p}(\sqrt{p}), Q_{p}(\sqrt{\tau}), Q_{p}(\sqrt{p\tau}),$$

thus here 2 = ef.

• $Q_p(\sqrt{p})$ is ramified or still, e = 2.

[Note that

$$|\sqrt{p}|_{p}^{2} = |0^{2} - (p)l^{2}|_{p} = |p|_{p} = \frac{1}{p}.$$

• $Q_p(\sqrt{p\zeta})$ is ramified or still, e = 2.

[Note that

$$|\sqrt{p\zeta}|^2 = |0^2 - (p\zeta)1^2|_p = |p\zeta|_p = |p|_p \cdot |\zeta|_p = |p|_p = \frac{1}{p}$$

If e = 1, then in either case, the value group would be p^{Z} , an impossibility since $\frac{1}{\sqrt{p}} \notin p^{Z}$, so e = 2.

• $Q_p(\sqrt{\zeta})$ is unramified or still, e = 1.

[There is up to isomorphism one unramified extension K of Q_p of linear degree 2 (cf. #24).]

[Instead of quoting theory, one can also proceed directly, it being simplest to work instead with $Q_p(\sqrt{a})$, where 1 < a < p is an integer that is not a square mod p (cf. §4, #57) -- then the residue field of $Q_p(\sqrt{a})$ is $F_p(\sqrt{a})$, hence f = 2, hence e = 1 (since n = 2).]

The preceding developments are absolute, i.e., based at Q_p . It is also possible to relativize the theory. Thus let $L \supset K \supset Q_p$ be finite extensions of Q_p . Append subscripts to the various quantities involved:

$$= R_{K} \rightarrow P_{K}, R_{K}/P_{K}, e_{K}, f_{K}, M_{K}^{\times}$$

$$= R_{L} \rightarrow P_{L}, R_{L}/P_{L}, e_{L}, f_{L}, M_{L}^{\times} .$$

Introduce

$$e(L/K) = [|L^{\times}|:|K^{\times}|]$$

f(L/K) = [R_L/P_L:R_K/P_K].

32: LEMMA

$$[L:K] = e(L/K) f(L/K).$$

PROOF We have

$$\begin{bmatrix} [L:Q_p] = e_L f_L \\ (cf. #20) \end{bmatrix}$$
$$\begin{bmatrix} [K:Q_p] = e_K f_K \end{bmatrix}$$

Therefore

$$[L:K] = \frac{[L:Q_p]}{[K:Q_p]} = \frac{e_L f_L}{e_K f_K} = e(L/K) f(L/K).$$

33: THEOREM Let $L \supset K \supset Q_p$ be finite extensions of Q_p -- then there exists a unique maximal intermediate extension $K \subset K_{ur} \subset L$ that is unramified over K. [In fact,

$$K_{ur} = K(M_{L}^{\times}) \subset L.$$

[Note: The extension $L \supset K$ is ramified.]

§6. HAAR MEASURE

Let X be a locally compact Hausdorff space.

<u>1:</u> DEFINITION A <u>Radon measure</u> is a measure μ defined on the Borel σ -algebra of X subject to the following conditions.

1. μ is finite on compacta, i.e., for every compact set K < X, μ (K) < ∞ . 2. μ is outer regular, i.e., for every Borel set A < X,

$$\mu(A) = \inf_{\substack{\mu \in U}} \mu(U),$$
$$U \supset A$$

where $U \subset X$ is open.

3. μ is inner regular, i.e., for every open set A $_{\rm C}$ X,

$$\mu(A) = \sup_{K \subset A} \mu(K),$$

where $K \subset X$ is compact.

Let G be a locally compact abelian group.

<u>2</u>: DEFINITION A <u>Haar measure</u> on G is a Radon measure μ_{G} which is translation invariant: \forall Borel set A, $\forall x \in G$,

$$\mu_{C}(x+A) = \mu_{C}(A) = \mu_{C}(A+x)$$

or still, $\forall f \in C_{C}(G)$, $\forall y \in G$,

$$\int_{G} f(x+y) d\mu_{G}(x) = \int_{G} f(x) d\mu_{G}(x).$$

3: THEOREM G admits a Haar measure and any two Haar measures $\mu_{G'} \vee_{G'}$ differ by a positive constant: $\mu_{G} = c \nu_{G'} (c > 0)$. nonempty

5: LEMMA G is compact iff G has finite Haar measure.

4: LEMMA Every open subset of G has positive Haar measure.

2.

8: EXAMPLE Take G = R[×] -- then $\mu_{R^{\times}} = \frac{dx}{|x|}$ (dx = Lebesgue measure) is a

6: LEMMA G is discrete iff every point of G has positive Haar measure.

7: EXAMPLE Take G = R -- then $\mu_R = dx$ (dx = Lebesgue measure) is a Haar

Haar measure $(\mu_{R^{\times}} ([1,e]) = \int_{1}^{e} \frac{dx}{|x|} = 1)$.

measure $(\mu_{R}([0,1]) = \int_{0}^{1} dx = 1)$.

9: EXAMPLE Take G = Z -- then μ_7 = counting measure is a Haar measure.

10: LEMMA Let G' be a closed subgroup of G and put G'' = G/G'. Fix Haar measures $\mu_{G'}$ $\mu_{G'}$ on G, G' respectively -- then there is a unique determination of the Haar measure $\boldsymbol{\mu}_{\mathbf{G}}$, on \mathbf{G}^{\prime} such that $\forall \ \mathbf{f} \in C_{_{\mathbf{C}}}(\mathbf{G})$,

$$\int_{G} f(x) d\mu_{G}(x) = \int_{G'} (\int_{G'} f(x+x') d\mu_{G'}(x')) d\mu_{G'}(x'').$$

[Note: The function

$$x \rightarrow \int_{C'} f(x+x') d\mu_{C'}(x')$$

is G'-invariant, hence is a function on G''.]

11: EXAMPLE Take G = R, G' = Z with the usual choice of Haar measures. Determine $\mu_{R/Z}$ per #10 -- then $\mu_{R/Z}(R/Z) = 1$.

[Let χ be the characteristic function of [0,1[-- then

is \equiv 1, hence when integrated over R/Z gives the volume of R/Z. On the other hand, $f_{RX} = 1.$]

Let K be a local field (cf. §5, #6). Given $a \in K^{\times}$, let $M_a: K \to K$ be the automorphism that sends x to ax = xa — then for any Haar measure μ_K on K, the composite $\mu_K \circ M_a$ is again a Haar measure on K, hence there exists a positive constant mod_K(a) such that for every Borel set A,

$$\mu_{K}(M_{a}(A)) = mod_{K}(a)\mu_{K}(A)$$

or still, $\forall f \in C_{C}(K)$,

$$\int_{K} f(a^{-1}x) d\mu_{K}(x) = mod_{K}(a) \int_{K} f(x) d\mu_{K}(x).$$

[Note: $\operatorname{mod}_{K}(a)$ is independent of the choice of μ_{K} .] Extend mod_{K} to all of K by setting $\operatorname{mod}_{K}(0)$ equal to 0.

<u>12:</u> LEMMA Let K,L be local fields, where L > K is a finite field extension -- then $\forall x \in L$,

$$mod_{L}(x) = mod_{K}(N_{L/K}(x))$$
$$\equiv mod_{K}(det(M_{x})).$$

[Let n = [L:K], view L as a vector space of dimension n, and identify L with K^{n} by choosing a basis. Proceed from here by breaking M_{x} into a product of n

"elementary" transformations.]

13: EXAMPLE Take K = R, L = R -- then $\forall a \in R$,

$$mod_p(a) = |a|.$$

 $[\forall f \in C_{C}(R),$

$$\int_{R} f(a^{-1}x) dx = |a| \int_{R} f(x) dx.$$

14: EXAMPLE Take K = R, L = C — then $\forall z \in C$,

$$\operatorname{mod}_{C}(z) = \operatorname{mod}_{R}(N_{C/R}(z))$$
$$= |z\overline{z}| = |z|^{2}.$$

15: LEMMA

$$\operatorname{mod}_{Q_p} = |.|_p.$$

To prove this, we need a preliminary.

16: LEMMA The arrow

$$\varepsilon_k: Z_p \to Z/p^k Z$$

that sends

$$\mathbf{x} = \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{p}^n \quad (\mathbf{a}_n \in \mathbf{A})$$

to

$$\Sigma_{n=0}^{k-1} \mod p^k$$

is a homomorphism of rings. It is surjective with kernel $p^{k}Z_{p}$, so $[Z_{p}:p^{k}Z_{p}] = p^{k}$

(cf. §4, #26), thus there is a disjoint decomposition of $\rm Z_{p}^{} :$

$$Z_{p} = \bigcup_{j=1}^{p^{k}} (x_{j} + p^{k} Z_{p}).$$

Normalize the Haar measure on Q_p by stipulating that

$$\mu_{Q_p}(Z_p) = 1.$$

[Note: In this connection, recall that Z_p is an open-compact set.] The claim now is that for every Borel set A,

$$\mu_{Q_p}(\mathbf{M}_{\mathbf{X}}(\mathbf{A})) = |\mathbf{x}|_p \mu_{Q_p}(\mathbf{A}).$$

Since the Borel σ -algebra is generated by the open sets, it is enough to take A open. But any open set can be written as a disjoint union of cosets of the subgroups $p^{k}Z_{p}$ (cf. §4, #33), hence, thanks to translation invariance, it suffices to deal with these alone:

$$\mu_{Q_p}(p^k Z_p) = \operatorname{mod}_{Q_p}(p^k) \mu_{Q_p}(Z_p)$$
$$= \operatorname{mod}_{Q_p}(p^k) = |p^k|_p.$$

1. $k \ge 0$:

=>

$$1 = \mu_{Q_p}(Z_p) = \mu_{Q_p}(\bigcup_{j=1}^{p^k} (x_j + p^k Z_p))$$
$$= p^k \mu_{Q_p}(p^k Z_p)$$

$$\mu_{Q_p}(p^k Z_p) = p^{-k} = |p^k|_p.$$

$$1 = \mu_{Q_{p}}(Z_{p}) = \mu_{Q_{p}}(p^{-k}p^{k}Z_{p})$$
$$= mod_{Q_{p}}(p^{-k})\mu_{Q_{p}}(p^{k}Z_{p})$$
$$= |p^{-k}|_{p}\mu_{Q_{p}}(p^{k}Z_{p})$$

$$\mu_{0_{p}}(p^{k}Z_{p}) = |p^{-k}|_{p}^{-1} = |p^{k}|_{p}.$$

17: SCHOLIUM If K is a finite extension of Q_p , then $\forall a \in K$, $mod_K(a) = |N_{K}/Q_p(a)|_{p'}$

the normalized absolute value on K mentioned in §5:

=>

$$mod_{K}(a) = |a|_{K} (= |a|_{p'}^{n}, n = [K:Q_{p}]).$$

18: CONVENTION Integration w.r.t. $\mu_{\begin{subarray}{c}p\\p\end{subarray}}$ will be denoted by dx:

$$\int_{Q_p} f(\mathbf{x}) d\mu_{Q_p}(\mathbf{x}) = \int_{Q_p} f(\mathbf{x}) d\mathbf{x}.$$

[Note: Points are of Haar measure zero:

=>

$$\{0\} = \bigcap_{k=1}^{\infty} p^{k} Z_{p}$$

$$\mu_{Q_p}(\{0\}) = \lim_{k \to \infty} \mu_{Q_p}(p^k Z_p)$$
$$= \lim_{k \to \infty} p^{-k} = 0.1$$

$$Z_{p}^{\times} = \bigcup_{1 \le k \le p-1} (k + pZ_{p}) \text{ (cf. §4, #23).}$$

Therefore

$$vol_{dx}(Z_p^{\times}) = (p-1)vol_{dx}(pZ_p)$$
$$= \frac{p-1}{p}.$$

$$vol_{dx}(p^{n}Z_{p}^{x}) = vol_{dx}(p^{n}Z_{p} - p^{n+1}Z_{p}) \quad (cf. §4, #34)$$
$$= vol_{dx}(p^{n}Z_{p}) - vol_{dx}(p^{n+1}Z_{p})$$
$$= |p^{n}|_{p} vol_{dx}(Z_{p}) - |p^{n+1}|_{p} vol_{dx}(Z_{p})$$
$$= p^{-n} - p^{-n-1}.$$

21: EXAMPLE Write

 $Z_{p} - \{0\} = \bigcup_{n \ge 0} p^{n} Z_{p}^{\times}.$

Then

$$\int Z_{p} \{0\}^{\log} |x|_{p} dx = \sum_{n=0}^{\infty} \int p^{n} Z_{p}^{\times} \log |x|_{p} dx$$
$$= \sum_{n=0}^{\infty} \log p^{-n} \operatorname{vol}_{dx} (p^{n} Z_{p}^{\times})$$
$$= -\log p \sum_{n=0}^{\infty} n (p^{-n} - p^{-n-1})$$

$$= -\log p \left(\sum_{n=0}^{\infty} \frac{n}{p^n} - \frac{1}{p} \sum_{n=0}^{\infty} \frac{n}{p^n}\right)$$
$$= -\left(1 - \frac{1}{p}\right)\log p \sum_{n=0}^{\infty} \frac{n}{p^n}$$
$$= -\left(1 - \frac{1}{p}\right)\log p \frac{p}{(p-1)^2}$$
$$= -\frac{\log p}{p-1}.$$

22: EXAMPLE

$$\int_{Z_{p}} \log |1 - x|_{p} dx = -\frac{\log p}{p-1}.$$

[Break Z_p^{x} up via the scheme

$$(Z_{p}^{\times}:a_{0} \neq 1) \cup (Z_{p}^{\times}:a_{0} = 1, a_{1} \neq 0) \cup (Z_{p}^{\times}:a_{0} = 1, a_{1} = 0, a_{2} \neq 0) \cup \dots$$

23: LEMMA The measure $\frac{dx}{|x|_p}$ is a Haar measure on the multiplicative group Q_p^{\times} . PROOF $\forall y \in Q_{p'}^{\times}$

$$\int_{Q_p^{\times}} f(y^{-1}x) \frac{dx}{|x|_p}$$

$$= |y|_p^{-1} \int_{Q_p^{\times}} f(y^{-1}x) \frac{1}{|y^{-1}x|_p} dx$$

$$= |y|_p^{-1} \mod_{Q_p} (y) \int_{Q_p^{\times}} f(x) \frac{dx}{|x|_p}$$

$$= |y|_{p}^{-1} |y|_{p} \int_{Q_{p}^{\times}} f(x) \frac{dx}{|x|_{p}}$$
$$= \int_{Q_{p}^{\times}} f(x) \frac{dx}{|x|_{p}}.$$

24: EXAMPLE

$$\operatorname{vol}_{\frac{\mathrm{dx}}{|\mathbf{x}|_{p}}} (p^{n} Z_{p}^{\mathsf{x}}) = \operatorname{vol}_{\frac{\mathrm{dx}}{|\mathbf{x}|_{p}}} (Z_{p}^{\mathsf{x}})$$
$$= \int_{Z_{p}^{\mathsf{x}}} \frac{\mathrm{dx}}{|\mathbf{x}|_{p}} = \int_{Z_{p}^{\mathsf{x}}} \mathrm{dx}$$
$$= \operatorname{vol}_{\mathrm{dx}} (Z_{p}^{\mathsf{x}}) = \frac{p-1}{p}.$$

25: DEFINITION The normalized Haar measure on the multiplicative group $\boldsymbol{Q}_p^{\mathsf{X}}$ is given by

$$d^{x}x = \frac{p}{p-1} \frac{dx}{|x|_{p}}.$$

Accordingly,

$$\operatorname{vol}_{d^{\times}x}(Z_{p}^{\times}) = 1,$$

this condition characterizing $d^{x}x$.

• •

26: EXAMPLE Let s be a complex variable with Re(s) > 1. Write

$$Z_{p} - \{0\} = \bigcup_{n \ge 0} p^{n} Z_{p}^{\times}.$$

Then

$$\int_{Z_{p}} \{0\} |\mathbf{x}|_{p}^{s} d^{x} \mathbf{x}$$
$$= \sum_{n=0}^{\infty} p^{-ns} \int_{Z_{p}} d^{x} \mathbf{x}$$
$$= \sum_{n=0}^{\infty} p^{-ns} = \frac{1}{1 - p^{-s}},$$

the pth factor in the Euler product for the Riemann zeta function.

Let K be a finite extension of Q_p . Given a Haar measure da on K, put

$$d^{X}a = \frac{q}{q-1} \frac{da}{|a|_{K}}$$

Then $\frac{da}{|a|_{K}}$ is a Haar measure on K^{\times} and we have

$$\operatorname{vol}_{d^{\times}a}(R^{\times}) = \int_{R^{\times}} \frac{q}{q-1} \frac{da}{|a|_{K}}$$
$$= \frac{q}{q-1} \int_{R^{\times}} da$$
$$= \sum_{n=0}^{\infty} q^{-n} \int_{R^{\times}} da$$
$$= \sum_{n=0}^{\infty} \int_{R^{\times}} q^{-n} da$$
$$= \sum_{n=0}^{\infty} \int_{\pi^{n}R^{\times}} da$$

$$= \int_{\substack{\bigcup \pi^{n} R^{\times} \\ n \ge 0}} da$$

=
$$\int_{\mathbf{R}} d\mathbf{a} = \operatorname{vol}_{d\mathbf{a}}(\mathbf{R})$$
.

§7. HARMONIC ANALYSIS

Let G be a locally compact abelian group.

1: DEFINITION A character of G is a continuous homomorphism $\chi: G \rightarrow C^{\times}$.

2. NOTATION Write \tilde{G} for the group whose elements are the characters of G.

3: DEFINITION A unitary character of G is a continuous homomorphism $\chi: G \rightarrow T$.

<u>4:</u> NOTATION Write \hat{G} for the group whose elements are the unitary characters of G.

5: LEMMA There is a decomposition

$$\tilde{G} \approx \tilde{G}_{\perp} \times \hat{G}_{i}$$

PROOF The only positive unitary character is trivial, so $\tilde{G}_{+} \cap \hat{G} = \{1\}$. On the other hand, if χ is a character, then $|\chi|$ is a positive character, $\chi/|\chi|$ is a unitary character, and $\chi = |\chi| \left(\frac{\chi}{|\chi|}\right)$.

<u>6:</u> LEMMA Every bounded character of G is a unitary character. PROOF The only compact subgroup of $R_{>0}$ is the trivial subgroup {1}.

7: APPLICATION If G is compact, then every character of G is unitary.

<u>8:</u> EXAMPLE Take G = Z -- then $\tilde{G} \approx C^{\times}$, the isomorphism being given by the map $\chi \rightarrow \chi(1)$.

9: EXAMPLE Take G = R -- then $\widetilde{G} \approx R \times R$ and every character has the form $\chi(x) = e^{Zx}$ (z \in C).

<u>10:</u> EXAMPLE Take G = C — then $\tilde{G} \approx C \times C$ and every character has the form $\chi(x) = \exp(z_1 \operatorname{Re}(x) + z_2 \operatorname{Im}(x)) \ (z_1, z_2 \in C).$

<u>11:</u> EXAMPLE Take $G = R^{\times}$ -- then $\tilde{G} \approx Z/2Z \times C$ and every character has the form $\chi(x) = (\text{sgn } x)^{\sigma} |x|^{s}$ ($\sigma \in \{0,1\}$, $s \in C$).

<u>12:</u> EXAMPLE Take $G = C^{\times}$ -- then $\tilde{G} \approx Z \times C$ and every character has the form $\chi(x) = \exp(\sqrt{-1} n \arg x) |x|^{S} (n \in Z, s \in C)$.

13: DEFINITION The dual group of G is \hat{G} .

<u>14:</u> RAPPEL Let X,Y be topological spaces and let F be a subspace of C(X,Y). Given a compact set $K \subset X$ and an open subset $V \subset Y$, let W(K,V) be the set of all $f \in F$ such that $f(K) \subset V$ --- then the collection $\{W(K,V)\}$ is a subbasis for the compact open topology on F.

[Note: The family of finite intersections of sets of the form W(K,V) is then

a basis for the compact open topology: Each member has the form $\bigcap_{i=1}^{n} W(K_{i}, V_{i}), i=1$ where the $K_{i} \in X$ are compact and the $V_{i} \in Y$ are open.]

Equip \hat{G} with the compact open topology.

<u>15:</u> FACT The compact open topology on \hat{G} coincides with the topology of uniform convergence on compact subsets of G.

2.

16: LEMMA Ĝ is a locally compact abelian group.

17: REMARK \tilde{G} is also a locally compact abelian group and the decomposition

is topological.

<u>18:</u> EXAMPLE Take G = R and given a real number t, let $\chi_t(x) = e^{\sqrt{-1} tx}$ -then χ_t is a unitary character of G and for any $\chi \in \hat{G}$, there is a unique $t \in R$ such that $\chi = \chi_t$, hence G can be identified with \hat{G} .

19: EXAMPLE Take G = R² and given a point (t_1, t_2) , let $\chi(t_1, t_2)$ (x_1, x_2)

 $= e^{\sqrt{-1} (t_1 x_1 + t_2 x_2)} - then \chi_{(t_1, t_2)} \text{ is a unitary character of G and for any}$ $\chi \in \hat{G}, \text{ there is a unique } (t_1, t_2) \in \mathbb{R}^2 \text{ such that } \chi = \chi_{(t_1, t_2)}, \text{ hence G can be}$ identified with \hat{G} .

<u>20:</u> EXAMPLE Take G = Z/nZ and given an integer m = 0,1,..., n-1, let $\chi_{\rm m}(k) = \exp(2\pi\sqrt{-1} \frac{\rm km}{\rm n})$ -- then $\chi_0, \chi_1, \ldots, \chi_{\rm n-1}$ are the characters of G, hence G can be identified with \hat{G} .

21: LEMMA If G is compact, then \hat{G} is discrete.

<u>22:</u> EXAMPLE Take G = T and given $n \in Z$, let $\chi_n(e^{\sqrt{-1} \theta}) = e^{\sqrt{-1} n\theta}$ -- then χ_n is a unitary character of G and all such have this form, so $T \approx Z$.

23: LEMMA If G is discrete, then \hat{G} is compact.

<u>24:</u> EXAMPLE Take G = Z and given $e^{\sqrt{-1} \theta} \in T$, let $\chi_{\theta}(n) = e^{\sqrt{-1} \theta n}$ -- then χ_{θ} is a unitary character of G and all such have this form, so $\hat{Z} \approx T$.

<u>25:</u> LEMMA If G_1, G_2 are locally compact abelian groups, then $G_1 \times G_2$ is topologically isomorphic to $\hat{G}_1 \times \hat{G}_2$.

<u>26:</u> EXAMPLE Take $G = R^{\times}$ — then $G \approx Z/2Z \times R_{>0}^{\times} \approx Z/2Z \times R$, thus \hat{G} is topologically isomorphic to $Z/2Z \times R$:

$$(u,t) \rightarrow \chi_{u,t}$$
 $(u \in \mathbb{Z}/2\mathbb{Z}, t \in \mathbb{R}),$

where

$$\chi_{u,t}(x) = (\frac{x}{|x|})^{u} |x|^{\sqrt{-1} t}.$$

<u>27:</u> EXAMPLE Take $G = C^{\times}$ -- then $G \approx T \times R_{>0}^{\times} \approx T \times R$, thus \hat{G} is topologically isomorphic to $Z \times R$:

$$(n,t) \rightarrow \chi_{n,t}$$
 $(n \in \mathbb{Z}, t \in \mathbb{R}),$

where

$$\chi_{n,t}(z) = (\frac{z}{|z|})^n |z|^{\sqrt{-1} t}.$$

Denote by ev_{G} the canonical arrow $G \rightarrow \hat{G}$:

$$ev_{G}(x)(\chi) = \chi(x)$$
.

<u>28:</u> REMARK If G,H are locally compact abelian groups and if $\phi: G \rightarrow H$ is a continuous homomorphism, then there is a commutative diagram

<u>29:</u> PONTRYAGIN DUALITY ev_{G} is an isomorphism of groups and a homeomorphism of topological spaces.

<u>30:</u> SCHOLIUM Every compact abelian group is the dual of a discrete abelian group and every discrete abelian group is the dual of a compact abelian group.

<u>31:</u> REMARK Every finite abelian group is isomorphic to its dual $\hat{G}: G \approx \hat{G}$ (but the isomorphism is not "functorial").

Let H be a closed subgroup of G.

32: NOTATION Put

$$\mathbf{H}^{\mathsf{L}} = \{ \chi \in \widehat{\mathsf{G}} : \chi | \mathsf{H} = \mathsf{1} \}.$$

33: LEMMA H^{\perp} is a closed subgroup of \hat{G} and $H = H^{\perp \perp}$.

Let $\pi_{_{_{\mathbf{H}}}}: \mathbf{G} \rightarrow \mathbf{G}/\mathbf{H}$ be the projection and define

$$\begin{vmatrix} - & \phi : \widehat{G/H} \to H^{\perp} \\ & \psi : \widehat{G/H}^{\perp} \to \widehat{H} \end{vmatrix}$$

$$\Phi(\chi) = \chi \circ \pi_{H}$$

$$\Psi(\chi H^{\perp}) = \chi | H.$$

34: LEMMA Φ and Ψ are isomorphisms of topological groups.

35: APPLICATION Every unitary character of H extends to a unitary character of G.

<u>36:</u> EXAMPLE Let G be a finite abelian group and let H be a subgroup of G -- then G contains a subgroup isomorphic to G/H.

[In fact,

$$G/H \approx G/H \approx H^{\perp} \subset \hat{G} \approx G.]$$

37: REMARK Denote by LCA the category whose objects are the locally compact abelian groups and whose morphisms are the continuous homomorphisms -- then

$$^{:LCA} \rightarrow LCA$$

is a contravariant functor. This said, consider the short exact sequence

$$1 \longrightarrow H \longrightarrow G \xrightarrow{\pi_{H}} G/H \longrightarrow 1$$

and apply ^:

$$1 \longrightarrow \widehat{G/H} \approx H^{\perp} \longrightarrow \widehat{G} \longrightarrow \widehat{H} \approx \widehat{G/H^{\perp}} \longrightarrow 1,$$

which is also a short exact sequence.

Given $f\in \text{L}^1(G)\,,$ its Fourier transform is the function

 $\hat{f}:\hat{G} \rightarrow C$

defined by the rule

$$f(\chi) = \int_G f(x) \chi(x) d\mu_G(x) d\mu_G(x)$$

38: EXAMPLE Take G = R -- then $\hat{R} \approx R$ and

$$\hat{f}(\chi_t) \equiv \hat{f}(t) = \int_{-\infty}^{\infty} f(x) e^{\sqrt{-1} tx} dx.$$

<u>39:</u> EXAMPLE Take $G = R^2$ -- then $\hat{R}^2 \approx R^2$ and

$$\hat{f}(\chi_{(t_1,t_2)}) \equiv \hat{f}(t_1,t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1,x_2) e^{\sqrt{-1}(t_1x_1 + t_2x_2)} dx_1 dx_2.$$

40: EXAMPLE Take G = T -- then $\hat{T} \approx Z$ and

$$\hat{f}(\chi_n) \equiv \hat{f}(n) = \int_0^{2\pi} f(\theta) e^{\sqrt{-1} n\theta} d\theta.$$

41: EXAMPLE Take G = Z -- then $\hat{Z} \approx T$ and

$$\hat{f}(\chi_{\theta}) \equiv \hat{f}(\theta) = \sum_{n=-\infty}^{\infty} f(n) e^{\sqrt{-1} n\theta}.$$

<u>42:</u> EXAMPLE Take G = Z/nZ -- then $Z/nZ \approx Z/nZ$ and

$$\hat{f}(\chi_{m}) \equiv \hat{f}(m) = \sum_{k=0}^{n-1} f(k) \exp(2\pi\sqrt{-1} \frac{km}{n}).$$

<u>43:</u> LEMMA $\hat{f}:\hat{G} \rightarrow C$ is a continuous function on \hat{G} that vanishes at infinity

and

$$\left|\left|\hat{f}\right|\right|_{\infty} \leq \left|\left|f\right|\right|_{1}$$

<u>44:</u> NOTATION INV(G) is the set of continuous functions $f \in L^{1}(G)$ with the property that $\hat{f} \in L^{1}(\hat{G})$.

45: FOURIER INVERSION Given a Haar measure μ_{G} on G, there exists a unique Haar measure $\mu_{\hat{G}}$ on \hat{G} such that $\forall f \in INV(G)$,

$$f(\mathbf{x}) = \int_{\hat{G}} \hat{f}(\chi) \overline{\chi(\mathbf{x})} d\mu_{\hat{G}}(\chi) .$$

If G is compact, then it is customary to normalize $\mu_{\rm G}$ by the requirement $f_{\rm G}~ld\mu_{\rm G}$ = 1.

46: LEMMA

$$\int_{\mathbf{G}} \chi(\mathbf{x}) d\mu_{\mathbf{G}}(\mathbf{x}) = \begin{bmatrix} -1 & \text{if } \chi = 0 \\ \\ 0 & \text{if } \chi \neq 0. \end{bmatrix}$$

PROOF The case $\chi = 0$ is clear. On the other hand, if $\chi \neq 0$, then there exists $x_0:\chi(x_0) \neq 1$, hence

$$\begin{split} f_{\rm G} \chi(\mathbf{x}) d\mu_{\rm G}(\mathbf{x}) &= f_{\rm G} \chi(\mathbf{x} - \mathbf{x}_0 + \mathbf{x}_0) d\mu_{\rm G}(\mathbf{x}) \\ &= \chi(\mathbf{x}_0) f_{\rm G} \chi(\mathbf{x} - \mathbf{x}_0) d\mu_{\rm G}(\mathbf{x}) \\ &= \chi(\mathbf{x}_0) f_{\rm G} \chi(\mathbf{x}) d\mu_{\rm G}(\mathbf{x}) \end{split}$$

=>

 $\int_{\mathbf{G}} \chi(\mathbf{x}) d\mu_{\mathbf{G}}(\mathbf{x}) = 0.$

Assuming still that G is compact (=> \hat{G} is discrete), take f = 1:

$$\hat{f}(0) = 1, \ \hat{f}(\chi) = 0 \quad (\chi \neq 0).$$

I.e.: \hat{f} is the characteristic function of $\{0\}$, hence is integrable, thus $f \in INV(G)$. Accordingly, if $\mu_{\hat{G}}$ is the Haar measure on \hat{G} per Fourier inversion, then

$$1 = f(0) = \int_{\hat{G}} \hat{f}(\chi) d\mu_{\hat{G}}(\chi)$$
$$= \mu_{\hat{G}}(\{0\}),$$

so $\forall \chi \in \hat{G}$,

$$\mu_{G}(\{\chi\}) = 1.$$

47: EXAMPLE Take G = T -- then
$$d\mu_G = \frac{d\theta}{2\pi}$$
, so for $f \in INV(G)$,
 $f(0) = \sum_{n=1}^{\infty} \hat{f}(n) e^{-\sqrt{-1} n\theta}$

$$f(\theta) = \sum_{n=-\infty} \hat{f}(n) e^{-\gamma - 1 \theta}$$

where

$$\hat{f}(n) = \int_{0}^{2\pi} f(\theta) e^{\sqrt{-1} n\theta} \frac{d\theta}{2\pi}$$

If G is discrete, then it is customary to normalize μ_G by stipulating that singletons are assigned measure 1.

48: REMARK There is a conflict if G is both compact and discrete, i.e., if G is finite.

Assuming still that G is discrete (=> \hat{G} is compact), take f(0) = 1,

 $f(x) = 0 (x \neq 0)$:

$$\hat{f}(\chi) = f_{G} f(x) \chi(x) d\mu_{G}(x)$$
$$= f(0) \chi(0) \mu_{G}(\{0\})$$
$$= 1.$$

I.e.: \hat{f} is the constant function 1, hence is integrable, thus $f \in INV(G)$. Accordingly, if $\mu_{\hat{G}}$ is the Haar measure on \hat{G} per Fourier inversion, then

$$\mu_{\hat{G}}(\hat{G}) = f_{\hat{G}} Id\mu_{\hat{G}}(\chi)$$

$$= \int_{\hat{G}} \hat{f}(\chi) d\mu_{\hat{G}}(\chi)$$
$$= \int_{\hat{G}} \hat{f}(\chi) \chi(0) d\mu_{\hat{G}}(\chi)$$
$$= f(0) = 1.$$

49: EXAMPLE Take G = Z/nZ and let μ_G be the counting measure (thus here $\mu_G(G) = n$) -- then $\mu_{\widehat{G}}$ is the counting measure divided by n and for $f \in INV(G)$,

$$f(k) = \frac{1}{n} \sum_{m=0}^{n-1} \hat{f}(m) \exp(-2\pi \sqrt{-1} \frac{km}{n}),$$

where

$$\hat{f}(m) = \sum_{k=0}^{n-1} f(k) \exp(2\pi\sqrt{-1} \frac{km}{n}).$$

50: EXAMPLE Take G = R and let $\mu_{G} = \alpha dx$ ($\alpha > 0$), hence $\mu_{\hat{G}} = \beta dt$ ($\beta > 0$)

and we claim that

$$1 = 2\alpha\beta\pi$$
.

To establish this, recall first that the formalism is

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x) e^{\sqrt{-1} tx} dx$$
$$f(x) = \int_{-\infty}^{\infty} \hat{f}(t) e^{-\sqrt{-1} tx} \beta dt.$$

Let $f(x) = e^{-|x|}$ -- then

$$\frac{2\alpha}{1+t^2} = \int_{-\infty}^{\infty} e^{-|\mathbf{x}|} e^{\sqrt{-1} t \mathbf{x}} d\mathbf{x},$$

so $\texttt{f} \in \texttt{INV}(\texttt{G})$, thus

$$e^{-|\mathbf{x}|} = \int_{-\infty}^{\infty} \frac{2\alpha}{1+t^2} e^{-\sqrt{-1} t\mathbf{x}} \beta dt$$
$$= 2\alpha\beta \int_{-\infty}^{\infty} \frac{e^{-\sqrt{-1} t\mathbf{x}}}{1+t^2} dt.$$

Now put x = 0:

$$1 = 2\alpha\beta \int_{-\infty}^{\infty} \frac{dt}{1+t^2} = 2\alpha\beta\pi,$$

as claimed. One choice is to take

$$\alpha = \beta = \frac{1}{\sqrt{2\pi}},$$

the upshot then being that the Haar measure of [0,1] is not 1 but rather $\frac{1}{\sqrt{2\pi}}$.

<u>51:</u> NOTATION Given $f \in L^{1}(R)$, let

$$F_{R}f(t) = \int_{-\infty}^{\infty} f(x) e^{2\pi \sqrt{-1} tx} dx.$$

Therefore

$$F_{R}f(t) = \sqrt{2\pi} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{2\pi\sqrt{-1} tx} dx$$
$$= \sqrt{2\pi} \hat{f}(2\pi t).$$

52: STANDARDIZATION (G = R) Let $f \in INV(R)$ -- then

$$F_R F_R f(x) = f(-x).$$

[In fact,

$$F_{R}F_{R}f(x) = \int_{-\infty}^{\infty} F_{R}f(t)e^{2\pi\sqrt{-1}tx}dt$$
$$= \int_{-\infty}^{\infty} \sqrt{2\pi} \hat{f}(2\pi t)e^{2\pi\sqrt{-1}tx}dt$$
$$= \sqrt{2\pi} \int_{-\infty}^{\infty} \hat{f}(u)e^{\sqrt{-1}ux}\frac{du}{2\pi}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(t)e^{\sqrt{-1}tx}dt$$
$$= f(-x).]$$

Fourier inversion in the plane takes the form

$$\begin{bmatrix} \hat{f}(t_{1},t_{2}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_{1},x_{2}) e^{-\int_{-1}^{\infty} (t_{1}x_{1}+t_{2}x_{2})} dx_{1} dx_{2} \\ f(x_{1},x_{2}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(t_{1},t_{2}) e^{-\int_{-1}^{-1} (t_{1}x_{1}+t_{2}x_{2})} dt_{1} dt_{2} dt_{2}$$

One may then introduce

$$F_{R^{2}}f(t_{1},t_{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_{1},x_{2})e^{2\pi\sqrt{-1}(t_{1}x_{1}+t_{2}x_{2})} dx_{1}dx_{2}$$

$$= 2\pi f(2\pi t_1, 2\pi t_2)$$

and, proceeding as above, find that

$$F_{R^2}F_{R^2}f(x_1,x_2) = f(-x_1,-x_2).$$

Now identify R^2 with C and recall that $tr_{C/R}(z) = z + \overline{z}$. Write

 $\begin{vmatrix} w &= a + \sqrt{-1} b \\ z &= x + \sqrt{-1} y. \end{vmatrix}$

Then

$$wz + \overline{wz} = 2Re(wz) = 2(ax - by)$$

Therefore

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{2\sqrt{-1}(ax-by)} dxdy$$
$$= \hat{f}(2a,-2b),$$

[Note: Let $\chi_w(z) = \exp(\sqrt{-1} (wz + wz))$ -- then χ_w is a unitary character of C and for any $\chi \in \hat{C}$, there is a unique $w \in C$ such that $\chi = \chi_w$, hence $\hat{C} \approx C$.]

53: NOTATION Given
$$f \in L^{1}(\mathbb{R}^{2})$$
, let

$$F_{C}f(w) = F_{C}f(a,b)$$

$$= 2F_{\mathbb{R}^{2}}f(2a,-2b)$$

$$= 4\pi \hat{f}(4\pi a,-4\pi b)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{4\pi \sqrt{-1}(ax-by)} 2dxdy.$$

$$F_{C}F_{C}f(x,y) = f(-x,-y).$$

[In fact,

٠

$$\begin{aligned} \mathsf{F}_{\mathsf{C}}\mathsf{F}_{\mathsf{C}}\mathsf{f}(\mathbf{x},\mathbf{y}) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\mathsf{F}_{\mathsf{C}}\mathsf{f}(\mathbf{a},\mathbf{b}) e^{4\pi\sqrt{-1}(\mathbf{ax}-\mathbf{by})} 2dadb \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 4\pi \hat{\mathsf{f}}(4\pi \mathbf{a},-4\pi \mathbf{b}) e^{4\pi\sqrt{-1}(\mathbf{ax}-\mathbf{by})} 2dadb \\ &= \frac{4\pi}{(4\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{\mathsf{f}}(\mathbf{u},-\mathbf{v}) e^{\sqrt{-1}(\mathbf{ux}-\mathbf{vy})} 2dudv \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{\mathsf{f}}(\mathbf{u},-\mathbf{v}) e^{\sqrt{-1}(\mathbf{ux}-\mathbf{vy})} dudv \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{\mathsf{f}}(\mathbf{u},-\mathbf{v}) e^{-\sqrt{-1}(-\mathbf{ux}+\mathbf{vy})} dudv \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{\mathsf{f}}(\mathbf{u},\mathbf{v}) e^{-\sqrt{-1}(-\mathbf{ux}-\mathbf{vy})} dudv \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{\mathsf{f}}(\mathbf{u},\mathbf{v}) e^{-\sqrt{-1}(-\mathbf{ux}-\mathbf{vy})} dudv \\ &= \mathsf{f}(-\mathbf{x},-\mathbf{y}). \end{aligned}$$

<u>55:</u> PLANCHEREL THEOREM The Fourier transform restricted to $L^{1}(G) \cap L^{2}(G)$ is an isometry (with respect to L^{2} norms) onto a dense linear subspace of $L^{2}(\hat{G})$, hence can be extended uniquely to an isometric isomorphism $L^{2}(G) \rightarrow L^{2}(\hat{G})$.

56: PARSEVAL FORMULA
$$\forall f,g \in L^2(G)$$
,
$$\int_G f(x)\overline{g(x)}d_G(x) = \int_{\hat{G}} \hat{f}(\chi)\overline{\hat{g}(\chi)}d_{\hat{G}}(\chi).$$

57: N.B. In both of these results, the Haar measure on \hat{G} is per Fourier inversion.

§8. ADDITIVE p-ADIC CHARACTER THEORY

1: FACT Every proper closed subgroup of T is finite.

Suppose that G is compact abelian and totally disconnected.

<u>2:</u> LEMMA If $\chi \in \hat{G}$, then the image $\chi(G)$ is a finite subgroup of T. PROOF Ker χ is closed and

$$\chi$$
(G) \approx G/Ker χ .

But the quotient G/Ker χ is 0-dimensional, hence totally disconnected. Therefore $\chi(G)$ is totally disconnected. Since T is connected, it follows that T $\neq \chi(G)$, thus $\chi(G)$ is finite.

<u>3:</u> <u>N.B.</u> The torsion of R/Z is Q/Z, so χ factors through the inclusion Q/Z \rightarrow R/Z, i.e., χ (G) \subset Q/Z.

The foregoing applies in particular to $G = Z_{p}$.

<u>4:</u> LEMMA Every character of Q_p is unitary. PROOF This is because

$$Q_{p} = \bigcup_{n \in \mathbb{Z}} p^{n} Z_{p'}$$

where the $p^{n}Z_{p}$ are compact, thus §7, #7 is applicable.

 $\underbrace{ 5:}_{2} \quad \text{If } \chi \in \hat{\mathbb{Q}}_p \text{ is nontrivial, then there exists an } n \in \mathbb{Z} \text{ such that } \chi \exists 1 \\ \text{ on } p^n \mathbb{Z}_p \text{ but } \chi \not \equiv 1 \text{ on } p^{n-1} \mathbb{Z}_p.$

PROOF Consider a ball B of radius $\frac{1}{2}$ about 1 in C[×] -- then the only subgroup of C[×] contained in B is the trivial subgroup and, by continuity, $\chi(p^n Z_p)$ must be

inside B for all sufficiently large n, thus must be identically 1 there.

<u>6</u>: DEFINITION The <u>conductor</u> con χ of a nontrivial $\chi \in \hat{Q}_p$ is the largest subgroup $p^n Z_p$ on which χ is trivial (and n is the minimal integer with this property).

A typical x \neq 0 of Q_p has the form

$$\mathbf{x} = \sum_{n=\mathbf{v}(\mathbf{x})}^{\infty} a_n p^n (a_n \in \mathbf{A}, \mathbf{v}(\mathbf{x}) \in \mathbf{Z})$$

$$= f(x) + [x].$$

Here the fractional part f(x) of x is defined by the prescription

$$f(x) = \begin{bmatrix} -1 \\ \Sigma \\ n=v(x) \end{bmatrix} n^{n} \text{ if } v(x) < 0$$

0 if $v(x) \ge 0$

and the integral part [x] of x is defined by the prescription

$$[\mathbf{x}] = \sum_{n=0}^{\infty} a_n p^n,$$

with f(0) = 0, [0] = 0 by convention.

$$f(x) \in Z[\frac{1}{p}] \subset Q,$$

where

$$Z[\frac{1}{p}] = \{\frac{n}{k}: n \in \mathbb{Z}, k \in \mathbb{Z}\},\$$

8: OBSERVATION

$$0 \leq f(x) = \sum_{\substack{1 \leq j \leq -v(x) \\ j = 1}} \frac{a_{-j}}{p^{j}}$$
$$< (p-1) \sum_{\substack{j=1 \\ j=1}}^{\infty} \frac{1}{p^{j}} = 1$$

$$f(x) \in [0,1[\cap Z[\frac{1}{p}]].$$

Let μ_{m} stand for the group of roots of unity in C^{\times} having order a power of p^{ω}

p, thus μ_{∞} is a p-group and is an increasing sequence of cyclic groups p

$$\begin{array}{c} \mu_{p} \subset \mu_{2} \subset \cdots \subset \mu_{k} \subset \cdots \\ \mu_{p} \qquad p^{2} \qquad p^{k'} \end{array}$$

where

$$\mu_{p} = \{z \in C^{\times} : z^{p} = 1\}.$$

9: REMARK Denote by μ the group of all roots of unity in $C^{\times},$ hence

$$\mu = \bigcup_{m \ge 1} \mu_m, \ \mu_m = \{z \in C^{\times} : z^m = 1\}.$$

Then μ is an abelian torsion group and μ_{∞} is the p-Sylow subgroup of μ , i.e., the p maximal p-subgroup of $\mu.$

Put

$$\chi_{p}(\mathbf{x}) = \exp(2\pi\sqrt{-1} \mathbf{f}(\mathbf{x})) \quad (\mathbf{x} \in \mathbf{Q}_{p}).$$

Then

$$\chi_p: Q_p \rightarrow T$$

and $Z_p \subset \text{Ker } \chi_p$.

10: EXAMPLE Suppose that $v\left(x\right)$ = -1, so x = $\frac{k}{p}$ + y with 0 < k \leq p-1 and y \in Z_{p} :

$$\chi_{p}(\mathbf{x}) = \exp(2\pi\sqrt{-1} \frac{\mathbf{k}}{p}) = \zeta^{\mathbf{k}},$$

where $\zeta = \exp(2\pi\sqrt{-1}/p)$ is a primitive pth root of unity.

ll: LEMMA
$$\chi_p$$
 is a unitary character.
PROOF Given x, y $\in Q_p$, write

$$f(x+y) - f(x) - f(y)$$

= x + y - [x+y] - (x - [x]) - (y - [y])
= [x] + [y] - [x+y] \in Z_p.

But at the same time

$$f(x+y) - f(x) - f(y) \in Z[\frac{1}{p}].$$

Thus

$$f(x+y) - f(x) - f(y) \in Z[\frac{1}{p}] \cap Z_p = Z$$

and so

$$\exp(2\pi\sqrt{-1}(f(x+y) - f(x) - f(y)) = 1$$

or still,

$$\chi_{p}(x+y) = \chi_{p}(x)\chi_{p}(y),$$

Therefore $\chi_p: \mathbb{Q}_p \to T$ is a homomorphism. As for continuity, it suffices to check this at 0, matters then being clear (since χ_p is trivial in a neighborhood of 0) $(Z_p \text{ is open and } 0 \in Z_p)$.

12: LEMMA The kernel of χ_p is $Z_p.$

[A priori, the kernel of χ_p consists of those $x \in Q_p$ such that $f(x) \in Z.$ Therefore

$$\cos \chi_{p} = Z_{p}.$$

13: LEMMA The image of
$$\chi_p$$
 is μ_{∞} .

[A priori, the image of $\chi_{\rm p}$ consists of the complex numbers of the form

$$\exp(2\pi\sqrt{-1} \frac{k}{p^m}) = \exp(2\pi\sqrt{-1}/p^m)^k.$$

Since $\exp(2\pi\sqrt{-1/p^m})$ is a root of unity of order p^m , these roots generate μ_{∞} as m ranges over the positive integers.]

14: SCHOLIUM χ_p implements an isomorphism

$$Q_p/Z_p \approx \mu_{p}$$
.

15: REMARK

$$x \in p^{-k}Z_p \iff p^k x \in Z_p$$

$$< > \chi_{p}(p^{k}x) = 1$$
$$< > \chi_{p}(x)^{p^{k}} = 1$$
$$< > \chi_{p}(x) \in \mu_{p^{k}}.$$

<u>16:</u> RAPPEL Let p be a prime -- then a group is <u>p</u>-primary if every element has order a power of p.

<u>17:</u> RAPPEL Every abelian torsion group G is a direct sum of its p-primary subgroups G_p .

[Note: The p-primary component G_p is the p-Sylow subgroup of G.]

18: NOTATION $Z(p^{\infty})$ is the p-primary component of Q/Z.

Therefore

$$Q/Z = \bigoplus Z(p^{\infty}).$$

<u>19:</u> LEMMA $Z(p^{\infty})$ is isomorphic to $\mu_{p^{\infty}}$. [$Z(p^{\infty})$ is generated by the $1/p^n$ in Q/Z.]

Therefore

$$Q/Z \approx \bigoplus_{p \neq p} \mu_{p} \approx \bigoplus_{p \neq p} Q_{p}/Z_{p}.$$

[Note: Consequently,

End
$$(0/Z) \approx \text{End} \left(\bigoplus_{p} (0_p/Z_p) \right)$$

$$\approx \prod_{p} \operatorname{End} \left(\mathbb{Q}_{p} / \mathbb{Z}_{p} \right)$$
$$\approx \prod_{p} \mathbb{Z}_{p} \cdot \mathbb{I}$$

20: REMARK Z is isomorphic to
$$\mu_{p}$$
 (cf. #26 infra).

Given $t \in Q_p$, let L_t be left multiplication by t and put $\chi_{p,t} = \chi_p \circ L_t$ -then $\chi_{p,t}$ is continuous and $\forall x \in Q_p$,

$$\chi_{p,t}(x) = \chi_p(tx).$$

[Note: Trivially, $\chi_{p,0} \equiv 1$. And $\forall t \neq 0$,

х

$$\operatorname{con} \chi_{p,t} = p^{-v(t)} Z_{p}.$$

Proof:

$$\in \operatorname{con} \chi_{p,t} \iff \operatorname{tx} \in Z_{p}$$

$$<=> |\operatorname{tx}|_{p} \le 1$$

$$<=> |\operatorname{x}|_{p} \le \frac{1}{|\operatorname{t}|_{p}} = p^{v(t)}$$

$$<=> x \in p^{-v(t)} Z_{p}.]$$

Next

$$\chi_{p,t}(x+y) = \chi_{p}(t(x+y))$$
$$= \chi_{p}(tx+ty)$$
$$= \chi_{p}(tx)\chi_{p}(ty)$$

$$= \chi_{p,t}(x)\chi_{p,t}(y).$$

Therefore $\chi_{p,t} \in \hat{Q}_p$.

Next

$$\chi_{p,t+s}(x) = \chi_{p}((t+s)x)$$
$$= \chi_{p}(tx+sx)$$
$$= \chi_{p}(tx)\chi_{p}(sx)$$
$$= \chi_{p,t}(x)\chi_{p,s}(x)$$

Therefore the arrow $E_p: Q_p \rightarrow \hat{Q}_p$ that sends t to $\chi_{p,t}$ is a homomorphism.

<u>21:</u> LEMMA If t \neq s, then $\chi_{p,t} \neq \chi_{p,s}$.

PROOF If to the contrary, $\chi_{p,t} = \chi_{p,s}$, then $\forall x \in Q_p, \chi_p(tx) = \chi_p(sx)$ or still, $\forall x \in Q_p, \chi_p((t-s)x) = 1$. But $L_{t-s}: Q_p \neq Q_p$ is an automorphism, hence χ_p is trivial, which it isn't.

22: LEMMA The set

$$\Xi_{p}(Q_{p}) = \{\chi_{p,t}: t \in Q_{p}\}$$

is dense in \hat{Q}_p .

PROOF Let H be the closure in \hat{Q}_p of the $\chi_{p,t}$. Consider the quotient \hat{Q}_p/H and to get a contradiction, assume that $H \neq \hat{Q}_p$, thus that there is a nontrivial $\xi \in \hat{\hat{Q}}_p$, By definition, H^L is computed in $\hat{\hat{Q}}_p$, which by Pontryagin duality, is which is trivial on H. identified with Q_p , so spelled out

$$\mathbf{H}^{\perp} = \{ \mathbf{x} \in \mathbf{Q}_{p} : \mathbf{ev}_{\mathbf{Q}_{p}}(\mathbf{x}) \mid \mathbf{H} = 1 \}.$$

Accordingly, for some x, $\xi = ev_{0,p}(x)$, hence $\forall t$,

$$\begin{aligned} \xi(\chi_{p,t}) &= \mathrm{ev}_{\mathbb{Q}_p}(\mathbf{x}) \; (\chi_{p,t}) \\ &= \chi_{p,t}(\mathbf{x}) \; = \; \chi_p(\mathbf{t}\mathbf{x}) \; = \; 1, \end{aligned}$$

which is possible only if x = 0 and this implies that ξ is trivial.

23: LEMMA The arrows

$$\begin{bmatrix} Q_{p} \neq \Xi_{p}(Q_{p}) \\ \\ \Xi_{p}(Q_{p}) \neq Q_{p} \end{bmatrix}$$

are continuous.

Therefore $\Xi_p(Q_p)$ is a locally compact subgroup of \hat{Q}_p . But a locally compact subgroup of a locally compact group is closed. Therefore $\Xi_p(Q_p) = \hat{Q}_p$. In summary:

<u>24:</u> THEOREM \hat{Q}_p is topologically isomorphic to Q_p (via the arrow $\Xi_p: Q_p \rightarrow \hat{Q}_p$)

25: LEMMA Fix t -- then $\chi_{p,t} | Z_p = 1$ iff $t \in Z_p$. PROOF Recall that the kernel of χ_p is Z_p .

•
$$t \in Z_p$$
, $x \in Z_p \Rightarrow tx \in Z_p \Rightarrow \chi_p(tx) = 1 \Rightarrow \chi_{p,t} | Z_p = 1$.

•
$$\chi_{p,t} | Z_p = 1 \Rightarrow \chi_{p,t}(1) = 1 \Rightarrow \chi_p(t) = 1 \Rightarrow t \in Z_p.$$

<u>26:</u> APPLICATION \hat{Z}_p is isomorphic to μ_p^{∞} .

 $[\hat{Z}_p \text{ can be computed as } \hat{Q}_p/Z_p^{\perp}$. But Z_p^{\perp} , when viewed as a subset of Q_p , consists of those t such that $\chi_{p,t} | Z_p = 1$. Therefore

$$\hat{Z}_{p} \approx \hat{Q}_{p} / Z_{p} \approx Q_{p} / Z_{p} \approx \mu_{\infty}$$
.

27: NOTATION Let

$$\chi_{m}(x) = \exp(-2\pi\sqrt{-1}x)$$
 (x $\in \mathbb{R}$).

28: PRODUCT PRINCIPLE $\forall x \in Q$,

$$\prod_{p\leq\infty}\chi_p(x) = 1.$$

PROOF Take x positive -- then there exist primes p_1, \ldots, p_n such that x admits a representation

$$x = \frac{N_1}{p_1} + \frac{N_2}{p_2} + \cdots + \frac{N_n}{q_n} + M,$$

where the α_k are positive integers, the N_k are positive integers ($1 \le N_k < p_k^{''k} - 1$),

and $M \in \mathsf{Z}.$ Appending a subscript to f, we have

$$f_{p_k}(x) = \frac{N_k}{\alpha_k}, f_p(x) = 0 \ (p \neq p_k, k = 1, 2, ..., n).$$

Therefore

$$\prod_{p \leq \infty} \chi_p(x) = \prod_{1 \leq k \leq n} \chi_{p_k}(x)$$

$$= \prod_{1 \le k \le n} \exp(2\pi \sqrt{-1} f_{p_k}(x))$$
$$= \exp(2\pi \sqrt{-1} \sum_{k=1}^{n} f_{p_k}(x))$$
$$= \exp(2\pi \sqrt{-1} (x-M))$$
$$= \exp(2\pi \sqrt{-1} x)$$

$$\begin{aligned} & \prod_{p \le \infty} \chi_p(\mathbf{x}) = \prod_{p < \infty} \chi_p(\mathbf{x}) \chi_{\infty}(\mathbf{x}) \\ & = \exp(2\pi \sqrt{-1} \mathbf{x}) \exp(-2\pi \sqrt{-1} \mathbf{x}) \\ & = 1. \end{aligned}$$

APPENDIX

Let K be a finite extension of Q_p .

=>

<u>1</u>: THEOREM The topological groups K and \hat{K} are topologically isomorphic. [Put

$$\chi_{K,p}(a) = \exp(2\pi\sqrt{-1} f(tr_{K/Q_{p}}(a)))$$
$$= \chi_{p}(tr_{K/Q_{p}}(a))$$

and given $b \in K$, put

$$\chi_{K,p,b}(a) = \chi_{K,p}(ab)$$

Proceed from here as above.]

2: REMARK Every character of K is unitary.

3: LEMMA

$$a \in R \Rightarrow \operatorname{tr}_{K/\mathbb{Q}_{p}}(a) \in \mathbb{Z}_{p}$$
$$a \in P \Rightarrow \operatorname{tr}_{K/\mathbb{Q}_{p}}(a) \in \mathbb{P}_{p}.$$

4: DEFINITION The differential of K is the set

$$\Delta_{\mathbf{K}} = \{ \mathbf{b} \in \mathsf{K}: \mathsf{tr}_{\mathbf{K}/\mathbf{0}_{\mathbf{p}}}(\mathsf{Rb}) \subset \mathsf{Z}_{\mathbf{p}} \}.$$

5: LEMMA \triangle_{K} is a proper R-submodule of K containing R.

<u>6:</u> LEMMA There exists a unique nonnegative integer $d - - \underline{the differential}$ exponent of K -- characterized by the condition that

$$\pi^{-d}R = \Delta_{K}.$$

[This follows from the theory of "fractional ideals" (details omitted).] [Note: $\chi_{K,p}$ is trivial on $\pi^{-d}R$ but is nontrivial on $\pi^{-d-1}R$.]

<u>7:</u> LEMMA Let e be the ramification index of K over $Q_{\rm p}$ (cf. §5, #17) -- then

$$a \in P^{-e+1} \Rightarrow tr_{K/Q_p}(a) \in Z_p.$$

PROOF Let

$$a \in P^{-e+1} = \pi^{-e+1}R = \pi^{-e}(\pi R) = \pi^{-e}P,$$

so $a = \pi^{-e}b$ ($b \in P$). Write $p = \pi^{e}u$ and consider pa:

$$pa = \pi^e u \pi^- b = ub.$$

But

$$\begin{aligned} |\mathbf{u}| &= \mathbf{1}, \ |\mathbf{b}| < \mathbf{1} \Rightarrow \ |\mathbf{ub}| < \mathbf{1} \\ &=> \mathbf{ub} \in \mathbf{P} \\ &=> \mathbf{tr}_{K/\mathbb{Q}_{p}}(\mathbf{ub}) \in \mathbf{pZ}_{p} \\ &=> \mathbf{tr}_{K/\mathbb{Q}_{p}}(\mathbf{pa}) \in \mathbf{pZ}_{p} \end{aligned}$$

8: APPLICATION

 $d \ge e-1$.

[It suffices to show that

$$P^{-e+1} \subset \Delta_K \quad (\equiv \pi^{-d}R).$$

Thus let $a \in P^{-e+1}$, say $a = \pi^{e}b$ ($b \in P$), and let $r \in R$ -- then the claim is that

$$\operatorname{tr}_{K/Q_p}(\operatorname{ar}) \in Z_p.$$

But

$$\operatorname{ar} = \pi^{-e} \operatorname{br} \in \pi^{e} \operatorname{P} (|\operatorname{br}| < 1)$$

or still,

$$ar \in P^{-e+1} \Rightarrow tr_{K/Q_p}(ar) \in Z_p.$$

<u>9:</u> REMARK Therefore $d = 0 \Rightarrow e = 1$, hence in this situation, K is unramified.

[Note: There is also a converse, viz. if K is unramified, then d = 0.]

10: N.B. It can be shown that

$$tr_{K/Q_{p}}(R) = Z_{p}$$

iff d = e-1.

<u>ll:</u> CRITERION Fix $b \in K$ -- then

$$b \in \Delta_{K} \iff \forall a \in R, \chi_{K,p}(ab) = 1.$$

PROOF

•
$$a \in R$$
, $b \in \Delta_{\kappa} \Rightarrow ab \in \Delta_{\kappa}$

$$=$$
 tr_{K/Q} (ab) $\in Z_p$

=>

$$\chi_{K,p}(ab) = \chi_p(tr_{K/Q_p}(ab)) = 1.$$

• $\forall a \in R, \chi_{K,p}(ab) = 1$

$$\Rightarrow \forall a \in \mathbb{R}, tr_{K/Q_p}(ab) \in \mathbb{Z}_p \Rightarrow b \in \mathbb{A}_K.$$

Normalize the Haar measure on K by the condition

$$\mu_{K}(R) = \int_{R} da = q^{-d/2}.$$

Let $\boldsymbol{\chi}_{R}$ be the characteristic function of R -- then

$$\int_{K} \chi_{R}(a) \chi_{K,p}(ab) da = \int_{R} \chi_{K,p}(ab) da$$

• $b \in \Delta_{K} \Rightarrow \chi_{K,p}(ab) = 1 \quad (\forall a \in R)$

$$\Rightarrow \int_{R} \chi_{K,p}(ab) da = \mu_{K}(R) = q^{-d/2}.$$

• $b \notin \Delta_{K} \Rightarrow \chi_{K,p}(ab) \neq 1 \quad (\exists a \in R)$

$$\Rightarrow \int_{R} \chi_{K,p}(ab) da = 0.$$

Consequently, as a function of b,

$$\int_{\mathbf{R}} \chi_{\mathbf{K},\mathbf{p}}(\mathbf{ab}) d\mathbf{a} = q^{-d/2} \chi_{\Delta_{\mathbf{K}}}(\mathbf{b}),$$

 $\chi_{\Delta_{\mathbf{K}}}$ the characteristic function of $\Delta_{\mathbf{K}}$.

12: LEMMA

$$[\pi^{-d}R:R] = q^d.$$

Therefore

$$\mu_{K}(\Delta_{K}) = \mu_{K}(\pi^{-d}R)$$
$$= q^{d}\mu_{K}(R)$$
$$= q^{d}q^{-d/2} = q^{d/2}.$$

13: LEMMA $\forall a \in K$,

$$\int_{K} q^{-d/2} \chi_{\Delta_{K}}(b) \chi_{K,p}(ab) db = \chi_{R}(a).$$

ę

PROOF The left hand side reduces to

$$q^{-d/2} \int_{\Delta_K} \chi_{K,p}(ab) db$$

and there are two possibilities.

•
$$a \in R \Rightarrow ab \in \Delta_{K}$$
 ($\forall b \in \Delta_{K}$)
 $\Rightarrow tr_{K/Q_{p}}(ab) \in Z_{p} \Rightarrow \chi_{K,p}(ab) = 1$
 \Rightarrow
 $q^{-d/2} \int_{\Delta_{K}} \chi_{K,p}(ab) db$
 $= q^{-d/2} \mu_{K}(\Delta_{K}) = q^{-d/2}q^{d/2}$
 $= 1.$
• $a \notin R: \chi_{K,p}(ab) \neq 1$ ($\exists b \in \Delta_{K}$)
 \Rightarrow
 $q^{-d/2} \int_{\Delta_{K}} \chi_{K,p}(ab) db = 0.$

To detail the second point of this proof, work with the normalized absolute value (cf. §6, #18) and recall that $|\pi|_{K} = \frac{1}{q}$ (cf. §5, #21). Accordingly,

$$\mathbf{x} \in \pi^{n} \mathbb{R} \iff |\mathbf{x}|_{K} \le q^{-n}.$$

Fix a $\notin R$ -- then the claim is that $b \neq \chi_{K,p}(ab)$ ($b \in \Delta_{K}$) is nontrivial. For $\chi_{K,p}(ab) = 1 \iff ab \in \pi^{-d}R$

$$\stackrel{\langle = \rangle}{|a|_{K}} \stackrel{\leq}{|a|_{K}} \stackrel{\leq}{|a|_{K}} \stackrel{\leq}{|a|_{K}} \stackrel{q^{d}}{|a|_{K}} = q^{d+v(a)}.$$

$$a \notin R \Rightarrow v(a) < 0$$

$$= -v(a) > 0 = -d - v(a) > -d$$

a proper containment.

§9. MULTIPLICATIVE p-ADIC CHARACTER THEORY

Recall that

$$Q_p^{\times} \approx Z \times Z_p^{\times}$$
,

the abstract reflection of the fact that for every $x \in 0_p^x$, there is a unique $v(x) \in Z$ and a unique $u(x) \in Z_p^x$ such that $x = p^{v(x)}u(x)$. Therefore

$$(\mathbb{Q}_{p}^{\times}) \approx \hat{\mathbb{Z}} \times (\mathbb{Z}_{p}^{\times}) \approx \mathbb{T} \times (\mathbb{Z}_{p}^{\times}).$$

<u>1:</u> <u>N.B.</u> A character of Q_p is necessarily unitary (cf. §8, #4) but this is definitely not the case for Q_p^{\times} (cf. infra).

<u>2:</u> DEFINITION A character $\chi: Q_p^{\times} \to C^{\times}$ is <u>unramified</u> if it is trivial on Z_p^{\times} .

<u>3:</u> EXAMPLE Given any complex number s, the arrow $x \rightarrow |x|_p^s$ is an unramified character of Q_p^x .

<u>4</u>: LEMMA If $\chi: \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ is an unramified character, then there exists a complex number s such that $\chi = |\cdot|_p^s$.

PROOF Such a χ factors through the projection $0_p^{\times} \rightarrow p^{Z}$ defined by $x \rightarrow |x|_{p'}$ hence gives rise to a character $\tilde{\chi}:p^{Z} \rightarrow C^{\times}$ which is completely determined by its value on p, say $\tilde{\chi}(p) = p^{S}$ for the complex number

$$s = \frac{\log \chi(p)}{\log p},$$

itself determined up to an integral multiple of

$$\frac{2\pi\sqrt{-1}}{\log p}$$

Therefore

$$\chi(\mathbf{x}) = \chi(|\mathbf{x}|_{p})$$
$$= \chi(\mathbf{p}^{-\mathbf{v}(\mathbf{x})})$$
$$= (\chi(\mathbf{p})^{-\mathbf{v}(\mathbf{x})}$$
$$= (\mathbf{p}^{S})^{-\mathbf{v}(\mathbf{x})} = (\mathbf{p}^{-\mathbf{v}(\mathbf{x})})^{S} = |\mathbf{x}|_{p}^{S}.$$

[Note: For the record,

$$|x|_{p}^{2\pi\sqrt{-1}/\log p} = (p^{-v(x)})^{2\pi\sqrt{-1}/\log p}$$
$$= (e^{-v(x)\log p})^{2\pi\sqrt{-1}/\log p}$$
$$= e^{-v(x)2\pi\sqrt{-1}} = 1.]$$

Suppose that $\chi: Q_p^{\times} \to C^{\times}$ is a character -- then χ can be written as

$$\chi(\mathbf{x}) = |\mathbf{x}|_{p}^{s} \underline{\chi}(\mathbf{u}(\mathbf{x})),$$

where $s \in C$ and $\chi \equiv \chi | Z_p^{\times} \in (Z_p^{\times})$, thus χ is unitary iff s is pure imaginary.

5: LEMMA If $\underline{\chi} \in (Z_p^{\times})$ is nontrivial, then there is an $n \in \mathbb{N}$ such that $\underline{\chi} \equiv 1$ on $U_{p,n}$ but $\chi \neq 1$ on $U_{p,n-1}$ (cf. §8, #5).

Assume again that $\chi: \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ is a character.

<u>6</u>: DEFINITION χ is <u>ramified of degree $n \ge 1$ </u> if $\underline{\chi}|_{p,n} \equiv 1$ and $\underline{\chi}|_{p,n-1} \neq 1$.

<u>7</u>: DEFINITION The <u>conductor</u> con χ of χ is Z_p^{χ} if χ is unramified and $U_{p,n}$ if χ is ramified of degree n.

<u>8:</u> RAPPEL If G is a finite abelian group, then the number of unitary characters of G is card G.

9: LEMMA

$$[Z_{p}^{\times}:U_{p,1}] = p-1$$
 (cf. §4, #40)

and

$$[U_{p,1}:U_{p,n}] = p^{n-1}.$$

If χ is ramified of degree n, then χ can be viewed as a unitary character of $Z_p^{\times}/U_{p,n}$. But the quotient $Z_p^{\times}/U_{p,n}$ is a finite abelian group, thus has

card
$$Z_{p}^{\times}/U_{p,n} = [Z_{p}^{\times}:U_{p,n}]$$

unitary characters. And

$$[Z_{p}^{\times}:U_{p,n}] = [Z_{p}^{\times}:U_{p,1}] \cdot [U_{p,1}:U_{p,n}]$$
$$= (p-1)p^{n-1},$$

this being the number of unitary characters of Z_p^{\times} of degree $\leq n$. Therefore the

group Z_p^{\times} has p-2 unitary characters of degree 1 and for $n \ge 2$, the group Z_p^{\times} has

$$(p-1)p^{n-1} - (p-1)p^{n-2} = p^{n-2}(p-1)^2$$

unitary characters of degree n.

10: LEMMA Let
$$\chi \in Q_p^{\times}$$
 -- then
 $\chi(x) = |x|_p^{\sqrt{-1}t} \chi(u(x)),$

where t is real and

- $(\pi/\log p) < t \leq \pi/\log p$.

APPENDIX

Suppose that $p \neq 2$, let $\tau \in Q_p^{\times} - (Q_p^{\times})^2$, and form the quadratic extension

$$Q_{p}(\tau) = \{x + y / \tau : x, y \in Q_{p}\}.$$

<u>1</u>: NOTATION Let $Q_{p,\tau}$ be the set of points of the form $x^2 - \tau y^2$ (x $\neq 0$, y $\neq 0$).

2: LEMMA
$$Q_{p,\tau}$$
 is a subgroup of Q_p^{\times} containing $(Q_p^{\times})^2$.

3: LEMMA

$$[Q_{p}^{\times}:Q_{p,\tau}] = 2 \text{ and } [Q_{p,\tau}:(Q_{p}^{\times})^{2}] = 2.$$

[Note:

$$[Q_p^{\times}: (Q_p^{\times})^2] = 4$$
 (cf. §4, #53).]

<u>4:</u> DEFINITION Given $x \in Q_{p'}^{\times}$ let

$$sgn_{\tau}(x) = \begin{bmatrix} -1 & \text{if } x \in Q_{p,\tau} \\ \\ -1 & \text{if } x \notin Q_{p,\tau} \end{bmatrix}$$

<u>5:</u> LEMMA sgn_{τ} is a unitary character of \hat{Q}_{p} .

\$10. TEST FUNCTIONS

The <u>Schwartz space</u> $S(R^n)$ consists of those complex valued C^{∞} functions which, together with all their derivatives, vanish at infinity faster than any power of $||\cdot||$.

1: DEFINITION The elements f of $S(R^n)$ are the test functions on R^n .

2: EXAMPLE Take n = 1 -- then

$$f(x) = Cx^{A} \exp(-\pi x^{2}),$$

where A = 0 or 1, is a test function, said to be standard. Here

$$\int_{\mathsf{R}} \mathbf{x}^{\mathsf{A}} \exp(-\pi \mathbf{x}^2) e^{2\pi \sqrt{-1} t \mathbf{x}} d\mathbf{x} = (\sqrt{-1})^{\mathsf{A}} t^{\mathsf{A}} \exp(-\pi t^2),$$

thus F_R of a standard function is again standard (cf. §7, #51).

[Note: Henceforth, by definition, the Fourier transform of an $f\in L^1(R)$ will be the function

defined by the rule

$$\hat{f}(t) = F_R f(t)$$
$$= \int_R f(x) e^{2\pi \sqrt{-1} tx} dx.$$

3: EXAMPLE Take n = 2 and identify R^2 with C -- then

$$f(z) = Cz^{A} \overline{z}^{B} \exp(-2\pi |z|^{2}),$$

where $A, B \in Z_{>0}$ & AB = 0, is a test function, said to be standard. Here

$$\int_{\mathbb{C}} z^{A} \overline{z}^{B} \exp(-2\pi |z|^{2}) e^{2\pi \sqrt{-1} (wz + \overline{wz})} |dz \wedge d\overline{z}|$$

=
$$(\sqrt{-1})^{A+B} w^{B} \overline{w}^{A} \exp(-2\pi |w|^{2})$$
,

thus F_{C} of a standard function is again standard (cf. §7, #53).

[Note: Henceforth, by definition, the Fourier transform of an $f\in L^1(C)$ will be the function

defined by the rule

$$\hat{f}(w) = F_{C} f(w)$$
$$= \int_{C} f(z) e^{2\pi \sqrt{-1} (wz + \overline{wz})} |dz \wedge d\overline{z}|.]$$

<u>4:</u> DEFINITION Let G be a totally disconnected locally compact group -then a function f:G \rightarrow C is said to be <u>locally constant</u> if for any $x \in G$, there is an open subset U_x of G containing x such that f is constant on U_x .

5: LEMMA A locally constant function f is continuous.

PROOF Fix $x \in G$ and suppose that $\{x_i\}$ is a net converging to x -- then x_i is eventually in U_x , hence there $f(x_i) = f(x)$.

<u>6:</u> DEFINITION The <u>Bruhat space</u> B(G) consists of those complex valued locally constant functions whose support is compact.

[Note: B(G) carries a "canonical topology" but I shall pass in silence as regards to its precise formulation.]

7: DEFINITION The elements f of B(G) are the test functions on G.

<u>8:</u> LEMMA Given a test function f, there exists an open-compact subgroup K of G, an integer $n \ge 0$, elements x_1, \ldots, x_n in G and elements c_1, \ldots, c_n in C such that the union $\bigcup_{k=1}^{n} Kx_k K$ is disjoint and

 $f = \sum_{k=1}^{n} c_k \chi_{Kx_k} K'$

 $\boldsymbol{x}_{K\boldsymbol{x}_{k}K}$ the characteristic function of $K\boldsymbol{x}_{k}K.$

PROOF Since f is locally constant, for every $z \in C$ the preimage $f^{-1}(z)$ is an open subset of G. Therefore $X = \{x:f(x) \neq 0\}$ is the support of f. This said, given $x \in X$, define a map $\phi_x: G \times G \neq C$ by $\phi_x(x_1, x_2) = f(x_1xx_2)$, thus $\phi_x(e,e) = f(x)$ and ϕ_x is continuous if C has the discrete topology. Consequently, one can find an open-compact subgroup K_x of G such that ϕ_x is constant on $K_x \times K_x$. Put $U_x = K_x x K_x$ — then U_x is open-compact and f is constant on U_x . But X is covered by the U_x , hence, being compact, is covered by finitely many of them. Bearing in mind that distinct double cosets are disjoint, consider now the intersection K of the finitely many K_x that occur.

Specialize and let $G = Q_p$.

<u>9:</u> EXAMPLE If K c Q_p is open-compact, then its characteristic function χ_K is a test function on Q_p .

$$\chi_{x+p}^{n} Z_{p}$$
 ($x \in Q_{p}, n \in Z$).

[This is an instance of #8 or argue directly (cf. §4, #33).]

<u>11:</u> DEFINITION Given $f \in L^1(\mathbb{Q}_p)$, its <u>Fourier transform</u> is the function

$$\hat{f}:Q_p \rightarrow C$$

defined by the rule

$$\hat{f}(t) = \int_{Q_p} f(x) \chi_{p,t}(x) dx$$

$$= \int_{\mathbf{Q}_{p}} \mathbf{f}(\mathbf{x}) \chi_{p}(\mathbf{t}\mathbf{x}) d\mathbf{x}.$$

12: LEMMA
$$\forall f \in L^1(0_p)$$
,

$$\hat{\bar{f}}(t) = \overline{\hat{f}(-t)}$$
.

PROOF

$$\hat{\bar{f}}(t) = \int_{\mathbb{Q}_{p}} \overline{f(x)} \chi_{p}(tx) dx$$

$$= \int_{\mathbb{Q}_{p}} \overline{f(x)} \chi_{p}(-tx) dx$$

$$= \int_{\mathbb{Q}_{p}} \overline{f(x)} \chi_{p}((-t)x) dx$$

$$= \overline{\int_{\mathbb{Q}_{p}} f(x)} \chi_{p}((-t)x) dx$$

$$= \overline{\hat{f}(-t)}.$$

$$\int_{p^{n} Z_{p}} \chi_{p}(x) dx = \begin{bmatrix} -p^{-n} & (n \ge 0) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & 0 & (n < 0) . \end{bmatrix}$$

[Recall that

$$\mu_{0_p}(p^n Z_p) = p^{-n}$$

and apply §7, #46 and §8, #12.]

14: LEMMA Take
$$f = \chi_p Z_p^{--}$$
 then
 $\hat{\chi}_p Z_p^{-n} Z_p^{-n} Z_p^{-n}$.

PROOF

$$\hat{\chi}_{p}^{n} Z_{p}^{(t)} = \int_{Q_{p}} \chi_{p}^{n} Z_{p}^{(x)} \chi_{p,t}^{(x)} dx$$

$$= \int_{Q_{p}} \chi_{p}^{n} Z_{p}^{(x)} \chi_{p}^{(tx)} dx$$

$$= |t|_{p}^{-1} \int_{Q_{p}} \chi_{p}^{n} Z_{p}^{(t-1x)} \chi_{p}^{(x)} dx$$

$$= |t|_{p}^{-1} \int_{p} \chi_{p}^{n+v}(t) Z_{p}^{(x)} dx.$$

The last integral equals

if $n+v(t) \ge 0$ and equals 0 if n+v(t) < 0 (cf. #13). But

$$t \in p^{-n} Z_p \iff v(t) \ge -n \iff n+v(t) \ge 0.$$

Since

$$|t|_{p}^{-1} p^{v(t)} = 1,$$

it therefore follows that

$$\hat{\chi}_{p}^{n}Z_{p} = p^{-n}\chi_{p}^{-n}Z_{p}^{-n}$$

In particular:

$$\hat{\chi}_{Z_{p}} = \chi_{Z_{p}}.$$

<u>15:</u> THEOREM Take $f = \chi_{x+p}^n Z_p^n$ -- then

$$\hat{\chi}_{x+p^{n}Z_{p}}(t) = \begin{bmatrix} -\chi_{p}(tx)p^{-n} & (|t|_{p} \leq p^{n}) \\ 0 & (|t|_{p} > p^{n}) \end{bmatrix}$$

PROOF

$$\hat{\chi}_{x+p} \sum_{p} (t) = \int_{\mathbb{Q}_{p}} \chi_{x+p} \sum_{p} \chi_{p}(y) \chi_{p,t}(y) dy$$
$$= \int_{\mathbb{Q}_{p}} \chi_{x+p} \sum_{p} \chi_{p}(y) \chi_{p}(ty) dy$$
$$= \int_{x+p} \chi_{p}(ty) dy$$
$$= \int_{p} \chi_{p}(t(x+y)) dy$$

$$= \int_{p^{n}Z_{p}} \chi_{p}(tx+ty) dy$$

$$= \int_{p^{n}Z_{p}} \chi_{p}(tx) \chi_{p}(ty) dy$$

$$= \chi_{p}(tx) \int_{p^{n}Z_{p}} \chi_{p}(ty) dy$$

$$= \chi_{p}(tx) \int_{0} \chi_{p^{n}Z_{p}}(y) \chi_{p}(ty) dy$$

$$= \chi_{p}(tx) \int_{0} \chi_{p^{n}Z_{p}}(y) \chi_{p,t}(y) dy$$

$$= \chi_{p}(tx) \hat{\chi}_{p^{n}Z_{p}}(t)$$

$$= \chi_{p}(tx) \hat{\chi}_{p^{n}Z_{p}}(t)$$

16: APPLICATION Taking into account #10,

$$f \in \mathcal{B}(Q_p) \Longrightarrow f \in \mathcal{B}(Q_p)$$
.

<u>17:</u> THEOREM $\forall f \in INV(0_p)$,

$$\hat{\hat{f}}(x) = f(-x) \quad (x \in Q_p).$$

PROOF It suffices to check this for a single function, so take $f=\chi_{Z_{\rm p}}$ — then, as noted above,

$$\hat{\chi}_{Z_{p}} = \chi_{Z_{p}}$$

thus $\forall x$,

$$\hat{\chi}_{Z_p}(\mathbf{x}) = \chi_{Z_p}(\mathbf{x}) = \chi_{Z_p}(-\mathbf{x}).$$

18: N.B. It is clear that

$$\mathcal{B}(Q_p) \subset INV(Q_p).$$

<u>19:</u> SCHOLIUM The arrow $f \rightarrow \hat{f}$ is a linear bijection of $\mathcal{B}(Q_p)$ onto itself. [Injectivity is manifest. As for surjectivity, the arrow $f \rightarrow f$, where

$$f'(x) = f(-x),$$

maps $\mathcal{B}(Q_p)$ into itself. And

$$f = f = (f) = (f)^{-1} = ((f)^{-1})^{-1}$$

20: REMARK As is well-known, the same conclusion obtains if $\ensuremath{\mathbb{Q}}_p$ is replaced by R or C.

Pass now from Q_p to Q_p^{\times} .

21: LEMMA Let
$$f \in \mathcal{B}(0_p^{\times})$$
 -- then $\exists n \in \mathbb{N}$:
$$\begin{vmatrix} - & |x|_p < p^{-n} \Rightarrow f(x) = 0 \\ & |x|_p > p^n \Rightarrow f(x) = 0. \end{vmatrix}$$

Therefore an element f of $\mathcal{B}(\mathbb{Q}_p^{\times})$ can be viewed as an element of $\mathcal{B}(\mathbb{Q}_p)$ with the property that f(0) = 0.

$$\tilde{f}(\chi) = \int_{\mathbb{Q}_p^{\times}} f(\mathbf{x}) \chi(\mathbf{x}) d^{\times} \mathbf{x}.$$

[Note: By definition,

$$d^{x}x = \frac{p}{p-1} \frac{dx}{|x|_{p}}$$
 (cf. §6, #26),

SO

$$\operatorname{vol}_{d^{\times}x}(Z_p^{\times}) = \operatorname{vol}_{dx}(Z_p) = 1.$$

23: EXAMPLE Take
$$f = \chi_{Z_p}^{\times}$$
 -- then
 $\tilde{\chi}_{Z_p}^{\times}(\chi) = \int_{Q_p^{\times}} \chi_{Z_p}^{\times}(x)\chi(x)d^{\times}x$
 $= \int_{Z_p^{\times}} \chi(x)d^{\times}x.$

Decompose χ as in §9, #10, hence

$$\int_{Z_{p}^{\times}} \chi(\mathbf{x}) d^{\mathbf{x}} = \int_{Z_{p}^{\times}} |\mathbf{x}|_{p}^{\sqrt{-1}} t_{\underline{\chi}}(p^{-\mathbf{v}(\mathbf{x})}\mathbf{x}) d^{\mathbf{x}}\mathbf{x}$$
$$= \int_{Z_{p}^{\times}} \frac{\chi(\mathbf{x}) d^{\mathbf{x}}\mathbf{x}}{(\mathbf{x})^{2}}$$
$$= \begin{vmatrix} -0 & (\underline{\chi} \neq \mathbf{1}) \\ 1 & (\underline{\chi} \equiv \mathbf{1}) \\ -1 & (\underline{\chi} \equiv \mathbf{1}) \end{vmatrix}$$

According to §9, #2, a unitary character $\chi \in (Q_p^{\times})$ is unramified if its restriction $\underline{\chi}$ to Z_p^{\times} is trivial. Therefore the upshot is that the Mellin transform of $\chi_{Z_p^{\times}}$

is the characteristic function of the set of unramified elements of (0_p^{\times}) .

APPENDIX

Let K be a finite extension of \boldsymbol{Q}_p -- then

$$\kappa^{\times} \approx Z \times R^{\times}$$

and the generalities developed in §9 go through with but minor changes when $\ensuremath{\mathbb{Q}}_p$ is replaced by K.

In particular: $\forall \chi \in \hat{K}^{\times}$, there is a splitting

$$\chi(a) = |a|_{K}^{\sqrt{-1}} t_{\chi}(\pi^{-v(a)}a),$$

where t is real and

- $(\pi/\log q) < t \le \pi/\log q$. [Note: χ is <u>unramified</u> if it is trivial on R[×].]

1. <u>N.B.</u> The " π " in the first instance is a prime element (cf. §5, #10) and $|\pi|_{K} = \frac{1}{q}$. On the other hand, the " π " in the second instance is 3.14....

The extension of the theory from $\mathcal{B}(Q_p)$ to $\mathcal{B}(K)$ is straightforward, the point of departure being the observation that

$$\int_{\pi} n_{R}^{\chi} \chi_{K,p}(a) da = \mu_{K}(R) \begin{bmatrix} -q^{-n} & (n = -d, -d+1, ...) \\ 0 & (n = -d-1, -d-2, ...) \end{bmatrix}$$

2: CONVENTION Normalize the Haar measure on K by stipulating that $f_{\rm R} \mbox{ da} = q^{-d/2} \mbox{.}$

3: DEFINITION Given $f \in L^{1}(K)$, its Fourier transform is the function $\hat{f}:K \rightarrow C$

defined by the rule

$$f(b) = \int_{K} f(a) \chi_{K,p,b}(a) da$$
$$= \int_{K} f(a) \chi_{K,p}(ab) da.$$

4: THEOREM $\forall f \in INV(K)$,

$$\hat{\hat{f}}(a) = f(-a) \quad (a \in K).$$

PROOF It suffices to check this for a single function, so take $f = \chi_R$, in which case the work has already been done in the Appendix to §8. To review:

•
$$\hat{\chi}_{R}(b) = \int_{K} \chi_{R}(a) \chi_{K,p}(ab) da$$

= $\int_{R} \chi_{K,p}(ab) da$
= $q^{-d/2} \chi_{\Delta_{K}}(b)$.
• $\int_{K} q^{-d/2} \chi_{\Delta_{K}}(b) \chi_{K,p}(ab) db$
= $q^{-d/2} \int_{\Delta_{K}} \chi_{K,p}(ab) db$
= $\chi_{R}(a)$ (loc. cit., #13)
= $\chi_{R}(-a)$.

5: N.B. It is clear that

$$B(K) \subset INV(K)$$
.

6: SCHOLIUM The arrow $f \rightarrow \hat{f}$ is a linear bijection of B(K) onto itself.

7: CONVENTION Put

$$d^{x}a = \frac{q}{q-1} \frac{da}{|a|_{K}}$$
.

Then $d^{\times}a$ is a Haar measure on K^{\times} and

$$\operatorname{vol}_{d^{\times}a}(R^{\times}) = \operatorname{vol}_{da}(R) = q^{-d/2}.$$

<u>8:</u> DEFINITION Given $f \in L^1(K^{\times}, d^{\times}a)$, its <u>Mellin transform</u> \tilde{f} is the Fourier transform of f per K^{\times} :

$$\widetilde{f}(\chi) = \int_{K^{\times}} f(a)\chi(a)d^{\times}a.$$

9: EXAMPLE Take
$$f = \chi_{R^{\times}}$$
 -- then
 $\tilde{\chi}_{R^{\times}}(\chi) = \begin{bmatrix} 0 & (\chi \neq 1) \\ & & \\ &$

We shall first consider R^{\times} , hence $\tilde{R}^{\times}\approx Z/2Z$ \times C and every character has the form

$$\chi(\mathbf{x}) \equiv \chi_{\sigma,s}(\mathbf{x}) = (\operatorname{sgn} \mathbf{x})^{\sigma} |\mathbf{x}|^{s} \ (\sigma \in \{0,1\}, s \in C) \ (\text{cf. §7, #11}).$$

<u>1.</u> DEFINITION Given $f \in S(R)$ and a character $\chi: R^{\times} \to C^{\times}$, the <u>local zeta</u> function attached to the pair (f, χ) is

$$Z(f,\chi) = \int_{R^{\times}} f(x)\chi(x)d^{\times}x,$$

where $d^{\times}x = \frac{dx}{|x|}$.

[Note: The parameters σ and s are implicit:

$$Z(f,\chi) \equiv Z(f,\chi_{\sigma,s})$$
.]

<u>2:</u> LEMMA The integral defining $Z(f,\chi)$ is absolutely convergent for Re(s) > 0.

PROOF Since f is Schwartz, there are no issues at infinity. As for what happens at the origin, let $I =]-1,1[-\{0\}$ and fix C > 0 such that $|f(x)| \le C$ $(x \in I)$ -- then

$$|Z(f,\chi)| \leq \int_{R-\{0\}} |f(x)| |x|^{Re(s)-1} dx$$

$$\leq (\int_{R-I} + \int_{I}) |f(x)| |x|^{Re(s)-1} dx$$

$$\leq M + C \int_{T} |x|^{Re(s)-1} dx,$$

a finite quantity.

<u>3:</u> LEMMA $Z(f,\chi)$ is a holomorphic function of s in the strip Re(s) > 0. [Formally,

$$\frac{\mathrm{d}}{\mathrm{ds}} Z(\mathbf{f}, \chi) = \int_{\mathsf{R}^{\times}} \mathbf{f}(\mathbf{x}) (\operatorname{sgn} \mathbf{x})^{\sigma} (\log |\mathbf{x}|) |\mathbf{x}|^{s} \mathrm{d}^{x} \mathbf{x},$$

and while correct, "differentiation under the integral sign" does require a formal proof....]

4: NOTATION Put

$$\dot{\mathbf{x}} = \mathbf{x}^{-1} | \cdot | \cdot$$

The integral defining $Z(f, \chi)$ is absolutely convergent if Re(l-s) > 0, i.e., if l - Re(s) > 0 or still, if Re(s) < l.

5: LEMMA Let $f,g \in S(R)$ and suppose that 0 < Re(s) < 1 -- then

$$Z(f,\chi)Z(\hat{g},\chi) = Z(\hat{f},\chi)Z(g,\chi).$$

PROOF Write

$$Z(f,\chi) Z(\hat{g}, \chi)$$

=
$$\iint_{R^{\times} \times R^{\times}} f(x) \hat{g}(y) \chi(xy^{-1}) |y| d^{\times} x d^{\times} y$$

and make the substitution $t = yx^{-1}$ to get

 $Z(f,\chi)Z(\hat{g},\chi)$

$$= \int_{\mathbb{R}^{\times}} (\int_{\mathbb{R}^{\times}} f(\mathbf{x}) \hat{g}(\mathbf{t}\mathbf{x}) |\mathbf{x}| d^{\times} \mathbf{x}) \chi(\mathbf{t}^{-1}) |\mathbf{t}| d^{\times} \mathbf{t}.$$

The claim now is that the inner integral is symmetric in f and g (which then implies

that

$$Z(f,\chi)Z(\hat{g},\chi) = Z(g,\chi)Z(\hat{f},\chi),$$

the desired equality). To see that this is so, observe first that

$$|x|du \cdot d^{\times}x = |u|dx \cdot d^{\times}u.$$

Since \textbf{R}^{\times} and R differ by a single element, it therefore follows that

$$\int_{R^{\times}} f(x)\hat{g}(tx) |x| d^{x}x$$

$$= \int_{R^{\times}} f(x) |x| (\int_{R} g(u)e^{2\pi\sqrt{-1} txu} du) d^{x}x$$

$$= \int \int_{R^{\times}R^{\times}} f(x)g(u) |x|e^{2\pi\sqrt{-1} txu} du d^{x}x$$

$$= \int_{R^{\times}} g(u) |u| (\int_{R} f(x)e^{2\pi\sqrt{-1} txu} dx) d^{x}u$$

$$= \int_{R^{\times}} g(u)\hat{f}(tu) |u| d^{x}u.$$

Fix $\phi \in S(R)$ and put

$$\rho(\chi) = \frac{Z(\phi, \chi)}{Z(\phi, \chi)}$$

Then $\rho(\chi)$ is independent of the choice of ϕ and $\forall f \in S(R)$, the functional equation

$$Z(f,\chi) = \rho(\chi) Z(\hat{f}, \chi)$$

obtains.

6: LEMMA $\rho(\chi)$ is a meromorphic function of s (cf. infra).

8: NOTATION Set

$$\Gamma_{R}(s) = \pi^{-s/2} \Gamma(s/2).$$

9: DEFINITION Write

$$\mathbf{L}(\chi) = \begin{vmatrix} & & & & \\ & & & & \\ & & & \\ &$$

Proceeding to the computation of $\rho\left(\chi\right)$, distinguish two cases.

•
$$\underline{\sigma} = 0$$
 Take $\phi_0(\mathbf{x})$ to be $e^{-\pi \mathbf{x}^2}$ -- then

$$Z(\phi_0, \chi) = \int_{\mathbb{R}^{\times}} e^{-\pi \mathbf{x}^2} |\mathbf{x}|^S d^X \mathbf{x}$$

$$= 2 \int_0^\infty e^{-\pi \mathbf{x}^2} \mathbf{x}^{S-1} d\mathbf{x}$$

$$= \pi^{-S/2} \Gamma(S/2) = \Gamma_R(S) = L(\chi).$$

Next $\hat{\phi}_0 = \phi_0$ (cf. §10, #2) so by the above argument,

$$Z(\hat{\phi}_0, \chi) = L(\chi),$$

from which

$$\rho(\chi) = \frac{L(\chi)}{L(\chi)}$$

$$= \frac{\pi^{-S/2}\Gamma(\frac{S}{2})}{\pi^{-(1-S)/2}\Gamma(\frac{1-S}{2})}$$

$$= 2^{1-S}\pi^{-S}\cos(\frac{\pi S}{2})\Gamma(s).$$
• $\underline{\sigma} = \underline{1}$ Take $\phi_1(x)$ to be $xe^{-\pi x^2}$ -- then
$$Z(\phi_1,\chi) = \int_{R^X} xe^{-\pi x^2} \frac{x}{|x|} |x|^S d^X x$$

$$= \int_{R^X} e^{-\pi x^2} |x|^{S+1} d^X x$$

$$= 2 \int_0^\infty e^{-\pi x^2} x^S dx$$

$$= \pi^{-(S+1)/2} \Gamma(\frac{S+1}{2})$$

$$= \Gamma_R(S+1) = L(\chi).$$

Next

$$\hat{\phi}_1(t) = \sqrt{-1} t \exp(-\pi t^2)$$
 (cf. §10, #2).

•,

Therefore

$$Z(\hat{\phi}_{1},\chi) = \sqrt{-1} \int_{\mathbb{R}^{\times}} x e^{-\pi x^{2}} \cdot \frac{x}{|x|} \cdot |x|^{1-s} d^{x} x$$
$$= \sqrt{-1} \int_{\mathbb{R}^{\times}} e^{-\pi x^{2}} |x|^{2-s} d^{x} x$$
$$= \sqrt{-1} 2 \int_{0}^{\infty} e^{-\pi x^{2}} x^{1-s} dx$$

$$= \sqrt{-1} \pi^{-(2-s)/2} \Gamma(\frac{2-s}{2})$$
$$= \sqrt{-1} \Gamma_{R}(2-s) = \sqrt{-1} L(\chi).$$

Accordingly

$$\begin{split} \rho(\chi) &= -\sqrt{-1} \frac{L(\chi)}{L(\chi)} \\ &= -\sqrt{-1} \frac{\pi^{-(s+1)/2} \Gamma(\frac{s+1}{2})}{\pi^{(s-2)/2} \Gamma(\frac{2-s}{2})} \\ &= -\sqrt{-1} 2^{1-s} \pi^{-s} \sin(\frac{\pi s}{2}) \Gamma(s) \,. \end{split}$$

<u>10:</u> FACT

$$\frac{\zeta(1-s)}{\zeta(s)} = 2^{1-s} \pi^{-s} \cos\left(\frac{\pi s}{2}\right) \Gamma(s)$$
$$\frac{\zeta(s)}{\zeta(1-s)} = 2^{s} \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s).$$

To recapitulate: $\rho\left(\chi\right)$ is a meromorphic function of s and

$$\rho(\chi) = \varepsilon(\chi) \frac{L(\chi)}{L(\chi)},$$

where

$$\varepsilon(\chi) = 1 \quad (\sigma = 0)$$

$$\varepsilon(\chi) = -\sqrt{-1} \quad (\sigma = 1).$$

Having dealt with $R^{\times},$ let us now turn to $C^{\times},$ hence $\widetilde{C}^{\times}\approx Z\times C$ and every character has the form

$$\chi(x) \equiv \chi_{n,s}(x) = \exp(\sqrt{-1} n \arg x) |x|^{s}$$
 ($n \in \mathbb{Z}$, $s \in \mathbb{C}$) (cf. §7, #12).

Here, however, it will be best to make a couple of adjustments.

- 1. Replace x by z.
- 2. Replace $| \cdot |$ by $| \cdot |_{C}$, the normalized absolute value, so

$$|z|_{c} = |z\overline{z}| = |z|^{2}$$
 (cf. §6, #15).

<u>11.</u> DEFINITION Given $f \in S(C)$ (= $S(R^2)$) and a character $\chi: C^{\times} \to C^{\times}$, the <u>local zeta function</u> attached to the pair (f, χ) is

$$z(f,\chi) = \int_{C^{\times}} f(z)\chi(z)d^{\times}z,$$

where $d^{x}z = \frac{|dz \wedge d\overline{z}|}{|z|_{C}}$.

[Note: The parameters n and s are implicit:

$$Z(f,\chi) \equiv Z(f,\chi_{n-s}).]$$

12: NOTATION Put

$$x'_{X} = x^{-1} | \cdot |_{C}$$

The analogs of #2 and #3 are immediate, as is the analog of #5 (just replace R^{\times} by C^{\times} and |.| by $|.|_{C}$), the crux then being the analog of #6.

13: NOTATION Set

$$\Gamma_{\rm C}({\rm s}) = (2\pi)^{1-{\rm s}}\Gamma({\rm s}).$$

14: DEFINITION Write

$$L(\chi) = \Gamma_{C}(s + \frac{|n|}{2}).$$

To determine $\rho(\chi)$ via a judicious choice of ϕ per the relation

$$\rho(\chi) = \frac{Z(\phi, \chi)}{Z(\phi, \chi)} ,$$

let

$$\begin{vmatrix} - & \phi_{n}(z) = \overline{z}^{n} e^{-2\pi |z|^{2}} & (n \ge 0) \\ & \phi_{n}(z) = z^{-n} e^{-2\pi |z|^{2}} & (n < 0). \end{vmatrix}$$

Then

$$\hat{\phi}_{n} = (\sqrt{-1})^{|n|} \phi_{-n}$$
 (cf. §10, #3).

15: N.B. In terms of polar coordinates
$$z = re^{\sqrt{-1} \theta}$$
,
• $\phi_n(z) = r^{|n|} \exp(-2\pi r^2 - \sqrt{-1} n\theta)$
• $d^x z = \frac{2rdrd\theta}{r^2} = \frac{2}{r} drd\theta$
• $\chi(z) = e^{\sqrt{-1} n\theta} |z|_C^s = e^{\sqrt{-1} n\theta} r^{2s}$.

Therefore

 $^{z}(\phi_{n},\chi)$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} r^{|n|} \exp(-2\pi r^{2} - \sqrt{-1} n\theta) e^{\sqrt{-1} n\theta} r^{2s} \frac{2}{r} drd\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{\infty} r^{2} (s-1) + |n| \exp(-2\pi r^{2}) 2r drd\theta$$
$$= 2\pi \int_{0}^{\infty} t^{(s-1)} + |n|/2 \exp(-2\pi t) dt$$
$$= (2\pi)^{1-s-|n|/2} \Gamma(s + \frac{|n|}{2})$$
$$= \Gamma_{C}(s + \frac{|n|}{2}) = L(\chi)$$

and

$$\begin{split} z(\hat{\phi}_{n'}\chi) &= z((\sqrt{-1})^{|n|}\phi_{-n'}\chi) \\ &= (\sqrt{-1})^{|n|}(2\pi)^{1-(1-s)-|n|/2}\Gamma(1-s+\frac{|n|}{2}) \\ &= (\sqrt{-1})^{|n|}(2\pi)^{s-|n|/2}\Gamma(1-s+\frac{|n|}{2}) \\ &= (\sqrt{-1})^{|n|}\Gamma_{C}(1-s+\frac{|n|}{2}) = (\sqrt{-1})^{|n|}L(\chi). \end{split}$$

Consequently

$$\rho(\chi) = \frac{Z(\phi_n, \chi)}{Z(\hat{\phi}_n, \chi)}$$
$$= (\sqrt{-1})^{-|n|} \frac{L(\chi)}{L(\chi)}$$
$$= \varepsilon(\chi) \frac{L(\chi)}{L(\chi)},$$

.

where

$$\varepsilon(\chi) = (\sqrt{-1})^{-|n|}.$$

And

$$\frac{L(\chi)}{L(\chi)} = (2\pi)^{1-2s} \frac{\Gamma(s + \frac{|n|}{2})}{\Gamma(1-s + \frac{|n|}{2})}.$$

.

.

\$12. LOCAL ZETA FUNCTIONS: Qp

The theory set forth below is in the same spirit as that of §11 but matters are technically more complicated due to the presence of ramification.

<u>1</u>: DEFINITION Given $f \in \mathcal{B}(\mathbb{Q}_p)$ and a character $\chi:\mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$, the <u>local zeta</u> function attached to the pair (f,χ) is

$$Z(f,\chi) = \int_{Q_p^{\times}} f(x)\chi(x)d^{\times}x,$$

where $d^{x} = \frac{p}{p-1} \frac{dx}{|x|_{p}}$ (cf. §6, #26).

[Note: There are two parameters associated with χ , viz. s and $\underline{\chi}$ (cf. §9).]

<u>2:</u> LEMMA The integral defining $Z(f,\chi)$ is absolutely convergent for Re(s) > 0. PROOF It suffices to check absolute convergence for $f = \chi$ (cf. §10, #10) $p^n Z_p$ and then we might just as well take n = 0:

$$\begin{aligned} |Z(\mathbf{f}, \chi)| &\leq \int_{\mathbb{Q}_{p}^{\times}} |\mathbf{f}(\mathbf{x})| |\mathbf{x}|_{p}^{\operatorname{Re}(\mathbf{s})} d^{\times} \mathbf{x} \\ &= \int_{\mathbb{Q}_{p}^{\times}} \chi_{Z_{p}}(\mathbf{x}) |\mathbf{x}|_{p}^{\operatorname{Re}(\mathbf{s})} d^{\times} \mathbf{x} \\ &= \int_{Z_{p}^{-}\{0\}} |\mathbf{x}|_{p}^{\operatorname{Re}(\mathbf{s})} d^{\times} \mathbf{x} \\ &= \frac{1}{1 - p^{-\operatorname{Re}}(\mathbf{s})} \quad (\operatorname{cf. §6, #27)}. \end{aligned}$$

<u>3:</u> LEMMA $Z(f,\chi)$ is a holomorphic function of s in the strip Re(s) > 0. <u>4:</u> NOTATION Put

$$\dot{\chi} = \chi^{-1} | \cdot |_p.$$

The integral defining $Z(f, \chi)$ is absolutely convergent if Re(1-s) > 0, i.e., if 1 - Re(s) > 0 or still, if Re(s) < 1.

5: LEMMA Let $f,g \in B(Q_p)$ and suppose that $0 < \operatorname{Re}(s) < 1$ — then $Z(f,\chi)Z(\hat{g},\chi) = Z(\hat{f},\chi)Z(g,\chi).$

[Simply follow verbatim the argument employed in §11, #5.]

Fix $\phi \in \mathcal{B}(Q_p)$ and put

$$\rho(\chi) = \frac{Z(\phi, \chi)}{Z(\phi, \chi)} .$$

Then $\rho(\chi)$ is independent of the choice of ϕ and $\forall f \in \mathcal{B}(Q_p)$, the functional equation

$$Z(f,\chi) = \rho(\chi) Z(\hat{f}, \chi)$$

obtains.

6: LEMMA $\rho(\chi)$ is a meromorphic function of s (cf. infra).

<u>7:</u> APPLICATION $\forall f \in B(Q_p)$, $Z(f,\chi)$ admits a meromorphic continuation to the whole s-plane.

8: DEFINITION Write

$$L(\chi) = \begin{bmatrix} - (1 - \chi(p))^{-1} & (\chi \text{ unramified}) \\ 1 & (\chi \text{ ramified}). \end{bmatrix}$$

There remains the computation of $\rho\left(\chi\right)$, the simplest situation being when χ is unramified, say $\chi = |.|_{p}^{s}$, in which case we take $\phi_{0}(x) = \chi_{p}(x)\chi_{Z_{p}}(x)$: $Z(\phi_0,\chi) = \int_{Q_{\Sigma}^{\times}} \phi_0(\mathbf{x})\chi(\mathbf{x})d^{\times}\mathbf{x}$ $= \int_{\mathbf{Q}_{p}^{\times}} \chi_{p}(\mathbf{x}) \chi_{Z_{p}}(\mathbf{x}) |\mathbf{x}|_{p}^{s} d^{\times} \mathbf{x}$ = $\int_{Z_p^{-0}} \chi_p(\mathbf{x}) |\mathbf{x}|_p^s d^x \mathbf{x}$ $= \int_{Z_{p}^{-}\{0\}} |\mathbf{x}|_{p}^{s} d^{x} \mathbf{x}$ $=\frac{1}{1-p^{-s}}$ (cf. §6, #27) $=\frac{1}{1-|\mathbf{p}|_{\mathbf{p}}^{\mathbf{S}}}$ $=\frac{1}{1-\chi(p)} = L(\chi).$

To finish the determination, it is necessary to explicate the Fourier transform $\hat{\phi}_0$ of ϕ_0 (cf. §10, #11):

$$\hat{\phi}_{0}(t) = \int_{0_{p}} \phi_{0}(x) \chi_{p}(tx) dx$$
$$= \int_{0_{p}} \chi_{p}(x) \chi_{Z_{p}}(x) \chi_{p}(tx) dx$$
$$= \int_{Z_{p}} \chi_{p}(x) \chi_{p}(tx) dx$$

$$= \int_{Z_p} \chi_p((1+t)x) dx$$
$$= \chi_{Z_p}(t).$$

.

Therefore

$$\begin{aligned} z(\hat{\phi}_{0}, \overset{\vee}{\chi}) &= \int_{Q_{p}^{\times}} \hat{\phi}_{0}(x) \overset{\vee}{\chi}(x) d^{\times}x \\ &= \int_{Q_{p}^{\times}} \chi_{Z_{p}}(x) |x|_{p}^{1-s} d^{\times}x \\ &= \int_{Z_{p}^{-}\{0\}} |x|_{p}^{1-s} d^{\times}x \\ &= \frac{1}{1-p^{-}(1-s)} \quad (cf. \ \S{6}, \ \#27) \\ &= \frac{1}{1-|p|_{p}^{1-s}} \\ &= \frac{1}{1-\overset{\vee}{\chi}(p)} = L(\overset{\vee}{\chi}). \end{aligned}$$

And finally

$$\rho(\chi) = \frac{Z(\phi_0, \chi)}{Z(\hat{\phi}, \chi)} = \frac{L(\chi)}{L(\chi)}$$

or still,

$$p(\chi) = \frac{1-p^{-(1-s)}}{1-p^{-s}}.$$

9: REMARK The function

.

$$\frac{1-p^{-(1-s)}}{1-p^{-s}}$$

has a simple pole at s = 0 with residue

$$\frac{p-1}{p} \log p$$

and there are no other singularities.

Suppose now that χ is ramified of degree $n \ge 1:\chi = |\cdot|_p^s \chi$ (cf. §9, #6) and take $\phi_n(x) = \chi_p(x)\chi_p - n_{Z_p}(x):$

$$Z(\phi_{n'}\chi) = \int_{\substack{0\\p}} \phi_{n}(x)\chi(x)d^{x}x$$

$$= \int_{\mathbb{Q}_{p}^{\times}} \chi_{p}(\mathbf{x}) \chi_{p} - n Z_{p}(\mathbf{x}) |\mathbf{x}|_{p}^{s} \underline{\chi}(\mathbf{x}) d^{\times} \mathbf{x}$$

$$= \int_{p^{-n}Z_{p}^{-}\{0\}} \chi_{p}(\mathbf{x}) |\mathbf{x}|_{p}^{s} \underline{\chi}(\mathbf{x}) d^{x}\mathbf{x}$$
$$= \sum_{k=-n}^{\infty} \int_{Z_{p}^{x}} \chi_{p}(p^{k}u) |p^{k}u|_{p}^{s} \underline{\chi}(u) d^{x}u$$
$$= \sum_{k=-n}^{\infty} \sum_{p^{-ks}} (p^{k}u) |p^{k}u|_{p}^{s} \underline{\chi}(u) d^{x}u$$

$$= \sum_{k=-n}^{\infty} p^{-ks} \int_{Z_p} \chi_p(p^k u) \chi(u) d^k u.$$

<u>10:</u> LEMMA If $|v|_p \neq p^n$, then

$$\int_{Z_{p}^{\times}} \chi_{p}(vu) \chi(u) d^{\times} u = 0.$$

Since $|p^k|_p = p^{-k}$, $Z(\phi_n, \chi)$ reduces to

$$p^{ns} \int_{Z_p} \chi_p(p^{-n}u) \chi(u) d^{x}u.$$

Let $E = \{e_i : i \in I\}$ be a system of coset representatives for $Z_p^{\times}/U_{p,n}$ -- then by assumption, $\underline{\chi}$ is constant on the cosets mod $U_{p,n}$, hence

$$\int_{Z_{p}^{\times}} \chi_{p}(p^{-n}u) \chi(u) d^{\times}u$$

$$= \sum_{i=1}^{L} \chi(e_i) \int_{e_i U_{p,n}} \chi_p(p^{-n}u) d^{\times}u.$$

But

$$u \in e_i U_{p,n} \Rightarrow p^{-n} u \in p^{-n} e_i + Z_p$$

$$\chi_{p}(p^{-n}u) = \chi_{p}(p^{-n}e_{i} + x) \quad (x \in Z_{p})$$
$$= \chi_{p}(p^{-n}e_{i}).$$

Therefore

=>

$$\int_{Z_{p}^{\times}} \chi_{p}(p^{-n}u) \chi(u) d^{\times}u$$

$$= \sum_{i=1}^{r} \chi(e_{i}) \chi_{p}(p^{-n}e_{i}) \int_{e_{i}U_{p,n}} d^{\times}u$$

$$= \tau(\chi) \int_{U_{p,n}} d^{\times}u$$
r

if

$$\tau(\chi) = \sum_{i=1}^{r} \chi(e_i) \chi_p(p^{-n}e_i).$$

And

$$\int_{U_{p,n}} d^{x} u = \int_{1+p^{n} Z_{p}} d^{x} u$$
$$= \frac{p}{p-1} \int_{1+p^{n} Z_{p}} \frac{du}{|u|_{p}}$$
$$= \frac{p}{p-1} \int_{1+p^{n} Z_{p}} du$$
$$= \frac{p}{p-1} \int_{p^{n} Z_{p}} du$$
$$= \frac{p}{p-1} p^{-n} = \frac{p^{1-n}}{p-1} .$$

So in the end

$$Z(\phi_{n'}\chi) = \tau(\chi) \frac{p^{1+n(s-1)}}{p-1}$$
.

Next

$$\hat{\phi}_{n}(t) = \int_{Q_{p}} \phi_{n}(x) \chi_{p}(tx) dx$$

$$= \int_{Q_{p}} \chi_{p}(x) \chi_{p}^{-n} Z_{p}^{-n} \chi_{p}(tx) dx$$

$$= \int_{p^{-n} Z_{p}} \chi_{p}(x) \chi_{p}(tx) dx$$

$$= \int_{p^{-n} Z_{p}} \chi_{p}((1+t)x) dx$$

$$= \operatorname{vol}_{dx} (p^{-n} Z_{p}) \chi_{p^{n} Z_{p}^{-1}}(t)$$

$$= p^{n} \chi_{p^{n} Z_{p}^{-1}}(t) .$$

Therefore

$$\begin{split} z\left(\hat{\phi}_{n},\overset{\vee}{X}\right) &= \int_{q_{p}^{X}} \hat{\phi}_{n}(\mathbf{x})\overset{\vee}{X}(\mathbf{x})d^{\mathbf{x}}\mathbf{x} \\ &= \int_{q_{p}^{X}} p^{n}\chi_{p}n_{Z_{p}-1}(\mathbf{x})\chi^{-1}(\mathbf{x})|\mathbf{x}|_{p}d^{\mathbf{x}}\mathbf{x} \\ &= p^{n}\int_{p}n_{Z_{p}-1}\underline{\chi}(\mathbf{x})|\mathbf{x}|_{p}^{1-s}d^{\mathbf{x}}\mathbf{x} \\ &= p^{n}\int_{p}n_{Z_{p}-1}\underline{\chi}(\mathbf{x})d^{\mathbf{x}}\mathbf{x} \\ &= p^{n}\int_{1+p}n_{Z_{p}}\underline{\chi}(-\mathbf{x})d^{\mathbf{x}}\mathbf{x} \\ &= p^{n}\chi(-1)\int_{1+p}n_{Z_{p}}\underline{\chi}(\mathbf{x})d^{\mathbf{x}}\mathbf{x} \\ &= p^{n}\chi(-1)\int_{U_{p},n}d^{\mathbf{x}}\mathbf{x} \\ &= p^{n}\chi(-1)\frac{p^{1-n}}{p-1} \\ &= \frac{p}{p-1}\chi(-1). \end{split}$$

[Note: $\chi(-1) = \pm 1$:

$$1 = (-1) (-1) \implies 1 = \chi(-1)\chi(-1) = \chi(-1)^{2}.$$

Assembling the data then gives

$$\rho(\chi) = \frac{Z(\phi_n, \chi)}{Z(\phi_n, \chi)}$$

$$= \frac{\tau(\chi) \frac{p^{1+n}(s-1)}{p-1}}{\frac{p}{p-1} \chi(-1)}$$

$$= \tau(\chi) \frac{p^{1+n}(s-1)}{p-1} \frac{p-1}{p\chi(-1)}$$

$$= \tau(\chi) \chi(-1) p^{n}(s-1)$$

$$= \tau(\chi) \chi(-1) p^{n}(s-1) \frac{1}{1}$$

$$= \tau(\chi)\chi(-1)p^{n(s-1)} \frac{L(\chi)}{L(\chi)}.$$

11: THEOREM

$$\rho(\chi) = \varepsilon(\chi) \frac{L(\chi)}{L(\chi)},$$

 $\varepsilon(\chi) = 1$

if χ is unramified and

 $\varepsilon(\chi) = \rho(\chi)$

if χ is ramified of degree $n \ge 1$.

12: LEMMA Suppose that χ is ramified of degree $n \ge 1$ -- then

$$\varepsilon(\chi)\varepsilon(\chi) = \chi(-1).$$

PROOF $\forall f \in B(Q_p)$,

where

$$Z(f,\chi) = \varepsilon(\chi) Z(\hat{f},\chi)$$
$$= \varepsilon(\chi) \varepsilon(\chi) Z(\hat{f},\chi).$$

But $\overset{\vee}{\chi} = \chi$, hence

$$z(\hat{f},\chi) = \int_{\mathbb{Q}_{p}^{\times}} \hat{f}(x)\chi(x)d^{\times}x$$
$$= \int_{\mathbb{Q}_{p}^{\times}} f(-x)\chi(x)d^{\times}x$$
$$= \int_{\mathbb{Q}_{p}^{\times}} f(x)\chi(-x)d^{\times}x$$
$$= \chi(-1) \int_{\mathbb{Q}_{p}^{\times}} f(x)\chi(x)d^{\times}x$$
$$= \chi(-1)Z(f,\chi).$$

13: APPLICATION

$$\tau(\chi)\tau(\chi) = p^n\chi(-1).$$

ε(χ)ε(^γ)

[In fact,

$$= \tau(\chi) p^{n(s-1)} \chi(-1) \tau(\chi) p^{n(1-s-1)} \chi(-1)$$

$$= \tau(\chi) \tau(\chi) p^{-n} = \chi(-1)$$

$$=>$$

$$\tau(\chi) \tau(\chi) = p^{n} \chi(-1).$$

<u>14:</u> LEMMA Suppose that χ is ramified of degree $n \ge 1$ -- then

$$\varepsilon(\overline{\chi}) = \chi(-1)\overline{\varepsilon(\chi)}.$$

PROOF $\forall \ \mathbf{f} \in \mathcal{B}(\mathbf{Q}_p)$,

$$z(\hat{\bar{f}},\chi) = \int_{\mathbb{Q}_{p}^{\times}} \hat{\bar{f}}(x)\chi(x)d^{\times}x$$

$$= \int_{\mathbb{Q}_{p}^{\times}} \overline{\hat{f}(-x)}\chi(x)d^{\times}x \quad (cf. 10.12)$$

$$= \int_{\mathbb{Q}_{p}^{\times}} \overline{\hat{f}(x)}\chi(-x)d^{\times}x$$

$$= \chi(-1) \int_{\mathbb{Q}_{p}^{\times}} \overline{\hat{f}(x)}\chi(x)d^{\times}x$$

$$= \chi(-1) z(\overline{\hat{f}},\chi).$$

But $\frac{v}{\chi} = \frac{\overline{v}}{\chi}$, hence

$$\overline{Z(f,\chi)} = Z(\overline{f},\overline{\chi})$$

$$= \varepsilon(\overline{\chi})Z(\widehat{\overline{f}},\overline{\chi})$$

$$= \varepsilon(\overline{\chi})Z(\widehat{\overline{f}},\overline{\chi})$$

$$= \varepsilon(\overline{\chi})\chi(-1)Z(\widehat{\overline{f}},\overline{\chi})$$

$$= \varepsilon(\overline{\chi})\chi(-1)\overline{Z(\widehat{f},\chi)}.$$

On the other hand,

$$\overline{Z(f,\chi)} = \overline{\varepsilon(\chi) Z(\hat{f},\chi)}$$
$$= \overline{\varepsilon(\chi) Z(\hat{f},\chi)}.$$

Therefore

$$\varepsilon(\overline{\chi})\chi(-1) = \overline{\varepsilon(\chi)}$$

=>

$$\varepsilon(\overline{\chi}) = \chi(-1)\overline{\varepsilon(\chi)}.$$

15: APPLICATION

$$\tau(\overline{\chi}) = \chi(-1)\overline{\tau(\chi)}.$$

[In fact,

$$\varepsilon(\overline{\chi}) = \tau(\overline{\chi})p^{n}(\overline{s}-1)\overline{\chi}(-1)$$

$$= \chi(-1)\overline{\varepsilon(\chi)}$$

$$= \chi(-1)\overline{\tau(\chi)}p^{n}(\overline{s}-1)\overline{\chi}(-1)$$

$$= \chi(-1)\overline{\tau(\chi)}p^{n}(\overline{s}-1)\overline{\chi}(-1)$$

=>

$$\tau(\overline{\chi}) = \chi(-1)\overline{\tau(\chi)}.$$

<u>16:</u> DEFINITION Let $\underline{\chi} \in Z_p^{\times}$ be a nontrivial unitary character — then its <u>root number</u> $W(\underline{\chi})$ is prescribed by the relation

$$\mathbb{W}(\underline{\chi}) \; = \; \varepsilon \, (\left| \, \cdot \, \right|_p^{1/2} \; \underline{\chi}) \, .$$

[Note: If $\underline{\chi}$ is trivial, then $W(\underline{\chi}) = 1$.]

17: LEMMA

 $|W(\chi)| = 1.$

$$\chi = |\cdot|_{p}^{1/2} \underline{\chi} -- \text{ then}$$

$$\varepsilon(\chi) \varepsilon(\chi) = \chi(-1) \quad (\text{cf. #12})$$

$$\Rightarrow \qquad \varepsilon(\chi)^{-1} = \varepsilon(\chi) \chi(-1)^{-1}$$

$$= \varepsilon(\chi) \chi(-1)$$

$$= \varepsilon(\chi) \chi(-1) \quad (\chi = \chi)$$

$$= \chi(-1) \overline{\varepsilon(\chi)} \chi(-1) \quad (\text{cf. #14})$$

$$= \chi(-1)^{2} \overline{\varepsilon(\chi)}$$

$$= \overline{\varepsilon(\chi)}$$

 $|\varepsilon(\chi)| = 1 \Rightarrow |W(\chi)| = 1.$

17: APPLICATION

=>

$$|\tau(|\cdot|_{p}^{1/2} \chi)| = p^{n/2}.$$

[In fact,

PROOF Put

$$1 = |W(\underline{\chi})| = |\tau(|\cdot|_{p}^{1/2} \underline{\chi})_{p}^{n(\frac{1}{2}-1)}|.$$

18: EXERSIZE AD LIBITUM Show that the theory expounded above for $Q_{\rm p}$ can be carried over to any finite extension K of $Q_{\rm p}.$

§13. RESTRICTED PRODUCTS

Recall:

<u>1:</u> FACT Suppose that X_i ($i \in I$) is a nonempty Hausdorff space -- then the product $\prod_{i \in I} X_i$ is locally compact iff each X_i is locally compact and all but a finite number of the X_i are compact.

Let X_i ($i \in I$) be a family of nonempty locally compact Hausdorff spaces and for each $i \in I$, let $K_i \in X_i$ be an open-compact subspace.

2: DEFINITION The restricted product

consists of those x = $\{x_i\}$ in $\prod_{i \in I} X_i$ such that $x_i \in K_i$ for all but a finite number of $i \in I$.

3: N.B.

$$\underset{i \in I}{\uparrow \uparrow} (X_i:K_i) = \bigcup_{S \in I} \underset{i \in S}{\uparrow \uparrow} X_i \times \underset{i \notin S}{\uparrow \uparrow} K_i,$$

where $S \subset I$ is finite.

<u>4:</u> DEFINITION A restricted open rectangle is a subset of $\prod_{i\in I} (X_i:K_i)$ of the form

$$\underset{i\in S}{\uparrow\uparrow} U_{i} \times \underset{i\notin S}{\uparrow\uparrow} K_{i},$$

where $S \subset I$ is finite and $U_i \subset X_i$ is open.

5: LEMMA The intersection of two restricted open rectangles is a restricted open rectangle.

Therefore the collection of restricted open rectangles is a basis for a topology on $\prod_{i \in I} (X_i:K_i)$, the restricted product topology.

6: LEMMA If I is finite, then

$$\prod_{i \in I} X_i = \prod_{i \in I} (X_i:K_i)$$

and the restricted product topology coincides with the product topology.

<u>7:</u> LEMMA If $I = I_1 \cup I_2$, with $I_1 \cap I_2 = \emptyset$, then

$$\prod_{i \in I} (X_i:K_i) \approx (\prod_{i \in I_1} (X_i:K_i)) \times (\prod_{i \in I_2} (X_i:K_i)),$$

the restricted product topology on the left being the product topology on the right.

<u>8:</u> LEMMA The inclusion $\prod_{i \in I} (X_i:K_i) \rightarrow \prod_{i \in I} X_i$ is continuous but the restricted product topology coincides with the relative topology only if $X_i = K_i$ for all but a finite number of $i \in I$.

$$\underbrace{9:}_{i\in I} \text{ LEMMA } \underset{i\in I}{\prod} (X_i:K_i) \text{ is a Hausdorff space.}$$

PROOF Taking into account #8, this is because

- 1. A subspace of a Hausdorff space is Hausdorff;
- 2. Any finer topology on a Hausdorff space is Hausdorff.

10: LEMMA $\prod_{i \in I} (X_i:K_i)$ is a locally compact Hausdorff space.

PROOF Let $x \in \prod_{i \in I} (X_i:K_i)$ — then there exists a finite set $S \subset I$ such that $x_i \in K_i$ if $i \notin S$. Next, for each $i \in S$, choose a compact neighborhood U_i of x_i . This done, consider

$$\prod_{i\in S} U_i \times \prod_{i \not\in S} K_i'$$

a compact neighborhood of x.

From this point forward, it will be assumed that $X_i \equiv G_i$ is a locally compact abelian group and $K_i \subset G_i$ is an open-compact subgroup.

11: NOTATION

$$G = \prod_{i \in I} (G_i:K_i).$$

12: LEMMA G is a locally compact abelian group.

Given $i \in I$, there is a canonical arrow

$$in_i:G_i \rightarrow G_i$$

namely

```
x \rightarrow (..., 1, 1, x, 1, 1, ...).
```

<u>13:</u> LEMMA in_i is a closed embedding.

PROOF Take $S = \{i\}$ and pass to

$$G_i \times \prod_{j \neq i} K_j$$

an open, hence closed subgroup of G. The image $in_i(G_i)$ is a closed subgroup of

4.

in the product topology, hence in the restricted product topology.

Therefore G_i can be regarded as a closed subgroup of G_i

14: LEMMA

1. Let $\chi \in \tilde{G}$ -- then $\chi_i = \chi \circ in_i = \chi | G_i \in \tilde{G}_i$ and $\chi | K_i \equiv 1$ for all but a finite number of $i \in I$, so for each $x \in G$,

$$\chi(\mathbf{x}) = \chi(\{\mathbf{x}_{\mathbf{i}}\}) = \prod_{\mathbf{i} \in \mathbf{I}} \chi_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}}).$$

2. Given $i \in I$, let $\chi_i \in \tilde{G}_i$ and assume that $\chi_i | K_i \equiv 1$ for all but a finite number of $i \in I$ — then the prescription

$$\chi(\mathbf{x}) = \chi(\{\mathbf{x}_{\mathbf{i}}\}) = \prod_{\mathbf{i} \in \mathbf{I}} \chi_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}})$$

defines a $\chi \in \widetilde{G}.$

These observations also apply if \tilde{G} is replaced by \hat{G} , in which case more can be said.

15: THEOREM As topological groups,

$$\hat{\mathbf{G}} \approx \prod_{\mathbf{i} \in \mathbf{I}} (\hat{\mathbf{G}}_{\mathbf{i}}: \mathbf{K}_{\mathbf{i}}^{\mathbf{L}}).$$

[Note: Recall that

$$K_{i}^{\perp} = \{\chi_{i} \in \hat{G}_{i}: \chi_{i} | K_{i} \equiv 1\}$$
 (cf. §7, #32)

and a tacit claim is that K_i^l is an open-compact subgroup of \hat{G} . To see this,

quote §7, #34 to get

$$\hat{K}_{i} \approx \hat{G}/K_{i}^{\perp}, K_{i}^{\perp} \approx \hat{G}/K_{i}.$$

Then

- K_i compact => \hat{K}_i discrete => \hat{G}/K_i^{\perp} discrete => K_i^{\perp} open
- K_i open => G/K_i discrete => G/K_i compact => K_i^i compact.]

Let μ_i be the Haar measure on G_i normalized by the condition

$$\mu_{i}(K_{i}) = 1.$$

<u>16:</u> LEMMA There is a unique Haar measure μ_G on G such that for every finite subset S $_{\rm C}$ I, the restriction of μ_G to

$$G_{S} \equiv \prod_{i \in S} G_{i} \times \prod_{i \notin S} K_{i}$$

is the product measure.

Suppose that f_i is a continuous, integrable function on G_i such that $f_i | K_i = 1$ for all i outside some finite set and let f be the function on G defined by

$$f(\mathbf{x}) = f(\{\mathbf{x}_{\mathbf{i}}\}) = \prod_{\mathbf{i}} f_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}}).$$

Then f is continuous. Proof: The G_S are open and cover G and on each of them f is continuous.

17: LEMMA Let $S \subset I$ be a finite subset of I -- then

$$\int_{G_{S}} f(x) d\mu_{G_{S}}(x) = \prod_{i \in S} \int_{G_{i}} f_{i}(x_{i}) d\mu_{G_{i}}(x_{i}).$$

18: APPLICATION If

$$\sup_{S} \prod_{i \in S} \int_{G_{i}} |f_{i}(x_{i})| d\mu_{G_{i}}(x_{i}) < \infty,$$

then f is integrable on G and

$$\int_{G} f(\mathbf{x}) d\mu_{G}(\mathbf{x}) = \prod_{i \in \mathbf{I}} \int_{G_{i}} f_{i}(\mathbf{x}_{i}) d\mu_{G_{i}}(\mathbf{x}_{i}).$$

19: EXAMPLE Take $f_i = \chi$ (which is continuous, K_i being open-compact) -then $\hat{f}_i = \chi_{K_i^i}$. Setting

$$f = \prod_{i \in I} f_i$$

it thus follows that $\forall~\chi\in \hat{G}\text{,}$

$$\hat{\mathbf{f}}(\boldsymbol{\chi}) = \prod_{\mathbf{i}\in \mathbf{I}} \hat{\mathbf{f}}_{\mathbf{i}}(\boldsymbol{\chi}_{\mathbf{i}}).$$

Working within the framework of §7, #45, let μ_{i} be the Haar measure on \hat{G}_{i} per Fourier inversion.

20: LEMMA

$$\mu_{\hat{G}_{i}}(K_{i}^{i}) = 1$$

PROOF Since $\chi_{K_i} \in INV(G_i)$, $\forall x_i \in G_i$,

$$\chi_{\mathbf{K}_{\mathbf{i}}}(\mathbf{x}_{\mathbf{i}}) = \int_{\hat{\mathbf{G}}_{\mathbf{i}}} \hat{\chi}_{\mathbf{K}_{\mathbf{i}}}(\mathbf{x}_{\mathbf{i}}) \overline{\chi_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}})} d\mu_{\hat{\mathbf{G}}_{\mathbf{i}}}(\chi_{\mathbf{i}})$$

$$=\int_{K_{i}^{L}}\overline{\chi_{i}(x_{i})}d\mu_{\hat{G}_{i}}(\chi_{i}).$$

Now set $x_i = 1$ to get

$$L = \int_{\substack{K_{i}^{\perp} \\ K_{i}^{\perp}}} d\mu_{\hat{G}_{i}}(\chi_{i})$$
$$= \mu_{\hat{G}_{i}}(K_{i}^{\perp}).$$

Let $\mu_{\hat{G}}$ be the Haar measure on \hat{G} constructed as in #16 (i.e., replace G by $\hat{G},$ bearing in mind #20).

21: LEMMA $\mu_{\hat{G}}$ is the Haar measure on \hat{G} figuring in Fourier inversion per ${}^{\mu}{}_{G}{}^{\bullet}$

PROOF Take

$$f = \prod_{i \in I} f_i'$$

where $f_i = \chi_{K_i}$ (cf. #19) -- then

$$\begin{split} \int_{\hat{G}} \hat{f}(\chi) \overline{\chi(\mathbf{x})} d\mu_{\hat{G}}(\chi) \\ &= \prod_{i \in \mathbf{I}} \int_{\hat{G}_{i}} \hat{f}_{i}(\chi_{i}) \overline{\chi_{i}(\mathbf{x}_{i})} d\mu_{\hat{G}_{i}}(\chi_{i}) \\ &= \prod_{i \in \mathbf{I}} f_{i}(\mathbf{x}_{i}) = f(\{\mathbf{x}_{i}\}) = f(\mathbf{x}). \end{split}$$

§14. ADELES AND IDELES

1. DEFINITION The set of finite adeles is the restricted product

$$A_{fin} = \prod_{p} (Q_{p}:Z_{p}).$$

2: DEFINITION The set of adeles is the product

$$A = A_{fin} \times R$$
.

3: LEMMA A is a locally compact abelian group (under addition).

<u>4:</u> <u>N.B.</u> A is a subring of $\prod_{p} Q_p \times R$.

The image of the diagonal map

$$Q \rightarrow \prod_{p} Q_{p} \times R$$

lies in A, so Q can be regarded as a subring of A.

5: LEMMA Q is a discrete subspace of A.

PROOF To establish the discreteness of $Q \subset A$, one need only exhibit a neighborhood U of 0 in A such that $Q \cap U = \{0\}$. To this end, consider

$$\mathbf{U} = \prod_{\mathbf{p}} \mathbf{Z}_{\mathbf{p}} \times \left[-\frac{1}{2}, \frac{1}{2} \right].$$

If $x \in Q \cap U$, then $|x|_p \le 1 \forall p$. But $\cap (Q \cap Z_p) = Z$, so $x \in Z$. And further, p $|x|_{\infty} < \frac{1}{2}$, hence finally x = 0.

6: FACT Let G be a locally compact group and let $\Gamma \subset G$ be a discrete

subgroup -- then Γ is closed in G and G/T is a locally compact Hausdorff space.

7: THEOREM The quotient A/Q is a compact Hausdorff space.

PROOF Since Q c A is a discrete subgroup, Q must be closed in A and the quotient A/Q must be Hausdorff. As for the compactness, it suffices to show that the compact set $\prod_p Z_p \times [0,1]$ contains a set of representatives of A/Q because

this implies that the projection

$$\prod_{p} Z_{p} \times [0,1] \rightarrow A/Q$$

is surjective, hence that A/Q is the continuous image of a compact set. So let $x \in A$ -- then there is a finite set S of primes such that $p \notin S \Rightarrow x_p \in Z_p$. For $p \in S$, write

$$x_{p} = f(x_{p}) + [x_{p}],$$

thus $[\mathbf{x}_p] \in \mathsf{Z}_p$ and if $q \neq p$ is another prime,

$$\begin{aligned} \left| \mathbf{f}(\mathbf{x}_{p}) \right|_{q} &= \left| \sum_{n=\mathbf{v}(\mathbf{x}_{p})}^{-1} \mathbf{a}_{n} \mathbf{p}^{n} \right|_{q} \\ &\leq \sup\{ \left| \mathbf{a}_{n} \mathbf{p}^{n} \right|_{q} \} \leq 1. \end{aligned}$$

Agreeing to denote $f(x_p)$ by r_p , write

$$x = (x-r_p) + r_p.$$

Then r_p is a rational number and per x-r_p, S reduces to S - {p}. Proceed from here by iteration to get

$$\mathbf{x} = \mathbf{y} + \mathbf{r},$$

where $\forall p, y_p \in Z_p$, and $r \in Q$. At infinity,

$$x_{\infty} = y_{\infty} + r$$
 $(r_{\infty} = r)$

and there is a unique $k \in Z$ such that

$$y_{m} = (y_{m}-k) + k$$

with $0 \le y_{\infty} - k < 1$. Accordingly,

$$y = y + r = (y-k) + k + r.$$

And

$$\forall p, (y-k)_{p} = y_{p} - k_{p} = y_{p} - k \in Z_{p},$$

while

$$x_{m} = (y_{m} - k) + k + r.$$

It therefore follows that x can be written as the sum of an element in

 $\prod_{p} Z_{p} \times [0,1]$ and a rational number, the contention.

8: DEFINITION The topological group A/Q is called the adele class group.

<u>9:</u> DEFINITION Let G be a locally compact group and let $\Gamma \subset G$ be a discrete subgroup -- then a <u>fundamental domain</u> for G/Γ is a Borel measurable subset $D \subset G$ which is a system of representatives for G/Γ .

10: LEMMA The set

$$D = \prod_{p} Z_{p} \times [0,1[$$

is a fundamental domain for A/Q.

PROOF The claim is that every $x \in A$ can be written uniquely as d + r, where $d \in D$, $r \in Q$. The proof of #7 settles existence, thus the remaining issue is uniqueness: $d_1 + r_1 = d_2 + r_2 \Rightarrow d_1 = d_2$, $r_1 = r_2$. To see this, consider

 $\rho = d_1 - d_2 = r_2 - r_1 \in (D-D) \cap Q.$ • $\forall p, \rho = \rho_p \in D_p - D_p = D_p = Z_p$ $\Rightarrow \rho \in \cap (Q \cap Z_p) = Z.$ • $\rho = \rho_{\infty} \in D_{\infty} - D_{\infty} =]-1,1[.$

Therefore

$$\rho \in Z \cap]-1,1[=> \rho = 0.$$

<u>11:</u> REMARK Q is dense in A_{fin} . [The point is that Z is dense in $\prod_{p} Z_{p}$.]

12: DEFINITION The set of finite ideles is the restricted product

$$I_{fin} = \prod_{p} (Q_{p}^{\times}; Z_{p}^{\times}).$$

13: DEFINITION The set of ideles is the product

$$I = I_{fin} \times R^{\times}$$
.

14: LEMMA I is a locally compact abelian group (under multiplication).

Algebraically, I can be identified with A^{\times} but there is a topological issue since when endowed with the relative topology, A^{\times} is not a topological group: Multiplication is continuous but inversion is not continuous.

15: LEMMA Equip A × A with the product topology and define

$$\phi: \Gamma \rightarrow A \times A$$

by

$$\phi(\mathbf{x}) = (\mathbf{x}, \frac{1}{\mathbf{x}}).$$

Endow the image $\phi(I)$ with the relative topology -- then ϕ is a topological isomorphism of I onto $\phi(I)$.

The image of the diagonal map

$$Q^{\times} \rightarrow \prod_{p} Q_{p} \times R^{\times}$$

lies in I, so Q^{\times} can be regarded as a subgroup of I.

16: LEMMA Q^{\times} is a discrete subspace of I.

PROOF Q is a discrete subspace of A (cf. #5), hence Q × Q is a discrete subspace of A × A, hence $\phi(Q^{\times})$ is a discrete subspace of $\phi(I)$.

Consequently, Q^{\times} is a closed subgroup of I and the quotient I/Q^{\times} is a locally compact Hausdorff space but, as opposed to the adelic situation, it is not compact (see below).

17: DEFINITION The topological group I/Q^{\times} is called the <u>idele class group</u>.

18: NOTATION Given $x \in I$, put

$$\mathbf{x}|_{\mathsf{A}} = \prod_{\mathbf{p} \leq \infty} |\mathbf{x}_{\mathbf{p}}|_{\mathbf{p}}.$$

Extend the definition of $|.|_A$ to all of A by setting $|x|_A = 0$ if $x \in A - A^{\times}$.

<u>19:</u> LEMMA $\forall x \in Q^{\times}$, $|x|_{A} = 1$ (cf. §1, #21).

20: LEMMA The homomorphism

$$|\cdot|_{A}: I \rightarrow R_{>0}^{\times}$$

is continuous and surjective.

PROOF Omitting the verification of continuity, fix $t\in R^\times_{>0}$ and let x be the idele specified by

$$x_p = 1 (p < \infty), x_{\infty} = t.$$

Then $|\mathbf{x}|_A = t$.

21: SCHOLIUM The idele class group I/Q^{\times} is not compact.

22: NOTATION Let

$$I^{1} = Ker |.|_{\Lambda}.$$

$$\underline{23:} \quad \underline{N.B.} \quad x \in I^{\perp} \Rightarrow x_{\infty} \in Q^{\times}.$$

24: THEOREM The quotient I^{1}/Q^{\times} is a compact Hausdorff space, in fact

$$I^{1}/Q^{\times} \approx \prod_{p} Z_{p}^{\times},$$

hence

$$\prod_{p} Z_{p}^{\times} \times \{1\}$$

is a fundamental domain for I^1/Q^{\times} .

PROOF The arrow

$$\prod_{p} Z_{p}^{\times} \neq I^{1}/Q^{\times}$$

that sends x to $(x,1)Q^{\times}$ is an isomorphism of topological groups.

[In obvious notation, the inverse is the map

$$x = (x_{fin}, x_{\infty}) \rightarrow \frac{1}{x_{\infty}} x_{fin}$$
]

<u>25:</u> REMARK \forall p, Z_p^{\times} is totally disconnected. But a product of totally disconnected spaces is totally disconnected, thus $\prod_p Z_p^{\times}$ is totally disconnected, thus I^1/Q^{\times} is totally disconnected.

<u>26:</u> <u>N.B.</u> $\prod_{p} Z_{p}^{\times} \times R_{>0}^{\times}$ is a fundamental domain for I/Q^{\times} .

[Note: If $r \in Q$ and if $|r|_p = 1 \forall p$, then $r = \pm 1$.]

27: LEMMA

$$I \approx I^1 \times R_{>0}^{\times}$$

PROOF The arrow

$$I \rightarrow I^{1} \times R_{>0}^{\times}$$

that sends x to $(\tilde{x}, \ \left| x \right|_A),$ where

$$\tilde{(\mathbf{x})}_{p} = \begin{vmatrix} -\mathbf{x}_{p} & (p < \infty) \\ \\ -\mathbf{x}_{\infty} \\ |\mathbf{x}|_{A} & (p = \infty) \end{vmatrix},$$

is an isomorphism of topological groups.

28: LEMMA There is a disjoint decomposition

$$I_{fin} = \coprod_{q \in \mathbb{Q}_{>0}^{\times}} q(\prod_{p} Z_{p}^{\times}).$$

PROOF The right hand side is obviously contained in the left hand side. To go the other way, fix an $x \in I_{fin}$ -- then $|x|_A \in Q_{>0}^{\times}$. Moreover, $|x|_A x \in I_{fin}$ and $\forall p$, $||x|_A x_p|_p = 1$ (for $x_p = p^k u$ ($u \in Z_p^{\times}$) => $|x|_A = p^{-k}r$ ($r \in Q^{\times}$, r coprime to p)), hence

$$|\mathbf{x}|_{A}\mathbf{x} \in \prod_{p} Z_{p}^{\mathbf{x}}$$

Now write

$$\mathbf{x} = |\mathbf{x}|_{\mathbf{A}}^{-1} (|\mathbf{x}|_{\mathbf{A}}\mathbf{x})$$

to conclude that

$$\mathbf{x} \in \mathbf{q} \prod_{p} \mathbf{Z}_{p}^{\mathbf{x}}$$
 $(\mathbf{q} = |\mathbf{x}|_{A}^{-1}).$

29: LEMMA There is a disjoint decomposition

$$I_{fin} \cap \prod_{p} Z_{p} = \coprod_{n \in \mathbb{N}} n (\prod_{p} Z_{p}^{\mathsf{x}}).$$

Normalize the Haar measure $d^{x}x$ on I_{fin} by assigning the open-compact subgroup $\prod_{p} Z_{p}^{x}$ total volume 1.

30: EXAMPLE Suppose that Re(s) > 1 -- then

$$\int_{I_{\text{fin}}} \cap \prod_{p} Z_{p} |\mathbf{x}|_{A}^{s} d^{x} \mathbf{x}$$

$$= \sum_{n \in \mathbb{N}} \int_{n \in \mathbb{N}} |\mathbf{x}|_{p}^{\mathbf{x}} \mathbf{z}_{p}^{\mathbf{x}}| |\mathbf{x}|_{A}^{\mathbf{x}} \mathbf{d}^{\mathbf{x}} \mathbf{x}$$

$$= \sum_{n \in \mathbb{N}} \int_{p}^{\mathbf{x}} \mathbf{z}_{p}^{\mathbf{x}} |\mathbf{n}\mathbf{x}|_{A}^{\mathbf{x}} \mathbf{d}^{\mathbf{x}} \mathbf{x}$$

$$= \sum_{n \in \mathbb{N}} n^{-\mathbf{s}} \operatorname{vol}_{\mathbf{d}^{\mathbf{x}}} (\prod_{p} \mathbf{z}_{p}^{\mathbf{x}})$$

$$= \sum_{n \in \mathbb{N}} n^{-\mathbf{s}} = \zeta(\mathbf{s}).$$
[Note: Let $\mathbf{x} \in \prod_{p} \mathbf{z}_{p}^{\mathbf{x}}$:

$$= \ge |\mathbf{n}\mathbf{x}|_{A} = \prod_{p} |\mathbf{n}\mathbf{x}_{p}|_{p}$$

$$= \prod_{p} |\mathbf{n}|_{p} |\mathbf{x}_{p}|_{p}$$

$$= \prod_{p} |\mathbf{n}|_{p} \cdot \mathbf{n} \cdot \frac{1}{\mathbf{n}}$$

$$= \mathbf{1} \cdot \frac{1}{\mathbf{n}} = n^{-1}.\mathbf{1}$$

The idelic absolute value $\left| \cdot \right|_{A}$ can be interpreted measure theoretically.

31: NOTATION Write

$$dx_A = \prod_{p \le \infty} dx_p$$

for the Haar measure $\mu_{\mbox{A}}$ on A (cf. §13, #16).

Consider a function of the form $f = \prod_{p \le \infty} f_p$, where $\forall p, f_p$ is a continuous, integrable function on Q_p , and for all but a finite number of p, $f_p = \chi_{Z_p}$ -- then $\int_A f(x) dx_A = \prod_{p \le \infty} \int_{Q_p} f_p(x_p) dx_p$ (cf. §13, #18),

it being understood that $Q_{\infty} = R$.

32: LEMMA Let $M \subset A$ be a Borel set with $0 < \mu_A(M) < \infty$ -- then $\forall x \in I$,

$$\frac{\mu_{A}(\mathbf{x}M)}{\mu_{A}(M)} = \|\mathbf{x}\|_{A}.$$

PROOF Take $M = D = \prod_{p} Z_{p} \times [0,1[(cf. #10):$

$$\begin{split} \mu_{\mathsf{A}}(\mathbf{x}\mathsf{M}) &= \prod_{p} \mu_{\mathsf{Q}_{p}} (\mathbf{x}_{p}\mathsf{Z}_{p}) \times \mu_{\mathsf{R}}(\mathbf{x}_{\infty}[0,1[)) \\ &= \prod_{p} |\mathbf{x}_{p}|_{p} \mu_{\mathsf{Q}_{p}}(\mathsf{Z}_{p}) \times |\mathbf{x}_{\infty}| \mu_{\mathsf{R}}([0,1[)) \\ &= \prod_{p} |\mathbf{x}_{p}|_{p} \times |\mathbf{x}_{\infty}|_{\infty} \\ &= \prod_{p \leq \infty} |\mathbf{x}_{p}|_{p} = |\mathbf{x}|_{\mathsf{A}}. \end{split}$$

[Note: Needless to say, multiplication by an idele x is an automorphism of A, thus transforms μ_A into a positive constant multiple of itself, the multiplier being $|x|_A$.]

§15. GLOBAL ANALYSIS

By definition,

 $A = A_{fin} \times R.$

Therefore

 $\hat{A} \approx \hat{A}_{fin} \times \hat{R}.$

And

Put

$$x_{Q} = \prod_{p \leq \infty} x_{p'}$$

$$\chi_{\infty}(x) = \exp(-2\pi\sqrt{-1} x)$$
 (x \in R) (cf. §8, #27).

Then

 $x_{Q} \in \hat{A}.$

Given t \in A, define $\chi_{\textbf{Q},\textbf{t}}\in \hat{A}$ by the rule

$$\chi_{0,t}(\mathbf{x}) = \chi_{0}(\mathbf{t}\mathbf{x}).$$

Then the arrow

E_Q:A → Â

that sends t to $\chi_{Q,t}$ is an isomorphism of topological groups (cf. §8, #24).

where

Recall now that $\forall q \in Q$,

$$\chi_{0}(q) = 1$$
 (cf. §8, #28).

Accordingly, χ_Q passes to the quotient and defines a unitary character of the adele class group A/Q. So, $\forall q \in Q$, $\chi_{Q,q}$ is constant on the cosets of A/Q, thus it too determines an element of A/Q.

Equip Q with the discrete topology.

1: THEOREM The induced map

$$= \Xi_{Q} | Q:Q \rightarrow A/Q$$

$$q \rightarrow \chi_{Q,q}$$

is an isomorphism of topological groups.

PROOF Form $Q^{\perp} \subset \hat{A}$, the closed subgroup of \hat{A} consisting of those χ that are trivial on Q -- then $Q \subset Q^{\perp}$ and $\widehat{A/Q} \approx Q^{\perp}$. But A/Q is compact, thus its unitary dual $\widehat{A/Q}$ is discrete, thus Q^{\perp} is discrete. The quotient $Q^{\perp}/Q \subset A/Q$ ($A \approx \hat{A}$) is therefore discrete and closed, hence discrete and compact, hence finite. But Q^{\perp}/Q is a Q-vector space, so $Q^{\perp}/Q = \{0\}$ or still, $Q^{\perp} = Q$, which implies that $Q \approx \widehat{A/Q}$.

2: <u>N.B.</u> There are two points of detail that have been tacitly invoked in the foregoing derivation.

• Q^{\perp}/Q in the quotient topology is discrete. Reason: Let S be an arbitrary nonempty subset of Q^{\perp}/Q , say S = {xQ:x \in U}, U a subset of Q^{\perp} -- then U is automatically open (Q^{\perp} being discrete), thus by the very definition of the quotient

topology, S is an open subset of Q^{\perp}/Q .

• The quotient Q^{\perp}/Q is closed in A/Q. Reason: Q^{\perp} is a closed subgroup of A containing Q, so the following generality is applicable: If G is a topological group, if H is a subgroup of G, if F is a closed subgroup of G containing H, then $\pi(F)$ is closed in G/H ($\pi:G \rightarrow G/H$ the projection).

3: SCHOLIUM

$$Q \approx \widehat{A/Q} \Rightarrow \widehat{Q} \approx \widehat{A/Q} \approx A/Q.$$

[Note: Bear in mind that Q carries the discrete topology.]

<u>4</u>: DISCUSSION Explicated, if $\chi \in \hat{Q}$, then there exists a $t \in A$ such that $\chi = \chi_{Q,t}$ and $\chi_{Q,t_1} = \chi_{Q,t_2}$ iff $t_1 - t_2 \in Q$.

5: DEFINITION The Bruhat space $\mathcal{B}(A_{fin})$ consists of all finite linear combinations of functions of the form

$$f = \prod_{p} f_{p'}$$

where $\forall \ p, \ f_p \in \mathcal{B}(\mathbb{Q}_p)$ and $f_p = \chi_{Z_p}$ for all but a finite number of p.

<u>6:</u> DEFINITION The <u>Bruhat-Schwartz space</u> $B_{\infty}(A)$ consists of all finite linear combinations of functions of the form

$$f = \prod_{p} f_{p} \times f_{\infty},$$

where

$$\prod_{p} f_{p} \in B(A_{fin}) \text{ and } f_{\infty} \in S(R).$$

Given an $f\in B_{_{\!\!\infty}}(A)\,,$ its Fourier transform is the function $\hat{f}\colon A\to C$ defined by the rule

$$\hat{f}(t) = \int_{A} f(x) \chi_{Q,t}(x) d\mu_{A}(x)$$
$$= \int_{A} f(x) \chi_{Q}(tx) d\mu_{A}(x).$$

7: LEMMA If

$$f = \prod_{p} f_{p} \times f_{\infty}$$

is a Bruhat-Schwartz function, then

$$\hat{\mathbf{f}} = \prod_{p} \hat{\mathbf{f}}_{p} \times \hat{\mathbf{f}}_{\infty}.$$

<u>8:</u> REMARK \hat{f}_p is computed per §10, #11 but \hat{f}_{∞} is computed per

$$\chi_{m}(x) = \exp(-2\pi\sqrt{-1} x),$$

meaning that the sign convention here is the opposite of that laid down in §10 (a harmless deviation).

9: APPLICATION

$$f \in \mathcal{B}_{\infty}(A) \implies f \in \mathcal{B}_{\infty}(A)$$
 (cf. §10, #16).

10: N.B. It is clear that

$$\mathcal{B}_{\infty}(A) \subset INV(A)$$

and $\forall f \in \mathcal{B}_{\infty}(A)$,

$$\hat{f}(x) = f(-x) \quad (x \in A).$$

<u>11:</u> LEMMA Given $f \in B_{\infty}(A)$, the series

$$\Sigma \mathbf{f}(\mathbf{x}+\mathbf{r}), \Sigma \widetilde{\mathbf{f}}(\mathbf{x}+\mathbf{q})$$

$$\mathbf{r}\in \mathbf{Q} \qquad \mathbf{q}\in \mathbf{Q}$$

are absolutely and uniformly convergent on compact subsets of A.

12: POISSON SUMMATION FORMULA Given $f\in B_{\!_\infty}(A)$,

$$\Sigma f(\mathbf{r}) = \Sigma f(\mathbf{q}).$$

$$\mathbf{r} \in \mathbf{Q} \qquad \mathbf{q} \in \mathbf{Q}$$

The proof is not difficult but there are some measure-theoretic issues to be dealt with first.

On general grounds,

$$f_{A} = f_{A/Q} \sum_{Q} (cf. \$6, \#11).$$

Here the integral f_A is with respect to the Haar measure μ_A on A (cf. §14, #31). Taking μ_Q to be counting measure, this choice of data fixes the Haar measure $\mu_{A/Q}$ on A/Q.

[Note: The restriction of $\boldsymbol{\mu}_{\boldsymbol{\mathsf{A}}}$ to the fundamental domain

$$D = \prod_{p} Z_{p} \times [0,1[$$

for A/Q (cf. §14, #10) determines $\mu_{\text{A}/\text{O}}$ and

$$1 = \mu_{A}(D) = \mu_{A/Q} (A/Q).$$

If $\phi: Q \to C$, then $\hat{\phi}: \hat{Q} \to C$, i.e., $\hat{\phi}: A/Q \to C$ or still, $\hat{\phi}(\chi) = \sum_{\substack{r \in Q}} \phi(r) \chi(r)$.

Specialize and suppose that ϕ is the characteristic function of $\{0\}$, so $\forall \chi$,

$$\hat{\phi}(\chi) = \chi(0) = 1.$$

Therefore $\hat{\phi}$ is the constant function 1 on A/Q. Pass now to $\hat{\phi}$, thus $\hat{\phi}: \widehat{A/Q} \rightarrow C$ or still,

$$\hat{\phi}(\chi_{Q,q}) = f_{A/Q} \hat{\phi}(\mathbf{x})\chi_{Q,q} (\mathbf{x})d\mu_{A/Q}(\mathbf{x})$$
$$= f_{A/Q} \chi_{Q,q} (\mathbf{x})d\mu_{A/Q}(\mathbf{x})$$

which is 1 if q = 0 and is 0 otherwise (cf. §7, #46 (A/Q is compact)), hence $\hat{\phi} = \phi$. But $\phi(r) = \phi(-r)$, thereby leading to the conclusion that the Haar measure $\mu_{A/O}$ on A/Q is the one singled out by Fourier inversion (cf. §7, #45).

Summary: Per Fourier inversion,

• μ_0 is paired with $\mu_{A/0}$.

•
$$\mu_{A/Q}$$
 is paired with μ_Q .

Given $f \in B_{\infty}(A)$, put

$$F(x) = \sum_{r \in Q} f(x+r)$$
.

Then F lives on A/Q, so \hat{F} lives on $A/Q \approx Q$:

$$\hat{F}(q) = \int_{A/Q} F(x) \chi_{Q,q}(x) d\mu_{A/Q}(x)$$
$$= \int_{A/Q} F(x) \chi_{Q}(qx) d\mu_{A/Q}(x).$$

On the other hand,

$$\hat{f}(q) = \int_{A} f(x) \chi_{Q,q}(x) d\mu_{A}(x)$$

$$= \int_{A} f(x) \chi_{Q}(qx) d\mu_{A}(x)$$

$$= \int_{A/Q} \left(\sum_{r \in Q} f(x+r) \chi_{Q}(q(x+r)) \right) d\mu_{A/Q}(x)$$

$$= \int_{A/Q} \left(\sum_{r \in Q} f(x+r) \chi_{Q}(qx+qr) \right) d\mu_{A/Q}(x)$$

$$= \int_{A/Q} \left(\sum_{r \in Q} f(x+r) \chi_{Q}(qx) \chi_{Q}(qr) d\mu_{A/Q}(x) \right)$$

$$= \int_{A/Q} \left(\sum_{r \in Q} f(x+r) \right) \chi_{Q}(qx) d\mu_{A/Q}(x)$$

$$= \int_{A/Q} F(x) \chi_{Q}(qx) d\mu_{A/Q}(x)$$

$$= \hat{F}(q) .$$

To finish the proof, per Fourier inversion, write

$$\mathbf{F}(\mathbf{x}) = \sum_{\mathbf{q} \in \mathbf{Q}} \widehat{\mathbf{F}}(\mathbf{q}) \overline{\chi_{\mathbf{Q}}(\mathbf{q}\mathbf{x})}$$

and then put x = 0:

$$F(0) = \sum f(r) = \sum \hat{F}(q) = \sum \hat{f}(q).$$

r \in Q q \in Q q \in Q

13: THEOREM Let $x \in I$ -- then $\forall \ f \in B_{_{\!\!\infty}}(A)$,

$$\sum_{\mathbf{r}\in\mathbf{Q}}\mathbf{f}(\mathbf{r}\mathbf{x}) = \frac{1}{|\mathbf{x}|_{\mathsf{A}}}\sum_{\mathbf{q}\in\mathbf{Q}}\hat{\mathbf{f}}(\mathbf{q}\mathbf{x}^{-1}).$$

PROOF Work with $f_x \in \mathcal{B}_{\infty}(A)$ $(f_x(y) = f(xy))$:

 $\sum_{\mathbf{r}\in Q} \mathbf{f}_{\mathbf{x}}(\mathbf{r}) = \sum_{\mathbf{q}\in Q} \hat{\mathbf{f}}_{\mathbf{x}}(\mathbf{q}).$

But

,

$$\begin{split} \hat{\mathbf{f}}_{\mathbf{x}}(\mathbf{q}) &= \int_{\mathbf{A}} \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \chi_{\mathbf{0},\mathbf{q}}(\mathbf{y}) d\mu_{\mathbf{A}}(\mathbf{y}) \\ &= \int_{\mathbf{A}} \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \chi_{\mathbf{0}}(\mathbf{q}\mathbf{y}) d\mu_{\mathbf{A}}(\mathbf{y}) \\ &= \int_{\mathbf{A}} \mathbf{f}(\mathbf{x}\mathbf{y}) \chi_{\mathbf{0}}(\mathbf{q}\mathbf{x}\mathbf{x}^{-1}\mathbf{y}) d\mu_{\mathbf{A}}(\mathbf{y}) \\ &= \frac{1}{|\mathbf{x}|_{\mathbf{A}}} \int_{\mathbf{A}} \mathbf{f}(\mathbf{y}) \chi_{\mathbf{0}}(\mathbf{q}\mathbf{x}^{-1}\mathbf{y}) d\mu_{\mathbf{A}}(\mathbf{y}) \\ &= \frac{1}{|\mathbf{x}|_{\mathbf{A}}} \hat{\mathbf{f}}(\mathbf{q}\mathbf{x}^{-1}) \,. \end{split}$$

.

\$16. FUNCTIONAL EQUATIONS

Let

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 (Re(s) > 1)

be the Riemann zeta function -- then $\zeta(s)$ can be meromorphically continued into the whole s-plane with a simple pole as s = 1 and satisfies there the functional equation

$$\pi^{-s/2}\Gamma(s/2)\zeta(s) = \pi^{-(1-s)/2}\Gamma((1-s)/2)\zeta(1-s).$$

<u>1</u>: REMARK The product $\pi^{-s/2}\Gamma(s/2)$ was denoted by $\Gamma_{R}(s)$ in §11, #8.

There are many proofs of the functional equation satisfied by $\zeta(s)$. Of these, we shall single out two, one "classical", the other "modern".

To proceed in the classical vein, start with

$$\Gamma(s) = \int_0^\infty e^{-x} x^s \frac{dx}{x} \quad (\operatorname{Re}(s) > 1).$$

Then by change of variable,

$$\pi^{-s/2}\Gamma(s/2)n^{-s} = \int_0^\infty e^{-n^2\pi x} x^{s/2} \frac{dx}{x}.$$

So, upon summing from n = 1 to ∞ :

$$\pi^{-s/2}\Gamma(s/2)\zeta(s) = \int_0^\infty \psi(x) x^{s/2} \frac{dx}{x} ,$$

where

$$\psi(\mathbf{x}) = \sum_{n=1}^{\infty} e^{-n^2 \pi \mathbf{x}}.$$

Put now

$$\theta(\mathbf{x}) = 1 + 2\psi(\mathbf{x}) = \sum_{n \in \mathbb{Z}} e^{-n^2 \pi \mathbf{x}}.$$

$$\theta\left(\frac{1}{x}\right) = \sqrt{x \theta}(x).$$

Therefore

$$\psi(\frac{1}{x}) = -\frac{1}{2} + \frac{1}{2} \theta(\frac{1}{x})$$
$$= -\frac{1}{2} + \frac{\sqrt{x}}{2} \theta(x)$$
$$= -\frac{1}{2} + \frac{\sqrt{x}}{2} + \sqrt{x} \psi(x)$$

One may then write

$$\begin{aligned} \pi^{-S/2} \Gamma(s/2) \zeta(s) &= \int_0^\infty \psi(x) x^{S/2} \frac{dx}{x} \\ &= \int_0^1 \psi(x) x^{S/2} \frac{dx}{x} + \int_1^\infty \psi(x) x^{S/2} \frac{dx}{x} \\ &= \int_1^\infty \psi(\frac{1}{x}) x^{-S/2} \frac{dx}{x} + \int_1^\infty \psi(x) x^{S/2} \frac{dx}{x} \\ &= \int_1^\infty (-\frac{1}{2} + \frac{\sqrt{x}}{2} + \sqrt{x} \psi(x)) x^{-S/2} \frac{dx}{x} + \int_1^\infty \psi(x) x^{S/2} \frac{dx}{x} \\ &= \frac{1}{s^{-1}} - \frac{1}{s} + \int_1^\infty \psi(x) (x^{S/2} + x^{(1-s)/2}) \frac{dx}{x} . \end{aligned}$$

The last integral is convergent for all values of s and thus defines a holomorphic function. Moreover, the last expression is unchanged if s is replaced by 1 - s. I.e.:

$$\pi^{-s/2}\Gamma(s/2)\zeta(s) = \pi^{-(1-s)/2}\Gamma((1-s)/2)\zeta(1-s).$$

The modern proof of this relation uses the adele-idele machinery. Thus let

$$\Phi(\mathbf{x}) = e^{-\pi \mathbf{x}_{\infty}^{2}} \prod_{p} \chi_{Z_{p}}(\mathbf{x}_{p}) \ (\mathbf{x} \in A).$$

Then if Re(s) > 1,

$$\int_{I} \Phi(\mathbf{x}) |\mathbf{x}|_{A}^{S} d^{X}\mathbf{x}$$

$$= \int_{R^{X}} e^{-\pi t^{2}} |t|^{S} \frac{dt}{|t|} \cdot \prod_{p} \int_{\mathbb{Q}_{p}^{X}} \chi_{Z_{p}}(\mathbf{x}_{p}) |\mathbf{x}_{p}|_{p}^{S} d^{X}\mathbf{x}_{p}$$

$$= \pi^{-S/2} \Gamma(S/2) \cdot \prod_{p} \int_{Z_{p}^{-}\{0\}} |\mathbf{x}_{p}|_{p}^{S} d^{X}\mathbf{x}_{p}$$

$$= \pi^{-S/2} \Gamma(S/2) \cdot \prod_{p} \frac{1}{1-p^{-S}} \quad (cf. \ \S{6}, \ \#26)$$

$$= \pi^{-S/2} \Gamma(S/2) \zeta(S).$$

To derive the functional equation, we shall calculate the integral

 $\int_{\mathbf{I}} \Phi(\mathbf{x}) |\mathbf{x}|_{\mathbf{A}}^{\mathbf{S}} d^{\mathbf{X}} \mathbf{x}$

in another way. To this end, put

$$D^{\times} = \prod_{p} Z_{p}^{\times} \times R_{>0}^{\times},$$

a fundamental domain for I/Q^{\times} (cf. §14, #26), so

$$I = \cup rD^{\times}$$
 (disjoint union).
 $r \in Q^{\times}$

Therefore

$$\int_{\mathbf{I}} \Phi(\mathbf{x}) |\mathbf{x}|_{\mathbf{A}}^{\mathbf{S}} d^{\mathbf{X}} \mathbf{x}$$

$$= \sum_{\mathbf{r} \in Q^{\times}} \int_{\mathbf{r} D^{\times}} \Phi(\mathbf{x}) |\mathbf{x}|_{A}^{S} d^{\times} \mathbf{x}$$

$$= \int_{D^{\times}} \sum_{\mathbf{r} \in Q^{\times}} \Phi(\mathbf{r} \mathbf{x}) |\mathbf{r} \mathbf{x}|_{A}^{S} d^{\times} \mathbf{x}$$

$$= \int_{D^{\times}} \sum_{\mathbf{r} \in Q^{\times}} \Phi(\mathbf{r} \mathbf{x}) |\mathbf{x}|_{A}^{S} d^{\times} \mathbf{x}$$

$$= \int_{|\mathbf{x}|_{A} \leq 1} \sum_{\mathbf{r} \in Q^{\times}} \Phi(\mathbf{r} \mathbf{x}) |\mathbf{x}|_{A}^{S} d^{\times} \mathbf{x}$$

$$+ \int_{|\mathbf{x}|_{A} \geq 1} \sum_{\mathbf{r} \in Q^{\times}} \Phi(\mathbf{r} \mathbf{x}) |\mathbf{x}|_{A}^{S} d^{\times} \mathbf{x}.$$

To proceed further, recall that $\hat{\Phi} = \Phi$ (=> $\hat{\Phi}(0) = \Phi(0) = 1$), hence (cf. §15, #13)

$$1 + \sum_{\mathbf{r} \in \mathbb{Q}^{\times}} \Phi(\mathbf{r}\mathbf{x}) = \frac{1}{|\mathbf{x}|_{A}} + \frac{1}{|\mathbf{x}|_{A}} \sum_{\mathbf{q} \in \mathbb{Q}^{\times}} \Phi(\mathbf{q}\mathbf{x}^{-1}).$$

Accordingly,

$$\int_{D^{\times}} \sum_{\mathbf{r} \in Q^{\times}} \Phi(\mathbf{r}\mathbf{x}) |\mathbf{x}|_{A}^{S} d^{\times}\mathbf{x}$$

$$= \int_{|\mathbf{x}|_{A} \leq 1} \mathbf{r} \in Q^{\times}$$

$$= \int_{D^{\times}} (-1 + \frac{1}{|\mathbf{x}|_{A}} + \frac{1}{|\mathbf{x}|_{A}} \sum_{q \in Q^{\times}} \Phi(q\mathbf{x}^{-1})) |\mathbf{x}|_{A}^{S} d^{\times}\mathbf{x}$$

$$= \int_{D^{\times}} (|\mathbf{x}|_{A}^{S-1} - |\mathbf{x}|_{A}^{S}) d^{\times}\mathbf{x} + \int_{D^{\times}} \sum_{q \in Q^{\times}} \Phi(q\mathbf{x}) |\mathbf{x}|_{A}^{1-S} d^{\times}\mathbf{x}.$$

$$= \int_{|\mathbf{x}|_{A} \leq 1} (|\mathbf{x}|_{A}^{S-1} - |\mathbf{x}|_{A}^{S}) d^{\times}\mathbf{x} + \int_{|\mathbf{x}|_{A} \geq 1} \sum_{q \in Q^{\times}} \Phi(q\mathbf{x}) |\mathbf{x}|_{A}^{1-S} d^{\times}\mathbf{x}.$$

$$\int_{\substack{D^{\times} \\ |\mathbf{x}|_{A} \leq 1}} (|\mathbf{x}|_{A}^{s-1} - |\mathbf{x}|_{A}^{s})d^{\times}x$$

$$= \int_0^1 (t^{s-1} - t) \frac{dt}{t} = \frac{1}{s-1} - \frac{1}{s}.$$

So, upon assembling the data, we conclude that

$$\int_{\mathbf{I}} \Phi(\mathbf{x}) |\mathbf{x}|_{\mathbf{A}}^{\mathbf{S}} d^{\mathbf{X}} \mathbf{x}$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_{\substack{D \\ |x|_A \ge 1}} \sum_{\substack{q \in Q^{\times} \\ q \in Q^{\times}}} \Phi(qx) \left(|x|_A^s + |x|_A^{1-s} \right) d^{\times}x.$$

Since the second expression is invariant under the transformation $s \rightarrow 1-s$, the functional equation for $\zeta(s)$ follows once again.

3: REMARK Consider

$$\begin{bmatrix} & \Sigma & \Phi(\mathbf{q}\mathbf{x}) \dots \\ & \mathbf{D} \\ |\mathbf{x}|_{\mathbf{A}} \ge 1 & \mathbf{q} \in \mathbf{Q}^{\times} \end{bmatrix}$$

Then from the definitions,

$$\mathbf{x} \in \mathbf{D}^{\times} \Rightarrow \mathbf{x}_{\mathbf{p}} \in \mathbf{Z}_{\mathbf{p}}^{\times} \& q\mathbf{x}_{\mathbf{p}} \in \mathbf{Z}_{\mathbf{p}}$$

 \Rightarrow q \in Z.

Matters thus reduce to

$$2\int_{1}^{\infty}\sum_{n=1}^{\infty} e^{-n^{2}\pi t^{2}} (t^{s} + t^{1-s}) \frac{dt}{t}$$

or still,

$$\int_{1}^{\infty} \psi(t) (t^{s/2} + t^{(1-s)/2}) \frac{dt}{t}$$
,

the classical expression.

§17. GLOBAL ZETA FUNCTIONS

Structurally, there is a short exact sequence

$$1 + I^{1}/Q^{\times} + I/Q^{\times} + R_{>0}^{\times} + 1$$
 (cf. §14, #27)

and I^{1}/Q^{\times} is compact (cf. §14, #24).

<u>1</u>: DEFINITION Given $f \in \mathcal{B}_{\infty}(A)$ and a unitary character $\omega: I/Q^{\times} \to T$, the global zeta function attached to the pair (f, ω) is

$$Z(f,\omega,s) = \int_{I} f(x)\omega(x) |x|_{A}^{S} d^{X}x \quad (\text{Re}(s) > 1).$$

2: EXAMPLE In the notation of §16, take

$$f(\mathbf{x}) = \Phi(\mathbf{x}) = e^{-\pi \mathbf{x}_{\infty}^{2}} \prod_{p} \chi_{Z_{p}}(\mathbf{x}_{p}) \quad (\mathbf{x} \in A)$$

and let $\omega = 1$ — then as shown there

$$Z(f,1,s) = \pi^{-s/2} \Gamma(s/2) \zeta(s).$$

3: LEMMA $Z(f, \omega, s)$ is a holomorphic function of s in the strip Re(s) > 1.

<u>4</u>: THEOREM $Z(f, \omega, s)$ can be meromorphically continued into the whole s-plane and satisfies the functional equation

$$Z(f,\omega,s) = Z(\hat{f},\bar{\omega},l-s).$$

[Note:

$$f \in \mathcal{B}_{m}(A) \Longrightarrow \hat{f} \in \mathcal{B}_{m}(A)$$
 (cf. §15, #9).]

The proof is a computation, albeit a lengthy one.

To begin with,

 $I \approx R_{>0}^{\times} \times I^{1}$ (cf. §14, #27).

Therefore

$$Z(f,\omega,s) = \int_{I} f(x)\omega(x) |x|_{A}^{s} d^{x}x$$
$$= \int_{R_{>0}^{\times} \times I^{1}} f(tx)\omega(tx) |tx|_{A}^{s} \frac{dt}{t} d^{x}x$$
$$= \int_{0}^{\infty} (\int_{I^{1}} f(tx)\omega(tx) |tx|_{A}^{s} d^{x}x) \frac{dt}{t}.$$

5: NOTATION Put

$$Z_{t}(f,\omega,s) = \int_{I^{1}} f(tx)\omega(tx) |tx|_{A}^{s} d^{x}x.$$

6: LEMMA

$$Z_{t}(f,\omega,s) + f(0) \int_{I^{1}/Q^{\times}} \omega(tx) |tx|_{A}^{s} d^{x}x$$

= $Z_{t^{-1}}(\hat{f},\bar{\omega},1-s) + \hat{f}(0) \int_{I^{1}/Q^{\times}} \bar{\omega}(t^{-1}x) |t^{-1}x|_{A}^{1-s} d^{x}x.$

,

PROOF Write

$$\int_{I^{1}} f(tx)\omega(tx) |tx|_{A}^{S} d^{X}x$$

$$= \int_{I^{1}/Q^{X}} (\sum_{r \in Q^{X}} f(rtx)\omega(rtx) |rtx|_{A}^{S})d^{X}x$$

$$= \int_{I^{1}/Q^{X}} (\sum_{r \in Q^{X}} f(rtx)\omega(tx) |tx|_{A}^{S} d^{X}x.$$

Then

$$\begin{split} \mathbb{Z}_{t}(f,\omega,s) + f(0) \int_{I^{1}/Q^{\times}} w(tx) |tx|_{A}^{S} d^{\times}x \\ &= \int_{I^{1}/Q^{\times}} (\sum_{r\in Q} f(rtx))w(tx) |tx|_{A}^{S} d^{\times}x \\ = \int_{I^{1}/Q^{\times}} (\frac{1}{|tx|_{A}} \sum_{q\in Q} \hat{f}(qt^{-1}x^{-1}))w(tx) |tx|_{A}^{S} d^{\times}x \quad (cf. \ 515, \ #13) \\ = \int_{I^{1}/Q^{\times}} (\sum_{q\in Q} \hat{f}(qt^{-1}x)) |t^{-1}x|_{A} w(tx^{-1}) |tx^{-1}|_{A}^{S} d^{\times}x \quad (x \to x^{-1}) \\ = \int_{I^{1}/Q^{\times}} (\sum_{q\in Q} \hat{f}(qt^{-1}x))w^{-1}(t^{-1}x) |t^{-1}x|_{A}^{1-s} d^{\times}x \\ = \int_{I^{1}/Q^{\times}} (\sum_{q\in Q} \hat{f}(qt^{-1}x))\bar{w}(t^{-1}x) |t^{-1}x|_{A}^{1-s} d^{\times}x \\ = \int_{I^{1}/Q^{\times}} (\sum_{q\in Q^{\times}} \hat{f}(qt^{-1}x))\bar{w}(qt^{-1}x) |qt^{-1}x|_{A}^{1-s} d^{\times}x \\ &+ \hat{f}(0) \int_{I^{1}/Q^{\times}} \bar{w}(t^{-1}x) |t^{-1}x|_{A}^{1-s} d^{\times}x \\ &= \int_{I^{1}} \hat{f}(t^{-1}x)\bar{w}(t^{-1}x) |$$

Return to $Z(f, \omega, s)$ and break it up as follows:

$$Z(f,\omega,s) = \int_0^1 Z_t(f,\omega,s) \frac{dt}{t} + \int_1^\infty Z_t(f,\omega,s) \frac{dt}{t} .$$

7: LEMMA The integral

$$\int_{1}^{\infty} Z_{t}(f,\omega,s) \frac{dt}{t}$$

is a holomorphic function of s.

[It can be expressed as

$$\int_{I} f(\mathbf{x})\omega(\mathbf{x}) |\mathbf{x}|_{A}^{S} d^{X} \mathbf{x}.]$$
$$|\mathbf{x}|_{A} \ge 1$$

This leaves

$$\int_0^1 z_t(f,\omega,s) \frac{dt}{t}$$
,

which can thus be represented as

$$\int_{0}^{1} (z_{t}-1)(\hat{f}, \bar{\omega}, 1-s)$$

$$- f(0) \int_{I^{1}/Q^{\times}} \omega(tx) |tx|_{A}^{s} d^{\times}x$$

$$+ \hat{f}(0) \int_{I^{1}/Q^{\times}} \bar{\omega}(t^{-1}x) |t^{-1}x|_{A}^{1-s} d^{\times}x) \frac{dt}{t}$$

To carry out the analysis, subject

$$\int_0^1 z_{t^{-1}}(\hat{f}, \bar{\omega}, 1-s) \frac{dt}{t}$$

to the change of variable $t \rightarrow t^{-1}$, thereby leading to

$$\int_{1}^{\infty} Z_{t}(\hat{f}, \bar{\omega}, 1-s) \frac{dt}{t},$$

a holomorphic function of s (cf. #7 supra).

It remains to discuss

$$\begin{split} R(f,\omega,s) &= \int_{0}^{1} (-f(0) \int_{I^{1}/Q^{\times}} \omega(tx) |tx|_{A}^{s} d^{x}x \\ &+ \hat{f}(0) \int_{I^{1}/Q^{\times}} \bar{\omega}(t^{-1}x) |t^{-1}x|_{A}^{1-s} d^{x}x) \frac{dt}{t} \\ &= \int_{0}^{1} (-f(0)\omega(t) |t|^{s} \int_{I^{1}/Q^{\times}} \omega(x) d^{x}x \\ &+ \hat{f}(0)\bar{\omega}(t^{-1}) |t^{-1}|^{1-s} \int_{I^{1}/Q^{\times}} \bar{\omega}(x) d^{x}x) \frac{dt}{t} , \end{split}$$

there being two cases.

1. ω is nontrivial on $I^1.$ Since I^1/Q^\times is compact (cf. §14, #24), the integrals

$$\int_{I^{1}/Q^{\times}} \omega(\mathbf{x}) d^{\times} \mathbf{x}, \int_{I^{1}/Q^{\times}} \overline{\omega}(\mathbf{x}) d^{\times} \mathbf{x}$$

must vanish (cf. §7, #46). Therefore $R(f, \omega, s) = 0$, hence

$$Z(f,\omega,s) = \int_{1}^{\infty} Z_{t}(f,\omega,s) \frac{dt}{t} + \int_{1}^{\infty} Z_{t}(\hat{f},\bar{\omega},l-s) \frac{dt}{t} ,$$

a holomorphic function of s.

2. ω is trivial on I^{1} . Let $\phi: R_{>0}^{\times} \to I/I^{1}$ be the isomorphism per §14, #27 -then $\omega \circ \phi: R_{>0}^{\times} \to T$ is a unitary character of $R_{>0}^{\times}$, thus for some $w \in R$, $\omega \circ \phi = |\cdot|^{-\sqrt{-1}} w$, so

$$\omega = |\cdot|^{-\sqrt{-1}} \mathbf{w} \circ \phi^{-1} \Rightarrow \omega(\mathbf{x}) = |\mathbf{x}|_{A}^{-\sqrt{-1}} \mathbf{w}.$$

Therefore

$$R(f,\omega,s) = -f(0)vol(I^{1}/Q^{\times}) \int_{0}^{1} t^{-\sqrt{-1}} w + s - 1 dt$$

$$+ \hat{f}(0) \operatorname{vol}(I^{1}/Q^{\times}) \int_{0}^{1} t^{-\sqrt{-1} w + s-2} dt$$
$$= - f(0) \frac{\operatorname{vol}(I^{1}/Q^{\times})}{-\sqrt{-1} w+s} + \hat{f}(0) \frac{\operatorname{vol}(I^{1}/Q^{\times})}{-\sqrt{-1} w+s-1},$$

a meromorphic function that has a simple pole at

$$\begin{vmatrix} s &= \sqrt{-1} \text{ w with residue } -f(0) \operatorname{vol}(I^{1}/Q^{\times}) \text{ if } f(0) \neq 0 \\ s &= \sqrt{-1} \text{ w+1 with residue } \hat{f}(0) \operatorname{vol}(I^{1}/Q^{\times}) \text{ if } \hat{f}(0) \neq 0. \end{vmatrix}$$

8: N.B. To explicate $vol(I^1/Q^{\times})$, use the machinery of §16: In the notation of #2 above,

$$Z(f,l,s) = -\frac{1}{s} + \frac{1}{s-1} + \cdots$$

$$=> vol(I^{1}/Q^{\times}) = 1.$$

[Note: Here, w = 0 and f(0) = 1, $\hat{f}(0) = 1$.]

=

That $Z(f, \omega, s)$ can be meromorphically continued into the whole s-plane is now manifest. As for the functional equation, we have

$$Z(f,\omega,s) = \int_{1}^{\infty} Z_{t}(f,\omega,s) \frac{dt}{t}$$
$$+ \int_{1}^{\infty} Z_{t}(\hat{f},\bar{\omega},l-s) \frac{dt}{t}$$
$$+ R(f,\omega,s)$$
$$\int_{1}^{\infty} (\int_{I} f(tx)\omega(tx) |tx|_{A}^{s} d^{x}x) \frac{dt}{t}$$

+
$$\int_{1}^{\infty} (\int_{I^{1}} \hat{f}(tx) \bar{\omega}(tx) |tx|_{A}^{1-s} d^{x}x) \frac{dt}{t}$$

+ $R(f, \omega, s)$.

And we also have

$$\begin{split} \mathbf{Z}(\hat{\mathbf{f}}, \overline{\omega}, \mathbf{l}-\mathbf{s}) &= \int_{1}^{\infty} \mathbf{Z}_{t}(\hat{\mathbf{f}}, \overline{\omega}, \mathbf{l}-\mathbf{s}) \, \frac{d\mathbf{t}}{\mathbf{t}} \\ &+ \int_{1}^{\infty} \mathbf{Z}_{t}(\hat{\hat{\mathbf{f}}}, \overline{\omega}, \mathbf{l}-(\mathbf{l}-\mathbf{s})) \, \frac{d\mathbf{t}}{\mathbf{t}} \\ &+ \mathbf{R}(\hat{\mathbf{f}}, \overline{\omega}, \mathbf{l}-\mathbf{s}) \\ &= \int_{1}^{\infty} \mathbf{Z}_{t}(\hat{\mathbf{f}}, \overline{\omega}, \mathbf{l}-\mathbf{s}) \, \frac{d\mathbf{t}}{\mathbf{t}} \\ &+ \int_{1}^{\infty} \mathbf{Z}_{t}(\hat{\hat{\mathbf{f}}}, \omega, \mathbf{s}) \, \frac{d\mathbf{t}}{\mathbf{t}} \\ &+ \mathbf{R}(\hat{\mathbf{f}}, \overline{\omega}, \mathbf{l}-\mathbf{s}) \\ &= \int_{1}^{\infty} \left(\int_{\mathbf{I}} \mathbf{1} \, \hat{\mathbf{f}}(\mathbf{t}\mathbf{x}) \overline{\omega}(\mathbf{t}\mathbf{x}) \, |\mathbf{t}\mathbf{x}| \mathbf{A}^{\mathbf{l}-\mathbf{s}} \, \mathbf{d}^{\mathbf{x}} \mathbf{x} \right) \, \frac{d\mathbf{t}}{\mathbf{t}} \\ &+ \int_{1}^{\infty} \left(\int_{\mathbf{I}} \mathbf{1} \, \hat{\mathbf{f}}(\mathbf{t}\mathbf{x}) \omega(\mathbf{t}\mathbf{x}) \, |\mathbf{t}\mathbf{x}| \mathbf{A}^{\mathbf{s}} \, \mathbf{d}^{\mathbf{x}} \mathbf{x} \right) \, \frac{d\mathbf{t}}{\mathbf{t}} \\ &+ \mathbf{R}(\hat{\mathbf{f}}, \overline{\omega}, \mathbf{l}-\mathbf{s}) \, . \end{split}$$

The first of these terms can be left as is (since it already figures in the formula for $Z(f,\omega,s)$). Recalling that

$$\hat{f}(x) = f(-x)$$
 (x $\in A$) (cf. §15, #10),

the second term becomes

$$\int_{1}^{\infty} (\int_{I^{1}} f(-tx)\omega(tx) |tx|_{A}^{s} d^{x}x) \frac{dt}{t}$$

or still,

$$\int_{1}^{\infty} (\int_{I^{1}} f(tx)\omega(-tx) \left| -tx \right|_{A}^{S} d^{x}x) \frac{dt}{t}$$
$$= \int_{1}^{\infty} (\int_{I^{1}} f(tx)\omega(-tx) \left| tx \right|_{A}^{S} d^{x}x) \frac{dt}{t}.$$

But by hypothesis, ω is trivial on Q^{\times} , hence

$$\omega(-tx) = \omega((-1)tx) = \omega(-1)\omega(tx) = \omega(tx),$$

and we end up with

$$\int_{1}^{\infty} (\int_{I^{1}} f(tx) \omega(tx) |tx|_{A}^{s} d^{x}x) \frac{dt}{t}$$

which likewise figures in the formula for $Z(f,\omega,s)$. Finally, if ω is trivial on I^1 , then

~

$$R(\hat{f}, \overline{\omega}, 1-s) = -\frac{\hat{f}(0)}{\sqrt{-1} w + 1-s} + \frac{\hat{f}(0)}{\sqrt{-1} w + (1-s)-1}$$
$$= \frac{f(0)}{\sqrt{-1} w - s} - \frac{\hat{f}(0)}{\sqrt{-1} w + 1-s}$$
$$= -\frac{f(0)}{-\sqrt{-1} w + s} + \frac{\hat{f}(0)}{-\sqrt{-1} w + s-1}$$
$$= R(f, \omega, s).$$

On the other hand, if ω is nontrivial on $I^1,$ then $\bar{\omega}$ is nontrivial on I^1 and

 $R(f,\omega,s) = 0, R(\hat{f},\bar{\omega},1-s) = 0.$

8.

§18. LOCAL ZETA FUNCTIONS [BIS]

To be in conformity with the global framework laid down in §17, we shall reformulate the local theory of §11 and §12.

<u>1</u>: DEFINITION Given $f \in S(R)$ and a unitary character $\omega: R^{\times} \to T$, the local zeta function attached to the pair (f, ω) is

$$Z(f,\omega,s) = \int_{\mathbb{R}^{\times}} f(x)\omega(x) |x|^{s} d^{x}x \quad (\text{Re}(s) > 0).$$

2: THEOREM There exists a meromorphic function $\rho(\omega, s)$ such that $\forall f$,

$$\rho(\omega, \mathbf{s}) = \frac{Z(\mathbf{f}, \omega, \mathbf{s})}{Z(\hat{\mathbf{f}}, \overline{\omega}, 1-\mathbf{s})}$$

Decompose ω as a product:

$$\omega(\mathbf{x}) = (\operatorname{sgn} \mathbf{x})^{\sigma} |\mathbf{x}|^{-\sqrt{-1}} \mathbf{w} \ (\sigma \in \{0,1\}, \mathbf{w} \in \mathbb{R}).$$

3: DEFINITION Write (cf. §11, #9)

$$L(\omega, s) = \begin{bmatrix} & & & \\ &$$

4: FACT

$$\rho(\omega, \mathbf{s}) = \frac{\mathbf{L}(\omega, \mathbf{s})}{\mathbf{L}(\omega, 1-\mathbf{s})} \quad (\sigma = 0)$$

$$\rho(\omega, \mathbf{s}) = -\sqrt{-1} \frac{\mathbf{L}(\omega, \mathbf{s})}{\mathbf{L}(\overline{\omega}, 1-\mathbf{s})} \quad (\sigma = 1)$$

5: REMARK The complex case can be discussed analogously but it will not be needed in the sequel.

<u>6</u>: DEFINITION Given $f \in B(Q_p)$ and a unitary character $\omega: Q_p^{\times} \to T$, the local zeta function attached to the pair (f, ω) is

$$Z(\mathbf{f},\omega,\mathbf{s}) = \int_{\substack{\mathbf{0}\\\mathbf{p}}} \mathbf{f}(\mathbf{x})\omega(\mathbf{x}) |\mathbf{x}|_{\mathbf{p}}^{\mathbf{s}} d^{\mathbf{x}} \qquad (\operatorname{Re}(\mathbf{s}) > 0).$$

7: THEOREM There exists a meromorphic function $\rho(\omega, s)$ such that $\forall f$,

$$\rho(\omega, \mathbf{s}) = \frac{Z(\mathbf{f}, \omega, \mathbf{s})}{Z(\hat{\mathbf{f}}, \overline{\omega}, 1-\mathbf{s})} .$$

Decompose ω as a product:

$$\omega(\mathbf{x}) = \underline{\omega}(\mathbf{x}) |\mathbf{x}|_{p}^{-\sqrt{-1} \mathbf{w}} (\underline{\omega} \in Z_{p'}^{\times} \mathbf{w} \in \mathbf{R}).$$

8: DEFINITION Write (cf. § 12, #8)

$$L(\omega, s) = \begin{vmatrix} - & (1 - \omega(p)p^{-s})^{-1} & (\underline{\omega} = 1) \\ & 1 & (\underline{\omega} \neq 1) \\ \end{vmatrix}$$

[Note: If $\omega = 1$, then

$$\omega(p) = |p|_{p}^{-\sqrt{-1} w} = p^{\sqrt{-1} w}.$$

9: FACT ($\omega = 1$)

$$\rho(\omega,s) = \frac{L(\omega,s)}{L(\bar{\omega},l-s)} = \frac{1-\bar{\omega}(p)p^{-(1-s)}}{1-\omega(p)p^{-s}}.$$

10: FACT (
$$\omega \neq 1$$
)

$$\rho(\omega,s) = \tau(\omega)\underline{\omega}(-1)p^{n(s + \sqrt{-1} - 1)},$$

where

$$\tau(\omega) = \sum_{i=1}^{r} \underline{\omega}(e_i) \chi_p(p^{-n}e_i)$$

and deg $\omega = n \ge 1$.

APPENDIX

It can happen that

$$Z(f,\omega,s) \equiv 0.$$

To illustrate, suppose that $\omega(-1) = -1$ and f(x) = f(-x). Working with Q_p^{\times} (the story for R^{\times} being the same), we have

$$Z(f,\omega,s) = \int_{Q_{p}^{\times}} f(x)\omega(x) |x|_{p}^{s} d^{x}x$$

$$= \int_{Q_{p}^{\times}} f(-x)\omega(-x) |-x|_{p}^{s} d^{x}x$$

$$= \omega(-1) \int_{Q_{p}^{\times}} f(x)\omega(x) |x|_{p}^{s} d^{x}x$$

$$= \omega(-1) Z(f,\omega,s)$$

$$= - Z(f,\omega,s).$$

§19. L-FUNCTIONS

Let $\omega: I/Q^{\times} \to T$ be a unitary character.

<u>1:</u> LEMMA There is a unique unitary character $\underline{\omega}$ of I/Q^{\times} of finite order and a unique real number w such that

$$\omega = \underline{\omega} | \cdot |_{A}^{-\sqrt{-1} w}.$$

[Note: To say that $\underline{\omega}$ is of finite order means that there exists a positive integer n such that $\underline{\omega}(x)^n = 1$ for all $x \in I$.]

$$\omega = || \omega_{p} \times \omega_{\infty},$$

$$\omega_{\rm p} = \underline{\omega}_{\rm p} | \cdot |_{\rm p}^{-\sqrt{-1} \ \rm w}$$

and

where

$$\omega_{\infty} = (\operatorname{sgn})^{\sigma} | \cdot |_{\infty}^{-\sqrt{-1}} W.$$

3: DEFINITION

$$L(\omega,s) = \prod_{p} L(\omega_{p},s) \times L(\omega_{\infty},s).$$

4: RAPPEL

$$L(\omega_{p}, s) = \begin{vmatrix} - & (1 - \omega_{p}(p)p^{-s})^{-1} & (\omega_{p} = 1) \\ & & (cf.) \\ 1 & (\omega_{p} \neq 1) \end{vmatrix}$$

§18, #8).

5: SUBLEMMA

$$|\mathbf{x}| < 1 \Rightarrow \log(1-\mathbf{x}) = -\sum_{k=1}^{\infty} \frac{\mathbf{x}^k}{k}$$
.

Therefore

$$|x| > 1 \Rightarrow \log \frac{1}{1-x^{-1}}$$

= $\log 1 - \log (1-x^{-1})$

$$= - \left(- \sum_{k=1}^{\infty} \frac{x^{-k}}{k} \right)$$
$$= \sum_{k=1}^{\infty} \frac{x^{-k}}{k} .$$

6: N.B.

 $\log f(z) = \log |f(z)| + \sqrt{-1} \arg f(z)$

=>

Re log $f(z) = \log |f(z)|$.

7: LEMMA The product

$$\prod_{p} L(\omega_{p}, s)$$

is absolutely convergent provided Re(s) > 1.

$$\prod \frac{1}{|1 - \omega_{p}(p)p^{-s}|} \cdot$$

So take its logarithm and consider

$$\Sigma \log\left(\frac{1}{|1 - \omega_{p}(p)p^{-S}|}\right)$$

$$= \Sigma \operatorname{Re} \log\left(\frac{1}{1 - \omega_{p}(p)p^{-S}}\right)$$

$$= \operatorname{Re} \Sigma \log\left(\frac{1}{1 - \omega_{p}(p)p^{-S}}\right)$$

$$= \operatorname{Re} \Sigma \log\left(\frac{1}{1 - \omega_{p}(p)p^{-S}}\right)$$

$$= \operatorname{Re} \Sigma \sum_{k=1}^{\infty} \frac{\omega_{p}(p)^{k} - ks}{k}$$

The claim then is that the series

$$\sum_{k=1}^{\infty} \frac{\omega_{p}(p)^{k} - ks}{k}$$

is absolutely convergent. But

$$\sum_{k=1}^{\infty} \frac{\left| \frac{\omega_{p}(p)^{k} - ks}{p} \right|}{k}$$

$$= \sum_{k=1}^{\infty} \frac{p^{-k} \operatorname{Re}(s)}{k}$$

which is bounded by

$$\sum_{\substack{\Sigma \\ p \\ k=1}}^{\infty} \frac{p^{-k} \operatorname{Re}(s)}{k}$$
$$= \sum_{\substack{\Sigma \\ p \\ k=1}}^{\infty} \frac{p^{-k}(1+\delta)}{k} \quad (\operatorname{Re}(s) = 1 + \delta)$$

$$\leq \sum_{p}^{\infty} \sum_{k=1}^{p^{-k}(1+\delta)} p^{-k(1+\delta)}$$

$$= \sum_{p} \frac{p^{-(1+\delta)}}{1 - p^{-(1+\delta)}}$$

$$= \sum_{p} \frac{1}{p^{(1+\delta)}(1 - p^{-(1+\delta)})}$$

$$= \sum_{p} \frac{1}{p^{(1+\delta)} - 1}$$

$$\leq 2 \sum_{p} \frac{1}{p^{1+\delta}} < \infty.$$

8: EXAMPLE Take $\omega = 1$ -- then

$$L(\omega, s) = \prod_{p} \frac{1}{1 - p^{-s}} \times \Gamma_{R}(s)$$
$$= \pi^{-s/2} \Gamma(s/2) \zeta(s).$$

9: LEMMA $L(\omega, s)$ is a holomorphic function of s in the strip Re(s) > 1.

<u>10:</u> LEMMA $L(\omega, s)$ admits a meromorphic continuation to the whole s-plane (see below).

Owing to §17, #4, $\forall \ f \in {\mathcal B}_{_{\!\!\infty}}(A)$,

$$Z(f,\omega,s) = Z(\hat{f},\bar{\omega},1-s).$$

To exploit this, assume that

$$f = \prod_{p} f_{p} \times f_{\omega'}$$

where \forall p, f_p \in B(Q_p) and f_p = χ_{Z_p} for all but a finite number of p, while f_w \in S(R) -- then

$$= \int_{\mathbf{I}} \mathbf{f}(\mathbf{x}) \boldsymbol{\omega}(\mathbf{x}) |\mathbf{x}|_{\mathbf{A}}^{\mathbf{S}} \mathbf{d}^{\mathbf{X}} \mathbf{x}$$

 $Z(f,\omega,s)$

$$= \prod_{p} \int_{\mathbb{Q}_{p}^{\times}} f_{p}(\mathbf{x}_{p}) \omega_{p}(\mathbf{x}_{p}) |\mathbf{x}_{p}|_{p}^{s} d^{x}\mathbf{x}_{p} \times \int_{\mathbb{R}^{\times}} f_{\omega}(\mathbf{x}_{\omega}) \omega_{\omega}(\mathbf{x}_{\omega}) |\mathbf{x}_{\omega}|_{\omega}^{s} d^{x}\mathbf{x}_{\omega}$$
$$= \prod_{p} \mathbb{Z}(f_{p}, \omega_{p}, s) \times \mathbb{Z}(f_{\omega}, \omega_{\omega}, s)$$

and analogously for $Z(\hat{f}, \overline{\omega}, 1-s)$.

Therefore

$$1 = \frac{Z(f, \omega, s)}{Z(\hat{f}, \overline{\omega}, 1-s)}$$
$$= \prod_{p} \frac{Z(f_{p}, \omega_{p}, s)}{Z(\hat{f}_{p}, \overline{\omega}_{p}, 1-s)} \times \frac{Z(f_{\omega}, \omega_{\omega}, s)}{Z(\hat{f}_{\omega}, \overline{\omega}_{\omega}, 1-s)}$$
$$= \prod_{p} \rho(\omega_{p}, s) \times \rho(\omega_{\omega}, s)$$
$$= \prod_{p \not \in S_{\omega}} \rho(\omega_{p}, s) \times \prod_{p \in S_{\omega}} \rho(\omega_{p}, s) \times \rho(\omega_{\omega}, s)$$

$$\begin{split} &= \prod_{p \in S_{\omega}} \frac{L(\omega_{p}, s)}{L(\bar{\omega}_{p}, 1-s)} \times \prod_{p \in S_{\omega}} \rho(\omega_{p}, s) \times \frac{L(\omega_{\omega}, s)}{L(\bar{\omega}_{\omega}, 1-s)} \\ &= \prod_{p \in S_{\omega}} \rho(\omega_{p}, s) \times \prod_{p \notin S_{\omega}} \frac{L(\omega_{p}, s)}{L(\bar{\omega}_{p}, 1-s)} \times \prod_{p \in S_{\omega}} \frac{L(\omega_{p}, s)}{L(\bar{\omega}_{p}, 1-s)} \times \frac{L(\omega_{\omega}, s)}{L(\bar{\omega}_{\omega}, 1-s)} \\ &= \prod_{p \in S_{\omega}} \rho(\omega_{p}, s) \times \prod_{p} \frac{L(\omega_{p}, s)}{L(\bar{\omega}_{p}, 1-s)} \times \frac{L(\omega_{\omega}, s)}{L(\bar{\omega}_{\omega}, 1-s)} \\ &= \prod_{p \in S_{\omega}} \rho(\omega_{p}, s) \times \frac{\prod_{p} L(\omega_{p}, s) \times L(\omega_{\omega}, s)}{\prod_{p} L(\bar{\omega}_{p}, 1-s) \times L(\bar{\omega}_{\omega}, 1-s)} \\ &= \prod_{p \in S_{\omega}} \rho(\omega_{p}, s) \times \frac{L(\omega, s)}{L(\bar{\omega}, 1-s)} (cf. \ \$12, \ \$11) \\ &= \varepsilon(\omega, s) \times \frac{L(\omega, s)}{L(\bar{\omega}, 1-s)}, \end{split}$$

where

.

$$\varepsilon(\omega, \mathbf{s}) = \prod_{\mathbf{p} \in \mathbf{S}_{\omega}} \varepsilon(\omega_{\mathbf{p}}, \mathbf{s}).$$

11: THEOREM

$$L(\overline{\omega}, 1-s) = \varepsilon(\omega, s)L(\omega, s).$$

12: EXAMPLE Take $\omega = 1$ (cf. #8) -- then $\varepsilon(\omega, s) = 1$ and

$$L(\bar{\omega}, 1-s) = L(\omega, s)$$

translates into

$$\pi^{-(1-s)/2}\Gamma((1-s)/2)\zeta(1-s) = \pi^{-s/2}\Gamma(s/2)\zeta(s) \quad (cf. §16).$$

Make the following explicit choice for

$$f = \prod_{p} f_{p} \times f_{\infty}$$
.

• If
$$\underline{\omega}_p = 1$$
, let

$$f_p(x_p) = \chi_p(x_p) \chi_{Z_p}(x_p).$$

Then

$$Z(f_{p}, \omega_{p}, s) = L(\omega_{p}, s).$$

• If $\underline{\omega}_{p} \neq 1$ and deg $\omega_{p} = n \ge 1$, let

$$f_p(x_p) = \chi_p(x_p) \chi_{p^{-n} Z_p}(x_p).$$

Then

$$Z(f_{p}, \omega_{p}, s) = \tau(\omega_{p}) \frac{p^{1} + n(s + \sqrt{-1} w - 1)}{p - 1} L(\omega_{p}, s).$$

At infinity, take

$$f_{\infty}(x_{\infty}) = e^{-\pi x_{\infty}^{2}} (\sigma = 0) \text{ or } f_{\infty}(x_{\infty}) = x_{\infty} e^{-\pi x_{\infty}^{2}} (\sigma = 1).$$

Then

$$Z(f_{\omega}, \omega_{\omega}, s) = L(\omega_{\omega}, s).$$

13: NOTATION Put

$$H(\omega,s) = \prod_{p \in S_{\omega}} \tau(\omega_p) \frac{p^{1} + n(s + \sqrt{-1} w - 1)}{p - 1}.$$

14: N.B. $H(\omega, s)$ is a never zero entire function of s.

15: LEMMA

$$Z(f, \omega, s) = H(\omega, s)L(\omega, s).$$

Since $Z(f, \omega, s)$ is a meromorphic function of s (cf. §17, #4), it therefore follows that $L(\omega, s)$ is a meromorphic function of s.

Working now within the setting of §17, we distinguish two cases per ω .

1. ω is nontrivial on I^1 , hence $\underline{\omega} \neq 1$ and in this situation, $Z(f, \omega, s)$ is a holomorphic function of s, hence the same is true of $L(\omega, s)$.

2.
$$\omega$$
 is trivial on I^1 — then $\omega = |\cdot|_A^{-\sqrt{-1} w}$ and there are simple poles at

$$\begin{vmatrix} -\pi & s = \sqrt{-1} & w \text{ with residue } -f(0) & \text{if } f(0) \neq 0 \\ s = \sqrt{-1} & w + 1 & \text{with residue } \hat{f}(0) & \text{if } \hat{f}(0) \neq 0. \end{vmatrix}$$

But $\forall p, \omega_p = |\cdot|_p^{-\sqrt{-1} w}$ (=> $\underline{\omega}_p = 1$), so $f_p(0) = 1$. And likewise $f_{\infty}(0) = 1$ ($\sigma = 0$). Conclusion: f(0) = 1. As for the Fourier transforms, $\hat{f}_p = \chi_{Z_p} \Rightarrow \hat{f}_p(0) = 1$. Also $\hat{f}_{\infty} = f_{\infty} (\sigma = 0) \Rightarrow \hat{f}_{\infty}(0) = 1$. Conclusion: $\hat{f}(0) = 1$. The respective residues are therefore -1 and 1.

<u>16:</u> THEOREM Suppose that $\omega_{1,p} = \omega_{2,p}$ for all but finitely many p and $\omega_{1,\infty} = \omega_{2,\infty}$ -- then $\omega_1 = \omega_2$.

PROOF Put $\omega = \omega_1 \omega_2^{-1}$, thus $\omega_p = 1$ for all p outside a finite set S of primes, so

$$L(\omega, s) = \prod_{p} L(\omega_{p}, s) \times L(\omega_{\infty}, s)$$

$$= \prod_{p \in S} L(\omega_{p}, s) \prod_{p \notin S} L(l_{p}, s) \times L(l_{\infty}, s)$$
$$= L(1, s) \prod_{p \in S} \frac{L(\omega_{p}, s)}{L(l_{p}, s)}$$
$$= L(1, s) \prod_{p \in S} \frac{1 - p^{-S}}{1 - \alpha_{p} p^{-S}},$$

where $\alpha_p = \omega_p(p)$ if $\underline{\omega}_p = 1$ and $\alpha_p = 0$ if $\underline{\omega}_p \neq 1$, and each factor

$$\frac{1 - p^{-s}}{1 - \alpha_p p^{-s}}$$

is nonzero at s = 0 and s = 1. Therefore $L(\omega, s)$ has a simple pole at s = 0 and s = 1. Consider the decomposition

$$\omega = \underline{\omega} | \cdot |_{A}^{-\sqrt{-1} w} \quad (cf \$19, \#1).$$

Then $\underline{\omega} = 1$ since otherwise $L(\omega, s)$ would be holomorphic, which it isn't. But then from the theory, $L(\omega, s)$ has simple poles at

s =
$$\sqrt{-1}$$
 w with residue -1
s = $\sqrt{-1}$ w + 1 with residue 1,

thereby forcing w = 0, which implies that $\omega = 1$, i.e., $\omega_1 = \omega_2$.

[Note: In the end, $\omega_p = 1 \forall p$, hence

$$\prod_{p \in S} \frac{1 - p^{-S}}{1 - \alpha_p p^{-S}} = \prod_{p \in S} \frac{1 - p^{-S}}{1 - p^{-S}} = 1,$$

as it has to be.]

§20. FINITE CLASS FIELD THEORY

Given a finite field $F_{\rm q}$ of characteristic p (thus q is an integral power of p), then in $F_{\rm p}^{c\ell},$

$$F_q = \{x: x^q = x\}.$$

1: LEMMA The multiplicative group

$$F_q^{\times} = \{x: x^{q-1} = 1\}$$

is cyclic of order q - 1.

2: NOTATION

$$F_{q^{n}} = \{x: x^{q^{n}} = x\} \quad (n \ge 1).$$

<u>3:</u> LEMMA F_{q} is a Galois extension of F_{q} of degree n.

<u>4:</u> LEMMA Gal(F_n/F_q) is a cyclic group of order n generated by the element

 $\sigma_{q,n}$, where

$$\sigma_{q,n}(\mathbf{x}) = \mathbf{x}^{q} \quad (\mathbf{x} \in \mathsf{F}_{q}).$$

5: LEMMA The F_q^n are finite abelian extensions of F_q and they comprise all the finite extensions of F_q , hence the algebraic closure $\cup F_n$ is F_q^{ab} .

6: THEOREM There is a 1-to-1 correspondence between the finite abelian

extensions of \boldsymbol{F}_q and the subgroups of \boldsymbol{Z} of finite index which is given by

$$F_{q} \leftrightarrow nZ \quad (n \ge 1).$$

Schematically:

$$F_{q} = F_{q^{2}} = F_{q^{4}}$$

$$\cap \qquad \cap$$

$$F_{q^{3}} = F_{q^{6}}$$

$$\cap$$

$$F_{q^{9}}$$

$$\langle - - - - \rangle$$

$$Z \Rightarrow 2Z \Rightarrow 4Z$$

$$\cup \qquad \cup$$

$$3Z \Rightarrow 6Z$$

$$\cup$$

$$9Z.$$

The "class field" aspect of all this is the existence of a canonical homomorphism

$$\operatorname{rec}_{q}: \mathbb{Z} \to \operatorname{Gal}(\mathsf{F}_{q}^{ab}/\mathsf{F}_{q}).$$

7: NOTATION Define

$$\sigma_{q} \in \text{Gal}(F_{q}^{ab}/F_{q})$$

by

$$\sigma_{\mathbf{q}}(\mathbf{x}) = \mathbf{x}^{\mathbf{q}}.$$

8: N.B. Under the arrow of restriction

$$\operatorname{Gal}(\mathsf{F}_{q}^{ab}/\mathsf{F}_{q}) \rightarrow \operatorname{Gal}(\mathsf{F}_{n}/\mathsf{F}_{q}),$$

 σ_q is sent to $\sigma_{q,n}$.

9: DEFINITION

$$\operatorname{rec}_{q}(\mathbf{k}) = \sigma_{q}^{\mathbf{k}} \quad (\mathbf{k} \in \mathbf{Z}).$$

10: LEMMA The identification

$$Z/nZ \approx Gal(F_n/F_q)$$

is the arrow $k \neq \sigma_{q,n}^k$.

On general grounds,

$$Gal(F_q^{ab}/F_q) = \lim_{\leftarrow} Gal(F_n/F_q).$$
[Note: The open subgroups of Gal(F_q^{ab}/F_q) are the Gal(F_q^{ab}/F_q) and

$$\operatorname{Gal}(\mathsf{F}_{q}^{\mathrm{ab}}/\mathsf{F}_{q})/\operatorname{Gal}(\mathsf{F}_{q}^{\mathrm{ab}}/\mathsf{F}_{n}) \approx \operatorname{Gal}(\mathsf{F}_{n}/\mathsf{F}_{q}).]$$

Therefore

$$Gal(F_q^{ab}/F_q) \approx \lim_{\leftarrow} Z/nZ,$$

another realization of the RHS being $\prod\limits_p \textbf{Z}_p$ which if invoked leads to

$$\sigma_q \iff (1,1,1,\ldots).$$

11: N.B. The composition

$$Z \xrightarrow{\text{rec}_{q}} \text{Gal}(F_q^{ab}/F_q) \approx \lim_{q} Z/nZ$$

coincides with the canonical map

$$k \neq (k \mod n)_n$$
.

12: REMARK Give Z the discrete topology -- then

$$\operatorname{rec}_{q}: \mathbb{Z} \to \operatorname{Gal}(\mathsf{F}_{q}^{ab}/\mathsf{F}_{q})$$

is continuous and injective but it is not a homeomorphism (Gal(F_q^{ab}/F_q) is compact).

[Note: The image rec_q(Z) is the cyclic subgroup $\langle \sigma_q \rangle$ generated by σ_q . And:

•
$$\langle \sigma_{q} \rangle \neq \text{Gal}(F_{q}^{ab}/F_{q})$$

•
$$\overline{\langle \sigma_q \rangle} = \text{Gal}(F_q^{ab}/F_q).]$$

13: SCHOLIUM The finite abelian extensions of F_q correspond 1-to-1 with the open subgroups of Gal(F_q^{ab}/F_q).

[Quote the appropriate facts from infinite Galois theory.]

<u>14:</u> SCHOLIUM The open subgroups of $Gal(F_q^{ab}/F_q)$ correspond 1-to-1 with the open subgroups of Z of finite index.]

[Given an open subgroup $U \subset Gal(F_q^{ab}/F_q)$, send it to $rec_q^{-1}(U) \subset Z$ (discrete topology). Explicated:

$$\operatorname{rec}_{q}^{-1}(\operatorname{Gal}(F_{q}^{ab}/F_{q}^{n})) = nZ.]$$

The norm map

 $N_{F_q} \neq F_q^* \neq F_q^*$

is surjective.

[Let $x \in F_{q^n}^{\times}$: $N_{F_{q^n}}/F_q(x) = \prod_{i=0}^{n-1} (\sigma_{q,n})^i x$ $= \prod_{i=0}^{n-1} x^{q^i}$ $\sum_{i=0}^{n-1} q^i$ = x $= x^{(q^n-1)/(q-1)}.$

Specialize now and take for x a generator of F_n^{\times} , hence x is of order q^n-1 , hence q^n

 N_{F_q}/F_q (x) is of order q-1, hence is a generator of F_q .]

§21. LOCAL CLASS FIELD THEORY

Let K be a local field -- then there exists a unique continuous homomorphism

$$\operatorname{rec}_{K}: \mathbb{K}^{\times} \to \operatorname{Gal}(\mathbb{K}^{\operatorname{ab}}/\mathbb{K})$$
,

the so-called <u>reciprocity map</u>, that has the properties delineated in the results that follow.

1: CHART

finite field K
$$Z$$
 $Gal(K^{ab}/K)$
local field K K^{\times} $Gal(K^{ab}/K)$.

2: CONVENTION An <u>abelian extension</u> is a Galois extension whose Galois group is abelian.

<u>3:</u> SCHOLIUM The finite abelian extensions L of K correspond 1-to-1 with the open subgroups of $Gal(K^{ab}/K)$:

$$L \iff Gal(K^{ab}/L)$$
.

[Note: Gal(L/K) is a homomorphic image of $Gal(K^{ab}/K)$:

$$Gal(L/K) \approx Gal(K^{ab}/K)/Gal(K^{ab}/L).$$
]

4: LEMMA Suppose that L is a finite extension of K -- then

$$N_{L/K}:L^{\times} \rightarrow K^{\times}$$

is continuous, sends open sets to open sets, and closed sets to closed sets.

5: LEMMA Suppose that L is a finite extension of K -- then

$$[K^{\times}:N_{L/K}(L^{\times})] \leq [L:K].$$

6: LEMMA Suppose that L is a finite extension of K -- then

$$[K^{\times}:N_{L/K}(L^{\times})] = [L:K]$$

iff L/K is abelian.

7: NOTATION Given a finite abelian extension L of K, denote the composition

$$K^{\times} \xrightarrow{\text{rec}_{K}} \text{Gal}(K^{ab}/K) \xrightarrow{\pi_{L}/K} \text{Gal}(L/K)$$

by (., L/K), the norm residue symbol.

8: THEOREM Suppose that L is a finite abelian extension of K -- then the kernel of (., L/K) is $N_{L/K}(L^{X})$, hence

$$K^{\times}/N_{L/K}(L^{\times}) \approx Gal(L/K).$$

9: EXAMPLE Take
$$K = R$$
, thus $K^{ab} = C$ and

$$N_{C/R}(C^{\times}) = R_{>0}^{\times}$$

Moreover,

$$Gal(C/R) = \{id_{C}, \sigma\},\$$

where $\boldsymbol{\sigma}$ is the complex conjugation. Define now

$$\operatorname{rec}_{R}: \mathbb{R}^{\times} \to \operatorname{Gal}(\mathbb{R}^{ab}/\mathbb{R})$$

by stipulating that

$$\operatorname{rec}_{\mathsf{R}}(\mathsf{R}_{>0}^{\times}) = \operatorname{id}_{\mathsf{C}}, \operatorname{rec}_{\mathsf{R}}(\mathsf{R}_{<0}^{\times}) = \sigma.$$

<u>10:</u> EXAMPLE Take K = C -- then $K^{ab} = C = K$ and matters in this situation are trivial.

11: THEOREM The arrow

$$L \rightarrow N_{L/K}(L^{\times})$$

is a bijection between the finite abelian extensions of K and the open subgroups of finite index of K^{\times} .

<u>12:</u> THEOREM The arrow $U \rightarrow \operatorname{rec}_{K}^{-1}(U)$ is a bijection between the open subgroups of Gal(K^{ab}/K) and the open subgroups of finite index of K^{\times} .

From this point forward, it will be assumed that K is non-archimedean, hence is a finite extension of Q_p for some p (cf. §5, #13).

<u>13:</u> LEMMA rec_K is injective and its image is a proper, dense subgroup of Gal(K^{ab}/K).

14: LEMMA

$$(R^{\times}, L/K) = Gal(L/K_{ur}),$$

where K_{ur} is the largest unramified extension of K contained in L (cf. §5, #33). [Note: The image

$$(1 + P^{i}, L/K) = G^{i} (i \ge 1),$$

the ith ramification group in the upper numbering (conventionally, one puts

$$G^0 = Gal(L/K_{ur})$$

and refers to it as the inertia group).]

Working within K^{sep} , the extension K^{ur} generated by the finite unramified extensions of K is called the <u>maximal unramified extension</u> of K. This is a Galois extension and

$$Gal(K^{ur}/K) \approx Gal(F_q^{ab}/F_q)$$
,

where $F_q = R/P$ (cf. §5, #19).

15: REMARK The finite unramified extensions L of K correspond 1-to-1 with the finite extensions of $R/P = F_q$ and

$$Gal(L/K) \approx Gal(F_n/F_q)$$
 (n = [L:K]).

<u>16:</u> LEMMA K^{ur} is the field obtained by adjoining to K all roots of unity having order prime to p.

<u>17:</u> APPLICATION K^{ur} is a subfield of K^{ab} . [Cyclotomic extensions are Galois and abelian.]

18: THEOREM There is a commutative diagram

the vertical arrow on the right being the composition

$$\begin{aligned} & \operatorname{Gal}(\operatorname{K}^{\operatorname{ab}}/\operatorname{K}) \ \rightarrow \ \operatorname{Gal}(\operatorname{K}^{\operatorname{ab}}/\operatorname{K})/\operatorname{Gal}(\operatorname{K}^{\operatorname{ab}}/\operatorname{K}^{\operatorname{ur}}) \\ & \approx \ \operatorname{Gal}(\operatorname{K}^{\operatorname{ur}}/\operatorname{K}) \\ & \approx \ \operatorname{Gal}(\operatorname{F}^{\operatorname{ab}}_{q}/\operatorname{F}_{q}) \, . \end{aligned}$$

[Note: $\forall a \in K^{\times}$,

$$mod_{K}(a) = q$$
 .]

$$\operatorname{rec}_{K}(\pi) | K^{\operatorname{ur}} \in \operatorname{Gal}(K^{\operatorname{ur}}/K)$$

in Gal(F_q^{ab}/F_q) is σ_q (cf. §20, #7).

[Note: If L is a finite unramified extension of K and if $\tilde{\sigma}_{q,n}$ is the generator of Gal(L/K) which is the lift of the generator $\sigma_{q,n}$ of Gal(F_n/F_q) (n = [L:K]), then

$$(\pi, L/K) = \tilde{\sigma}_{q,n}$$
.]

20: FUNCTORIALITY Suppose that $L \supset K$ is a finite extension of K -- then the diagram

commutes.

<u>21:</u> DEFINITION Given a Hausdorff topological group G, let G* be its commutator subgroup, and put $G^{ab} = G/\overline{G^*}$ -- then $\overline{G^*}$ is a closed normal subgroup of G and G^{ab} is abelian, the topological abelianization of G.

22: EXAMPLE

$$Gal(K^{sep}/K)^{ab} = Gal(K^{ab}/K).$$

<u>23:</u> CONSTRUCTION Let G be a Hausdorff topological group and let H be a closed subgroup of finite index -- then the <u>transfer</u> homomorphism $\tau: G^{ab} \to H^{ab}$ is defined as follows: Choose a section $s: H \setminus G \to G$ and for $x \in G$, put

$$T(\mathbf{x}\overline{\mathbf{G}^{\star}}) = \prod_{\alpha \in \mathbf{H} \setminus \mathbf{G}} h_{\mathbf{X},\alpha} \pmod{\mathbf{H}^{\star}},$$

where $h_{x,\alpha} \in H$ is defined by

$$s(\alpha)x = h_{x,\alpha} s(\alpha x).$$

24: EXAMPLE Suppose that L $_{\rm >}$ K is a finite extension of K -- then L $^{\rm Sep}$ $_{\rm \times}$ K $^{\rm Sep}$ and

$$Gal(L^{Sep}/L) \subset Gal(K^{Sep}/K)$$

is a closed subgroup of finite index (viz. [L:K]), hence there is a transfer homomorphism

$$\tau:Gal(K^{ab}/K) \rightarrow Gal(L^{ab}/L)$$
.

commutes.

§22. WEIL GROUPS: THE ARCHIMEDEAN CASE

<u>1.</u> DEFINITION Put $W_{C} = C^{\times}$, call it the <u>Weil group</u> of C, and leave it at that.

2: DEFINITION Put

 $W_{R} = C^{\times} \cup JC^{\times} \text{ (disjoint union) (J a formal symbol),}$ where $J^{2} = -1$ and $JzJ^{-1} = \overline{z}$ (obvious topology on W_{R}). Accordingly, there is a nonsplit short exact sequence

$$1 \rightarrow C^{\times} \rightarrow W_{R} \rightarrow Gal(C/R) \rightarrow 1,$$

the image of J in Gal(C/R) being complex conjugation.

[Note: $H^2(Gal(C/R), C^{\times})$ is cyclic of order 2, thus up to equivalence of extensions of Gal(C/R) by C^{\times} per the canonical action of Gal(C/R) on C^{\times} , there are two possibilities:

1. A split extension

$$L \rightarrow C^{\times} \rightarrow E \rightarrow Gal(C/R) \rightarrow 1.$$

2. A nonsplit extension

$$1 \rightarrow C^{\times} \rightarrow E \rightarrow Gal(C/R) \rightarrow 1.$$

The Weil group W is a representative of the second situation which is why we took $J^2 = -1$ (rather than $J^2 = +1$).]

3: LEMMA The commutator subgroup W_R^* of W_R consists of all elements of the form $JzJ^{-1}z^{-1} = \frac{\overline{z}}{z}$, i.e., $W_R^* = S$, thus is closed.

Let

$$pr:W_R \rightarrow R^{\times}$$

be the map sending J to -1 and z to $|z|^2$.

4: LEMMA S is the kernel of pr and pr is surjective.

5: LEMMA The arrow

$$pr^{ab}:W_R^{ab} \to R^{\times}$$

induced by pr is an isomorphism.

<u>6:</u> REMARK The inverse $R^{\times} \rightarrow W_{R}^{ab}$ of pr^{ab} is characterized by the conditions

$$\begin{vmatrix} -1 & \longrightarrow & JW_R^* \\ x & \longrightarrow & \sqrt{x} & W_R^* & (x > 0) \end{vmatrix}$$

7: NOTATION Define

$$||.||:W_R \rightarrow R_{>0}^{\times}$$

by the prescription

$$||z|| = z\overline{z} (z \in C), ||J|| = 1.$$

<u>8:</u> <u>N.B.</u> ||.|| drops to a continuous homomorphism $W_R^{ab} \rightarrow R_{>0}^{\times}$.

<u>9</u>: DEFINITION A representation of W_R is a continuous homomorphism $\rho: W_R \rightarrow GL(V)$, where V is a finite dimensional complex vector space.

<u>10:</u> EXAMPLE If $s \in C$, then the assignment $w \rightarrow ||w||^{s}$ is a 1-dimensional

representation of W_R , i.e., is a character.

<u>11:</u> <u>N.B.</u> If χ is a character of R^{\times} , then $\chi \circ pr$ is a character of W_{R} and all such have this form.

[For any $\rho \in \widetilde{W}_{R}$,

$$\rho(\overline{z}) = \rho(JzJ^{-1}) = \rho(J)\rho(z)\rho(J)^{-1} = \rho(z).$$

Therefore

 $1 = \rho(-1)$ (cf. §7, #12).

But

$$\rho(-1) = \rho(J^2) = \rho(J)^2,$$

so $\rho(J) = \pm 1$. This said, the characters of R^{\times} are described in §7, #11, thus the 1-dimensional representations of W_{R} are parameterized by a sign and a complex number s:

- $(+,s):\rho(z) = |z|^{s}, \rho(J) = +1$
- $(-,s):\rho(z) = |z|^{s}, \rho(J) = -1.$]

Let V be a finite dimensional complex vector space.

<u>12:</u> DEFINITION A linear transformation $T:V \rightarrow V$ is <u>semisimple</u> if every T-invariant subspace has a complementary T-invariant subspace.

<u>13:</u> FACT T is semisimple iff T is diagonalizable, i.e., in some basis T is represented by a diagonal matrix.

[Bear in mind that C is algebraically closed....]

<u>14:</u> DEFINITION A representation $\rho: W_R \rightarrow GL(V)$ is <u>semisimple</u> if $\forall w \in W_R'$ $\rho(w): V \rightarrow V$ is semisimple.

<u>15:</u> DEFINITION A representation $\rho: W_R \rightarrow GL(V)$ is <u>irreducible</u> if $V \neq 0$ and the only ρ -invariant subspaces are 0 and V.

The irreducible 1-dimensional representations of W_R are its characters (which, of course, are automatically semisimple).

<u>16:</u> LEMMA If $\rho:W_R \rightarrow GL(V)$ is a semisimple irreducible representation of W_R of dimension > 1, then dim V = 2.

PROOF There is a nonzero vector $v \in V$ and a character $\chi: C^{\times} \to C^{\times}$ such that $\forall \ z \in C^{\times}$,

$$\rho(\mathbf{z})\mathbf{v} = \chi(\mathbf{z})\mathbf{v}.$$

Since the span S of $v, \rho(J)v$ is a ρ -invariant subspace, the assumption of irreducibility implies that dim V = 2.

[To check the ρ -invariance of S, note that

$$\rho(\mathbf{z})\rho(\mathbf{J})\mathbf{v} = \rho(\mathbf{z}\mathbf{J})\mathbf{v} = \rho(\mathbf{J}\mathbf{\bar{z}})\mathbf{v} = \rho(\mathbf{J})\rho(\mathbf{\bar{z}})\mathbf{v} = \rho(\mathbf{J})\chi(\mathbf{\bar{z}})\mathbf{v}$$

$$\rho(\mathbf{J})\rho(\mathbf{J})\mathbf{v} = \rho(\mathbf{J}^{2})\mathbf{v} = \rho(-1)\mathbf{v} = \chi(-1)\mathbf{v}.]$$

Given an integer k and a complex number s, define a character $\chi_{k,s}: C^{\times} \to C^{\times}$ by the prescription

$$\chi_{k,s}(z) = \left(\frac{z}{|z|}\right)^{k} \left(|z|^{2}\right)^{s}$$

and let $\rho_{k,s} = ind \chi_{k,s}$ be the representation of W_R which it induces.

4.

<u>17:</u> LEMMA $\rho_{k,s}$ is 2-dimensional.

18: LEMMA $\rho_{k,s}$ is semisimple.

<u>19:</u> LEMMA $\rho_{k,s}$ is irreducible iff $k \neq 0$.

20: DEFINITION Let

$$\rho_1: W_R \rightarrow GL(V_1)$$
$$\rho_2: W_R \rightarrow GL(V_2)$$

be representations of W_R^{-} - then (ρ_1, V_1) is equivalent to (ρ_2, V_2) if there exists an isomorphism $f:V_1 \rightarrow V_2$ such that $\forall w \in W_R^{-}$,

$$\mathsf{E} \circ \rho_1(\mathsf{w}) = \rho_2(\mathsf{w}) \circ \mathsf{f}.$$

21: LEMMA ρ_{k_1,s_1} is equivalent to ρ_{k_2,s_2} iff $k_1 = k_2$, $s_1 = s_2$ or $k_1 = -k_2$, $s_1 = s_2$.

22: THEOREM Every 2-dimensional semisimple irreducible representation of W_R is equivalent to a unique $\rho_{k,s}$ (k > 0).

23: <u>N.B.</u> Therefore the equivalence classes of 2-dimensional semisimple irreducible representations of W_R are parameterized by the points of N × C.

<u>24:</u> DEFINITION A representation $\rho:W_R \rightarrow GL(V)$ is <u>completely reducible</u> if V is the direct sum of a collection of irreducible ρ -invariant subspaces. <u>25:</u> LEMMA Let $\rho: W_R \to GL(V)$ be a semisimple representation -- then ρ is completely reducible.

PROOF The characters of C^{\times} are of the form $z \to z^{\mu} \overline{z}^{\nu}$ with $\mu, \nu \in C, \ \mu-\nu \in Z$ and V is the direct sum of subspaces $V_{\mu,\nu}$, where $\rho(z) | V_{\mu,\nu} = z^{\mu} \overline{z}^{\nu}$ id. Claim:

$$\rho(\mathbf{J})\mathbf{V}_{\mu,\nu} = \mathbf{V}_{\nu,\mu}.$$

Proof: $\forall v \in V_{\mu,\nu}$

$$\rho(\mathbf{z}) \rho(\mathbf{J}) \mathbf{v} = \rho(\mathbf{J} \overline{\mathbf{z}} \mathbf{J}^{-1}) \rho(\mathbf{J}) \mathbf{v}$$
$$= \rho(\mathbf{J}) \rho(\overline{\mathbf{z}}) \rho(\mathbf{J}^{-1}) \rho(\mathbf{J}) \mathbf{v}$$
$$= \rho(\mathbf{J}) \rho(\overline{\mathbf{z}}) \mathbf{v}$$
$$= \rho(\mathbf{J}) \overline{\mathbf{z}}^{\mu} \mathbf{z}^{\nu} \mathbf{v}$$
$$= \rho(\mathbf{J}) \mathbf{z}^{\nu} \overline{\mathbf{z}}^{\mu} \mathbf{v}$$
$$= \mathbf{z}^{\nu} \overline{\mathbf{z}}^{\mu} \rho(\mathbf{J}) \mathbf{v}.$$

Proceeding:

• $\mu = \nu$ Choose a basis of eigenvectors for $\rho(J)$ on $V_{\mu,\mu}$ -- then the span of each eigenvector is a 1-dimensional ρ -invariant subspace.

• $\mu \neq \nu$ Choose a basis v_1, \ldots, v_r for $v_{\mu,\nu}$ and put $v_i' = \rho(J)v_i$ $(1 \le i \le r)$ -then $(v_i \oplus Cv_i')$ is a 2-dimensional ρ -invariant subspace and the direct sum

equals

 $v_{\mu,\nu} \oplus v_{\nu,\mu}$.

<u>26:</u> REMARK Suppose that $\rho: W_R \rightarrow GL(V)$ is a representation -- then

 $J^{2} = -1 \implies (-1)J \cdot J = 1$ => (-1)J = J⁻¹ => $\rho(J)^{-1} = \rho(J^{-1})$ = $\rho((-1)J)$ = $\rho(-1)\rho(J)$.

On the other hand, if $J^2 = 1$ (the split extension situation (cf. #2)), then

 $id_{V} = \rho(1) = \rho(J)\rho(J)$ => $\rho(J)^{-1} = \rho(J).$

§23. WEIL GROUPS; THE NON-ARCHIMEDEAN CASE

Let K be a non-archimedean local field.

1: NOTATION Put

$$G_{K} = Gal(K^{Sep}/K)$$

$$G_{K}^{ab} = Gal(K^{ab}/K).$$

<u>2:</u> <u>N.B.</u> Every character of G_{K} factors through $\overline{G_{K}^{\star}}$, hence gives rise to a character of G_{K}^{ab} .

To study the characters of $G_K^{ab},$ precompose with the reciprocity map $\text{rec}_K:K^\times \to G_K^{ab}, \text{ thus}$

$$\chi_{\mathbf{K}}: \begin{bmatrix} & & & \\ & & (\mathbf{G}_{\mathbf{K}}^{\mathbf{ab}})^{\tilde{}} \rightarrow (\mathbf{K}^{\tilde{\mathbf{x}}})^{\tilde{}} \\ & & & \\ & & \chi^{\tilde{}} \rightarrow \chi \circ \operatorname{rec}_{\mathbf{K}}. \end{bmatrix}$$

3: LEMMA χ_{K} is a homomorphism.

<u>4:</u> LEMMA χ_{K} is injective.

PROOF Suppose that

$$\chi_{\mathbf{K}}(\chi) = \chi \circ \operatorname{rec}_{\mathbf{K}}$$

is trivial -- then $\chi | \text{Im rec}_{K} = 1$. But Im rec_K is dense in G_{K}^{ab} (cf. §21, #13), so by continuity, $\chi \equiv 1$.

5: LEMMA χ_{K} is not surjective.

PROOF G_K^{ab} is compact abelian and totally disconnected. Therefore $(G_K^{ab})^{\tilde{}} = (G_K^{ab})^{\Lambda}$ and every χ is unitary and of finite order (cf. §7, #7 and §8, #2), thus the $\chi_K(\chi)$ are unitary and of finite order. But there are characters of K^{\times} for which this is not the case.

<u>6:</u> <u>N.B.</u> The failure of χ_{K} to be surjective will be remedied below (cf. #19). The kernel of the arrow

$$Gal(K^{sep}/K) \rightarrow Gal(K^{ur}/K)$$

of restriction is $Gal(K^{sep}/K^{ur})$ and there is an exact sequence

$$1 \rightarrow \text{Gal}(K^{\text{sep}}/K^{\text{ur}}) \rightarrow \text{Gal}(K^{\text{sep}}/K) \rightarrow \text{Gal}(K^{\text{ur}}/K) \rightarrow 1.$$

Identify

with

 $Gal(F_q^{ab}/F_q)$

and put

$$W(F_q^{ab}/F_q) = \langle \sigma_q \rangle$$
 (discrete topology).

<u>7</u>: DEFINITION The Weil group $W(K^{sep}/K)$ is the inverse image of $W(F_q^{ab}/F_q)$ in Gal(K^{sep}/K), i.e., the elements in Gal(K^{sep}/K) which induce an integral power of σ_{a} .

8: NOTATION Abbreviate
$$W(K^{sep}/K)$$
 to W_{K} , hence $W_{K} \subset G_{K}$

Setting

$$I_{K} = Gal(K^{sep}/K^{ur})$$
 (the inertia group),

there is an exact sequence

$$1 \rightarrow I_{K} \rightarrow W_{K} \rightarrow W(F_{q}^{ab}/F_{q}) \rightarrow 1.$$

[Note: Fix an element $\widetilde{\sigma}_q \in \mathtt{W}_K$ which maps to σ_q -- then structurally, \mathtt{W}_K is the disjoint union

$$\bigcup_{n \in \mathbb{Z}} (\widetilde{\sigma}_q)^n \mathbf{I}_{K^*}]$$

$$Gal(K^{sep}/L) \cap I_{K'}$$

where L is a finite Galois extension of K.

<u>9:</u> REMARK I_K has the relative topology per the inclusion $I_K \rightarrow G_K$ and any splitting $Z \rightarrow W_K$ induces an isomorphism $W_K \approx I_K \times Z$ of topological groups, where Z has the discrete topology.

<u>10:</u> LEMMA W_{K} is a totally disconnected locally compact group. [Note: W_{K} is not compact....]

11: LEMMA The inclusion $W_{K} \neq G_{K}$ is continuous and has a dense image.

<u>12:</u> LEMMA I_K is open in W_K .

13: LEMMA I_{K} is a maximal compact subgroup of W_{K} .

Suppose that L > K is a finite extension of K -- then $G_L \subset G_K$ is the subgroup of G_K fixing L, hence

$$W_{L} \subset G_{L} \subset G_{K}$$

14: LEMMA

$$W_{L} = G_{L} \cap W_{K} \subset W_{K}$$

is open and of finite index in W_{K} , it being normal in W_{K} iff L/K is Galois.

15: THEOREM The arrow

$$L \rightarrow W_{T}$$

is a bijection between the finite extensions of K and the open subgroups of finite index of ${\tt W}_{\tt K^{\bullet}}$

[By contrast, the arrow

$$L \rightarrow Gal(K^{sep}/L)$$

is a bijection between the finite extensions of K and the open subgroups of G_{K} .]

16: LEMMA

$$\overline{W}_{K}^{\star} = \overline{G}_{K}^{\star}$$

17: APPLICATION The homomorphism
$$W_K^{ab} \rightarrow G_K^{ab}$$
 is 1-to-1.

<u>18:</u> THEOREM The image of $\operatorname{rec}_{K}: K^{\times} \to \operatorname{G}_{K}^{ab}$ is W_{K}^{ab} and the induced map $K^{\times} \to W_{K}^{ab}$ is an isomorphism of topological groups (cf. §21, #13).

The characters of W_{K} "are" the characters of W_{K}^{ab} , so we have:

<u>19:</u> SCHOLIUM There is a bijective correspondence between the characters of W_{K} and the characters of K^{\times} or still, there is a bijective correspondence between the 1-dimensional representations of W_{K} and the 1-dimensional representations of $GL_{1}(K)$.

Suppose that L $\, {\scriptstyle > \,}$ K is a finite Galois extension of K -- then ${\rm G}_{\rm L}$ ${\scriptstyle < \,}$ G_{\rm K} and

$$G_{K}/G_{L} \approx Gal(L/K)$$

is finite of cardinality [L:K]. Since W_{K} is dense in G_{K} , it follows that the image of the arrow

$$= W_{K} \rightarrow G_{K}/G_{L}$$
$$= W \rightarrow WG_{L}$$

is all of G_K/G_L , its kernel being those $w \in W_K$ such that $w \in G_L$, i.e., its kernel is $G_L \cap W_K$ or still, is W_L .

20: LEMMA

$$W_{\rm K}/W_{\rm L} \approx G_{\rm K}/G_{\rm L} \approx {\rm Gal}\left({\rm L}/{\rm K}\right)$$
 .

<u>21:</u> LEMMA $\overline{W_L^{\star}}$ is a normal subgroup of W_K .

[Bearing in mind that $\tt W_L$ is a normal subgroup of $\tt W_K,$ if $\alpha,\beta\in\tt W_L^\star$ and if $\gamma\in\tt W_K,$ then

$$\gamma \alpha \beta \alpha^{-1} \beta^{-1} \gamma^{-1} = (\gamma \alpha \gamma^{-1}) (\gamma \beta \gamma^{-1}) (\gamma \alpha^{-1} \gamma^{-1}) (\gamma \beta^{-1} \gamma^{-1}).$$

There is an exact sequence

$$1 \rightarrow W_{\underline{L}} / \overline{W_{\underline{L}}^{\star}} \rightarrow W_{\underline{K}} / \overline{W_{\underline{L}}^{\star}} \rightarrow (W_{\underline{K}} / \overline{W_{\underline{L}}^{\star}}) / (W_{\underline{L}} / \overline{W_{\underline{L}}^{\star}}) \rightarrow 1$$

or still, there is an exact sequence

$$1 \rightarrow W_{L} / \overline{W_{L}^{\star}} \rightarrow W_{K} / \overline{W_{L}^{\star}} \rightarrow W_{K} / W_{L} \rightarrow 1.$$

22: NOTATION Put

$$W(L,K) = W_K \sqrt{W_L^*}.$$

23: SCHOLIUM There is an exact sequence

$$1 \rightarrow W_{L}^{ab} \rightarrow W(L,K) \rightarrow W_{K}/W_{L} \rightarrow 1$$

and a diagram

$$\begin{array}{ccc} \mathbb{W}_{L}^{ab} & \longrightarrow \mathbb{W}(L, \mathbb{K}) & \longrightarrow \mathbb{W}_{\mathbb{K}} / \mathbb{W}_{L} \\ & & & & & \downarrow \approx \\ & & & & \downarrow \approx \\ 1 & \longrightarrow L^{\times} & & & & \text{Gal}(L/\mathbb{K}) \rightarrow 1 \end{array}$$

24: NOTATION Given $w \in W_{K}$, let ||w|| denote the effect on w of passing

from W_{K} to $R_{>0}^{\times}$ via the arrows

$$W_{K} \longrightarrow W_{K}^{ab} \xrightarrow{\operatorname{rec}_{K}^{-1}} K^{\times} \xrightarrow{\operatorname{mod}_{K}} R_{>0}^{\times}.$$

<u>25:</u> LEMMA $||.||:W_{K} \rightarrow R_{>0}^{\times}$ is a continuous homomorphism and its kernel is I_{K} .

[Under the arrow

$$W_{K} \rightarrow W_{K}^{ab}$$
,

I_K drops to

$$Gal(K^{ab}/K^{ur}) \subset W_{K}^{ab}.$$

Consider now the arrow

$$\operatorname{rec}_{K}: K^{\times} \to W_{K}^{ab}.$$

Then R^{\times} is sent to $Gal(K^{ab}/K^{ur})$ and a prime element $\pi \in R$ is sent to an element $\tilde{\sigma}_{q}$ in W_{K}^{ab} whose image in $W(F_{q}^{ab}/F_{q})$ is σ_{q} . And

$$W_{K}^{ab} = \bigcup_{n \in \mathbb{Z}} (\tilde{\sigma}_{q})^{n} \operatorname{Gal}(K^{ab}/K^{ur}).]$$

<u>26:</u> DEFINITION A <u>representation</u> of W_{K} is a continuous homomorphism $\rho:W_{K} \rightarrow GL(V)$, where V is a finite dimensional complex vector space.

<u>27:</u> LEMMA A homomorphism $\rho:W_{K} \rightarrow GL(V)$ is continuous per the usual topology on GL(V) iff it is continuous per the discrete topology on GL(V). [GL(V) has no small subgroups.] <u>28:</u> SCHOLIUM The kernel of every representation of W_K is trivial on an open subgroup J of I_K . Conversely, if $\rho: W_K \to GL(V)$ is a homomorphism which is trivial on an open subgroup J of I_K , then the inverse image of any subset of GL(V) is a union of cosets of J, hence is open, hence ρ is continuous, so by definition is a representation of W_K .

29: EXAMPLE Suppose that L \supset K is a finite Galois extension of K -- then

$$W_{\mathbf{L}} \cap \mathbf{I}_{\mathbf{K}} = \mathbf{G}_{\mathbf{L}} \cap W_{\mathbf{K}} \cap \mathbf{I}_{\mathbf{K}}$$
$$= \mathbf{G}_{\mathbf{L}} \cap \mathbf{I}_{\mathbf{K}}$$

is an open subgroup of I_K. But

$$W_{K}/W_{T} \approx Gal(L/K)$$
 (cf. #20).

Therefore every homomorphism $Gal(L/K) \rightarrow GL(V)$ lifts to a homomorphism $W_K \rightarrow GL(V)$ which is trivial on an open subgroup of I_K , hence is a representation of W_K .

<u>30:</u> <u>N.B.</u> Representations of W_{K} arising in this manner are said to be of Galois type.

31: LEMMA A representation of W_{K} is of Galois type iff it has finite image.

<u>32:</u> EXAMPLE ||.|| is a character of W_{K} but as a representation, is not of Galois type.

33: LEMMA Let $\rho: W_K \to GL(V)$ be a representation -- then the image $\rho(I_K)$ is finite.

PROOF Suppose that J is an open subgroup of I_K on which ρ is trivial. Since I_K is compact and J is open, the quotient I_K/J is finite, thus $\rho(I_K) = \rho(I_K/J)$ is finite.

<u>34:</u> DEFINITION A representation $\rho:W_K \rightarrow GL(V)$ is <u>irreducible</u> if $V \neq 0$ and the only ρ -invariant subspaces are 0 and V.

<u>35:</u> THEOREM Given an irreducible representation ρ of $W_{K'}$ there exists an irreducible representation $\tilde{\rho}$ of W_{K} and a complex parameter s such that $\rho \approx \tilde{\rho} | \mathbf{9} | | \cdot | |^{S}$.

<u>36:</u> LEMMA Let $\rho:W_{K} \rightarrow GL(V)$ be a representation -- then V is the sum of its irreducible ρ -invariant subspaces iff every ρ -invariant subspace has a ρ -invariant complement.

<u>37:</u> DEFINITION Let $\rho: W_K \to GL(V)$ be a representation — then ρ is <u>semi</u>-simple if it satisfies either condition of the preceding lemma.

38: N.B. Irreducible representations are semisimple.

<u>39:</u> THEOREM Let $\rho:W_{K} \rightarrow GL(V)$ be a representation -- then the following conditions are equivalent.

1. ρ is semisimple.

- 2. $\rho(\tilde{\sigma}_{q})$ is semisimple.
- 3. $\rho(w)$ is semisimple $\forall w \in W_{K}$.

§24. THE WEIL-DELIGNE GROUP

<u>1:</u> DEFINITION The <u>Weil-Deligne</u> group WD_{K} is the semidirect product $C \times | W_{K}$, the multiplication rule being

$$(z_1, w_1) (z_2, w_2) = (z_1 + ||w_1||z_2, w_1w_2).$$

[Note: The identity in WD_K is (0,e) and the inverse of (z,w) is $(- ||w||^{-1}z,w^{-1})$:

$$(z,w) (- ||w||^{-1}z,w^{-1})$$

= (z + ||w||(- ||w||^{-1}z),ww^{-1})
= (z - z,e) = (0,e).]

2: N.B. The topology on WD_{K} is the product topology.

<u>3:</u> DEFINITION A <u>Deligne representation</u> of W_K is a triple (ρ, V, N), where $\rho: W_K \rightarrow GL(V)$ is a representation of W_K and $N: V \rightarrow V$ is a nilpotent endomorphism of V subject to the relation

$$\rho(\mathbf{w}) N \rho(\mathbf{w})^{-1} = ||\mathbf{w}|| N \quad (\mathbf{w} \in W_K).$$

[Note: N = 0 is admissible so every representation of W_{K} is a Deligne representation.]

<u>4</u>: EXAMPLE Take $V = C^n$, hence $GL(V) = GL_n(C)$. Let e_0, e_1, \dots, e_{n-1} be the usual basis of V. Define ρ by the rule

$$\rho(\mathbf{w})\mathbf{e}_{\mathbf{i}} = ||\mathbf{w}||^{\mathbf{i}}\mathbf{e}_{\mathbf{i}} \quad (\mathbf{w} \in \mathbf{W}_{\mathbf{K}}, \ 0 \le \mathbf{i} \le \mathbf{n-1})$$

and define N by the rule

$$Ne_i = e_{i+1}$$
 (0 ≤ i ≤ n-2), $Ne_{n-1} = 0$.

Then the triple (ρ, V, N) is a Deligne representation of W_{K} , the <u>n-dimensional</u> special representation, denoted sp(n).

<u>5</u>: DEFINITION A representation of WD_K is a continuous homomorphism $\rho':WD_K \rightarrow GL(V)$ whose restriction to C is complex analytic, where V is a finite dimensional complex vector space.

<u>6:</u> LEMMA Every Deligne representation (ρ ,V,N) of W_K gives rise to a representation $\rho':WD_K \rightarrow GL(V)$ of WD_K.

PROOF Put

$$\rho'(z,w) = \exp(zN)\rho(w)$$
.

Then

$$= \exp(z_1 N) \rho(w_1) \exp(z_2 N) \rho(w_2)$$

= $\exp(z_1 N) \rho(w_1) \exp(z_2 N) \rho(w_1^{-1}) \rho(w_1) \rho(w_2)$
= $\exp(z_1 N) \exp(z_2 ||w_1||N) \rho(w_1 w_2)$
= $\exp(z_1 N + z_2 ||w_1||N) \rho(w_1 w_2)$
= $\exp((z_1 + ||w_1||z_2)N) \rho(w_1 w_2)$

 $\rho'(z_1,w_1)\rho'(z_2,w_2)$

$$= \rho'(z_1 + ||w_1||z_2, w_1w_2)$$
$$= \rho'((z_1, w_1)(z_2, w_2)).$$

[Note: The continuity of ρ' is manifest as is the complex analyticity of its restriction to C.]

One can also go the other way but this is more involved.

7: RAPPEL If $T: V \rightarrow V$ is unipotent, then

$$\log T = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} (T - I)^n$$

is nilpotent.

8: SUBLEMMA Let $\rho':WD_K \to GL(V)$ be a representation of WD_K -- then $\forall z \neq 0$, $\rho'(z,e)$ is unipotent.

<u>9:</u> SUBLEMMA Let $\rho':WD_{K} \rightarrow GL(V)$ be a representation of WD_{K} -- then $\forall z \neq 0$, log $\rho'(z,e)$

is nilpotent and

$$(\log \rho'(z,e))/z$$
 (z \neq 0)

is independent of z.

<u>10:</u> LEMMA Every representation $\rho':WD_K \rightarrow GL(V)$ of WD_K gives rise to a Deligne representation (ρ, V, N) of W_K .

PROOF Put

$$\rho = \rho' | \{0\} \times W_{K'}, N = \log \rho'(1,e).$$

Then $\forall w \in W_{K'}$

$$\rho(w) N \rho(w)^{-1} = \rho(w) \log \rho'(1,e) \rho(w)^{-1}$$

$$= \rho(w) \left(\sum_{n \ge 1} \frac{(-1)^{n+1}}{n} (\rho'(1,e) - I)^n) \rho(w)^{-1} \right)$$

$$= \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} (\rho(w) \rho'(1,e) \rho(w)^{-1} - 1)^{n}.$$

And

$$\rho(w) \rho'(1,e) \rho(w)^{-1}$$

$$= \rho'(0,w) \rho'(1,e) \rho'(0,w^{-1})$$

$$= \rho'((0,w) (1,e) (0,w^{-1}))$$

$$= \rho'((||w||,w) (0,w^{-1}))$$

$$= \rho'(||w||,e).$$

Therefore

$$= \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} (\rho'(||w||, e) - I)^{n}$$

= $\log \rho'(||w||, e)$
= $||w|| (\log \rho'(||w||, e))/||w||$
= $||w|| \log \rho'(1, e)$
= $||w|| N.$

11: OPERATIONS

• Direct Sum: Let (ρ_1, V_1, N_1) , (ρ_2, V_2, N_2) be Deligne representations -then their direct sum is the triple

$$(\rho_1 \oplus \rho_2, V_1 \oplus V_2, N_1 \oplus N_2).$$

• Tensor Product: Let (ρ_1, V_1, N_1) , (ρ_2, V_2, N_2) be Deligne representations -then their tensor product is the triple

$$(\rho_1 \otimes \rho_2, V_1 \otimes V_2, N_1 \otimes I_2 + I_1 \otimes N_2).$$

• Contragredient: Let (ρ, V, N) be a Deligne representation -- then its contragredient is the triple

$$(\rho^{\vee}, v^{\vee}, - N^{\vee}).$$

[Note: V^{\vee} is the dual of V and N^{\vee} is the transpose of N (thus $\forall f \in V^{\vee}$, $N^{\vee}(f) = f \circ N$).]

<u>12:</u> REMARK The definitions of Θ , Θ , \vee when transcribed to the "prime picture" are the usual representation-theoretic formalities applied to the group WD_{K} .

13: N.B. Let

be Deligne representations of $W_{\rm K}^{}$ -- then a morphism

$$(\rho_1, N_1, V_1) \neq (\rho_2, N_2, V_2)$$

is a linear map $T:V_1 \rightarrow V_2$ such that

$$T\rho_1(w) = \rho_2(w)T \quad (w \in W_k)$$

and $TN_1 = N_2T$.

[Note: If T is a linear isomorphism, then the Deligne representations

$$(\rho_{1}, N_{1}, V_{1})$$

$$(\rho_{2}, N_{2}, V_{2})$$

are said to be isomorphic.]

<u>14:</u> DEFINITION Suppose that (ρ, V, N) is a Deligne representation of W_{K} -then a subspace $V_0 \subset V$ is an <u>invariant subspace</u> if it is invariant under ρ and N.

15: LEMMA The kernel of N is an invariant subspace. PROOF If Nv = 0, then $\forall w \in W_{K}$,

$$N\rho(w)v = ||w^{-1}||\rho(w)Nv = 0.$$

<u>16:</u> DEFINITION A Deligne representation (ρ, V, N) of W_{K} is <u>indecomposable</u> if V cannot be written as a direct sum of proper invariant subspaces.

<u>17:</u> EXAMPLE Consider sp(n) -- then it is indecomposable. [If $C^n = S \oplus T$ was a nontrivial decomposition into proper invariant subspaces, then both $\begin{bmatrix} S \cap \text{Ker N} \\ & Would be nontrivial.} \end{bmatrix}$ <u>18:</u> DEFINITION A Deligne representation (ρ ,V,N) of W_K is <u>semisimple</u> if ρ is semisimple (cf. §23, #37).

19: EXAMPLE Consider sp(n) -- then it is semisimple.

20: LEMMA Let π be an irreducible representation of W_{K} -- then sp(n) $\Omega \pi$ is semisimple and indecomposable.

[Note: Recall that π is identified with $(\pi, 0)$.]

<u>21:</u> THEOREM Every semisimple indecomposable Deligne representation of W_{K} is equivalent to a Deligne representation of the form sp(n) $\mathfrak{Q} \pi$, where π is an irreducible representation of W_{K} and n is a positive integer.

<u>22:</u> THEOREM Let (ρ, N, V) be a semisimple Deligne representation of W_{K} --

$$(\rho, V, N) = \bigoplus_{i=1}^{s} sp(n_i) \otimes \pi_i,$$

where π_{i} is an irreducible representation of \mathtt{W}_{K} and \mathtt{n}_{i} is a positive integer. Furthermore, if

$$(\rho, V, N) = \bigoplus_{j=1}^{t} \operatorname{sp}(n_{j}^{t}) \ \mathfrak{Q} \ \pi_{j}^{t}$$

is another such decomposition, then s = t and after a renumbering of the summands, $\pi_i \approx \pi'_i$ and $n_i = n'_i$.

APPENDIX

Instead of working with

some authorities work with

$$SL(2,C) \times W_{\kappa}$$

the rationale for this being that the semisimple representations of the two groups are the "same".

Given $w \in W_{K}$, let

$$h_{w} = \begin{bmatrix} ||w||^{1/2} & 0 \\ \\ \\ 0 & ||w||^{-1/2} \end{bmatrix}$$

and identify z \in C with

$$\begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix}$$

Then

$$h_{w} \begin{bmatrix} 1 & z \\ & & \\ & & \\ 0 & 1 \end{bmatrix} h_{w}^{-1} = \begin{bmatrix} 1 & ||w||z \\ & & \\ & & \\ 0 & 1 \end{bmatrix}.$$

But conjugation by h_W is an automorphism of SL(2,C), thus one can form the semidirect product SL(2,C) × | W_K , the multiplication rule being

$$(x_1, w_1) (x_2, w_2) = (x_1 h_{w_1} x_2 h_{w_1}^{-1}, w_1 w_2).$$

LEMMA The arrow

$$(X,w) \rightarrow (Xh_{v,v},w)$$

from

$$SL(2,C) \times | W_{K}$$
 to $SL(2,C) \times W_{K}$

is an isomorphism of groups.

DEFINITION A <u>representation</u> of SL(2,C) × W_K is a continuous homomorphism $\rho:SL(2,C) \times W_{K} \rightarrow GL(V)$ (V a finite dimensional complex vector space) such that the restriction of ρ to SL(2,C) is complex analytic.

N.B. ρ is semisimple iff its restriction to W_K is semisimple.

[The restriction of ρ to SL(2,C) is necessarily semisimple.]

The finite dimensional irreducible representations of SL(2,C) are parameterized by the positive integers:

 $n \iff sym(n)$, dim sym(n) = n.

THEOREM The isomorphism classes of semisimple Deligne representations of $W_{\rm K}$ are in a 1-to-1 correspondence with the isomorphism classes of semisimple representations of SL(2,C) $\times W_{\rm K}$.

To explicate matters, start with a semisimple indecomposable Deligne representation of W_{K} , say sp(n) $\mathfrak{Q} \pi$, and assign to it the external tensor product sym(n) $|\overline{\times}|\pi$, hence in general