Math 582G - Homework 4

Due on Wednesday, March 9, 2022
Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together, but you should try the problems on your own first and write up your own solutions.

Problem 1. Suppose that $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to $\mathbf{e} \in \mathbb{R}^{n}$ and let $K=\overline{C(f, \mathbf{e})}$. The rank of a point $\mathbf{a} \in \mathbb{R}^{n}$, denoted $\operatorname{rank}(\mathbf{a})$, is defined to be the number of its nonzero eigenvalues.
(a) Show that for any $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in K$ whose span intersects the interior of K, the rank of \mathbf{a}_{j} equals the degree of y_{j} in $f\left(\sum_{j=1}^{m} y_{j} \mathbf{a}_{j}\right)$.
(b) Show that for any $\mathbf{a}, \mathbf{b} \in K$, $\operatorname{rank}(\mathbf{a}+\mathbf{b}) \leq \operatorname{rank}(\mathbf{a})+\operatorname{rank}(\mathbf{b})$.
(c) Can you come up with an example $f=\operatorname{det}\left(\sum_{j=1}^{m} y_{j} A_{j}\right)$ with $A_{j} \in \mathbb{R}_{\text {sym }}^{d \times d}$ where $\operatorname{deg}_{y_{j}}(f) \neq \operatorname{rank}\left(A_{j}\right)$ for some j ?

Problem 2. Let $G=([n], E)$ be a graph. For each edge $e=\{i, j\} \in E$ with $i<j$, define the vector $v_{e} \in \mathbb{R}^{n-1}$ to be $\mathbf{1}_{i}-\mathbf{1}_{j}$ if $j<n$ and $\mathbf{1}_{i}$ if $j=n$, where $\mathbf{1}_{i}$ is the i th coordinate unit vector in \mathbb{R}^{n-1}. Show the following:
(a) The vectors $\left\{v_{e}: e \in E\right\}$ are linearly dependent if and only if E contains a cycle.
(b) If G is connected, then

$$
\operatorname{det}\left(\sum_{e \in E} x_{e} v_{e} v_{e}^{T}\right)=\sum_{T} \prod_{e \in T} x_{e} \in \mathbb{R}\left[x_{e}: e \in E\right]
$$

where the sum is taken over all spanning trees T of the graph G.

Problem 3. Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero polynomial with nonnegative coefficients that is homogeneous of degree d. Show that $\log (f)$ is concave on \mathbb{R}_{+}^{n} if and only if $f^{1 / d}$ is concave on \mathbb{R}_{+}^{n}.

