Math 582G – Homework 3

Due on Friday, February 18, 2022

Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together, but you should try the problems on your own first and write up your own solutions.

Problem 1. Let H(x) be the $d \times d$ symmetric matrix with entries in $\mathbb{R}[x_1, \ldots, x_n]$. Show that H(x) equals PP^T for some matrix $d \times m$ matrix P with entries in $\mathbb{R}[x_1, \ldots, x_n]$ if and only if the polynomial $y^T H(x)y \in \mathbb{R}[x_1, \ldots, x_n, y_1, \ldots, y_d]$ is a sum of squares, where $y = (y_1, \ldots, y_d)^T$.

Problem 2. For $A \in \mathbb{C}^{n \times n}$, let $M_A(t, x, y) = tI + x(A + A^*)/2 + y(A - A^*)/(2i)$.

- (a) Show that $|z| \leq r$ for all $z \in \mathcal{W}(A)$ if and only if $\{(x, y) \in \mathbb{R}^2 : M_A(1, x, y) \succeq 0\}$ contains the ball defined by $x^2 + y^2 \leq 1/r^2$. (The smallest such r is called the *numerical radius* of A.)
- (b) Using your favorite computer algebra software, find the minimal polynomial vanishing on the boundary of $\{(a, b) \in \mathbb{R}^2 : a + ib \in \mathcal{W}(A)\}$ for

$$A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ i & 0 & 0 \end{pmatrix}.$$

(c) What is the numerical radius of A?

Problem 3. Given a univariate polynomial, p(t) of degree d with roots $r_1, \ldots, r_d \in \mathbb{C}$, define the quadratic form H_p on $\mathbb{R}[t]_{\leq d-1}$ given by $H_p(q) = \sum_{j=1}^d q(r_j)^2$.

- (a) Show that p is real rooted if and only if H_p is positive semidefinite.
- (b) For $p = p_3 t^3 + p_2 t^2 + p_1 t + p_0$, write down the symmetric matrix representing H_p with respect to the basis $\{1, t, t^2\}$ of $\mathbb{R}[t]_{\leq 2}$ in terms of the coefficients p_3, \ldots, p_0 .
- (c) Let $H(x_1, x_2)$ be the 3 × 3 matrix given by H_p for $p(t) = \det(M_A(t, x_1, x_2))$ for the matrix A in 2(b). Can $H(x_1, x_2)$ be written as a matrix sum of squares PP^T for some matrix P with entries in $\mathbb{R}[x_1, x_2]$? (If as this gives a sum of squares correlation for hyperbolicity)

(If so, this gives a sum-of-squares certificate for hyperbolicity!)