Math 582G - Homework 3

Due on Friday, February 18, 2022

Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together, but you should try the problems on your own first and write up your own solutions.

Problem 1. Let $H(x)$ be the $d \times d$ symmetric matrix with entries in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Show that $H(x)$ equals $P P^{T}$ for some matrix $d \times m$ matrix P with entries in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ if and only if the polynomial $y^{T} H(x) y \in \mathbb{R}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{d}\right]$ is a sum of squares, where $y=\left(y_{1}, \ldots, y_{d}\right)^{T}$.

Problem 2. For $A \in \mathbb{C}^{n \times n}$, let $M_{A}(t, x, y)=t I+x\left(A+A^{*}\right) / 2+y\left(A-A^{*}\right) /(2 i)$.
(a) Show that $|z| \leq r$ for all $z \in \mathcal{W}(A)$ if and only if $\left\{(x, y) \in \mathbb{R}^{2}: M_{A}(1, x, y) \succeq 0\right\}$ contains the ball defined by $x^{2}+y^{2} \leq 1 / r^{2}$. (The smallest such r is called the numerical radius of A.)
(b) Using your favorite computer algebra software, find the minimal polynomial vanishing on the boundary of $\left\{(a, b) \in \mathbb{R}^{2}: a+i b \in \mathcal{W}(A)\right\}$ for

$$
A=\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 2 \\
i & 0 & 0
\end{array}\right)
$$

(c) What is the numerical radius of A ?

Problem 3. Given a univariate polynomial, $p(t)$ of degree d with roots $r_{1}, \ldots, r_{d} \in \mathbb{C}$, define the quadratic form H_{p} on $\mathbb{R}[t]_{\leq d-1}$ given by $H_{p}(q)=\sum_{j=1}^{d} q\left(r_{j}\right)^{2}$.
(a) Show that p is real rooted if and only if H_{p} is positive semidefinite.
(b) For $p=p_{3} t^{3}+p_{2} t^{2}+p_{1} t+p_{0}$, write down the symmetric matrix representing H_{p} with respect to the basis $\left\{1, t, t^{2}\right\}$ of $\mathbb{R}[t]_{\leq 2}$ in terms of the coefficients p_{3}, \ldots, p_{0}.
(c) Let $H\left(x_{1}, x_{2}\right)$ be the 3×3 matrix given by H_{p} for $p(t)=\operatorname{det}\left(M_{A}\left(t, x_{1}, x_{2}\right)\right)$ for the matrix A in 2(b). Can $H\left(x_{1}, x_{2}\right)$ be written as a matrix sum of squares $P P^{T}$ for some matrix P with entries in $\mathbb{R}\left[x_{1}, x_{2}\right]$?
(If so, this gives a sum-of-squares certificate for hyperbolicity!)

